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by
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for the Degree of Masters of Applied Science in Electrical and Computer Engineering

A bstract This thesis proposes a new decision rule for the space-time block (STB)

coded wireless communication system in Rayleigh faded channel with partial know­
ledge of the channel state information (CSI). Also proposed is the frame-based itera­
tive channel estimation algorithm for the same system with no knowledge of CSI.

Antenna diversity can provide high channel spectral efficiency necessary for the 
next generation wireless communication system. Receiver diversity is applicable for 
uplink from the mobile station (MS) to the base station (BS), while providing trans­
m itter diversity for downlink from BS to MS. One of the transm itter diversity tech­
niques is the STB code, proposed by Alamouti [1]. The STB code is highly efficient 
considering the decoding complexity. One major disadvantage of the STB coded sys­
tem is tha t the error rate performance relies heavily on the estimated channel fading 
parameters, which are used in the decision rule. As the estimated fading parameters 
become unreliable with decreasing numbers of overhead pilot symbols, the perfor­
mance degrades. If the receiver has partial knowledge of CSI, then this performance 
can be improved by including this information to the decision rule of the decoder. 
The state-of-the-art technique uses the modified decision rule proposed by Tarokh [28]. 
This thesis proposes a simpler modified decision rule which performs better in terms 
of bit error rate (BER) than the existing state-of-the-art technique using gray coded 
16-QAM (Quadrature Amplitude Modulation) scheme with 2 transm itter antennas 
and 1 receiver antenna. Moreover, the proposed decision rule requires much less 
complexity from the implementation point of view compared to the state-of-the-art 
counterpart.

The thesis also proposes the frame-based iterative channel estimator when no 
knowledge of CSI is available at the receiver. The algorithm exploits the inherent 
orthogonal property of the STB code. The BER performance reaches within 1 dB 
of the perfect knowledge of CSI for the simplest case with BPSK (Binary Phase 
Shift Keying) modulation having 2 transm itter antennas and 1 receiver antenna. 
The proposed algorithm outperforms the state-of-the-art iterative decision-directed 
channel tracking algorithm [12] at the expense of increased receiver complexity.
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Chapter 1

Introduction

The third generation (3G) mobile communication standards are expected to provide 

a wide range of bearer services, spanning from voice to high-rate data  transmission. 

The requirements lead to a demand for increased capacity with limited radio spectrum 

available. Communication technology is being rapidly changed to meet this demand 

and new communication techniques are being developed for modern communication 

systems. In an effort to support such high rates, the bit/sym bol capacity of band- 

limited wireless channels can be increased by employing multiple antennas. The 

traditional approach is to use multiple antennas at the receiver and use maximal- 

ratio receiver combining (MRRC) of the received signals for improved performance 

[11]. This receiver diversity scheme is attractive for the Base Stations (BS); however, 

applying this scheme at the Mobile Stations (MS) increases their complexity and size. 

Hence receiver diversity techniques typically have been applied for uplink only.

To achieve similar diversity gain for communication systems from the BS to the 

MS, different transm it diversity techniques have been introduced. Space-time trellis 

codes were proposed to meet the demand, but the receiver complexity becomes very 

high [27]. In addressing the issue of decoding complexity, Alamouti discovered a 

remarkable scheme for transm it diversity using two transm itter antennas [1]. Later

1
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this scheme was extended for three and more transm itter antennas by Tarokh et 

al [29]. This coding technique, known as the space-time block (STB) code, has 

a simple decoder structure. It can provide the best theoretical tradeoff between 

diversity gain, transmission rate, constellation size, signal space dimension and trellis 

complexity [28]. However, the decoding of STB code heavily depends on the accuracy 

of the estimate of the channel fading parameters [3], Estimation of channel fading 

parameters requires overhead pilot symbols. To increase the data rate and decrease 

energy loss due to overhead, reduced pilot symbols are to be used. This causes the 

estimation to become unreliable, leading to a poor error rate performance of the 

system. Tarokh proposed a modified decision rule when partial knowledge of the 

channel state information (CSI) is available at the receiver [28]. The complexity of 

this decision rule is very high and the decision rule is valid only for high signal-to- 

noise ratio (SNR) [30]. On the contrary, when no knowledge of CSI is available, 

iterative channel estimation is proposed to improve the performance [4,12]. Practical 

importance of these two cases demand more research to resolve the complexity and 

performance gain issues before implementing the system efficiently in reality.

The goals of this thesis are as follows:

• Investigate the state-of-the-art of the STB coded system with imperfect channel 

estimates.

• Derive a modified decision rule with imperfect channel estimates when partial 

knowledge of CSI is available.

• Investigate iterative channel estimation algorithm for improved performance 

w hen no CSI is available.

These goals are realized in the following methodology:

• Partial CSI - a simple modified decision rule is derived for this case based on 

Alam outi’s first model, which supersedes performance of Tarokh’s model.

2
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• No CSI - a novel frame-based iterative channel estimation algorithm is proposed 

for this case exploiting the orthogonal property of STB coded scheme.

• Comparison - performances are compared through software simulations with 

the corresponding state-of-the-art techniques.

The remainder of this introduction specifies the basic problems of decoding with 

imperfect channel estimates, and outlines the proposed solutions.

1.1 Challenges due to imperfect channel estim ates

The decision rule for the STB code was derived assuming ideal case when the receiver 

has the perfect knowledge of CSI [1,29]. In reality, the receiver never has the perfect 

knowledge of CSI as the channel parameters are random variables. There are two 

possible cases in practice:

• Case I - The receiver might have partial knowledge of CSI. This partial know­

ledge can be the variances of the estimation error of the channel fading param­

eters, which can be found easily and reliably.

• Case II - The receiver might have no knowledge of CSI.

In both cases, the decision rule derived assuming the perfect knowledge of CSI 

causes mismatch in the receiver. Performance degradation due to this type of mis­

match in the channel fading parameters in the decision rule has been addressed in 

the standard literature [33]. It is shown in [3] tha t the STB code is more sensitive 

to the channel estimation error than the straightforward two branch diversity scheme 

because of its dependency on the removal of the cross-terms in the decision rule. This 

dependency on the channel estimation error increases as the number of transm itter 

and receiver antennas increases to achieve higher error rate performance [9]. More­

over, if the initial channel estimation is done with very few pilot symbols to reduce

3
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overhead loss, the estimation error becomes significant and the coding performance 

degrades further.

The case of partial knowledge of CSI was discussed and modification of the deci­

sion rule was proposed in [26,28]. Later, however, it was found th a t the scheme is only 

applicable when the SNR approaches infinity [30] and is approximate for the practical 

range of the SNR. Moreover, this modified decision rule requires much higher pro­

cessing time as the complexity is very high. Still, this is the state-of-the-art method 

to combat imperfect channel estimates for the first case.

Techniques to overcome performance degradation due to the channel estimation 

error for the second case are also being extensively studied. In [14], a cyclic approach 

is considered to compensate the channel estimation error. Different iterative algo­

rithms are being proposed to improve initial channel estimation using data  symbols. 

Decision-directed channel estimation is proposed in [4,16,35]. An improved method 

of decision-directed channel tracking algorithm (which is in fact a modified version 

of the decision-directed algorithm, hence can be called as modified decision-directed 

method) is proposed in [12], This is the state-of-the-art algorithm in this case for 

its high performance and very low complexity. However, there is still a significant 

performance gap between the ideal case and this algorithm.

1.2 Description of solutions

To resolve the issue of channel fading param eter estimation error, two different tech­

niques for the two cases are proposed in this work. For the first case, a simple modified 

decision rule is derived. For the second case, a frame-based iterative channel estima­

tor is proposed which exploits the inherent orthogonal property of the STB coding. 

The solutions are briefly discussed below.

4
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1.2.1 M odified decision rule for the decoder

A low complexity modified decision rule has been proposed for the maximum like­

lihood (ML) decoder of the STB coded system proposed by Alamouti when vari­

ance of the estimation error is known or can be estimated reliably. Similar steps to 

Frenger’s methodology for Turbo coded system with imperfect channel estimates has 

been adopted [8]. The basic approach is to include the known estimation error model 

while deriving the probability density function (pdf) of the received signal condi­

tioned on the estimated channel parameters. The modified decision rule given in this 

work provides a similar or improved performance compared to the state-of-the-art 

method. Moreover, the proposed decision rule has much less complexity for practical 

implementation. The decision rule can easily be generalized or extended for any STB 

coded system and other similar systems, too.

1.2.2 Frame-based iterative channel estim ation

The structure of the STB data blocks and of the orthogonal pilot sequences are 

similar. This inherent orthogonal property of the STB coding scheme is exploited in 

this algorithm. The effect of wrong detection of data blocks is minimized by iterating 

on a frame-basis instead of a block-basis. The initial channel fading parameters 

are estimated from a few known data  or pilot sequences. These estimated channel 

parameters are used to decode the whole frame of the received signal. Then the whole 

data frame is used to find averaged channel fading parameters, which will obviously 

have higher reliability. This method of frame-based iteration is repeated for a number 

of times to have the desired performance of the error rate. The performance gain is 

very significant as it approaches ideal case performance after only a  few iterations. 

However, the complexity is increased and higher processing time is expected.

5
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1.3 Organization of the thesis

The organization of this thesis is as follows:

Chapter 2 discusses different types of channels and channel coding techniques.

Chapter 3 describes the STB coded system in detail with emphasis on the Alam­

outi’s first model.

Chapter 4 describes the estimation technique of the channel fading param eters and 

explains the effect of imperfect channel estimates on the performance of the system.

Chapter 5 develops the proposed modified decision rule for the STB coded sys­

tem in the Rayleigh faded channel with imperfect channel estimates having partial 

knowledge of CSI.

Chapter 6 develops the proposed model of the frame-based iterative channel esti­

mation for the STB coded system having no knowledge of CSI.

Chapter 7 presents the simulation results showing performance comparison with 

the corresponding state-of-the-art methods.

Chapter 8 summarizes major accomplishments and identifies future research di­

rections.

The Appendix A gives the steps of the derivation of the exact conditional pdf of 

the received signal in detail, which is needed for deriving the modified decision rule.

6
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Chapter 2

Channel and channel coding

This chapter describes the basic concepts required for the modern communication 

system. As the thesis is based on a channel coding technique for wireless communi­

cation system, different types of channels involving this kind of system are explained. 

A brief discussion on different channel coding techniques are also given.

2.1 Modern communication system

Ever since the first transmission for radio communication by Guglielmo Marconi, 

the radio spectrum has become the fundamental resource on which every wireless 

communication system depends. Following those early pioneering times, the use of 

the radio spectrum has increased dramatically in recent days with the advent of 

mobile technology. Now-a-days, the available radio spectrum is heavily utilized by 

a variety of services based on land and sea, in air and space, for a vast array of 

different purposes. These services bring an enormous amount of benefits to human 

society. However, they also require appropriate radio spectrum management and 

regulation mechanisms to ensure economically viable use of this limited resource. 

Indeed, different wireless systems offering the services need to maximize their own 

spectrum efficiency to ensure tha t support can be given to as many users as possible.

7
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The endeavor is to  increase both user satisfaction and the revenues of the operator.

In the third generation of wireless communications, the demand for wide-band 

high data  rate communication services will grow with the integration of internet and 

multimedia applications. To meet this demand, basic requirements of the modern 

communication systems can be categorized as:

• High data transmission rate.

• Limited bandwidth operation.

• Reliable communication.

Reliable communication, consisting of transmission and reception processes, has 

an acute impact on data transmission rate and capacity. A communication system 

with high data rate but low reliability suffers from high volume of requests for re­

transmission of the same data packets. Similarly a reliable communication scheme 

with low capacity can outperform a unreliable communication scheme with higher ca­

pacity. Hence, emphasis is given on reliable communication to optimize the channel 

spectral efficiency. Increased reliability can be achieved by different coding techniques 

in different levels of transmission and reception. One of the coding techniques used 

to meet the uncertainty of the channel parameters is channel coding. Before dis­

cussing channel coding, a better understanding of a simple communication system 

and wireless channel is necessary.

2.2 A simple communication system

A simplified diagram of generalized digital communication system is shown in Figure 

2-1 [32]. The digital signal sequences (c(t)) produced by the source are transm itted 

through the transm itter. Depending on the coding scheme, the number of transm itter 

antennas can be one or more. This transm itted symbol sequences (s(t)) pass through

8
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AWGN
N oise

SinkS o u rce R eceiver
Fading

C hanne lT ransm itter

Figure 2-1: A simplified digital communication system.

the channel, which might be an acoustical channel for wireless communication sys­

tems. The channel introduces channel fading param eter (h(t)) to the transm itted 

symbols. This random fading param eter has probability distribution depending on 

the line-of-sight from the transm itter to the receiver. The worst case of fading is the 

Rayleigh fading, when there is no direct path from the transm itter to  the receiver. In 

addition, at the receiver antenna, additive white Gaussian noise (AWGN) is generated 

(n(t)) and added to the faded symbols to constitute the received signal r(t). Again, 

the number of receiver antennas can be one or more depending on the communication 

model. For the simplest case given in Figure 2-1, the received signal model can be 

expressed as,

r(t) =  h(t)s(t) + n(t). (2.1)

This received signal is sampled by the matched filter, the correlation detector or some 

other method. These samples constitute the received signal samples, which are then 

passed through the detector for detection of transm itted symbol sequences (s( t )). A 

simple mapping can produce the detected data (c(f)) sequences and are consumed at 

the sink. For estimation of channel fading parameter, some known pilot symbols are 

sent along with a data  frame. A channel estimator (not shown in the figure) isolates 

the received signal samples due to pilot symbols and estimates the channel, which is 

fed to the receiver before the detection process starts. In the communication model, 

the source is a system having no input but producing an output; a sink has an input 

and no output.

One of the major challenges in wireless communication system is to overcome the

9
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channel fading caused by m ultipath and movement in the radio link. For a benign 

wireless channel, the receiver would simply be inverse of the transm itter and there 

would be no error in the detection process. But in practice, the wireless channel is not 

benign. Rather the channel introduces random destruction of the transm itted signal. 

This requires powerful channel coding to combat the malign effects of the channel. A 

brief discussion of wireless channels follows in the next section.

2.3 Types of wireless channel

The surrounding objects of a wireless environment act as reflectors or absorbers of 

the radio waves. Some obstacles produce reflected waves with attenuated amplitudes 

and phases. If a modulated signal is to be transm itted, multiple reflected waves of the 

transm itted signal will arrive at the receiving antenna (or antennas) from different 

directions with different amplitudes, propagation delays and phases. These reflected 

waves are called m ultipath waves [33]. The m ultipath waves at the receiver site have 

a combined effect due to the different arrival times, phases and amplitudes. When 

they are collected by the receiver antenna at any point, they may combine either 

in a constructive or a destructive way, depending on the random phases. The sum 

of these m ultipath components forms a spatially varying standing wave field. The 

mobile unit moving through the m ultipath field will receive a signal which can vary 

widely in amplitude and phase. When the mobile unit is stationary, the amplitude 

variations in the received signals are due to the movements of the surrounding objects 

in the radio channel. The amplitude fluctuation of the received signal is called channel 

fading. It is caused by the time-variant multipath characteristics of the channel. The 

effect of channel fading in the received signal samples is purely random.

The wireless channel suffers from time varying channel fading parameters due to 

the m ultipath propagation and destructive superposition of the signals received over

10
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different paths. From the quantitative point of view, channel fading param eters can 

be classified in two categories:

• Large-scale fading,

• Small-scale fading.

Large-scale fading is primarily caused by reflection, diffraction and scattering. 

This type of fading is usually deterministic. On the other hand, small-scale fading, 

or simply fading, is used to describe the rapid fluctuation of the amplitude of a radio 

signal over a short period of time or travel distance. This type of fading is described 

by stochastic process. The wireless channel considered in this work is the la tter type.

Small-scale fading can again be classified into different categories. Depending on 

the Doppler shift, fading can be classified as fast or slow. In fast fading, the symbol 

duration is larger than coherence time, i.e. high Doppler rate. In slow fading, the 

symbol duration is smaller than the coherence time, i.e. low Doppler rate. Coherence 

time is a statistical measure of the time duration over which the channel impulse re­

sponse is essentially invariant [22]. It quantifies the similarity of the channel response 

a t different times. In other words, coherence time is the time duration over which 

any two received signals (at different times) have a strong correlation.

Depending on delay, small-scale fading can be classified into two categories: flat 

fading and frequency-selective fading. In a flat fading channel, the signal bandwidth 

is smaller than the coherence bandwidth. Meanwhile, in a frequency-selective fading 

channel, the signal bandwidth is larger than the coherence bandwidth. Here, coher­

ence bandwidth is a statistical measure of the range of frequencies over which the 

channel can be considered to be flat, i.e. having approximately equal gain and linear 

phase [22]. In other words, coherence bandwidth is the range of frequencies over which 

any two frequency components have a strong correlation. F lat fading channel is also 

called a narrowband system, as all spectral components of the transm itted signal are

11
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subject to the same fading attenuation. On the other hand, frequency-selective fad­

ing channel is also called wideband system, as the received signal spectrum becomes 

distorted due to the fact tha t the relationships between various spectral components 

are not the same as in the transm itted signal. The system model in this thesis is 

based on small-scale slow flat fading channel.

The channel fading param eter of interest can be described using one of the fol­

lowing two popular models depending on the existence of a line-of-sight from the 

transm itter antenna to the receiver antenna:

• Rayleigh fading model: no line-of-sight from the transm itter to the receiver.

•  Rician fading model: line-of-sight exist from the transm itter to the receiver.

Among these models, Rayleigh fading model is the worst case where there is no 

line-of-sight from the transm itter antenna to the receiver antenna. This is the typical 

model for cellular wireless channel where the mobile unit receives only reflected waves. 

Rayleigh fading model is described in detail next.

When the number of reflected waves is large, according to the central limit the­

orem, two quadrature components of the received signal are uncorrelated Gaussian 

random processes with a zero mean and variance a 2. Thus the envelope of the re­

ceived signal at any time instant undergoes a Rayleigh probability distribution and 

its phase obeys a uniform distribution between —7r to 7r. The probability distribution 

function (pdf) of the Rayleigh fading model is given by [33]

The mean and variance of the distribution is 1.2533a and 0.4292a2 respectively.

p(a) = <
a >  0

(2 .2 )
0 a  <  0.

If the pdf in (2.2) is normalized so tha t the average signal power (i?[a2]) is unity, then

12
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Figure 2-2: The pdf of normalized Rayleigh fading distribution.

the normalized Rayleigh distribution becomes

2 oe-°' a >  0
p(a) =  < (2.3)

0 a < 0.

In this case, the variance in each quadrature component becomes 0.5. The pdf of 

normalized Rayleigh distributions is shown in Figure 2-2.

Again, depending on the number of transm itter and receiver antennas, a channel 

can be classified into four different categories:

• Single-Input Single-Output (SISO): having one transm itter antenna and one 

receiver antenna.

• Single-Input M ultiple-Output (SIMO): having one transm itter antenna and two 

or more receiver antennas.

•  M ultiple-Input Single-Output (MISO): having multiple transm itter antennas 

with only one receiver antenna.

• M ultiple-Input M ultiple-Output (MIMO): having multiple numbers of trans-

13
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Figure 2-3: Different types of channels based on number of antennas, 

m itter and receiver antennas.

A schematic diagram of the different cases are shown in Figure 2-3.

2.4 Channel coding

Channel coding is a state-of-the-art technique used to combat the detrimental effects 

of the channel fading parameters for improved reliability of communication. The 

basic concept of the technique is to introduce redundancy to the data  streams in the 

transm itter to enable the receiver to detect or even correct transmission errors due to 

randomness of the channel, and hence to improve reliability of the transm itted data 

at the expense of lower data rate. The task of the channel coding is to represent the 

source information in such a systematic manner tha t minimizes the error probability 

in the decoding process.

There exist a vast number of channel coding schemes in the communication system. 

Some prominent techniques are discussed below.

14
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2.4.1 H am m ing codes

One primitive type of channel coding is the Hamming codes. In this type of coding, 

the codes m aintain a minimum Hamming distance in the constellation diagram. The 

receiver decides in favor of the nearest code from the received signal sample. The 

coding gain provided through this technique is very low, hence this coding is no 

longer used in the practical field.

2.4.2 Parity-check codes

In this type of the channel coding technique, some parity-bits are added with the 

data symbols which contain some information of data  bits. Using this parity-bits as 

a constraint, the decoder can decide whether the received data  bits are correct or 

not. The receiver can even correct a certain degree of error using this technique. The 

scheme is still used in some simple data  communication system where the random 

effect of the channel is very trivial.

2.4.3 Linear block codes

This was one of the popular channel coding technique for a long time. In this scheme, 

a low density generator m atrix is used to  linearly encode a block of data  before 

transmission of the signal. The receiver uses a message passing algorithm to decide 

in favor of the correct codeword. The high complexity of the algorithm is a drawback 

of this type of encoding technique.

2.4.4 Convolution codes

Convolutional encoders are commonly specified by three parameters: the number of 

output bits, the number of input bits and the number of memory registers. The ratio 

of the number of input bits over the number of outputs bits is called the code rate,

15
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which is a measure of coding efficiency of this type of encoder. Viterbi decoding is 

used to decode the received data and decide in favor of lowest path metric. This 

coding scheme provides high gain and is the foundation of modern channel coding 

schemes.

2.4.5 Turbo codes

Turbo Codes have been adopted by both the third generation partnership program 

(3GPP) and 3GPP2 standards to enable higher network data  capacity in CDMA 

systems, according to Association of Radio Industries and Business. Turbo encoder 

consists of two recursive systemic convolution (RSC) encoder and one interleaver. The 

data from the source is directly given to the output of the channel encoder, which 

is called systematic bit. D ata is also fed directly to one RSC encoder and through 

the interleaver to the other RSC encoder. The output of the RSC encoders might 

be punctured to increase the data rate at the cost of lower error rate performance. 

Turbo decoder consists of two A Posteriori Probability (APP) decoders, an interleaver 

and a de-interleaver. The data is iterated several times within the A PP decoders 

before deciding in favor of a codeword. The decoders use both extrinsic and intrinsic 

information to provide soft decisions. The error rate performance of this technique 

achieves near Shannon’s lower limit of channel capacity in AWGN channel.

2.4.6 Space-tim e trellis codes

Space-time trellis codes (STTC) were first proposed by Tarokh, Seshadri and Calder- 

bank [27]. They offer a substantial coding gain, spectral efficiency, and diversity 

improvement on flat fading channels. The encoder maps binary data to modulation 

symbols, where the mapping function is described by a trellis diagram. The decoder 

employs a Viterbi algorithm to perform maximum likelihood (ML) decoding and de­

cides in favor of the minimum path metric. One disadvantage of this type of channel
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coding is its complex decoding structure.

2.4.7 Space-tim e block code

Space-time block (STB) coding was first proposed by Alamouti [1] and then later 

analyzed and extended by Tarokh et. al. [29]. The key feature of the scheme is tha t 

it achieves a full diversity gain with a simple ML decoding algorithm. A generator 

m atrix is used to encode the data, while a combiner and a ML decoder is used to de­

code the received data. The advantage of the scheme is its ability to provide improved 

performance when concatenated with other channel coding schemes, especially Turbo 

codes. This combination provides extremely high performance in even the Rayleigh 

fading channel.

The thesis will focus on STB channel coding technique. Low complexity of imple­

m entation and feasibility of small physical size of the receiver, makes the STB code 

very suitable for the next generation mobile communication. The scheme is explained 

in detail in the next chapter.

17
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Chapter 3

Space-time block coding

M ulti-path propagation and destructive superposition of signals received over different 

paths are the principle reasons of performance loss in the wireless channel with time- 

varying fading. Special techniques have been applied to enable bandwidth efficient 

transmission. One of the widely applied approaches is to reduce the detrimental effects 

of m ulti-path fading using antenna diversity. Recently this type of diversity technique 

has been studied extensively because of its relative simplicity of implementation and 

feasibility of having multiple antennas a t the base station. But due to the difficulty of 

efficiently using receive antenna diversity at the remote units since they should remain 

relatively simple, inexpensive and small, receive diversity has been nearly exclusively 

used at the base station [2], In this chapter, the general structure of STB code is 

described with emphasis on Alamouti’s proposed model.

3.1 Historical background

Space-Time Coding is a coding technique designed to use with multiple transm it an­

tennas, where coding is performed in both spatial and temporal domains to introduce 

correlation between signals transm itted from various antennas at various time peri­

ods [33]. Historically, STB coding scheme was first proposed by Alamouti [1] for two
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Figure 3-1: The block diagram of the transm itter and the receiver for space-time 
block Codes.

transm itter antennas and multiple receiver antennas. Later, the scheme was general­

ized for any number of transm itter and receiver antennas [27-29,31,34]. A general 

block diagram of STB coded system is given in Figure 3-1.

STB codes, can provide the best theoretical tradeoff between diversity gain, trans­

mission rate, constellation size, signal space dimension and trellis complexity [28]. 

While receive diversity like maximal-ratio receiver combining (MRRC) uses multi­

ple receive antennas, space-time block (STB) code uses multiple transit antennas to 

achieve performance gain. The advantage of STB code is tha t it allows us to achieve 

diversity gain while maintaining small physical size of the receiver.

The Alamouti scheme is the first STB code to provide full diversity for systems with 

two transm it antennas. The encoder takes a block of two modulated symbols s0 and 

Si in each encoding operation and maps them to the transm it antennas according to 

a code m atrix given by

Table 3.1 shows the encoding and transmission sequence for the STB coded system 

for Alamouti’s first model given in Figure 3-2. Here T  is the time period for one

3.2 A lam outi’s first model

/
G =

So Si
(3.1)
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tx  antenna 0 tx  antenna 1

time t so Sl
time t  + T s i so

Table 3.1: The encoding and transmission sequence for the STB coded scheme of 
A lamouti’s first model.

* ~ *-q %
lx antenna 0 'raw tr antenna 1

W rx antenna

interference 
<£ noise

channel
estimator combiner

maximum likelihood detector

Figure 3-2: Alamouti’s first model of STB coded system [1 ],

symbol. At time slot t ,  so is transm itted from the transm itter antenna 0 and si is 

transm itted from the transm itter antenna 1 . At the next time slot, —s* is transm itted 

from the transm itter antenna 0  and Sq is transm itted from transm itter antenna 1 , 

where (•)* denotes the complex conjugate. The key feature of Alamouti scheme is 

tha t the transm itted sequences from the two transm itter antennas are orthogonal.

For the Alamouti scheme, the codeword distance m atrix has two identical eigenval­

ues. The minimum eigenvalue is equal to the minimum squared Euclidean distance in 

the signal constellation. This means for the Alamouti scheme, the minimum distance 

between any two transm itted code sequences remains the same as in the uncoded 

system. Therefore, the Alamouti scheme does not provide any coding gain relative
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to the uncoded modulation scheme, except diversity gain [33].

3.3 Other STB code models

Alamouti’s simple scheme of STB coding was later generalized by Tarokh et al. All 

STB coded models are similar except the change of generator m atrix and combining 

scheme due to  different number of transm itter and receiver antennas. In every model, 

data is encoded to match the number of transm itter antenna using corresponding 

generator matrix. The rate of coding is defined as the number of data  encoded in 

one block over the number of transm itter antennas. A full rate code has code rate 

of 1, and a partial rate code has a code rate less than 1. The criteria of encoding 

is tha t the transm itted symbol sequences must be orthogonal to each other. This 

is valid for both the full rate and partial rate encoders. The decoder with multiple 

receive antenna uses some sort of received signal combining scheme before delivering 

the received signal to the decoder. A generalized system model is given next, but 

emphasis will be on the Alamouti’s first model.

3.4 A generalized system  model

A wireless communication system is considered with n transm it antennas at the base 

and m  receive antennas at the remote [Figure 3-1]. The STB encoder takes p symbols 

in one block of data from the information source and uses the generator m atrix to 

produce q symbols for each transm itter antenna [1,29]. Hence the generator matrix 

has dimension of q x n. One frame of data  symbols contains L blocks. If p — q, 

then the encoder is called full rate and if p < q, the encoder is partial rate. At each 

time slot t, one symbol i = 1 ,2 , . . .  ,n is transm itted simultaneously from the n 

transm it antennas. The channel is assumed to be flat fading and quasi-static, i.e., 

the path gains are constant over a frame and vary from one frame to another. The
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path gain from the ith  transm itter antenna to the receiver antenna is denoted by hi. 

The Rayleigh fading channel is modelled as samples of independent complex Gaussian 

random variables with variance of 0.5 per real dimension.

A sample of the received signal of the j th  receiver antenna at time t is the super­

position of all signals sent from different transm itter antennas and is given by [29]

n

f’j.t ^  h ij  • Sitt T  Tij,t (^'^)
i= 1

where, Ujtt is the AWGN noise sample of a zero-mean complex Gaussian random 

variable at the j t h  receiver at time t with variance ATo/2 per real dimension, where

No is the average noise energy. The average energy of the symbols transm itted from

each antenna is normalized to be one.

Now for the case of Alamouti’s first scheme shown in Figure 3-2 and the transm it­

ted signal given in Table 3.1, the received signal at time slot 0 and 1 can be written 

respectively as

r0 -  h0s0 +  hi si +  nQ

ri = h o (-s l)  + h]_sl + n i  (3.3)

where no and n\ are the AWGN noise samples at time slot 0 and 1, respectively.

3.5 Receiver structure for perfect knowledge of 

CSI

The original receiver proposed by Alamouti consists of a combiner and a maximum 

likelihood (ML) decoder. The combiner combined the received signal over two time 

slots and gives the resultant data to the decoder. The following two combined signals
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are calculated at the combiner.

so =  h*0r0 +  hxr{

s'i =  h*xr0 -  h0rl. (3.4)

Here ho and hx are the estimated channel parameters at the receiver. The ML decoder 

receives these data and computes the distance from the data given from the combiner 

(so and s'i) with the signals of the constellation. It decides in favor of the symbols 

closest to the computed result from the combiner. However, later, it has been shown 

tha t the ML decoder can use a decision metric to decide in favor of a symbol, providing 

same performance [29]. Assuming perfect channel state information is available, the 

receiver computes the following decision metric

EE
t= 1 j = l

n

(3.5)

over all possible combinations of the codeword and decides in favor of the codeword

tha t minimizes the sum. Here I is the length of one block of Space-Time codes.

Now for the case of Alamouti’s first model, the decision metric given in (6.2) can 

be simplified to the following decision rules as given in [29]:

\(roK +  T’lft'i) — so| 2 +  (—1 +  (|ho |2 +  |^ i |2)) lso| 2 (3.6)

for decoding of ,s0 and

\(r0h{ — r{ho) — s i |2 +  (—1 +  ( |A,0 12 +  |/»i|2)) [si |2 (3-7)

for decoding of Si.

Please note th a t the decision rule given here assumes perfect channel knowledge
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Figure 3-3: The block diagram of concatenated Turbo codes with STB codes (Trans­
m itter and Decoder).

is available at the receiver. In practical cases, as we do not have access to the actual 

channel param eter h, we try  to estimate it using channel estimation techniques. Let 

the estimated channel param eter be h, which has a certain estimation error. Hence in 

(6 .2 ), h has to be replaced by estimated channel parameter h, when no knowledge of 

the CSI is available. This mismatch causes degradation of performance compared to 

the perfect channel knowledge case [28]. This will be discussed in detail in the next 

chapter.

3.6 Advantages of STB coded system s

The STB code offers maximum diversity with simple transm itter and receiver struc­

ture. Another advantage of space-time code is tha t it can be used in concatenation 

with other channel codes. Two layer channel coding offers increased reliability of 

data transmission for highly noisy channels. An example is Turbo code as outer code 

and space-time code as inner code as shown in Figure 3-3 [2,15,25]. This kind of 

concatenation provides very high coding gain in both additive white Gaussian noise 

(AWGN) an d  R ayleigh faded  channel. However, it has been show n th a t  in  th e  pres­

ence of one receiver antenna, little can be gained in terms of outage capacity by 

using more than four transm itter antennas. A similar argument shows tha t if there 

are two receiver antennas, almost all the capacity increase can be obtained using six
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transm itter antennas [6,27].

The STB coding scheme is very suitable to achieve diversity gain with relatively 

low complexity. However, the scheme performs poorly in the absence of the perfect 

channel knowledge of CSI. The effect of incorrect channel knowledge is discussed in 

the next chapter.
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Chapter 4 

Effect of imperfect channel 

estim ation

The derivation of the decision rule for the decoding of the STB code, as given in [1,29], 

assumes tha t the receiver has perfect knowledge of the channel state information 

(CSI). To find the decision rule, the probability density function (pdf) of the received 

samples is derived. This system model is only valid when the receiver has the perfect 

knowledge of CSI. However, in practice, the receiver never has the perfect knowledge 

of the channel, as the channel parameters are random variables. The decoding of the 

STB code for practical implementation requires the knowledge of the MIMO chan­

nel parameters at the receiver end. In such situation, for practical implementation 

of the STB codes, the channel parameters are estimated using a channel estimation 

scheme. Simplicity and reliability of the orthogonal pilot sequence insertion (O-PSI) 

method makes it one of the state-of-the-art technique and is used in the present wire­

less devices [18]. However, all known techniques of the channel estimation suffer from 

certain estimation errors due to the noise at the receiver. From this point of view, all 

practical communication systems can be considered as systems with imperfect chan­

nel knowledge. This estimation error of the channel parameters cause performance
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degradation of the STB coded system in terms of error rates. In this chapter, dif­

ferent channel estimation techniques and the effect due to the imperfectness of the 

estimation of the channel fading parameters are discussed.

4.1 Channel estim ation model

A wireless channel has random fading parameters, which distort both amplitude and 

phase of the signal. The commonly observed channel fading is Rayleigh fading and 

is given in (2.3). This fading can be modelled as samples of independent zero mean 

complex Gaussian random variables with variance of 0.5 per real dimension. Let 

the complex fading param eter be h. At the channel estimator, the estimated fading 

param eter h can be modelled as

h =  h + e (4.1)

where e is the complex estimation error samples due to the AWGN noise in the re­

ceiver. Hence the probability distribution of the error e is also zero mean complex 

Gaussian random variables. Thus the probability distribution of the estimated chan­

nel param eter h is zero mean complex Gaussian distributed, too. The variance of the 

distribution of the estimated channel param eter is the summation of the variances of 

the actual fading param eter and tha t of the estimation error.

This generally accepted model of the estimated fading param eter is used in this 

work. Among different types of channel estimation technique, we used the O-PSI 

method and STB coded data aided channel estimation in this research work. The 

above mentioned model is valid for both methods as shown in the next section.
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4.2 Channel estim ation techniques

Among different types of channel estimation techniques for MIMO channel fading 

parameters estimation, one of the simplest and efficient method is to insert some 

orthogonal pilot sequences within a data frame. The method is called orthogonal 

pilot sequence insertion (O-PSI) method [18]. Another approach, special to the STB 

code, is to exploit inherent orthogonal property of the STB coded data  [12]. These 

methods are discussed in this section and shown tha t the model given by (4.1) is valid 

for both of these models.

4.2.1 O-PSI m ethod

O-PSI is a simple but powerful technique for channel estimation. In this method, some 

pilot sequences are inserted at the beginning (or middle) of a data frame. The receiver 

has perfect knowledge of the positions and magnitudes of the pilot sequences. For 

multiple transm it antennas, the pilot sequence of any transm itter must be orthog­

onal to other pilot sequences from other transm itter antennas to simplify channel 

estimator structure. For a system with n transm it antennas, n  different pilot se­

quences P i ,P 2 , . . . ,P n with the same length are needed. Let k is the length of the 

pilot sequences, i.e., Pj =  [P^i Pi)2 ... Pi,k]T for the ith  transm itter. To satisfy the 

orthogonality property, the pilot sequence of the ith  transm itter has to satisfy the 

condition

I 0  for i j
p f - p ;  =  {

y ||Pi[| for i = j

where j  is any other transm itter antenna. Here (-)T denotes transpose and (•)* denotes 

complex conjugate.

The receiver isolates the received signals due to the pilot symbols and sends those

to the channel estimator for initial estimation of the channel before it decodes the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



received signals due to the data  symbols. During the channel estimation, the received 

signal at the the receiver antenna at time t can be represented by

n

rt = J 2 k i '  +  n*'
i = 1

The received signal and noise sequence at the antenna can be represented as

rP = [n r2 . . .  rk]T , (4.3)

np = [m n2 ... n k]T . (4.4)

The receiver estimates the channel fading param eter hi by using the observed se­

quences rp. Since the pilot sequences Pi, P2, P n are orthogonal, the minimum

mean square error (MMSE) estimate of hi is given by [28]

hi = rTp .P*/ \ \Pi \\2
n

= (hiPi + ' £ h j Pj + np)T - P * / \ \P i f  
i =i

=  [fc,(P f ■P?) + J 2  h , { P j  ■ P-) + ( n l  ■ p ; ) \ !  IIP, i2
i 11

j=l

^ K  + inl-PD/WPiW2

— hi T Ci (4.5)

where e, is the estimation error due to the noise, given by

ei =  «  • ^ ) / | | ^ | | 2- (4.6)

Since np is a zero-mean complex Gaussian random variable with single-sided power

spectral density jV0, the estimation error e* has a zero mean and single-sided power
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spectral density N o/k  [28].

4.2.2 STB coded data

The generator matrices of all STB codes (either full rate or partial rate) are formed so 

that, for a block, the data symbol sequence of any transm itter antenna is orthogonal to 

the sequences of other transm itter antennas [1,29]. For example, with two transm itter 

antennas, the full rate generator matrix is given as

where each column, which represents the signals transm itted from an antenna at 

different time slots, is orthogonal to the other columns. Here x  denotes the data 

symbols. The transm itted signal sequences, in this case, are Si =  [s^i Si,2]t  =  

[x\ — X2 \t  and s2 =  [s2,i S2,2]T =  [% 2  x l]T■ In general, if s, is the transm itted signal 

sequence of the *th transm itter for a block, then

where Sj is the transm itted signal sequence from any other transm itter antenna for 

the same block. This orthogonality of the transm itted symbol sequences is guaranteed 

due to the inherent orthogonal property of the generator matrices.

The inherent orthogonal property of the generator m atrix makes the channel es­

tim ator simpler using MMSE criterion. When a block of the transm itted symbol 

sequence of the ith  transm itter antenna is multiplied with the corresponding received 

signal, fading param eters of the other paths vanish. This property enables one to 

easily obtain the channel fading param eter of the corresponding transmission path.

/ \
(4.7)

\  ~ X2 X1

for i 7  ̂j  

for i =  j
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Let the received signal vector for a block be rs =  [ri r<t ... rq]T. As transm itted sym­

bol sequence is not known to the receiver, a previous estimate of the channel fading 

param eter has to be used to decode the received signal of the block. The detected 

symbol sequence of a transm itter antenna is then utilized to estimate corresponding 

channel fading parameter. As for a quasi-static channel, the fading param eters of any 

block is the same during the whole frame, so this estimated fading parameters using 

data block can be used for the next iteration of the received signal of the same frame. 

Now, if the detected symbol sequence is correct, i. e. Sj =  s*, then the estimate 

of desired channel param eter is the same as O-PSI method. The estimated channel 

fading param eter becomes

= (hiSi+ ^ 2  hjSj + n s)T ■ s*/  \\si\\2 [as s* =  Sj]

n

= { h i { s j - s * ) +  • 5*) +  (n * ■ a* ) ] / I N I 2
3= 1 ,

= hi + (n^ ■ s*)/\\si\\2

=  hi +  ej (4-8)

where n s = [n\ n? ... nq]T and e, is again the estimation error due to the AWGN noise 

given by

*  =  «  • O / I N I 8. (4-9)

On the other hand, if an incorrect detection of a block of data occurs, i. e. 

Si ^  Si, then the estimated channel fading param eter using tha t block also becomes 

incorrect. Let us assume tha t the channel fading param eter of wireless path from 

the *th transm itter antenna to the receiver antenna is to be found. Also assuming 

tha t due to incorrect detection, the detected block of data is the sequence sent from
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the A;th transm itter antenna (i.e. s* =  sk). Then the obtained channel parameter 

becomes

hi =  r f - S t / p i f
n

= (hiSi + hksk +  hjSj + n s)T ■ s*k/  ||sfc)j2
j=\,j^i,k

= [hi(sf • s*k) +  hk{sTk ■ s*k)

+  E  ' S*k) +  (n^ ’ Sfc)]/ HsfcH2

= hk + (n j  - sD /W sk f

= hk + ek (4.10)

where ek is the corresponding estimation error due to the AWGN noise given as

(4.11)

If the A;th sequence is not produced by any transm itter antenna, then the estimated 

channel param eter does not even exist.

It is worthwhile to mention here tha t the channel estimation technique using 

the data  blocks of the STB coded system is only performed in the iterative channel 

estimator. This is because the method requires a previous estimate of the channel 

to decode the data sequences at the beginning, and only improves tha t previous 

estimation by providing another estimate of the channel.

4.3 Effects of imperfect channel estim ates

The effect of the estimation error can be best shown by using the equation (3.4) used 

in the combiner. For a receiver designed without the combiner, however, the effect of 

the estimation error remains the same.
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The cross terms in the received signals are removed at the combiner by using the 

combining scheme defined in (3.4). Assuming th a t the receiver has perfect knowledge 

of the channel, ho — ho and hi =  hi, we get

s~o =  K ro +  hir{

=  h^hoSo  +  hxSi + no) +  h i ( h o ( —s i )  +  his^  +  ni)*

— \h0\ So +  h^hiSi — h\hoS\ +  |h i| so +  h^no +  h\n \

— (|h0 |2 +  |/ii|2 )s0 +  h^no +  h \n \  (4-12)

and

s ' i  =  -  h0r{

— hl(hoSo +  h i s i  +  n 0) — ho (h o (—s i )  +  his^  +  n i ) *

=  h^hoSo +  |h i| si +  |ho| Si — hoh^so +  h^no +  hon\

— ( | ho |2 +  |h i|2)si +  h*n0 +  hon\. (4.13)

Thus the cross terms are perfectly removed for the ideal case of perfect channel 

knowledge. However, for the practical cases, where channel fading parameters are 

estimated using a channel estimation process having error model as given by (4.1), 

we have

S o  =  h*0r0 +  h ir{

=  (ho +  eo ) (h 0s 0 +  h iS i  +  no) — (h i  +  e i ) ( h o ( —s i )  +  h\SQ +  n i )*

=  |h 0|2 s 0 +  h jh i s i  — hih*Qs i  +  |h i |2 s0 +  e^hoSo +  eghiSi — eihjjfii +  e i h { s 0

+  hgn0 +  e^no +  h in i +  ein i 

— (| ho |2 +  |h i |2)so +  (eoho +  eihi)so +  (ejhi — eihg)si

+ h*0n 0 + hin{ + e ln0 + ein\ (4.14)
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and

s 'i  =  h{rQ -  hQr{

=  (h \  +  e*)(/ioSo +  h\S \ +  no) +  (ho +  eo)(ho(—Si) +  hi Sq +  ni)*  

=  hihoSo +  |h i | Si — \h0\2 Si +  hohiSo +  e]AoSo +  e*hiSi  — eoh^si +  eoh*so

+  hiUo +  e\no +  hon\ +  eon \

— (|/io | 2 +  N 2) s i  +  (e\ho +  eohl)so +  (e*hi — eo/ig)s i

+  h\iio  +  hon\  +  e^rio +  &on *i- (4-15)

Thus it is seen th a t the computed results have enhanced noise term  and interfer­

ence from the cross term  symbol. Because of this reason, the effect of the estimation 

error of the fading param eter is very severe in the decoding of the STB coded system 

compared to the receiver diversity scheme [3]. As the STB code becomes attractive 

due to its simplicity of the decoding process, this issue has to be resolved ahead of 

efficient practical implementation of the scheme.

This thesis proposes modification of the state-of-the-art for both cases of partial 

knowledge of CSI and no knowledge of CSI. The next chapter deals with the case of 

partial knowledge of CSI and a new decision rule is proposed. The following chapter 

considers the case of no knowledge of CSI and an improved iterative channel estimator 

for STB coded system is proposed.
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Chapter 5 

Proposed decision rule for 

imperfect channel estim ates

In this chapter, Alam outi’s first model of the STB coded system with 2 transm itter 

antennas and 1 receiver antenna is considered. It is assumed tha t the receiver has 

partial knowledge of CSI. The estimation error model described in (4.1) has been 

used. The variance of the estimation error is assumed to be known. A simple decision 

rule is derived from the exact pdf of the received signal samples conditioned on the 

estimated channel parameters. The proposed decision rule is shown to be the same 

as the one for the ideal case when perfect knowledge of CSI is available. It is also 

shown tha t the proposed decision rule and Tarokh’s decision rule becomes identical 

for very high SNR. The proposed decision rule shows at least same or even better 

performance in terms of the error rate than the one proposed by Tarokh. Moreover, 

the complexity of the proposed scheme compared to the Tarokh’s scheme is much less 

from the implementation point of view, providing high gain in terms of the hardware 

requirements and pressing time.
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5.1 Background

The derivation of the decision rule given in (6.2), (3.6) and (3.7) for the decoding 

of the STB code, assumes tha t the receiver has perfect knowledge of CSI is avail­

able at the receiver [1,29]. In practice, however, the receiver never has the perfect 

knowledge of CSI, as the channel parameters are random variables. The parame­

ters are estimated using a channel estimation technique as the decision rule requires 

the knowledge of these parameters. Thus all practical communication systems can 

be considered as systems with imperfect channel knowledge. For such STB coded 

systems with imperfect channel knowledge, if we employ the decision rule for per­

fect knowledge of CSI using imperfect channel param eter estimates in place of actual 

channel parameters, performance degradation of the whole system is observed due 

to mismatch. Performance degradation due to this type of mismatch in the channel 

parameters in the decision rule has been addressed in the standard literature [33]. 

It is shown in [3] tha t STB code is more sensitive to the channel estimation error 

than straightforward two branch diversity schemes, because of their dependency on 

the removal of the cross-terms in the decision rule. This dependency on the channel 

estimation error increases as the number of transm itter and receiver antenna increases 

to achieve high error performance [9].

To resolve this issue of mismatch due to the imperfect channel estimate, the case 

of partial knowledge of CSI was discussed and a modified decision rule was proposed 

by Tarokh [26,28]. The partial knowledge of CSI utilized was the variance of the 

estimation error of the channel parameters, which can be easily and reliably obtained. 

Recently, however, it has been found tha t the scheme is only applicable when the SNR 

approaches infinity [30] and approximate for the practical range of SNR.

A systematic approach to include variance of the channel estimation error has 

been done by Frenger in [8 ] for Turbo coded systems. A similar approach is taken 

here to calculate a new metric for the STB coded system proposed by Alamouti.
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Figure 5-1: Simplified block diagram of the STB coded communication system.

This decision rule can easily be generalized for similar type of systems. The proposed 

modified decision rule performs equal or supersedes Tarokh’s decision rule with much 

less complexity.

5.2 System  model

A wireless communication system is considered with n transm itter antennas at the 

base station and one receiver antenna at the remote station. A simplified block 

diagram is given in Figure 5-1. Extension of formulations for m  receiver antennas 

is straightforward. D ata is modulated in the modulator before encoding it with the 

STB encoder. The encoder uses a generator m atrix to encode the modulated data into 

different transm itter sequences, maintaining orthogonality of the sequences. Each of 

the n transm itter antenna simultaneously transm it one symbol si]t, t =  0 , 1 , 2 , • • • , n  — 

1 at any time slot t. The received signals at the receiver are combined and then 

decoded using the maximum likelihood (ML) decoding algorithm. These signals are 

then demodulated to obtain the data bits.

We assume a flat fading wireless channel with the path gain defined to be hi 

from the transm itter antenna i to the receiver antenna. The path  gains are modelled 

as samples of zero mean, independent complex Gaussian random variables with the
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variance defined as 15[|/ij|2] =  2a \,  where E[x] denotes the expected value of x. 

Furthermore, the wireless channel is assumed to be quasi-static so th a t the path 

gains are constant over a frame of length L  and vary from one frame to another. This 

incorporates the required assumption of the STB decoder to have constant fading for 

all the symbols of a block of transm itted symbol sequences having length of I. A 

frame consists of an integer number of blocks.

We consider the STB coded system considered in [1] with 2 transm itter antennas 

and one receiver antenna. D ata are encoded with STB encoder using the generator 

matrix

G  =

(
S 1 S2 , / \

(5.1)
Y “ s 2

where each column represents the signals transm itted from a particular antenna at 

different time slots and each row represents the signal vector transm itted from all 

transm itter antennas at a particular time slot. Here x* denotes the complex conjugate 

of x.

After sampling of the received signal using the matched filter a t the receiver, we 

have samples of the received signals [32]. Let the received signal at time slot 1 be 

r i  and at time slot 2  be r 2, and the corresponding additive white Gaussian noise 

(AWGN) in the receiver be ri\ and n 2, respectively. So, the received signal model can 

be written in vector form as

r  =  G h  +  n  (5.2)

where r  =  [ri r 2]T, h  =  [hi /i2]T and n  =  [ni ri2 \T . Here [-]r  denotes transpose of 

the m atrix or vector. Noise component n  is a vector of complex valued Gaussian 

distributed elements with zero mean and the variance defined as i? [|n i|2] =  £ '[|n2 |2 =
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2 (7 ^. Actual fading param eter h is also a vector of complex valued Gaussian dis­

tributed elements with mean zero and the variance -E’[|^ i|2] =  -E[|/i2 |2 =  2a\.  All 

real and imaginary parts of h and n are assumed to be independent. It is straight­

forward to show tha t the variance of the sampled zero mean received signal becomes 

E[ | n |2] =  £ [ |r 2|2] =  2 of =  2a\(\si\2 + |s2|2) +  2a\.

Now, as shown in the previous chapter, the estimated channel param eter model 

can be expressed as

h =  h +  e (5.3)

where the estimated channel vector h =  [hi h2]T and the error vector e =  [e* e2]T. 

Here e is complex valued Gaussian distributed estimation error with ,E[|ei|2] =  Z?[|e2|2] 

2(jg and E[e] =  0. Assuming h and e to be independent, we find th a t h is also a 

vector of complex valued Gaussian distributed random variables with zero mean and 

variance defined as |2] =  i?[|h2|2] =  2cr? =  2a\  +  2o-2. It is shown in [5] tha t 

this channel estimate model is valid for pilot-based channel estimation schemes. Fur­

thermore, in [7], this model is shown to hold for decision-directed channel estimation 

schemes, assuming tha t the previous data symbols used for channel estimation were 

correctly detected. This model can be used in other channel estimation models as 

well.

Here, we use a pilot based channel estimation technique, where the channel fading 

coefficients are estimated by inserting orthogonal pilot sequences in the transm itted 

signals. In this method, some pilot sequences are inserted at the beginning (or mid­

dle) of a data  frame. The receiver has perfect knowledge of the positions and mag­

nitudes of the pilot sequences. For multiple transm it antennas, the pilot sequence 

of any transm itter antenna must be orthogonal to other pilot sequences from other 

transm itter antennas to simplify channel estimator structure. For a system with n
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transm itter antennas, n different pilot sequences P i ,P 2, ...,P n with the same length 

are needed. Let k be the length of the pilot sequences, i.e., P* =  [Pj,i P , i2 ••• Pi,k]T for 

the ith  transm itter. To satisfy the orthogonality property, the pilot sequence of the 

*th transm itter has to satisfy the condition

P T  . p *  =-11 * j
0  for i ^  j

i ,2 for i = j

where j  is any other transm itter antenna.

The receiver isolates the received signals due to the pilot symbols and sends those 

to the channel estimator for initial estimation of channel before decoding of the re­

ceived signals due to data symbols. During the channel estimation, the received signal 

at the the receiver antenna at time t can be represented by

n

rt = J 2 hi ' P^  + n f  (5‘4)
i= 1

The received signal and noise sequence at the antenna can be represented as

rP =  [ti r 2 ... rk}T , (5.5)

nv [ni n2 ... nk]T. (5.6)

The receiver estimates the channel fading param eter hi by using the observed se­

quences rp. Since the pilot sequences P i ,P 2 , . . . ,P n are orthogonal, the minimum 

mean square error (MMSE) estimate of hi is given by [28]

hi = rTp -p;/\\Pi\\2

= (hiPi+  ] T  hjPj +  np)T ■ P*/  ||Pj I2 i il
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=  [ h ( P f  - p ; ) +  j r  hs( P j  ■ P,*) +  (nT„ - J?)]/ ||Pj||2

2

— hi +  e. (5.7)

where e* is the estimation error due to the noise, given by

=  (nTp - P * ) m f - (5.8)

Since np is a zero-mean complex Gaussian random variable with single-sided power 

spectral density No, the estimation error e, has a zero mean and single-sided power 

spectral density No/k  [28].

In order to derive the modified decision metric, we need to know the exact pdf of 

the received signal conditioned on the estimated channel param eters and transm it­

ted symbol sequences. To simplify our calculations, the following cross correlation 

coefficients are defined:

E inh i)

E [n h p

y /var(r2 )var(/j1)
E{r2h{\

E[r2h5]

It can be easily shown tha t fj,n  = n 22 = s ia \ / { a ra^) and n l2 = —H2\ =  s 2 

We further define

H 2 'mn
2
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where i, j ,  m ,n  € {1 , 2 } with the condition tha t if i = m, then j  ^  n  or vice versa. 

As shown in the Appendix, the required pdf can be expressed as

P r \h , s ( m ,S )  = |2 \ 2(2 tr)2a* ( 1  -  |/r| )

-  +  ^ X2h^j

exp
2 a 2 ( 1  -  \ r f )

r i
O'
O h

+ r2 -  { f ix h 2 -  n*12h^J
o h

(5.10)

where s is the vector of signals transm itted at a particular time slot.

5.3 Derivation of the decision metric

We can easily find tha t the pdf described in (5.10) can be expressed as multiplication 

of two pd f’s, as follows

Pr\hAR\H,S)
1

2 tta2 ( 1  -  |m| ) 

1

exp
1a\ ( 1  -  |M|2)

2 ira 2r ( l  -  M 2) P 1 2a 2r  ( l  -  |/r|2)

ri -  ( ^ 11^1  +  ^ 12^2)

r 2 -  (fJ,*n h2 -  fJ,*12hx)  —
\ J ath

(5.11)

which is in the form of

S ) - Pr A , ( R i \H,  S )pn l -hJ R 2 \ i t ,  S).r i | h,s T2\h,S' (5.12)

It is obvious th a t the conditional distributions of r x and r2 are independent, Gaus­

sian distributed with conditional expected values of

E n \ h , s  = ( / i n / l l  +  (Jil 2 h 2) — , (5.13)
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E r2\h,s = (n*n h2 -n* l2hi) — . 
J a t

(5.14)

The conditional variances are equal and given as

E ri | h,s E r2\h,s = 2 ^ ( 1  -  M 2). (5.15)

Assuming tha t all the signals in the modulation constellation are equiprobable, 

a ML decoder chooses a pair of signals from the signal modulation constellation to 

minimize the distance metric

<f(rl t E[ ri\h, s ]) +  d?{r2, E[ r2\h, s ]) (5.16)

over all possible values of s, the detected signal sequence vector. Here d2(x, y) is the 

squared Euclidean distance between signals x  and y  calculated using the expression 

d2{x,y) = ( x -  y)(x* -  y*).

Putting values in (5.16) leads us to the minimization problem of the following 

distance metric

|r i -  (jJtuhi + Hl2h2) —  \2 +  |r2 -  (fj,*n h2 -  n*l2h l ) IJr |2 (5.17)

for all transm itted symbol sequences.

After expanding the above metric and deleting the terms independent of the trans­

m itted symbols, we reach the following equivalent metric to be minimized

at
{—rih \s \  — r*hiSi — rji*2sl — r{h2s2 — r2hlsi

~  r2h2s\ +  r2h \s2 +  r ^ iS j )  +  - j ( | s i | 2 |h i |2

+  IS212 17̂ 212 +  |s i | 2 \h2\2 +  1S212 |h i |2).
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We can decompose this term  into two parts for the sake of the simplicity of the 

detection process, one of which

+  r*ih2)sl -  (r\h\  +  r2h*2) s ^
h

+  (l^ ll2 +  l ^ 2)  Nil2
h

is a function of Si only, and the other one

2

(y-{nh*2 -  rlhi)s*2 -  (r \h2 -  r2h \)s2j
h

+  ( l^ ll2 +  Î 2 12  ̂ |S2 |2
h

is a function of s2 only. Thus the minimization problem given in (5.17) is reduced 

to minimizing these two parts separately. This leads us to a faster decoding process 

with less complexity, especially with higher order modulation schemes. After some

rearrangement and manipulation of the above two expressions, we reach the decision

metric

\{riK  +  r 2 ^ 2) ^ |  — «i j2 +  (—1 +  +  |^2 |2) ) |s i | 2 (5.18)
h h

for detecting Si and the decision metric

I0"l^2 — r 2 ^ l ) ^ 2  _  S 2 |2 +  ( — 1 +  ^ 7  ( l^ i |2 +  1^212) ) |S2 12 (5.19)
h h

for detecting s2. These are the desired modified decision rules and are used in our 

simulations for a STB coded system with the imperfect channel estimates.

For the ideal case in which we have perfect knowledge of CSI at the receiver,

hence no estimation error, we have o \  =  cr| as cr̂  =  0  and /i, =  h,, where i € {1 , 2 }. 

Consequently (5.18) and (5.19) becomes the same as the decision rules for the perfect
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for detection of Si for detection of s2
known
CSI

Kcl^i +  ^2 ^2 ) — ^ i |2 +  
( — 1 +  ( |h i |2 +  |/i212)) 1 s i | 2

\{nh*2 -r*2hx) - s i | 2 +  
( — 1 +  ( |h i |2 +  |7r-212)) l<s212

unknown
CSI

\(r ih* +  r 2 ^2 ) ^  ~  s i | 2 +

( - l  +  £ ( l * i |2 + W ) ) H ah.

|(ri h2 — r2hi)-Jt — S2 I2 +

( _ 1  +  ^f-(l^i|2 +  I^2 |2 )) |s2 | 2

Table 5.1: Decision rules for the ideal case of known CSI and the proposed scheme of 
unknown CSI.

channel knowledge, which are

\ { r iK  +  r 2^2) ~  s i |2 +  (—1 + ( |h i |2 + |/i212)) |sx|2

for detecting s* and

\(r\h*2 —  r2h\)  —  s i | 2  +  ( — 1  +  ( | / r i | 2  +  | / r -2 12 ) )  ls212

for detection s2 as given in (3.6) and (3.7). Table 5.1 is provided for comparison 

of the two decision metric, i.e. for the ideal case of known CSI and for the partial 

knowledge of CSI.

5.4 Comparison with Tarokh’s decision metric

We now compare the proposed metric with the state-of-the-art metric given by 

Tarokh [26, 28] in the presence of the channel estimation error. Originally derived 

for the space-time trellis codes, the metric is however generally accepted for the 

STB codes. The mean and variance of the distribution function of the random vari-
n

able rt conditioned on hi as given by Tarokh are /Jr, =  / / /  ( \f2<j-h)\fW a ^  shtht and
i~ 1

n
a 2, =  N0 + (1  - 1//1 )ESJ2 | &it 11 respectively. Here n' =  l / y /T + 2 a f  is the correlation

i—1
coefficient, N0 = 2cr2 is the noise variance and Es is the energy per symbol, which is
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the factor by which the elements of the signal constellation are contracted to make 

the average energy of the constellation as 1. The decision metric proposed by Tarokh 

for n transm itter antennas and one receiver antenna can be written as

/

Et=1

\

N0 + (1 - \ ( , f)Es £ |Siit|
i—1

+ ln(Âo + (1 — |//| )ES l̂ i,t|2)
i= 1

(5.20)

For the case of PSK (phase shift keying) constellation, the metric given in (5.20) is 

reduced to the following:

£
t=i y/2  a h j = 1

(5.21)

According to a recent publication of Tarokh, these expressions are only valid for very 

high SNR [30]. For SNR of infinite, N0/Es —> 0, i.e. for a certain Es, No —> 0. Again, 

for the case of normalized Rayleigh fading channel, which is assumed by Tarokh, 

we have cr\ =  0.5 and \fW s =  1. Considering the case of 2  transm itter antennas 

and 1 receiver antenna, the mean of the pdf of the received data  conditioned on the 

estimated channel parameters becomes

H'y/El i t  
AV' fK _ Z ^ Si h iV2a h i = 1 

1

y i + 2

__________

y / 2  x 0.5 + 2a2e^ / 2 a ^  ^
^  ] Sj/ij

l2aU 2al

2cr?
h

(sihi +  s/h^). (5.22)
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Assuming correct detection, for ri, the mean becomes

®  T  ?  @ T  i" \
- 2  (— s\h \  H----- S2 /12)af or a rrl

- ( - ^ S 1h1 + - ^ - 8 2h2)
a h a har a ha 'i'
a.
—  (nn h1 +/J,12h2) (5.23)
°h

which is equal to the mean given in (5.13). Similarly, for r2, the mean becomes

/A' -  2 ^ 2"( ^2 ^ 1  +  Sl M
h
t®r *u * u \=  - 2 {— sl h 2  S2M2  -(7  ̂  cry ( j  f

= - { ^ S \ h 2 -  s*2h 0
cr/t(7f ®b?T

= —  (n*n h2 -  n{2h 1) (5.24)
a h

which is equal to the mean given in (5.14). For the same conditions, the variance of 

the pdf of the received data  conditioned on the estimated channel parameters becomes

2
2^ ,  =  A0 + ( i - | / / | 2) £ s J >

e »=1

i= 1
2

2

o^j-2  2 ^
  Z(Te V  is |2
-  2cr? I *1h »=1

=  ^ ( | 5 i |2 +  |S2|!I) (5.25)
h

for both r\ and r2. The variance of the received signal conditioned on the estimated 

channel param eter derived here is given in (5.15). Expanding this variance with the
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Modulation
Scheme

Decision Metric Complexity
Index

Memory Re­
quirements

Number of 
Comparisons

p-QAM Proposed (5.18) (5.19) 17xp 10 p {p  ~  1)
p-QAM Tarokh (5.20) 20 x p 2 13 P2(P2 ~  l ) / 2
p-PSK Proposed (5.18) (5.19) 17 xp 10 P(P ~  1)
p-PSK Tarokh (5.21) 11 x p 2 11 P2(P2 ~  l ) / 2

Table 5.2: Comparison of the complexity issues of the proposed scheme with Tarokh’s 
scheme.

conditions tha t —> 0 as SNR goes to infinity i.e. a\ = cr^(|si|2 +  |s2|2) +  v

a 2h(\S l\2 +  |s212) and a2h = 0.5, we have

2flrr ( l  -  H ’ ) =  2 ( ^ ( N l |2 +  |S2|2))(1 -  ( k l l 2 +  \S2\2) ^ )

-  ri- I2 i i" h n  ^ ^  I 2I  ̂ h i-  (|Sl| +  |s2| -  2 2 2 2 )
( H  +  M  m

arGl

=  ( | S l |2 +  |S2 |2 ) ( l - 4 )
a h

2

-  ( |s i |2 + | S 2|2) ^  (5.26)
h

which is exactly equal to (5.25). Hence it is found tha t the proposed scheme becomes 

the same as the scheme proposed by Tarokh for high SNR.

To address the complexity issues and memory requirements of the proposed scheme 

compared with th a t of Tarokh’s scheme, some assumptions are made in order to sim­

plify our comparative study. In this simplified approach, we are interested only in the 

complexity of the decision rule as the difference of the two schemes lies in the decision 

rules. Since multiplications and divisions are the most complex basic operations in 

designing the signal processors, we base our calculations on the requirements of these 

operations in the decision rules. We assume the complexity of a multiplier, a divisor, 

a squaring or a logarithm operation be the same. The complexity index is calcu­

lated by simply adding the required number of multiplications, divisions, squaring
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and logarithm operations. Table 5.2 gives the comparison of the proposed scheme 

with Tarokh’s scheme for p-QAM and p-PSK modulation, where p is the number of 

states of the modulation scheme. The metrics are to be computed for each possi­

ble combination of the signals transm itted for each state of the modulation scheme. 

Assume tha t factors are to be calculated once and then stored for reuse in the later 

computations, rather than calculating each time. This results in minimized process­

ing time by reducing the number of multiplications with increasing storage size. The 

metrics proposed by Tarokh have to be computed p2 times for different combinations 

of si and S2 and compared with each other. However, in the proposed scheme, each 

metric has to be computed only p times because of the variable separation operation 

during the derivation of the metrics. This is why the complexity of the decision rule 

of the proposed scheme is much lower than tha t of Tarokh’s scheme.
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Chapter 6 

Iterative channel estim ation  

technique

For a STB coded system where the receiver has no knowledge of the CSI, there is 

no way to improve performance of the system by modifying the decision rule of the 

system. In such case, one solution to improve the performance is to use iterative 

channel estimator to have reliable estimate of the channel with a few overhead pilot 

symbols. In this chapter, the state-of-the-art iterative channel estimation technique 

is discussed and a novel approach of frame-based iterative channel estimation tech­

nique is proposed. The proposed iterative channel estimator shows much improved 

performance in terms of the error rate, but has higher complexity compared to the 

state-of-the-art technique.

6.1 Background

The decoding complexity of STB code for practical implementation is tha t it requires 

knowledge of the MIMO channel fading param eter at the receiver end. Performance 

degradation due to mismatch in the channel parameters has been addressed in stan­

dard literature [33]. It was shown in [3] tha t STB code is more sensitive to channel
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Figure 6-1: Block diagram for iterative channel estimation of STB coded system.

estimation error than straightforward two branch diversity scheme, because of its de­

pendency on the removal of cross-terms in the decision rule. This dependency on the 

channel estimation error increases as the number of transm itter and receiver antennas 

increases to achieve same error performance [9].

Techniques to overcome performance degradation due to this type of channel es­

tim ation error in the absence of any CSI are being extensively studied. Iterative 

algorithms seem promising as they obviously outperform non-iterative approaches 

which use only initial estimates. In [14], a cyclic approach is considered to compen­

sate the channel estimation error. The decision-directed iterative channel estimation 

method has been proposed in [4,16,35]. An improved method of the channel tracking, 

which is in fact a modified version of the decision-directed algorithm, which is in fact 

a modified version of the decision-directed algorithm, hence can be called as modified 

decision-directed method, has recently been proposed in [12], Here, a frame-based 

iterative channel estimator is proposed tha t shows even better performance than the 

modified decision-directed approach.

6.2 System  model

A wireless communication system is considered with n transm itter antennas at the 

base station and one receiver antenna at the remote station. A simplified block 

diagram is given in Figure 6-1. Extension of formulations for m  receiver antennas
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is straightforward. The STB encoder takes p symbols in one block of data from 

the information source and uses the generator m atrix to produce q symbols for each 

transm itter antenna [1,29]. Hence the generator matrix has dimension of q x  n.

full rate and if p < q, the encoder is partial rate. At each time slot t, one symbol 

si)t, i =  1,2,. . . , n  is transm itted simultaneously from the n transm it antennas. The 

channel is assumed to be flat fading and quasi-static, i.e., the path  gains are constant 

over a frame and vary from one frame to another. The path gain from the zth 

transm itter antenna to the receiver antenna is denoted by /q. The Rayleigh fading 

channel is modelled as samples of independent complex Gaussian random variables 

with variance of 0.5 per real dimension.

A sample of the received signal at time t is the superposition of all signals sent 

from different transm itter antennas and is given by [29]

where n t is a zero-mean complex Gaussian random variable with single-sided power 

spectral density N q.

Assuming perfect channel state information (CSI) is available, the STB decoder 

computes the decision metric

over all possible combinations of transm itted symbol sequences (s, =  [s^i s i]2 . . .  Sj,g]T), 

for i = 1 , . . . ,  n, and decides in favor of the symbol sequences th a t minimizes the sum. 

In practical cases, as the receiver does not have access to the actual channel fading 

parameter hi, it tries to estimate the hi’s using a channel estimation technique. Let

One frame of data  symbols contains L blocks. If p — q, then the encoder is called

n
(6 .1)

2

(6 .2 )
7=1 i= 1

the estimated channel param eter be hi, which has a certain estimation error. Hence
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in (6 .2 ), hi is to be replaced by estimated channel param eter hi, which causes degra­

dation of performance compared to perfect channel knowledge [28]. A better estimate 

of fading param eter improves performance but higher number of overhead symbols 

are required for this purpose. An efficient iterative channel estimator reduces the 

number of pilot symbols needed to achieve the same or even better performance.

6.3 Iterative channel estim ation algorithm

For iterative channel estimation, an initial estimate of channel fading parameters is 

done using O-PSI pilot sequences, known data symbols or some other methods. The 

initial estimate is given to the detector for detecting the received signal. This initial 

estimate can be updated exploiting the orthogonal property of STB code using either 

the modified decision directed (tracking) mode or the frame-based approach proposed 

in this section.

The need for pilot symbols can be reduced if some known data from the transm itter 

can produce the same effect of transm itting the pilot sequence. For example, if 2 bits 

of a transm itted data are known, it is equivalent to 2  pilot symbols inserted within 

the frame when modulated using BPSK modulation scheme. Considering space-time 

Turbo codes as a specific example, the Turbo code is concatenated with the space­

time code for higher performance gain [2], W ith the coding rate of 1/3, two data 

from the two recursive systematic convolution (RSC) encoders are sent with one bit 

of systematic data. As both encoders are initially at all zero state, the first outputs 

from two RSC encoders are always zero irrespective of data. If these two data  are 

sent before the systematic bit in the frame, then 2  known bits per frame are found. 

This is an example of reducing the need of pilot symbols on an ad hoc basis.

W hatever method is used, the obtained initial estimate during the training process 

has certain estimation error due to noise in the receiver. The initial estimate of the
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channel fading param eter of the ith  path  can be expressed as

(6.3)

where e° is the initial estimation error. Here the superscript indicates the index 

number of iterative estimation process.

6.3.1 M odified decision-directed channel estim ation

In this method, the initial estimation of the channel fading param eter is changed 

after the detection of every block of data throughout the entire frame as decoding 

progresses [12]. The estimated channel param eter for block I with a received signal 

vector r l8 = [r[ r l2 ... r lq]T and a detected signal sequence s\ = [s*tl s \2 . . .  s liq]T is

where nls is AWGN noise and e\ is the corresponding estimation error. Note tha t

(6.4) holds only when the detected signal sequence is correct (s( =  s(). This esti­

mated fading param eter hi is then time averaged over previous estimations to get the 

averaged estimate for the next iteration. Thus the averaged param eter for iteration 

m  = 1 ,2 ,..., M  — 1 is

— hi +  e\ (6.4)

H — ( ^ i  +  h  +  e])/2 — hi +  -(e°  +  e}) 

hi =  (h] + K  + e?)/3 =  hi +  -  (e° +  e] +  ef)
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Now, let the first incorrect detection of block (s\ =  slk) occurs at the M th  iteration. 

Using (4.10) in (6.5), the averaged estimated channel fading param eter becomes

The approximation is used to simplify the estimation error term. Iteration con-

Find the initial estimate 
For data block 1 to L

Detect data block using present estimate 
Use detected data block to find new estimate 
Time average new estimate to get present estimate

6.3.2 Proposed frame-based iterative channel estim ation

The proposed method is a simple extension of the state-of-the-art method, but the 

performance gain is substantial. The analytical reasoning is given in the next section. 

Here the mathematical modelling of the proposed scheme is described. The proposed 

scheme uses the property that, if a transm itted symbol sequence of a particular an­

tenna is orthogonal to other transm itted symbol sequences for several blocks of data, 

then the combined transm itted symbol sequence for multiple blocks of data  of tha t 

antenna will still be orthogonal to the combined transm itted symbol sequences of 

th e  o th e r an ten n as. Let th e  tra n sm itte d  signal sequence for a  fram e from  th e  *th 

transm itter antenna be S f  =  [(s*)T (si)T ■■■ (sf ) T]> where one data frame contains L

(6 .6 )

tinues until the end of the frame. The algorithm can be summarized as follows:

End
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blocks of data. According to this orthogonality property

qT q*Oj
IIS

fo r  i ±  j  

fo r  i =  j

where S j  is the transm itted symbol sequence from any other transm itter antenna for 

tha t frame.

In the frame-based iterative method, the initially estimated channel fading pa­

rameter is used to decode the whole frame similar to non-iterative methods. Then 

the whole decoded frame of data is used to find a new channel estimation parameter. 

For example, an estimate of hi using the received signal vector of the frame ( R j  =  

[(r])T (r l)T ... (rf')T]) and the detected data frame ( S j  =  [(s*)T (s*)T ... (s f)T]) can 

be obtained as follows:

Sfz - 1 (6.7)

= IK "’where 2  denotes number of iteration. Noting tha t | |s j | | 2 =  |[s? |[ 2 =  

and assuming a blocks are correctly detected and other L  — a blocks produce symbol 

sequences of the /cth transm itter antenna in one frame of data during detection process 

of the last iteration, (6.7) can be rewritten as follows:

/if = « • h i(s j ■ s*) + ( L -  a)hk( s l  • si) + N T ■ (S f 1)* /[L  H ^ r ' I I 2]

lhi+‘̂ h t+\NT-(srri\\n-l\l (6 .8)

This new estimated channel fading param eter is used for the next iteration, and 

the process is repeated for a desired number of iterations. The proposed algorithm 

can be summarized as follows:
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Find the initial estimate 
For number of iterations 1 to Z

Detect whole frame of data using present estimate
Use all data in the frame to find new estimate
Set new estimate to present estimate, discard previous

End

6.4 Analysis of performance

The difference of performance observed between the modified decision-directed es­

tim ation and the proposed frame-based iterative estimation is mainly based on the 

effect of incorrect detection within the frame. In the modified decision-directed esti­

mation, one incorrect detection of a data block changes the channel estimation sub­

stantially, leading to a higher probability of incorrect detection of subsequent data 

blocks. However, in the frame-based estimation method, the effect of incorrect detec­

tion of a particular block is less. Because the effect of the incorrect fading param eter 

due to incorrect detection of a data  block blends with other correct fading parameters 

of the same frame. From (6 .8 ), as the value of a reduces in each iteration, so a m L 

and L — a «  0, leading to h* ~  hi. This ensures better estimation of channel fading 

param eter in each iteration of the frame under consideration.

To have a better understanding of the difference in performance, let us study 

a particular case. W ith average BER of 7.7 x 10~3, one block of data  might be 

incorrect among 65 blocks of data. For the frame-based iterative method, from (6 .8 ) 

with a — 64 and L = 65, the effect of the incorrect channel fading param eter is 

1/64 compared to the correct parameter. But for the modified decision-directed 

method, the effect depends on the number of blocks correctly detected before tha t 

error actually occurred. Suppose if the incorrect block happens before detecting half of 

the frame, from (6 .6 ) with M  = L /2, the effect of incorrect channel fading param eter 

is 2/65 compared to the correct parameter. If an incorrect block is encountered within 

the first quarter of the frame (M  = L / 4), the effect is 4/65 . The worst case is when
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Figure 6-2: Effect of drastic channel estimation error if error occurs in the first block 
of data detection using modified decision directed method.

an incorrect detection occurs just after the initial estimation (M  =  L /65) and the 

effect is equal to the correct parameter. This case is shown in Figure 6-2, where the 

initial estimate of the channel fading param eter is close to the actual parameter, but 

the detection of the first data block is incorrect. Subsequently the channel parameter 

estimated using this data block might be away from the actual fading param eter of 

tha t channel, because this is a channel param eter of some other path  as indicated 

in (4.10). As a result, the time averaged channel param eter diverts greatly from 

the actual channel parameter, increasing the probability of incorrect detection for 

subsequent data blocks. Further incorrect detection of data blocks will make the 

estimated channel param eter divert further away from the actual channel parameter.

From the analysis of performance for the case of incorrect detection of data block, 

it is clear tha t the proposed frame-based iterative algorithm is robust against this 

type of error compared to the modified decision-directed algorithm. The simulation 

results are also in agreement with this analysis.
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Chapter 7

Simulation results

The proposed schemes are simulated extensively using software. Comparison is done 

for the applying the same conditions and criterions. All the simulations have been 

performed assuming Alamouti’s first model of the STB codes with two transm itter 

antennas and one receiver antenna with the generator m atrix given by (4.7). The 

channel is assumed to be quasi-static and flat faded. For pilot symbol insertion, the 

total transm it energy per frame is kept constant for a fair comparison. The simulation 

results are given in this chapter for both cases discussed in this thesis: the proposed 

decision metric and the frame-based iterative channel estimation.

7.1 Simulation result of the proposed modified de­

cision rule

Normalized Rayleigh fading is assumed with the variance per complex dimension 

as a \ = 0.5. The transm itted signal sequences are modulated using 16-PSK and 

a gray coded 16-QAM modulation. The constellation diagram of the 16-PSK and 

gray coded 16-QAM modulation is given in Figure 7-1 and 7-2, respectively. In gray 

coding scheme, two adjacent symbols have only one bit change. Gray coding reduces
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Figure 7-1: Constellation diagram for a 16-PSK modulation scheme.
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Figure 7-2: Constellation diagram for a 16-QAM gray coded modulation scheme.

the number of errors in the detection of bits even if the symbol detection is wrong. 

This is because most of the erroneous detection of symbols end up in one of the 

adjacent symbols in the constellation diagram, which will cause only one bit error in 

case of gray coding. We have used a higher order QAM modulation scheme to have 

better observability of the effect of performance degradation due to imperfect channel 

knowledge.

The channel estimation error variance a \ depends on the actual channel estima­

tion scheme and can be computed as a function of bit energy-to-noise ratio and the
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Figure 7-3: Variance of estimation error vs Eb/NO for different lengths of pilot se­
quences in slow Rayleigh fading channel (Simulation results).
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Figure 7-4: Variance of estimation error vs Eb/NO for different lengths of pilot se­
quences in slow Rayleigh fading channel (Theoretical results).
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number of pilot symbols [28]. To find these variances of estimation error for different 

lengths of pilot symbols, we have transm itted only pilot symbols from the transm it­

ters and estimated the channel using (5.7) and plotted it against a range of E ^/N q as 

shown in Figure 7-3, where Eb is the bit energy and N 0 is the noise variance. The es­

tim ation error is found to decrease with increasing signal power and increasing length 

of pilot symbols. Theoretically the estimation error variances can be found from 

the expression N 0/2 k E s per dimension, where k is the length of the pilot sequence. 

The theoritical result is plotted in Figure 7-4. The theoretical results are found to 

be virtually identical to tha t of the experimental values. However, the experimental 

values of the estimation error variances are used in the later simulations which is 

obtained from a look-up table. This is done for better resemblance to the practical 

implementation issues.

Figure 7-5 shows the bit error rate (BER) and frame error rate (FER) perfor­

mance curves of the system under consideration with the proposed decision metric 

and is compared with the conventional decision rule. Two pilot symbols are added to 

each frame containing information of 32 symbols for channel estimation. The perfect 

channel knowledge curve is also given as a lower bound of achievable performance. 

Significant improvement for BER is observed with little improvement in FER.

Experimental results show tha t the gain in error rate with respect to Tarokh’s 

model is insignificant for PSK modulation. However, for QAM modulation, significant 

gain is observed. Here the results for the frame length of 128 bits/fram e and 512 

bits/fram e with 16-QAM gray coded modulation are presented in Figure 7-6 and 7-7 

respectively. Two pilot symbols are added to each frame for the channel estimation. 

As observed, th e  gain using th e  p roposed  m eth o d  is h igher w ith  h igher num ber of 

bits per frame.

The gain in error rate with the proposed metric over Tarokh’s metric is plotted in 

Figure 7-8 for better understanding of the nature. It is seen tha t the gain decreases
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Figure 7-6: BER performance for 16-QAM gray coded modulation (128 bits/fram e) 
with the STB coded system .
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Figure 7-7: BER performance for 16-QAM gray coded modulation (512 bits/fram e) 
with the STB coded system.

■ x 128 bits/fram e 
Q - 512 bits/fram e

12 13 14 15 16 17 18 19 20
Eb/NO in dB

Figure 7-8: BER gain obtained using proposed metric over Tarokh’s one for 16-QAM 
gray coded modulation.
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16-QAM gray coded modulation.

with increasing SNR and becomes identical for very high SNR as predicted in Chapter 

5.

In Figure 7-9, the gain in dB is plotted against the BER. It shows th a t the gain 

remains high for low BER with larger frame length. So, it can be predicted tha t the 

gain will be substantial for practical range of frame size and error rate.

7.2 Simulation results for frame-based iterative chan­

nel estim ation

The simulations have been done for the BPSK and QPSK modulation scheme with 

1 receiver and 2  transm itter antennas with Alamouti’s space-time block codes [1 ] 

for sufficient number of times to achieve statistical independence. The channel is 

assumed to be quasi-static, i. e. fading is constant over a frame and independent 

of other frames. The initial estimation is done assuming only 2 known symbols per 

frame, and hence found tha t 2  known symbols channel estimation performs similarly
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BER vs Eb/NO for various cases in BPSK modulation scheme
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Figure 7-10: BER vs Eb/NO for various cases (BPSK modulation scheme).

to 2  pilot symbols channel estimation (except minor performance improvement due 

to energy loss in pilot symbols).

Figure 7-10 shows the bit error rate (BER) for the modified decision-directed and 

frame-based iteration methods for BPSK modulation scheme with the frame length 

of 130 bits. The performance of the conventional pilot signal estimation (using 2 and 

1 0  symbols) and also the performance of the system with perfect channel knowledge 

(as a lower bound) are given for comparison purposes. It is seen tha t a substantial 

gain is achieved using the proposed algorithm, which almost supersedes performance 

achieved even by 10 pilot symbols. For instance, to achieve the error rate of 3 x 10~4, 

the gain is 1.2 dB with 3 iterations using the frame-based channel estimation method 

over the modified decision-directed method.

In Figure 7-11, the frame error rate (FER) of the corresponding cases are given. 

Both the modified decision-directed and frame-based iterative channel estimation 

methods outperform the conventional method using 10 pilots. The performance of 

the frame-based channel estimation (with 3 iterations) is near to the lower bound. For
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Figure 7-11: FER vs Eb/NO for various cases (BPSK modulation scheme).

example, to achieve the frame error rate of 1 0 ~2, compared to the case with perfect 

channel knowledge, the proposed method requires 0.04 dB additional signal power, 

whereas the modified decision-directed method requires 0.17 dB. Further iterations 

of the frame-based iterative approach have marginal additional gain in terms of BER 

or FER.

In Figure 7-12 and 7-13, BER and FER for various cases are given using QPSK 

modulation and with the same frame length. BER of the proposed method is found to 

reach 10 symbols pilot estimation for high SNR, and even better in the case of FER 

performance. Substantial improvement of error rate is observed over the modified 

decision-directed method.

Finally, in Figure 7-14 and 7-15, a comparison is made for different frame lengths. 

It is seen that, BER is independent of the frame length in all the case. For FER, 

better performance is found with a shorter frame length. One interesting point to 

notice is tha t, to achieve the same FER using the proposed scheme compared to  the 

modified decision-directed scheme, shorter frame length provides higher performance
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Figure 7-12: BER vs Eb/NO for various cases (QPSK modulation scheme)
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Figure 7-13: FER vs Eb/NO for various cases (QPSK modulation scheme)
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BER vs Eb/NO for different fram e s izes
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Figure 7-14: BER vs Eb/NO for different frame sizes for the cases under consideration 
(BPSK modulation scheme).
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Figure 7-15: FER vs Eb/NO for different frame sizes for the cases under consideration 
(BPSK modulation scheme).
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gain over longer frame length.

The simulation results varify the theoretical conclusions drawn in the last two 

chapters. However, further simulation and research is expected ahead of practical 

implemantation of the proposed schemes.
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Chapter 8

Conclusions and future directions

This thesis considers the practical implementation issue of the STB coded system 

when imperfect channel knowledge is available at the receiver. The cases of partial 

knowledge of CSI and no knowledge of CSI are considered separately. Efforts have 

been given aiming to  push the limits of the state-of-the-art of the corresponding cases.

In the first case of the partial knowledge of CSI, an exact pdf of the received 

signal conditioned on the estimated channel parameters and the transm itted symbol 

sequences is derived. Using this pdf, a new modified decision rule has been derived 

for the decoding of the STB coded system with partial knowledge of CSI. Simula­

tion results show th a t same or improved performance is obtained using the proposed 

method over the state-of-the-art method in terms of error rate. Moreover, there is a 

huge reduction of the system complexity. The proposed scheme performs especially 

well for QAM modulation, which is commonly found in the practical systems. Simu­

lation results are obtained using parameters estimated from the channel, not from the 

theoretical values of the channel estimation error. Hence the performance observed 

incorporates the degradation due to the of the variance of the estimation error of the 

pilot symbol sequences.

The modified decision rule derived in this work is for a system with with 2 trans-
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m itter antennas and 1 receiver antenna with STB coded communication channel 

proposed by Alamouti. It is straightforward to extend it for a higher number of 

transm itter and receiver antennas using the same approach. Hence a generalized 

modified decision rule can be obtained easily to be used for any STB coded system, 

which is a future step to be taken. The extremely low complexity of the proposed 

scheme makes it an attractive solution for practical implementation.

For the second case of no knowledge of CSI, a frame-based iterative algorithm for 

channel fading param eter estimation of STB coded system is proposed in this work. 

It is found than the proposed scheme outperform state-of-the-art modified decision 

directed scheme. The BER and FER of the proposed scheme with 2 pilot symbol 

supersedes the performance of the conventional pilot signal estimation even with 1 0  

pilot symbols in high SNR. The algorithm is applicable in space-time Turbo coded 

systems with very little modification. The improved CSI can be utilized in decoding 

of a Turbo decoder for even better performance gain. The simulations show tha t 

high performance gain can be achieved with fewer iterations. The proposed method 

significantly reduces the number of pilot symbols needed to achieve the same or even 

better performance, but requires higher processing complexity. Proposed modified 

decision rules can also be combined with the proposed iterative channel estimator 

and should produce even better performance in terms of error rate performance, but 

is an issue of future research.
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Appendix A 

Derivation of pdf for conditional 

received signal

In this appendix, we derive the exact pdf of the received signal conditioned on the 

estimated channel param eter and the transm itted symbol sequences.

The received signal samples are complex Gaussian distributed with r  N C(Vr,Cr) e  

Q2, where O'2 denotes complex vector of dimension 2 and N c denotes complex normal 

distribution. Here the mean of the distribution is p r , the covariance matrix is Cr.

It is straightforward tha t p r = 0, Cr — 2 a ll2, where I2 denotes 2 x 2  unit matrix. 

Hence the pdf of the complex received signal vector can be expressed as [19]

pr |s(i?|5) =  - 2 ^ T[ exP ( - ^ C ^ r ) . (1 )

Here s is the transm itted signal vector at any time slot and |X | denotes the determi­

nant, while X H denotes Hermitian of the m atrix X .

Similarly distribution of the estimated channel parameter is h N c (»h,C h) e & ,  

where the mean is and the covariance m atrix is C~h. Again, we have fi~h = 0 and
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C-h =  2ct?h- Thus h  has the complex distribution function as follows

Ph^  =  exp i ~ h H c h l h ) '

Now, the joint distribution function of r  and h  is [13]

/
- H -

1 r
C ~lr,h

r

7T4 C r,h

GXp

V ii

h
p r M s ( R , H \ S )

where the correlation matrix can be expressed as

yr,h

We have found tha t

c ~lr,a

r r  -| 2  a2rh 2 a \G
E rH hH =

fl

h - 2 o\G h 2 a \ l 2

c.r,h =  2 4afod ( l — \n\2) 2 and

2 a p 2 -2crrcr^CAt

C.r.h

1/2
- 2 a ra hC * 2 a %

C u

where Cfl is defined as

A^ll ^12

A*21 ^22

Putting all these values in (3) and doing simple multiplications, we reach

(2)

(3)

(4 )

p r M s ( R , H \ S )
1 - 1

JT4 |Cr | IC h \ (1 -  |,i|2)2 6 P \  2V2<t? (1 -  \ / i f )

)}{2 a \rHr + 2 a2rhHh — 22ara~hR r 11 C j i (5)

where 5?[X] denotes the real axis portion of the complex scaler X, and the definition 

of |M|2 is given in (5.9).
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According to Bayes theorem, we can use the following expression to get the pdf 

of the received signal conditioned on the estimated channel parameters:

PrMs (R ^ \ S ) = P r , h ^ H \S ) 
ph]s(H \S) ph(H)

Pr\h,s(R\H > S) = ^ \ l rl„  = ™  (32)

as h is independent of the transm itted symbols.

Putting values from (2) and (5) in (32), and doing some simple manipulations, we 

finally reach the desired conditional pdf, which is given in (5.10). This is the exact 

conditional pdf required for derivation of the decision rule in the presence of partial 

knowledge of CSI.
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Glossary

APP A posteriori probability

AWGN Additive white Gaussian noise

BER Bit error rate

BPSK Binary phase shift keying

BS Base station

CSI Channel state information

FER Frame error rate

MIMO Multiple input multiple output

MISO Multiple input single output

ML Maximum likelihood

MMSE Minimum mean square error

MRRC Maximal ratio receiver combining

MS Mobile station

O-PSI Orthogonal pilot sequence insertion

pdf Probability distribution function

PSK Phase shift keying

QAM Q uadrature amplitude modulation

QPSK Q uadrature phase shift keying

RSC Recursive systemic convolution

SIMO Single input multiple output

SISO Single input single output
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SNR Signal-to-noise ratio 

STB Space-time block 

STTC Space-time trellis code

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] S. M. Alamouti, “A simple transm it diversity technique for wireless communi­
cations” , IEEE J. Select. Areas Commun., vol. 16, no. 8 , pp. 1451-1458, Oct. 
1998.

[2] F. Bauch, “Concatenation of space-time block codes and Turbo-TCM ” , IEEE Intl. 
Conf. Commun., vol. 2, pp. 1202-1206, June 1999.

[3] R. M. Buehrer, N. A. Kumar, “The impact of channel estimation error on Space- 
Time Block codes” , Vehicular Tech. Conf., vol. 3, pp. 1921-1925, Sept. 2002.

[4] X. Deng, A. M. Haimovich, J. Garcia-Frias, “Decision-directed iterative channel 
estimation for MIMO systems” , IEEE Intl. Conf. Commun., vol. 4, pp. 2326-2329, 
May 2003.

[5] O. Edfors et al., “OFDM channel estimation by singular value decomposition” , in 
Proc. IEEE Veh. Tech. Conf., A tlanta, GA, pp. 924-927, May 1996.

[6 ] G. J. Foschini, M. J. Gans, “On limits of wireless communication in a fading 
environment when using multiple antennas” , Wireless Personal Commun., vol. 6 , 
no. 3, pp. 311-335, March 1998.

[7] P. Frenger, A. Svensson, “Decision-directed coherent detection in multicarrier 
systems on Rayleigh fading channels” , IEEE Trans. Veh. Tech., vol. 48, pp. 490- 
498, March 1974.

[8 ] P. Frenger, “Turbo decoding for wireless systems with imperfect channel esti­
mates” , IEEE Trans. Commun., vol. 48, no. 9, pp. 1437-1440, Sept. 2000.

[9] P. Garg, R. K. Mallik, H. M. Gupta, “Performance analysis of Space-Time coding 
with imperfect channel estimation” , IEEE Intl. Conf. Per. Wire. Commun., pp. 
71-75, Dec. 2002.

[10] Y. Gong, K. B. Letaief, “Low complexity channel estimation for Space-Time 
coded wideband OFDM systems” , IEEE Trans. Wireless Commun., vol. 1, no. 5, 
pp. 876-882, Sept. 2003.

[11] L. Hanzo, T. H. Liew, B. L. Yeap, Turbo Coding, Turbo Equalization and Space- 
Time Coding, Southampton, Englad : Wiley, 2002.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12] I. Harjula, A. Mammela, “Channel estimation algorithm for space-time block 
coded OFDM systems” , GLOBECOM ’03 IEEE, vol. 1, pp. 143-147, Dec. 2003.

13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, 
Englewood Cliffs, NJ: Prentice-Hall, 1993.

14] E. G. Larsson, P. Stoica, J. Li, “Space-time block codes: ML detection for un­
known channels and unstructured interference” , Asilomar Conf. Signals, Systems, 
Comp., vol. 2, pp. 916-920, Nov. 2001.

15] Y. Liu, M. P. Fitz, O. Y. Takeshita, “Full rate Space-Time Turbo codes” , IEEE  
J. Select. Areas Commun., vol. 19, no. 5, pp. 969-980, May 2001.

16] R. Matsuo, T. Ohtsuki, I. Sasase, “Simple EM based channel estimation and data 
detection using estimation in the preceding frame in Space-Time coded signals” , 
IS IT  2001, p. 222, June 2001.

17] L. L. Mendes, G. G. R. Gomes, “An efficient educational approach for the study 
of 16 QAM and block codes” , VIII Intl. Conf. Engg. Tech. Edu. - IN TERTEC H  
2002, March 2002.

18] A. F. Naguib, V. Tarokh, N. Seshadri, A. R. Calderbank, “A Space-Time cod­
ing modem for high-data-rate wireless communications” , IEEE J. Select. Areas 
Commun., vol. 16, no. 8 , pp. 1459-1478, Oct. 1998.

19] A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes, 
4th ed., New York: McGraw-Hill, 2002.

20] J. G. Proakis, “Probabilities of Error for Adaptive Reception of M-Phase Sig­
nals” , IEEE Trans. Commun. Tech., vol. COM-1 , no. 1, pp. 71-81, Feb. 1968.

21] J. G. Porakis, Digital Communications, 3rd ed. NY, USA: McGraw-Hill, 2000.

22] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. 
Upper Saddle River, NJ: Prentice Hall, 2002.

23] B. Sklar, “A Primer on Turbo Code Concepts” , IEEE Commun. Magazine, pp. 
94-102, Dec. 1997.

24] G. L. Stuber, Principles of Mobile Communication, Boston, MA: Kluwer Aca­
demic Press, 2000.

25] J. Suh, M. K. Howlader, “Concatenation of Turbo codes to space-time block 
codes with no channel estimation” , M ILCOM  2002, vol. 1, pp. 726-731, Oct. 
2002 .

26] V. Tarokh, A. F. Naguib, N. Seshadri, A. R. Calderbank, “Space-Time codes 
for high data rate wireless communication: mismatch analysis” , IEEE Intl. Conf. 
Commun., vol. 1, pp. 309-313, June 1997.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[27] V. Tarokh, N. Seshadri, A. R. Calderbank, “Space-Time codes for high data 
rate wireless communication: performance criterion and code construction” , IEEE  
Trans. Info. Theory, vol. 44, no. 2, pp. 744-765, March 1998.

[28] V. Tarokh, A. Naguib, N. Seshadri, A. R. Calderbank, “Space-Time codes for 
high data rate wireless communication: performance criteria in the presence of 
channel estimation errors, mobility, and multiple paths” , IEEE Trans. Commun., 
vol. 47, no. 2, pp. 199-207, Feb. 1999.

[29] V. Tarokh, H. Jafarkhani, A. R. Calderbank, “Space-Time Block coding for 
wireless communications: performance results” , IEEE J. Select. Areas Commun., 
vol. 17, no. 3, pp. 451-460, March 1999.

[30] V. Tarokh, A. Naguib, N. Seshadri, A. R. Calderbank, “E rrata to Space-Time 
codes for high data rate wireless communications: performance criteria in the 
presence of channel estimation errors, mobility, and multiple paths” , IEEE Trans. 
Commun., vol. 51, no. 12, p. 2141, Dec. 2003.

[31] O. Tirkkonen, A. Hottinen, “Tradeoffs between rate, puncturing and orthogonal­
ity in space-time block codes” , IEEE Intl. Conf. Commun., vol. 4, pp. 1117-1121, 
June 2001.

[32] H. L. V. Trees, Detection, Estimation, and Modulation Theory: Part I, New 
York: John Wiley and Sons, 2001.

[33] B. Vucetic, J. Yuan, Space-Time Coding, West Sussex, England: Wiley, 2003.

[34] H. Wang, X. Xia, “Upper bounds of rates of complex orthogonal space-time block 
codes” , IEEE Trans. Info. Theory, vol. 49, no. 10, pp. 2788-2796, Oct. 2003.

[35] J. Yang, Y. Sun, J. M. Senior, N. Pern,“Channel estimation for wireless com­
munications using space-Time Block coding techniques” , Proc. Intl. Circuits and 
Symbols, vol. 2, pp. II-220-II-223, May 2003.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

Bashir Iqbal Morshed was born in Bhola, Bangladesh, in 1976. He graduated from 

Chittagong College in 1994. He received B. Sc. in engineering with honors from 

the Electrical and Electronic Engineering departm ent of Bangladesh University of 

Engineering and Technology (BUET) in 2001. He is currently a candidate for the 

Master of Applied Science in Electrical Engineering at the University of Windsor and 

hopes to graduate in Summer 2004.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Space-time coding with imperfect channel estimates.
	Recommended Citation

	tmp.1619032670.pdf.o2_p6

