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Abstract

The metastable 1s2s 3S1 state of helium is the longest-lived neutral atomic state with a

lifetime of 7859 seconds. This property has important astrophysical applications in the de-

termination of temperature and density conditions in low density sources such as planetary

nebulae.

This lifetime is determined by single photon relativistic magnetic dipole (M1) transition

rates and is evaluated numerically using large basis size variational Hylleraas wave functions

for all the heliumlike ions through the isoelectronic sequence up to Ar+16. The coefficients

of a 1
Z expansion, based on the results from the variational calculation, are evaluated up to

ninth order with the zeroth and first order coefficients being determined analytically. This 1
Z

expansion is used to evaluate the lowest order M1 transition rates for heliumlike ions through

the isoelectronic sequence from K+17 to Fm+98. The results for helium are compared with

experimental measurements by Moos and Woodsworth(1975), recent experimental results

by Hodgman et al.(2009) and high precision numerical calculations by  Lach and Pachucki

(2001). For heliumlike ions, results are compared with several electron beam ion trap

measurements for heliumlike lithium, carbon, oxygen, neon, and sulfur.

This value of the 1s2s 3S1 → 1s2 1S0 transition rate evaluated in this work is 1.2724255998(6)×
10−4 s−1, where the uncertainty in this result is given in parentheses.
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Chapter 1

Introduction

Speculations of interest in atomic theory have been attributed, as far back in history as

the Trojan Wars, to a Greek figure known as Mochus of Sidon. As far back as the sixth

century BCE, 1 the concept of indivisble bits of matter known as paramanu (atoms) had

been proposed by the Hindu sage Kanada. A formal atomic theory is first attributed to

Leucippus and his student Democritus in ancient Greece during the fifth century BCE.

Needless to say, the study of atomic structure, and indeed the nature of matter itself, is not

a new concept and has been of interest for thousands of years.

Not until the 20th century, due to the work of physicists such as Bohr and Heisenberg,

were theories developed that describe the quantum mechanical world (and have the ability to

explain atomic structure and behaviour with any level of accuracy). The simplest quantum

mechanical system is the hydrogen atom, which consists of only a proton and an electron.

We refer to this type of a system as a two body system, and it is possible, at least in a

nonrelativistic approximation, to describe analytically the hydrogen atom or any other two

body problem exactly. The second simplest quantum mechanical system is the helium atom,

which consists of a single nucleus and two electrons (i.e. helium is a three body quantum

1The dating of this is under contention and could be closer to second century BCE.

1



1. INTRODUCTION

mechanical system). By increasing the number of bodies in our system from two to three

we have lost the ability to solve the system analytically. While we have lost mathematical

simplicity, we continue to study helium and heliumlike ions because we gain a vast amount

of information about the structure of more complicated multielectron atomic systems while

maintaining the second simplest level of mathematical complexity.

1.1 Metastable States

Metastable states in atomic physics refer to those states which have appreciably long life

times, sometimes on the order of seconds and, to be calculated in this work, even up to

several thousand seconds. Typically metastable states are those states for which transitions

to the ground state are forbidden by the electric dipole (E1) selection rules. The use of the

word forbidden is a misnomer, as these transitions do occur. However they are, for example,

two photon (2E1) transitions or single photon magnetic dipole (M1) transitions.

As an example, the 2P → 1S transition rate for a hydrogen atom can be calculated (see

for example Principles of Quantum Mechanics by Shankar [2]) This calculation gives the

spontaneous emission transition rate

A2P−2S = 6.27 × 108 s−1, (1.1)

and gives a lifetime of the hydrogen 2P state to be

τ2P ≈ 1.6 × 10−9 s. (1.2)

As a comparison, the 2S → 1S transition rate, and the 2S lifetime, for a hydrogen atom

have been calculated to be [3] [4]

A2S−1S = 8.299s−1 (1.3)

τ2S ≈ 0.12 s.

An extensive list of both allowed and forbidden transition rates for hydrogen, helium, and

lithium has been compiled by W. L. Wiese and J. R. Fuhr [5], based primarily on data

2



1. INTRODUCTION

supplied to them by Drake, and it can be seen that metastable transitions do occur on a

different timescale than E1 allowed transitions.

The focus of this study will be to determine the transition rate from the 1s2s 3S → 1s2 1S

states of helium and heliumlike ions to a high order of accuracy. The following section will

outline a review of experimental measurements and theoretical calculation that have been

done up to this point.

1.2 The 1s2s 3S → 1s2 1S Transition

In a simple independent-particle approximation, the 1s2s 3S state of helium is the lowest

lying excited state where one electron is in its ground state and the second electron is excited

to the n = 2 state. The electrons, being spin 1
2 fermions, are in a triplet configuration known

as orthohelium where their spins are parallel, as opposed to a singlet configuration known

as parahelium. As seen in Fig. (1.1) [6], due to the spin configuration of the electrons, the

energies of orthohelium states are lower than those of parahelium states [for more details

see Appendix (A)].

The energy of the 1s2s 3S triplet state for a helium atom, in atomic units, is [7]

E3S = −2.175212 (1.4)

and when the atom deexcites from the triplet state to the ground state a photon is emitted

with this unique energy, and a corresponding characteristic wavelength

λ ≈ 62.6 nm. (1.5)

In addition to helium, a similar state, and a similar transition occur for all heliumlike

ions such as Li+, Be2+, B3+, and so on with increasing nuclear charge Z. For each of

these ions the two electrons can all form a triplet 1s2s 3S state with a unique energy and

characteristic wavelength See Fig. (1.2) for a diagrammatic representation of this transition

for a helium atom. The 1s2s 3S → 1s2 1S transition is a single photon magnetic dipole

transition (M1) and is considered a doubly forbidden transition in that

3



1. INTRODUCTION

Figure 1.1: The low lying energy levels of both parahelium and orthohelium. The energy

levels of orthohelium are slightly lower in comparison to the energy levels of parahelium.

Figure is taken from ”Introduction to the Structure of Matter” by Brehm and Mullin, p.

470.

4



1. INTRODUCTION

1. the excited 1s2s 3S state has the same angular momentum (l = 0) as the ground

state. This is forbidden from the selection rules stating that the change in angular

momentum ∆l = ±1 for allowed transitions,

2. due to this being orthohelium, the excited electron has spin parallel to the ground

state electron. Therefore a spin flip must occur if the excited electron is to return to

the atomic ground state so that the two electrons are in an antiparallel (parahelium)

configuration.

The motivation for studying the lifetimes of metastable 1s2s 3S states of helium and heli-

umlike ions is primarily due to its use in astrophysical observations. As suggested by Gabriel

and Jordan (1969) [8], and further developed by Blumenthal, Drake, and Tucker(1972) [9],

the relative intensity of the 1s2s 3S → 1s2 1S spectral transition line to the 1s2p 1P →
1s2 1S spectral transition line can be used to estimate electron density in hot plasmas such

as gas nebulae (such as the well known Orion Nebula [10]2 shown in Fig. (1.3) [12]), or the

corona of the sun and other stars. By measuring the relative intensities of these spectral

lines, we can therefore deduce information about the composition, density, and temperature

of the object we are observing. This is particularly useful in low density plasmas (such as

stellar nebulae) where an electron in the metastable state has a low probability to deexcite

due to collisions.

There have been many measurements and calculations of the lifetime of the metastable

1s2s 3S state. One of the earliest calculations by Breit and Teller [13] incorrectly suggested

that the metastable state decays by a two photon electric dipole (2E1) process, and a

calculation of the M1 transition rate much slower at about 5 × 10−6 s−1.

Work by Mathis [11] calculated the 2E1 transition rate to be 2.2 × 10−5 s−1, which

would give a lifetime of

τMathis
3S ≈ 4.5 × 104 s. (1.6)

This result was used in astrophysical literature for many years until work by Drake and

Dalgarno [14] showed that the work by Mathis was developed upon an incorrect formulation

2These calculations were based on an incorrect calculation of the metastable 1s2s 3S state lifetime by

Mathis [11]
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of the problem. Later works by Bely and Faucher [15], and Drake, Victor, and Dalgarno

[16] determined the 2E1 transition rate to be 4 × 10−9 s−1, and a respective lifetime

τ
DVD/BF
3S

≈ 2.5 × 108 s. (1.7)

It was later suggested by Gabriel and Jordan [8] [17], after observations and identification

of the 1s2s 3S → 1s2 1S transition lines for the CV to SiXIII heliumlike ions in the spectrum

of the solar corona, that the mechanism for the 1s2s 3S → 1s2 1S is primarily a single photon

magnetic dipole emission.

The 1s2s 3S → 1s2 1S transition rate, via the M1 mechanism, was first calculated

correctly by Drake (1971) [18], using quantum electrodynamics, for helium and heliumlike

ions with nuclear charge ranging from 2 to 26. A brief review of this calculation will be

discussed in Sec. (1.3), as this will serve as the starting point for this body of work. For

helium, the transition rate and lifetime were calculated to be

ADrake(1s2s 3S → 1s2 1S) = 1.272 × 10−4 s−1 (1.8)

and

τDrake
3S ≈ 7.862 × 103 s. (1.9)

Further work by Drake (1974) [1] showed that the lowest-order QED corrections cancel out

for this transition.

Additional theoretical works using quantum electrodynamics have been performed; Fein-

berg and Sucher (1971) [19] calculated the transition rate and lifetime as

AFeinberg(1s2s 3S → 1s2 1S) = 1.2 × 10−4 s−1, (1.10)

and

τFeinberg3S
≈ 8.4 × 103 s, (1.11)

and Johnson and Lin (1974) [20] obtained the values

AJohnson,Lin(1s2s 3S → 1s2 1S) = 1.253 × 10−4 s−1, (1.12)

and

τJohnson,Lin3S
≈ 7.981 × 103 s, (1.13)
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and a later calculation by Johnson et al.(1995) [21], using relativistic many body perturba-

tion theory reported

AJohnson(1s2s 3S → 1s2 1S) = 1.266 × 10−4 s−1, (1.14)

and

τJohnson3S ≈ 7899 s. (1.15)

In 1986, Krause [22], using screened hydrogenic wave functions, reported the transition rate

and lifetime

AKrause(1s2s 3S → 1s2 1S) = 8.737 × 10−5 s−1, (1.16)

and

τKrause
3S ≈ 1.145 × 104 s. (1.17)

It should be stated that the results from Krause are inaccurate due to an inadequate treat-

ment of the correlation between the electrons, and that the results for higher nuclear charge

in the isoelectronic sequence are in better agreement.

Most recently,  Lach and Pachucki (2001) [23] performed a systematic derivation of the

transition matrix elements in quantum electrodynamic theory for low level forbidden tran-

sitions in helium and helium like ions, and reported

A Lach,Pachucki(1s2s 3S → 1s2 1S) = 1.272426 × 10−4 s−1, (1.18)

which would give

τ  Lach,Pachucki
3S

≈ 7.859 × 103 s, (1.19)

which is in close agreement with the original calculation by Drake (1971).

There have also been a few experiments performed to determine the lifetimes of the

metastable 1s2s 3S state. However it is interesting to note that, in contrast to other areas

of physics, due to the precise nature of these types of calculations, experiments played only

a minimal role in the determination of the lifetimes and transition rates.

While there were some experiments that measured the lifetime of the metastable 1s2s 3S

state for slightly heavier heliumlike ions (see for example Marrus and Schmieder (1972) [24]

7
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for measurements for Ar XVII), the first experimental determination of the 1s2s 3S lifetime

was by Moos and Woodworth in 1973 [25], and later a more accurate measurement in 1975

[26]. These experiments were conducted on a plasma discharge which was unstable and

therefore difficult to obtain accurate measurements. In addition, the helium lifetimes could

have been potentially reduced due to possible deexcitation from collisions since the helium

atoms were not isolated in the plasma discharge. The latter, and more accurate, results

were

AMoos,Woodworth(1s2s 3S → 1s2 1S) = 2.4 × 10−4 s−1, (1.20)

and

τMoos,Woodworth
3S

≈ 9 × 103 s, (1.21)

with an experimental error of 30%. While this result had a large degree of uncertainty it did

correctly identify the order of magnitude of the transition, and served to give experimental

proof that the decay of the 1s2s 3S state was primarily through single photon magnetic

dipole emission.

Electron beam ion traps (EBIT) have been used to measure the 1s2s 3S lifetimes for

O6+ ions [27], Ne8+ ions [28], and S14+ ions [29]. These EBIT experiments are unsuitable

to measure the metastable helium lifetime since they are designed to create and trap highly

ionized particles, and helium is not an ion. Heavy ion storage rings (HSR) have also been

used to measure the lifetime for C4+ ions [30]. As with the EBIT measurements, HSR is

not a possible method to measure the 1s2s 3S lifetime for helium. A summary of these

techniques for measuring atomic lifetimes of multiply charged ions has been written by

Träbert (2010) [31]

Consequently, the only accurate measurement of the 1s2s 3S lifetime for helium was

performed by Hodgman et al. [32] (2009). This experiment addressed the issues in Moos and

Woodworth’s experiments by isolating the helium atoms in vacuum by use of laser cooling.

The results of these measurements agree strongly with Drake [18] and other theoretical

8
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calculations. The values they obtained are

AHodgman(1s2s 3S → 1s2 1S) ≈ 1.27 × 10−4 s−1, (1.22)

and

τHodgman
3S

= 7.870 × 103 s. (1.23)

Table (1.1) summarizes the results of both theoretical and experimental measurements

of the metastable 1s2s 3S lifetime for helium over the past 56 years.

1.3 Theoretical Background

The foundation of this body of work will be based upon the theoretical calculation of

the M1 transition operator by Drake (1971) [18]. A brief discussion of the calculation

of this operator is presented in this section along with a review of the Foldy-Wouthuysen

transformation.

1.3.1 The Dirac Equation and Interaction with the Field

For an accurate calculation including spin and relativistic effects, we begin with the Dirac

equation for a spin 1
2 particle such as an electron

i~
∂

∂t
ψ (r, t) = HDψ (r, t) , (1.24)

with,

HD = cᾱ · p + βmc2. (1.25)

The operators ~α, with components αx, αy, and αz, and β are represented by 4× 4 matrices

with the following definitions

αx =

















0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

















, αy =

















0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

















, αz =

















0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

















, (1.26)
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Year Transition Rate (1s ) Lifetime (s) Type Theory/Exp. Source

1956 2.2 × 10−5 4.5 × 104 2E1 Theory Mathis

1968 4 × 10−9 2.5 × 109 2E1 Theory Bely & Faucher

1968 4 × 10−9 2.5 × 109 2E1 Theory Drake, Victor, & Dalgarno

1971 1.272 × 10−4 7.862 × 103 M1 Theory Drake

1971 1.2 × 10−4 8.4 × 103 M1 Theory Feinberg & Sucher

1973 4 × 103 ± 300% M1 Exp. Moos & Woodworth

1974 1.272 × 10−4 7.862 × 103 M1 Theory Drake

1974 1.253 × 10−4 7.981 × 103 M1 Theory Johnson & Lin

1975 9 × 103 ± 30% M1 Exp. Moos & Woodworth

1986 8.737 × 10−5 1.145 × 104 M1 Theory Krause

1995 1.266 × 10−4 7.899 × 103 M1 Theory Johnson et al

2001 1.272426 × 10−4 7.859 × 103 M1 Theory  Lach & Pachucki

2009 1.272 × 10−4 7.870 × 103 ± 6.5% M1 Exp. Hodgman et al.

Table 1.1: A summary of the calculations and measurements of the transition rate and life time of the 1s2s 3S → 1s2 1S

transition in helium. When available, the uncertainty in the calculations or measurements is given either in parentheses or

as a percentage. The result from 1974 by Drake [1] is a confirmation of the previous calculation while explicitly showing the

cancellation of lowest-order QED corrections

1
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and

β =

















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

















. (1.27)

Or in a more compact notation

ᾱ =





0 σ

σ 0



 , and β =





1 0

0 −1



 , (1.28)

where each entry is itself a 2 × 2 matrix, and σ are the Pauli matrices [33]. The wave

function must then be a 4 component vector

ψ (r, t) =

















ψ1 (r, t)

ψ2 (r, t)

ψ3 (r, t)

ψ4 (r, t)

















(1.29)

which, in the compact notation is written as

ψ (r, t) =





φ (r, t)

χ (r, t)



 (1.30)

where φ (r, t) and χ (r, t) are both two component spinors respectively known as the large

component and small component of the wave function.

To account for the interaction with a magnetic field, one changes to the canonical mo-

mentum

p → p− e

c
A, (1.31)

where

A = êeik·r (1.32)

is the vector potential. The Dirac Hamiltonian can be rewritten as

HD = cᾱ · p− eᾱ ·A + βmc2 (1.33)

= cᾱ ·
(

p− e

c
A
)

+ βmc2
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and the interaction with the magnetic field is then due to the interaction term −eᾱ ·A. It

is this term that mixes the large and small components of the wave function, for example

a general matrix element of this term would be

〈Ψa|ᾱ ·A|Ψb〉 = 〈φa|σ ·A|χb〉 + 〈χb|σ ·A|φa〉. (1.34)

It can be seen explicitly that there is mixing between φ and χ, and these terms are of order

O
(

Z2α2
)

. These operators are known as odd operators, and operators which do not mix

the large and small components are known as even operators.

The general procedure to obtain relativistic corrections is referred to as the Foldy-

Wouthuysen transformation [34]. It has been performed to derive the magnetic dipole

operator [18].

1.3.2 Foldy-Wouthuysen Transformation

The Foldy-Wouthuysen transformation is a unitary transformation which can be carried

out repeatedly, where each iterative application of the Foldy-Wouthuysen transformation

reduces the contributions from the small component of the wave function by successive

orders of Z2α2. [35] That is, a single Foldy Wouthysen transformation takes the operators

of the Hamiltonian that mix the large and small components and transform them into

an operator that does not mix the components, and a smaller (by order Z2α2) operator

that does mix the components. This process can be repeated until these contributions are

reduced to the desired order.

For demonstrative purposes, we now perform a Foldy-Wouthuysen transformation of a

single Dirac free particle. For a free particle, the Dirac Hamiltonian, given by Eq. (1.25) is

H = cᾱ · p + βmc2,

where it is the first term, ᾱ ·p, that we wish to remove. The unitary transformation needed

is such that

Ψ′ = eiSΨ (1.35)

and

H ′ = eiSHe−iS , (1.36)
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where the transformation is time independent3. By choosing a unitary transformation of

the form

eiS = eβᾱ·p̂θ = cos θ + βᾱ · p̂ sin θ, (1.37)

where p̂ = p

|p| , then using this transformation yields a tranformed Hamiltion

H ′ = (cos θ + βᾱ · p̂ sin θ)
(

cᾱ · p + βmc2
)

(cos θ − βᾱ · p̂ sin θ) (1.38)

= cᾱ · p
(

cos 2θ − m

|p| sin 2θ

)

+ βmc2
(

cos 2θ +
|p|
m

sin 2θ

)

.

The ᾱ ·p can be eliminated by a choice of θ such that tan 2θ = |p|
m . This gives a transformed

free particle Hamiltonian

H ′ = β
√

p2c2 +m2c4 (1.39)

which entirely eliminates any odd operators that mix the large and small components of

the wave function after only one application of the Foldy-Wouthuysen transformation.

In general this procedure can be performed on any Hamiltonian; however, there will be

some left over operator which still mixes the large and small components. This remaining

odd operator will be of order Z2α2 smaller. By successive applications of this procedure,

the remaining odd operators are continually reduced until the desired order is reached.

A multiple Foldy-Wouthuysen transformation is applied to the Dirac Hamiltonian for a

two electron atom by Drake (1971) [18], from which the magnetic dipole moment operator

is derived. For the specific case of the transition from the 1s2s 3S state to the 1s2 1S state,

in which the orthogonality of the initial and final spin states greatly reduce the complexity,

the magnetic dipole moment operators is

〈1s2 1S|Q10|1s2s 3S〉 = µB〈1s2 1S| −
(

2

3m2c2

)

(

p21 − p22
)

(1.40)

−1

6

(ω

c

)2
(

r21 − r22
)

+

(

Ze2

3mc2

)(

1

r1
− 1

r2

)

|1s2s 3S〉.

3In general, if the Hamiltonian is time dependent, then the unitary transformation must be written such

that H → eiSHe−iS
− ieiS ∂

∂t
e−iS
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The rate for this transition given by Drake (1971) [18] (based on the definitions in [36]

and [37]) is

A(1s2s 3S → 1s2 1S) = ~
−1 4

3

(ω

c

)3
|〈1s2 1S|Q10|1s2s 3S〉|2, (1.41)

and the lifetime of the metastable 1s2s 3S state is found by taking the inverse of the

transition rate. All calculations in this work are based on Eqns. (1.40) and (1.41). The

numerical calculation of the transition rate will be explained in full detail in Sec. (3).
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Figure 1.2: A schematic of the transition between the 1s2s 3S state and the ground state

of helium.
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Figure 1.3: The Orion Nebula viewed by the Hubble telescope. The electron density of hot

plasmas like the Orion Nebula can be estimated by measuring the relative intensities of

atomic transitions. Image courtesy of NASA and the Astronomy Picture of the Day website

(http://apod.nasa.gov/apod/ap120715.html).
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Chapter 2

Methods

This chapter discusses theoretical methods used to calculate radiative transition rates. A

general method for calculating transition rates and lifetimes would be to determine the exact

wave functions for the systems in question and to use these wave functions to calculate the

corresponding matrix elements of the radiative transition operator. These wave functions

and their corresponding energies are the eigenfunctions and eigenvalues of the particular

Hamiltonian in Schrödinger’s equation,

HΨ = EΨ, (2.1)

where H is the Hamiltonian of a quantum mechanical system, Ψ are the eigenfunctions,

and E are the corresponding energy eigenvalues.

This section will discuss the methods and techniques used in this thesis to obtain these

wave functions, as well as the methods used to calculate matrix elements needed to deter-

mine the transition rates and lifetimes of helium like ions.
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2.1 The Helium Hamiltonian

To begin, we need to have a description of the system, which can be expressed in terms

of the Hamiltonian of the system. A heliumlike ion is a three body quantum mechanical

system and, in general, has a three body nonrelativistic Hamiltonian which can be written

as

H = − ~
2

2mN
∇2

RN
− ~

2

2me
∇2

Re1
− ~

2

2me
∇2

Re2
(2.2)

− Ze2

|~RN − ~Re1 |
− Ze2

|~RN − ~Re2 |
+

e2

|~Re1 − ~Re2 |
,

where ~RN , ~Re1 , and ~Re2 are vectors, with an arbitrary inertial frame of reference (see Fig.

(2.1)), respectively corresponding to the positions of the nucleus, and the two electrons, M

is nuclear mass, m is the electron mass, Ze is the nuclear charge of the helium-like ion,

and e is the electronic charge. The first three terms correspond to the kinetic energies

of the particles. The fourth and fifth terms correspond to the potential energies from

the interaction between the nucleus and the electrons. The final term is the interaction

potential energy between the two electrons. It is the sixth term that prevents us from

solving the Schrödinger equation analytically. If the sixth term did not appear in the above

equation, the solution would simply be the product of two non-interacting hydrogenlike

wave functions.

It is possible to rewrite this equation, through a change of coordinates to a centre of

mass reference frame (see Fig. (2.2)), using the the new coordinates

~R =
M ~RN +m~Re1 +m~Re2

M + 2m
(2.3)

~r1 = ~Re1 − ~RN (2.4)

~r2 = ~Re2 − ~RN . (2.5)

These new centre of mass and relative coordinates vector allow us to transform Eq. (2.2)

into a new differential equation using the new wavefucntions, Ψ(~r1, ~r2, ~R), and differential

operators, ∇1, ∇2, and ∇R. Through application of the chain rule, we can write the fixed
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Figure 2.1: Coordinates for a three particle system in an arbitrarily located inertial frame

of reference.
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Figure 2.2: Centre of mass coordinates for an arbitrary three particle system with an

arbitrarily located inertial frame of reference.
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coordinate frame operators in terms of the centre of mass coordinates as

∇Re1
= ∇r1 +

m

M + 2m
∇R (2.6)

∇Re2
= ∇r2 +

m

M + 2m
∇R (2.7)

∇RN
= −∇r1 −∇r2 +

M

M + 2m
∇R. (2.8)

From these equations we write the square of those operators

∇2
r1 = ∇2

r1 +

(

m

M + 2m

)2

∇2
R +

2m

M + 2m
∇r1 · ∇R (2.9)

∇2
r2 = ∇2

r2 +

(

m

M + 2m

)2

∇2
R +

2m

M + 2m
∇r2 · ∇R (2.10)

∇2
RN

= ∇2
r1 + ∇2

r2 +

(

M

M + 2m

)2

∇ +R2 + 2∇r1 · ∇r2 (2.11)

− M

M + 2m
(∇r1 + ∇r2) · ∇R.

The Hamiltonian, Eq. (2.2), can now be written as

H = − ~
2

2m

[

∇2
r1 +

(

m

M + 2m

)2

∇2
R + 2

m

M + 2m
∇r1 · ∇R

]

(2.12)

− ~
2

2m

[

∇2
r2 +

(

m

M + 2m

)2

∇2
R + 2

m

M + 2m
∇r2 · ∇R

]

− ~
2

2M

[

∇2
r1 + ∇2

r2 +

(

M

M + 2m

)2

∇2
R + 2∇r1 · ∇r2

−2
M

M + 2m
(∇r1 + ∇r2) · ∇R

]

− Ze2

r1
− Ze2

r2
+

e2

|~r1 − ~r2|
.

By introducing the reduced mass notation, µ, with the definition

1

µ
=

1

m
+

1

M
, (2.13)

or

µ =
mM

m+M
, (2.14)

and the total mass M = M + 2m, we can re-write Eq. (2.12) as

H = − ~
2

2M∇2
R − ~

2

2µ
∇2

r1 −
~
2

2µ
∇2

r2 −
~
2

2M
∇r1 · ∇r2 (2.15)

−Ze
2

r1
− Ze2

r2
+

e2

|~r1 − ~r2|
.
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The first term in Eq. (2.15) is the kinetic energy of the centre of mass motion of the system.

Since the total Hamiltonian is not a function of the centre of mass position, ~R, i.e. the

potential energy is only a function of relative distances, there is no net force on the atom

and the centre of mass motion is constant1 [38]. This means that the first term in Eq.

(2.15) can be considered ignorable, and we are free to leave it out of the Hamiltonian.

For convenience, we can choose a dimensionless representation by introducing the coor-

dinate

ρi =
ri
aµ

(2.16)

where

aµ =
m

µ
a0 (2.17)

is the reduced mass Bohr radius, and

a0 =
~
2

me2
(2.18)

is the Bohr radius, and i is an index for the two electrons. With this coordinate choice, we

can write the Schrödinger equation as

[

−1

2
∇2

ρ1 −
1

2
∇2

ρ2 −
µ

M
∇ρ1 · ∇ρ2 −

Z

ρ1
− Z

ρ2
+

1

ρ12

]

ψ (ρ1, ρ2) = Eψ (ρ1, ρ2) , (2.19)

with the simplified notation

ρ12 = |~ρ1 − ~ρ2|. (2.20)

The cross term, − µ
M∇ρ1 · ∇ρ2 , on the left hand side of Eq. (2.19) can be neglected in the

limit µ
M ≪ 1 to first order approximation when the nuclear mass is treated as infinite. In

1This is actually a specific case of Noether’s Theorem which states that for any quantity, qi, that does

not appear in the Hamiltonian (or the Langrangian), its associated canonical mometum is a constant of the

motion. That is, the for the Lagrange equations

d

dt

∂L

∂q̇i
−

∂L

∂qi
= 0,

if L has no qi dependence, then
d

dt

∂L

∂q̇i
= 0.

With the definition of the canonical momentum pi = ∂L
∂q̇i

, this implies that the canonical momentum is a

constant of the motion.
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this case, aµ would reduce to a0 and the cross term would vanish. If we neglect this finite

mass term we introduce an uncertainty of the order me
mp

≈ 10−4 to any future calculations.

By rescaling the radial coordinates according to, ρ → Zρ, we can again rewrite the

Schrödinger equation in a simpler notation as
[

−1

2
∇2

ρ1 −
1

2
∇2

ρ2 −
µ

M
∇ρ1 · ∇ρ2 −

1

ρ1
− 1

ρ2
+

1

Z

1

ρ12

]

ψ (ρ1, ρ2) = Eψ (ρ1, ρ2) , (2.21)

or in the infinite nuclear mass limit,
[

−1

2
∇2

ρ1 −
1

2
∇2

ρ2 −
1

ρ1
− 1

ρ2
+

1

Z

1

ρ12

]

ψ (ρ1, ρ2) = Eψ (ρ1, ρ2) , (2.22)

where E =
aµ

Z2e2E is the Z-scaled energy.

2.2 The Variational Principle

As stated in the previous section, helium and heliumlike ions are three body systems.

Because of the interaction term, 1
r12

, we cannot determine exact analytic solutions to the

Schrödinger equation, Eq. (2.21), or any atomic system other than hydrogen (or a similar

two body system). This requires us to find approximate solutions to Eq. (2.21). The method

we will apply is the Variational Method.

For a general Hamiltonian with eigenfunction |ψ〉, and corresponding energy eigenvalue

E, we can write the Schrödinger equation

H|ψ〉 = E|ψ〉. (2.23)

By multiplying both sides of Eq. (2.23) by 〈ψ|, we can solve for the energy eigenvalue

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 . (2.24)

It is possible to construct a normalizable trial function, |ψtr〉, which is to be used as an

approximation to the exact wave function, with an associated trial energy defined as

Etr =
〈ψtr|H|ψtr〉
〈ψtr|ψtr〉

. (2.25)

We can write the trial function as a series expansion of a complete set of basis eigenfunc-

tions |ψ0〉, |ψ1〉, |ψ2〉, . . ., which are exact, but unknown eigenvectors of the Hamiltonian

23



2. METHODS

H. These basis eigenfunctions have corresponding energy eigenvalues E0, E1, E2, . . ., such

that E0 < E1 < E2 < · · · , where E0 is the ground state. This allows us to write the trial

function as

|ψtr〉 =

∞
∑

n=0

cn|ψn〉, (2.26)

with expansion coefficients cn. By requiring the trial function to be normalized, we can

write the identity

1 = 〈ψtr|ψtr〉 (2.27)

=

∞
∑

m,n=0

〈ψm|ψn〉c∗mcn

=
∞
∑

n=0

|cn|2,

given that 〈ψm|ψn〉 = δm,n, Eq. (2.25) can be re-written as

Etr = 〈ψtr|H|ψtr〉 (2.28)

=

∞
∑

m,n=0

〈ψm|H|ψn〉c∗mcn

=

∞
∑

m,n=0

〈ψm|En|ψn〉c∗mcn

=

∞
∑

n=0

〈ψn|En|ψn〉|cn|2

= |c0|2E0 + |c1|2E1 + |c2|2E2 + . . .

=
(

1 − |c1|2 − |c2|2 − . . .
)

E0 + |c1|2E1 + |c2|2E2 + . . .

= E0 + (E1 − E0)E1 + (E2 − E0)E2 + . . .

≥ E0,

where we have used the identity, Eq. (2.27) in the form |c0|2 = 1−∑n=1 |cn|2, in the second

to last line of Eq. (2.28). This gives the well known result that the trial energy for an

arbitrary trial function is guaranteed to be an upper bound to the ground state energy.

This is a powerful result since it is possible, by judicious choice of trial wave functions, to

minimize the difference between the trial energy and the ground state eigenvalue.
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The standard procedure behind the variational method is then to choose a trial wave

function

ψtr =

N
∑

n=1

cn|ϕn〉, (2.29)

that can be written as a function of variational parameters, where the basis set (the functions

ϕn) become complete only in the limit N → ∞. These variational parameters can then be

adjusted so that the associated variational energy, Etr is a minimum. For the case of linear

variational coefficients, as in Eq. (2.26), the energy can be written as

Etr =
〈ψtr|H|ψtr〉
〈ψtr|ψtr〉

(2.30)

=

∑

m,n〈cmϕm|H|cnϕn〉
∑

m,n,〈cmϕm|cnϕn〉

=

∑

m,n〈c∗mcn〈ϕm|H|ϕn〉
∑

m,n〈c∗mcn〈ϕm|ϕn〉

=

∑

m,n c
∗
mcnHmn

∑

m,n c
∗
mcnOmn

,

with the definitions,

Hmn = 〈ϕm|H|ϕn〉, (2.31)

Omn = 〈ϕm|ϕn〉.

Minimizing Etr it is then equivalent to solving the following set of N equations

∂Etr

∂cn
= 0, for all n = 1, 2, . . . , N. (2.32)

By use of Eq. (2.30), an expression for the left hand side of Eq. (2.32) can be derived.

∂Etr

∂cn
=

(
∑

m c
∗
mHmn)

(

∑

m,n c
∗
mcnOmn

)

(

∑

m,n c
∗
mcnOmn

)2

−

(

∑

m,n c
∗
mcnHmn

)

(
∑

m c
∗
mOmn)

(

∑

m,n c
∗
mcnOmn

)2 (2.33)

=

∑

m c
∗
mHmn

∑

m,n c
∗
mcnOmn

−

(

∑

m,n c
∗
mcnHmn

)

(
∑

m c
∗
mOmn)

(

∑

m,n c
∗
mcnOmn

)2

=

∑

m c
∗
mHmn

∑

m,n c
∗
mcnOmn

− Etr
∑

m c
∗
mOmn

∑

m,n c
∗
mcnOmn

.
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Since ∂Etr
∂cn

= 0, we have the set of N equations (after multiplying through by the denomi-

nator of Eq (2.33)
N
∑

n

cn (Hnm − EtrOnm) = 0, (2.34)

where we have relabeled the summation over the index n, and have used the fact that Hmn,

Omn, and Etr are real.

Eq. (2.34) must be true for all values of m, and can be expressed algebraically in matrix

form as

















H11 H12 · · · H1N

H21 H22 · · · H2N

...
. . .

HN1 HN2 · · · HNN

































c1

c2
...

cN

















= Etr

















O11 O12 · · · O1N

O21 O22 · · · O2N

...
. . .

ON1 ON2 · · · ONN

































c1

c2
...

cN

















, (2.35)

or more compactly as

Hc = EtrOc, (2.36)

where H is the Hamiltonian matrix, O is the overlap matrix, with matrix elements as de-

scribed in Eq. (2.31) respectively, and c is a column vector of coefficients cn. Diagonialization

of H results in N eigenvalues (E0
tr, E

1
tr, E

2
tr, . . . , E

N−1
tr ), and the lowest of these eigenvalues

is an upper bound to the exact ground state eigenvaule E0. For each of these eigenvalues

there is a corresponding eigenvector that represents the trial wave function written in the

chosen basis set.

2.2.1 Excited States

The upper bound of the ground state energy can be generalized to the excited state en-

ergies via the Hylleraas-Undheim-MacDonald theorem [39, 40]. Each excited state en-

ergy, E1, E2, . . . , EN−1, is itself bounded above by the eigenvalues E1
tr, E

2
tr, . . . , E

N−1
tr . The

Hylleraas-Undheim-MacDonald theorem is a result of the matrix interleaving theorem, that

says that if we add a row and column to the matrices in Eq. (2.36) (increasing the dimen-

sion), the k− th old eigenvalue, Ek
tr, that is calculated with matrices with dimension N , will

lie between the new Ek
tr and Ek+1

tr eigenvalues when calculated with dimension N +1. Since

26



2. METHODS

these trial eigenvalues become the exact eigenvalues in the limit N → ∞, and the system is

bounded from below, it follows that the trial eigenvalues can never be lower than the exact

eigenvalues. Thus as N is increased, the eigenvalues progress toward the exact eigenvalues.

The progression of these eigenvalues is illustrated in Fig. (2.3).

2.3 Hylleraas Basis Set

Since the Schrödinger equation, Eq. (2.21), is not separable, which is a consequence of the

1
r12

term, it is important to include in any useful basis set the variable r12 . Following the

form of Eq. (2.26), we choose our basis functions of the form

|ψtr〉 =

N
∑

n

cn|χn〉, (2.37)

where

χn = ri1r
j
2r

k
12e

−αr1−βr2 , (2.38)

and now n labels sets of distinct triples of positive definite integer values of the exponents

i, j, and k. The variables α and β are two additional, but nonlinear, variational parameters

that determine the distance scales involved in the system we are studying.

A basis set constructed in this form using the functions from Eq. (2.38), and directly

including the electron-electron separation r12, is called a Hylleraas basis set [41, 42]. This

can be generalized to include angular momentum. For a state with total angular momentum

L, our trial function can be written as

|ψtr〉 =

L/2
∑

l1=0

∑

n

Cn,l1 |χn〉rl11 rl22 YM
l1L−l1L(r̂1, r̂2) (2.39)

± exchange term

with

YM
l1l2L(r̂1, r̂2) =

∑

m1,m2

Yl1m1(r̂1)Yl2m2(r̂2)〈l1l2m2m2|LM〉 (2.40)

being the vector coupled product of the angular momenta l1 and l2 for the two electrons,

m1 and m2 are the z components of the angular momenta for the two electrons, and M
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Figure 2.3: Diagram illustrating the Hylleraas-Undheim-MacDonald theorem. The eigen-

values Ep
tr, with p = 0, 1, 2, . . . , N , for an N dimensional basis set are shown in comparison

to Ei, the exact energy eigenvalues of H. This shows that, as the basis size is increased,

the trial energies approach the exact eigenvalues from above.
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is the total z component of the angular momentum of the state. The sum over n in Eq.

(2.39) is over all terms within a Pekeris shell [43] of radius Ω, where Ω is an integer with

i+ j + k ≤ Ω. The total number of basis functions os given by

N =
1

6
(Ω + 1) (Ω + 2) (Ω + 3) . (2.41)

The nonlinear coefficients α and β are determined by numerically minimizing the trial

energy with respect to the nonlinear coefficients,

∂Etr
∂α

= 0 (2.42)

∂Etr
∂β

= 0.

The trial functions used in this thesis will include a second set of terms similar to Eq.

(2.39) with new linear variational coefficients and two new additional nonlinear coefficients.

The trial functions of this double basis set method, developed by Drake [43], are

Ψtr (r1, r2) =
∑

ijk

c
(1)
ijkr

i
1r

j
2r

k
12e

−α1r1−β1r2YM
l1l2L (r̂1, r̂2) (2.43)

+
∑

ijk

c
(2)
ijkr

i
1r

j
2r

k
12e

−α2r1−β2r2YM
l1l2L (r̂1, r̂2)

± exchange terms.

In this trial wave function, the basis has been doubled by introducing a second set of terms

with two new nonlinear variational parameters α2 and β2. The inclusion of these two

new parameters increases the accuracy of the wave functions by orders of magnitude while

simultaneously simplifying the calculation by reducing the overall needed size of the basis

set. In addition, when using a single set of non linear variational parameters, as the basis

size becomes large there are errors introduced due to numerical cancellation as the basis

set becomes linearly dependent. It is also possible to introduce more nonlinear variational

parameters if needed and triple or quadruple the basis set.

Optimization of the α and β parameters in a doubled basis set leads naturally to a

separation of the wave function into two regions with distinct physical interpretations. The

parameters α1 and β1 describe the asymptotic form of the wave function where their values
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are close to the screened hydrogenic values, α1 ≈ Z, and β1 ≈ Z−1
n , where n is the principal

quantum number of the outer electron. The second set of parameters, α2 and β2, correspond

to the region close to the nucleus where the correlation effects are more significant [43].

This method can be extended further by creating a tripled basis set, or a quadrupled

basis set, and the determination of these nonlinear parameters is accomplished in the same

manner as Eq. (2.42).

2.4 Calculation of the Matrix Elements

Once the wave functions have been determined, the calculation of any matrix element

requires the evaluation of a large number of integrals. The general procedure for calculating

the matrix elements is an application of the methods explained in the Atomic, Molecular,

and Optical Physics Handbook (p. 202-205) [44].

Construction of the overlap matrix O and the Hamiltonian matrix H requires, in general,

the evaluation of integrals of the form

∫

V
dτ ψ∗

tr (r1, r2)ψtr (r1, r2) (2.44)

and

∫

V
dτ ψ∗

tr (r1, r2)Hψtr (r1, r2) . (2.45)

The volume element, dτ , in any integral we wish to calculate, can be expressed in Carte-

sian coordinates as dτ = dx1dy1dz1dx2dy2dz2. However, because the trial wave function

includes the electron-electron separation variable r12, it is more convenient to write the

volume element using six independent variables known as Hylleraas coordinates. These

variables are r1, r2, r12, θ1, φ1, and χ, as shown in Figure (2.4). The radial variables r1, r2,

and r12 are the same variables we have been using previously. The angular variables θ1,

and φ1, are respectively the spherical polar, and azimuthal angles for the radial vector r1,

and χ is the angle of rotation about r1 of the plane described by the rigid triangle formed

by r1, r2, and r12. In these coordinates, the volume element can be written as [45]

dτ = r1r2r12 sin θ1dr1dr2dr12dθ1dφ1dχ (2.46)
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Figure 2.4: Hylleraas coordinates for a helium atom with the origin centered at the nucleus.
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Integration of this volume element over all space can be written explicitly, showing the

limits of integration, as

∫

V
dτ =

∫ ∞

0
r1dr1

∫ ∞

0
r2dr2

∫ r1+r2

|r1−r2|
r12dr12

∫ π

0
sin θ1dθ1

∫ 2π

0
dφ1

∫ 2π

0
dχ. (2.47)

The trial wave function, Eq. (2.39), can be separated into a radial and angular parts

ψtr (r1, r2) = Rnl (r1, r2, r12)YM
l1l2L (r̂1, r̂2) , (2.48)

which allows the radial and angular components of these integrals to be analyzed and

calculated separately.

2.4.1 Radial Integrals

The general form of the radial component of the integrals can be illustrated by looking at

the overlap integral between two different states,

∫

V
ψ∗
tr
′ψtrdτ =

∫

V
Rn′l′ (r1, r2, r12)YM ′

l′1l
′

2L
′ (r̂1, r̂2)Rnl (r1, r2, r12)YM

l1l2L (r̂1, r̂2) dτ. (2.49)

The radial component of Eq. (2.49) can be expressed in its most general form as

I0 (a, b, c;α, β) =

∫ ∞

0
r1dr1

∫ ∞

0
r2dr2

∫ r1+r2

|r1−r2|
r12dr12r

a
1r

b
2r

c
12e

−αr1−βr2 (2.50)

=

∫ ∞

0
r1dr1

∫ ∞

r1

r2dr2

∫ r1+r2

r2−r1

r12dr12r
a
1r

b
2r

c
12e

−αr1−βr2

+

∫ ∞

r2

r1dr1

∫ ∞

0
r2dr2

∫ r1+r2

r1−r2

r12dr12r
a
1r

b
2r

c
12e

−αr1−βr2

where a = i′ + i, b = j′ + j, c = k′ + k, are the summation of the exponents of the r1, r2, and

r12 terms respectively. Integrating over the electron-electron separation, r12 gives

I0 =
1

c+ 2

∫ ∞

0
dr1

∫ ∞

r1

dr2[(r2 + r1)
c+2 − (r2 − r1)c+2]ra+1

1 rb+1
2 e−αr1−βr2 (2.51)

+
1

c+ 2

∫ ∞

r2

dr1

∫ ∞

0
dr2[(r2 + r1)c+2 − (r1 − r2)c+2]ra+1

1 rb+1
2 e−αr1−βr2

These general integrals can be written more conveniently by using the binomial theorem
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as

I0 =
2

c+ 2

[[(c+ 1
2)]]

∑

s=0





c+ 2

2s + 1



 [

∫ ∞

0
dr1

∫ ∞

r1

dr2r
p
1r

q
2e

−αr1−βr2 (2.52)

+

∫ ∞

0
dr2

∫ ∞

r2

dr1r
p′

1 r
q′

2 e
−αr1−βr2 ],

where the term in the round brackets is a binomial coefficient




n

k



 =
n!

k! (n− k)!
, for integers n, and k, (2.53)

the square bracket notation used in the upper limit of the summation, [[x]], means the

largest integer value in x, and p = a+ 2s, p′ = b+ 2s, q = b+ c− 2s, and q′ = a+ c− 2s, for

some value of the index s. The individual integrals within the summation of Eq. (2.52) can

be expressed analytically in terms of Gamma functions and Incomplete Gamma functions

[46],

Γ (n) =

∫ ∞

0
tn−1e−tdt, n= 1,2,3,. . . (2.54)

Γ (a, x) =

∫ ∞

x
ta−1e−tdt

Γ (n, x) = (n− 1)!e−x
n−1
∑

s=0

xs

s!
, n = 1,2,3,. . . ,

to obtain

I0 =
2

c+ 2

[[(c+ 1
2)]]

∑

s=0





c+ 2

2s+ 1



 [Fp,q (α, β) + Fp′,q′ (α, β)], (2.55)

where

Fp,q (α, β) =























q!

(α+β)p+1βq+1

∑q
l=0

(p+l)!
l!

(

β
α+β

)l
q ≥ 0, p ≥ 0

p!
αp+q+2

∑∞
l=p+q+1

l!
(l−q)!

(

α
α+β

)l+1
q < 0, p ≥ 0

0 p < 0

(2.56)

This general radial integral, Eq. (2.55), for the overlap matrix is valid for a, b ≥ −1, and

c ≥ −1. While only the overlap integral was analyzed, to calculate matrix elements with

arbitrary powers of r1, r2, and r12 the above result can be extended to any integral of this

form by adjusting the exponents a, b, and c accordingly. An extensive list of these integrals

can be found in the Atomic, Molecular, and Optical Physics Handbook [44].
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2.4.2 Angular Integrals

The angular component of the integrals in Eq. (2.49) will now be studied. Again, for

simplicity we will look at the general form of these integrals for the case of the calculation

of the overlap matrix. Instead of breaking the basic integral up into a radial and angular

components as we did in the previous section, we retain the radial components of the wave

function, but focus on the angular portion. As an example to study we investigate a simple

angular integral which illustrates the technique that is applied generally

I =

∫

V
dτ R′RY m1∗

l1
(θ1, φ1)Y m2

l2
(θ2, φ2) , (2.57)

with the radial function defined as before, R = ri1r
j
2r

k
12exp (−αr1 − βr2), and a = i′ + i,

b = j′ + j, and c = k′ + k.

To begin, we write the spherical harmonic of the first electron as

Y m1∗
l1

(θ1, φ1) =

√

2l1 + 1

4π
Dl1

m1,0
(φ1, θ1, χ) . (2.58)

Due to our change of variables to Hylleraas coordinates, the polar angles θ2, and φ2, of r2

are no longer independent. As a consequence, we must write the spherical harmonic for the

second electron in terms of a rotation matrix

Y m2
l2

(θ2, φ2) =
∑

M

Dl2∗
m2,M

(φ1, θ1, χ)YM
l2 (θ, φ) , (2.59)

where we define the angles θ, and φ, as the polar and azimuthal angles of the vector r2

relative to the radial vector r1.

The basic integral Eq. (2.57) can then be rewritten by using the orthogonality relation

of rotation matrices [33], Eqs. (2.58) and (2.59), and then integrating over the angular
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variables

I =

∫

V
dτ R′RY m1∗

l1
(θ1, φ1)Y m2

l2
(θ2, φ2) (2.60)

=

∫

V
dτ R′R

∑

M

Dl2∗
m2M

(φ1, θ1, χ)YM
l2 (θ, φ)

√

2l2 + 1

4π
Dl1

m10
(φ1, θ1, χ)

=

∫

V
dτRR

′R
δl2l1δM0δm2m28π2

2l2 + 1
YM
l2 (θ, φ)

√

2l2 + 1

4π

=
8π2δl2l1δm2m2

2l2 + 1

∫

VR

dτRR
′R

√

2l2 + 1

4π
Pl2 (cos θ)

√

2l2 + 1

4π

= 2πδl2l1δm2m1

∫

VR

dτRR
′RPl2 (cos θ) ,

where the remaining integration should be taken over the radial space VR with the cor-

responding volume element dτR. The definition of the Legendre polynomial in terms of

spherical harmonics (see for example Introduction to Quantum Mechanics [47])

Pl2 (cos θ) =

√

2l2 + 1

4π
Y 0
l2 (θ, φ) (2.61)

has been used as well.

Because of the choice of independent variables of integration, θ is not an independent

variable, but is uniquely determined by the triangle formed by the independent variables

r1, r2, and r12 according to

cos θ =
r21 + r22 − r212

2r1r2
=

r1
2r2

+
r2
2r2

− r212
2r1r2

, (2.62)

thus we must include the Legendre polynomial, Pl2 (cos θ), which is consequently a purely

radial function, in the calculation of the radial integrals.

We can extend this to a more general integral, that includes vector coupled spherical

harmonics, of the form,

I (a, b, c; l1,m1, l2,m2;α, β) =

∫

V
dτ R′RYM ′

l′1l
′

2L
′ (r̂1, r̂2)YM

l1l2L (r̂1, r̂2) , (2.63)

with

YM
l1l2L (r̂1, r̂2) =

∑

m1m2

〈l1l2m1m2|LM〉Y m1
l1

(r̂1)Y
m2
l2

(r̂2) . (2.64)
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This integral can be evaluated by use of the following properties of spherical harmonics

[33],

Y m1
l1

(r̂1)Y
m2
l2

(r̂2) =
∑

lm

(

(2l1 + 1) (2l2 + 1) (2l + 1)

4π

) 1
2

(2.65)

×





l1 l2 l

m1 m2 m









l1 l2 l

0 0 0



× Y m∗
l (r̂) ,

and

YM∗
L (r̂) = (−1)M Y −M

L (r̂) . (2.66)

Using Eq. (2.65) allows the product of two spherical harmonics to be rewritten as a sum,

and the general angular integral, Eq. (2.63), can be rewritten as

I =

∫

V
dτ R′R





∑

m′

1m
′

2

〈l′1l′2m′
1m

′
2|L′m′〉Y m′

1

l′1
(r̂1)Y

m′

2

l′2
(r̂2)



 (2.67)

×
[

∑

m1m2

〈l1l2m1m2|Lm〉Y m1
l1

(r̂1)Y
m2
l2

(r̂2)

]

=

∫

V
dτ R′R

∑

m′

1m
′

2

∑

m1m2

〈l′1l′2m′
1m

′
2|L′m′〉〈l1l2m1m2|Lm〉

×
∑

ΛM

∑

Λ′M ′

[

(2l′1 + 1) (2l1 + 1) (2Λ + 1) (2l′2 + 1) (2l2 + 1) (2Λ′ + 1)

4π

] 1
2

× (−1)m
′

1+m′

2+M ′+M
[

Y −M
Λ (r̂1)

] [

Y −M ′

Λ′ (r̂2)
]

×





l′1 l1 Λ

−m′
1 m1 M









l′1 l1 Λ

0 0 0









l′2 l2 Λ′

−m′
2 m2 M ′









l′2 l2 Λ′

0 0 0





=

∫

V
dτ R′R

∑

m′

1m
′

2

∑

m1m2

∑

Λ′M ′

∑

ΛM

(· · · )
[
√

2Λ + 1

4π
DΛ∗

M,0 (θ1, φ1, χ)

]

×
[

∑

N

DΛ′

M ′,N (θ1, φ1, χ)Y N
Λ′ (θ, φ)

]

=

∫

VR

dτR
∑

m′

1m
′

2

∑

m1m2

∑

Λ′M ′

∑

ΛM

(· · · ) δM,M ′δΛ,Λ′PΛ (cos θ)

=

∫

VR

dτRR
′R
∑

Λ

CΛPΛ (cos θ) ,

36



2. METHODS

where the constant, CΛ is defined as [48]

CΛ =
1

2

[

(2l′1 + 1) (2l1 + 1) (2l′2 + 1) (2l2 + 1)

4π

]
1
2

(2.68)

× (−1)Λ+L (2Λ + 1)

×





l′1 l1 Λ

0 0 0









l′2 l2 Λ

0 0 0











L l1 l2

Λ l′2 l′1







.

Therefore, the general angular integral, Eq. (2.63), can be written as a summation of

radial integrals which can be calculated using the methods described in Sec. (2.4.1)

I (a, b, c; l1,m1, l2,m2;α, β) =
∑

Λ

CΛ

∫

VR

dτRR
′RPΛ (cos θ) . (2.69)

2.5 Pseudostates

In this section, the method of using a pseudostate spectrum to determine the solution to

perturbation equations. will be explained further. The advantage of the pseudostate method

is that it replaces the actual spectrum of infinitely many bound states plus a continuum

by a finite pseudospectrum that is entirely discrete, and becomes complete in the limit of

an infinite basis set. A pseudostate spectrum will be used in Sec. (3.3) as a numerical

tool for the calculation of first order correction in a 1
Z expansion method. As an example,

pseudostates will be used to calculate the dipole polarizability of hydrogen in Sec. (2.5.1).

This sample calculation illustrates how powerful using a pseudostate method can be by

showing that exact analytic solution to the first order perturbed wave function can be

found with only two pseudostates in the spectrum.

To construct a pseudostate spectrum, we choose set of basis functions, |χp〉, that diag-

onalize the Hamiltionian H. The matrix elements in this basis set are then

〈χp|H|χq〉 = Epδpq, (2.70)

〈χp|χq〉 = δpq, (2.71)

where the eigenvectors |χp〉, with corresponding eigenvalues Ep, form a discrete variational

representation of the true spectrum of the system spanning both the the bound and con-

tinuous regions.
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To calculate these pseudostates, we begin by orthonormalizing the basis set by forming

linear combinations

|χp〉 =
∑

q

ϕqRpq (2.72)

subject to Eq. (2.71). This is done by finding an N ×N orthogonal transformation matrix

T such that

TTOT = I =

















I1 0 · · · 0

0 I2
...

...
. . .

0 · · · IN

















, (2.73)

where O is the overlap matrix with matrix elements

Opq = 〈ϕp|ϕq〉, (2.74)

and following with the application of a scale change matrix

S =





















1

I
1/2
1

0 · · · 0

0 1

I
1/2
2

...

...
. . .

0 · · · 1

I
1/2
N





















= ST. (2.75)

This gives us the result

STTTOTS = RTORT (2.76)

= I,

where we have

R = TS (2.77)

and

RT = STTT. (2.78)

The columns in the transformation matrix T are the eigenvectors that diagonalize the

overlap matrix, and the diagonal elements, I1, I2, . . . , IN , are the corresponding eigenvalues.
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These can be found either analytically or computationally by using algorithms such as the

Jacobi method.

A given Hamiltonian matrix H, with matrix elements

Hpq = 〈ϕp|H|ϕq〉, (2.79)

can be expressed in terms of the |χp〉 basis set as

H′ = RTHR. (2.80)

Diagonalization of the transformed Hamiltonian H′ is accomplished by finding another

orthogonal transformation matrix W, with the property

WTH′W = Λ (2.81)

=

















λ1 0 · · · 0

0 λ2
...

...
. . .

0 · · · λN

















.

In the new basis, the nth eigenvector is

Ψ(n) =
∑

p,q

|χp〉Wp,n (2.82)

∑

p,p′

ϕp′Rp′pWp,n.

2.5.1 Example: Polarizability of Hydrogen

As an example of the use of pseudostates, the calculation of the dipole polarizability of

hydrogen will be shown. The Hamiltonian for a hydrogen atom in its ground state subject

to an electric field ~F = eF ẑ, is

H = H(0) +H(1) (2.83)

= H(0) + eFz

= H(0) + eFr cos θ
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By treating the eFr cos θ term as a perturbation we can write the Hamiltonian in the general

form

H = H(0) + λV, (2.84)

where V = eFr cos θ is the perturbation, and λ is a perturbation constant that will be

set to 1 at the end of the calculation. It is used only to keep track of order. Then, using

perturbation theory we expand the wave function and energies as

Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + . . . (2.85)

E = E(0) + λE(1) + λ2E(2) + . . . (2.86)

The exact first order solution, with perturbation eFr cos θ, which is calculated analytically

in Appendix (C), is [49]

Ψ(1) = − 1√
3

(

2r + r2
)

e−rY 0
1 (~r) . (2.87)

It is readily apparent that the perturbation, which is proportional to cos θ, is of odd parity.

This gives the immediate result that the first order correction to the energy is

E(1) =
〈Ψ(0)|V |Ψ(0)〉
〈Ψ(0)|Ψ(0)〉 (2.88)

= 0.

Therefore, it is at second order that the first contribution to the energy expansion occurs.

From perturbation theory, the expression for the second order energy is

E(2) =
〈Ψ(0)|V − E(0)|Ψ(1)〉

〈Ψ(0)|Ψ(0)〉 (2.89)

=
〈Ψ(0)|V |Ψ(1)〉
〈Ψ(0)|Ψ(0)〉 ,

or in terms of the pseodostate spectrum

E(2) =
N
∑

p=1

′
|〈χp|V |Ψ(0)〉|2
E(0) − Ep

, (2.90)

where the primed notation denotes that we are omitting, if present, states with Ep = E(0).

This can be done, without loss of generality, by imposing the orthogonality condition

〈Ψ(0)|χp〉 = 0. (2.91)
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The advantage of Eq. (2.90) is that it doesn’t require the explicit calculation of the first

order wave function.

From the second order correction to the energy, the dipole polarizbility can be found

from the definition 2

αd ≡ −2E(2) (2.92)

=
9

2
a30, (2.93)

where a0 is the Bohr radius.

While the analytic result is known, a variational wave function of the form

Ψ
(1)
tr = − 1√

3

N
∑

n=0

bnr
ne−λrY 0

1 (r̂) , (2.94)

where the coeffients bn are linear variational parameters, and λ is an additional nonlinear

variational parameter, can be used to solve for the second order correction to the energy.

Additionally, since we know a priori that Eq. (2.87) does not include an r0 term, it is

sufficient to choose the variational solution

Ψ
(1)
tr = − 1√

3

N
∑

n=1

bnr
ne−λrY 0

1 (r̂) , (2.95)

In this form, the solution is written in an N -dimensional basis set, and for any value of λ

the basis set provides the best possible variational representation of Ψ(1). For the specific

situation where λ = 1, the exact solution (2.87), is recovered.

Figure (2.5) shows the value of the dipole polarizability as a function of the nonlinear

variational parameter λ for different basis sizes. The exact solution is found by locating

where the dipole polarizability is a global maximum (when the second order correction

2By writing the electric dipole moment as an expansion about the electric field as a perturbation

p = p
(0) + αdF + βF

2 + . . . ,

the change in energy can be calculated, by integrating over the electric field, to first nonvanishing order, to

be

∆E = −
1

2
αdE

(2)
F

2
.

Comparing this result to Eq. (2.86) with λ = F , yields Eq. (2.92).
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to the energy is a minimum). As seen in Figure (2.5), the region around λ = 1 remains

concave down for any choice of basis size with N ≥ 2, with the maximum always located

at λ = 1, while becoming flatter as N increases. A secondary feature of this calculation,

0.5 0.75 1 1.25
λ

4.45

4.5

α d

2 basis vectors
3 basis vectors
4 basis vectors

Figure 2.5: Variational polarizability, αd, of hydrogen in units of a30. Three sets of data are

shown for basis sizes of N = 2, 3, 4. The exact value of the polarizability αd = 4.5a30 occurs,

in all cases (with N > 1), when the variational parameter λ = 1

shown more explicitly in Fig. (2.6), is that as the number of basis functions is increased, the

lower local maximum and local minimum occur with higher values (though always lower

than the global maximum corresponding to the correct value of αd) and at lower values of

the variational parameter λ. Specifically, the location of the local maximum with N basis

vectors always occurs at the the precise location of the local minimum for the case with

N + 1 basis vectors. This is even true for the case when there is only a single basis vector,

though this particular case does not yeild the correct answer for the dipole polarizability

αd.
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0.4 0.6 0.8
λ

4.48

4.49

4.5

α d

1 basis vector
2 basis vectors
3 basis vectors
4 basis vectors
5 basis vectors

Figure 2.6: The variational polarizability αd, of hydrogen in units of a30 at the points of

local minima and maxima. The location of the local maximum with N basis vectors always

occurs at the the precise location of the local minimum with N + 1 basis vectors. The

special case with N = 1 is included to show that it continues this trend even though with

only one basis vector the correct value for the dipole polarizability is not found.
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2.6 1
Z Expansion

For larger values of the atomic charge Z, it is possible to make an expansion in terms of

powers of 1
Z . That is, we want to calculate the matrix element of an operator A,

A = 〈Ψi|A|Ψf 〉, (2.96)

in terms of an infinite power series expansion as

A = 〈Ψi|A|Ψf 〉 (2.97)

= Zn(A0 +A1
1

Z
+A2

1

Z2
+A3

1

Z3
+ . . .),

where n is determined by the Z−scaling of A. In practice this infinite series is truncated to

A = Zn(A0 +A1
1

Z
+A2

1

Z2
+A3

1

Z3
+ . . .+AM

1

ZM
), (2.98)

for some integer value M .

To accomplish this, we treat the interaction term in the Schrödinger equation (2.21) as

a perturbation,

H = H0 +
1

Z

1

r12
, (2.99)

where r12 is the electron-electron separation. By performing a scale change such that

ri →
ri

Z
, (2.100)

where i = 1, 2 denotes the electron label, gives

r12 →
r12

Z
(2.101)

∇i → Z∇i (2.102)

H → Z2H (2.103)

A→ Z−2A. (2.104)

With this scale change, the wave function and energy can be expanded in powers of 1
Z as

Ψ = Ψ(0) +
1

Z
Ψ(1) +

1

Z2
Ψ(2) + . . . (2.105)

E = E(0) +
1

Z
E(1) +

1

Z2
E(2) + . . . , (2.106)
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with

〈Ψ(0)|Ψ(1)〉 = 0, (2.107)

such that

(

H0 +
1

Z

1

r12

)(

Ψ(0) +
1

Z
Ψ(1) + . . .

)

=

(

E(0) +
1

Z
E(1) + . . .

)(

Ψ(0) +
1

Z
Ψ(1) + . . .

)

,(2.108)

with Ψ(0) being the exact solution, with energy E(0), to the unperturbed equation

H0Ψ
(0) = E(0)Ψ(0) (2.109)

The scale changed expansion of the wave function Eq. (2.105) yields the form of the

expansion of the matrix element A in Eq. (2.97). Expanding and collecting the first order

terms in Eq. (2.108) yields the first order equation (Eq. (2.109) being the zeroth order

equation)

H0Ψ
(1) +

1

r12
Ψ(0) = E(0)Ψ(1) +E(1)Ψ(0), (2.110)

or more conveniently written

(

H0 − E(0)
)

Ψ(1) +
1

r12
Ψ(0) = E(1)Ψ(0). (2.111)

We can then substitute Eq. (2.105) into Eq. (2.96) to find expressions for the expansion

coefficients

A = 〈Ψ(0) +
1

Z
Ψ(1) + . . . |A|Ψ(0) +

1

Z
Ψ(1) + . . .〉 (2.112)

= 〈Ψ(0)|A|Ψ(0)〉 +
1

Z
2〈Ψ(1)|A|Ψ(0)〉 + O

(

1

Z2

)

,

such that the first two expansion coefficients can be written as

A0 = 〈Ψ(0)|A|Ψ(0)〉 (2.113)

A1 = 2〈Ψ(1)|A|Ψ(0)〉,

where we have assumed the initial and final state in Eq. (2.96) are identical and that we

are calculating diagonal matrix elements. For a discussion regarding the calculation of

off-diagonal elements see Appendix (D).
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The solutions to Eq. (2.109) are the product of two noninteracting hydrogen wave func-

tions, and the solutions to Eq. (2.111) are not solvable analytically. Therefore, the zeroth

order coefficient A0 can be calculated in a straightforward manner since the hydrogen wave

functions are well known. While we do not know the solutions Ψ(1), it is possible to use an

alternative method to calculate A1, as discussed in the following section.

2.6.1 The Dalgarno Interchange Theorem

Because we cannot directly solve for analytic solutions to the first order perturbation equa-

tion (2.111), we cannot directly calculate the first order coefficient A1. It is, however,

possible, by use of the Dalgarno Interchange Theorem [50] [51] [52] to calculate A1 by

finding an equivalent matrix element that we can calculate directly if A is a one-electron

operator.

By treating the operator A as a perturbation to the unperturbed Hamiltonian H0, we

can follow a similar perturbation calculation as we did with the 1
r12

perturbation

(H0 + λA)χ = εχ. (2.114)

where λ is some constant which is included primarily to keep track of terms. We make the

expansions

χ = χ(0) + λχ(1) + λ2χ(2) + . . . (2.115)

ε = ε(0) + λε(1) + λ2ε(2) + . . . (2.116)

with

〈χ(0)|χ(1)〉 = 0. (2.117)

The zeroth order equation will remain unchanged, and the zeroth order solutions to this

new perturbation equation will again be products of two hydrogen wave functions and we

will have

χ(0) = Ψ(0) (2.118)

ε(0) = E(0).
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The first order equation is then

(

H0 − E(0)
)

χ(1) + AΨ(0) = ε(1)Ψ(0), (2.119)

and as long as the operator A is not a function of r12, i.e. A is a function of single electron

operators, this equation can be solved.

If we multiply Eq. (2.111) from the left by 〈χ(1)|, and multiply Eq. (2.119) from the left

by 〈Ψ(1)| we obtain

〈χ(1)|
(

H0 − E(0)
)

|Ψ(1)〉 + 〈χ(1)| 1

r12
|Ψ(0)〉 = 〈χ(1)|E(1)|Ψ(0)〉 (2.120)

〈Ψ(1)|
(

H0 − E(0)
)

|χ(1)〉 + 〈Ψ(1)|A|χ(0)〉 = 〈Ψ(1)|ε(1)χ(0)〉. (2.121)

Subtracting Eq. (2.120) from Eq. (2.121)

〈χ(1)|H0 − E(0)|Ψ(1)〉 − 〈Ψ(1)|H0 − E(0)|χ(1)〉 (2.122)

+〈χ(1)| 1

r12
|Ψ(0)〉 − 〈Ψ(1)|A|Ψ(0)〉 = E(1)〈χ(1)|Ψ(0)〉 − ε(1)〈Ψ(1)|Ψ(0)〉.

By the orthogonality conditions, Eq. (2.107) and Eq. (2.117), the right hand side of Eq.

(2.122) is zero. We are not keeping terms higher than first order, and therefore the first two

terms in Eq. (2.122) are dropped leaving the result

〈χ(1)| 1

r12
|Ψ(0)〉 = 〈Ψ(1)|A|Ψ(0)〉, (2.123)

or

A1 = 〈χ(1)| 1

r12
|Ψ(0)〉. (2.124)

This result is the Dalgarno interchange theorem, and it allows us to calculate the matrix

element on the right hand side of Eq. (2.123), which is not possibile to calculate directly,

by an equivalent matrix element.

It now remains to find a way to determine the solution to Eq. (2.119). In general we

can use the following procedure (where I have switched to a bra-ket notiation for the wave
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functions),

|χ(1)〉 =
1

H0 − E(0)

(

ε(1) −A
)

|Ψ(0)〉 (2.125)

=
1

H0 − E(0)

∑

n 6=0

|φn〉〈φn|
(

ε(1) −A
)

|Ψ(0)〉

=
∑

n 6=0

1

En − E(0)
|φn〉〈φn|

(

ε(1) −A
)

|Ψ(0)〉

where we have, in the second line of Eq. (2.125), introduced the resolution of the identity

I =
∑

n 6=0

|φn〉〈φn|, (2.126)

with the set of functions |φn〉 being a complete set of states that we can choose at our

convenience. The n = 0 state is not included in order to remove any singularities that

would occur due to the denominator in Eq. (2.125) being equal to zero. The exclusion of

the n = 0 state is consistent with our choice of orthogonalization, Eq. (2.107) and the fact

that we will be investigating matrix elements of first order.

48



Chapter 3

Calculation of Transition Rates

Now that there exists an established method for calculating high precision wave functions

for the ground and excited states of helium and helium like ions, those wave functions can

be used to calculate various matrix elements, and eventually the transition rates we wish

to determine.

This chapter will discuss the calculation of the magnetic dipole transition matrix el-

ements via variational Hylleraas wave functions for helium and helium like ions nuclear

charge Z = 3 to Z = 18.

For heavier ions with nuclear charge Z > 18, a 1
Z expansion can be performed utilizing

the results from the above calculation, and the Dalgarno interchange theorem, to fit the

coefficients of the expansion. The leading two terms of this expansion can be calculated

analytically. This expansion procedure will also be discussed in this chapter.

All calculations in this study were performed in quadruple precision using computational

resources allocated from the Shared Hierarchical Academic Research Computing Network

(SHARCNet) consortium.
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3.1 Magnetic Dipole Matrix Element

The emission probability, or transition rate, for the 1s2s 3S1 → 1s2 1S0 transition of helium

is

A(1s2s 3S1 → 1s2 1S) = ~
−1 4

3

(ω

c

)3
|〈1s2 1S0|Q10|1s2s 3S1〉|2, (3.1)

whereQ10 is theM = 0 component of the nonrelativisitc magnetic dipole transition operator

and its matrix element can be written in terms of the momentum and position operators of

the electrons

〈1s2 1S0|Q10|1s2s 3S1〉 = µB〈1s2 1S0| −
(

2

3m2c2

)

(

p21 − p22
)

(3.2)

−1

6

(ω

c

)2
(

r21 − r22
)

+

(

Ze2

3mc2

)(

1

r1
− 1

r2

)

|1s2s 3S1〉,

where µB is the Bohr magneton, and with the spin parts of the wave functions having been

omitted. Therefore, to determine the transition rate, it is necessary to calculate the energy

difference between the 1s2s 3S state and the 1s2 1S0 ground state, and the following matrix

elements

〈1

r
〉 = 〈1s2 1S0|

1

r
|1s2s 3S1〉, (3.3)

〈r2〉 = 〈1s2 1S0|r2|1s2s 3S1〉,

and

〈p2〉 = 〈1s2 1S0|p2|1s2s 3S1〉,

where the notation 1
r = 1

r1
− 1

r2
, r2 = r21 − r22, and p2 = p21 − p22 has been used for the

operators.

This operator in Eq. (3.2) does not include the next higher order relativistic corrections

of relative order (αZ)2. As discussed by Drake [1], and Feinberg and Sucher [19], corrections

of order α, and α logα vanish.
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3.2 Variational Calculation of Matrix Elements

To determine the matrix elements of the magnetic dipole transition operator, trial wave

functions, of the form described in Sec. (2.3), were used to calculate numerically these

matrix elements. To estimate the accuracy of the results the calculation was performed

multiple times with increasing basis size. As the basis size increases, the value of the matrix

elements converges towards the exact value [53]. For a matrix element 〈A〉, the uncertainty

in the calculation is estimated as

δ〈A〉n =
〈A〉n − 〈A〉n−1

2
, (3.4)

where the subscript n denotes an iteration of the calculation with a particular basis size,

and n − 1 denotes the immediately previous iteration and has a smaller basis size. For all

calculations, the uncertainty decreases and approaches zero asymptotically as the basis size

is increased.

As an example, the logarithmic difference between the transition rate and the asymptotic

value of the 1s2s 3S1 → 1s2 1S0 transition rate for helium is plotted as a function of the

number of basis functions in the 1s2 1S0 wave function in Fig (3.1). It can be seen that the

value of the transition rate rapidly converges to the exact value as the basis size is increased.

The final results of these calculations, for Z = 2 were performed with the groundstate,

|1s2 1S〉 being formed by 1262 basis functions, and the metastable state 〈1s2s 3S| formed

by 981 basis functions. For Z > 2 these calculations were performed with the ground state,

|1s2 1S〉 being formed by 1262 basis functions, and the metastable state 〈1s2s 3S| formed

by 705 basis functions. Tables (3.1) and (3.2) shows the results of these calculations for

nuclear charge Z = 2 through Z = 18.

Generating variational wave functions for nuclear charge Z > 18 can be accomplished,

however these calculations continually increase in numerical complexity as Z increases. For

Z > 18 a 1
Z expansion of the wave functions, as described in Sec. (2.6), will be performed

to calculate the nonrelativistic M1 transition rate.

51



3. CALCULATION OF TRANSITION RATES
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Figure 3.1: The logarithmic difference between the transition rate and the asymptotic value

of the 1s2s 3S1 → 1s2 1S0 transition rate for helium, ln (Aasymptotic −AΩ), as a function of

the number of basis functions in terms of the Pekeris shell radius Ω = (i+ j + k)max.
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Z ∆E/Z2 (a.u) p2

Z2 Z2r2

2 0.7284949987973282(1) 0.43836731951(2) −7.488842007(9)

3 2.16918604009856559(5) 0.49287942257(1) −6.072997363(4)

4 4.3583996486459711(1) 0.518357459836(9) −5.509541022(3)

5 7.2970742314285457(4) 0.533363374191(9) −5.207742253(3)

6 10.98549069959057649(4) 0.543293282712(8) −5.019842003(3)

7 15.42376341128167339(8) 0.550360650931(8) −4.891642835(4)

8 20.61194780267291033(9) 0.555650885487(6) −4.798608427(2)

9 26.5500740344411860(1) 0.559760854596(5) −4.728022194(2)

10 33.2381599309641830(6) 0.563046548305(3) −4.672637308(1)

11 40.6762167052039888(7) 0.565733659982(2) −4.6280221929(4)

12 48.8642517650440361(7) 0.567972280880(1) −4.59131479897(7)

13 57.80227020158881949(4) 0.5698661444277(6) −4.5605844261(1)

14 67.4902756294097809(4) 0.5714892571867(3) −4.5344814579(3)

15 77.92827068575445875(4) 0.57289584354168(2) −4.5120340860(4)

16 89.1162573400083288(2) 0.5741265457263(1) −4.4925247751(4)

17 101.0542370925539328(1) 0.5752124281724(4) −4.4754122174(4)

18 113.7422111065596288(2) 0.5761776433054(3) −4.4602803669(4)

Table 3.1: The energy difference, and the 〈p2〉 and 〈r2〉 transition matrix elements from the

1s2s 3S state to the 1s2 1S0 state transition. All results are recorded in atomic units unless

otherwise specified. The uncertainty in these calculations is given in parentheses for each

individual calculation.
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Z 1
Zr A

(

1s2s 3S1 → 1s2 1S0
)

(s−1) A
(

1s2s 3S1 → 1s2 1S0
)

106

Z10 (s−1)

2 0.27405791074(1) 0.00012724255998(6) 0.12426031

3 0.285306600610(7) 0.020400700108(8) 0.34548765

4 0.289022960814(6) 0.5620600596(2) 0.53602224

5 0.290863550971(7) 6.697205120(2) 0.68579380

6 0.291961006446(6) 48.56837371(2) 0.80323210

7 0.292689575252(7) 253.3040299(2) 0.89673000

8 0.293208449833(5) 1044.2379879(4) 0.97252241

9 0.293596768137(4) 3608.898317(1) 1.03502193

10 0.293898301389(2) 10873.542056(2) 1.08735420

11 0.294139221855(1) 29355.093908(2) 1.13176595

12 0.2943361390665(6) 72437.2377658(6) 1.16990183

13 0.2945001015767(1) 165842.147292(5) 1.20298826

14 0.2946387445078(1) 356348.96351(2) 1.23195585

15 0.2947575132788(4) 725150.67141(5) 1.25752221

16 0.2948603961091(4) 1407648.5317(1) 1.28024888

17 0.2949503809127(6) 2621963.7255(2) 1.30058118

18 0.2950297504261(4) 4709005.4077(3) 1.31887652

Table 3.2: The 〈1r 〉 transition matrix element, and the M1 transition rate from the 1s2s 3S

state to the 1s2 1S0 state. All results are recorded in atomic units unless otherwise specified.

The uncertainty in these calculations is given in parentheses for each individual calculation.

The final column illustrates the Z10 scaling of the transition rate.
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3.3 1
Z Expansion of the Matrix Elements

By treating the 1
r12

term in the Hamiltonian as a perturbation, the unperturbed Hamiltonian

is the sum of two independent hydrogen Hamiltonians

H = H0 + λ
1

r12
(3.5)

= h(r1) + h(r2) + λ
1

r12
,

where hri) is the single electron hydrogen Hamiltonian for i-th electron.

The unperturbed wave functions used in this study, which are functions of both r1 and

r2, are separable products of single electron hydrogen wave functions. The spatial part of

the unperturbed 1s2 1S0 ground state is the product of two hydrogen ground state wave

functions

|Ψ(0)
1s2 1S

〉 =
1√
π
e−r1 1√

π
e−r2 (3.6)

= ψ1s(r1)ψ1s(r2),

and the spatial part of the unperturbed 1s2s 3S excited state is the antisymmetric combi-

nation of the form

|Ψ(0)
1s2s 3S

〉 =
1√
2

[ψ1s(r1)ψ2s(r2) − ψ1s(r2)ψ2s(r1)] , (3.7)

with

ψ1s(r) =
1√
π
e−r (3.8)

and

ψ2s(r) =
1√
32π

(2 − r)e−r/2. (3.9)

As discussed in Sec. (2.6), the matrix elements can then be expanded, in Z-scaled atomic

units, as

〈p2〉 = 〈p2〉(0) +
1

Z
〈p2〉(1) +

1

Z2
〈p2〉(2) +

1

Z3
〈p2〉(3) + ... (3.10)

〈r2〉 = 〈r2〉(0) +
1

Z
〈r2〉(1) +

1

Z2
〈r2〉(2) +

1

Z3
〈r2〉(3) + ...

〈1

r
〉 = 〈1

r
〉(0) +

1

Z
〈1

r
〉(1) +

1

Z2
〈1

r
〉(2) +

1

Z3
〈1

r
〉(3) + ... ,

where the superscript outside the angular bracket denotes the order of the expansion.
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3.3.1 Zeroth Order Expansion Coefficient

The zeroth order expansion coefficients of Eq. (3.10) can be analytically calculated as they

involve only integrals consisting of the unperturbed wave functions. They are

〈p2〉(0) = 〈Ψ(0)
1s2s 3S

|p21 − p22|Ψ
(0)
1s2 1S

〉 (3.11)

=

∫ ∫

sin θ1 sin θ2dθ1dθ2

∫ ∫

dφ1dφ2

∫ ∫

dr1dr2r
2
1r

2
2(p21 − p22)

× 1√
2
ψ1s(r1)ψ1s(r2) [ψ1s(r1)ψ2s(r2) − ψ1s(r2)ψ2s(r1)]

=
16

27

≈ 0.5925925926,

〈r2〉(0) = 〈Ψ(0)
1s2s 3S

|r21 − r22|Ψ
(0)
1s2 1S

〉 (3.12)

=

∫ ∫

sin θ1 sin θ2dθ1dθ2

∫ ∫

dφ1dφ2

∫ ∫

dr1dr2r
2
1r

2
2(r21 − r22)

× 1√
2
ψ1s(r1)ψ1s(r2) [ψ1s(r1)ψ2s(r2) − ψ1s(r2)ψ2s(r1)]

= −1024

243

≈ −4.2139917695,

and

〈1

r
〉(0) = 〈Ψ(0)

1s2s 3S
| 1

r1
− 1

r2
|Ψ(0)

1s2 1S
〉 (3.13)

=

∫ ∫

sin θ1 sin θ2dθ1dθ2

∫ ∫

dφ1dφ2

∫ ∫

dr1dr2r
2
1r

2
2(

1

r1
− 1

r2
)

× 1√
2
ψ1s(r1)ψ1s(r2) [ψ1s(r1)ψ2s(r2) − ψ1s(r2)ψ2s(r1)]

=
8

27

≈ 0.2962962963.

Using the results from Sec. (3.2), the matrix elements 〈r2〉, 〈p2〉, and 〈1r 〉, plotted as

functions of the nuclear charge, are shown respectively in Figures (3.2), (3.3), and (3.4).

In each of these figures the zeroth order coefficient in the expansion of the corresponding

matrix element is included. In the limit of infinite nuclear charge, the expansion will be
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dominated by the zeroth order term and the the plots in Figures (3.2), (3.3), and (3.4)

converge towards the zeroth order expansion coefficient.

3.3.2 First Order Expansion Coefficient

It is also possible, by using the Dalgarno interchange theorem described in Sec. (2.6.1)

and Appendix (D.2), to calculate the first order expansion coefficient for single electron

operators. Since the matrix elements are off-diagonal, the first order expansion coefficients

to be calculated are

〈p2〉(1) = 〈Ψ(0)
1s2s 3S

|p21 − p22|Ψ
(1)
1s2 1S

〉 + 〈Ψ(1)
1s2s 3S

|p21 − p22|Ψ
(0)
1s2 1S

〉, (3.14)

〈r2〉(1) = 〈Ψ(0)
1s2s 3S

|r21 − r22|Ψ
(1)
1s2 1S

〉 + 〈Ψ(1)
1s2s 3S

|r21 − r22|Ψ
(0)
1s2 1S

〉, (3.15)

〈1

r
〉(1) = 〈Ψ(0)

1s2s 3S
| 1

r1
− 1

r2
|Ψ(1)

1s2 1S
〉 + 〈Ψ(1)

1s2s 3S
| 1

r1
− 1

r2
|Ψ(0)

1s2 1S
〉 (3.16)

To calculate the first order expansion coefficients as written in the form above, the first

order correction to the wave functions is required. As discussed in Sec. (2.6.1), the first

order perturbation equation, with perturbation 1
r12

, is not analytically solvable. Instead,

the Dalgarno Interchange theorem will be used to calculate first order corrections to wave

functions using p2, r2, and 1
r as perturbations. This procedure is based on the method

performed by Dalgarno and Parkinson(1967) [54] for the 1s2 1S0 → 1snp 1P transition in

the helium sequence.

The first order corrections to the wave functions are written as

|Ψ(1)
1s2 1S

〉 = |Ψ(1)
1s2 1S

〉s + |Ψ(1)
1s2 1S

〉d, (3.17)

|Ψ(1)
1s2s 3S

〉 = |Ψ(1)
1s2s 3S

〉s + |Ψ(1)
1s2s 3S

〉d,

where the subscript s denotes single excitations where only one electron has been excited

from its initial state, and the subscript d denotes double excitations where both electrons

can be excited from their inital state. For single excitations,

|Ψ(1)
1s2 1S

〉s =
∑

n 6=1

1

E
(0)
1 − E

(0)
n

|ψns(r1)ψ1s(r2) + ψ1s(r1)ψns〉 (3.18)

× 〈ψns(r1)ψ1s(r2) + ψ1s(r1)ψns(r2)| 1

r12
|ψ1s(r1)ψ1s(r2)〉,
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Figure 3.2: The 〈r2〉 matrix element (in atomic units) plotted as a function of the inverse

of the nuclear charge Z through the isoelectronic sequence from Z = 2 to Z = 18. The

intercept of the dotted line is the zeroth order expansion coefficient of the 〈r2〉 matrix

element. The slope of the dotted line is the first order expansion coefficient which will be

calculated in the following section. As expected, 〈r2〉 approaches 〈r2〉(0) as Z → ∞.
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Figure 3.3: The 〈p2〉 matrix element (in atomic units) plotted as a function of the inverse

of the nuclear charge Z through the isoelectronic sequence from Z = 2 to Z = 18. The

intercept of the dotted line is the zeroth order expansion coefficient of the 〈p2〉 matrix

element. The slope of the dotted line is the first order expansion coefficient which will be

calculated in the following section. As expected, 〈p2〉 approaches 〈p2〉(0) as Z → ∞.
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Figure 3.4: The 〈1r 〉 matrix element (in atomic units) plotted as a function of the inverse

of the nuclear charge Z through the isoelectronic sequence from Z = 2 to Z = 18. The

intercept of the dotted line is the zeroth order expansion coefficient of the 〈1r 〉 matrix

element. The slope of the dotted line is the first order expansion coefficient which will be

calculated in the following section. As expected, 〈1r 〉 approaches 〈1r 〉(0) as Z → ∞.

60



3. CALCULATION OF TRANSITION RATES

|Ψ(1)
1s2s 3S

〉s =
1

2
√

2

∑

n 6=1

1

E
(0)
1 − E

(0)
n

|ψns(r1)ψ2s(r2) − ψ2s(r1)ψns(r2)〉 (3.19)

× 〈ψns(r1)ψ2s(r2) − ψ2s(r1)ψns(r2)| 1

r12
|

× |ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)〉

+
1

2
√

2

∑

n 6=1

1

E
(0)
1 − E

(0)
n

|ψ1s(r1)ψns(r2) − ψns(r1)ψ1s(r2)〉

× 〈ψ1s(r1)ψns(r2) − ψns(r1)ψ1s(r2)| 1

r12
|

× |ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)〉,

and for double excitations,

|Ψ(1)
1s2 1S

〉d =
∑

n

1

2E
(0)
1 − E

(0)
2 −E

(0)
n

|ψns(r1)ψ2s(r2) + ψ2s(r1)ψns(r2)〉 (3.20)

× 〈ψns(r1)ψ2s(r2) + ψ2s(r1)ψns(r2)| 1

r12
|ψ1s(r1)ψ1s(r2)〉,

and

|Ψ(1)
1s2s 3S

〉d =
1

2
√

2

∑

n 6=2

1

E
(0)
1 + E

(0)
2 − E

(0)
1 −E

(0)
n

(3.21)

× |ψns(r1)ψ1s(r2) − ψ1s(r1)ψns(r2)〉

× 〈ψns(r1)ψ1s(r2) − ψ1s(r1)ψns(r2)| 1

r12
|

× |ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)〉

+
1

2
√

2

∑

n 6=1

1

E
(0)
1 + E

(0)
2 − E

(0)
2 −E

(0)
n

× |ψ2s(r1)ψns(r2) − ψns(r1)ψ2s(r2)〉

× 〈ψ2s(r1)ψns(r2) − ψns(r1)ψ2s(r2)| 1

r12
|

× |ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)〉.

In the double excitation terms, only those contributions with n = 2 have been included

since all other terms will not contribute to the summation. Any doubly excited state with

n > 2 will be orthogonal to the unperturbed wave functions which only have n = 1 and

n = 2.

The first order coefficient in the 1
Z expansion of 〈1r 〉 is then divided into four terms

〈1

r
〉(1) = T1,s + T2,s + T1,d + T2,d. (3.22)
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Using Eqs. (3.6), (3.7), (3.16), (3.18), (3.19), (3.20), and (3.21), the terms on the right side

of Eq. (3.22) are, after simplification,

T1,s = 〈Ψ(0)
1s2s 3S

| 1

r1
− 1

r2
|Ψ(1)

1s2 1S
〉s (3.23)

= − 4√
2
〈χ′

1(r1)ψ1s(r2)| 1

r12
|ψ1s(r1)ψ1s(r2)〉

+
4√
2

〈ψ1s(r1)| 1r1 |ψ1s(r1)〉
E

(0)
1 − E

(0)
2

×〈ψ1s(r1)ψ2s(r2)| 1

r12
|ψ1s(r1)ψ1s(r2)〉,

T2,s = 〈Ψ(0)
1s2 1S

| 1

r1
− 1

r2
|Ψ(1)

1s2s 3S
〉s (3.24)

= −
√

2〈ψ1s(r1)χ′
2(r2)| 1

r12
|ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)〉,

T1,d = 〈Ψ(0)
1s2s 3S

| 1

r1
− 1

r2
|Ψ(1)

1s2 1S
〉d (3.25)

=
4√
2
〈χ′′

1(r1)ψ2s(r2)| 1

r12
|ψ1s(r1)ψ1s(r1)〉

+
4√
2

〈ψ2s(r1)| 1r1 |ψ2s(r1)〉
E

(0)
1 − E

(0)
2

×〈ψ1s(r1)ψ2s(r2)| 1

r12
|ψ1s(r1)ψ1s(r2)〉,

and

T2,d = 〈Ψ(0)
1s2 1S

| 1

r1
− 1

r2
|Ψ(1)

1s2s 3S
〉d (3.26)

= −
√

2〈ψ1s(r1)χ′
2(r2)| 1

r12
|ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)〉

= T2,s,

where |χ′
1〉, |χ′

2〉, and |χ′′
1〉 are defined as

|χ′
1(ri)〉 =

∑

n 6=1

1

E
(0)
1 − E

(0)
n

|ψns(ri)〉〈ψns(ri)|
1

ri
|ψ2s(ri)〉, (3.27)

|χ′
2(ri)〉 =

∑

n 6=2

1

E
(0)
2 − E

(0)
n

|ψns(ri)〉〈ψns(ri)|
1

ri
|ψ1s(ri)〉, (3.28)
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and

|χ′′
1(ri)〉 =

∑

n

1

2E
(0)
1 − E

(0)
2 − E

(0)
n

|ψns(ri)〉〈ψns(ri)|
1

ri
|ψ1s(ri)〉. (3.29)

The 〈p2〉(1), and 〈r2〉(1) matrix expansion coefficients are derived in an identical manner

where the only difference is the single electron operators appearing between the bra and ket

states.

The purpose of the use of the Dalgarno interchange theorem is that we cannot solve

the perturbation equation directly for the first order corrections |Ψ(1)
1s2 1S

〉 or |Ψ(1)
1s2s 3S

〉
because of the presence of the electron-electron interaction term, 1

r12
in the differential

equation. Instead, the matrix elements are written in terms of the solutions to solvable

first order perturbation equations and integrals of the electron-electron interaction. While

the interaction term prevents us from solving its own perturbation equation, its integration

with known functions is straight forward. The interaction term can be replaced by the

summation
1

r12
=

∞
∑

l=0

(

rl>

rl+1
<

)

Pl (cos θ) , (3.30)

where Pl (cos θ) are Legendre polynomials, θ describes the angle between r1 and r2, and

r<, and r> correspond to the smaller and larger of r1 and r2. The analytical calculation

of these integrals was performed using the functions defined in the Handbook of Atomic,

Molecular, and Optical Physics (pages 203-205) [44].

The states defined in Eqs. (3.27), (3.28), and (3.29), were evaluated using a pseudostate

spectrum to represent the |ψns〉 basis using the methods described in Sec. (2.5). The num-

ber of basis functions in the pseudostate spectrum was varied and the calculation of the

first order expansion coefficients of the matrix elements was performed iteratively until

convergence was obtained. Convergence was obtained after including 9 terms in the pseu-

dostate basis and numerical cancellation occurred for larger bases. The resulting first order
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expansion coefficients, in Z-scaled atomic units, are

〈p2〉(1) = −0.295700550063(2), (3.31)

〈r2〉(1) = −4.25418477972(2), (3.32)

and

〈1

r
〉(1) = −0.021483174894(5). (3.33)

These values can be directly compared with the values obtained by Drake [18], which

were obtained from 1
Z expanded wave functions, given below

〈p2〉(1)Drake = −0.29569, (3.34)

〈r2〉(1)Drake = −4.2602, (3.35)

and

〈1

r
〉(1)Drake = −0.02147. (3.36)

As an example, the convergence of 〈1r 〉(1) as a function of basis size is shown in Table

(3.3) where it can be seen that 〈1r 〉(1) rapidly approaches the correct value after including

only a small number of basis functions in the pseudospectrum.

Basis Size 〈 1
Zr 〉(1)

2 -0.010802024546

3 -0.021466170856

4 -0.021482928135

5 -0.021483178513

6 -0.021483175259

7 -0.021483174920

8 -0.021483174905

9 -0.021483174894

Table 3.3: The first order correction to the 〈 1
Zr 〉 matrix element calculated using a pseu-

dospectrum of varying basis size. Convergence was achieved with 9 basis functions.

64



3. CALCULATION OF TRANSITION RATES

3.3.3 Higher Order Expansion Coefficients

It is not possible to use the Dalgarno Interchange theorem to calculate higher order coeffi-

cients of the 1
Z expansion of matrix elements. To obtain them, a least squares fitting of the

data, along with the exact value of the zeroth order expansion coefficient and the calculated

value of the first order expansion coefficient, to a polynomial of order M was performed.

All calculations in the following section were performed in double precision since all the

numerical data used were the results of the previous sections, which could be represented

accurately in double precision.

The matrix elements are

〈p2〉 ≈ 〈p2〉exp = 〈p2〉(0) +
1

Z
〈p2〉(1) +

M
∑

m=2

1

Zm
〈p2〉(m), (3.37)

〈r2〉 ≈ 〈r2〉exp = 〈r2〉(0) +
1

Z
〈r2〉(1) +

M
∑

m=2

1

Zm
〈r2〉(m),

〈1

r
〉 ≈ 〈1

r
〉exp = 〈1

r
〉(0) +

1

Z
〈1

r
〉(1) +

M
∑

m=2

1

Zm
〈1

r
〉(m),

where the zeroth and first order coefficients have been determined in Secs. (3.3.2) and

(3.3.1) respectively. The subscript ”exp” is to denote that these values correspond to the 1
Z

approximation of the matrix elements. The value of M corresponding to the most accurate

expansion is determined by successively performing the expansion for progressively larger

values of M until the error associated with the expansion ceases to decrease with increasing

M .

An eight parameter least squares fitting of the data obtained in Sec. (3.2), after being

adjusted by subtracting the zeroth and first order terms, was performed. The values of

these coefficients are listed in Table (3.4).

The error associated with each expansion coefficient 〈A〉(i) is the standard error of

polynomial regression [55], and is given by

δ〈A〉(i) = sǫ

√

C−1
ii , (3.38)
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where sǫ is the standard deviation of the residuals1 defined by

s2ǫ =

∑18
Z (〈A(Z)〉 − 〈A(Z)〉exp)2

10
, (3.39)

and C−1
ii are the diagonal elements of the inverse of the matrix of sums and cross products

defined as

C = XTX, (3.40)

where XT is the transpose of the matrix X, with

X =

















x22 x32 . . . xk2

x23 x33 . . . xk3
...

. . .
...

x2n x3n . . . xkn

















, (3.41)

where xi is being used to denote the value of 1
Z with Z = i.

With the higher order coefficients calculated, Eq. (3.37) can be used to estimate the

values of 〈p2〉, 〈r2〉, and 〈1r 〉 for ions with nuclear charge Z > 18. The associated uncertainty

of those values is estimated by using standard propagation of error techniques. Since the

expansion is being performed in orders of 1
Z , the contributions of the higher order terms

decreases as Z increases. Initially, at Z = 19, the correction due to the second order term

is only 2.8% (with higher orders contributing a smaller and smaller correction). This is

expected because at higher Z, the electron-electron interaction contribution is suppressed

by a factor of 1
Z .

Including these statistical uncertainties, the values of all the coefficients in the 1
Z ex-

pansion of the matrix elements are listed in Table (3.4)

The quality of this fitting can be seen by calculating the residual difference between the

matrix elements as calculated with the variational method from Sec. (3.2) and those calcu-

lated via the 1
Z expansion, and finding the residual standard deviation from Eq. (3.39). The

1The 10 in the denominator of Eq. (3.39) is the number of degrees of freedom normally defined as n−M ,

with n being the number of points in the sample data, and M equal to the highest order of the polynomial

we are fitting.

In this calculation, the zeroth and first order coefficients have already been determined and are not being

calculated via polynomial regression. This increases the degrees of freedom by 2.
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residual standard deviation gives, on average, how close the 1
Z expanded matrix elements

are to matrix elements as calculated from the variational method. The residual standard

deviations are

sǫ(〈p2〉) = 8.26 × 10−13, (3.42)

sǫ(〈r2〉) = 1.63 × 10−10, (3.43)

sǫ(〈p2〉) = 7.19 × 10−13, (3.44)

and as an example of the expansion, the 〈1r 〉 matrix element is plotted using the expansion

of Eq. (3.37) with the coefficients from Table (3.4) in Fig. (3.5).
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Figure 3.5: The 〈1r 〉exp matrix element (in atomic units), as calculated as a 1
Z expansion

with coefficients given in Table (3.4), plotted as a function of the inverse of the nuclear

charge Z through the isoelectronic sequence from Z = 2 to Z = 100. The intercept of the

dotted line is the zeroth order expansion coefficient of the 〈1r 〉 matrix element. The slope

of the dotted line is the first order expansion coefficient of the 〈1r 〉 matrix element. As

expected, 〈1r 〉exp approaches 〈1r 〉(0) as Z → ∞.
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3. CALCULATION OF TRANSITION RATES

O( 1
Z ) 〈p2〉 〈r2〉 〈1r 〉

0 0.5925925926 -4.2139917695 0.2962962963

1 0.295700550063(2) 4.25418477972(2) -0.021483174894(5)

2 0.006165760(7) -3.104598(1) -0.022190783(6)

3 -0.0341073(3) -2.040656(6) -0.0250888(3)

4 -0.032135(6) -1.318(1) -0.024269(5)

5 -0.03036(5) -0.78(1) -0.02363(4)

6 -0.0171(3) -0.82(6) -0.0130(3)

7 -0.0596(9) 1.1(2) -0.0501(8)

8 0.064(1) -3.0(3) 0.056(1)

9 0.1089(9) 3.1(2) -0.0930(8)

Table 3.4: The results of a 1
Z expansion of the 〈p2〉, 〈r2〉, and 〈1r 〉 matrix elements. The

zeroth order coefficient was calculated analytically and has no uncertainty associated with

the values listed in this table.
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Chapter 4

Results and Conclusions

Large basis nonrelativistic Hylleraas wave functions of the form Eq. (2.43) were used to

calculate numerically the following transition matrix elements from the metastable 1s2s 3S1

state to the 1s2 1S0 state of helium and heliumlike ions through the isoelectronic sequence

up to nuclear charge Z = 18,

〈p2〉 = 〈1s2 1S0|p21 − p22|1s2s 3S1〉, (4.1)

〈r2〉 = 〈1s2 1S0|r21 − r22|1s2s 3S1〉,

and

〈1

r
〉 = 〈1s2 1S0|

1

r1
− 1

r2
|1s2s 3S1〉.

These transition matrix elements are used to evaluate the relativisitc magnetic dipole mo-

ment (M1) operator

〈1s2 1S|Q10|1s2s 3S〉 = µB〈1s2 1S| −
(

2

3m2c2

)

(

p21 − p22
)

−1

6

(ω

c

)2
(

r21 − r22
)

+

(

Ze2

3mc2

)(

1

r1
− 1

r2

)

|1s2s 3S〉,
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4. RESULTS AND CONCLUSIONS

which is derived by taking multiple Foldy-Wouthuysen transformations of the helium Hamil-

tonian (as described in Sec. (1.3.2)). The corresponding decay rate from the metastable

triplet state to the ground state is

A(1s2s 3S → 1s2 1S) = ~
−1 4

3

(ω

c

)3
|〈1s2 1S|Q10|1s2s 3S〉|2.

Both the decay rate and the magnetic dipole moment operator are derived in full detail by

Drake(1971) [18]. The main result of the calculation from this thesis yields, for helium, a

nonrelativistic transition rate of

A(1s2s 3S1 → 1s2 1S0) = 1.2724255998(6) × 10−4 s−1, (4.2)

and a lifetime of

τ = 7.8590056673(4) × 103 s, (4.3)

where the number quoted in the parentheses gives the uncertainty in the calculation at that

decimal value.

The values of the matrix elements of Eq. (4.1) are presented in Tables (3.1) and (3.2).

The transition rates and corresponding lifetimes are given in Table (4.1).

By treating the interaction term, 1
r12

, in the helium Hamiltonian as a perturbation,

the nonrelativistic matrix elements of Eq. (4.1) were written as a 1
Z expansion in Sec. (2.6).

The zeroth order expansion coefficients are easily evaluated analytically as they involve only

integrals with unperturbed hydrogen wave functions. The first order expansion coefficients

are derived analytically by using the Dalgarno Interchange theorem in Sec. (3.3.2). The

higher order expansion coefficients were calculated by performing a least squares fitting to

the data obtained through the variational calculation. The expansion was taken to ninth

order at which point the error associated with the fitting was optimally minimized. The

expansion coefficients for the transition matrix elements are given in Table (3.4).

This expansion becomes highly accurate for large values of the nuclear charge Z. As Z

increases, the higher order terms in the expansion contribute less, and the zeroth and first

order terms, which were derived analytically, dominate the expansion. However, these are

lowest order nonrelativistic approximations.
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Z A
(

1s2s 3S → 1s2 1S
)

(s−1) τ (s)

2 1.2724255998(6)×10−4 7.8590056673(4)×103

3 2.0400700108(8)×10−2 4.9017925596(2)×101

4 5.620600596(2)×10−1 1.77916929502(6)×100

5 6.697205120(2)×100 1.4931601796(5)×10−1

6 4.856837371(2)×101 2.05895302563(9)×10−2

7 2.533040299(2)×102 3.9478250717(3)×10−3

8 1.0442379879(4)×103 9.5763610555(4)×10−4

9 3.608898317(1)×103 2.77092872163(8)×10−4

10 1.0873542056(2)×104 9.1966352349(2)×10−5

11 2.9355093908(2)×104 3.40656379140(2)×10−5

12 7.24372377658(6)×104 1.380505429035(1)×10−5

13 1.65842147292(5)×105 6.02983027131(2)×10−6

14 3.5634896351(2)×105 2.80623799253(2)×10−6

15 7.2515067141(5)×105 1.37902375248(1)×10−6

16 1.4076485317(1)×106 7.10404605610(5)×10−7

17 2.6219637255(2)×106 3.81393529695(3)×10−7

18 4.7090054077(3)×106 2.12359068088(1)×10−7

Table 4.1: The M1 transition rate from the 1s2s 3S1 state to the 1s2 1S0 state, and the

lifetime, τ , of the metastable 1s2s 3S1 state for nuclear charge Z = 2 through Z = 18 as

calculated using large basis variational wavefunctions. The uncertainty in these calculations

is given in parentheses for each individual calculation.
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The values of the transition matrix elements of Eq. (4.1) for heliumlike ions through

the isoelectronic sequence from Z = 19 through Z = 100 are given in Tables (4.2), (4.3),

(4.4), and (4.5). These transition matrix elements were then used to evaluate the lowest

order nonrelativistic 1s2s 3S1 → 1s2 1S0 transition rates, and the 1s2s 3S1 lifetimes for

heliumlike ions through the isoelectronic sequence from Z = 19 through Z = 100, and are

given in Tables (4.6), (4.7), (4.8), and (4.9).

4.1 Comparison with Experimental Measurements

In order to compare to experimental results, it should be clarified that these calculations

are correct only up to order (Zα)2. This approximation becomes less valid with increasing

nuclear charge as the relativistic effects increase and become nonnegligible. By comparison

with experimental work, it should be possible to determine when these relativistic effects

become important in determining the transition rate for the 1s2s 3S1 → 1s2 1S0 transition.

For the rest of this section, all current calculations, when compared with experimental

values will be expressed only to order (Zα)2. Specifically, the largest source of uncertainty

in these results will come from the estimation of the uncertainty in the corrections to the

energy in a one-electron hydrogenic approximation. The leading relativistic correction to

the energy for an electron with principal quantum number n and total angular momentum

~j = ~l + ~s, is, from Bethe and Salpeter [37] (page 61),

δE = −α
2Z4

2n3

(

1

j + 1/2
− 3

4n

)

. (4.4)

For the ground state n = 1 and j = 1
2 this gives

δE1s = −1

4

α2Z4

2
, (4.5)

which gives a total energy for the 1s electron of

E1s
tot = −Z

2

2

[

1 +
1

4
α2Z2

]

. (4.6)

Similarly for the 2s electron, the energy is

E2s
tot = −Z

2

8

[

1 +
5

16
α2Z2

]

. (4.7)
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Z p2

Z2
r2

Z2
1
Zr

19 0.5770412535(7) -4.4468041(1) 0.2951002787(6)

20 0.5778185055(6) -4.4347261(1) 0.2951633652(5)

21 0.5785217396(5) -4.4238392(1) 0.2952201289(4)

22 0.5791610513(4) -4.41397570(8) 0.2952714751(4)

23 0.5797447795(4) -4.40499769(7) 0.2953181441(3)

24 0.5802798728(3) -4.39679109(6) 0.2953607473(3)

25 0.5807721675(3) -4.38926058(6) 0.2953997938(2)

26 0.5812266020(2) -4.38232592(5) 0.2954357111(2)

27 0.5816473827(2) -4.37591909(4) 0.2954688611(2)

28 0.5820381154(2) -4.36998204(4) 0.2954995517(2)

29 0.5824019080(2) -4.36446493(3) 0.2955280468(2)

30 0.5827414543(2) -4.35932472(3) 0.2955545739(1)

31 0.5830591004(1) -4.35452408(3) 0.2955793300(1)

32 0.5833568992(1) -4.35003044(3) 0.2956024869(1)

33 0.5836366547(1) -4.34581525(2) 0.2956241946(1)

34 0.5838999588(1) -4.34185341(2) 0.29564458501(9)

35 0.5841482212(1) -4.33812276(2) 0.29566377458(9)

36 0.58438269528(9) -4.33460363(2) 0.29568186633(8)

37 0.58460449874(9) -4.33127852(2) 0.29569895186(7)

38 0.58481463172(8) -4.32813183(2) 0.29571511284(7)

Table 4.2: The 〈p2〉, 〈r2〉, and 〈1r 〉 transition matrix elements from the 1s2s 3S1 state to the

1s2 1S0 state transition for nuclear charge Z = 19 through Z = 38 as calculated from the 1
Z

expansion. All results are recorded in atomic units. The uncertainty in these calculations

is given in parentheses for each individual calculation.
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Z p2

Z2
r2

Z2
1
Zr

39 0.58501399176(7) -4.32514957(1) 0.29573042235(6)

40 0.58520338667(7) -4.32231917(1) 0.29574494596(6)

41 0.58538354546(6) -4.31962933(1) 0.29575874266(6)

42 0.58555512772(6) -4.31706983(1) 0.29577186571(5)

43 0.58571873168(6) -4.31463143(1) 0.29578436326(5)

44 0.58587490119(5) -4.31230572(1) 0.29579627899(5)

45 0.58602413179(5) -4.31008506(1) 0.29580765263(4)

46 0.58616687592(5) -4.307962512(9) 0.29581852033(4)

47 0.58630354750(4) -4.305931700(9) 0.29582891512(4)

48 0.58643452601(4) -4.303986805(9) 0.29583886721(4)

49 0.58656015990(4) -4.302122488(8) 0.29584840430(4)

50 0.58668076981(4) -4.300333843(8) 0.29585755182(3)

51 0.58679665117(4) -4.298616356(7) 0.29586633315(3)

52 0.58690807675(3) -4.296965861(7) 0.29587476985(3)

53 0.58701529870(3) -4.295378516(7) 0.29588288183(3)

54 0.58711855050(3) -4.293850763(6) 0.29589068748(3)

55 0.58721804866(3) -4.292379308(6) 0.29589820382(3)

56 0.58731399422(3) -4.290961097(6) 0.29590544666(3)

57 0.58740657413(3) -4.289593291(5) 0.29591243064(2)

58 0.58749596243(3) -4.288273249(5) 0.29591916942(2)

Table 4.3: The 〈p2〉, 〈r2〉, and 〈1r 〉 transition matrix elements from the 1s2s 3S1 state to the

1s2 1S0 state transition for nuclear charge Z = 39 through Z = 58 as calculated from the 1
Z

expansion. All results are recorded in atomic units. The uncertainty in these calculations

is given in parentheses for each individual calculation.
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Z p2

Z2
r2

Z2
1
Zr

59 0.58758232137(3) -4.286998512(5) 0.29592567566(2)

60 0.58766580239(2) -4.285766788(5) 0.29593196122(2)

61 0.58774654699(2) -4.284575935(5) 0.29593803713(2)

62 0.58782468757(2) -4.283423954(4) 0.29594391370(2)

63 0.58790034808(2) -4.282308969(4) 0.29594960059(2)

64 0.58797364477(2) -4.281229229(4) 0.29595510684(2)

65 0.58804468670(2) -4.280183088(4) 0.29596044092(2)

66 0.58811357635(2) -4.279169001(4) 0.29596561078(2)

67 0.58818041006(2) -4.278185517(4) 0.29597062389(2)

68 0.58824527853(2) -4.277231272(4) 0.29597548727(2)

69 0.58830826718(2) -4.276304982(3) 0.29598020753(2)

70 0.58836945655(2) -4.275405434(3) 0.29598479090(1)

71 0.58842892267(2) -4.274531489(3) 0.29598924324(1)

72 0.58848673731(2) -4.273682067(3) 0.29599357010(1)

73 0.58854296833(2) -4.272856151(3) 0.29599777672(1)

74 0.58859767993(1) -4.272052780(3) 0.29600186802(1)

75 0.58865093286(1) -4.271271041(3) 0.29600584869(1)

76 0.58870278470(1) -4.270510073(3) 0.29600972316(1)

77 0.58875329001(1) -4.269769060(3) 0.29601349562(1)

78 0.58880250059(1) -4.269047225(3) 0.29601717003(1)

Table 4.4: The 〈p2〉, 〈r2〉, and 〈1r 〉 transition matrix elements from the 1s2s 3S1 state to the

1s2 1S0 state transition for nuclear charge Z = 59 through Z = 78 as calculated from the 1
Z

expansion. All results are recorded in atomic units. The uncertainty in these calculations

is given in parentheses for each individual calculation.
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Z p2

Z2
r2

Z2
1
Zr

79 0.58885046559(1) -4.268343835(3) 0.29602075021(1)

80 0.58889723172(1) -4.267658191(2) 0.29602423970(1)

81 0.58894284335(1) -4.266989630(2) 0.29602764191(1)

82 0.58898734273(1) -4.266337521(2) 0.29603096008(1)

83 0.58903077005(1) -4.265701265(2) 0.29603419728(1)

84 0.58907316359(1) -4.265080290(2) 0.29603735644(1)

85 0.58911455983(1) -4.264474053(2) 0.296040440350(9)

86 0.58915499356(1) -4.263882034(2) 0.296043451668(9)

87 0.58919449795(1) -4.263303740(2) 0.296046392925(9)

88 0.58923310468(1) -4.262738699(2) 0.296049266539(9)

89 0.58927084402(1) -4.262186460(2) 0.296052074816(9)

90 0.58930774486(1) -4.261646593(2) 0.296054819961(8)

91 0.589343834839(9) -4.261118686(2) 0.296057504078(8)

92 0.589379140401(9) -4.260602348(2) 0.296060129180(8)

93 0.589413686843(9) -4.260097201(2) 0.296062697192(8)

94 0.589447498388(9) -4.259602886(2) 0.296065209956(8)

95 0.589480598238(8) -4.259119058(2) 0.296067669237(7)

96 0.589513008632(8) -4.258645387(2) 0.296070076724(7)

97 0.589544750888(8) -4.258181556(2) 0.296072434037(7)

98 0.589575845458(8) -4.257727262(2) 0.296074742727(7)

99 0.589606311963(8) -4.257282213(2) 0.296077004283(7)

100 0.589636169244(8) -4.256846131(1) 0.296079220135(7)

Table 4.5: The 〈p2〉, 〈r2〉, and 〈1r 〉 transition matrix elements from the 1s2s 3S1 state to the

1s2 1S0 state transition for nuclear charge Z = 79 through Z = 100 as calculated from the

1
Z expansion. All results are recorded in atomic units.

77



4. RESULTS AND CONCLUSIONS

Z A
(

1s2s 3S → 1s2 1S
)

(s−1) τ (s)

19 8.1874513625(1)×106 1.22138130137(2)×10−7

20 1.38285449347(2)×107 7.23141881320(9)×10−8

21 2.27542401966(3)×107 4.39478528555(6)×10−8

22 3.65664332006(4)×107 2.73474854525(3)×10−8

23 5.75132959130(6)×107 1.73872838294(2)×10−8

24 8.87010312380(9)×107 1.12738260880(1)×10−8

25 1.34360867789(1)×108 7.44264320746(8)×10−9

26 2.00181533401(2)×108 4.99546578054(5)×10−9

27 2.93720696819(3)×108 3.40459494625(3)×10−9

28 4.24907768878(4)×108 2.35345190943(2)×10−9

29 6.06657201333(5)×108 1.64837736666(1)×10−9

30 8.55604184227(7)×108 1.168764737756(9)×10−9

31 1.192992172491(9)×109 8.38228467092(7)×10−10

32 1.64572301247(1)×109 6.07635666768(5)×10−10

33 2.24760521166(2)×109 4.44917993077(3)×10−10

34 3.04082276830(2)×109 3.28858363738(3)×10−10

35 4.07764890887(3)×109 2.45239357862(2)×10−10

36 5.42245985865(4)×109 1.84418147126(1)×10−10

37 7.15404503010(5)×109 1.397810603363(9)×10−10

38 9.3683071100(6)×109 1.067428712792(7)×10−10

Table 4.6: The M1 transition rate from the 1s2s 3S1 state to the 1s2 1S0 state, and the

lifetime, τ , of the metastable 1s2s 3S1 state for nuclear charge Z = 19 through Z = 38

as calculated from the 1
Z expansion. The uncertainty in these calculations is given in

parentheses for each individual calculation.
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Z A
(

1s2s 3S → 1s2 1S
)

(s−1) τ (s)

39 1.218134016768(8)×1010 8.20927735565(6)×10−11

40 1.57329807219(1)×1010 6.35607465415(4)×10−11

41 2.01908511360(1)×1010 4.95273821428(3)×10−11

42 2.57549613650(2)×1010 3.88274703979(3)×10−11

43 3.26629191392(2)×1010 3.06157571446(2)×10−11

44 4.11958905531(3)×1010 2.42742658691(2)×10−11

45 5.16851651402(3)×1010 1.93479114807(1)×10−11

46 6.45197653870(4)×1010 1.549912641500(9)×10−11

47 8.01547426303(5)×1010 1.247586814185(8)×10−11

48 9.91206671235(7)×1010 1.008871337351(6)×10−11

49 1.220339806411(7)×1011 8.19443891567(5)×10−12

50 1.496088478728(9)×1011 6.68409665751(4)×10−12

51 1.82669931619(1)×1011 5.47435470709(3)×10−12

52 2.22166980735(1)×1011 4.50111891827(3)×10−12

53 2.69190355815(2)×1011 3.71484333817(2)×10−12

54 3.24989124394(2)×1011 3.07702604468(2)×10−12

55 3.90989793164(2)×1011 2.55761152205(1)×10−12

56 4.68818040156(3)×1011 2.13302371997(1)×10−12

57 5.60321638181(4)×1011 1.784689242498(9)×10−12

58 6.67596372042(4)×1011 1.497911076032(8)×10−12

Table 4.7: The M1 transition rate from the 1s2s 3S1 state to the 1s2 1S0 state, and the

lifetime, τ , of the metastable 1s2s 3S1 state for nuclear charge Z = 39 through Z = 58

as calculated from the 1
Z expansion. The uncertainty in these calculations is given in

parentheses for each individual calculation.
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Z A
(

1s2s 3S → 1s2 1S
)

(s−1) τ (s)

59 7.93013807284(5)×1011 1.261012091864(7)×10−12

60 9.39251890085(5)×1011 1.064677122885(6)×10−12

61 1.109328330436(5)×1012 9.01446373057(5)×10−13

62 1.306636848571(7)×1012 7.65323587111(4)×10−13

63 1.534986227838(8)×1012 6.51471643110(3)×10−13

64 1.798644209636(9)×1012 5.55974324796(3)×10−13

65 2.102382728118(1)×1012 4.75650787378(3)×10−13

66 2.451529328517(1)×1012 4.07908642319(2)×10−13

67 2.852020685069(2)×1012 3.50628592996(2)×10−13

68 3.310462295549(2)×1012 3.02072614252(2)×10−13

69 3.834191614089(2)×1012 2.60811169772(1)×10−13

70 4.431346378314(2)×1012 2.25665049542(1)×10−13

71 5.110937872332(3)×1012 1.956588056790(9)×10−13

72 5.882931962940(3)×1012 1.699832679180(9)×10−13

73 6.758331563342(3)×1012 1.479655134744(8)×10−13

74 7.749270978871(4)×1012 1.290443969151(6)×10−13

75 8.869111713807(4)×1012 1.127508630254(6)×10−13

76 1.0132548846689(5)×1013 9.86918508986(5)×10−14

77 1.1555721651207(6)×1013 8.65372176817(4)×10−14

78 1.3156336749395(6)×1013 7.60090000012(4)×10−14

Table 4.8: The M1 transition rate from the 1s2s 3S1 state to the 1s2 1S0 state, and the

lifetime, τ , of the metastable 1s2s 3S1 state for nuclear charge Z = 59 through Z = 78

as calculated from the 1
Z expansion. The uncertainty in these calculations is given in

parentheses for each individual calculation.
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Z A
(

1s2s 3S → 1s2 1S
)

(s−1) τ (s)

79 1.4953794023291(7)×1013 6.68726611081(3)×10−14

80 1.6969325314503(8)×1013 5.89298620579(3)×10−14

81 1.9226138092472(9)×1013 5.20125256144(3)×10−14

82 2.174957448184(1)×1013 4.59779110086(2)×10−14

83 2.456727476829(1)×1013 3.60888941964(2)×10−14

84 2.770935553076(1)×1013 3.60888941964(2)×10−14

85 3.120859706067(2)×1013 3.20424528554(2)×10−14

86 3.510064628260(2)×1013 2.84895039239(1)×10−14

87 3.942421111274(2)×1013 2.53651239118(1)×10−14

88 4.422131238776(2)×1013 2.26135305807(1)×10−14

89 4.953750101888(2)×1013 2.018672681165(9)×10−14

90 5.542212208160(3)×1013 1.804333653135(9)×10−14

91 6.192856795124(3)×1013 1.614763643150(8)×10−14

92 6.911458437195(3)×1013 1.446872623321(7)×10−14

93 7.704253481399(4)×1013 1.297984291943(6)×10−14

94 8.577975736007(4)×1013 1.165776204988(6)×10−14

95 9.539885800390(4)×1013 1.048230577309(5)×10−14

96 1.0597809557856(5)×1014 9.43591215280(4)×10−15

97 1.1760172601587(6)×1014 8.50327655791(4)×10−15

98 1.3036042064110(6)×1014 7.67103999114(4)×10−15

99 1.4435164930956(7)×1014 6.92752735963(3)×10−15

100 1.5968013881966(7)×1014 6.26251960571(3)×10−15

Table 4.9: The M1 transition rate from the 1s2s 3S1 state to the 1s2 1S0 state, and the

lifetime, τ , of the metastable 1s2s 3S1 state for nuclear charge Z = 79 through Z = 100 as

calculated from the 1
Z expansion.
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This gives an approximate change in the energy of

∆E = −3Z2

8

[

1 +
11

48
α2Z2

]

. (4.8)

Since the transition rate, Eq. (3.1) is dependent upon the energy to the fifth power,

the lowest order correction is 55
48Z

2α2. This value will be used as the estimation of the

uncertainty of the current results.

In comparison with other theoretical work for the case of helium, most recently  Lach and

Pachucki (2001) [23] report the 1s2s 3S1 → 1s2 1S0 M1 transition rate as 1.272426×10−4

s−1, which is in complete agreement with the results presented in this thesis. Prior to

this, Johnson et al. (1995) [21] used relativistic many body perturbation theory to calculate

forbidden transitions in helium and heliumlike ions. Their results for the 1s2s 3S1 →
1s2 1S0 M1 transition rate is 1.266×10−4 s−1. The discrepancy, as pointed out by  Lach and

Pachucki, is attributed to the inclusion of some higher order terms while not accounting

for electron correlations correctly. In addition, the current work agrees with the original

calculation by Drake(1971) [18] with a reported value of 1.272×10−4 s−1.

There have only been three experimental measurements of the 1s2s 3S1 → 1s2 1S0

transition rate in helium. The first was by Moos and Woodsworth [25] in 1973, and was

followed by a more precise measurement by the same authors in 1975 [26]. The latter

experiment reported a transition rate of 1.11×10−4 s−1, with an error of 30%. In 2009,

Hodgman et al. [32] improved upon the measurement of Moos and Woodsworth, and gave

more precise value for the transition rate of 1.27×10−4 s−1 with an error of 6.5%. The

current work is well within error of these experimental measurements.

For heliumlike ions, there are several experiments that can be used to compare against

the current theoretical calculations. For heliumlike lithium, ion trap measurements by

Knight and Prior(1980) [56] found a lifetime of 58.6 ± 12.9 s. This value is in agreement

with the value obtained in this work of 49.01(3) s.

High precision measurements of the transition rate of heliumlike carbon using an ion

storage ring were performed by Schmidt et al. (1994) [57]. The results of this experiment

were a transition rate of 48.57 ± 0.11 s−1 which is in excellent agreement with the value

48.6(1) s−1 obtained in this thesis.
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Line emissions for this transition in heliumlike oxygen play an important role in plasma

diagnostics. An electron beam ion trap measurement by Crespo López-Urrutia, Beiersdor-

fer, Savin, and Widmann(1998) [58], and determined the lifetime of the 1s2s 3S1 state in

heliumlike O6+ as 955.9 ± 3.5 × 10−6 s. This is again within experimental error with the

value obtained in the current work of 958(4) × 10−6 s.

A precise measurement of the lifetime of heliumlike neon in the 1s2s 3S1 state from

electron beam ion trapping was performed by Träbert et al. (1999) [28], which was an

improvement from the previous work by Wargelin, Beiersdorfer, and Khan(1993) [59]. The

lifetime reported by Träbert, of 91.7±0.4×10−6 s, is in excellent agreement with the current

value of 92.0(6) × 10−6 s.

For heliumlike sulfur, the lifetime of the 1s2s 3S1 state was determined from an electron

beam ion trap measurement by Crespo López-Urrutia, Beiersdorfer, and Widmann(2006)

[60] was found to be 703 ± 4 × 10−9 s. This does agree, within error, with the current

calculated value of 7.1(1)×10−9 s from this thesis. It should be noted that while these results

do agree, this is the first experiment for which the current calculated nonrelativistic result

of 710.404605610(5)×10−9 did not fit within error bounds of the experimental measurement

without accounting for the order (Zα)2) uncertainty. The comparison between theory and

experiment is therefore sensitive to the relativistic correction.

In heliumlike chlorine, the triplet state lifetime was measured and found to be 3.54 ±
0.24× 10−7 s, by Bednar et al. [61]. This is measurement agrees with the current results of

3.81(7) × 10−7 s.

While measurements for heliumlike sulfur and chlorine disagreed with the current cal-

culation, measurements by Hubricht and Träbert [62] determined the lifetime of heliumlike

argon to be 2.03 ± 0.13 × 10−7 s, which does agree, within experimental error, with the

current calculation of 2.12(4) × 10−7 s.

The triplet state lifetime of heliumlike titanium was found to be 2.58 ± .13 × 10−8 s by

Gould et al. [63] in 1973. Their experimental value is in agreement with the value obtained

in the current calculation of 2.73(8) × 10−8 s.

The lifetimes of heliumlike vanadium and iron were measured by Gould et al. [64] in
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1974. The lifetime of heliumlike vanadium was determined to be 1.69± 0.07× 10−8 s which

is compared with the current calculation of 1.74(6) × 10−8 s. The lifetime of heliumlike

iron was found to be 4.8 ± 0.6 × 10−9 s and is compared with the current calculation of

5.0(2) × 10−9 s. Both of these results agree within experimental error.

Measurements by Dunford et al. [65] in 1990 determined the lifetime of heliumlike

bromine to be 2.241 ± 0.071 × 10−10 s. Comparing this to the the current calculation of

2.5(2) × 10−10 s again shows agreement at order (Zα)2).

Heliumlike krypton was studied by Cheng et al. [66] in 1994, and determined a triplet

state lifetime of 1.710 ± 0.022 × 10−10 s. This measurement can be additionally be seen to

show agreement with the current calculation of 1.8(2) × 10−10 s at order (Zα)2).

The triplet state lifetime of heliumlike niobium was measured also measured in 1994 by

Simionovici et al. [67]. The result of this measurement was a lifetime of 4.545±0.016×10−11

s which also agrees with the current calculation of 5.0(5) × 10−11 s.

in 1993, heliumlike silver was studied by Birkett et al. [68] and a lifetime 1.11 ± 0.02 ×
10−11 s was measured. This is compared and seen to be in agreement with the current value

of 1.2(2) × 10−11 s.

Currently the ion with the largest nuclear charge for which the lifetime of the metastable

triplet state has been measured is heliumlike xenon. This measurement, performed by

Marrus et al. [69] determined the lifetime to be 2.554 ± 0.076 × 10−12 s. This again can be

seen toagree with the current measurement of 3.0(6) × 10−12 s at the order (Zα)2)

From these comparisons, it can be seen, as expected, that with increasing nuclear charge

the relativistic effects play a greater role. As mentioned before, the accuracy of the nonrel-

ativisitc approximation of the current calculation is of order (Zα)2. That is, the error in

the value of the transition rate AZ , where the subscript Z labels the nuclear charge of the

ion, can be estimated to be 55
48AZ(Zα)2. At this order all of the experimental measurements

agree with the current calculation.

The comparisons of the current work and other theoretical calculations and experimental

measurements are summarized in Tables (4.10), (4.11), and (4.12). Figure (4.1) shows the

ratio of the experimental lifetimes to the theoretical lifetimes for different nuclear charges.
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The errors bars in Figure (4.1) correspond to the experimental error from each experiment.

The red curve is the current theoretical value plus the partial relativistic correction due to

the transition energy.

4.2 Future Work

This work can be extended in several ways. Firstly, the largest source of error in these

calculations, when compared with experimental results, is that these are nonrelativistic

transition rates and are correct only to order (Zα)2. For helium and light heliumlike ions,

this approximation is very good and the agreement between these nonrelativistic decay rates

and the experimentally measured values are very good. As Z increases, this approximation

worsens as can be seen by the disagreement for heliumlike sulfur. Therefore, the next step

in these calculations would be to account for higher order relativistic effects. This can be

accomplished by taking additional Foldy-Wouthuysen transformations of the Hamiltonian,

which as discussed in Sec. (1.3.2) allows any Hamiltonian to be written out to a desired order

of (Zα)2, and then retaining higher order terms that appear in the interaction operator ~α· ~A.

This work can be extended in several ways. Firstly, the largest source of error in these

calculations, when compared with experimental results, is that these are nonrelativistic

transition rates and are correct only to order (Zα)2. For helium and light heliumlike ions,

this approximation is very good and the agreement between these nonrelativistic decay rates

and the experimentally measured value are very good. As Z increases, this approximation

worsens as can be seen by the disagreement for heliumlike sulfur. Therefore, the next step

in these calculations would be to account for higher order relativistic effects. This can be

accomplished by taking additional Foldy-Wouthuysen transformations of the Hamiltonian,

which as discussed in Sec. (1.3.2) allows any Hamiltonian to be written out to a desired order

of (Zα)2, and then retaining higher order terms that appear in the interaction operator ~α· ~A.

The variational Hylleraas wave functions used in this work could be improved upon

by increasing the basis size, or by adding a third, and potentially fourth set of nonlinear

variational parameters to Eq. (2.43). The nonlinear variational parameters in Eq. (2.43)

set the distance scale for the electron coordinates. By introducing a third set of variational

85



4. RESULTS AND CONCLUSIONS

Z A(2 3S1 → 2 1S0) units Theory/Experiment Source

2 1.2724(3) ×10−4 s−1 Theory Current work

1.272 ×10−4 s−1 Drake [18]

1.266 ×10−4 s−1 Johnson et al. [21]

1.272426 ×10−4 s−1  Lach and Pachucki [23]

1.11(33) ×10−4 s−1 Experiment Moos and Woodworth [26]

1.270(83) ×10−4 s−1 Hodgman et al. [32]

3 2.0400(9) ×10−2 s−1 Theory Current work

1.71(38) ×10−2 s−1 Experiment Knight and Prior [56]

6 4.86(1) ×101 s−1 Theory Current work

4.857(11) ×101 s−1 Experiment Schmidt et al. [57]

8 1.044(4) ×103 s−1 Theory Current work

1.046(4) ×103 s−1 Experiment Crespo López-Urrutia et al. [58]

10 1.087(6) ×104 s−1 Theory Current work

1.0905(48) ×104 s−1 Experiment Träbert et al. [28]

Table 4.10: Comparison of M1 decay rates from other theoretical calculations and exper-

imental measurements of the 3S1 state with decay rates from the present calculation for

Z = 2 to Z = 10. The values in parentheses are the uncertainties in the decay rates if given

in the corresponding literature.
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Z A(2 3S1 → 2 1S0) units Theory/Experiment Source

16 1.41(2) ×106 s−1 Theory Current work

1.422(8) ×106 s−1 Experiment Crespo López-Urrutia et al. [60]

17 2.62(4) ×106 s−1 Theory Current work

2.82(19) ×106 s−1 Experiment Bednar et al. [61]

18 4.71(8) ×106 s−1 Theory Current work

4.93(29) ×106 s−1 Experiment Hurbricht and Träbert [62]

22 3.66(9) ×106 s−1 Theory Current work

3.88(20) ×106 s−1 Experiment Gould, Marrus, and Schmieder [63]

23 5.8(2) ×106 s−1 Theory Current work

5.92(24) ×106 s−1 Experiment Gould, Marrus, and Mohr [64]

26 2.00(7) ×108 s−1 Theory Current work

2.08(26) ×108 s−1 Experiment Gould, Marrus, and Mohr [64]

35 4.0(3) ×109 s−1 Theory Current work

4.46(14) ×109 s−1 Experiment Dunford et al. [65]

Table 4.11: Comparison of M1 decay rates from other theoretical calculations and exper-

imental measurements of the 3S1 state with decay rates from the present calculation for

Z = 16 to Z = 35. The values in parentheses are the uncertainties in the decay rates if

given in the corresponding literature.
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Z A(2 3S1 → 2 1S0) units Theory/Experiment Source

36 5.4(4) ×109 s−1 Theory Current work

5.848(75) ×109 s−1 Experiment Cheng et al. [66]

41 2.0(2) ×1010 s−1 Theory Current work

2.1954(68) ×1010 s−1 Experiment Simionovici et al. [67]

47 8.0(9) ×1010 s−1 Theory Current work

9.01(16) ×1010 s−1 Experiment Birkett et al. [68]

54 3.3(5) ×1011 s−1 Theory Current work

3.92(12) ×1011 s−1 Experiment Marrus et al. [69]

Table 4.12: Comparison of M1 decay rates from other theoretical calculations and exper-

imental measurements of the 3S1 state with decay rates from the present calculation for

Z = 36 to Z = 54. The values in parentheses are the uncertainties in the decay rates if

given in the corresponding literature.
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Figure 4.1: The ratio of experimental measurements of the lifetimes of the metastable triplet

state to the current theoretical calculation. The error bars correspond to the experimental

uncertainty of the experiment. The red curve is the nonrelativistic theoretical calculation

minus a partial relativistic correction due to the transition energy.
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parameters, the distance scale would be divided up into close, asymptotic, and intermedi-

ate range regimes. This would improve the accuracy of the wave functions used in these

calculations.

While the results from this thesis agree with the recently most accurate theoretical

results of  Lach and Pachucki, as well as all the lower nuclear charge heliumlike ions, there is

still some discrepancy with the results of experimental measurements for heliumlike sulfur.

There is currently no explanation for this difference, and further study is required.

The theoretical works by  Lach and Pachucki, and Johnson et al. have also been used

to determine the transition rate and lifetimes of other forbidden transitions, such as the

3 3S1 → 2 3S1, 2 3P2 → 1 1S0, 2 3P1 → 1 1S0, and 2 1P1 → 2 3S1 transitions. The methods

used in this thesis would extend directly to the calculation of these transitions as well. The

dipole transition operators would need to be derived.

The determination of the zeroth and first order coefficients in the 1
Z expansion used

in this work is a lowest order approximation. This is because it was constructed using a

product of two noninteracting nonrelativistic solutions to the hydrogen Hamiltonian as the

unperturbed helium solutions. It would be possible to use relativistic wave functions to

evaluate numerically these first two coefficients.

When calculating the first order coefficients of the 1
Z expansions, it was required to

determine the first order solutions to the corresponding perturbation equations. This was

accomplished numerically by using the pseudo state method described in Sec. (2.5). It is

possible, following the work of Dalgarno and Parkinson(1967) [50] for the 1snp 1P → 1s2 1S

electric dipole transition, to solve these perturbation equations analytically. The choice

to use numerically determined wave functions is justified because these calculations were

carried out in quadruple precision and the resulting first order coefficients converged with

a numerical accuracy of the same order as the data points used in the curve fitting. An

attempt to solve these perturbation equations for analytic solutions was made, however it

was never completed. As a further step, analytic solutions similar to the ones found for the

dipole transition by Dalgarno and Parkinson should be determined and used to calculate

the first order coefficients in the 1
Z expansions of the matrix elements.
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Finally, an attempt to improve the accuracy of the results can be achieved by using more

powerful computational resources . This work was completed in quadruple precision on the

Shared Hierarchical Academic Research Computing Network (SHARCNet). Higher preci-

sion results would require computational resources that are capable of storing information

with higher than quadruple precision.

91



Appendix A

Parahelium and Orthohelium

Helium is a two electron system and electrons, being fermions, must obey the Pauli exclusion

principle. The Pauli exclusion principle asserts that no two identical fermions may occupy

the same quantum state simultaneously. Therefore the wave function for helium will have

restrictions based upon the spin configuration of its electrons. Due to the Pauli exclusion

principle, the total wave function must therefore be antisymmetric. The wave function for

helium can be written, in terms of a spatial wave function and a spin wave function, as

follows

Ψ(1, 2) =



















ΨS (r1, r2)χA(1, 2)

or

ΨA (r1, r2)χS(1, 2)

(A.1)

where ΨS (r1, r2) and ΨA (r1, r2) are the symmetric and antisymmetric spatial wavfunctions,

and χS(1, 2) and χA(1, 2) are the the symmetric and antisymmetric spin wave functions.

The spatial wave functions are written

ΨS (r1, r2) =
1√
2

[Ψ (r1, r2) + Ψ (r2, r1)] (A.2)

ΨA (r1, r2) =
1√
2

[Ψ (r1, r2) − Ψ (r2, r1)] , (A.3)
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and it can be seen that the symmetric spatial wave function, Eq. (A.2) remains unchanged

under the exchange of particle labels, whereas the antisymmetric spatial wave function, Eq.

(A.3) is modified by a factor of (−1).

For two electrons, there are four possible configurations which will be labeled according

to their symmetries as

χS =



















|12 1
2〉

1√
2

[

|12 −1
2 〉 + |−1

2
1
2〉
]

|−1
2

−1
2 〉,

(A.4)

χA =
1√
2

[

|1
2

−1

2
〉 − |−1

2

1

2
〉
]

, (A.5)

where the symmetric spin function Eq. (A.4) is known as the triplet state, and the antisym-

metric spin function Eq. (A.5) is known as the singlet state. When the electrons are in a

triplet state (consequently with an antisymmetric spatial wave function), the helium atom

is referred to as orthohelium. When the electrons are in the singlet state, the helium atom

is referred to as parahelium.

The orthohelium levels have a lower energy in comparison to their parahelium counter-

parts, and this is a consequence of the symmetry of the spatial part of the wave function

and the Coulomb repulsion of the two electrons. When in an orthohelium configuration,

the electrons are in a symmetric triplet state, and to maintain the antisymmetry of the

total wave function, the spatial part of the wave function must be antisymmetric. In para-

helium, the symmetric form of the spatial wave function allows the electrons, on average,

to be located in closer proximity than with the antisymmetric spatial wave function. Since

the energy associated with the Coulomb potential is proportional to inverse square of the

separation, the orthohelium states, with a larger average separation, clearly have a lower

energy1.

1The entire argument can be seen also be seen as an example of Hund’s first rule.
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Foldy-Wouthuysen Trasnformation:

Electron in an External Field

As an example, the Foldy-Wouthuysen transformation can be applied to a single electron

in a electrostatic central potential. The Dirac Hamiltonian for such a system is

H = βm+ eφ+ α · (p− eA) , (B.1)

where φ is the electrostatic potential. In this appendix, multiple Foldy-Wouthuysen trans-

formations will be carried out and terms will be kept up to order (vc )2 in the nonrelativisitic

limit.

As with the free particle, the odd term in the Hamiltonian Eq. (B.1) is α · (p− eA),

were all other terms in this Hamiltonian are even. This suggests that the unitary operator

we choose would be

UFW = e
β
2m

O, (B.2)

with

O = α · (p− eA) .
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Including time dependence, the Foldy-Wouthuysen transformation to be undertaken is

H ′ = UFW

(

H − i
∂

∂t

)

U †
FW. (B.3)

This can be evaluated by use of the operator identity for any two operators A and B

eABe−A = B + [A,B] +
1

2
[A, [A,B] ] +

1

3!
[A, [A, [A,B] ] ] + . . . (B.4)

+
1

n!
[A, [A, . . . [A, [A,B] ] . . .] ] + . . . ,

where the final term is taken to mean n commutators.

To obtain H ′ one must evaluate commutators of O with H and the time derivative.

In this example we will retain only relativistic corrections up to order (vc )4. With the

commutation relations

[β,O] = 2βO (B.5)

and

[β, eφ] = 0 (B.6)

the necessary commutators involving H can be written as

[
β

2m
O,H] = [

β

2m
O, βm] + [

β

2m
O, eφ] + [

β

2m
O,O] (B.7)

=
β

m
O2 +

β

2m
[O, eφ] −O,

[
β

2m
O, [ β

2m
O,H] ] = [

β

2m
O, β

m
O2 +

β

2m
[O, eφ] −O] (B.8)

= − 1

m2
O3 − 1

4m2
[O, [O, eφ] ] − β

m
O2,

[
β

2m
O, [ β

2m
O[

β

2m
O,H] ] ] = [

β

2m
,

1

m2
O3 − 1

4m2
[O, [O, eφ] ] − β

m
O2] (B.9)

=
1

m2
O3 − 1

m3
βO4,

and

[
β

2m
O, [ β

2m
O, [ β

2m
O[

β

2m
O,H] ] ] ] = [

β

2m
O, 1

m2
O3 − 1

m3
βO4] (B.10)

=
β

m3
O4.
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The commutators required from the time derivative can be derived by first performing the

derivative

e
β
2m

O ∂

∂t
e

−β
2m

O = e
β
2m

O(− β

2m
Ȯ)e

−β
2m

O (B.11)

and then expanding with in the same manner using Eq. (B.4) such that

e
β
2m

O ∂

∂t
e

−β
2m

O ≈ iβ

2m
Ȯ + i

[

β

2m
,− β

2m
Ȯ
]

+ . . . , (B.12)

where the first commutator can be expressed as

[
β

2m
O,− β

2m
Ȯ] = − 1

4m2
[O, Ȯ]. (B.13)

Using the commutator identity Eq. (B.4) to expand the Foldy-Wouthuysen transforma-

tion Eq. (B.3) with Eqns. (B.7), (B.8), (B.9), (B.10), and (B.13) gives, after simplification

H ′ = βm+ eφ+
β

2m
O2 − β

8m3
O4 − 1

8m2
[O, [O, eφ] ] − i

8m2
[O, Ȯ] (B.14)

+
β

2m
[O, eφ] − 1

3m2
O3 +

iβ

2m
Ȯ.

The first line of Eq. (B.14) contains only even operators and the second line of Eq. (B.14)

contains only odd operators which are higher order than O. We can write these operators

as

Λ = eφ+
β

2m
O2 − β

8m3
O4 − 1

8m2
[O, [O, eφ] ] − i

8m2
[O, Ȯ] (B.15)

and

O′ =
β

2m
[O, eφ] − 1

3m2
O3 +

iβ

2m
Ȯ, (B.16)

such that

H ′ = βm + Λ + O′. (B.17)

The odd operator O′ can be canceled in the same fashion as before by performing a second

Foldy-Wouthuysen transformation

H ′′ = e
β
2m

O′

(

H ′ − i
∂

∂t

)

e−
β
2m

O′

. (B.18)

The result of this second Foldy-Wouthuysen transformation is

H ′′ = βm+ Λ +
β

2m
[O′,Λ] +

iβ

2m
Ȯ′] (B.19)

= βm+ Λ + O′′,
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where O′′ is again a higher order correction. To eliminate O′′, a third Foldy-Wouthuysen

transformation is applied

H ′′′ = e
β
2m

O′′

(

H ′′ − i
∂

∂t

)

e−
β
2m

O′′

. (B.20)

The result of this third Foldy-Wouthuysen transformation is, after keeping only terms

up to order O4,

H ′′′ ≈ βm+ Λ (B.21)

≈ βm+ eφ+
β

2m
O2 − β

8m3
O4 − 1

8m2
[O, [O, eφ] ] − i

8m2
[O, Ȯ]

≈ βm+ eφ+
β

2m
(~σ · ~π)2 − e

8m2
[(~σ · ~π) , [(~σ · ~π) , φ] ] − β

8m3
(~σ · ~π)4 .
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Appendix C

First Order Correction to the Hydrogen

Wavefunction: Dipole Polarizability

By treating the dipole interaction r cos θ as a perturbation, the hydrogen Hamiltonian is

written, in atomic units,

H = H0 + r cos θ, (C.1)

with the expansions

Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + . . . , (C.2)

E = E(0) + λE(1) + λ2E(2) + . . . , (C.3)

where λ is an expansion parameter that will be set to one at the end of the calculation, H0

is the unperturbed hydrogen Hamiltonian with energy E0 = −1/2, and Ψ(0) is the ground

state hydrogen wave function. Using the above definitions in the Schrödinger equation, and

collecting terms of like order, up to first order, gives

H0Ψ
(0) = E(0)Ψ(0) (C.4)

and

(H0 − E(0))Ψ(1) + r cos θΨ(0) = E(1)Ψ(0). (C.5)
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The first order perturbation equation (C.5) can be simplified by using E(1) = 0 (as discussed

in Sec. (2.5.1)) as

(H0 − E(0))Ψ(1) + r cos θΨ(0) = 0. (C.6)

To solve Eq. (C.6), the form of Ψ(1) is taken to be

Ψ(1) =
∑

k

bkr
r cos θe−r, (C.7)

and is then substituted into Eq. (C.6). Explicitly acting on Ψ(1) by H0 yields

H0Ψ
(1) = −1

2

[

1

r2
∂

∂r

(

r2
∂

∂r
Ψ(1)

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
Ψ(1)

)]

− 1

r
Ψ(1), (C.8)

where the derivatives with respect to the azimuthal angle have been omitted since they do

not contribute. Inspection of the second term in Eq. (C.8) shows

1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
Ψ(1)

)

=
1

r2 sin θ

∂

∂θ

∑

k

bkr
ke−r

(

− sin2 θ
)

(C.9)

=
−2

r2

∑

k

bk cos θrke−r

=
−2

r2
Ψ(1),

which is precisely − l(l+1)
r2

Ψ(1), with l = 1, as expected for a p-state solution.

Direct substitution of Eq. (C.7) into Eq. (C.6), yields

0 = −1

2

∑

k

[

bkk(k + 1)rk−2 − 2bk(k + 1)rk−1 − bkr
k − 2bkr

k−2
]

(C.10)

−
∑

bkr
k−1 − E(0)

∑

k

bkr
k + r

1√
π
,

where the entire equation has been multiplied by er

cos θ . By relabeling the index of the first

term with k → k + 1,

0 = −1

2

[

∑

k

bk+1(k + 2)(k + 1)rk−1 − 2bk(k + 1)rk−1 − bkr
k − 2bkr

k−2

]

(C.11)

−
∑

k

bkr
k−1 − E(0)

∑

k

bkr
k +

r√
π
.
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C. FIRST ORDER CORRECTION TO THE HYDROGEN WAVEFUNCTION: DIPOLE POLARIZABILITY

Collecting terms of like powers of r gives an infinite set of equations. For powers of order

O
(

r−2
)

→ O
(

r3
)

, these equations are

O
(

r−2
)

: 0 = −1

2
2b0 (C.12)

O
(

r−1
)

: 0 = −1

2
[2b1 − 2b0 − 2b1] − b0 (C.13)

O
(

r0
)

: 0 = −1

2
[6b2 − 4b1 + b0 − 2b2] − b1 − E(0)b0 (C.14)

O (r) : 0 = −1

2
[12b3 − 6b2 + b1 − 2b3] − b2 −E(0)b1 +

1√
π

(C.15)

O
(

r2
)

: 0 = −1

2
[20b4 − 8b3 + b2 − 2b4] − b3 −E(0)b2. (C.16)

O
(

r3
)

: 0 = −1

2
[30b5 − 10b4 + b3 − 2b5] − b4 − E(0)b3 (C.17)

Immediately, from Eq. (C.12) the the zeroth order expansion coefficient is determined as

b0 = 0. While Eq. (C.13) gives no new information, from Eq. (C.14) it is found that

b2 =
1

2
b1. (C.18)

Further simplification of Eqns. (C.15), (C.16), and (C.17) gives

−5b3 + 2b2 +
1√
π

= 0 (C.19)

−3b4 + b3 = 0 (C.20)

7b5 + 2b4 = 0. (C.21)

The perturbation term is only present in Eq. (C.15), and therefore we look for a recursion

relation for the coefficients with k larger than 4. By relabeling the index k → k + 4, the

equations of order O
(

r3
)

and higher are

−1

2
bk+5(k + 5)(k + 6) + bk+4(k + 4) = 0, (C.22)

which yields the recursion relation

bk+5 = 2bk+4
k + 4

(k + 5)(k + 6)
. (C.23)

In the limit of large k Eq. (C.23) goes like

bk+5 ≈ bk+4
1

k
, (C.24)
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which leads to Ψ(1) diverging as r → ∞. This means that there must be some value of

k = kmax such that bkmax+1 = 0. The value of kmax can be found by applying this

condition to Eq. (C.24),

0 =
kmax + 4

(kmax + 5)(kmax + 6)
. (C.25)

Therefore, kmax = 4, and any value coefficient bk with k > 4 must be zero. Including this

result into Eqns. (C.19), (C.20), and (C.21) gives

b4 = 0, b3 = 0, b2 = −1
2

1√
π
, and b1 = − 1√

π
. (C.26)

By writing cos θ = Y 0
1

√

4π
3 , the wave function Eq. (C.7) is then found to be

Ψ(1) = − 1√
3

(

2r + r2
)

e−rY 0
1 . (C.27)
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Appendix D

1
Z
Expansion: Matrix Elements

Following the form of Eq. (2.105) we can write the wavefuntion to first order in the pertur-

bation Eq. (2.99)

ψ = ψ(0) +
1

Z
ψ(1), (D.1)

with the orthonormalization conditions

〈ψ(0)|ψ(1)〉 = 0 (D.2)

and

〈ψ(0)|ψ(0)〉 = 1. (D.3)

For any atomic property L, a power series expansion of the wave function given in Eq.

(2.105) implies that a power series expansion can be written for the atomic property. For

the purpose of showing the general method of finding the first order correction terms used

in this work, all discussion shall be restricted to single electron operators; however, many

body operators can be expanded similarly, given that the operator remains homogenous

under the scale transformation of Eq. (2.100) [51].
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D.
1
Z

EXPANSION: MATRIX ELEMENTS

D.1 Diagonal Elements

The diagonal matrix elements for an operator L and state ψi can be written [51]

〈L〉 = 〈ψi|L|ψi〉 (D.4)

=

[

L(0) + 1
ZL

(1) +
(

1
Z

)2
L(2) + . . .

1 + 1
ZS

(1) +
(

1
Z

)2
S(2) + . . .

]

,

where L(i) and S(i) are defined

L(n) =

n
∑

m=0

〈ψ(m)|L|ψ(n−m)〉 (D.5)

and

S(n) =

n
∑

m=0

〈ψ(m)|ψ(n−m)〉. (D.6)

To first order, due to Eq. (D.2) and Eq. (D.3), S(1) = 0. It is also always possible to choose

normalization conditions such that all S(n) = 0. To first order, the diagonal matrix elements

are

〈L〉 = L(0) +
1

Z
L(1). (D.7)

Direct substitution of Eq. (D.1) into Eq. (D.5) for n = 0, 1 yields expressions for the zeroth

and first order terms of the diagonal matrix elements

L(0) = 〈ψ(0)|L|ψ(0)〉 (D.8)

and

L(1) = 〈ψ(0)|L|ψ(1)〉 + 〈ψ(1)|L|ψ(0)〉 (D.9)

= 2〈ψ(0)|L|ψ(1)〉.

By invoking the Dalgarno Interchange theorem [50] [51] [52] explained in Sec. (2.6.1), it is

also possible to write

L(1) = 2〈ψ(0)|H(1)|φ(1)〉, (D.10)

whereH(1) = 1
r12

is the electron-electron interaction term, and |φ(1)〉 satisfies the first order

pertubation equation

(H0 − E0) |φ(1)〉 +
(

L− L(0)
)

ψ(0) = 0 (D.11)
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D.
1
Z

EXPANSION: MATRIX ELEMENTS

with

〈φ(1)|ψ(0)〉 = 0. (D.12)

D.2 Off-Diagonal Elements

The process to calculate off-diagonal matrix elements of an operator L between the initial

and final states |ψi〉 and |ψf 〉 is similar to procedure for calculating diagonal elements.

Based on Cohen (1988) we can write the matrix element

〈ψf |L|ψi〉 =







T (0) + 1
ZT

(1) +
(

1
Z

)2
T (2) + . . .

(

1 + 1
ZS

(1)
f +

(

1
Z

)2
S
(2)
f + . . .

)1/2 (

1 + 1
ZS

(1)
i +

(

1
Z

)2
S
(2)
i + . . .

)1/2






,

(D.13)

where

T (n) =
n
∑

m=0

〈ψ(n)
f |L|ψ(n−m)

i 〉, (D.14)

S
(n)
f =

n
∑

m=0

〈ψ(n)
f |ψ(n−m)

f 〉, (D.15)

and

S
(n)
i =

n
∑

m=0

〈ψ(n)
i |ψ(n−m)

i 〉. (D.16)

With the othorgonality Eq. (D.2), to first order the denomintor in Eq. (D.13) reduces to

unity. By substitution of Eq. (D.1) into Eq. (D.14) the zeroth and first order correction

terms can be written

T (0) = 〈ψ(0)
f |L|ψ(0)

i 〉 (D.17)

and

T (1) = 〈ψ(1)
f |L|ψ(0)

i 〉 + 〈ψ(0)
f |L|ψ(1)

i 〉. (D.18)

Using the Dalgarno Interchange theorem the first order term can be rewritten

T (1) = 〈φ(1)f |H(1)|ψ(0)
i 〉 + 〈φ(1)i |H(1)|ψ(0)

f 〉, (D.19)
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1
Z

EXPANSION: MATRIX ELEMENTS

where φ
(1)
i and φ

(1)
f are the solutions to the equations

(

H0 − E
(0)
f

)

φ
(1)
f + Lψ

(0)
i = T (0)ψ

(0)
f (D.20)

and
(

H0 − E
(0)
i

)

φ
(1)
i + Lψ

(0)
f = T (0)ψ

(0)
i , (D.21)

and satisfy

〈φ(1)f |ψ(0)
f 〉 = 〈φ(1)i |ψ(0)

i 〉 = 0. (D.22)
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