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Abstract

The research presented in this thesis is concerned with the problem of efficient

depth map estimation from multi-focus images acquired at different focus settings.

In all, three different depth map estimation techniques are presented. The first

method uses SUSAN operator to detects the features, followed by an exponentially

decaying function is employed to transfer the distance of the detected features by

giving more weight to the nearer vicinity pixels of feature points, which helps to

measure the clarity and depth of pixels. A robust, dual-tree complex wavelets and

distance transformation based framework is developed for depth map estimation

in second focus measure technique. The shift-invariance and better directionality

of dual-tree complex wavelets helps to detects the features efficiently, which helps

to estimate the depth of the scene more precisely. In third depth map estimation

technique, focus measure is ensure by measuring local orientation energy using a

quadrature pair of steerable filters of the detected features.

The robustness of proposed depth map estimation techniques are tested by

several experiments and results are compared with the other well-documented

methods, visually and quantitatively. The obtained results validates the effective-

ness of proposed feature based depth map estimation approach.
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Chapter 1

Introduction

The reconstruction of object and to retrieve spatial information from one or multi-

ple observation are crucial issues in computer vision. The automated procedure to

extract the structure and depth information of an object or a scene by conveying

all the meaningful information from input sensors using mathematical techniques,

for human operator or other computer vision tasks, is the main aim of the 3D

reconstruction.

When a three dimensional scene is projected onto a two dimensional image

plane, depth information is lost. there are two methods to recover this lost depth

information, namely, active and passive. In active method using some sensors

such as laser or ultrasonic one can directly get the depth information of a scene.

These sensors works on the time of flight principal means emits a radiance and

measure reflected part. While in passive method such as shape from focus, stereo

reconstruction, shape from shading, one can get depth information from multiple

input images taken by imaging sensors, using some mathematical techniques.

The shape from focus (SFF) is a technique, utilize to retrieve spatial informa-

tion from a sequence of images with varying focus plane. In SFF, the depth map is

a computation of distance between object points on focus plane and camera lens.

The objective of SFF and depth map computation is to reconstruct 3D shape and
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Figure 1.1: Basic image formation geometry

determine depth of every point of an object from the camera lens.

Basic image formation geometry when camera parameters are known is shown

in fig. 1.1. As shown in figure, distance of an object from camera lens i.e. u is

required for exact 3D reconstruction of a scene. Depth of a scene,distance of an

object from lens, illumination conditions, camera movement, aberration effects

in lens and movement in a scene can severely affect the depth map estimation.

Computing distance of an object from a camera lens is simple if blur circle radius

(R) is equal to zero. If image detector ID is placed at an exact distance v, sharp

focused image P ′ is formed. Relationship between object distance u, focal distance

of lens f and image distance v is given by Gaussian lens law as,

1

f
=

1

u
+

1

v
(1.1)

The object points appears sharp in images which are present on focus plane

at the time of acquisition. Focus is an accommodation cue that can be measured

from degree of blurring in an image which increases with the distance of imaging

2



 

 

Figure 1.2: Acquisition setup for an image sequence with varying focus plane

system from plane of focus. An image acquisition setup for an image sequence

with varying focus plane is shown in fig. 1.2. As shown in figure, object present on

a translation stage is imaged at different distance from CCD camera. The object

points which are on focus plane have high intensity variation compare to the other

points which are not on focus plane. Using any focus measure (FM) technique

extract the focused objected points from the image sequence and combining them,

gives a composite image. Further, exploiting this information the depth map can

be generated. Depth map estimation is widely investigation problem in vision

research, has numerous applications such as robot guidance, collision avoidance,

3D feature extraction, medical imaging, seismic data analysis and shape recon-

struction.

3



This thesis contains seven chapters. chapter 2 reviews some well-known fo-

cus measure techniques in literature. Some fusion assessment methods which are

important to the aspect of evaluation of techniques, are presented in chapter 3.

The new methods for depth map estimation, based on SUSAN and exponentially

decaying function, based on dual-tree complex wavelets using exponentially de-

caying functions and based on dual-tree complex wavelets and a quadrature pair

of steerable filters are presented in chapter 4, 5 and 6 respectively. Chapter 7

concludes the thesis with an additional insight on future scope of the works.
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Chapter 2

Literature Review

Multi-focus image fusion has attracted a considerable amount of attention since

last two decades. To extract focused points from different images, to construct

a composite image and to estimate depth map of a scene are still challenging

problems in computer vision. The fundamental concept to estimate the depth

map of a scene and to recover the shape by focus analysis is the relationship

between focused and defocused images of a scene. A Focus Measure (FM) operator

calculates the best focused point in the image, i.e. a FM is defined as a quantity

for locally evaluating the sharpness of a pixel. Following we will review some

well-known focus measure operators which are proposed in the literature.

2.1 Sum of Modified Laplacian Focus Measure

To measure the quality of focus in a small image area, in [15, 14] a focus mea-

sure operator is developed which respond to high frequency variations in image

intensity. The Laplacian operator is used for high-pass filtering the image, but

the second derivatives in the x and y directions can have opposite signs and tends

to cancel each other particularly in the case of taxtured image. to overcome this

difficulties they defined a modified Laplacian as

5



∇2I =
∂2I

∂x2
+

∂2I

∂y2
(2.1)

∇2
MI = |∂

2I

∂x2
|+ |∂

2I

∂y2
| (2.2)

In order to improve the robustness of week texture image and for possible

variations in the size of texture elements, partial derivative is calculated by variable

spacing (step) between the pixels used. The discrete approximation to the modified

Lalacian obtained as,

ML(x, y) = |2I(x, y)− I(x− step, y)− I(x + step, y)|
+ |2I(x, y)− I(x, y − step)− I(x, y + step)| (2.3)

Finally the focus measure at point (i,j) is computed as the sum of modified Lapla-

cian values, in a small window around (i,j), that are greater than a treshold value

FMSML(i, j) =
i+N∑

x=i−N

i+N∑

y=i−N

ML(x, y) forML(x, y) ≥ T (2.4)

where the parameter N determines the window size used to compute focus mea-

sure, I(x,y) is the input image frame and T is a threshold.

2.2 Tenenbaum Focus Measure (FMTenen)

In [23] a Tenengrade function, to exploits the relationship between a well-focused

image and its greater information content, is proposed to measure the sharpness

of image pixel. This method is a gradient magnitude maximization method, which

measures the sum of the squared responses of the horizontal and vertical Sobel

masks. To increase the robustness it summed in a local window as,

6



FMTenen(i, j) =
∑

p(x,y)εU(i,j)

(Ix(x, y)2 + Iy(x, y)2)2 (2.5)

where I(x,y)is the input image frame with the subscript x and y denoting the

Sobel operator in x and y directions respectively, and p(x,y) is a pixel in the

neighborhood U(i,j) of pixel (i,j).

2.3 Gray Level Variance Focus Measure (FMGLV )

The sharp image has higher gray level variance than the blurred image so, the

calculation of variance can be serve as a focus measure [9]. The gray level focus

measure summed in a local window as,

FMGLV (i, j) =
∑

p(x,y)εU(i,j)

(I(x, y)− µU(i,j))
2 (2.6)

where I(x,y)is the input image frame, µU(i,j) is the mean of gray values in the

neighborhood U(i, j) and the p(x,y) is a pixel in the neighborhood U(i,j) of pixel

(i,j).

2.4 Mean Focus Measure (FMmean)

When the image is becoming sharper the variance of the gray values of that scene

is getting higher. The ratio of mean gray value to the center gray value in the

neighborhood can be serve to measure the focus pixels in the image [6]. The mean

focus measure summed in a local window and can be calculated as,

FM(x, y) =





µU(i,j)

I(x,y)
, µU(i,j) > I(i, j),

I(x,y)
µU(i,j)

, otherwise
(2.7)

7



FMmean(i, j) =
∑

p(x,y)εU(i,j)

FM(x, y) (2.8)

where I(x,y)is the input image frame, µU(i,j) is the mean of gray values in the

neighborhood U(i, j) and the p(x,y) is a pixel in the neighborhood U(i,j) of pixel

(i,j).

If the gray value is constant or taxture is absent in the image, the ratio is one

and if the variation is high the ratio differs from one. If this ratio is between 0

and 1, this factor is inverted.

2.5 Curvature Focus Measure (FMC)

As stated, the sharper image region implies higher gray value variance then the

blurred image region. In [6] the curvature focus measure is proposed by considering

the gray values as a 3D surface. The curvature in the sharp image is expected to

be higher than the blurred image. to calculate the curvature first the surface is

approximated as,

f(x, y) = p0(x) + p1(y) + p2(x)2 + p3(y)2 (2.9)

where the coefficient P = (p0, p1, p2, p3)
t can be found by a least square approxi-

mation with g0 and g2.

g0 =




-1 0 1

-1 0 1

-1 0 1




g2 =




1 0 1

1 0 1

1 0 1




(2.10)

P =

(
g0 ∗ I

6
;
gt
0 ∗ I

6
;
3g2 ∗ I

10
− gt

2 ∗ I

5
;−g2 ∗ I

5
+

3gt
2 ∗ I

10

)t

(2.11)
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Finally, the curvature focus measure is calculated using the sum of the absolute

value of these coefficient as,

FMC(x, y) = |p0|+ |p1|+ |p2|+ |p3| (2.12)

2.6 Optical Focus Measure (FMO)

In [11], a optical focus measure based on bipolar incoherent image processing is

proposed. To measure the sharpness of image pixel the intensity image spectrum

is convolved with a optical transfer function. The computed image is given as,

Ic(x, y) = Re[|Γ0(x, y)|2 ∗ hΩ(x, y)] (2.13)

where, ‘*’ indicates the convolution, |Γ0(x, y)|2 is intensity image spectrum and

hΩ(x, y) is the transfer function.

The transfer function is basically a optical transfer function (OTF) which can

be calculated in frequency domain using fourier transform as,

hΩ(x, y) = F−1{OTFΩ(kx, ky)} (2.14)

where kx and ky are the spatial frequencies.

The OTF is calculated as,

OTFΩ(kx, ky) = e[−σ1(k2
x+k2

y)] − e[−σ2(k2
x+k2

y)] (2.15)

In 2.15 σ1 and σ2 are the thresholds (cut-off frequencies), which are calculated as,

σ1 = a1

(
f

k0

)2

(2.16)

σ2 = a2

(
f

k0

)2

(2.17)
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where, a1 and a2 are constants, f is the focal length of lens and k0 is the

wavelength of light.

Finally to get the robustness, the optical focus measure is summed in a N ×
N local window as,

FMO(i, j) =
i+N∑

x=i−N

i+N∑

y=i−N

IC(x, y) (2.18)

2.7 Principal Component Analysis based Focus

Measure (FMPCA)

In [10, 13], principal component analysis is applied on the multi-focus image se-

quence to transferred the data into eigenspace and the first feature is employed to

calculate the depth value. A vector consisting of 7 neighborhood pixels for each

pixel of every frame of image volume is calculated as,

V (i, j, k) = [p(i−1, j, k)p(i, j−1, k)p(i, j, k−1)p(i, j, k)p(i+1, j, k)p(i, j+1, k)p(i, j, k+1)]T

(2.19)

where, i=1,2,...,x, j=1,2,...,y and k=1,2,...,z are indices of z images in the se-

quence, each of X×Y dimentions.

After collecting all such z vectors, for a pixel P (i,j) in the z direction, a

matrix of dimensions Z×7 is obtained. Let it be denoted by M(i,j) and its each

row contains elements of the vector V .

PCA is applied on this matrix M(i,j). Mean vector µn, where n =1,2,..,7, and

covariance matrix C are computed as,

M(i, j) = [mkn] (2.20)

µn =
1

z

z∑

k=1

mkn (2.21)

10



C =
1

z − 1

z∑

k=1

(mkn − µn) (mkn − µn)T (2.22)

Eigenvalues and their corresponding eigenvectors are computed for matrix C.

Let E be the set of eigenvectors then the transformed data F in eigenspace is

obtained by multiplying mean subtracted data with matrix E.

F = E(mkn − µn) (2.23)

The columns of the transformed matrix F are known as principal components

or features. It is concluded by analyzing these features that the score of the first

feature provides an accurate and robust depth map. The depth value for the pixel

p(i,j) is computed by eq. 2.24. It locates the position of the maximum absolute

value in the first component.

D(i, j) = Position(max(abs([fkl]))) (2.24)

The algorithm runs xy times to compute the complete depth map.

2.8 Approximation Techniques

In depth map estimation because of the discrete number of frames results in some

loss of information in between consecutive frames. As a result, the optimum value

for some pixels may never be calculated accurately. Hence to address this issue

among others, approximation techniques can be applied to the results of the focus

measures to construct a more accurate depth map. SFF approximation techniques

mentioned in literature, initially use any focus measure and then approximation

or learning based techniques is applied to construct more accurate depth map.

In [19, 26] a new concept of focus image surface (FIS) based on planar surface

approximations is proposed. They applied this FIS concept on the results of the

SML operator. The FIS of an object is defined as the surface formed by the set of
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points at which the object points are focused by a camera lens, after first obtaining

an estimate of FIS using a traditional SFF method. This estimate is then refined

by searching for a planar surface that maximizes the Focus Measure computed

over pixels on FIS. To increase the order of surface approximation (quadratic or

higher order) and then enlarging the search volume around the initial estimation

in [20, 12] a piecewise curved surface approximation of FIS rather than the piece-

wise planner approximation method is proposed. The piecewise curved surface is

estimated by interpolating using a second order Lagrange polynomial. A neural-

network is applied on results of GLV operator in [2, 7] to learn the shape of FIS by

optimizing the focus measure over small 3D window. In [1] dynamic programming

(DP) is applied on the SML results to handle the computational complexity of

FIS. This method search for optimal focus measure in whole image volume rather

than being limited to a small neighborhood. in [16] 3D shape is estimated using

relative defocus blur derived from actual image data to compute the structure of

an object.
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Chapter 3

Fusion Assessment Methods

Since the emergence of image fusion techniques in various applications, methods

that can assess or evaluate the performance of different fusion techniques objec-

tively, systematically and quantitatively have been recognized as an important

necessity. In this chapter various fusion assessment techniques that have been

proposed in the field of image fusion, is discussed.

However, in general, the receiver of the fused images will not be a human

viewer but some form of automated image processing system. The loss of some

information appears in the fused image compare to the individual source images,

and this loss sometimes becomes severe because, this lost information in one par-

ticular image processing application might be important for another. Therefore, a

general assessment method is always been needed, even if the application of image

fusion is unknown in advance.

To assess the fusion performance Li et al. [5] proposed a method to calculate

the standard deviation between the reference image (ground truth) and the fused

image. Other statistical measurements such as Signal to Noise Ratio (SNR), Peak

Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) [21, 28] from digital

signal processing are also commonly used to assess the image fusion methods, in

case when the reference image is available.
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However, in a practical situation the reference image is rarely known. Some

image fusion assessment methods are recently developed, which evaluate the fusion

method without any reference image. These methods assess the fusion on input-

output relationship. In [4] a Mutual Information (MI) principle has been used to

assess the fusion method. MI calculates the quantity of information transferred

from source images (input) to a fused image. Xydeas and Petrovic [24] Proposed

a fusion assessing technique based on pixel level (Qp) in which visual information

or perceptual information is directly associated with the edge information while

region information is ignored. For the assessment of structural information, a

Structural Similarity (SSIM) index Framework is developed in [27] and used to

measure the quality of the fused image. These methods (MI, EI and SSIM) mea-

sure the amount of information transferred from input images to a fused image

and evaluate the fusion method means does not need a reference image.

This chapter is organized as follows. Section 3.1 discusses some statistical

measures such as the SNR, PSNR, and MSE, which require an ideal or reference

image to assess the fusion technique. A non-linear correlation measures MI and the

SSIM index is discussed in section 3.2 and 3.3 respectively. An edge information

based objective measure (Qp) is discussed in section 2.4.

3.1 Signal to Noise Ratio, Peak Signal to Noise

Ratio and Mean Square Error

Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), and Mean

Square Error (MSE) are commonly used measures in assessing image fusion tech-

niques, that consider an image as a special type of signal. The quality of a signal

is often expressed quantitatively with the signal to noise ratio defined as [21],

SNR = 10 log10(
Es

En

) (3.1)
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where Es is the sum of the squares of the signal values and En is the sum of the

squares of the noise samples. In the context of a signal estimation algorithm, the

signal refers to the estimated signal and the noise to the difference (error) between

the estimated and the original signal. SNR is unitless and therefore independent

of the data units. As far as the image is concerned, the SNR can be written as

SNR = 10 log10(

∑M
m=1

∑N
n=1 z(m,n)2

∑M
m=1

∑N
n=1[z(m, n)− s(m,n)]2

) (3.2)

where z(m, n) and s(m,n) denote the pixel intensity value of fused and reference

image, respectively, at location (m, n). The size of the images is M × N. High

values of SNR show that the error of the estimation is small and, therefore, among

various image fusion methods the ones that exhibit higher SNRs can be considered

of better performance.

The PSNR and the MSE are measures similar to the SNR and defined as [28],

PSNR = 10 log10(
2552

∑M
m=1

∑N
n=1[z(m,n)− s(m,n)]2

) (3.3)

MSE = 10 log10(

∑M
m=1

∑N
n=1[z(m, n)− s(m,n)]2

2552
) (3.4)

When assessing the performance of an image fusion technique using the above

mentioned measurements, we require knowledge of the original image (ground

truth). For that reason these measurements can be used only with synthetic

(simulated) data.

The above measurements exhibit the drawback of providing a global idea re-

garding the quality of an image. In cases where the fused image exhibits artefacts

concentrated within a small area, these measurement can still produce an accept-

able value even if the image is visually unacceptable.
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3.2 Mutual Information measure

The measures introduced in the above section are mostly based on the quantitative

calculation of the pixel deviation between the original image and the fused image.

However, one goal of image fusion is to integrate complementary information from

multiple sources so that the fused images are more suitable for the purpose of hu-

man visual perception and computer processing. Therefore, a measure should also

estimate how much information is obtained from the individual input images. In

this section mutual information (MI) measure is presented as a means of assessing

image fusion performance.

It is well known that mutual information is a concept from information theory

measuring the statistical dependence between two random variables or, in other

words, the amount of information that one variable contains about the other. Let

A and B be two random variables with marginal distributions pA(a) and pB(b) and

joint probability distribution pAB(a, b). Mutual information measures the degree

of dependence of the two random variables A and B. It is defined as follows [4]:

MIAB(a, b) =
∑

a,b

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)
(3.5)

Considering the image intensity values a and b of a pair of corresponding

pixels in two images to be samples generated from the random variables A and B,

respectively, estimation of the joint and marginal distributions pAB(a, b), pA(a),

and pB(b) can be obtained by normalization of the joint and marginal histograms

of both images [4].

The fused image should contain the important information from all of the

input (source) images. Obviously the notion of important information depends

on the application and is difficult to define. Mutual information is the amount of

information that one image contains about another. So, it is possible to employ

the mutual information as a measure of image fusion performance. Considering
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two input images A, B, and a fused image F , we can calculate the amount of

information that F contains about A and B, according to 3.5

MIFA(f, a) =
∑

f,a

pFA(f, a) log
pFA(f, a)

pF (f)pA(a)
(3.6)

MIFB(f, b) =
∑

f,b

pFB(f, b) log
pFB(f, b)

pF (f)pA(b)
(3.7)

Thus, an image fusion performance measure can be defined as

MIAB
F = MIFA(f, a) + MIFB(f, B) (3.8)

Equation 3.8 indicates that the proposed measure reflects a total amount of

mutual information that the fused image F contains about A and B.

3.3 An edge information based objective mea-

sure

A measure for objectively assessing pixel level fusion performance derived in [24]

is presented in this section. The goal in pixel level image fusion is to combine and

preserve in a single output image all the ’important’ visual information that is

present in the input images. Thus, an objective fusion measure (Qp) should extract

all the perceptually important information that exists in the input images and

measure the ability of the fusion process to transfer as accurately as possible this

information into the output image. By evaluating the amount of edge information

that is transferred from the individual input images to the fused image, a measure

of fusion performance can be obtained. More specifically, consider two input

images A and B and a resulting fused image F . A Sobel edge operator is applied

to yield the edge strength g(m,n) and orientation a(m,n) information for each
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image location (pixel) (m,n), 1 ≤ m ≤ M and 1 ≤ n ≤ N . Thus, for an input

image A

gA(m,n) =
√

Sx
A(m,n)2 + Sy

A(m,n)2 (3.9)

aA(m,n) = tan−1 Sy
A(m,n)

Sx
A(m,n)

(3.10)

where Sx
A(m, n) and Sy

A(m,n) are the responses of the Sobel masks centred at

location (m,n).

The relative edge strength and orientation values GAF (m,n) and AAF (m, n)

of an image A with respect to an image F at location (m,n) are formed as

GAF (m, n) =





gF (m,n)
gA(m,n)

, gA(m,n) > gF (m,n),

gA(m,n)
gF (m,n)

, otherwise
(3.11)

AAF (m, n) = 1− |aA(m,n)− aF (m,n)|
π/2

(3.12)

These are used to derive the edge strength and orientation preservation values

given below

QAF
g (m,n) =

Γg

1 + ekg(GAF (m,n)−σg)
(3.13)

QAF
a (m,n) =

Γa

1 + eka(AAF (m,n)−σa)
(3.14)

where QAF
g g(m,n) and QAF

a a(m,n) model the perceptual loss of information

in F , in terms of how well the edge strength and orientation values of a pixel

(m,n) in A are represented in the fused image. The constants Γg, kg, σg and

Γa, ka, σa determine the exact shape of the sigmoid functions used to form the

edge strength and orientation preservation values. Edge information preservation

values are then defined as
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QAF (m,n) = QAF
g (m,n) + QAF

a (m, n) (3.15)

with 0 ≤ QAF (m,n) ≤1. A value of 0 corresponds to complete loss of edge

information at location (m, n) while transferred from A into F . QAF (m,n) = 1

indicates edge information transferred from A to F without loss.

Having QAF (m, n) and QBF (m,n) for M × N size images, a normalized

weighted performance metric Q
AB/F
P of a given fusion process P that operates

on images A and B and produces F is obtained as follows [24]:

Q
AB/F
P =

∑M
m=1

∑N
n=1(Q

AF (m,n)ωA(m,n) + QBF (m,n)ωB(m,n))
∑M

m=1

∑N
n=1(ω

A(m,n) + ωB(m,n))
(3.16)

Note that the edge preservation values QAF (m, n) and QBF (m,n) are weighted

by ωA(m,n) and ωB(m,n), respectively. In general, edge preservation values which

correspond to pixels with high edge strength should influence Q
AB/F
P more than

those of relatively low edge strength. Thus, ωA(m, n) = [gA(m,n)]L and ωB(m, n)

= [gB(m, n)]L, where L is a constant. Also note that 0 ≤ QAF
P (m,n) ≤1.

3.4 Structural Similarity Index

Generally, natural image signals carry important information about the structure

of object in visual scene. In [27] a framework, to measure the distortion of the

fused image from the source images, so called, structural similarity (SSIM) index

is proposed. The SSIM index measures how much the structure of the fused image

is similar to that of the input images.

To measure the similarity of the structure this framework uses three elements of

image patches; the similarity of brightness, contrast and structure. The similarity

calculation of brightness, contrast and structure is calculated by using eq. 3.17,

eq. 3.18 and eq. 3.19 respectively as,
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l(hi, z) =
2µhi

µz + C1

µ2
hi

+ µ2
z + C1

(3.17)

c(hi, z) =
2σhi

σz + C2

σ2
hi

+ σ2
z + C2

(3.18)

s(hi, z) =
σhiz + C3

σhi
σz + C3

(3.19)

where hi, iε1,2,...,N represents input image sequence and z is the fused image

while, µ and σ are mean intensity and standard deviation respectively. σhiz is the

sample cross correlation of hi and z after removing their mean. C1, C2 and C3

are small positive constants that stabilize each term so that near sample means,

variance or correlation does not lead to numerical instability.

Finally, combining these three elements of image patches, the SSIM and mean

SSIM index forms as,

SSIM(hi, z) =
(2µhi

µz + C1)(2σhiz + C2)

(µ2
hi

+ µ2
z + C1)(σ2

hi
+ σ2

z + C2)
(3.20)

MSSIM =
N∑

hi=1

mean2(SSIM(hi, z)) (3.21)

where N is the number of input images.
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Chapter 4

Depth Map Estimation Using SUSAN

Operator and an Exponentially

Decaying Function

In an image processing, detection of features have significance importance. In

multi-focus image fusion accurate detection of features plays a pivotal role. More

accurately detected features enable the fusion perfectly from different multi-focus

input images and concurrently help to calculate the depth of a scene or an object.

The absolute depth of object surface patches can be calculated from the focal

length and the position of lens that gave the sharpest image of the surface patches.

A novel depth map estimation technique using an exponentially decaying func-

tion based on SUSAN operator is proposed in this chapter. The SUSAN, a non-

linear low-level image processing algorithm is used for feature detection in the

proposed technique. The excellent capacity of edge detection, corner detection

and structure preserving noise filtering of SUSAN, helps to identify features in

multi-focus image efficiently and exponentially decaying function helps to mea-

sure focus by changing pixel value according with the distance from feature pixel,

gives more weight in the nearer vicinity of the feature pixel.
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4.1 SUSAN Operator

Smith and Brady proposed SUSAN (Smallest Univalue Segment Assimilating Nu-

cleus) algorithm in 1997 [18]. This algorithm has three parts: edge detection,

corner detection and structure preserving noise filtering. In this algorithm non-

linear filtering is used to identify image sub-regions which are closely related to

individual pixels. A circular mask is used for convolution and the brightness of

each pixel within the circle is compared with the brightness of center pixel (nu-

cleus) of the mask. The area of the mask that has the same brightness as the

nucleus is known as USAN (Univalue Segment Assimilating Nucleus).

 

Figure 4.1: Four circular masks at different places on a sample image

In fig. 4.1 a circular mask is placed at four different places in an image. The

USAN area is at a maximum when nucleus lies within the flat region as shown at

place (c), it falls half of this maximum when nucleus is nearer to edge (at place

(b)) and falls further nearer to corner as shown in fig. 4.1 at place (a) and (d).

The detected USAN area is shown in fig. 4.2. The area of USAN conveys the most

important information about the structure of the image. Thus, by knowing the

USAN area i.e. from size, centroid and second moment of the USAN, edges and
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Figure 4.2:
Four circular masks with similarity coloring; white part of the mask
shows the USAN

two dimensional features (corners) can be easily detected.

Let, I(r) denotes the gray value at pixel r, n the area of the USAN (the total

no. of pixels in the USAN), r0 the nucleus, α is circular mask and σ is brightness

difference threshold, then

n(r0) =
∑
rεα

c(r, r0) (4.1)

Finally, the response of SUSAN operator at pixel r0 is given by,

E(r0) =





GT − n(r0) for n(r0) < GT,

0 else
(4.2)

where, GT is called geometrical threshold. For edge detection suitable value of

GT is (3
4
) nmax where nmax is the maximum value that n can carry.
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4.2 Proposed Focus Measure Technique

The clarity measurement of focused pixels of the multi-focus image sequence,

is a vital importance for any focus measure technique. Successiveness of any

focus measure technique depends on its ability to calculate the sharpness value of

each image pixel. Proposed scheme uses an exponentially decaying function with

SUSAN operator to analyze the sharpness of each pixel in an image sequence.

Entire process of proposed scheme is depicted in fig. 4.3.

)e(1.TeF D/2D/2   

 !"

Figure 4.3: Different steps of proposed algorithm
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In proposed technique, features are extracted by applying SUSAN operator on

the pre-registered multi-focus image sequence. A focus measure characterized by

exponentially decaying function, is employed to compute sharpness of each pixel

in an image. such decaying function uses neighborhood information of extracted

feature points assuming that the pixel value far from a feature points is equal to

1 and it approaches this limiting value in an exponential way.

Given an arbitrary point k and the set E of feature points, the focus measure

F is estimated as,

F (x, y) = e−
D(x,y)

2 T (x, y) +
(
1− e−

D(x,y)
2

)
(4.3)

where, D is the distance between point k and the nearest feature pixel T .

Distance transformation of an edge image which is an output of SUSAN operator

yields a distance matrix (D) and a label matrix (L). T is the actual intensity value

extracted from original images using label matrix L. These matrices D and T are

used in computation of F values for each frame.(eq. 4.3). After changing pixel

value using an exponentially decaying function, the decision map is computed

by comparing pixels in Z direction. The frame with higher value of F , that

frame number is mapped on to corresponding pixels of the decision map. Finally

using decision map, pixels are extracted from original image sequence yielding a

composite image.

4.3 Experiments and Results

The performance of proposed depth map estimation technique is tested with vari-

ous multi-focus pre-registered image datasets, namely, pre-treatment, chess, clock

and book, visually as well as quantitatively. For quantitative measurement mutual

information (MI), structural similarity (SSIM) index and edge information trans-

formation matric (Qp) are used. These methods assess the fusion on the basis of

25



(a) Pre-treatment

(b) Chess

(c) Clock

(d) Book

Figure 4.4: Sample frames of the datasets
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input-output relationship means does not need the reference image.

The pre-treatment data set have 8 partially focused images. which is taken

by moving camera lens stepwise diagonally, with image resolution 800 × 600, the

chess image sequence is obtained by moving lens horizontally in 29 steps, and each

image 800 × 600 size, clock and book datasets have two images, focus different

parts in each frame. The image size of clock and book are 512 × 512 and 1280

× 960 respectively. Sample frames of all datasets used in experiment is shown in

fig 4.4.

(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 4.5: Depth map of Pre-treatment sequence using various methods

The depth map obtained for pre-treatment sequence and chess dataset using

proposed focus measure system and other three well-known FMGLV , FMTenen,

FMSML are shown in fig. 4.5 and fig. 4.6 respectively. As shown in fig. 4.5, the
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(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 4.6: Depth map of Chess dataset using various methods

obtained depth map using proposed method is smoother then the other three well-

documented methods for pre-treatment dataset. The steps of each movement of

the camera lens is clearly visible in the depth map of proposed method. Similarly,

for chess dataset the performance of the proposed method is quite better and

estimate the depth of the scene more accurately compare to other methods as

shown in fig. 4.6.

Fig. 4.7 shows the final fused image of the chess image sequence using proposed

SUSAN operator based focus measure technique and three other methods. From

figure it is seen that the fusion obtained by proposed method have more brightness-

contrast ratio than the other methods as well as at edges, performance is quite

better without any hall effect, while other methods simply fail.
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(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 4.7: Fusion of Chess dataset using various methods

For quantitative evaluation of the proposed method we have used three different

criteria; mutual information (MI), Structural Similarity (SSIM) index and edge

information transformation matrices (Qp). The obtained result in terms of MI,

MSSIM and Qp of the proposed and three other FMGLV , FMtenen, FMSML methods

for pre-treatment, chess, clock and book dataset without noise and in presence of

Gaussian noise of variance 0.0005 are shown in table 4.1, table 4.2 and table 4.3

respectively.

From table 4.1, 4.2 and 4.3; it is evident that the performance of proposed

method in terms of mutual information, structural similarity and edge transfor-

mation is better than the other well-documented methods.
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FMGLV FMTenen FMSML Proposed

Pre-treat 2.6076 2.7035 2.6887 2.9439

Chess 13.3120 13.3002 15.3308 17.4559

Clock 2.3051 2.3187 2.3499 2.4215

Book 2.3865 2.3976 2.3975 2.4235

Table 4.1: Mutual information comparison

FMGLV FMTenen FMSML Proposed

Pre-treat 0.5414 0.5448 0.5455 0.5735

Chess 0.7111 0.6757 0.7082 0.7717

Clock 0.8630 0.8702 0.8797 0.8929

Book 0.8662 0.8675 0.8728 0.8840

Table 4.2: Structural similarity comparison

FMGLV FMTenen FMSML Proposed

Pre-treat 0.3473 0.3944 0.3875 0.4034

Chess 0.3172 0.2421 0.2449 0.3184

Clock 0.7033 0.7554 0.7667 0.7964

Book 0.6788 0.7466 0.7487 0.7656

Table 4.3: Edge information transformation comparison
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4.4 Conclusion

In this chapter, a new focus measure method for depth map estimation based on

exponentially decaying function, that exploits neighborhood information of ex-

tracted feature points identified through SUSAN operator is presented. Structure

preserving noise filtering and detection of various kinds of features (edges, cor-

ners) using SUSAN allows improved detection of well focused image points while

exponentially decaying function gives more weight to the pixels lie in the nearer

vicinity of the feature pixels. Experimental results show the superior performance

of proposed method compare with other traditional scheme. Medical imaging,

collision avoidance, shape reconstruction and object segmentation are some of the

potential areas that can benefit from scheme presented in this chapter.
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Chapter 5

Depth Map Estimation Using Dual-tree

Complex Wavelets and an Exponentially

Decaying Function

Fundamental to the concept of depth estimation by focus analysis is the relation-

ship between focused and defocused images of a scene. The depth of every point

of an object from the camera lens is calculated by finding the best focused points.

In this chapter an efficient depth map estimation technique based on DT-CWT

and an exponentially decaying function is proposed. Shift-invariance nature and

better directionality of DT-CWT helps to detect the oriented features very effi-

ciently while distance transformation using exponentially decaying function gives

more weight to the neighborhood pixel of the feature points.

5.1 Dual-tree Complex Wavelet Filter Banks

Dual-tree complex wavelet transform (DT-CWT) which is an enhancement to

the discrete wavelet transform (DWT), possesses two key properties, i.e., the

transformation is nearly shift invariant and it has better directionality in higher-

dimensional space. As a typical DWT structure is a well known transformation,
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Figure 5.1:
A typical two-channel analysis/synthesis dual-tree structure. (a) primal
filter bank; (b) dual filter bank.

in this section, a brief review is given for DT-CWT only. Consider a two-channel

dual-tree filter bank implementation of the complex wavelet transform. Shown

in Figure 5.1(a), the primal filter bank B in each level defines the real part of

the wavelet transform. The dual filter bank B̃ shown in Figure 5.1(b) defines the

imaginary part. Note that the scaling and wavelet functions associated with the

analysis side of B are defined by the iterative two-scale equations

φh(t) = 2
∑
n

h0[n]φh(2t− n) (5.1)

ψh(t) = 2
∑
n

h1[n]φh(2t− n) (5.2)

The scaling function φf and wavelet ψf in the synthesis side of B are similarly

defined with f0 and f1 and the same discussion is valid for the scaling functions

(φ̃h and φ̃f ) and wavelet functions (ψ̃h and ψ̃f ) of the dual filter bank B̃. The

dual-tree filter bank defines analytic complex wavelets ψh+jψ̃h and ψ̃f +jψf , if the

wavelet functions of the two filter banks form Hilbert transform pairs. Specifically,

the analysis wavelet ψ̃h(t) of B̃ is the Hilbert transform of the analysis wavelet

ψh(t) of B, and the synthesis wavelet ψf (t) of B is the Hilbert transform of ψ̃f (t).

In other words,

Ψ̃h(ω) = −jsign(ω)Ψh(ω) (5.3)

Ψf (ω) = −jsign(ω)Ψ̃f (ω) (5.4)
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where Ψh(ω), Ψf (ω), Ψ̃h(ω), and Ψ̃f (ω) are the Fourier transforms of wavelet func-

tions ψh(t), ψf (t), ψ̃h(t), and ψ̃f (t) respectively, and sign represents the signum

function.

There are two traditional approaches to the design of Hilbert pairs of complex

wavelet bases. One is to design both the primal and the dual banks simultaneously,

e.g., Kingsbury’s q-shift [8] and Selesnick’s common factor [17] solutions. The

other method, known as matching technique, is to design the dual filter bank

for an existing filter bank [22]. In general, the transformation is approximately

shift-invariant and provides directionality-selective subbands in wavelet domain

[8, 17] while preserving perfect reconstruction. It is worth pointing out that these

properties are missing in discrete wavelet transform.

5.2 Proposed Focus Measure System

In general, ability of any focus measure technique to calculate the sharpness value

of each image pixel shows the success of a method. To calculate the sharpness

value of pixels and subsequently to find the depth of each pixel, we propose the use

of dual-tree complex wavelet transform along with the so-called distance transfor-

mation employing an exponentially decaying function. Because of better direc-

tionality and shift-invariance the DT-CWT helps to detects the feature informa-

tion accurately and the distance transformation employing exponentially decaying

function helps to give more weight to the pixel lies in the near vicinity of the feature

pixels. The entire block diagram of the proposed DT-CWT based focus measure

system is dipicted in fig. 5.2.

As is seen in this figure, the entire multi-focus image sequence is decomposed

via DT-CWT in to scaling and wavelet subbands using the 9/7–10/8 filter banks

proposed in [25]. The decomposition using DT-CWT provides detailed informa-

tion for each frame in the sequence; leading to more options to select the best
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Figure 5.2: Proposed DT-CWT based focus measure system

fitting feature among the entire input images. It is technically an important task

to know which pixel comes from which image. Also, in order to preserve infor-

mation and to avoid pixels indices complexity, we do not perform downsampling

between stages while decomposing data by DT-CWT and thus each subband has

the same size as an input image. After decomposing multi-focus image sequence

with DT-CWT the intermediate subband (I) with higher pixel value is computed

applying maximum selection rule on subbands of each image in wavelet domain.

Finally, a decision map is determined employing the distance transform with the

exponentially decaying function as,

F (x, y) = e−
d(x,y)

2 I(x, y) +
(
1− e−

d(x,y)
2

)
(5.5)

The exponentially decaying function uses neighborhood information in each

subband assuming that the pixel value far from a pixel is equal to 1 and it ap-

proaches this limiting value exponentially. The decision map for fusion is con-

structed by comparing the value of subbands; the frame number with higher value

is mapped onto the decision map. Using the decision map, pixels are extracted

from corresponding subbands of the image sequence and an inverse DT-CWT

yields the final fused image.
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5.3 Experiments and Results

In experiments three different kind of multi-focus image sequences, namely, sim-

ulated cone, real cone and planner object are used. The simulated cone sequence

is generated using a software while the real cone and planner object sequence is

taken by a CCD camera. The simulated cone and real cone sequences have 97

partially focused images with image size 360 × 360 and 200 × 200, while the

planner object sequence has 87 multi-focused 200 × 200 size images. The sample

frames of all three datasets are shown in fig. 5.3.

     

(a) Simulated Cone

      

(b) Real Cone

     

(c) Planner Object

Figure 5.3: Sample frames of datasets
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The effectiveness of the proposed DT-CWT based focus measure system is

tested by comparing with three other well-known focus measure methods, namely,

tenengrade (FMTenen), gray level variance (FMGLV ) and sum of modified laplacian

(FMSML) proposed in literature. The resultant depth map obtained by proposed

and three other methods for simulated cone, real cone and planner object are

shown in fig. 5.4, fig. 5.5 and fig. 5.6 respectively. From these figures it is clear that

the depth maps of the proposed method are more smoother and uniform compare

to the other methods. Note that the results obtained using DT-CWT are free

of spikes and the boundaries of depth are clearly separable, which indicates that

proposed method is more accurate to judge the focused pixel from the partially

focused images.

 

(a) FMGLV

 

(b) FMTenen

 

(c) FMSML

 

(d) Proposed

Figure 5.4: Depth map of Simulated Cone sequence using various methods
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(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 5.5: Depth map of Real Cone dataset using various methods

(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 5.6: Depth map of Planner Object sequence using various methods

38



(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 5.7: Reconstructed 3D shape of Real Cone using various methods

Once, the fused image and depth map are available then the 3D shape re-

construction is straight. The reconstructed 3D shape of real cone using various

techniques are shown in fig. 5.7

In image processing noise have significance importance. Some focus measure

system, namely, FMTenen, FMSML and FMGLV uses derivatives to calculate sharp-

ness value of the pixel. Derivation is very much sensitive to noise, resulting drastic

degradation of the performance of the focus measure system.

Thermal noise is the main contributor to CCD noise, which usually introduce

during image acquisition can be modeled using Gaussian PDF. So, to check the

robustness of the proposed focus measure system, a Gaussian noise of variance

0.001 is added to the real cone dataset, resultant depth map obtained using various

methods is depicted in fig. 5.8. From figure it is seen that in presence of noise

FMTenen and FMGLV methods exhibits poor performance and the depth map of

the FMSML is even unrecognizable, while the proposed method still track the

actual depth of the scene.
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(a) FMGLV (b) FMTenen

(c) FMSML (d) Proposed

Figure 5.8:
Depth map of Real Cone using various methods in presence of Gaussian
noise of variance 0.001

The second main contribution to CCD noise is shot or salt and pepper noise.

This noise generally introduce because of faulty switching during imaging as a

sudden change of pixel value. To test the performance of the proposed method

against the impulse change, we add salt and pepper noise having noise density

0.001 to the planner dataset. Fig. 5.9 show the depth map obtained by our pro-

posed method and three other FMGLV , FMTenen, FMSML methods in presence of

shot noise of density 0.001. From figure is clear that the effect of sudden change

of pixel value due to shot noise in proposed method is quite better than the other

methods and gives the more accurate depth compare to other techniques.
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Figure 5.9:
Depth map of Planner Object using various methods in presence of shot
noise of density 0.001

For the quantitative evaluation of the proposed method SSIM and Qp criteria

is used. Table 6.1 and 6.2 show the obtained results of the Simulated Cone, Real

Cone and Planner Object in terms of SSIM and Qp respectively. From results it

is clear that the proposed method have more structural similarity as well as more

edge information transferred from source images to a fused image, which indicates

better fusion compare to other methods.

FMGLV FMTenen FMSML DT-CWT

Sim. Cone 0.1754 0.1870 0.1851 0.1881

Real Cone 0.4637 0.4536 0.4548 0.4734

Planner 0.4092 0.4275 0.4280 0.4399

Table 5.1: Structural similarity comparison
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FMGLV FMTenen FMSML DT-CWT

Sim. Cone 0.1959 0.1807 0.2036 0.2134

Real Cone 0.2289 0.2516 0.2452 0.2642

Planner 0.1495 0.1754 0.1766 0.1895

Table 5.2: Edge information transformation comparison

The robustness of the proposed complex wavelet based focus measure system is

tested by adding Gaussian noise of different variance. MSSIM and Qp comparision

at different Gaussian noise level of various focus measure operator for real cone

and planner object sequence are shown in the fig. 5.10.
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(b) Planner Object

Figure 5.10: Comparision of focus measure (Gaussian noise)

As is seen in figure, for structural similarity measure FMSML shows poor perfor-
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mance while in cage of edge information transformation FMGLV method exhibits

lower performance but, at each noise level the structural similarity and edge in-

formation transformation measure of the proposed method is higher. It is also

seen that the rate of decrement of performance in proposed method is lower then

the other well-known methods. it indicates that proposed method withstand more

better against the noise compare to other methods.

5.4 Conclusion

An efficient depth map and 3D shape reconstruction technique based on dual tree

complex wavelet transform is presented in this chapter. Shift-invariance nature

and better directionality of DT-CWT helps to detect features precisely and dis-

tance transformation using exponentially decaying function gives more weight to

the neighborhood pixels of the the best candidate features. Experimental results

in terms of MSSIM and Qp validate the sucess of presented approach to estimate

the depth of a scene compare to other well-documented methods in literature.

Medical imaging, collision avoidance, shape reconstruction and object segmenta-

tion are some of the potential areas that can benefit from scheme presented in this

chapter.
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Chapter 6

Depth Map Estimation Using Dual-tree

Complex Wavelets and a Quadrature

Pair of Steerable Filters

The objective of shape from focus is to find out the depth of every point of the

object from the camera lens. The depth of every point is calculated by finding

the best focused points i.e.sharpest pixel, from a multi-focus image sequence. In

this chapter a novel depth map estimation technique which is based on DT-CWT

and a quadrature pair of steerable filter is presented. In proposed technique, by

steering a quadrature pair of steerable filters, local oriented energy of the detected

features of DT-CWT is measured, which helps to measure the focus pixel.

6.1 Quadrature Pair of Steerable Filter

Steerable filters [3] represent a class of filters which are synthesized as a linear

combination of a set of basis filters. To analyze local orientation patterns and

to measure the local energy along the dominant local direction in an image, a

quadrature pair of steerable filters and the corresponding Hilbert transform pairs

are used.
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Any function g(x, y) which steers can be represented as linear sum of its own

rotated versions, that is

gθ(x, y) =
M∑

m=1

km(θ)gθm(x, y) (6.1)

where km(θ) refers to interpolation functions, gθm(x, y) forms basis filters and θ is

an arbitrary rotation.

The second derivative of Gaussian, G2(x, y) [3], is used as a steerable filter in

this paper. An arbitrary orientation of G2(x, y) and its Hilbert transform H2(x, y)

are expressed as

Gθ
2(x, y) = k1(θ)G

0
2(x, y) + k2(θ)G

π
3
2 (x, y)

+ k3(θ)G
2π
3

2 (x, y) (6.2)

Hθ
2 (x, y) = l1(θ)H

0
2 (x, y) + l2(θ)H

π
4
2 (x, y)

+ l3(θ)H
π
2
2 (x, y) + l4(θ)H

3π
4

2 (x, y) (6.3)

where normalized basis filters spaced equally between 0 and π with the following

interpolation functions [3] for the Gaussian, k(.)(θ), and the Hilbert transform,

l(.)(θ), respectively.

G0
2(x, y) = 0.9213(2x2 − 1)e−(x2+y2) (6.4)

G
π
3
2 (x, y) = 1.843xye−(x2+y2) (6.5)

G
2π
3

2 (x, y) = 0.9213(2y2 − 1)e−(x2+y2) (6.6)

k1(θ) = (1 + 2 cos 2θ)/3 (6.7)

k2(θ) = (1 + 2 cos(2θ − π

3
))/3 (6.8)

k3(θ) = (1 + 2 cos(2θ − 4π

3
))/3 (6.9)
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The quadrature filter of G2 is the Hilbert transform of it, which cannot steer.

Therefore, a third-order polynomial is used for approximation and consequently

the corresponding normalized basis filters of H2(x, y) are given by

H0
2 (x, y) = (−2.205x + 0.978x3)e−(x2+y2) (6.10)

H
π
4
2 (x, y) = (−0.735y + 0.978x2y)e−(x2+y2) (6.11)

H
π
2
2 (x, y) = (−0.735x + 0.978xy2)e−(x2+y2) (6.12)

H
3π
4

2 (x, y) = (−2.205y + 0.978y3)e−(x2+y2) (6.13)

l1(θ) = cos3θ (6.14)

l2(θ) = −3 cos2θ sin θ (6.15)

l3(θ) = −3 cos θ sin2θ (6.16)

l4(θ) = − sin3θ. (6.17)

6.2 Proposed Focus Measure Scheme

In SFF the success of any focus measure technique depends on its ability to calcu-

late sharpness value of each image pixel. We take the advantage of dual-tree com-

plex wavelet transform to decompose a pre-registered multi-focus image sequence

to several directional subbands in complex wavelet domain. We then search for the

best focus value using a quadrature pair of steerable filters. The decomposition

in wavelet domain provides detailed information oriented in different directions.

The intermediate subband (I ) with higher pixel value is computed employing the

well known maximum selection rule on wavelet subbands of each image at the last

level of the decomposition. After finding best feature information for each image

local orientation energy (E ) for each pixel is measured. Local orientation energy

is calculated by steering a quadrature pair of steerable filters and energy for each
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Figure 6.1: Block diagram of the proposed technique

pixel is given by

E(x, y, θ) = [I(x, y) ∗Gθ
2(x, y)]2 + [I(x, y) ∗Hθ

2 (x, y)]2 (6.18)

Once the energy of each pixel is determined, using a small window around a

pixel (x,y), focus measure (FM) is calculated and the value of pixel (x,y) is replaced

by the sum of computed values to avoid abrupt fluctuations and measurement

errors. That is

FMW (i, j) =
i+N∑

x=i−N

j+N∑

y=j−N

E(x, y, θ) (6.19)

where the subscript W refers to wavelet domain. Finally, decision map is con-

structed by comparing corresponding pixel values of each image; the frame with

higher value of entire dataset is mapped onto the decision map. Using this de-

cision map pixels are extracted from the scaling and wavelet coefficient of each

image and then inverse transform yields the fused image. The entire process of

the proposed technique for depth map estimation is depicted in Fig. 6.1.
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6.3 Experiments and Results

In experiments, several multi-focus image sequence datasets such as simulated

cone, real cone, planner object, pre-treatment, chess, clock, and book are used.

The quantitative and visual results of the proposed technique are compare with

two other well-known methods (FMSML and FMGLV ) as well as the method pro-

posed in chapter 5. The sample frames of the datasets are shown in fig 4.4 and

fig 5.3. The depth maps of the simulated cone and real cone data sets for various

methods are dipicted in fig. 6.2 and fig. 6.3. As seen in figures it is clear that the

proposed steerable filter based focus measure technique gives uniform depth map

without any spike compare to other methods. however, visually the depth maps

for proposed method and the method proposed in chapter 5 looks similar, but the

smoothness in the depth map of the proposed methods is better.

 

(a) FMGLV

 

(b) FMTenen

 

(c) Chapter-5
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Figure 6.2: Depth map of Simulated Cone sequence using various methods
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(a) FMGLV (b) FMTenen

(c) Chapter-5
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Figure 6.3: Depth map of Real Cone dataset using various methods

For quantitative evaluation of proposed method, structural similarity and edge

information transformation measure is used. Proposed method is tested with

simulated cone, real cone, planner object, pre-treatment, chess, clock and book

datasets and the results of SSIM and Qp are compared with three focus measure

methods including methods proposed in chapter 5 and tabulated in table 6.1 and

6.2.

From tables it is seen that, proposed has more structural similarity and more

edge information transformation between input images and a fused image. How-

ever, it is also seen that the improvement of SSIM and Qp measure between pro-

posed and method proposed in chapter 5 for simulated cone, real cone and planner

datasets are small, but for pre-treatment, clock and book datasets, performance

improvement is higher. One of the possible reason for this higher improvement is

that in these datasets images have higher flat area. Overall performance improve-

ment of the proposed is better than the other well-documented methods.
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FMGLV FMSML Chapter-5 Propoed

Sim. Cone 0.1754 0.1851 0.1881 0.1916

Real Cone 0.4637 0.4548 0.4734 0.4812

Planner 0.4092 0.4280 0.4399 0.4425

Pre-treat 0.5414 0.5455 0.5829 0.5889

Chess 0.7111 0.7082 0.7812 0.7916

Clock 0.8630 0.8797 0.8812 0.8873

Book 0.8662 0.8728 0.8796 0.8973

Table 6.1: Structural similarity comparison

FMGLV FMSML Chapter-5 Proposed

Sim. Cone 0.1959 0.2036 0.2134 0.2218

Real Cone 0.2289 0.2452 0.2642 0.2726

Planner 0.1495 0.1766 0.1895 0.1927

Pre-treat 0.3473 0.3875 0.4112 0.4269

Chess 0.3172 0.2449 0.3196 0.3234

Clock 0.7033 0.7667 0.7832 0.7922

Book 0.6788 0.7487 0.7538 0.7642

Table 6.2: Edge information transformation comparison
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6.4 Conclusion

In this chapter, we have introduced an efficient focus measure technique for depth

map estimation based on the use of complex wavelet subbands to extract detailed

feature information from a multi-focus image sequence. Local oriented energy of

the detected features is calculated using quadrature pair of steerable filters. Steer-

able filters remove inherent limitations of traditional gradient detection based tech-

niques which perform inadequately for oriented intensity varying scenarios. Sim-

ulation results show the performance improvement of DT-CWT based technique

employing steerable filters in terms of fusion assessment factors and visual percep-

tion. The feature extraction and exploiting the best candidate pixel fits the use

of dual-tree complex wavelet transform. Shown in the contour plane, the bound-

ary of depth are accurately extracted compare with previous techniques. This is

due to better directional-selectivity and shift-invariance attribute of DT-CWT in

general, and full symmetry of the 9/7–10/8 filter bank with promising number of

vanishing moments, in particular. In view of success of the presented approach in

depth map estimation, it is reasonable to hope promising results, employing the

proposed framework, in relevant applications such as 3D shape reconstruction and

object identification.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This chapter summarises and concludes the investigation of depth map estimation

by image focus presented in this thesis. General recommendations for further

work and development in the area of depth map estimation using image focus are

proposed in the second section of this chapter.

In this thesis depth map estimation based on features extraction is investigated

in terms of development of novel multi-focus image fusion algorithms. A broad

overview of the developments of this type, presented in technical literature so far,

is given in chapter 2. The quantitative fusion assessment techniques is explained

in chapter 3. In chapter 4 depth map estimation based on SUSAN operator

and an exponentially decaying function is proposed. The excellent capacity of

feature detection and structure preserving noise filtering using SUSAN, identifies

features precisely while exponentially decaying function gives more weight to the

neighborhood pixel of the detected features, which helps to measure the focus

part of the image. Further more taking the advantage of DT-CWT in terms of

shift-invariance and better directionality, other two efficient depth map estimation

techniques using distance transformation and a quadrature pair of steerable filters

are presented in chapter 5 and 6 respectively. As better directionality attribute,
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DT-CWT is able to detect features more efficiently. An exponentially decaying

function gives more weight to the near vicinity of the detected feature pixels while

a quadrature pair of steerable filters measures the local orientation energy of the

detected features to calculate the focus pixels.

The depth map as well as fused imagery obtained using these novel approaches

are evaluated against conventional depth map estimation methods, in subjective

as well as objective preference tests which show a clear advantage of the proposed

method.

7.2 Future Works

The investigation into the field of depth map estimation based on feature detec-

tion is presented in this thesis, however, it was not exhaustive and some natural

extensions to the research presented in it are recommended in this section.

For more practical depth map estimation research, large number of datasets

would be required. These datasets would ideally include imagery of as many

possible scenes from wide range of application scenarios.

Presented feature based approaches of depth map estimation required more

effort to deal with the flat regions. As, flat regions are the regions without features,

there may possible that these feature based approaches of depth map estimation

not work efficiently. Also, more attention is required towards the robustness of the

focus measure system in terms of dealing with different kind and level of noises.

Finally, construction of hardware platforms for real time depth map estimation

implementation, where fusion algorithms can be tested in real life conditions, is

highly recommended.

An applications such as robot guidance, collision avoidance, 3D feature extrac-

tion, medical imaging, range segmentation and microscopic imaging would bring

benefits to the proposed focus measure systems.
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