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Abstract

This thesis consists of two parts, refereed as Part I and Part II.

Part I: Testing homogeneity of several location-scale populations.

The widely used method for testing homogeneity of several normal populations 

is to test the equality of means based on the assumption that the variances among 

different groups are same. But in practice, we often get data which are different not 

only in means but also in variances.

Singh (1986) tests the homogeneity of several normal populations simultaneously 

regarding commonality of means and variances based on a method by Fisher (1950). 

However, this problem arises not only in normal populations but also in other popu­

lations. In this thesis, I extend Fisher’s method to location-scale models in general. 

The location-scale models encompass all two parameter mean-variance models, such 

as the normal, negative binomial and beta-binomial models. Two test statistics are 

developed, one of which is based on the combination of two likelihood ratio statistics 

and the other is based on the combination of two score test statistics. Theoretical 

and empirical properties of these procedures are studied and applied to real life data 

analysis problems.

Part II: Analysis of paired count data with zero-inflation and over-dispersion.

Data in the form of paired counts (pre-treatment and post-treatment counts) arise 

in many fields such as biomedical, toxicology, epidemiology and so on. Poisson and 

binomial models are the most widely used models for these data. Frequently encoun­

tered problems in these data are the presence of extra-zeros and extra-dispersion and,

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the possible correlation between the pre-treatment and post-treatment count.

In this thesis I developed methods of analysis for two different sets of paired 

count data, one of the data set is obtained from an experiment on premature ven­

tricular contractions (PVC) (Berry, 1987) and the other set is a dental epidemiology 

data representing decayed, missing and filled teeth (DMFT) index ( Bohning, Di­

etz, Schlattmann, Mendonca and Kirchner, 1999). I, then, study properties of these 

methods and anslyse the PVC data and the DMFT index data.

v
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Chapter 1

Introduction

When data are obtained from several different groups in an experiment, a very com­

mon statistical inference problem is to test if these data come from the same popu­

lation. This problem can arise in many different areas. For example, a corn field is 

divided into several parts, each part is treated with a different fertiliser to see if these 

fetilisers have different effects; a teacher practices different teaching methods on dif­

ferent groups of students in her class to see if these methods yield different results; a 

doctor treats patients with different medicines to see if the treatment effect is same or 

not and so on. When we test this problem, the Fisher analysis of variance technique 

is widely used, by which we test the equality of means based on the assumption that 

the variances among different groups are same.

Hovewer, in practice, we often get data which are different not only in means but 

also in variances. Snedecor and Cochran (1967, pp 324) observed that an application 

of different treatments to otherwise homogeneous experimental units often results 

in groups tha t are different not only in means but also in variances. Thus, testing

1
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C hapter 1. In troduction  2

homogeneity of several populations in terms of means and variances is of considerable 

interest. The usual practice for testing homogeneity of several populations in terms 

of means and variances is first to test for the equality of variances and once this 

assumption is found to be tenable then to test the equality of means. Fisher (1950) 

suggested combining several independent tests. We quote (Fisher, 1950, pp 99) 

“When a number of quite independent tests of significance have been made, it 

sometimes happens that although few or none can be claimed individually as signif­

icant, yet the aggregate gives an impression that the probabilities are on the whole 

lower than would often have been obtained by chance. It is sometimes desired, taking 

account only of these probabilities, and not of the detailed composition of the data 

from which they are derived, which may be of very different kinds, to obtain a single 

test of the significance of the aggregate, based on the product of the probabilities 

individually observed.”

Assume that we wish to test a null hypothesis Ho : 9 € 0o, where 0o is a subset 

of a parameter space 0 . Suppose we have available p independent tests for testing 

H0. We wish to combine these p tests into an overall test for H0. Several methods 

of combining independent tests, including a method by Fisher (1950), are available. 

None of these procedures are uniformly most powerful. However, Littell and Folks 

(1971) have compared Fisher’s method with three other well-known methods via exact 

Bahadur relative efficiency, and have found that Fisher’s method is always at least 

as efficient as the other three methods and Littell and Folks (1973) have shown that 

Fisher’s method is the most efficient.

Singh (1986) uses Fisher’s method for testing simultaneously the equality of means
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C hapter 1. In troduction  3

and the equality of variances of several normal populations. Singh uses a test statistic 

which is the combination of two independent likelihood ratio statistics. However, this 

problem arises not only in normal populations but also in other populations such 

as an over-dispersed Poisson model, namely the negative binomial model and an 

over-dispersed binomial model, namely the beta-binomial model. Both models are 

widely used for count data with over-dispersion in many fields such as public health, 

toxicology, epidemiology, sociology, psychology, engineering, agriculture and so on. 

Also, this problem arises in many widely used lifetime models, such as, the Weibull 

or extreme-value models.

In this thesis, we extend Fisher’s method to location-scale models in general. 

Two test statistics are developed, one of which is based on the combination of two 

likelihood ratio statistics and the other is based on the combination of two score 

test statistics. Under the general location-scale setup asymptotic independence is 

established for the two likelihood ratio statistics as well as for the two score test 

statistics. Then, by applying the general results, we obtain specific test statistics for 

testing homogeneity of several normal (//, <r2) populations, several negative binomial 

(m, c) populations, several beta-binomial (n, 0) populations and several Weibull (0, 

0) populations . In the normal case exact independence of the two likelihood ratio 

statistics is shown by Singh (1986). In this thesis, we show exact independence of the 

two score test statistics. In all four cases simulations are conducted to compare the 

two procedures. We conclude that Fisher’s method of combining two statistics, even 

when they are only asymptotically independent, does, in general, perform well for 

testing homogeneity of several populations in terms of the means and the variances.
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C hapter I. In troduction  4

However, the score test statistics have simple forms, are easy to calculate, and have 

uniformly good level properties. Therefore Fisher’s method based on combining two 

score test statistics might be the method of choice.

Another problem considered in this thesis is the analysis of data in the form of 

paired counts. Data in the form of counts arise in many fields such as biomedical, 

toxicology, epidemiology and so on. Poisson and binomial models are most widely 

used models for count data. However, a Poisson model and a binomial model may not 

fit count data well. Frequently encountered problems in these data are the presence of 

more zeros than what can be expected and the presence of over-dispersion, which lead 

to a failure of the variance-mean relation of a Poisson model and a binomial model. 

In practice, the paired counts data are obtained before and after an experiment and 

the extra zeros may occur in different ways. For example, the data on premature 

ventricular contractions (PVC), given as paired counts by Berry (1987) for before 

and after drug administration, only have extra zeros after the drug administration, 

while the DMFT index data (Bohning et al., 1999), which have the form of (DMFT1, 

DMFT2) as paired count data for pre-treatment and after-treatment, have extra 

zeros, in most situations, as the common pair of (0, 0). In this thesis, we develop two 

different procedures to analyse data in the form of paired counts with zero-inflation 

and over-dispersion.

The data on premature ventricular contractions (PVC), originally given as counts 

by Berry (1987), are analysed by Farewell and Sprott (1988) as proportions. Condi­

tional on the total count before and after drug administration, a binomial distribution 

is introduced. However, a binomial model may fail to fit a set of data in the form
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C hapter 1. In troduction  5

of proportions either because of the presence of zero-inflation (Farewell and Sprott, 

1988) or because of the presence of over-dispersion (Deng and Paul, 2000). In this 

study, we use a zero-inflated beta-binomial model to develop procedures for testing for 

treatment effect. Based on this model, we can analyse the treatment effect through 

two parameters, namely, the zero-inflation parameter and the proportion parame­

ter. Note that the zero-inflation parameter represents the proportion of cure and the 

proportion parameter represents the effect of the treatment on the uncured popula­

tion. Therefore to determine treatment effect we can (i) estimate the zero-inflation 

parameter, the proportion of cure, and test whether the uncured population had any 

improvement of their prevailing condition as a result of the treatment or (ii) test the 

overall effect of the treatment. Results of a small simulation experiment, to study 

small sample behavior of a score test and a likelihood ratio test, are reported and the 

PVC data are analysed.

In biomedical and dental epidemiological experiments, data arise in the form of 

pre-treatment and post-treatment counts. The DMFT data, a dental epidemiology 

data set, are presented by (Bohning et al., 1999) for a prospective study of caries 

prevention of school-children from an urban area of Belo Horizonte (Brazil). To 

study treatment effects, Bohning et al. (1999) use a zero-inflated Poisson regression 

model (ZIPR) with the log function as the link and the pre-treatment count as the one 

of the covariates to delete the baseline effect. We introduce a zero-inflated bivariate 

Poisson regression model (ZIBPR) with a log-linear link for the ratio of the two mean 

parameters of the bivariate Poisson distribution and jointly model pre-treatment and 

post-treatment counts. We develop the EM-algorithm (Dempster et al., 1977) to
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C hapter 1. In troduction  6

obtain the maximum likelihood estimates of the parameters of the ZIBPR model. 

Further, we obtain exact the Fisher information matrix of the parameters of the 

ZIBPR model and develop a procedure for testing treatment effects of the method. A 

model selection procedure is used to decide on an appropriate model. For the DMFT 

index data, based on the model selected, we arrive at a ranking of the treatment 

effects which coincides with that from a simple analysis of treatment effects.

This thesis consists of two parts. Part I, including Chapter 3, Chapter 4 and 

Chapter 5, developes procedures for testing homogeneity of several location-scale 

populations in general. We compare our precedure with the procedure proposed by 

Singh (1986) for the normal case and apply the general method to several non-normal 

cases. Part II, including Chapter 6 and Chapter 7, analyses the treatment effects of 

paired count data with zero-inflation and over-dispersion. We develop two procedures, 

one of which is illustrated by the PVC data (Berry, 1987) and the other is illustrated 

by the DMFT data (Bohning et al., 1999).

In Chapter 2, we review some basic concepts and large sample hypothesis testing 

procedures such as the likelihood ratio test and the C (a ) test. We also give review 

Fisher’s method for combining several independent test statistics, the EM-algorithm 

and orthogonal transformations for parameters.

In Chapter 3, we extend Fisher’s method to location-scale models in general. Two 

test statistics are developed, one of which is based on the combination of two likelihood 

ratio statistics and the other is based on the combination of two score test statistics. 

Under the general location-scale setup, asymptotic independence is established for 

the two likelihood ratio statistics as well as for the two score test statistics.
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In Chapter 4, we use the general result of Chapter 3 to test the homogeneity of 

several normal populations based on combining the score test statistics and compare 

our method with the procedure proposed by Singh (1986). In the normal case, exact 

independence of the two likelihood ratio statistics is shown by Singh (1986). In Chap­

ter 4, we show exact independence of the two score test statistics. Some simulations 

are conducted to compare the two procedures.

In Chapter 5, by applying the general results, we obtain two procedures for testing 

homogeneity of some non-normal populations. Here we consider two over-dispersed 

discrete models, namely the negative binomial model and the beta-binomial model. 

We also consider a widely used lifetime model, namely the Weibull or extreme-value 

model. In all three cases, simulations are conducted to compare the two procedures.

In Chapter 6, we develop score tests to test for treatment effect in the PVC 

data based on a zero-inflated beta-binomial model. Results of a small simulation 

experiment, to study small sample behavior of a score test and a likelihood ratio test, 

are reported and the PVC data are analysed.

In Chapter 7, a zero-inflated bivariate Poisson model is proposed to analyse the 

DMFT index data. We develop an EM-algorithm to obtain the maximum likelihood 

estimates and a procedure for testing treatment effects based on a zero-inflated bi­

variate Poisson regression model. We illustrate our procedures by the DMFT index 

data of Bohning et al. (1999).

In Chapter 8, a summary of this thesis and some discussions of future research 

are given.
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Chapter 2

Some Prelim inaries and R eview

2 .1  y/n consistent estim ators

Let 9n, n = 1 , 2 , be a sequence of estimators of 9. If the quantity \9n — 6\= 0 ( n 1//2) 

in probability as n —► oo, then the estimator 9n is called a \ fn  consistent estimator 

of 9.

\ fn  consistent estimators were first suggested by Neyman (1959) for constructing 

the C (a ) test. Also noted by Moran (1970).

If 9n is a sequence of maximum likelihood estimates of 9, then by the asymp­

totic properties of maximum likelihood estimators, it can be showed that maximum 

likelihood estimator is y fn  consistent.

2 .2  Likelihood ratio test

Suppose X i , X 2, ■■■, X n be a random sample of size n from the population of X ,  which 

has a distribution function f ( X ,  A), where A =  (0, <j>)' with

8
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C hapter 2. Som e Prelim inaries and R ev iew 9

0 =  (0i, #2 , •••, Op)' and <f> = (0i, 02, 0 S)'.

Then the likelihood can be given as L { X i , X 2, . . . ,Xn,X). It is of interest to test 

the null hypothesis Ho : 9 =  0o =  (0io, 020, •••, 0Po)/ against Hi : 9 ^  0Q treating 

0 =  (0i, 0 2 , 0s)' the nuisance parameter.

The likelihood ratio for testing H q  is defined as

A L ( X l , X 2, . . . ,Xn,6oJ )

L ( x u x 2, . . . , x n, e o ^ y

Let log refer to the base e logarithm. Then, the log-likelihood ratio statistic is 

given by

L R  = —2 log A =  2(Zi — lo),

where l0 =  log L ( X i , X 2, . . . ,Xn, 0o, 0) is the maximized log-likelihood under H0 with 0 

as the maximum likelihood estimate of 0 under Ho and l\ =  log L ( X i , X 2, ■■■, X n, 6o, 0) 

is the maximized log-likelihood under the alternative hypothesis with 90 and 0 as the 

maximum likelihood estimates of 9 and 0 under H\  respectively. Under the null 

hypothesis Ho, for a large n, the statistic L R  is distributed approximately as a chi- 

square with p degrees of freedom.

2 .3  Score test

Let I = l(9,<fi-,y) be the log-likelihood for data y — (yi ,. . .,yn) with parameters 9 = 

(0 i,...,9P)' and 0 =  ( 0 i , ...,<ps)', where 0 is the parameter of interest and 0 is the 

nuisance parameter. Suppose we wish to test 

H0 : 9 = 90 against H\ \ 9 ^  90,
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Further, let

dl
* = m

di_ j n
W d " " d e p

7 =
8l_
dcj)

dl

d</>i
dl

d<f>a .

E  -
d2i

loch — E

dddd'

d2l

and

E

868(f)1

82l
d(j)84>'

81 81
Now, define S  = —  — B — , where B  =  h< p d  is the partial regression coefficient

86 8<p
81 81

matrix obtained by regressing —  on — . The dispersion matrix of S  is
86 8(p

he-4> = he — h^I^hpo-

Then, it can be shown (Neyman, 1959) that asymptotically, as n  —> oo

S ' I h \ S ~ x i y

If (f) =  {(j) \1..., (f>s)' in S and he-<t> is replaced by some -ydr-consistent estimator 

4> =  ( 0 i , 0 a ) ' ,  then, asymptotically, as n —> oo,

where S  and ho-<t> are obtained by replacing 0 by 0 in S and he-<t>■ This is Ney- 

man’s C(a)  test. Further, let 0 be the maximum likelihood estimate of 0 under 

Hq, and 0  and ho-<f> be the estimate values obtained by replacing 0 by 0 in 0  and
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Iee-4> respectively, then S  reduced to '</’• The C(a)  statistic then reduces to 4 > ' I ■ 

Asymptotically, as n  —> oo, C ~  X(p)- This is Rao’s score test (Rao, 1947).

The score test is a special case of the more general C(a)  test in which the nui­

sance parameters are replaced by maximum likelihood estimates. The score test is 

particularly appealing as it requires estimates of the parameters only under the null 

hypothesis, and often produces a statistic which is simple to calculate. For more dis­

cussion on the choice of C(a)  or score tests see Breslow (1990) and Paul and Banerjee 

(1998).

2 .4  F isher’s m ethod  of com bining independent tests

Assume that we wish to test a null hypothesis H 0 : 9 G 0o, where 0o is a subset of 

a parameter space 0 . Suppose we have available p independent tests for testing H q .  

We wish to combine these p tests into an overall test for H q .

Let TO), • ■ • ; T(p) be p independent sequences of test statistics for testing Hq. We 

wish to combine T ^ \  • • • , into an overall statistic Tn. Then, Fisher’s method 

of combining the independent tests T ^ \  ■ ■ ■ ,T^P* is given by T„F* =  —2 log Hi 

where =  1 — F^* (T^)) and F^*(t) = Po{TW < t} is the null cumulative dis­

tribution function of Then P l\  i =  1, 2, ...,p, are independently and uniformly 

distributed over (0, 1) for 9 G 0o- Further, for 9 G 0o the quantity —2 log 

has a chi-square distribution with 2 degrees of freedom, and hence, the quantity 

Tn*"* = —2 log f l i  P l*= —2 log has a chi-square distribution with Ip  degree of 

freedom under Hq. A large value of Tn*"* indicates evidence against the null hypoth­

esis.
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Several methods of combining independent tests, including a method by Fisher 

(1950), are available. None of these procedures are uniformly most powerful. How­

ever, Littell and Folks (1971) have compared Fisher’s method with three other well- 

known methods via exact Bahadur relative efficiency, and have found that Fisher’s 

method is always at least as efficient as the other three methods and Littell and Folks 

(1973) have shown that Fisher’s method is the most efficient.

2 .5  O rthogonal param eter and orthogonal transform ation

Let I =  1( 9 , (p;y) be the log-likelihood for data y =  (j/i,...,yn) with parameters 9 =  

(9x, . . . , 9P)'  E  0  and (f> =  ((f)i , ..., <f>a)' E $ ,  where 9 is the parameter of interest and <f> 

is the nuisance parameter, and 0  and $  are the corresponding parameter spaces.

Orthogonality is defined with respect to the expected Fisher information matrix. 

We define 9 to be orthogonal to <p if the elements of the information matrix satisfy

dl d l \  dl2 \  n
t6k^  \ d 9 k l dcf>kJ  V d9kld<f>kJ

for k\ =  1, ...,p and k<i =  1,..., s. If this holds for all 9 E  0  and all </>€$, then 9 and 

<f> are globally orthogonal.

dl dl (  d l2
Under global orthogonality, the scores —  and —  are uncorrelated and E  I —-

d 9  d(f> \  d9d(f>'

0.

As noted in Cox and Reid (1987), it is not in general possible to find an orthogonal 

parameter. Cox and Reid (1987) give a special case in which a scalar parameter ip is 

orthogonal to the other parameters Ai, A2 , ..., \ s.

Suppose (ip, (pi, (p2 , . . . ,  <ps) is the original parameter for which log-likelihood func­
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tion is I (ip, (p) — I (ip, (p\, f a , ..., (pa). Further, suppose that we have the transformation

(pi = M'lp, A), <p2 = M 'p ,  A ) , (ps = (ps(ip, A),

where A =  (Ai, A2, A s)'.

The dependence of (p on ip and A can be determined by the following partial 

differential equations

According to the theorem of Frobenius in differential geometry (Boothby, 1975, 

page 159), the equations in (2.1) have a general solution. A special case of this trans­

formation occurs if we have only one scale parameter ip and one location parameter 

(p. So we have the transformation (ip, (p) =  (ip, (p(ip, A)), such that ip and A are orthog­

onal to each other. We can get this transformation through the partial differential 

equation

2 .6  B ivariate Poisson  distribution

Suppose that variables Zi,i  =  0,1, 2 are independent Poisson random variables with 

parameters A0, Ai and A2 respectively. Let

X  — Zq +  Z\  and Y  — Z§ +  Z 2 , 

then (X, Y )  is distributed as bivariate Poisson distribution with the probability func­

1̂ = 1
( 2 . 1)

where = E
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tion

m m { x , y }  \ x - i \ V ~ i \ i

P r ( X  = x , Y  = y) = exp(-A i -  A2 -  A0) ^  ---- ^rrr^----
{x -  i)\{y -  t)\i\

and we have E ( X )  =  Ai +  Ao, E(Y)  = A2 +  Ao and Cov(X, Y ) =  A0.

More details of the bivariate Poisson distribution can be found in Holgate, (1964); 

Irwin, (1963); Paul and Ho, (1989); Kocherlakota and Kocherlakota, (1992), and 

Karilis and Ntzoufras, (1998).

2 .7  EM  algorithm

The EM-algorithm is a general iterative method to obtain maximum likelihood esti­

mates in incomplete data situations. It was first proposed by Hartley (1958) and was 

generalized by Dempster, Laird and Rubin (1977). Let y G M" denote a vector of 

observed data and z £ Mm a vector of unobservable data. Then the complete data are 

given by (y,z).  Furthermore, let f ( y , z \0 )  denote the joint density of the complete 

data depending on an unknown parameter vector 9.

Then the maximum likelihood estimate of 9 can be obtained iteratively by the 

EM-algorithm using an E-step and an M-step. If 6̂ °) denotes a starting value for 

9, the (p +  l) th  cycle of the EM-algorithm consists of the following two steps for

p  =  0 ,1 , . . .

E (xpectation)-step:

Compute the expectation M(9\9^ ) ,

where M(9\9i-p)) =  E[log /(y , z; 9)\y; 6>(p)] =  /  \og[f(y, z\ 9)}k(z\y; 9 ^ ) d z  .

Here k{z\y\9^>) is the conditional density of the unobservable data z, given the ob-
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served data y and the value which is the estimate of 6 in the pth cycle. 

M (axim izing)-step:

Determine Q̂p+1) by maximizing M (6 \9 ^ )  with respect to 6.

The iterations are stopped according to a termination criterion, e.g., if 

|0(p) _  0 (p+1)|/|^(p)| < e is satisfied.
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Part I

Testing H om ogeneity of Several 
Location-Scale Populations
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Chapter 3

Tests of H om ogeneity of Several Location-scale 

Populations : The General Results

3 .1  Introduction

The widely used Fisher analysis of variance technique tests the equality of means 

based on the assumption that the variances among different groups are homogeneous. 

But in practice, we often get data which are different not only in means but also in 

variances. Snedecor and Cochran (1967, p 324) observe that an application of different 

treatments to otherwise homogeneous experimental units often results in groups that 

are different not only in means but also in variances. Thus, testing homogeneity of 

several populations in terms of means and variances is of considerable interest. The 

usual practice for testing homogeneity of several populations in terms of means and 

variances is first to test for the equality of variances and once this assumption is found 

to be tenable, the equality of means is tested.

For testing simultaneously the equality of means and the equality of variances of

17
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C hapter 3. T he  General R esu lts  18

several normal (p, a2) populations, Singh (1986) uses a test statistic based on the 

combination of two independent likelihood ratio statistics. Singh’s procedure is based 

on a method by Fisher (1950) for combining two or more independent test statistics 

to test a general hypothesis.

The purpose of this chapter is to extend Fisher’s method to location-scale models 

in general. Two test statistics are developed, one of which is based on the combination 

of two likelihood ratio statistics and the other is based on the combination of two score 

test statistics. Under the general location-scale setup, asymptotic independence is 

established for the two log-likelihood ratio statistics as well as for the two score test 

statistics.

In Section 3.2, we extend Singh’s procedure for the likelihood ratio procedure 

to the general location-scale model and show asymptotic independence. In Section 

3.3, we derive the score test statistics. Fisher’s procedure for combining two score 

statistics and the asymptotic independence of the two score statistics are given in 

Section 3.4. A conclusion is given in Section 3.5.

3 .2  F isher’s procedure for com bining two log-likelihood ra­

tio  test sta tistics and their asym ptotic independence

Consider a location-scale family of distributions where rtp is the location

parameter and <fi is the scale parameter. Suppose we obtain data xn,X{2 , ..., xmi from 

the zth, i = 1,..., k, population with parameters U; and fa. Then, the log-likelihood
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can be written as
k rii

l = ŷ 2 li> where k = ^ l o g  = 1 , k.
i=1 j=1

Now, let \P =  (■01, ...,ipk)', $  =  (0i, • • • ,<t>k)'■ Define the parameter spaces

0  =  { (* ,$ )  I 0i and 0;, i =  1 , . . . ,  k are unspecified },

00 =  {(U/, 5*) | 0» =  ip, (j>i — 0, * =  1, ■ • •, k, where 0  and 0 are unspecified },

01 =  {(\P, <P) | 0i =  0, i = 1, . . .  k, where 'F and 0 are unspecified }.

Suppose we wish to test

Ho : 0i =  0 , 0i =  0, i =  1, • • ■, k, where 0  and 0 are unspecified against H\  : at 

least two 0 ’s or two 0 ’s are not same.

Then the test by Fisher’s method is the combination of two independent tests 

corresponding to the following hypotheses:

H'q\ ipi = 0 , 0 j  =  0 0  =  1, . . .  ,k,  where 0  and 0 are unspecified against H[: at

least two 0 ’s are not same and 0* =  0, i =  1 , . . . ,  k, where 0 are unspecified.

and

Hq: 4>i =  0 0  =  1 , . . . ,  fc, where A are unspecified against at least two 0 ’s are 

not same.

Let L R  be the log-likelihood ratio statistic for testing Hq against H\. Similarly, 

let LRi  and L R 2 be the log-likelihood ratio statistics for testing Hq against H[ and 

Hq against H"  respectively. Further, let /0, h, h  denote the estimated values of log- 

likelihood function under 0o, 0 i  and 0  respectively. Then, the log-likelihood ratio 

statistics for testing Hq against H\, Hq against H[ and Hq against H ” are

L R  =  2{h — lo),

L R 1 = 2{h -  Iq)
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and

L R 2 = 2(4 -  4)

respectively.

Now, L R  — 2(l2 — lo) =  L R 2 +  LR\.  Asymptotically, as n; —>■ oo,i = 1, ■ • ■ ,k, 

L R  ~  X2(fc-i) under 0 O, L R 1 ~  Xk-i under ©0 and L R 2 ~  Xk-i  under 0 i.

Since the parameter space 0 i  D ©o, we can conclude that all of the above as­

ymptotic results also hold under ©o and by using the Cochran’s Theorem (Cochran, 

1934), the two statistics L R X and L R 2 are asymptotically independent.

Let L x(ti) =  P r (L R x > t x \ H'0) and L2(t2) =  P r(L R 2 > t2 \ Hq). Further, let 

Mi be the test statistic of Fisher’s procedure for combining two log-likelihood ratio 

test statistics.

Since L R X and L R 2 are asymptotically independently distributed, then, following 

Fisher’s method,

Mx = -21og[L1(Li?1)L2(Li?2)]

is approximately distributed as x'j- Thus, we reject H0 in favor of H x, if M x > x l i a ), 

where x l ( a ) is the 100a% point of the x 2 distribution with 4 degrees of freedom.

3 .3  T he derivations o f the score test statistics Si and S2

As in Section 3.2, to develop Fisher’s procedure for combining two score test statistics, 

we need to obtain the test statistic S x for testing hypothesis Hq against H[ and the test 

statistic S2 for testing hypothesis Hq against H". However, the score test statistics 

Si and S2 may not be independent or asymptotically independent in general. To
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obtain score test statistics Si and S 2 , which are asymptotcally independent in general, 

we need to transform the parameters (ipi, (pi), i =  into a set of orthogonal

parameters (?pit A*), i — 1 (Cox and Reid, 1987, p3). Let (ipi, (pi =  <pi(ipi, XP)), 

i =  1 ,..., k , be such transformations which satisfy

Then the hypotheses given above can be expressed in terms of the orthogonal 

parameters as

Ho : 'ipi = ip, \ i  = X,i — 1 , . . .  ,k,  where ip and A are unspecified against H\  : at 

least two ip’s or two A’s are not same.

Then the test by Fisher’s method is the combination of two independent tests 

corresponding to the following hypotheses:

Hq. ipi = ip, A* =  A, i =  1 , . . . ,  k, where ip and A are unspecified against H[: at 

least two ip’s are not same and A., = X,i — 1 , . . . ,  k, where A are unspecified.

and

Hq : Aj =  A, i — 1 , . . . ,  k, where A are unspecified against H at least two A’s are

(3.1)

where = E d % \

not same.
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3.3.1 T he derivation o f score test statistic  Si for testin g  H'0 

vs H[

We now derive the score test statistic S\  for testing Hq against H[. For convenience 

we write the log-likelihood in terms of the orthogonal parameters as

k rii
l* = where,/* =  ' ^ l o g f ( x ij,ipi ,(pi(ipi ,Xi)),i = 1

i=i j=l

Reparameterize ipi,i = 1 , k, under H[ , by tpi = ip +  a,; with a k =  0.

Let

o' =  ( a i , otk-i )  and = (ip, A).

Then testing Hq is equivalent to testing 0  =  0 with uq being treated as a nuisance 

parameter.
dl*Let si =  —  
oa a = 0

and

Ai =  E  -
d2r

dada' a=0
Ci = E  [ -

<2 ,*dH
dadu>[ a= o / Dl E \  dudut

d2l*

a=0
If we use the maximum likelihood estimate Cj of the nuisance parameter ui under 

the null hypothesis Hq in s i , Ai,  C\ and Dy, then the score test for testing Hq against 

H[ is

s ^ s T i A . - c ^ c ^ s T

Note that A\  can be simplified as

A i  — d ia g E
d2l*
da2 a = 0

,E
d2l*
dal Q = 0

■, E -
,2 1*d2l

d a l - l a= 0

Further, note that the transformatin of (ipi, "02, ■■■,ipk) to (a, ip) is only a linear trans­

formation. So the parameter (a, ip) is still orthogonal with A. Now, based on the
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orthogonality of the parameter (a, ip) to A, the off-diagonal elements of the matrix 

Di and all elements of the second column of the (k — 1) x 2 matrix C\ are zero. We 

can simplify Di and C\ as

\

Ci =

(  „ (  d2l* h/
daidip « = 0

0

E  -

d2l*
daidip a = 0

E  -
d2i*

and

\  V doik-idip

( „ (  d2l* E

a=0

Di =

Note that

dtp2 

0

o=0

E

0

d2l*
dX2 0 /  '

E l  -
d2l*

daidip
d2l*

a=0
, i  =  1 , Ac — 1,

and

E  -
d2r
dip2 =  12ea=0/ j=i

d2l*
dip2 o=0

Then the inverse of A\  — C'iD11C[ is 

11 '
A ?  +

a=0

where l (fc_1)xl =  (1,1, - - * , !)'•
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Further, we have
dl*
dot; a = 0

d ^
dip

i =  1, — 1, and
a = 0

dl*
dip

=  d ll

*=o a = 0

Note that when we use the maximum likelihood estimate u\  of the nuisance parameter

m
dll
dip

under Hq, the estimated value of
a = 0

dll
dip

is 0. From above results, we
a = 0

obtain

Si =  E ^ ’T-? Vu
1= 1

dl*
where Sii and vu, i =  1 ,..., k. are the estimated values of -7 - 7

dip

i = respectively.

and E
d2l*

H'n dip2 H’o,

3.3.2 T he derivation o f score test sta tistic  for testin g  Hq

vs H'l

For the derivation of the score test statistic S2 for testing Hq against H ” we repa- 

rameterize A i , i  — by A* =  A +  /?f with (3k =  0. Let f3' =  (p i , ..., fik-i) and

to2 =  (ipi,ip2 , ...,ipk,\) ■ Then testing Hq is equivalent to testing <3 — 0 with u>2 being 

treated as a nuisance parameter.

^  , dl*Further, let s2 — t t  
dp

and

A 2 = E

/3=0

d2r
d m 3'

\ , c 2 = e
d2r

/3 = 0 . dfidujo 13= 0 ,
\ , D 2 = E

d2l*
duj2du)2 P—Oj

If we use the maximum likelihood estimate Cj2 of the nuisance parameter uj2 under 

the null hypothesis Hq in s2, A 2, C2 and D2, then the score test for testing Hq against 

H'l is

S2 — s2 (A2 — C2D2 C2 ) 1 s2.
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Note tha t A 2 can be simplified as

25

A 2 — diag
d2l*

E  I -
dp

, E
d 2l*

0= 0, d ,022
,E

d2l*

13= 0 , dPl-l 0 = 0  y

Further, as in Section 3.3.1, the transformation of (Ai, A2 , A * , )  to (/?, A) is only a 

linear transformation. So the parameter (/?, A) is still orthogonal with ...,tpk).

Now, we can obtain the off-diagonal elements of the matrix Z) 2 and all elements of 

the first k columns of the (k — 1) x (k +  1 ) matrix C2 are zero. D2 and C2 can be 

simplified as

/
0-- -0 E [ -

d2l*
dfadX 0=0 ,

0-- -0 E
C , =

d2r
dd2d \ (3= 0 .

0-- -0  E
\

d2l*
9/5fc_i«9A 0=0 /  /

and

E
d2l*

0

0=0 ,

E  -

0

d2l*
~dX̂ 0=0/  /

Note that

E
d2l* 

dflid A
E  -

0=01

dHl  
d \ 2

,i = 1 , . . . , k -  1 ,
3= 0 .
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and

E
d2l*
d \ 2 /3= 0 ,

= I >  -

o'21:

i—1 d \ 2 0=0 ,

Then the inverse of A 2 — C2D2 1C2 is

A>1 +
I T

dX2 13= 0 ,

Further, we have
dT_
W i 0=0

dll
dX

% — 1, k  — 1, and
0=0

dT
dA

E k
?:=l

0=0

m i
dX (3= 0

Note that when we use the maximum likelihood estimate Cj2 of the nuisance parameter
dll
dX

under Hq, the estimated value of
0=o

dll
5A

is 0. FYom above results, we
0 —0

obtain

k /sQsi

dl*
where s2i and v2i, i  = 1, . . . ,  k,  are the estimated values of —-f

d X
i  — 1, . . . ,  k,  respectively.

and E  —
d2l*

H" dX2 H"

3 .4  A sym ptotic  independence o f th e two score test sta tistics  

Si and S2 , and F isher’s procedure for com bining two  

score test statistics

Theorem  1 Under Hq,  asymptotically, as n; —> 0 0 , i  =  1 , . . . ,  k,  the two statistics Si 

and S2 are independent.

Let S be the score test statistic for testing Ho  against H \ .  As in the proof of 

the indepedence of LRi  and L R 2 in Section 3.2, if we can prove that under H q,
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asymptotically S  = Si  +  S2 and the distributions of S, Si  and S2 are xl(k-i)’Xk-i 

and x l - i ,  then by using the Cochran’s Theorem (Cochran, 1934), the asymptotically 

independence of Si  and S2 can be established.

Proof:

For this we first need to derive the score test for testing Hq against H\. Now, 

reparameterize ipi and A i, i =  l , . . . ,k ,  under Hi,  by ipi =  ip + on, i — 1 with 

ak =  0 and Ai =  A +  /3i,i =  1 with (5k =  0. Then testing H q is equivalent to 

testing a = 0 and (5 = 0 with co = (ip, A)' as nuisance parameters.

The score test statistic for testing Hq against Hi  is obtained in Appendix A.I. 

Now we have

S  = S0i + S02,

S 2  ■ s 2  ■

where 5oi =  TA 1 and S02 =  y),_i with the estimated values of Son =  
voU V02i

dl[
dip

d2l*
, uou =  E  I i

Ho \  d ^

_  dl*

H o '  d X

d2l*
and VQ2 i = E  I -  '

H 0/

respectively.

Now, asymptotically, as n.t —>■ 0 0 , i = 1 , . . . ,  k, the distributions of S , Si and S 2 

are X2(fe-i)> Xk-i  an<:l Xl- i  under H q , H0 and H'f respectively. Note that the two null 

hypotheses Ho and Hq are the same. It is then obvious that S01 =  Si. Further, S 2 is 

obtained by using the maximum likelihood estimates ipi,i = 1 ,2 , . . .  , k  and A under 

H q and S02 is obtained by using the maximum likelihood estimates ip and A under 

H q. Since, under some regularity conditions, the maximum likelihood estimates are 

consistent, then, asymptotically, as rq —> 0 0 , i  = 1, • • • ,k, under H q, the estimates 

ipi,i =  l , . . . , k  and ip all converge to ip and A converges to A. Thus, S2 and S02 are
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asymptotically equivalent. So asymptotically, we have

S  = S! + s 2.

Therefore Si  and S2 are asymptotically independent.

Note that if the original parameters are orthogonal then the parameters A and

However, in the situations where the original parameters of the distribution are not 

orthogonal, we need to express the score test statistics in terms of the estimates of 

the original parameters as

The details of derivations of si», i>u, s2i and v2i are given in Appendix A.2. 

Through those expressions, we can calculate the score test statistics Si  and S2 without 

solving the partial differential equations (3.1).

Let M2 be the test statistic of Fisher’s procedure for combining two score test 

statistics. Now, according to the Fisher’s method, let

Li(fi) =  Pr(S i > h  | H'0) and L2(t2) =  Pr(S2 > t2 | H%).

Then it follows that

M2 =  -21og[L1(51)L2(52)] 

is approximately distributed as xt-

$  are identical, and Si  and S2 involve the parameters T and $  instead of T  and A.

and
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3 .5  Conclusion

29

Singh (1986) develops a procedure for testing homogeneity of several normal popu­

lations based on combining two separate independent likelihood ratio test statistics 

using a method proposed by Fisher (1950). We extended Fisher’s method to test 

homogeneity of several location-scale populations using two likelihood ratio statistics 

as well as two score test statistics. Asymptotic independence of the two likelihood 

ratio statistics and also of the two score test statistics have been established.
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Chapter 4

Tests of the H om ogeneity of Several Norm al 

Populations

4 .1  Introduction

The purpose of this chapter is to use the general result of Chapter 3 to test the 

homogeneity of the several normal populations based on combining the score test 

statistics and to compare our procedure with the procedure proposed by Singh (1986). 

Singh (1986) uses Fisher’s method for testing simultaneously the equality of means 

and the equality of variances of several normal populations. For the case of several 

normal populations, exact independence of the two likelihood ratio statistics is shown 

by Singh (1986). In Chapter 3, we show, in general, the asymptotic independence of 

the two log-likelihood ratio statistics and also of the two score test statistics.

In this chapter, we develop a procedure to test the homogeneity of the several 

normal populations based on combining two score test statistics and we show exact 

independence of the two score test statistics. Simulations are also conducted to

30
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compare the procedure based on the score tests with that developed by Singh (1986). 

We also include the four other large sample tests in the simulation comparison. These 

are (i) the log-likelihood ratio test for simultaneously testing the equality of means 

and the equality of the variances; (ii) the score test for simultaneously testing the 

equality of means and the equality of the variances; (iii) the ordinary log-likelihood 

ratio procedure in which we first test the equality of the variances by using a log- 

likelihood ratio statistics and once this hypothesis is not rejected we test for the 

equality of the means by using a log-likelihood ratio statistic; (iv) the ordinary score 

test procedure in which we first test the equality of the variances by using a score 

test statistic and once this hypothesis is not rejected we test for the equality of the 

means by using a score test statistic.

In Section 4.2 we first review the procedure based on the likelihood ratio tests 

developed by Singh (1986) for testing the equality of the means and the equality of 

the variances of several normal populations, and then we develop a procedure based 

on score tests. In Section 4.3, we prove exact independence of the two score test 

statistics. Simulations are conducted in Section 4.4. The conclusions are given in 

Section 4.5.

4.2 H om ogeneity o f several norm al N(p ,a2) populations

4.2.1 T he likelihood ratio procedure

Singh (1986) applies Fisher’s method to test homogeneity of several normal popula­

tions. Let N{gi, erf), i = 1,2,..., k , denote the ith  normal distribution.
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Then, testing homogeneity of the k normal populations implies testing

H0 : gi = g, of =  <t2, for all i against H 1: at least two /i’s or two cr2’s are unequal,

where g  and a 2 are unspecified.

To test the above hypothesis the usual practice is to test the following two hy­

potheses separately.

Hq : gi = g,cr2 =  <r2, for all i against H[\ at least two g ’s are unequal and of =  a2,

for all i, where g  and a 2 are unspecified, 

and

Hq' o2 =  cr2, for all i against H": at least two cr2’s are unequal, where a2 are 

unspecified.

Let Xu , ..., Xini be the sample from N (g i ,a 2). Further, let n = X ^= in*> x i =

Under H q, T\ has an exact F(k  — 1 ,n  — k) distribution. Under Hq, V  is asymptoti-

T2 = C  ^  log s2 -  E t i  vi loS S1}. 

where = rii — 1, i =  1,..., k, v =  n — k and C = 1 +  {X^Li N 1 ~  1,-1 } /3 (k — 1).

° 2 =  Y h= i n i<f2l n , s 2 =  r i i o f / f o i  -  1), s2 =  n o 2/ (n  -  k).

Then, the likelihood ratio statistic for testing H'q against H[ is

k k
Ti =  (n -  k) { Y 2 niixi ~  x ¥ } / { ( k  ~  1) y~^< 72}

and the log-likelihood ratio statistic for testing Hq against H'[ is

k

cally distributed as Xk.-i(a )- Using a Bartlett correction, a modified likelihood ratio 

statistic is
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It is well known that the Bartlett-corrected likelihood ratio statistic approximates 

better to the xjL i distribution than its uncorrected counterpart.

It can be shown that the statistics Ti and T2 are independently distributed (Singh, 

1986). Now, define

h f a )  = Pr(Ti  >  ti | H'q) 

and

L2(t2) = Pr(T2 > t2 | Hq).

Further, let N M i  be the test statistic of Fisher’s procedure for combining statistics 

Ti and T2. Since Tx and T2 are independently distributed, then following Fisher’s 

method (Singh, 1986)

lVM1=-21og[G'1(T1)G2(T2)] 

is approximately distributed as y2(4). Thus, we reject Hq in favor of Hi,  if N M i  > 

x l (a), where x l ( a ) is the 100a% point of the y 2 distribution with 4 degrees of free­

dom.

4.2.2 T he score test procedure

Let xn , . . . , x ini be the sample from N(gi,a j) ,  i = 1 As in section 4.2.1, the

hypothesis in which we are interested is

H0 : gi =  fi, erf =  cr2, for all i against Hi: at least two g ’s or two cr2’s are unequal, 

where g  and cr2 are unspecified.

Then, following Singh (1986), we have two hypothesis:

H'a : gi — g, erf — cr2, for all i against H{: at least two p ’s are unequal and cr2 =  a2, 

for all i, where g  and a2 are unspecified.
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and

Hq\ of — cr2, for all i against H"\ at least two cr2’s are unequal, where cr2 are 

unspecified.

The same notations n, Xi, x. erf, <Tq and <r2 of Section 4.2.1 are used here. Then 

following the general results in Chapter 3, the score test statistic for testing H q against 

H[ is

^0

and the score test statistic for testing Hq against H ” is

„,oNS%  2(py '

Using the properties of the Dirichlet distribution, it can be shown that the two 

statistics N S i  and N S 2 are exactly independent. The proof is given in Section 4.3. 

Now, define

h i h )  = P r ( N S x >  h  | H'q) 

and

L2(t2) -  P r ( N S 2 > h  | Hg).

Further, let N M 2 be the test statistic of Fisher’s procedure for combining statistics 

N S i  and N S 2. Since N S i  and N S 2 are independently distributed, then following 

Fisher’s method

N M 2= - 2 log[L1(A^S'i)L2(Â S'2)] 

is approximately distributed as y 2(4). Thus, we reject Ho in favor of Hi,  if N M 2 > 

x l ( a ), where x i ( a ) is the 100a% point of the x 2 distribution with 4 degrees of free­

dom.
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4 .3  P r o o f  o f  exact in d ep en d en ce o f NSi and N S 2

For convenience we write N S i  and N S 2 as

N S i  = n / (  1 + (4.3.1)

and
2

h S T 2 ~
n
2

(4.3.2)

where uf  =  ~  x i)2> * =  1 , 2 , k. It now suffices to  prove th a t ST1 and ST2

are independently distributed. To prove this we use the following lemma .

L em m a  (Hogg and Craig, 1995, p. 187): Let x i , x 2, . . . ,xk be independent random 

variables, each being r(a:j, 1) with

Vk =  X i + x 2 -\--------- \ - x k .

(1) (2/i, 2/2, 2/fc-i) Dirichlet Distribution with param eter (cki, a 2, • • ■ , a k),

(3) yk is independent of (2/1 , 2/2 , ...,2/fc-i)- 

Using the above Lemma we only need to  prove th a t each component of ST2 ,

From the property of the normal distribution of the Xij ’s, we know th a t under

Then

(2) yk has gamma distribution r ( E t i ^ i ) ,

% =  1, 2,..., k — 1, is independent of ST1namely,

1 . Further, under H 0,k — 1 are distributed as F
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J2i=in i(%i ~  x )2 has distribution as cr2x 2(k — 1) and also it is independent with 

u 2,i  — 1 ,2 , . . .  , k  . Now, let

2 u^
Vi — — o-------- o— 1-----------o =  — r1— , i — 1,2, * • • , k — 1,

2 u \  +  2 u \ + , - - - , + 2 « |

y k  =  2 u ,  +  2 u l + ,  ■■■ , + 2 u ,J. =  2 ^ u 2.
i=1

Then, from the property (3) of lemma and the above results we see th a t each of

u 2the random quantities Ei=i u "i > E»=i n i(x i ~  x)2 and —r 1—, i = 1,2,..., k — 1 are
E i=i

,2

independent of each other and hence STl=]Tb=1 —x)2/ Ei=i u 2 and y x C — 2 are
indpendently distributed from which the independence of iViSi and N S 2 is established

under H 0.

4 .4  S im u lation

A simulation study was conducted to  compare the performance, in term s of size and 

power, of the statistic N M i  based on the likelihood ratio statistics and the statistic 

N M 2 based on the score test statistics for testing homogeneity of several normal pop­

ulations. In the comparison we have also included four other the log-likelihood ratio 

statistics and the score test statistics, given in what follows, for simultaneously test­

ing the equality of means and the equality of variances of several normal populations. 

U sing th e  n o ta tio n s  in  Section  4.2, these  p rocedures are

(i) the log-likelihood ratio statistic (LR)

k ( Y  
L R = y n i \og i

i=l

for simultaneously testing the equality of the means and the equality of the variances,
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(ii) the score test statistic (S)

s _  S iL i n , ( x , - x )2 + E t i  ”<[fe ~ x ?  +  g? ~  "ol2 

** 2 (?0

for simultaneously testing the equality of the means and the equality of the variances,

(iii) the ordinary log-likelihood ratio procedure (LRO) in which we first test the 

equality of the variances by using the log-likelihood ratio statistic T2 and once this 

hypothesis is not rejected we test for the equality of the means using the log-likelihood 

ratio statistic Ti, and

(iv) the ordinary score test procedure (SO) in which we first test the equality of 

the variances by using the score test N  Si  and once this hypothesis is not rejected we 

test for the equality of the means using the score test statistic N S 2

We have considered K=2, 3 and 4 populations, two nominal levels a  =  0.05 and 

a  = 0.10 and equal sample sizes from each population. Results for k=3 and k=4 

are similar. So, we give results for only k=2 and k=3. For calculating empirical size 

we generated samples from N ( 0,1) populations. For calculating empirical power we 

generated samples from iV(/q a 2) populations for values of fi and a 2 given in Table 

4.1 to Table 4.4. Each simulation experiment was based on 10,000 samples. Results 

of the simulations are presented in Table 4.1 to  Table 4.4. However, those results for 

LRO and SO, in general show, either extremely conservative or liberal behavior. So, 

we om itted simulation results for these procedures in the chapter.

Results in Table 4.1 to  Table 4.4 show th a t the likelihood ratio test statistic 

(LR) for simultaneously testing the equality of means and variances of several normal 

populations shows liberal behavior. The corresponding score test statistic (S) shows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. Homogeneity of Several Normal Populations 38

conservative behavior for small sample sizes. The statistic N M i  maintains level well 

in all situations studied here. The statistic N M 2 shows some conservative behavior 

for k=2 and small sample sizes. Otherwise it m aintains level well. Power of both  of 

these statistics are similar, although the statistic N M i  shows slightly better power 

properties than  the statistic N M 2 for small k (k=2) and small samples, because the 

later is conservative in these situations. However, for larger k, N M 2 has some edge 

over N M \ .  It seems for large sample sizes th a t the statistic S will perform as well as 

the statistics N M \  and N M 2.

4 .5  C onclu sion

Singh (1986) developed a procedure for testing homogeneity of several normal popu­

lations based on combining two separate independent likelihood ratio test statistics 

using a m ethod proposed by Fisher (1950). We have developed procedures for testing 

homogeneity of several normal populations based on combining two separate inde­

pendent score test statistics using Fisher’s method. Exact independence of the two 

score test statistics have been established in the normal case. Compared with the 

ordinary m ethod to  test the homogeneity of several normal distribution, we see tha t 

Fisher’s m ethod works well irrespective of whether we combine two likelihood ratio 

test statistics or two score test statistics.
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Table 4.1: Empirical power(%) of different statistics for testing homogeneity of K =  2 
populations when da ta  are simulated from the normal distributions N(fa,  erf), i = 1,2 
based on 10,000 simulations; a  =  0.05

Sample
size

Test
Statistic

0 ^ i,^ 2)

K V 1 )
(0.0,0.0) 
(1.0,1.0)

(0.0,0.32)
(1.0,1.40)

(0.0,0.64)
(1.0,1.75)

(0.0,1.2) 
(1.0,3.5)

(0.0,2.0) 
(1.0,4.0)

(0.0,3.0) 
(1.0, 5.0)

5 N M \ 4.58 6.57 11.29 26.41 49.93 76.31
L R 10.83 13.81 21.05 43.44 67.70 87.75

n m 2 3.28 4.83 9.24 21.71 45.96 74.05
s 0.91 1.46 3.26 7.86 22.38 44.03

7 N M i 5.38 8.24 16.14 42.71 71.61 92.60
L R 9.66 13.77 23.76 54.86 80.10 95.68

n m 2 4.14 7.02 14.38 37.97 69.51 91.89
s 2.25 3.91 8.33 23.56 53.50 82.70

9 N M i 5.02 9.23 20.44 56.77 85.00 98.11
L R 7.92 13.52 26.71 64.63 89.09 98.82

n m 2 4.30 8.13 19.19 53.39 84.13 97.98
s 2.65 5.63 13.95 42.84 76.05 95.96

11 N M i 5.14 10.23 24.35 66.72 91.90 99.64
L R 7.38 13.61 29.64 72.37 94.02 99.77

n m 2 4.68 9.49 23.15 64.32 91.54 99.63
s 3.35 7.45 18.72 56.88 87.67 99.21

13 N M X 4.89 11.37 29.0 75.84 96.27 99.89
L R 6.71 14.40 33.94 79.70 97.21 99.93

n m 2 4.45 10.67 28.31 74.21 96.24 99.89
s 3.55 8.54 24.00 68.61 94.35 99.79

15 N M i 4.93 12.73 33.84 82.91 98.12 99.96
L R 6.49 15.70 38.23 85.28 98.48 99.97

n m 2 4.61 12.22 33.06 81.77 98.07 99.95
s 3.74 10.34 29.49 78.24 97.41 99.93

20 N M i 4.97 16.02 44.26 93.00 99.76 100.0
L R 6.10 18.09 47.30 93.71 99.81 100.0

n m 2 4.69 15.53 43.81 92.75 99.76 100.0
s 4.09 14.02 40.60 91.02 99.64 100.0
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Table 4.2: Empirical power(%) of different statistics for testing homogeneity of K =  2 
populations when data  are simulated from the normal distributions N ( n i , a f ) , i  = 1, 2 
based on 10,000 simulations; a  =  0.10

Sample
size

Test
Statistic

(/* i,^2)

{ 4  A )
(0.0,0.0) 
(1.0,1.0)

(0.0,0.32)

(1.0,1.40)

(0.0,0.64)

(1.0,1.75)

(0.0,1.2) 

(1.0,3.5)
(0.0,2.0) 
(1.0,4.0)

(0.0,3.0) 
(1.0, 5.0)

5 N M i 9.77 12.59 19.56 41.04 66.22 87.16
L R 18.23 22.58 32.01 57.68 78.46 93.68

n m 2 7.95 10.78 17.91 37.57 64.62 87.14
s 4.54 6.61 12.02 25.93 50.76 76.92

7 N M i 10.74 15.28 25.86 58.09 82.65 96.58
L R 16.58 22.21 34.91 67.50 88.14 98.01

n m 2 9.71 14.38 25.10 56.01 82.23 96.50
s 7.85 11.55 21.36 48.89 77.01 94.75

9 N M i 9.94 16.85 31.60 69.82 91.97 99.30
L R 14.25 22.46 38.76 75.94 94.46 99.50

n m 2 9.33 16.20 31.18 68.78 92.01 99.28
s 8.07 14.03 27.75 64.53 89.57 98.92

11 N M i 10.35 17.66 35.90 78.34 96.30 99.88
L R 13.46 22.35 41.69 82.26 97.29 99.93

n m 2 9.92 17.30 35.64 77.82 96.34 99.89
s 8.80 15.62 33.40 74.70 95.18 99.83

13 N M i 9.91 19.46 41.89 85.34 98.36 100.0
L R 12.63 23.8 46.63 87.83 98.70 100.0

n m 2 9.67 19.26 41.75 85.04 98.36 100.0
s 8.76 17.85 39.40 83.09 97.98 99.96

15 NMx 10.19 21.41 47.13 90.00 99.16 100.0
L R 12.48 25.19 51.34 91.68 99.33 100.0

n m 2 10.06 21.18 46.94 89.74 99.18 100.0
s 9.10 20.10 45.33 88.47 99.00 100.0

20 N M i 9.67 25.80 57.36 96.45 99.91 100.0
L R 11.57 28.41 60.17 96.91 99.92 100.0
n 2 9.49 25.68 57.45 96.47 99.91 100.0
s 9.38 24.66 55.68 95.84 99.88 100.0
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Table 4.3: Empirical power(%) of different statistics for testing homogeneity of K =  
3 populations when da ta  are simulated from the normal distributions =
1,2,3 based on 10,000 simulations; a  =  0.05

Sample

size

Test

Statistic
(/*i, ^ 2 ,^ 3 )

( ^ 2V i )
(0.0,0.0,0.0) 

(1.0,1.0,1.0)

(0.0,0.08,0.32)

(1.0,1.10,1.40)

(0.0,0.32,0.64)

(1.0,1.2,1.75)

(0.0,0.64,1.2)

(1.0,1.75,3.5)

(0.0,1.0,2.0) 

(1.0,2.0,4.0)

( 0.0,1.5,3.o; 

(1.0,2.5,5.0)

5 N M i 4.98 6.29 9.45 20.89 38.66 63.42

L R 12.66 15.39 20.61 38.30 59.54 81.42

n m 2 4.83 6.29 9.72 22.09 40.06 63.75

s 2.19 3.07 5.27 12.93 25.18 43.68

7 N M i 5.06 7.30 12.67 32.83 59.25 85.36

L R 10.32 13.47 21.07 45.97 71.15 91.83

n m 2 4.96 7.34 13.01 33.75 59.55 84.83

s 3.13 4.89 9.35 25.16 45.55 69.57

9 N M i 4.92 8.11 15.92 44.77 74.87 95.02

L R 8.70 13.34 22.92 55.03 82.71 97.19

n m 2 4.79 8.13 16.33 45.22 74.69 94.58

s 3.50 6.48 13.14 36.39 63.61 86.87

11 N M i 4.99 8.93 19.13 55.84 85.48 98.54

L R 7.76 12.86 24.46 62.99 89.19 99.21

n m 2 5.01 9.18 19.69 55.91 85.16 98.37

s 3.81 7.48 15.57 46.59 76.13 95.31

13 N M i 5.11 10.12 22.78 65.23 91.93 99.59

L R 7.28 13.49 28.02 72.05 94.14 99.83

n m 2 5.01 10.31 23.44 65.07 91.56 99.52

s 3.86 8.72 20.43 58.75 85.89 98.48

15 N M X 5.04 10.82 26.04 73.91 95.56 99.86

L R 7.00 13.52 31.00 78.52 96.73 99.91

n m 2 4.99 10.85 26.83 73.87 95.35 99.83

s 3.95 9.72 23.79 67.39 92.14 99.54

20 N M i 5.14 13.49 34.95 87.11 99.23 100.0

L R 6.34 15.90 38.76 89.33 99.40 100.0

n m 2 5.04 13.74 35.74 86.78 99.20 100.0

s 4.01 12.88 33.14 85.18 98.63 100.0
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Table 4.4: Empirical power(%) of different statistics for testing homogeneity of K=3 
populations when data  are simulated from the normal distributions —
1,2,3 based on 10,000 simulations; a  =  0.10

Sample

size
Test

Statistic

(/^1>^2> ^ 3 )

( ^ V l )
(0.0,0.0,0.0) 

(1.0,1.0,1.0)

(0.0,0.08,0.32)

(1.0,1.10,1.40)

(0.0,0.32,0.64)

(1.0,1.2,1.75)

(0.0,0.64,1.2)

(1.0,1.75,3.5)

(0.0,1.0,2.0) 

(1.0,2.0,4.0)

( 0.0,1.5,3.0 

(1.0,2.5,5.0)

5 N M i 9.82 12.09 16.97 33.14 53.96 77.43
L R 20.94 24.19 31.41 51.83 71.40 89.13

n m 2 10.12 12.61 17.95 35.21 55.59 77.86
s 6.37 8.74 12.68 26.05 43.54 63.68

7 N M i 10.12 13.62 21.46 46.87 72.77 92.60
L R 17.31 21.82 31.53 59.16 81.47 96.18

n m 2 10.07 13.96 22.19 47.98 73.24 92.30
s 7.98 11.13 18.34 39.68 62.65 83.81

9 N M i 9.89 14.89 25.69 58.83 85.00 97.87
L R 15.96 21.55 33.82 68.30 89.85 98.94

n m 2 9.90 15.17 26.49 59.41 85.00 97.70
s 8.18 13.19 23.28 52.29 78.10 94.49

11 N M i 10.07 16.16 29.82 69.03 92.21 99.46
L R 14.13 21.05 35.94 74.73 94.32 99.72

n m 2 10.22 16.39 30.69 69.17 92.10 99.40
s 8.34 14.03 26.82 62.20 87.25 98.58

13 N M i 10.11 17.50 34.36 76.97 96.00 99.86
L R 13.53 21.67 40.86 81.64 97.14 99.94

n m 2 10.09 17.83 35.17 77.09 95.94 99.86
s 8.80 16.10 32.80 72.02 93.45 99.58

15 N M i 10.14 18.57 38.22 83.39 97.98 99.97

L R 12.87 22.64 43.54 86.49 98.51 99.98
n m 2 10.11 19.15 39.14 83.55 97.87 99.95

s 8.73 17.42 36.68 79.61 96.52 99.87
20 N M i 9.99 22.09 47.52 92.97 99.74 100.0

L R 12.13 25.05 51.54 94.33 99.79 100.0
n m 2 10.02 22.53 48.33 92.88 99.69 100.0

s 8.96 21.62 46.28 90.89 99.42 100.0
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C hapter 5

Tests o f  th e  H om ogeneity  of Several N on-norm al 
Populations

5 .1  In trod u ction

In Chapter 3, we obtain general results for testing homogeneity of several location- 

scale populations. In Chapter 4, we obtain and compare two statistics for testing 

the homogeneity of the several normal populations. In this chapter, by applying 

the general results, we obtain two procedures for testing homogeneity of some non­

normal populations. Here we consider two over-dispersed discrete models, namely 

the negative binomial model and the beta-binomial model. We also consider a  widely 

used lifetime model, namely the Weibull or extreme-value model. In all three cases 

simulations are conducted to  compare the two procedures. We omit the details of 

derivation of the log-likelihood ratio statistics for these three models. They are easy 

to  obtain bu t have complicated expressions involving estimates of the parameters 

under the alternative hypotheses. We denote the log-likelihood ratio based statistics, 

analogous to  the statistic N M \  discussed in Chapter 4, for testing homogeneity of 

negative binomial, beta-binomial and Weibull populations by N B M \ , B B M \  and

43
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W B M i  respectively.

In section 5.2, we deal with several negative binomial (m, c) populations. In 

section 5.3, we deal with several beta-binomial (n, <f>) populations. Section 5.4 is

devoted to  the several Weibull (0, 0) populations. The chapter ends with a concluding 

section 5.5.

5.2 H om o g en eity  o f  several n egative  b inom ial N B(m ,  c) p op ­

u la tion s

5 .2 .1  F ish er’s p rocedu re for com bin ing  tw o score te s t  sta tis-

Now let xn, x irii be a sample from the negative binomial distribution NB(rrii, cf), 

i — 1 ,..., k, w ith probability mass function

where m  is the mean and c is the dispersion parameter. Note th a t the mean and 

variance of X  are m  and m (l+ cm ). Thus, homogeneity of the NB(rrii, cf) populations, 

i =  1 , . . . ,  k ,  implies m t =  m  and c* =  c for all i =  1 , . . . ,  k.  Let Co and C\ be the common 

value of ct, % — 1,..., k,  under H'0 : =  m, Cj =  c, for all i and Hq : Ci = c, for all

% respectively. Then again following the results in section 3.2, the score test statistic 

for testing H'0 against H[: a t least two m ’s are unequal and c, =  c, for all i is

t ics

c -1
1

1 + cm

k 9
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where c0 is the maximum likelihood estimate of c0 obtained by solving the maximum 

likelihood estimating equation

The score test statistic testing H q against H": at least two Cj’s are unequal is

and ci is the maximum likelihood estimate of Ci obtained by solving the maximum 

likelihood estim ating equation

These score tests have also been obtained by Barnwal and Paul (1988). Prom the 

general proof in Section 3.2 it is obvious tha t, asymptotically, as —> oo, i =  1,..., k, 

the statistics N B S i  and N B S 2 are independent. We denote the statistic obtained by 

combining the score test statistics N B S i  and N B S 2 by N B M 2.

5.2.2 Simulation

In the simulation study we considered K=2, 3 and 4 populations, two nominal levels 

a  =  0.05 and a  — 0.10 and equal sample sizes from each population. Each simulation 

experiment was based on 1 0 , 0 0 0  samples.

k  rii x i j

N B S 2 =

where

CXXi
Q i  -I i *  -  > 

1  +  C \ X i

j'.{c1qj )j+1

1 +  ci(Z — 1 )i=l i = i  j = i  i = i
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For calculating empirical size, we generated samples from NB (m,c) populations 

w ith equal m ’s and equal c’s. Unequal m ’s and unequal c’s were considered for power 

calculations. Here also results for k=3 and k=4 are similar. So, we give results for 

only k—2 and k=3 with a  =  0.05 and a  = 0.10 respectively. Results of the simulations 

for k=2 with a  =  0.05 and a  =  0.10 are presented in Table 5.1 and Table 5.2, and 

those for k=3 are presented in Table 5.3 and Table 5.4. In the simulation study we 

have also considered other values of m. The empirical level and power results are 

similar to  those presented in Table 5.1 to  Table 5.4. So, we omit them  here.

Results in Table 5.1 to  Table 5.4 show th a t the statistic N B M X is in general liberal, 

whereas the statistic N B M 2 maintains level well. Power of the statistic N B M X is in 

general larger than  th a t of the statistic N B M 2. This is not surprising as the statistic 

N B M i  is in general liberal.

Further, we have extended the simulation experiment to  study size adjusted power 

properties of these two statistics. The empirical 95% quantiles derived from the cor­

responding size simulation have been used to ensure th a t each test had approximately 

the nominal size of 0.05. Empirical quantiles were calculated based on 40,000 repli­

cations and empirical power calculations were based on 10,000 replications. In Table 

5.5, we provide empirical power values for k — 2, m i =  m 2 = 2.0, cx = c2 = 0.05, 

m  = n 2 =  10,15,20,40 and for different combinations of the unequal m's  and un­

equal ds.  Results in Table 5.5 show th a t both the size adjusted statistics N B M \  and 

N B M 2 have similar power.
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5.2 .3  E xam p le

Example 1 (McCaughran & Arnold, 1976). The da ta  in D ata sets, Table D .l refer to 

counts of embryonic dearths in a control group and two treatm ent groups. Analysis 

of the data, based on the NB model, gives N B L R \  =  3.259, N B L R 2 =  0.016, 

N B S i  — 3.01 and N B S 2 =  0.22. Prom these the values of N B M \  and N B M 2 are 

3.275 and 3.023 with p-values .513 and .554 respectively. Neither of these procedures 

reject the hull hypothesis of homogeneity of the two groups.
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Table 5.1: Empirical power(%) of different statistics for testing homogeneity of K=2 

negative binomial populations when data  are simulated from NB(rrii,Ci), i = 1,2; 

based on 10,000 replications; a  — 0.05

Sample

size

Test

Statistic

(m i,m 2)

(c i,c2)

(2 ,2 ) (2,2.5) (2,3.0) (2,3.5) (2,4.0) (2,4.5)

(0.05,0.05) (0.05,0.10) (0.05,0.15) (0.05,0.2) (0.05,0.25) (0.05,0.3)

1 0 N B M i 7.25 11.60 22.33 35.44 48.83 61.24

n b m 2 4.23 6.70 14.01 24.38 35.45 46.64

15 N B M i 7.53 14.18 29.38 48.10 65.91 79.01

n b m 2 4.65 9.40 22.42 39.86 57.49 71.47

2 0 N B M X 7.09 15.00 35.57 59.52 78.28 89.59

n b m 2 4.47 10.94 29.34 53.08 73.29 86.18

30 N B M i 6.27 18.45 49.94 78.88 92.93 97.94

n b m 2 4.94 16.35 46.16 75.6 91.67 97.40

40 N B M i 6.75 23.76 62.80 89.45 97.92 99.73

n b m 2 4.75 2 1 . 0 1 60.01 87.98 97.50 99.64

50 N B M i 5.52 27.20 72.92 95.25 99.47 99.96

n b m 2 4.49 25.23 70.74 94.69 99.35 99.96
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Table 5.2: Empirical power(%) of different statistics for testing homogeneity of K =2 

negative binomial populations when da ta  are simulated from NB(rrii,Ci), i =  1,2; 

based on 1 0 , 0 0 0  replications; a  =  0 . 1 0

Sample

size

Test

Statistic

( m i , m 2)

(c i,c2)

(2 ,2 ) (2,2.5) (2,3.0) (2,3.5) (2,4.0) (2,4.5)

(0.05,0.05) (0.05,0.10) (0.05,0.15) (0.05,0.2) (0.05,0.25) (0.05,0.3)

1 0 N B M X 13.29 19.73 33.04 48.81 63.02 73.45

n b m 2 8.90 13.96 25.73 39.96 53.71 65.65

15 N B M i 13.67 22.30 40.94 61.65 77.46 87.39

n b m 2 9.66 17.41 35.51 55.55 72.71 84.14

2 0 N B M i 12.82 23.64 48.53 71.95 86.90 94.74

n b m 2 9.43 19.83 43.81 67.96 84.41 93.40

30 N B M i 11.52 28.54 62.87 87.11 96.26 99.14

n b m 2 10.03 26.38 59.69 85.01 95.7 98.87

40 N B M i 11.77 34.51 74.48 94.42 99.07 99.92

n b m 2 9.70 31.85 73.07 93.71 98.93 99.92

50 N B M i 10.79 39.09 82.65 97.77 99.8 99.99

n b m 2 9.16 36.85 81.25 97.64 99.7 1 0 0 . 0
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Table 5.3: Empirical power(%) of different statistics for testing homogeneity of K =  3 

negative binomial populations when da ta  are simulated from NB(rrii, c,), i = 1 , 2 ,3; 

based on 10,000 replications; a  — 0.05

Sample

size

Test

Statistic

( m i , m 2, m 3)

( c i ,  C2, C 3 )

( 2 .0 , 2 .0 , 2 .0 ) 

(0 .05 ,0 .05 ,0 .05)

(2 .0 , 2 .25, 2.5) 

(0 .05 ,0 .075 ,0 .1 )

(2 .0 , 2 .5 , 3 .0) 

(0 .05 ,0 .1 ,.15 )

(2 .0 , 2 .75, 3.5) 

(0 .05 ,0 .125 ,0 .2 )

(2 .0 , 3 .25, 4.5) 

(0 .05 ,0 .175 ,0 .3 )

1 0 N B M i 7.53 10.47 18.09 28.78 52.32

n b m 2 4.66 6.07 10.45 17.80 35.64

15 N B M i 7.97 12.80 23.58 39.98 70.37

n b m 2 4.94 7.87 17.40 30.64 60.01

2 0 N B M i 7.57 12.71 29.63 51.43 83.80

n b m 2 4.80 9.01 23.10 43.62 78.03

30 N B M i 6.13 15.2 41.84 70.36 96.29

n b m 2 5.63 14.55 39.90 69.14 95.49

40 N B M i 6 . 1 0 17.41 51.97 82.63 99.19

n b m 2 4.95 15.32 48.16 79.92 98.94

50 N B M i 5.78 21.16 62.84 91.40 99.88

n b m 2 4.74 2 1 . 1 2 63.83 91.34 99.83
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Table 5.4: Empirical power(%) of different statistics for testing homogeneity of K =  3 

negative binomial populations when data  are simulated from NB(rrii, cfj, i = 1, 2, 3 ; 

based on 1 0 , 0 0 0  replications; a  =  0 . 1 0

Sample

size

Test

Statistic (ci, c2, c3)

( 2 .0 , 2 .0 , 2.0) (2 .0 , 2 .25, 2.5) (2 .0 , 2 .5 , 3.0) (2 .0 , 2 .75, 3.5) (2 .0 , 3 .25, 4.5)

(0 .05 ,0 .05 ,0 .05) (0 .05 ,0 .075 ,0 .1 ) (0 .05 ,0 .1 ,.15 ) (0 .05 ,0 .125 ,0 .2 ) (0 .05 ,0 .175 ,0 .3 )

1 0 N B M i 14.06 18.38 28.85 41.66 65.97

n b m 2 8.90 12.25 20.31 30.37 53.52

15 N B M i 15.04 20.91 35.04 53.11 81.27

n b m 2 9.92 15.30 28.24 45.40 74.60

2 0 N B M i 13.24 2 1 . 2 0 42.54 64.31 90.45

n b m 2 9.57 16.52 36.12 58.56 87.26

30 N B M i 1 1 . 8 8 24.84 54.89 80.83 98.2

n b m 2 9.63 21.5 51.25 77.61 97.59

40 N B M i 11.65 27.67 64.58 89.85 99.70

n b m 2 1 0 . 0 0 25.11 61.82 88.25 99.60

50 N B M i 11.23 31.78 73.91 95.4 99.97

n b m 2 1 0 . 1 1 30.01 72.17 94.72 99.97
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Table 5.5: Size adjusted empirical power(%) of the statistics N B M i  and N B M 2 for 

testing homogeneity of K =2 negative binomial populations when data  are simulated 

from NB(rrii,Ci), i =  1,2; empirical quantiles based on 40,000 replications; empirical 

size based on 10,000 replications; a  =  0.05

Sample

size

Test

Statistic

(m u m 2)

(c i,c2)

(2 ,2 )

(0.05,0.05)

(2,2.5)

(0.05,0.10)

(2,3.0)

(0.05,0.15)

(2,3.5)

(0.05,0.2)

(2,4.0)

(0.05,0.25)

(2,4.5)

(0.05,0.3)

1 0 N B M i 4.84 6.24 9.99 15.43 22.46 30.76

n b m 2 5.11 6.58 10.94 17.40 25.17 33.59

15 N B M i 5.10 7.58 13.99 24.29 36.55 49.06

n b m 2 5.03 7.46 14.11 24.72 37.25 50.35

2 0 N B M i 4.89 7.95 17.51 32.49 48.61 63.72

n b m 2 4.94 8.19 17.98 32.97 49.22 64.27

40 N B M i 4.66 1 2 . 1 2 35.41 63.43 83.45 93.81

n b m 2 4.75 12.16 35.24 63.43 83.60 93.80
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5 .3  H om o g en eity  o f  several b eta -b in om ia l B B ( n , ( j ) )  p op u la ­

tio n s

5.3.1 F ish er’s p rocedu re for com bin ing  tw o score te s t  s ta tis ­

tics

Now let Xu , ..., x irH be a sample from the beta binomial distribution B B fa i ,  (pi), i = 

1 , k, w ith probability mass function 

/
P r ( X  — x \m )

m I X - o K 1 ~fa) + r fa) U ? J  X((! -  7r) (1 ~fa) + r fa)
x , K L ^ i l - t  + rtt))

where 7r is the proportion param eter and <f> is the dispersion parameter. Note th a t 

the mean and variance of X  are m n  and m n ( l  — tt)(1 + (m — 1 )fa) respectively. Thus, 

testing the equality of means and equality of variances of the B B f a ,  fa) populations, 

2 =  1 ,..., k , is equivalent to testing 7Tj =  7r and fa =  0  for all i — 1 ,..., k.

Now, from the general results in Section 3.2, we obtain the score test statistic for 

testing

H'q : 7Tj =  7r, fa  — 0 , for all i against H[ : at least two 7r ’s are unequal and fa  — 0 , 

for all i as

k 2

b b s ^ Y , ^ ,

where Su — C  — h ih u /h i i )  vu — hn  — ^ 1 2 / ^ 2 2  

hi -  N/j- i

1 _  V ''n iH2 — 2̂ i j= 1

E% ij  ___________________f a ) ___________ y i n i j j - % i j  ( 1  f a )
r = l  ~ / „ \ 7 Z _ / r = 17r(1 -  fa) +  (r -  1)0 (1 -  7r)(l -  0) +  (r -  1)0

™  (r -  1 ) -  7T xymjj—xjj ( r - l ) - ( l - T r )
2 _ / r = 1  ̂ ~ ' 2 _ / r = l

7r(l — 0 ) +  ( r  — 1)0 (1 — 7r)(l — 0 ) +  ( r  — 1)0
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E rriij
r = 1

r — 2

1 -  0  +  (r -  1)0

/in = (1- 0 ) 2 E?ii E rriij 
r = 1

P(Xij >

{tt(1 -  0) +  (r -  1)0}'
r-\my 

"T 2 _ / r = l
<  rriij -  r )

{ ( 1 - tt)(! -  0) +  (r -  ! ) 0 } 2

7 _
**12 — 2^7=1

7r(l -  0 ) ^  r )
/  V7- = 1

( 1  - 7 r ) ( l  -  0 )

0
7 _H22 — 1

0
E rriij

r = 1

{7r(l -  0) +  (r -  1)0} 2

P(xij < rriij -  r)
{ ( l - 7 r ) ( l - 0 )  +  ( r - l ) 0 } 2

+

_1_
02

- 2  P ( Xij — r )
^  2 —/ r = l

+ ( i - ^ ) 2 E r= i

(7r(l -  0) +  (r -  1)0}2 

P(xij  < rriij -  r ) E rriij
r ~  1

{ ( 1  -  7r)(l -  0 ) +  (r -  1 )0 } 2 { 1  — 0  +  (r — 1 )0 } 2

and Ti and 0  are the maximum likelihood estimates of 7r and 0  under H q, obtained

by solving the maximum likelihood estimating equations

k rii %ij

EEE (1 - 0 ) mu ‘T'ii

E (1 - 0 )
=  0

and

(r -  1) -
k rii Xij

^  7r(l -  0) +  (r -  1)0
j = l  j = l  r = 1 x 7 v 7

+ E
-  E t v

( r -  1) -  (1 — tt)
'r i ( l - ? r ) ( l - 0 )  +  ( r - 1)0

r — 2
0 ,

r = 1
0 + ( r - l ) 0  

simultaneously.

Similarly, the score test statistic for testing

Hq : 0j =  0, for all % against H"  : at least two 0 '’s are unequal , for all i 

is

B B S 2 =  ^  ,

where
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y ^xij  (r 1 ) TTj____________ —Xij_____ (v 1 ) ( 1  iff)____
r _ 1  7Ti(l -  f t)  +  (r -  l ) f t  r _ 1  ( 1  -  7Ti)(l -  f t)  +  (r -  1 )0 '

E rriij
r = 1

r — 2

1 — f t  + (r — l ) f t

and iti, i = 1 , k  and f t  are the maximum likelihood estimates of 7r», * =  1 , A;

and <̂ ' under H'ft obtained by solving the maximum likelihood estimating equations

simultaneously.

Again, from the general results in Section 3.2, it is obvious tha t, asymptotically, as 

rii —> oo, * =  1,..., k, the statistics B B S \  and B B S ^  are independent. We denote the 

statistic obtained by combining the score test statistics B B S i  and B B S -2 by B B M 2 -

5.3 .2  S im ulation

In the simulation study we considered K=2, 3 and 4 populations, two nominal levels 

a. =  0.05 and a  = 0.10 and equal sample sizes from each population. Each simulation 

experiment was based on 1 0 , 0 0 0  samples.

=  0 , i  =  1

and
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For size calculation in the beta-binomial case, we generated samples from BB(ir,  (f>) 

populations with equal 7r ’s and equal 0 ’s. Unequal 7r’s and unequal 0 ’s were considered 

for power calculations. The beta-binomial index m  was generated from a discrete 

uniform (1 , 16) distribution, as in many toxicological data  sets m  varies from 1 to 

16(see data  in D ata sets, Table D.2). Here also results for k=3 and k=4 are similar. 

So, we give results for only k= 2  and k=3 with a  =  0.05 and a  — 0 . 1 0  respectively. 

Results of the simulations for k=2 of a  = 0.05 and a  = 0.10 are presented in Table 

5.5 and 5.6 and those for k=3 of a  = 0.05 and a  = 0.10 are presented in Table 5.7 

and 5.8.

According to  results in Table 5.5 to  Table 5.8, the statistic B B M i  shows some con­

servative behavior for small sample sizes (n <  15); otherwise it holds level well. The 

statistic B B M 2 m aintains level well in all situations studied here. Power properties 

of both the statistics are similar.

5.3 .3  E xam p le

Example 2. (Paul, 1982). The data  in D ata sets, Table D.2 refer to  live foetuses in 

a litter affected by treatm ent, and the number of live foetuses, for each of k=4 doses 

groups: control(C), low dose(L), medium dose(M), and high dose(H). Analysis of the 

data, based on the BB model, gives B B L R i  =  10.89, B B L R 2 = 2.865, B B S \  = 

11.62 and B B S 2 =  2.38. From these the values of B B M \  and B B M 2 are 10.56 and 

10.855 w ith p-values 0.032 and 0.0285 respectively. Both procedures reject the hull 

hypothesis of homogeneity of the four groups.
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Table 5.6: Empirical power(%) of different statistics for testing homogeneity of K =2 

beta  binomial populations when data  are simulated from BB(rrii, iXi, (pi), i = 1,2; 

based on 10,000 replications; a  = 0.05

Sample

size

Test

Statistic (0 1 ) 0 2 )

( 0 .30 , 0 . 30 ) ( 0 . 30 , 0 . 35 ) ( 0 .3 0 ,0 . 40 ) ( 0 . 30 ,0 .45 ) ( 0 . 30 , 0 . 50 ) ( 0 . 30 ,0 .55 )

( 0 . 10 ,0 . 10 ) ( 0 . 10 , 0 . 12 ) ( 0 . 10 ,0 . 14 ) ( 0 . 10 ,0 . 16 ) ( 0 . 10 , 0 . 18 ) ( 0 . 10 ,0 . 20 )

1 0 B B M X 2.50 3.72 7.63 15.31 25.53 39.06

b b m 2 3.59 5.06 9.38 15.92 25.23 36.82

15 B B M i 3.62 6.37 14.18 27.67 44.05 63.14

b b m 2 4.62 7.02 14.09 27.08 43.19 59.48

2 0 B B M i 4.51 8.39 18.45 36.54 56.95 76.86

b b m 2 4.66 8.17 18.24 35.52 55.21 75.00

30 B B M i 5.23 11.42 28.98 55.34 79.27 93.16

b b m 2 4.88 1 1 . 0 2 27.63 53.80 78.41 93.09

40 B B M X 5.19 13.69 36.50 67.03 89.86 97.82

b b m 2 4.94 12.91 36.10 67.91 88.57 97.74

50 B B M i 5.48 14.91 44.5 77.40 95.03 99.40

b b m 2 4.82 14.87 44.84 78.51 95.23 99.42
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Table 5.7: Empirical power(%) of different statistics for testing homogeneity of K —2 

beta  binomial populations when da ta  are simulated from BBfrrii, ir*, <pi), i =  1 , 2 ; 

based on 1 0 , 0 0 0  replications; a  — 0 . 1 0

Sample

size

Test

Statistic

(vri,7r2) 

(0 1 ) 0 2 )

( 0 . 30 , 0 . 30 ) ( 0 . 30 ,0 .35 ) ( 0 .30 , 0 .40 ) ( 0 .30 , 0 .4 5 ) ( 0 . 30 ,0 . 50 ) ( 0 .3 0 ,0 .55 )

( 0 . 10 , 0 . 10 ) ( 0 . 10 ,0 . 12 ) ( 0 . 10 , 0 . 14 ) ( 0 . 10 ,0 . 16 ) ( 0 . 10 ,0 . 18 ) ( 0 . 10 ,0 . 20 )

1 0 B B M \ 6.61 8.38 15.03 25.53 38.21 52.76

b b m 2 8.57 10.85 18.01 27.65 39.52 52.10

15 B B M i 8.07 12.72 23.18 40.32 58.21 75.11

b b m 2 10.15 14.04 24.20 40.25 57.62 73.67

2 0 B B M i 9.51 14.95 29.30 49.63 69.56 85.61

b b m 2 9.88 14.83 29.85 49.59 69.13 85.06

30 B B M i 1 0 . 8 6 18.87 38.11 63.31 84.31 94.5

b b m 2 10.04 18.24 37.54 62.91 83.06 94.27

40 B B M i 10.48 19.39 42.05 68.40 87.38 96.62

B B M 2 1 0 . 2 0 19.11 40.56 66.89 86.94 96.72

50 B B M i 10.29 22.18 49.30 77.89 94.24 99.06

b b m 2 10.17 21.56 49.30 79.31 93.95 98.94
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Table 5.8: Empirical power(%) of different statistics for testing homogeneity of K =3 

beta  binomial populations when data  are simulated from BB(rrii, ip, (pi), i =  1, 2,3; 

based on 10,000 replications; a  = 0.05

Sample Test (tti, 7r2, ^ 3 )

size Statistic ((pi, (p2 , $ 2)

(0 .30 ,0 .30 ,0 .30) (0 .30 ,0 .32 ,0 .35) (0 .30 ,0 .35 ,0 .40) (0 .30 ,0 .37 ,0 .45) (0 .30 ,0 .40 ,0 .5 0 )(0 .3 0 ,0 .4 2 ,0 .5 5 )

(0 .10 ,0 .10 ,0 .10) (0 .10 ,0 .11 ,0 .12) (0 .10 ,0 .12 ,0 .14 ) (0 .10 ,0 .13 ,0 .16) (0 .10 ,0 .14 ,0 .18 ) (O.IO,0 .15 ,0 .20)

1 0 B B M i 2.24 2.96 6.19 11.46 20.49 32.11

b b m 2 4.12 5.13 8.04 13.38 21.18 31.77

15 B B M i 3.13 5.38 10.3 20.90 35.82 52.78

b b m 2 4.49 6.73 11.67 20.81 33.84 50.44

2 0 B B M i 4.04 7.32 14.74 28.52 47.94 67.96

b b m 2 4.74 7.04 13.91 28.13 45.23 64.09

30 B B M i 4.83 9.22 21.39 42.52 66.45 85.60

b b m 2 5.11 9.04 20.67 40.89 65.16 84.10

40 B B M i 5.04 10.57 29.16 57.68 82.50 95.62

b b m 2 4.73 10.17 27.52 56.81 82.79 95.51

50 B B M i 4.83 11.71 34.18 67.03 90.44 98.23

b b m 2 5.06 12.77 35.54 67.27 90.46 98.55
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Table 5.9: Empirical power(%) of different statistics for testing homogeneity of K=3 

beta binomial populations when da ta  are simulated from BB(rrii,  7Tj, 0;), i — 1 , 2 , 3; 

based on 1 0 , 0 0 0  replications; a  = 0 . 1 0

Sample Test (7Ti, 7t2 , 7r3)

size Statistic (0 1 , 0 2 ) 0 3 )

( 0 . 30 , 0 . 30 ,0 .30 )  ( 0 .3 0 ,0 . 32 , 0 . 35 )  ( 0 .3 0 ,0 .3 5 ,0 . 40 )  ( 0 .3 0 ,0 .3 7 ,0 .45 )  ( 0 .3 0 ,0 .4 0 ,0 .50 ) ( 0 . 3 0 ,0 .4 2 ,0 . 55 )

( 0 . 10 ,0 . 10 ,0 . 10 )  ( 0 . 10 ,0 . 11 , 0 . 12 )  ( 0 . 10 ,0 . 12 ,0 . 14 )  ( 0 . 10 ,0 . 13 ,0 . 16 )  ( 0 . 10 ,0 . 14 ,0 . 18 )  ( 0 . 10 , 0 . 15 ,0 . 20 )

1 0 BBM1 5.63 7.15 11.84 20.39 32.89 46.33

bbm2 8.81 11.13 16.28 20.39 34.35 47.03

15 BBMi 7.51 10.59 18.72 32.68 49.84 66.18

bbm2 9.70 12.70 2 1 . 2 2 33.41 47.42 64.55

2 0 BBMi 8.80 13.53 24.75 41.22 61.58 78.86

bbm2 9.46 13.55 23.36 40.83 59.90 76.33

30 BBMi 10.06 16.25 32.83 55.87 77.16 92.19

bbm2 10.08 15.23 32.20 54.29 76.48 91.04

40 BBMi 1 0 . 6 8 18.12 41.87 69.69 89.98 98.05

bbm2 9.95 17.84 40.09 69.46 89.96 97.86

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Chapter 5. Homogeneity o f Several Non-normal Populations 61

5 .4  H om o g en eity  o f  several W eibu ll WBixJ)^) p op u la tion s

5.4 .1  F ish er’s p rocedu re for com bin ing  tw o score te s t  s ta tis ­

tic s

Now let Xu , ..., x iriy be a sample from the Weibull distribution WB{;pl , (pi), i =  1 , k, 

w ith probability density function

Note th a t the mean and variance of X  are pY  ( 1 +  — ) and p 2 T ( 1 +  — ) —T2 ( 1 +  —
V W  V \  i’J V

respectively. Thus, testing the equality of means and equality of variances of the 

WB(ipi,(f)i) populations, i = 1 , is equivalent to  testing ipi = ip and <pi = (f) for 

all i — 1, . . . ,  k.

Now, from the general results in Section 3.2, we obtain the score test statistic for 

testing

H'q : ipi — p,  (pi — p, for all i against H[ : at least two ^ ’s are unequal and pi =  p, 

for all i, as

exp

1 2 1

where

with In =with k i =  ^  +  E ; i i l o g
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0 

_ 7̂ / 6 + (1 - 7)2]
‘ill — ------------ Ei------------>

Ip2
, _  n i( l  ~  l )H12 — -------- t------,

0

H22 — n>i I —

where 7  is Euler’s constant, and 0  and 0 are the maximum likelihood estimates 

(m.l.e) of 0  and 0 under . The m.l.e of 0  is obtained by solving the maximum 

likelihood estimating equation

l  +  L f c i L p i ' o e 1 .) e L . E ^

and 0  can be obtained by
/  y~\fc i> \  1/1/1

0  =  | 2 ^ = 1  Z ^ = l  x ij j

V n 1
Similarly, the score test statistic for testing

Hq : 0i =  0, for all i against H"  : at least two 00s are unequal, for all ? is

k os i
W B S 2 =  V  2 t ,

where

Ui0 :

0
/  .  \  2 
/  0*

V2i =  -y
V f

and 0 i, * =  1, ..., fc and 0 '  are the maximum likelihood estimates of 0 j ,  i =  1, . . . ,  fc 

and 0 ; under H q, obtained by solving the maximum likelihood estimating equations

i + s - log( f ) - E- ( f ) * log( T ) =0’i=1""’fc'
and
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+ Z i :  ET-1  * 4 ‘0 - Wl+1) =  0 ,

simultaneously.

Again, from the proofs in Section 3.2, it is obvious tha t, asymptotically, as n* —> 

oo, i =  1,..., k, the statistics W B S \  and W B S q  are independent. We denote the 

statistic obtained by combining the score test statistics W B S i  and W B S 2 by W B M 2 .

5.4 .2  S im ulation

In the simulation study we considered K=2, 3 and 4 populations, two nominal levels 

a  =  0.05 and a  = 0.10 and equal sample sizes from each population. Each simulation 

experiment was based on 1 0 , 0 0 0  samples.

In the Weibull distribution case, for calculating empirical size, we generated sam­

ples from WB (0,0) populations with equal -0’s and equal 0 ’s. Unequal -0’s and 

unequal 0 ’s were considered for power calculations. Here also Results for k—3 and 

k=4 are similar. So, we give results for only k= 2  and k=3 with a  = 0.05 and a  =  0.10 

respectively. Results of the simulations for k—2 of a  =  0.05 and a  =  0.10 are pre­

sented in Table 5.9 and Table 5.10. Those for k=3 are a  = 0.05 and a  =  0.10 

presented in Table 5.11 and Table 5.12.

According to  the results in Table 5.9 to  Table 5.12, the statistic W B M i  is in 

general liberal, whereas the statistic W B M 2 maintains level well except for small 

sample sizes (n < 15), where it shows some conservative behavior; otherwise it holds 

level well. The power of the statistic W B M \  is in general larger than  th a t of the 

statistic W B M 2 - This is not surprising as the statistic W B M i  is in general liberal.
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Table 5.10: Empirical power(%) of different statistics for testing homogeneity of K =2 

Weibull populations when data  are simulated from WB(Ni,<f>i), i — 1,2; based on 

10,000 replications; a  = 0.05

Sample

size

Test

Statistic

(0 1 , 0 2 ) 

(0 1 5 0 2 )

( 1 . 2 , 1 . 2 ) ( 1 . 2 . 1. 4 ) ( 1 . 2 , 1 .6 ) ( 1 . 2 , 1 .8 ) ( 1 . 2 , 2 .0 ) ( 1 . 2 , 2 . 2 )

( 3 . 2 ,3 . 2 ) ( 3 . 2 ,3 .4 ) ( 3 . 2 , 3 .6 ) ( 3 . 2 ,3 .8 ) ( 3 . 2 ,4 .0 ) ( 3 . 2 ,4 . 2 )

10 W B M l 7.35 9.14 13.11 19.2 26.88 35.20

w b m 2 2.81 4.02 7.23 11.93 18.54 26.66

15 W B M i 6.75 9.05 15.6 24.75 36.67 49.91

w b m 2 3.85 5.92 11.73 20.58 31.93 44.88

20 W B M i 6.65 9.84 17.84 30.79 46.27 61.73

w b m 2 4.37 7.07 14.91 27.72 43.68 59.92

30 W B M i 5.92 10.74 24.01 43.03 62.76 78.66

W B M 2 4.45 9.13 22.13 41.74 62.63 78.77

40 W B M i 5.82 11.58 29.59 54.39 75.95 89.79

w b m 2 4.77 10.51 29.03 54.43 76.07 90.06

50 W B M i 5.82 13.58 35.8 63.84 84.68 95.36

w b m 2 4.42 12.78 35.74 64.56 85.28 95.71
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Table 5.11: Empirical power(%) of different statistics for testing homogeneity of K =2 

Weibull populations when data  are simulated from WB(ipi,<f>i), i — 1 , 2 ; based on 

1 0 , 0 0 0  replications; a  =  0 . 1 0

Sample

size

Test

Statistic

(Vt

(0 i,

d/b)

><h)

(1.2,1-2) (1.2,1.4) (1.2,1.6) (1.2,1.8) (1.2,2.0) (1.2,2.2)

(3.2,3.2) (3.2,3.4) (3.2,3.6) (3.2,3.8) (3.2,4.0) (3.2,4.2)

1 0 WBMi 13.61 15.94 21.35 29.02 38.15 48.02

wbm2 7.42 9.57 14.39 21.55 30.42 40.23

15 WBMx 1 2 . 6 16.05 24.77 36.07 49.63 62.38

wbm2 8.46 1 1 . 8 8 20.18 31.39 45.17 58.81

2 0 W B M i 12.27 16.69 27.67 43.04 59.15 73.32

wbm2 9.01 12.92 24.42 40.1 57.15 71.9

30 W B M i 11.59 18.32 35.14 55.97 73.95 86.95

wbm2 8.96 16.09 32.73 54.48 72.90 86.91

40 W B M i 11.13 19.62 42.03 66.73 84.43 94.39

wbm2 9.24 17.64 40.82 66.09 84.56 94.46

50 WBMx 11.05 22.17 48.09 74.92 91.12 97.8

WBM2 9.05 20.78 47.77 74.67 91.36 97.9
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Table 5.12: Empirical power(%) of different statistics for testing homogeneity of K =3 

Weibull populations when data  are simulated from WBftpi,  </>,), i — 1, 2, 3; based on 

10,000 replications; a  = 0.05

Sample

size

Test

Statistic

(Vh) Vb) Vb) 

^ 3 )

( 0 . 30 , 0 . 30 ,0 .30 )  ( 0 .30 , 0 . 32 , 0 . 35 )  ( 0 .3 0 ,0 . 35 , 0 .4 0 )  ( 0 .3 0 ,0 .3 7 ,0 .45 )  ( 0 .3 0 ,0 .4 0 ,0 , 

( 0 . 10 ,0 . 10 , 0 . 10 )  ( 0 . 10 ,0 . 11 ,0 . 12 )  ( 0 . 10 ,0 . 12 ,0 . 14 )  ( 0 . 10 ,0 . 13 , 0 . 16 )  ( 0 . 10 ,0 . 14,0

,50 ) ( 0 . 30 , 0 .4 2 , 0 . 55 ) 

, 18 ) ( 0 . 10 ,0 . 15 ,0 . 20 )

10 W B M i 7.87 9.41 12.19 16.8 22.91 30.66

w b m 2 2.46 3.39 5.52 9.18 14.48 21.31

15 W B M i 7.42 8.95 13.38 20.35 29.81 40.05

w b m 2 3.68 4.86 8.51 15.59 24.91 36.07

20 W B M i 6.67 8.77 14.39 24.30 37.09 51.84

w b m 2 4.05 5.53 11.24 21.33 34.43 50.24

30 W B M i 6.26 9.3 18.89 34.41 52.9 70.16

w b m 2 4.29 7.37 16.62 33.59 53.54 71.58

40 W B M i 5.97 10.66 23.15 44.2 66.04 83.32

W B M i 4.48 9.03 22.58 45.66 67.83 85.23

50 W B M i 5.70 11.74 28.96 54.58 77.04 91.31

w b m 2 4.54 10.09 28.88 56.3 79.09 92.73
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Table 5.13: Empirical power(%) of different statistics for testing homogeneity of K =3 

Weibull populations when data  are simulated from WB(ipi,<f>i), i =  1,2,3; based on 

1 0 , 0 0 0  replications; a  = 0 . 1 0

Sample Test (Vh) Vb, Vb)

size Statistic {4>ii 4>2-, <t>f)

( 0 . 30 ,0 .3 0 ,0 .30 )  ( 0 . 30 ,0 . 32 ,0 .35 )  ( 0 . 3 0 ,0 . 35 , 0 .40 )  ( 0 .30 , 0 . 37 , 0 .4 5 )  ( 0 . 30 , 0 . 40 ,0 . 50 )  ( 0 .3 0 ,0 .42 ,0 .55 )  

( 0 . 10 ,0 . 10 ,0 . 10 )  ( 0 . 10 ,0 . 11 ,0 . 12 )  ( 0 . 10 ,0 . 12 , 0 . 14 ) ( 0 . 10 , 0 . 13 , 0 . 16 )  ( 0 . 10 , 0 . 14 , 0 . 18 )  ( 0 . 10 ,0 . 15 ,0 . 20 )

1 0 W B M i 14.61 16.13 20.41 26.67 34.57 43.09

w b m 2 6 . 8 6 8.06 1 1 . 8 8 17.36 24.94 33.65

15 W B M i 13.31 15.81 21.65 31.01 41.35 53.40

W B M i 7.67 1 0 . 0 16.04 25.17 36.57 49.05

2 0 W B M i 12.52 15.66 23.76 35.76 50.17 64.48

w b m 2 7.99 10.74 19.43 31.73 47.42 63.28

30 W B M i 11.65 16.55 29.12 46.73 65.48 80.11

w b m 2 8.46 13.41 26.17 45.6 65.49 80.7

40 W B M i 11.64 17.68 34.36 56.86 76.78 89.82

w b m 2 8.90 15.62 33.56 56.7 78.1 91.21

50 W B M i 1 1 . 0 0 19.39 40.66 66.26 85.42 95.26

w b m 2 8.94 17.35 39.93 67.31 86.61 95.97
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5 .5  D iscu ssio n  and conclusion

Singh (1986) develops a procedure for testing homogeneity of several normal popu­

lations based on combining two separate independent likelihood ratio test statistics 

using a m ethod proposed by Fisher (1950). In Chapter 3, we extended Fisher’s 

m ethod to  test homogeneity of several location-scale populations using two likelihood 

ratio statistics as well as two score test statistics. Asymptotic independence of the 

two likelihood ratio statistics and also of the two score test statistics have been estab­

lished. The problem of testing for the homogeneity of several populations, in term s of 

the means and the variances, arises not only in normal populations but also in other 

populations. T hat is why we included two im portant over-dispersed discrete distrib­

utions and also the Weibull distribution in our development of theory and simulation 

comparison in this chapter.

The statistics based on combining two score tests hold level in all situations in­

vestigated here. The statistics based on combining two likelihood ratio statistics hold 

level in general, although they show either liberal or conservative behavior in some 

situations, particularly for small sample sizes. We conclude th a t Fisher’s m ethod of 

combining two statistics, even when they are only asymptotically independent, does 

perform well for testing homogeneity of several populations in term s of the means 

and the variances. However, the score test statistics have simple forms, are easy to 

calculate, because they do not require estimates of the parameters under the alterna­

tive hypotheses and have uniformly good level properties. Therefore Fisher’s m ethod 

based on combining two score test statistics might be the m ethod of choice.
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Part II

A nalysis o f Paired C ount D ata  
w ith  Zero-Inflation and  

O ver-D ispersion
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C hapter 6

Test of Treatment Effect in Pre-drug and 

Post-drug Count Data with Zero-inflation and 

Over-dispersion

6 .1  In trod u ction

D ata in the form of pre-treatm ent and post-treatm ent counts, such as prem ature 

heart beats, tum or cells, epileptic seizures, etc., arise in numerous applications. The 

purpose of this chapter is to  present a procedure for testing no treatm ent effect in these 

da ta  sets. As an example we consider the data  given in D ata sets, Table D.3. The 

da ta  on prem ature ventricular contractions (PVC) originally given as counts by Berry 

(1987) are analysed by Farewell and Sprott (1988) as proportions. The da ta  pertain to 

twelve patients who experienced frequent prem ature ventricular contractions (PVCs) 

and were administered a drug with antiarrhythm ic properties. One-minute EKG 

recordings were taken before and after drug administration. The PVCs were counted

70
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on both  recordings. The observations occur as paired data  (x;,?/j), which are the pre­

drug and post-drug count, respectively, for the ith  patient. Assume th a t is a Poisson 

variate with mean A; and th a t for patients who are not cured yi is independently 

Poisson w ith mean (5\ ;. In order to  eliminate the “incidental” nuisance param eters 

Ai, one for each uncured subject, Farewell and Sprott (1988) use the conditional 

distribution of ŷ  given rrii — Xi + yi, which is

f(yuP\mi)  =

(  \
rrii

pVi( i - p ) mi Vi,yi = o, l, ...,77̂ ,

V K }
where p =  /3A;/(Aj +  j3\f) = 0 / (1  + (5). A binomial model may fail to  fit a set of data  

in the form of proportions either because of the presence of zero-inflation or because 

of the presence of over-dispersion. Let to be the probability of cure implying th a t 

yi = 0. Then, the distribution of yi, conditional on rrii can be w ritten as a mixture 

model (the zero-inflated binomial model).

|  u  + ( l - u ) f ( 0 - , p \ m i )  if 2/i =  0  
Pr(yi\rrii) =  < (6.1.1)

y ( 1  -  uj)f(yi]p\mi) if yi > 0 .

Using a score test based on this model Deng and Paul (2000) find significant zero 

inflation in the PVC data. An over-dispersed model such as the beta-binomial model 

with probability param eter 7r and dispersion param eter 4> having probability function 

/  \
f ( y f , n, c / ) \mi )  =

rrii n ^ M l  -</>) +  r<j>) U T loVi ^ ( l  - 7r)(! -  rj>) + r<j>)

\  Vi

may fit the da ta  as well or better than  the zero-inflated binomial model. Again, Deng 

and Paul (2000) use a score test developed by Dean (1992) to  show th a t there is 

significant over-dispersion in the PVC data. They, in fact, fitted the binomial, the
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zero-inflated binomial and the beta-binomial model to  the PVC da ta  and concluded 

th a t among these models the zero-inflated binomial model fits the da ta  best. However, 

they argued th a t the PVC da ta  and other similar data  may contain both  zero-inflation 

and over-dispersion. As a zero-inflated over-dispersed model one can consider the 

zero-inflated beta-binomial model which is given as

(  w +  ( l-w )/(O ;7 r ,0 |m i)  if j/i =  0 
Pr{yi\mi)  =  < (6 .1 .2 )

[ (1 - u ) f ( y i ; n , < f > \ m i )  if >  0.

The param eter ui is the zero-inflation param eter and the param eter 0 is the intr­

aclass correlation parameter. The zero-inflation param eter can take negative values 

provided — <  ui <  1. Note th a t if co >  0, then P ( Y  — 0) > /(O ;7r , 0 |m;)

and if u  <  0, then P ( Y  — 0) <  /(0 ; tt, 0 |m ,). While the former indicates existence 

of too many zeros (zero inflation), the la tter indicates th a t there exist too few zeros 

(zero deflation) in the data. Further, the intraclass param eter 0 also may assume pos­

itive as well as negative values provided m a x { - ^ ~ )  < <j> < 1 (Prentice, 1986). In the 

limit as 0  —> 0  the zero-inflated beta-binomial model converges to  the zero-inflated 

binomial model.

Thus, the zero-inflated beta-binomial model is the most flexible model for the 

analysis of da ta  similar to  the PVC data. Farewell and Sprott (1988) alluded to  such 

a model.

In this chapter we use this model to develop procedures for testing for treatm ent 

effect. As one can see th a t treatm ent can affect two parameters, namely, the zero- 

inflation param eter u  and the param eter 7r. Note th a t the param eter cu represents the 

proportion of cure and the param eter 7r represents the effect of the treatm ent on the
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uncured population. Therefore to  determine treatm ent effect one can (i) estimate u>, 

the proportion of cure and test whether the uncured population had any improvement 

of their prevailing condition as a result of the treatm ent or (ii) test the overall effect of 

the treatm ent. Note th a t u> = 0 indicates th a t the treatm ent fails to  cure the disease 

while 7r =  1 / 2  indicates th a t the treatm ent had no effect on the uncured population. 

Therefore, we develop tests: (i) of Ho : ix — 1/2 against H\  : ir ^  1/2 treating ui and 

(f) as nuisance param eters and (ii) of T/q : 7r — 1/2, a; =  0  against H[ : 7r /  1/2 or 

ui 7  ̂ 0 treating 0 as a nuisance parameter. In particular we develop score tests and 

likelihood ratio tests.

The score tests and the likelihood ratio tests are developed in Section 6.2. Some 

simulations are carried out in Section 6.3 to study level and power properties of the 

score and the likelihood ratio tests. In Section 6.4 we analyse the PVC data. A 

discussion is given in Section 6.5.

6 .2  T est for no trea tm en t effect

6 .2 .1  T h e m axim um  likelihood  estim a tes

We now give maximum likelihood estimates of the parameters under different hy­

potheses as these will be used in the score and the likelihood ratio statistics. Let 

yi, i  =  1 , be a sample of independent observations from the zero-inflated beta- 

binomial model (6.1.2). Then, the log-likelihood can be written as

n

1
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=  M 1 + + J^=°> l o g ( 7  +  +  hvi> °>log /»*}.
i= 1

/  \
where f Vi =

rrii

n S o ‘( i - 0 + ^ )  ’ 7

and foi — —— -------;------------------------ . Note th a t for convenience we have repara-
T \TYli 1 /  -* 1 1 ^

\ m  J

K l o \ ( l - ^ ) ( l - 4 > ) + rcf>)

n r 4 _1a  - ^ + r ^ )
meterized u; into 7 . Thus u; =  0 implies 7  =  0 .

Now, let Zoi =  log(/oi), lyi =  log(/w). Further, let 

dl dl
I'y.fp) ~  ail(l  Vy,{4>) = ~r^p- Explicit expressions for these terms are given in the 

Appendix B. Then the maximum likelihood estimates of the param eters 7 , 7r and (p 

are obtained by solving the estimating equations

f o d  0i(7r)

i = l  ^  +  ^

Y l i I{yi=°> ^ +  hyiXr}1'vi{4>)} =  0
i= 1 ' ■'0l

and

- l } = ° '

simultaneously. These are the estimates under the general alternative in which none 

of the param eters are specified. We denote these by 7 , n  and </>. Further, under 

the null hypothesis H q : 7r =  1/2, the maximum likelihood estimates of 7  and 0 are 

obtained by solving the estimating equations

+  h v i > ^ '  yi{4>)}\^=r^ =  0
2 = 1

and

_|_ y o . 1 } | i r = l / 2  —  0

1 = 1
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simultaneously and the maximum likelihood estim ator </>' of the nuisance param eter 

under the null hypothesis H 0 : n  = 1 /2 , 7  =  0 is obtained by solving the estimating 

equation

n

"y ^ A ^{yi=°}^0i(<t>) T  l { y i >0} l y i(<{>)} 17r=l/2 = 0.
i= 1

6 . 2 . 2  T h e  s c o r e  t e s t s

The score test (Rao, 1947) is a special case of the more general C(a)  test (Neyman, 

1966) in which the nuisance parameters are replaced by maximum likelihood esti­

mates which are (N=num ber of observations used in estimating the parameters) 

consistent estimates. The score test is particularly appealing as it often maintains, at 

least approximately, a preassigned level of significance ( see Bartoo and Puri, 1967). 

Further, it requires estimates of the param eters only under the null hypothesis, and 

often produces a statistic which is simple to calculate. For more discussion on the 

choice of C(a)  or score tests see Barnwal and Paul (1988), Breslow (1990), and Paul 

and Banerjee (1998).

We want to obtain score tests for Ho : 7r =  1/2 against Hi : n  7  ̂ 1 / 2  when 7  and <p 

are treated as nuisance param eters and for H q : it =  1/2, 7  =  0 against H[ : 7r /  1/2 

or 7  7  ̂ 0  when 0  is treated  as a nuisance parameter.

Derivation of the score tests are quite involved. So, here we give the results 

relegating the proof to  the Appendix B. The score test statistic for testing H 0 : n  =  

1 / 2  against Hi : tt ^  1 / 2  is

Si =  w f / 7 ,
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where =  ^ i ( 0 , 7 )|tt=i/ 2  and Vi =  14(0 ,7 )k = i / 2  

with

, Tr __  ^    V ^ n  f T E l i  t t 7 / 1
Q n  ~  ^ * = 1  l - ‘ { y i = 0 }  _|_ +  - 4 y i > 0 } t  yi(ir) j

and

V-2   t 5T7 ^  7 7  n<t>
1 —  7T7T j

' ' '7 7  _  ^ 7

where / „  =  { £ " = 1
(7 +  foi)foi Ôi(7T7r) _  lfoidoi(n))2 n

(l +  7)(7  +  /oi)
/" 1- TL7T7tI  5

7- _  ^  foi)foToi(n<j>) 7 fodoi(Tr)loi(<t>) . _
** -  ^(l +  7 )(7 +  /oi) ^  07 “

J   fV''Tl ty+foi)foil,M(jt'i>')—7 /oi(̂ oi(0 ) ) 2 , ,// 1 7-   r ^
LW  —  \2 - ^ i= 1 ri+'YW'Y+fn,-} 7 7  Z ^ i = l l

1 +  7

v - m  r / o ^ 0 i ( 7 r )  •>

A ^= ii r J ’ 7 +  Jo*
\-~vn r foi^Oi(tf>)
2 -/i=ll , t  J>7 +  /oi

( l+ 7 ) ( 7 + /o » )

0 i(7 T 7 r ) ’ 0 Oi(lr<t>), i r i r )  7 f^n

(I + 7)2 (l + 7)(7 + /«)
}•

The quantities Z". Z"r , Z" ,Z"OT, I" I'L used above are given in the Appendix

B.

The statistic Si, asymptotically, as n  —> 0 0 , has a y 2 (l) distribution. Note th a t 

in this score test we use the maximum likelihood estimates of 7  and 0  under the null 

hypothesis H q : ir = 1/2.

The score test for iJg : ft =  1 /2 , 7  =  0 against H[ : ir ^  1/2 or 7  ^  0 is

S2 =  ^ ' 2 ^ 2  ^ 2,

f  dl dl
with =  ^ 2 (0 ') and V2 = V2(<fr), where fJ>2 =  f ^  ) ' 

with

m_
dir 
and

m_
9 7

and

H'0

HA

HA

—  S i = l { ^ { j / i = 0 } ^ 0 i ( 7 r )  "I" - ^ { y i> 0 } ^  i 7 j ( 7 r ) } | i r = l / 2

- « + E r , i % aJOi t t = 1 / 2
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V2 =  h i  — ^12^22 h i  j with h i  —
< j  j  NU7T7T u lT'y

T 21 — f \ 2  — { J f a i  df/yy) j  -^22 J<j><f>-

yJ'K'i J 7 7  J

The quantities Jtz*yi and J respectively are Tr7rj f 1 f*yyi f<p~k 1 f<p*y

and 1 ^  defined earlier by replacing it by 1 / 2 , 7  by 0 .

The statistic S 2 , asymptotically, as n  —>• 0 0 , has a x 2 (2 ) distribution. Note th a t in 

this score test we use the maximum likelihood estimate of (j) under the null hypothesis 

Hq : 7T =  1 / 2 , 7  =  0 .

6 .2 .3  T h e log-lik elihood  ratio  te s ts

The likelihood ratio statistic for testing H 0 : it =  1/2 against Hi  : it 7  ̂ 1/2 is 

LR1= 2 ( [(7 , 7r, 0 ; y)-l(7 , .5, 0 ; y)) 

and th a t for testing H'0 : it =  1 /2 , 7  =  0 against : 7r ^  1/2 or 7  ^  0 is 

LR2= 2( Z(7 , tt, 0; y)-Z(0, .5,0 '; y)), 

where Z(0, .5,0'; y)) is the maximized log-likelihood under the null hypothesis Hq : 

7r — 1 /2 ,7  == 0, Z(u>, .5,0; y)) is the maximized log-likelihood under the null hypothesis 

Hi : it — 1 / 2  and l(u, it, 0 ; y) is the maximized log-likelihood under the alternative 

hypothesis Hi : it ^  1/2 or H[ : it 7  ̂ 1/2 or 7  7  ̂ 0.

Asymptotically, as n  —> 0 0 , the distribution of L i?l is y 2 (l) and th a t of LR2  is 

X2 (2).
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6 .3  S im u lation

We now report results of a simulation study conducted to examine the empirical size 

and power of the score test statistic and the likelihood ratio statistic L R l .  Samples 

of size n=12 and n=24 were considered. For n=12, the sample size configuration rrii, 

i=  1,..., 12, considered were the to ta l PVC counts 11, 11, 17, 22, 9, 6 , 5, 14, 9, 7, 22, 

51 in the da ta  in Table D.3. For n=24 the sample size configuration considered were 

11, 11, 17, 22, 9, 6 , 5, 14, 9, 7, 22, 51, 11, 11, 17, 22, 9, 6 , 5, 14, 9, 7, 22, 51. T hat is, 

we just doubled the data  considered for n =  12. Empirical size and power of the test 

statistics S\  and L R l  were calculated using da ta  from the zero-inflated beta-binomial 

distribution with n  = .2, .4, .46, .50, .54, .6 , .8 , a; =  .05, .10, .20 and 0 =  .1, .2. Each 

simulation experiment was based on 10,000 simulations. Empirical size and power 

results of the test statistics Si and L R l  with 0 =  0.10 are presented in Table 6.1 and 

those with 0  =  0.20 are given in Table 6.2. Note, the entries in column 8  with 7r =  .5 

of each of Table 6.1 and Table 6.2 represent empirical levels.

Both the statistics Si  and L R l  hold level well and they both  show excellent power 

property. In the im portant range n < .5 power of the score test statistic Si  is slightly 

better than  the likelihood ratio statistic L R l  and for rr > .5 power of the statistic L R l  

is slightly better than  the statistic Si. Note th a t 7r < .5 indicates positive treatm ent 

effect, whereas n > .5 indicates negative treatm ent effect. Sample size also seems to 

have an effect on power. For example, power with n  =  24 is larger than  th a t with 

n  =  12. Power also seems to  be a decreasing function of 0. For example, powers of 

Si  and L R l  with a  — 0.05, u> =  .2, n  =  . 6  and 0  — .1 are .182 and .246 respectively. 

W ith the same values of a , lu, 7t and with 0  =  .2, powers of Si  and L R l  are only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Test o f Treatment Effect in Pre-drug and Post-drug 79

.1191 and .1798 respectively. The power would be largest when (j) is smallest, th a t is, 

when we have a zero-inflated binomial model.

Our very limited simulation study (the results are not given here) revealed similar 

properties of the statistics S 2 and LR2  as those of the statistics S\  and L R l .  The 

statistics S 2 and LR2,  however, showed some conservative behavior.

Either the score tests or the likelihood ratio tests can be used for testing the 

presence of treatm ent effect. The score tests, however, may be preferable because they 

use estimates of the parameters only under the null hypothesis and in the im portant 

range 7r <  .5, the power of the score test statistic S\  is slightly better than  the 

likelihood ratio statistic L R l .

6 .4  A n a lysis  o f  th e  P V C  d ata

We now test for treatm ent effect in the PVC data. For this we fit three models to 

the data, namely the beta-binomial model with 7r — 1 / 2  and unknown param eter 4>, 

the zero-inflated beta-binomial model with 7r =  1 / 2  and unknown param eters 7  and 

<j>, and the zero-inflated beta-binomial model with unknown param eters tc, 7  and <f>. 

For the PVC data  we obtain $  =  0.71, 1(0, .5, </>'; y) = —25.275, 7  =  1.35, 0  =  0 .1 2 2 , 

[(7 , .h,4>]y) — —19.462 and 7  =  1.262 ff =  0.336, <j) = 0.084, I f y , fr ,<j>\y) — —18.03. 

From these maximized log-likelihoods we obtain L R l  — 2.873 and LR2  =  11.62. 

Further, the values of the score test statistics S% and S 2 are 2.59 and 8.358 respectively.

To test whether the uncured population had any improvement of their prevailing 

condition as a result of the treatm ent, the p-values of the LR test and the score 

test are 0.09 and 0.108 respectively. The conclusion from the likelihood ratio test
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is essentially the same as th a t from the score test. The tests show some evidence 

of the effect of the treatm ent, though not highly significant. T hat is, treatm ent 

has improved the prevailing condition of the uncured population. Also note th a t 

treatm ent has resulted in a significant proportion of cure (u)=0.575 ). To test the 

overall effect of the treatm ent, the p-values of the LR test and the score test are 0.003 

and 0.015 respectively. Both tests show a highly significant treatm ent effect for the 

whole population.

6 .5  D iscu ssion

Berry (1987) used a paired t-test after logarithmically transforming the pre-drug and 

the post-drug counts. For example, the y-data were transformed to  z  =  log(y +  c), 

where c is to  be determined so th a t a function go(c) given in equation (5) of Berry 

(1987) is minimum with respect to  c. He concluded tha t there is a significant trea t­

ment effect (p-value=.001). Note th a t Berry’s method uses the pre-drug (x) and the 

post-drug (y) counts. As such, his test based on these data  is an unconditional test. 

Also, his m ethod cannot estimate the zero-inflation and the over-dispersion param e­

ters. Our method, based on the zero-inflated beta- binomial model, is a conditional 

(conditional on x + y  — m)  approach. Our m ethod enables us not only to  test for 

over-all treatm ent effect, but also to test for effect of the treatm ent on the uncured 

population. In addition, our model facilitates estimation of the proportion of cure 

and the amount of over-dispersion present in the data. Note th a t the test of the hy­

pothesis i 7 o : 7r =  l / 2 , 7  =  0  brings out the same conclusion regarding the treatm ent 

effect (p-values being 0.003 and 0.015 based the likelihood ratio test and the score
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test respectively) as th a t of Berry ( the p-value for his test statistic being .001). Our 

recommendation, however, is not to  ignore Berry’s method. We agree with his state­

ment “Researchers should learn as much as possible from their data. This includes 

looking at the da ta  in various ways” (see discussion in Berry, 1987).
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Table 6.1: Empirical power(%) of the score test statistic Si  and the likelihood ratio 
statistic L R l  for testing no treatm ent effect when data  are simulated from the zero- 
inflated beta-binomial distribution with 0  =  0 . 1 0  and different values of 7r and u.  
The column under n — .5 represents the empirical level of the statistics Si  and L R l .  
Empirical level and power results are based on 10,000 simulations.

Sample size
a LO

Test
statistic 7T

. 2 0 .40 .46 .50 .54 .60 . 80
12 .05 .05 Si 98.04 29.32 8.58 4.42 7.60 28.41 97.20

L R i 96.83 28.11 7.84 4.86 9.19 31.97 99.12
. 1 0 Si 97.25 29.10 8.37 4.58 6.87 23.90 91.52

L R i 96.21 26.71 8.37 5.23 9.17 29.97 97.38
. 2 0 Si 94.74 26.56 8.87 4.58 6.08 18.21 76.36

L R i 93.51 25.83 8.38 4.96 7.46 24.55 92.53
. 1 0 .05 Si 99.28 43.52 17.03 1 0 . 1 1 15.98 44.24 99.34

LRi 98.76 40.27 14.91 9.49 16.74 45.88 99.70
. 1 0 Si 99.04 43.41 15.94 9.78 14.34 39.58 97.79

L R i 98.40 39.47 14.74 10.38 16.24 43.34 99.15
. 2 0 Si 97.98 41.07 16.86 10.84 13.60 34.00 92.50

L R i 97.01 37.61 14.96 1 0 . 0 2 14.39 37.00 96.94
24 .05 .05 Si 1 0 0 . 0 55.33 13.64 4.69 12.81 53.94 99.98

L R i 99.99 54.25 12.69 5.47 15.39 59.51 99.99
. 1 0 Si 99.97 55.16 13.54 4.81 11.51 48.65 99.93

LRi 99.97 53.74 13.24 5.46 13.83 54.32 1 0 0 . 0

. 2 0 Si 99.95 50.39 13.24 5.04 9.72 42.83 99.35
LRi 99.92 50.90 12.74 5.70 10.98 49.42 99.93

. 1 0 .05 Si 1 0 0 . 0 68.52 22.95 1 0 . 1 0 2 2 . 0 2 68.03 1 0 0 . 0

LR i 99.99 67.28 21.31 10.65 24.74 71.69 1 0 0 . 0

. 1 0 Si 99.99 68.25 22.64 10.16 20.30 64.65 1 0 0 . 0

LR i 1 0 0 . 0 66.31 22.07 10.96 23.01 67.05 1 0 0 . 0

. 2 0 Si 99.97 64.31 21.87 10.64 18.53 58.80 99.80
L R i 99.98 63.61 21.38 10.67 18.29 62.37 1 0 0 . 0
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Table 6.2: Empirical power(%) of the score test statistic S'i and the likelihood ratio 
statistic L R l  for testing no treatm ent effect when da ta  are simulated from the zero- 
inflated beta-binomial distribution with (f) =  0 . 2 0  and different values of 7r and ui. 
The column under 7r =  .5 represents the empirical level of the statistics S'i and L R l .  
Empirical level and power results are based on 10,000 simulations.

Sample size Test
a u> statistic 7T

. 2 0 .40 .46 .50 .54 .60 . 80
12 .05 .05 Si 8 6 . 6 8 21.27 7.78 5.29 8.69 23.66 94.89

L R i 79.18 17.17 6.65 6.09 10.09 25.84 95.76
. 1 0 Si 84.21 20.9 7.96 5.18 6.87 18.01 82.92

L R i 76.84 17.91 7.25 6 . 0 2 8.95 22.67 89.04

. 2 0 Si 79.49 20.72 8.46 5.20 5.27 11.91 57.10
L R i 72.24 16.91 7.16 5.80 8.05 17.98 73.72

. 1 0 .05 Si 92.74 32.58 14.58 11.65 16.43 36.50 97.75
LR i 87.54 25.91 12.35 11.37 17.59 37.92 98.21

. 1 0 Si 90.98 31.83 14.8 10.97 14.19 30.55 91.78
LR i 85.86 26.83 12.74 11.82 16.20 33.72 94.13

. 2 0 Si 88.18 32.11 15.63 11.08 13.21 24.92 77.56
LRi 82.10 26.62 13.47 11.61 14.74 28.45 84.80

24 .05 .05 Si 99.16 39.32 1 1 . 0 0 5.67 10.42 38.48 99.69
L R i 98.22 31.24 8.46 5.37 12.32 40.61 99.89

. 1 0 Si 98.53 37.78 11.06 5.11 8.41 32.27 98.40
L R i 97.94 32.91 8.80 5.52 10.63 35.12 98.68

. 2 0 Si 97.62 34.52 10.39 5.32 7.63 26.37 92.97
L R i 96.41 31.80 10.15 5.84 9.45 31.17 96.73

. 1 0 .05 Si 99.67 51.62 18.15 10.96 18.88 52.79 99.92
LRi 99.25 43.48 14.65 10.34 20.25 53.79 99.97

. 1 0 Si 99.46 50.06 18.51 10.65 16.63 46.46 99.44
L R i 98.99 44.88 15.23 10.73 17.95 48.43 99.55

. 2 0 S L 98.84 46.76 17.46 10.90 15.07 40.72 97.32
L R i 98.29 43.91 17.14 11.19 16.72 43.86 98.76
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C hapter 7

Treatm ent Effect o f D M F T  D ata  B ased  on  

Zero-inflated B ivariate P oisson  R egression  M odel

7 .1  In trod u ction

In biomedical and dental epidemiological experiments data  arise in the form of pre­

treatm ent and post-treatm ent counts. For example, Bohning, Dietz, Schlattmann, 

Mendonca and Kirchner (1999) present dental epidemiology da ta  of a prospective 

study of caries prevention of school-children from an urban area of Belo Horizonte 

(Brazil). The children were all 7 years of age a t the beginning of the study. Dental 

status was measured by the decayed, missing and filled teeth  (DMFT) index. Only 

the eight deciduous molars were considered, which implies th a t the smallest possible 

value of the DM FT index is 0 and the largest is 8 . The prospective study was for 

a period of two years. The aim of the caries prevention study was to  compare four 

methods, namely, oral health education, enrichment of the school diet with rice bran, 

mouthwash with 0.2% sodium fluoride solution and oral hygiene. Six schools took part 

in the study. Interventions were carried out according to  the following scheme: School 

1 , oral health education; School 2 , all four methods together; School 3, the control

84
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group; School 4, enrichment of the School diet with rice bran; School 5, mouthwash 

with 0.2% sodium fluoride solution; School 6 , oral hygiene. The six treatm ents were 

randomized to  the six schools, so th a t all children of a given school received the same 

treatm ent. 797 school children were examined both  before and after the trial, their 

dental status evaluated and the DM FT index computed. The DM FT index da ta  for 

the six treatm ents (schools), denoted as DMFT1, at the beginning of the study and 

those, denoted by DMFT2, at the end of the study are given in Bohning et al. (1999). 

Also given in Bohning et al. (1999) are information regarding the covariates Gender 

(Female, Male) and Ethnic group (Dark, W hite, Black).

To study treatm ent effects Bohning et al. (1999) use a zero-inflated Poisson re­

gression model (ZIPR) of the DM FT 2  da ta  with School (School 1 to  6 ), Ethnic group 

(Dark, W hite, Black), Gender (Female, Male) and l o g ( D M F T l  +  0.5) as covariates. 

In this chapter, we use a bivariate zero-inflated Poisson regression model (ZIBPR) 

for the paired da ta  (DMFT1, DMFT2), with School, Ethnic group and Gender as co­

variates. The main difference between their modeling approach and ours is th a t they 

use l o g ( D M F T l  +  0.5) in the ZIPR model as a covariate, whereas, we jointly model 

DMFT1 and DMFT2. We develop an EM-algorithm (Dempster et al., 1977) to  obtain 

the maximum likelihood estimates of the parameters of the ZIBPR model. Further, 

we obtain the exact Fisher information m atrix of the parameters of the ZIBPR model 

and develop a procedure for testing treatm ent effects. A model selection procedure 

is given to  decide on an appropriate model. For the DMFT index data, based on the 

model selected, we arrival at a ranking of the treatm ent effects which coincides with 

th a t from a simple analysis of treatm ent effects.
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In Section 7.2, we introduce the zero-inflated Poisson regression model (ZIPR) 

and zero-inflated bivariate Poisson regression model (ZIBPR). An EM-algorithm for 

obtaining the maximum likelihood estimates is developed in Section 7.3. In Section 

7.4, we obtain the exact Fisher information m atrix for model ZIBPR, which is given 

in Appendix C, and develop the procedure for testing treatm ent effects for the DMFT 

index data. Analysis of the DMFT index data  and a comparision of the analysis by 

Bohning et al. (1999) are given in Section 7.5.

7 .2  T h e zero-in flated  P o isson  and b ivariate P o isson  regres­
sion  m odels

Let y represent the DMFT2 count. A commonly used model for y is the Poisson 

model

f ( y , A) =  exp(-A)Ay/j/!- (7 .2 .1 )

In practice, however, a Poisson model may not fit count da ta  of the type DMFT2, 

because of the presence of more zeros in the da ta  than  what can be expected under 

a Poisson model. A model th a t takes account of the extra zeros in the da ta  is the 

zero-inflated Poisson model.

f i ( y ,  A,w) =  <
w +  ( l - w ) / ( 0 ,A ) ,  If 2/ — 0,

(7.2.2)

(1 A), l f y > 0 ,

where u> is the zero-inflation parameter. This model can be generalized by including 

covariates into the model. Note, our purpose is to  test for the effects of the treatm ents 

after accounting for covariates including the base-line DMFT index. Suppose there
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are k treatm ents and p covariates, including the DMFT1 counts. Now, let x\  be a 

k x  1 vector of covariates representing the treatm ents and P i — ( P n , P i 2 ,  • P i k ) '  be 

the corresponding k  x 1 regression parameters. Further, let x 2 be the p x 1 vector 

of other covariates, such as Gender, Ethnic group, \o g {D M F T \  +  0.5) etc., and 

02 =  (An, P221 •••■) P2p)' be the corresponding p x 1  vector of regression parameters. 

Then, model (7.2.2) can be w ritten as

model (ZIPR). Note th a t the ZIPR model (7.2.3) is equivalent to  the ZIPR model by 

Bohning et al. (1999) in which they introduce an intercept term. In our ZIPR model

(7.2.3), P n ,P i 2 , ■ ■ ■, Pik are the effects of the k  treatm ents. Then, testing for no 

effect of the jth  treatm ent is equivalent to  testing H0 : 0n = 0, i= l,..., k.

However, note th a t the da ta  (DMFT1, DMFT2) are paired count da ta  as these are 

obtained before and after application of a treatm ent. It may then be more appropri­

ate to consider a bivariate zero-inflated Poisson model for the paired da ta  (DMFT1, 

DMFT2). Denote (Yi^Yf)  as the paired da ta  (DMFT1, DMFT2). Then, the bivari­

ate Poisson model for (Y i,!^) (see Holgate, 1964; Irwin, 1963; Paul and Ho, 1989; 

Kocherlakota and Kocherlakota, 1992, and Karilis and Ntzoufras, 1998) can be writ­

ten  as

where EfY f )  =  Ai +  A0, E(Y2) =  A2 +  A0 and Cov(Yi,Y 2 ) =  A0. Here we use a

M y ,  A,w) = < (7.2.3)

(1 ~  u ) f ( y ,  A), if y >  0,

w ith log A =  x'iPi +  x'2p 2 - We denote this model as zero-inflated Poisson regression

.Ms/b'Stel A0, Ai, A2) =  exp(—Ai -  A2 -  A0)
m i n

(7.2.4)
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log-linear model for the ratio of the two mean parameters Ai and A2

log(A2 /A i) =  x'pii +  x'2 7 2, (7.2.5)

where, aq is a k  x 1 vector of covariates representing the treatm ents and 7 1  is the 

corresponding k x  1 regression parameters, x 2 is the (p — 1 ) x 1 vector of covariates, 

such as, gender, ethnic group etc., and 7 2 is the corresponding (p — 1 ) x 1 vector of 

regression parameters. Note A2 =  A* e x p 7 1  +  x 2 7 2), so th a t Ax can be considered 

to  be a param eter corresponding to  the base-line counts DMFT1.

As in the Poisson regression model, a bivariate Poisson regression model may 

not fit paired count da ta  of the type (DMFT1, DMFT2) because of the presence 

of more paired zeros in the data  than  can be expected under a bivariate Poisson 

regression model. A model th a t takes account of the extra zeros in the da ta  is the 

zero-inflated bivariate Poisson regression model (ZIBPR). Let 9 be the proportion 

of pairs of observations (2/1 , 2/2 ) having extra zeros. Then a bivariate zero-inflated 

Poisson regression model can be w ritten as

fzfyi-, 2/2 1 0) An A i ,  A 2 ) —

0 +  (1 -  0 ) / 2 (0 ,0 | A0, Ai, A2), if (2/1 , y2) = (0,0),

{1 -  9 ) f2{yi ,y2\ A0 ,A i,A2), if 2/1 >  0 , y 2 > 0,

(7.2.6)

with A2 =  Ai exp(x'17 i +  x 2 7 2). Note th a t this model can be further generalized by 

introducing two additional zero-inflation parameters: one when zero inflation occurs 

for yi and not for y2 and the other when zero inflation occurs for y2 and not for y\. 

To avoid complications we do not consider such a model. Note th a t under model 

(7.2.6) testing for no effect of the zth treatm ent is equivalent to  testing H0 : 7 1 ; =  0,
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% =  1 , k.

7 .3  E stim a tio n  o f  th e  p aram eters o f  th e  zero-in flated  bivari­

a te  P o isson  regression  m odels.

Dempster et al. (1977) interpreted mixture data  as incomplete da ta  by regarding an 

observation on the mixture model as missing its component. The zero-inflated bivari­

ate Poisson model can be interpreted as a mixture of a bivariate Poisson distribution 

f 2 (2/1 , Z/2 I Ao, Ai, A2) and a distribution with a point mass of one a t (0 , 0 ) with mixing 

probability 9.

Let (y u j , y2ij) denote the ( D M F T  1, D M F T 2 )  index of the j t h  observation in the 

ith  treatm ent, j  =  and i =  1 , . . . ,k .  Now, the observation (0, 0) may come

from a bivariate Poisson distribution or from a distribution with a point mass of one 

a t (0, 0). Let

1, if (yu j ,y 2ij) is observed from / 2 (j/i, 2/2 1 A0, Ai, A2) ,

0 , otherwise.

In the application of the EM algorithm we consider 1^ as missing data.

Further, the pair of random variables (Yi, Y2) has a bivariate Poisson distribution, 

if Yi = Z i + Z Q and Y2 = Z 2+ Z 0 , where Z i} % =  0 ,1 ,2  are independent Poisson random 

variables with param eters A0, Ai and A2 respectively (Kocherlakota and Kocherlakota, 

1992). Thus, for j  =  1, i =  1,..., k, we can write yuj  =  zuj  +  zoij and y2ij — 

Z2ij +  zoij, and consider zoij as missing data.

In the application of the EM algorithm, the incomplete da ta  consist of yuj  and 

y2ij and the corresponding complete da ta  consist of y u j , y2%j, z0ij and Iij, j  =  1 , . . . ,  rij,
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i = 1 , k. Note th a t under the complete data  setup, yuj — zoij, V2ij ~  zoij and zoij 

are independent Poisson distributed with densities f  {yuj — zo^, Ah), f ( y 2ij — zoij, M j )  

and f(zoij, X0i) respectively. Therefore, the complete likelihood function is

L c =  J J  ^ ~ Iij)[(l -  0Oi) f (yu j  -  zoij, \ u ) f { y u j  ~  z0ij,  A0i)]/iJ'
{(i.j)l(j/iy>S/2y)=(0 ,0)}

|  [(l ) f  (y-Hj Zoij, An) f  (y2lJ Zoij, Xc2ij) f  (.Zoij, Ao»)] ,

where A2ij =  Ah exp(x;Hj7 i +  x'ujl f)  for j  = 1 , i =  1 ,..., k and 60l is the

zero-inflation param eter for ith  treatm ent, i =  1 , . . . ,k- Then, the complete data  

log-likelihood function is given by

k rii
r  =  E E « i -  Iij) log(0oi) +  Iij log(l -  0Oi)

i =  1 j  — 1
I i j  ( j j l i j  ^0 i j j  ^\i) f  (V2ij ^Oijj ^2ij)f(^0ijy )] } *

Let x'jj = (TUj , x'2ij ) , Ai =  (An, A1 2 , ..., An,)', Ao =  (A0 i, A02 , •••, Aofc)/, $o — (#oi> 

0 0 2 , - ,  Ook)', and 7 ' =  (7 ^,7 2 ) w i th y  =  (7 1 1 , 7 1 2 , -,7 ifc) a n d 7 2  =  (7 2 1 , 7 2 2 , -,72(p-i))- 

The complete da ta  log-likelihood lc can be then w ritten in a simplified form as

lc — +  l \0 +  h 0,

where

k rii
7̂,Ai _  E E  hAiyiij  -  ZQji) log(Aii) -  Au -  log(yUj -  z0ij)\

i=1 j  = 1
+  (yiij ~  zoijWijl  ~  An exp(xy7 ) -  log(;y2lJ -  z0ij)l],

k rii
l\o E E  Iij[zoij log A0?; -  A0i -  log(^op')!],

i—i  j = 1 

k rii
'*> = E E f e  log(l -  0Oi) + (1 -  I i j )  log(0Oi)]-

1=1 j = 1
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The maximum likelihood estimates of the param eters 7 1 , 7 2 , Ai*, Ao; and doi, i =  1 , ,  A; 

can be found by using the EM algorithm. The E-step and M-step of the EM algorithm 

are described below.

E-step:

Calculate the expectations of the missing da ta  zop and ItJ conditional on the incom­

plete da ta  (yu j ,y 2ij), j  =  1 , = 1 ,..., k, respectively as
m in {y u j ,V2i j}

U i j Efaoij | y i p )  yuj) 'y  ̂ rPr\Zoij  r | Y i j j  Vhj j ^27  Viij\
r = 1

m in {y u j ,y2ij} rPr[Zoij — r, Yuj — yujiŶ jj — 3/213] 
-Pr[Tiij yuj) T2%j yip]

E
T —  1

rmn{yn3,2/2y }  ̂r / ( r, Xpj) f  {Vl i j  ~  T, A j j )  f  ( y u j  ~  r, A2i j )

r = 1  h ( y u j ,  '!Jnj\ Ooi, Aoi, Ai,, A2y)

A0i(l -  9pi)f(r -  1 , \o i ) f (yu j  -  r, A ^ ) / ^  -  r, A2ij) 
f o ( y i i j >y 2 i j \  6oi,  Aoi,  A ll ,  A2P')

/ ( y u . _  J  _  r> xu)f(m  -  1 -  r, Aw )/(r ,  A«)
— Aoi(l — Ooi)

f'i (yiij > Vlij I 00i > Ao*) A l l , A 2ij )

and

\ /1  _  a \ h j y u j  ~  1 , yuj  — H Apj, Ah, A2jj) 
/ 3  (Vlij j ?/2ij | #0 i , A o i, A h , A 2i j )

Vij T(Ii j \ynj  1 yuj) Tr\Ii j  — ljTiij — Vlij 1^ 2̂  Vnj\

  Pr[Ii j  1) hi ij yuj, Viij V'Hj\
Pv\Ylij Vlij) Zlij ~  yiij\

f i ( y u j ) yuj  I Aoi, Aii, A2ij)
( 1  -  00 i)

M y u j , y n j \  0oi't Aoo An, A2ij')

M-step:

Now, replacing zoij and 1 ^  by utj  and v^j respectively in 1, l \ 0 and lg0 , we obtain

Lux1, l Xo and lg0 . Note, to  maximize l c for given values of and u^,  we only need to

maximize l \ 0 , lg0 and l l i X l  separately. Thus by maximizing l \ 0 we obtain
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C _  2 j= l viju ij 
^ O i — E rii

j = 1 Vij
and by maximizing lg0, we obtain

00i = l -  Vij/rii, i = 1,..., k.

To find maximum likelihood estimates of 7  and Aij, i= l ,  k, we need to  use the 

Newton-Raphson method. For this we first need to  calculate the first derivatives of 

I with respect to  7  and Ai’s, which are

<9̂ 7,Ai
d \ 1 i = E v. Vlij T  V2ij 2 Uij /  ' \

   x --------   -  1 -  exp(—Xjj-7 )
An

UXli, i  = 1 , k,

and

dl
d'y =  E-

j = 1

V2ij 'U'ij
x

Au exp(—x - 7 ) OCij TJf y ,

where /77  is (k + p  — 1) x 1 vector and UXl = (UXn, UXl2, ..., UXlk)'. We then need to 

calculate the entries of the observed (2k + p — 1 ) x (2k + p — 1 ) information m atrix

jobs
iM

(  jobs jobs  ^  
A1A1 JAi7

where 7 ^  =

and J77s =

robs jobs
\  7*1  7 7  /

ax*.
jobs  _ _  r o t s '  _ _  

5 A17 7 A1

kxk

d^fdT IJ (k+p—l)x(/c+p-l)
with

d X u d i

a/?,7 A1

a*?< = E-
a/!

7=1
rii

Vlij T  V2ij 2 U ij

7>*1

dXu d j

d 'yd j

7 =  [exP ( - ^ - 7 )  2*7 ,
7=1

k rii

7 =  A i * e x P ( ~ x 'iD )
i= 1 7 = 1
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Then, given the values of A ^ , 7 ^  and at the s —th  step, the values of the

param eter estimates a t the (s +  1 )—th  step are

To obtain the mle’s of param eters 7 1 , 7 2 , Ah, Aoi and 9q i — 1,..., k, we need to  iterate 

between the E-step and M-step until convergence.

7 .4  T ests for trea tm en t effects

Our interest is to  test for the treatm ent effects after controlling for the effects of other 

covariates. Note, for the DM FT index data  we have six treatm ents (schools) and 3 

other covariates. Now the observed da ta  log-likelihood is

where A2ij = Xu exp(x’up,'i +  x'2lJ7 2) for j  = 1 ,..., rii and i = 1 ,..., k.

Let I  be the expected information m atrix for the parameters 7 , Ai,A0 and Oq,

meters Ah, A0j and 90i, i = 1,..., k in the zero-inflated bivariate Poisson distribution, k 

treatm ent param eters 7 1 ,, i = 1 ,..., k a n d p — 1 regression parameters 7 2 ;, i =  1 , 1

reprm eter of interest and $  =  (7 2 , A'x, Aq, Of) is the nuisance parameter. Now partition 

I  as

I 'y  ̂^  k p 1 V2ij \ Ooi, Aoi, An, A2 7 )], (7.4.1)
j =  l  j = 1

obtained from the observed da ta  log-likelihood (7.4.1). Note th a t there are 3k  para-
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Then, the approximate covariance m atrix of 7 1  is J 7171 =  (J71T1 —

(McCullagh and Nelder, 1989, Page 472), where 7 1  is the maximum likelihood esti­

m ate of 7 1 .

If we use the maximum likelihood estimates 7 1  and (f) =  (7 2 ,Ai,Ao, Oo) of the 

param eters 7 1  and </> =  (7 2 , Ai, Ao, Oo) in 77171, we obtain J 7171, the estimate of J 7171. 

Thus the asymptotic variance of 7 1 ,, i — I, ...,k, is given by the corresponding ith  

diagonal element of the m atrix J 7171. Then the effect of the ith  treatm ent is tested

by

Zi = 7 h / V  var ( lu ) ,  (7.4.2)

which is asymptotically distributed as N ( 0,1).

Now, denote the control group as c. Then, to  test the effect of the zth group 

relative to  th a t of the control group, we compare 7 ^, i 7  ̂ c, w ith 7 ic, for which we 

use

=  - 7   ̂ (7-4 '3)y  var{phi) -  2cov{pu , l i e )  + v a r ( i i c)

where cou(7 i j ,7 ic) is the (*, c)—entry of J 7171 , and i = 1,2, . . . ,k  and i =7 c. The 

statistic Z ic then is asymptotically distributed as N ( 0,1).

7 .5  A n a lysis  o f  th e  D M F T  d ata

In this section, we deal with the analysis of the DM FT index da ta  discussed earlier 

(for the da ta  see D ata sets, Table D.4). We first analyse the da ta  using the ZIPR 

model (7.2.3) with log-likelihood.

lo  =  E l i  E Jli loS h  ( v -2 i j , A2 i j , U i )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Treatment Effect of DMFT Data 95

with log X2ij =  x'Uj/3i +  x 2ij(32, for j  =  1, •••, +  and i — 1 , 6 . Let # 21, # 2 2  and 

P20 be the components of P2 corresponding to  the covariates gender, ethnic and 

l o g ( D M F T l  +  0.5) respectively.

We first test whether the zero-inflation param eter or j  — 1,..., n* and i = 1,..., 6 . 

Let P2i ,/322 and /32o be the components of fi2 corresponding to the covariates gender, 

ethnic and log (D M E T  1 +  0.5) respectively.

We first test whether the zero-inflation param eter ui varies from school to school. 

For this we consider two models:

Model ZI: Each school has different zero-inflation parameters o»j, i =  1 ,..., 6 , trea t­

ment effects Pu, i  — 1 , . . . , 6 , and common regression param eter P2.

Model Z I I : Each school has different treatm ent effects Pu, i  =  1,..., 6 , and common 

zero-inflation param eter u>o, common regression param eter fi2.

The maximized log-likelihoods along with the number of param eters estim ated 

for the above two models are given in Table 7.1. Analysis of the results in Table

7.1 shows th a t zero-inflation parameters are not significantly different from school to 

school and Model ZII is the model of choice. Note th a t the values of log-likelihoods 

in Table 7.1 have some differences with those in Table 2 of Bohning et al. (1999, page 

203). For example, the values of maximized log-likelihood for Model ZI and Model 

ZII are -1228.89 and -1232.02, and the corresponding log-likelihood values obtained 

by Bohning et al. (1999) are -1242.68 and -1246.89 respectively. This difference could 

be the result of the precision used in the calculation. We used double precision in 

our Fortran programming. However, the conclusion regarding the choice of the model 

remains the same.
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We next check if we can eliminate any or both  of the two covariates gender and 

ethnic group from the model. For this we consider the following sub-models of Model 

ZII:

Model Z I I  1: Each school has different treatm ent effects 0 u , i  =  1 , 6 , and 

common zero-inflation param eter u 0 and common regression param eter 0 2 1 and 02o 

corresponding to  ethnic group and \ o g (D M F T l  +  0.5).

Model Z I I 2: Each school has different treatm ent effects 0 u , i  =  1 ,...,6 , and 

common zero-inflation param eter uio and common regression param eter 0 2 2  and 0 2 0  

corresponding to  gender and l o g (D M F T  1 +  0.5).

Model Z I I 3: Each school has different treatm ent effects 0 u , i  = 1 ,...,6 , and 

common zero-inflation param eter ojq and 020 corresponding to \ o g { D M F T \  +  0.5).

The maximized log-likelihoods along with the number of param eters estim ated for 

models Z I I  1 — Z I I 3 are also given in Table 7.1. Analyses of these results in Table

7.1 show th a t neither of the two covariates has significant effect. So, our final model 

is Model Z I I S  w ith log-likelihood

k  =  EL i Ej=i ^ g  /i (y2ij, A2ij , a;0) ,

where, logA2ij =  x'Uj0i + 02o log(yuj +  0.5), for j  = 1 ,...,?^ and i =  1 ,...,6 . The 

maximum likelihood estimates of the param eters of the ZII3 model together with 

their standard errors and other relevant quantities (test statistics) are given in Table 

7.2.

Based on the Z-values in Table 7.2 the schools can be ranked, in terms of improve­

ment in dental hygiene, from most significant improvement to  the least significant 

improvement as School 2, School 5, School 1, School 6 , School 3 and School 4. Now
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we compare all schools with the control group (School 3). The Z c values to  do these 

comparisons are also given in Table 7.2. It can be seen th a t the schools th a t signif­

icantly improved compared to  School 3 are School 2, School 5 and School 1. These 

results coincide with those in Table 1 of Bohning et al. (1999). Note, their final model 

includes the covariates such as gender and ethnic. We do not include these covariates 

as they do not contribute significantly to  the model fitting (see Table 7.1).

We now analyse the data  using the ZIBPR model (7.2.6). Recall th a t the observed 

da ta  log-likelihood for this model is
6  n ,

‘ = EE ̂S[y*3 {.Vlij) V2ij | @0i j Aoi, An > -̂ 2ij)]) (7.5.1)
i= 1 j = 1

where A2ij  =  Au exp(x[ip f i + x ,2lf / 2) for j  = 1,..., n t and i = 1,..., 6 . Let 7 2 1  and y22 be 

the components of 7 2  corresponding to  the covariates gender and ethic respectively.

In what follows we fit the model (7.5.1) and a few sub-models to  the DM FT index 

data. The models considered are:

Model I: Each school has different zero-inflation parameters 6oi,i — 1 ,...,6 , co- 

variance param eters Aoi , i  = 1 , 6 , Ah, i = 1, . . . ,6  parameters, treatm ent effect pa­

rameters 7 h, i = 1 ,..., 6  and common regression param eter 7 2 .

Model II: Each school has different covariance parameters Aoi , i  = 1, . . . , 6 , An, i — 

1 , 6  parameters, treatm ent effect param eters 7 h , i = 1 , . . . , 6  and common zero- 

inflation param eter 0 OO and common regression param eter 7 2 .

Model III: Each school has different zero-inflation param eter 8a, i — 1 , 6 , 

Aii,i =  1 ,..., 6  parameters, treatm ent effect parameters 7 h, i =  1 , ...,6 and common 

covariance param eter Aoo and common regression param eter 7 2 .

Model IV: Each school has different \ u , i  = 1 ,...,6  parameters, treatm ent effect
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param eters j u , i  = 1 , 6  and common zero-inflation param eter 0qo, common covari­

ance param eter Aoo and common regression param eter 7 2 .

The maximized log-likelihoods along with the number of param eters estim ated 

for the above four models are given in Table 7.3. Analysis of the results in Table 7.3 

shows th a t Model I is the model of choice. Again, we next check if we can eliminate 

any or both  of the two covariates gender and ethnic group from the model. For this 

we consider the following sub-models of Model I:

Model II: Each school has different zero-inflation param eters 9oi,i =  

covariance param eters Ao i , i  =  1 , 6 , Xu, i  =  1 , . . . , 6  parameters, treatm ent effect 

param eters 7 ^ , i  = 1 , . . . , 6  and common regression param eter 7 2 1  corresponding to 

the covariate ethnic group.

Model 12: Each school has different zero-inflation param eters 0Oi,« =  1 , 6 , 

covariance param eters A0i,z =  1, Au , i  =  1 ,...,6  parameters, treatm ent effect

param eters 7 ^ , 1  =  1,. . . ,6 and common regression param eter 7 2 2  corresponding to 

the covariate gender.

Model 13: Each school has different zero-inflation param eters 90i, i  =  1,..., 6 , 

covariance param eters Ao%,i =  1 ,..., 6 , Ais, i — 1 , . . . , 6  parameters, treatm ent effect 

param eters 7 u , i  — 1 ,..., 6

The maximized log-likelihoods along with the number of param eters estim ated for 

models 11-13 are also given in Table 7.3. Analyses of these results in Table 7.3 show 

th a t neither of the two covariates has a significant effect. So, our final model is Model
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13 with
6 n ,

I = l°g[/3(yi»j, U2ij\ Qpi, ^Oit Mi, -̂ 2ij)]i (7.5.2)
j=l j—1

where M j  =  Ai* exp{x'Uj 7 i) for j  =  1,..., n; and i =  1,..., 6 . The maximum likelihood 

estimates of the param eters of the Model 13 together with their standard errors and 

other relevant quantities (test statistics) are given in Table 7.4.

From the Z-values in Table 7.4, we see th a t dental hygiene significantly improved 

for all schools. Again, based on these Z-values we can rank the schools, in terms 

of improvement in dental hygiene, from the most significant improvement to  least 

significant improvement as School 1 , School 5 , School 2, School 3, School 4 and 

School 6 . Note these rankings differ from those obtained by analysing the d a ta  using 

the ZIPR model. However, these rankings of the schools coincide with those th a t can 

be seen from the mean difference y u - y u ,  i =  1 , •••, 6 , where ya  and y^i are the means 

of the DMFT1 and DMFT2 respectively (see Table 7.5).

We note further th a t dental hygiene improved not only for the school children in 

which some treatm ents were applied, but also for the children in the control group. 

This finding coincides with th a t found by Bohning et al. (1999). Bohning et al. 

(1999) explain the improvement as “There are two possible explanations for this. One 

possibility is a trend in dental caries th a t has affected all the schools in the BELCAP 

study in a similar way. However, it could be th a t during the study, especially while 

the intervention phase was in progress, information from one school to  another could 

have been passed over (spillover effect). Frequently meetings were held between the 

co-ordinators of the BELCAP study and the heads of the schools, to  discuss m atters 

concerning the execution of the programs. So, in this case a spillover effect cannot
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be completely excluded.”

We now compare improvement of dental hygiene in School 1, School 2 , School 

4, School 5 and School 6  with School 3 (control group). The Z c values are given 

in Table 7.4. It can be seen th a t dental hygiene did not improve significantly in the 

schools in which treatm ents were applied compared to  th a t in School 3. Thus, it looks 

as though improvement in dental hygiene occured among the children of all schools 

mainly because of the awareness of dental hygiene as a result of the experiment.
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Table 7.1: Maximized log-likelihoods under ZIPR models

log-likelihood number of

Model value parameters in model

Z I -1228.49 16

Z I I -1232.02 11

z m -1232.024 10

Z I I 2 -1232.770 9

Z I t t -1232.773 8
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Table 7.2: Param eter estimates of the ZIPR model ZII3 with standard errors

Parameter Estimate

Standard 

error of (3i Z-value Zc-value

School 1 (/?n) -0.369 0.095 -3.891 -2.597

School 2 (/5i2) -0.462 0.098 -4.692 -3.291

School 3 (/3i3) -0.136 0.087 -1.569 0.000

School 4 (/3i4) -0.112 0.087 -1.281 0.287

School 5 (/?i5 ) -0.372 0.090 -4.113 -2.703

School 6 (/?i6) -0.216 0.091 -2.380 -0.875

log(D M FTl +  0.5)(/320) 0.733 0.040 18.342

wo 0.045

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Treatment Effect o f DMFT Data

Table 7.3: Maximized log-likelihoods under the ZIPBR model

Model

log-likelihood

value

number of 

parameters in model

I -3016.21 27

II -3026.94 22

III -3031.92 22

IV -3041.27 17

11 -3016.30 26

12 -3017.37 25

13 -3017.39 24
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Table 7.4: Effect estimates with standard error for DM FT index da ta  based on model 

13

Param eter # 0 ^ 0 7i

Standard 

error of 7 1 Z-value Zc-value

School 1 (7 1 1 ) 0.085 0.838 3.427 -1.052 0.106 -9.941 0.322

School 2  (7 1 2 ) 0 . 2 2 2 0.453 3.098 -0.927 0.104 -8.891 1.003

School 3 (7 1 3 ) 0.088 1.844 2 . 2 1 1 -1.111 0.151 -7.349 0.000

School 4 (7 x4 ) 0.131 1.185 2.615 -0.706 0.103 -6.861 2 . 2 1 1

School 5 (7 1 5 ) 0 . 2 2 1 1.256 3.010 -1.247 0.134 -9.293 -0.674

School 6  (7 1 6 ) 0.143 1.219 2.196 -0.907 0.136 -6.626 1 . 0 0 1
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Table 7.5: Averages of DMFT1, DMFT2 and their differences

average DMFT1 DMFT2 DMFT1-DMFT2

School 1 3.90 1.86 2.04

School 2 2.76 1.31 1.45

School 3 3.70 2.35 1.35

School 4 3.30 2.15 1.15

School 5 3.32 1.65 1.67

School 6 2.93 1.81 1.12
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Table 7.6: The Rank of treatm ent effect for different models according to  Z-value.

Bohning et al. Rank Rank Rank for average

Model (1999) in Table 7.2 in Table 7.4 (DMFT1-DMFT2)

School 1 3 3 1 1

School 2 1 1 3 3

School 3 6 5 4 4

School 4 5 6 5 5

School 5 2 2 2 2

School 6 4 4 6 6
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C hapter 8

Sum m ary and Future R esearch

This chapter summarizes the conclusions of this thesis and recommends some prob­

lems for future research.

8 .1  Sum m ary

This thesis consists of two parts. Part I, including Chapter 3, Chapter 4 and Chapter 

5, developes procedures for testing homogeneity of several location-scale populations 

in general. We compare our procedure with the procedure proposed by Singh (1986) 

for the normal case and apply the general m ethod to  several non-normal cases. Part 

II, including Chapter 6 and Chapter 7, analyses the treatm ent effects of paired count 

da ta  with zero-inflation and over-dispersion. We develop two procedures, one of which 

is illustrated by the PVC da ta  (Berry, 1987) and the other is illustrated by the DMFT 

data  (Bohning et al., 1999).

107
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For testing simultaneously the equality of means and the equality of variances of 

several normal populations, Singh (1986) uses a test statistic based on the combination 

two independent likelihood ratio statistics. Singh’s procedure is based on a method 

by Fisher (1950) for combining two or more independent test statistics to  test a 

general hypothesis. We extend Fisher’s method to  location-scale models in general. 

Two test statistics are developed, one of which is based on the combination of two 

likelihood ratio statistics and the other is based on the combination of two score 

test statistics. Under the general location-scale setup, asymptotic independence is 

established for the two likelihood ratio statistics as well as for the two score test 

statistics. Then, by applying the general results, we obtain specific test statistics for 

testing homogeneity of several normal ( / i ,  a 2) populations, several negative binomial 

(m, c) populations, several beta-binomial (7r, cp) populations and several Weibull (ip, 

(p) populations . In the normal case exact independence of the two likelihood ratio 

statistics is shown by Singh (1986). In this thesis, we show exact independence of the 

two score test statistics. In all four cases simulations are conducted to  compare the 

two procedures. We conclude th a t Fisher’s m ethod of combining two statistics, even 

when they are only asymptotically independent, does, in general, perform well for 

testing homogeneity of several populations in terms of the means and the variances. 

However, the score test statistics have simple forms, are easy to  calculate, and have 

uniformly good level properties. Therefore Fisher’s method based on combining two 

score test statistics might be the method of choice.

Another problem considered in this thesis is the analysis of da ta  in the form 

of paired counts with zero-inflation and over-dispersion. As we point out before,
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Poisson and binomial models are most widely used models for count data. However, 

those model may not fit count da ta  well, when the data  exhibit zero-inflation and 

over-dispersion. In practice, the paired counts data  are obtained before and after an 

experiment and the extra zeros may occur in different ways. For example, the PVC 

data, given as paired counts by Berry (1987) for before and after drug administration, 

only have extra zeros after the drug administration, while the DM FT index data  

(Bohning et al., 1999), which have the form of (DMFT1, DMFT2) as paired count 

da ta  for pre-treatm ent and after-treatm ent, have extra zeros, in most situations, as 

the common pair of (0, 0).

For the PVC data, the score test statistic for testing for treatm ent effect in data  

is obtained based on a zero-inflated beta-binomial model, which allows us to  analyse 

treatm ent effects while considering the effect of zero-inflation and over-dispersion. 

Results of a small simulation experiment, to  study small sample behavior of a score 

test and a likelihood ratio test, are reported and the PVC data  are analysed. Both the 

score tests and the log-likelihood ratio tests show good properties. Either the score 

tests or the log-likelihood ratio tests can be used for testing the presence of treatm ent 

effect. The score tests, however, may be preferable because they use estimates of 

the param eters only under the null hypothesis. For the DM FT data, we introduce 

a zero-inflated bivariate Poisson regression model (ZIBPR). We jointly model the 

pre-treatm ent and the post-treatm ent counts. A model selection procedure is given 

to  decide on an appropriate model. For the DM FT index data, based on the model 

selected, we arrive at a ranking of the treatm ent effects which coincides with th a t 

from a simple analysis of treatm ent effects.
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8 .2  F uture research

110

For univariate case, based on a Poisson model and a binomial model, we can ob­

ta in  a zero-inflated Poisson and a zero-inflated binomial model. Further, based on 

an over-dispersion model such as a negative binomial model and a beta-binomial 

model, we can obtain zero-inflated negative binomial and zero-inflated beta-binomial 

model, which are widely used to fit the count data  with zero-inflation and over­

dispersion (Deng and Paul, 2000, and Hall, 2000). Therefore, for da ta  in the form of 

paired counts w ith zero-inflation and over-dispersion, it would be of interest to  de­

velop zero-inflated bivariate Poisson model and zero-inflated bivariate binomial model 

as well as zero-inflated bivariate negative binomial and zero-inflated bivariate beta- 

binomial model to  fit paired counts with varying zero-inflation and over-dispersion 

parameters. In this thesis, we analyse the PVC data  based on the zero-inflated beta- 

binomial model and the DM FT index data  based on the zero-inflated bivariate Poisson 

model. And also the bivariate Poisson model can be further generalized by introduc­

ing two additional zero-inflation parameters: one when zero inflation occurs for the 

pre-treatm ent count and not for the post-treatm ent count and the other when zero 

inflation occurs for post-treatm ent count and not for the pre-treatm ent count. The 

detail discussion is om itted here. In this section, we focus on testing the homogeneity 

in the presence of the nuisance parameters.

In Chapter 3, we extended Fisher’s m ethod to  location-scale models in general. 

Under the general location-scale setup asymptotic independence was established for 

the two score test statistics by using the transform ation of original param eters -0 and 

0 to  the orthogonal param eters 0  and A according the results of Cox and Ried (1987).
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We found that:

(1) Compared with the score statistics which are obtained without using the or­

thogonal transformation, the score test statistics in Chapter 3 have simpler

f  dl2 \expressions. The reason is th a t E  I — ——— ) =  0 and hence the maximum
V oipoX J

likelihood estimates ip and A of param eters ip and A are asymptotically inde­

pendent. This simplifies the information matrix.

(2) Even though it may not be easy to  get explicit solution of the partial differential 

equation (3.2.1), our score test statistics can be obtained in term s of the original 

param eters without solving such a partial differential equation.

Cox and Ried (1987) outline the properties of orthogonality of ip and A. We list 

some of them  here, which are related to  our problems of interest.

(1) The maximum likelihood estimates ip and A are asymptotically independent;

(2) The asymptotic standard error of ip of ip is the same irrespective of whether A 

is treated  as known or unknown;

(3) ip\ =  0(A), the maximum likelihood estimate of ip when A is given, varies only 

slowly with A.

According to  these properties, we may conclude th a t the orthogonal nuisance 

param eters may have less effect on the score statistics than  those obtained by using 

non-orthogonal nuisance parameters. It would be of interest to derive the score test 

statistic w ith the orthogonal nuisance parameters and compare it with the one without
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such transform ation to  see if we may gain some better properties to  test a statistical 

hypothesis based on the orthogonal nuisance parameters.

Testing homogeneity in the presence of the nuisance param eters are widely dis­

cussed. In the following, we are interested in three cases based on score test statis­

tics. We obtain the score test statistics for: (I) Testing homogeneity in presence of 

common nuisance parameters; (II) Testing the homogeneity against central mixture 

alternatives; (III) Testing homogeneity, in terms of departure from simple models, in 

generalized linear models. Conducting simulations and applying the above results are 

the interest of future study.

(I) Test of homogeneity in the presence of common nuisance param eters

Let Yij be the random variable for the observation j  of group i ,  j  =  l,...,r i j , 

i  =  1,..., k with N  = n i- We assume th a t the probability density function of YtJ 

is tpi, 0) and lt = YCjU log ipi, (j)) is the log-likelihood function for yl ,s. The

usual homogeneity hypothesis in the presence of the common nuisance param eters is 

H 0 : tpi = ip? = ... = ipk — 4>, where (j) and tl> are unspecified vs Hi : tpi, i  =  1,..., k 

are not all same, where 0  is unspecified.

and

/ A 1) r(1)
li l tn lt  n U fh

\

r(2) j( 2)
nhuh

and
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D „ t  —

where /$ ,

/ ^ k  H i)  s r^ k  .(i) \
/  - W = i  -ijjip A ^ i—i  tl>4>

sr^k /■(*) /■(*)

/  32z 
E  1

dip2 Ho, dipdcp
(i) / <92^

#0,
2 =  1,2, ..., &.

If we use maximum likelihood estimates ip and (p of the nuisance param eters ip 

and <p in snt, A nt, Cnt and Dnt, then the score test for testing H0 against Hi  is

8 n t  Snf ^A nI CntDni Cnt ^ S n t - (8 .2 .1)

Now, we want to  derive the homogeneity test statistic in the presence of a common 

orthogonal parameter. For this we need to transform the param eters (ipi, </>), i =  

1,..., k, into a set of orthogonal parameters (ip*, (p), i =  1,..., k (Cox and Reid, 1987). 

Let (ipi(ip*, (p), (p), i — 1 , fc, be such a transform ation which satisfies

j(0 , j(0 _ o i -  i k-r -  U, l -  1, • • • , K, (8 .2 .2 )

where =  E
S2/- \  (  d2l \

a n d  ^  =  E \WfJ-  T h 0 n  t h e  a b ° Ve h ° m 0 g e n e i t y

hypothesis is equivalent to

H 0 : ip* = 1P2 — ••• =  ipt — ip*, w ith ip* and cp being unspecified vs Hi : ip*, i = 1,..., k, 

are not all the same and <p is unspecified.

As in Section 3.2, in terms of the original parameters (ip, cp) under H (h the score 

statistic St is given by

dl
where s ti and vti, i  =  1 , . . . ,k ,  are estim ated values of -^r

d i p

(8.2.3)

Ho

and l i p  = E
a%
dip2 Ho,
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i =  1 , k, obtained by replacing the nuisance parameters 0  and 0 by the correspond­

ing maximum likelihood estimates 0  and 0 under H0.

Both of the score test statistics St and Snt can be used to test homogeneity in the 

presence of the common nuisance param eter 0. It would be of interest to  compare 

performances of these score statistics, bo th  theoretically and by simulation which will 

be subject of future investigation.

(II) Test of homogeneity against central m ixture alternatives

Mixture distributions are widely used to  obtain a over-dispersion family of sam­

pling models. Test for mixtures are usually limited to  a specific mixing. For example, 

by mixing the Poisson distribution with the gamma distribution, we obtain the neg­

ative binomial distribution and by mixing the binomial distribution with the beta 

distribution, we obtain the beta-binomial distribution. Liang (1987), Zelterman and 

Chen (1988) develop score test statistics based on the central mixture model as the 

alternative to  test the homogeneity. This central mixture model is obtained by a 

general mixture without specifying any distribution. In this section, we develop a 

score test statistic by using orthogonal transform ation to test homogeneity against 

central mixture alternative based on the model proposed by Liang (1987).

Let Yij be the random variable for observation j  of group i, j  =  1,..., n*, i — 

1,..., k, w ith N  =  £ t i  Wj. We assume th a t the probability density function of Yl3 is 

/ {yif ipi, 0). The usual homogeneity hypothesis in presence of the common nuisance 

param eter is

Ho : 0 i =  0 2  =  =  "0, where 0  and 0  are unspecified vs Hi : 0 ,, i =  1,..., k,

are not all the same, where 0 is unspecified
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Assume th a t pi =  p  + 9 2 zt , i =  1 , k, where the z f  s are independently distrib­

uted from an unknown distribution F  with zero mean and unit variance. Let

Tli ~ p
(y i',9 ,p ,p) = J ^ lo g  /  f{y i j]p  + O^Zi, p)dF(zi) 

3=1 '-J
(8.2.4)

is the log-likelihood function based on the mixed model for the ’s. Then, the hy­

pothesis of homogeneity is equivalent to the hypothesis 

H0 : 9 =  0 vs Hi : 9 > 0.

Under some regularity conditions, the score test statistic developed by Liang 

(1987) for testing H 0 is

8 c n t  S e n t / ' V c n t 2 i (8.2.5)

where

i = l

dk
dB

Ho i = l

d l£ C
d p  J d p 2

and

( . . \
- 1

/ .  \

{Pipj  iop )

H<t>) yo<t> /

Ho

with i„  = E t ,  E  [ , ..., etc, and scnt and vcnt

are the estim ated values of scnt and vcnl by replacing the nuisance param eters p  and 

p  with the corresponding maximum likelihood estimates p  and p  under H q.

Now, we develop the score test statistic by using the orthogonal nuisance param e­

ters. For this we need to  transform  the param eters (0, p, p) into a set of orthogonal 

parameters (9, p*, p*), such th a t 6 is orthogonal to  (p*, p*){Cox and Reid, 1987). Let
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(9, ip(9, ip*, cp*), <p{9, ip*, cp*)) be such a transform ation which satisfies the equation

(8 .2 .6 )

/■ • \  ( W \
86
dip

V a # /

(. \

J

Now, in term s of the orthogonal parameters, we denote the likelihood function based 

on the mixed model for the yPs as

Tli Tli ~ n

l* = ^ 2 V’*, <t>*) =  log /  ^ * +  ^ d F (
3=1 3=1 ^

{Zi) (8.2.7)

Let

_ ^ k  d ll
Set — 2^i=l QQ

and

_  j dlj dip dlj 8<p 1
Ho ~  1 \ dip 8 6  dcp 8 6  2

'8L '
+

8 2L
dip J  dip2

Ho

8P
Vet =  l h \ H o  ~  Y li=  1 F  ( ~QQ

H 0 l

dip deb
Note th a t —  and —  in the expressions for sct and vct can be expressed in terms 

86 86

of iM, tc  from (8.2.6). So we can calculate the quantities sct and vct in term s of

original param eters ip and cp, without solving the partial differential equation (8.2.6).

If we use maximum likelihood estimates ip and <p of the nuisance param eters ip and

cp in sct and vct, then the score test for testing H q against H\ is 
1

S e t  S c t / v c t .

Again, both  of the score test statistics Scnt and Sct can be used to  test the homo­

geneity against central mixture alternatives. Comparing the performances theoreti­

cally and through a simulation study would be interesting.

(III)Test of homogeneity for generalized linear models

Mixed effects models based on a generalized linear model are widely used in many 

statistical studies. These models can be used to fit cluster da ta  which may have
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interclass correlation within clusters. Jacqmin and Commenges (1995) develop a

score test of homogeneity for mixed effect models. In this section, we develop a score 

test statistic by using an orthogonal transform ation to  test homogeneity based on the 

model proposed by Jacqmin and Commenges (1995).

Let Yij be the random variable for observation j  of group i, j  =  1,..., rq, i —

fiUiji V'i) </*)• Further, we assume th a t the probability density function of Yl3 is defined 

as:

The mean and variance of Y^  are /j^ =  E(Yij)  =  g'{Qij) and cr?- =  var(Yij) — <j>g"{Bij). 

If 9ij is a linear combination of the vector explanatory variables, then (8.2.8) specifies 

a generalized linear model , where 0̂ - is the canonical parameter, <fi is the dispersion 

param eter, and (g/)~1 is the canonical link (McCullagh and Nelder, 1989).

The mixed effects model considered by Jacqmin and Commenges (1995) is

where 0  denotes a p  x 1 vector of fixed effects with associated design vector Xij,  and 

cq is the scalar random  effect with associated covariate Zl}.

with unspecified distribution F  with zero mean and unit variance. We denote the 

log-likelihood function as

1 w ith N  — Y h =x n i- We assume th a t the probability density function of Yl3 is

h j ,  <t>) = exp (8 .2 .8 )

%  — +  ZijCXi, (8.2.9)

Let OLi =  a  + DiVi, where the Vi s are independently and identically distributed

h =  '%2Kyij’, D , 0 , <*,<!>) = X ! log f ( y i fP ,®  +D*Vi,(f))dF(vi) , (8 .2 .1 0 )
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The hypothesis of homogeneity is Ho : D — 0 vs Hi : D  > 0.

To derive score test statistic for H q, Jacqmin and Commenges (1995) first as­

sume th a t the dispersion param eter 0 is known and (a, ft) are considered as nui­

sance parameters. Following Liang (1987) and Chescher (1984), the score test statis­

tic Hs(ct,  f t  ft) is obtained (for details, see Jacqmin and Commenges, 1995, page 

1239). Further, when the param eter (f> is unknown, a consistent estimate (j) = 

E t= i (ES=i EJ'=i 0 "(% )) is used to replace 4> in the statistic H s (a,  f t  ft).

So H s(a, (3, ft) is the statistic to  test homogeneity when the param eter (j) is unknown.

Now, in the following (IIIA) and (IIIB), we simplify the information m atrix 

through an orthogonal transform ation and obtain the exact variance of the score 

function. Further, we obtain score test statistics Si and S2 corresponding to  the sta­

tistics Hs(a,(3,ft)  and H s ( a , f t f t ) .  A simulation study to compare the performance 

of these procedures would be interesting.

(IIIA) Score test of homogeneity when f t  is known

For this we need to  transform  the parameters (D , f t  a) into a set of orthogonal 

param eters (D , f t ,  ct*), such th a t D  is orthogonal to  ( f t ,  a*)(Cax & Reid, 1987). Let 

(D , (3(D, f t ,  a*), a(D , f t ,  a*)) be such a transform ation which satisfies the equation

/ .  . \  ( d a _ \
*01a 1a8  T-. ,

(8 .2 .11)

where w  =  E J . ia/) = E i=1 £  ^

Now in term s of the orthogonal parameters, we denote the log-likelihood function
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based on the mixed model as

Tli Tli ~ n

=  ^  /  fhltfFiOt' + DlvufidFiyi)
j= l j=l ^

(8 .2 .12)

Let

_ dl* 
Sl ^ i= 1  dD  

and

_  k j ,'dli V  dp dk d a  1

Ho ~  I W  /  dD  da  dD  2
' d h Y
da  J d a 2

Ho

v i ~  ^d d Ihq ~  1 E
' d l l
dD

H o ,
da  dp

Note th a t —— and 7 — in the expression of si and v\ can be expressed in term s of 
dD  dD

W )*a/3v et c from (8.2.11). So we can express the quantities Si and v\ in terms of the 

original param eters P and a  without solving the partial differential equation (8 .2 .1 1 ). 

If we use maximum likelihood estimates P and a  of the nuisance param eters P and a  

in Sx and iq, then the score test for testing H 0 against Hi is

S\ — s i / v

(IIIB). Score test of homogeneity when </> is unknown

For this we need to  transform  the parameters (D, p, a , p) into a set of orthogonal 

parameters (D, P*, a*, p*), such th a t D  is orthogonal to (/?*, a*, p *)(Cox and Reid, 

1987). Let

(D, p, a, p) i— >(D, P(D, p*, a*, p*), a(D , p \  a*, </>*), p(D, p*, a*, p*)) 

be such a transform ation which satisfies the equation

/ \
^a/3 1atj>

ia(3 W  H* 

%<i> U<f>

(  d a \ (■ \
dD iaD

dp
dD i(3D

dp
I dD \ H d j

(8.2.13)
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where iaa = J2i=i E  , ia0 =  £ * =1 E  ( etc.' d h \  (dh_  
d a )  \ d p ,

Now, in term s of the orthogonal parameters, we denote the log-likelihood function

based on the mixed model as

Tli Tlx ” p

(,* = E D < ?*• “*■ = E loe / /(»«! Z3*. <t>"
.7 = 1 .7 = 1 '~

')dF(vi)

Let

. (8.2.14)

S2 = E
2 = 1

k

m i
dD Ho

ST' J i d l i \ ’ d(3 dk da  dlt <90 1
^ \ \ M )  dD  + d ^ d D  + d j d D  + 2 1=1 1 N '

' d l A 2 (Ph
. da  ) d a 2

and

dlt

Ho

v2 %d d \h* ^ i = l E y d D Ho
* ! da  dp  d(f) .
Again note th a t ——, —— and —— m the expressions of S2 and u2 can be expressed 

dD  dD  dD

in terms of iaa,iap,—, etc from (8.2.13). So we can calculate the quantities S2 and 

v2 in term s of the original parameters 0, a , 0 without solving the partial differential 

equation (8.2.13). If we use maximum likelihood estimates 0, a  and 0 of the nuisance 

parameters (3, a  and 0  in S2 and V2 , then the score test for testing Hq against H\ is

s2m
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Table D .l: Counts of embryonic deaths in a control group and two treatm ent groups 

(McCaughran & Arnold, 1976, Table 6)

Number of frequency

deaths control group dose level 1 dose level 2

0 7 5 4

1 2 4 2

2 1 0 3

3 0 1 0

4 0 0 1
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Table D.2: Toxicological da ta  from Paul (1982)

Groups

Control, C (i) 1 1 4 0 0 0 0 0 1 0 2 0 5 2 1 2 0 0 1 0 0 0 0 3 2 4 0

(ii) 12 7 6 6  7 8  10 7 8 6  11 7 8 9 2  7 9  7 11 10 4 8  10 12 8 7 1 

Low dose, L (i) 0 1 1 0 2 0 1 0 1 0 0 3 0 0 1 5 0 0 3

(ii) 5 11 7 9  12 8 6 7 6 4 6 9 6 7 5 9 1 6 9  

Medium dose, M (i) 2 3 2 1 2 3 0 4 0 0 4 0 0 6 6 5 4 1 0 3 6

(ii) 4 4 9 8 9 7 8 9 6 4 6 7 3  13 6 8  11 7 6  10 6 

High dose, H (i) 1 0 1 0 1 0 1 1 2 0 4 1 1 4 2 3 1

(ii) 9 10 7 5 4 6 3 8 5 4 4 5 3 8 6 8 6

(i) Number of live foetuses affected by treatm ent, (ii) Total number of live foetuses.
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Table D.3: The PVC counts for twelve patients one minute after adm inistrating a 

drug w ith antiarrhythm ic properties (Berry, 1987)

Patient PVCs per minute

number Pre-drug(x'i) Post-drug (yi) Total(m ,)

1 6 5 11

2 9 2 11

3 17 0 17

4 22 0 22

5 7 2 9

6 5 1 6

7 5 0 5

8 14 0 14

9 9 0 9

10 7 0 7

11 9 13 22

12 51 0 51
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Table D.4: The DMFT index data (Bohning, Dietz, Schlattmann, Mendonca and Kirchner, 
1999)

observation DMFT1 DMFT2 Gender Ethnic School
1 6 3 1 3 1
2 2 1 0 3 1
3 1 0 1 3 1
4 7 2 1 2 1
5 3 3 0 2 1
6 0 0 0 3 1
7 4 3 1 2 1
8 2 1 1 2 1
9 8 2 0 1 1
10 3 3 1 2 1
11 0 0 0 3 1
12 5 2 1 1 1
13 2 2 0 2 1
14 5 2 0 1 1
15 3 2 0 2 1
16 3 1 0 2 1
17 2 1 0 2 1
18 2 3 1 2 1
19 2 1 1 2 1
20 0 0 0 1 1
21 8 1 0 2 1
22 2 2 0 2 1
23 5 1 0 1 1
24 3 3 1 1 1
25 5 1 1 3 1
26 4 3 1 3 1
27 6 4 1 2 1
28 2 1 0 1 1
29 8 1 0 1 1
30 5 2 1 1 1
31 4 3 0 1 1
32 4 0 1 1 1
33 1 1 0 2 1
34 1 1 1 2 1
35 6 5 1 2 1
36 4 4 1 1 1
37 6 4 0 2 1
38 0 0 0 2 1
39 7 0 0 2 1
40 5 2 1 2 1
41 0 1 0 2 1
42 0 2 0 2 1
43 8 5 0 1 1
44 6 4 1 2 1
45 7 5 1 2 1
46 5 4 0 3 1
47 8 3 1 2 1
48 1 2 0 2 1
49 4 0 1 2 1
50 4 2 0 3 1
51 4 1 1 2 1
52 5 4 1 2 1
53 4 3 1 3 1
54 5 1 1 1 1
55 6 2 1 1 1
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observation DMFT1 DMFT2 Gender Ethnic School
56 6 4 1 3 1
57 2 1 1 3 1
58 4 3 0 2 1
59 2 2 0 1 1
60 8 2 0 2 1
61 2 0 1 2 1
62 3 0 0 3 1
63 3 3 1 3 1
64 8 4 0 2 1
65 0 3 0 2 1
66 7 5 1 2 1
67 0 0 0 2 1
68 2 2 1 2 1
69 7 3 0 2 1
70 5 1 1 1 1
71 4 2 1 1 1
72 6 3 0 2 1
73 6 0 1 3 1
74 0 0 1 2 1
75 4 2 1 2 1
76 2 4 0 2 1
77 7 5 0 2 1
78 0 0 1 1 1
79 6 0 0 2 1
80 6 2 0 2 1
81 2 3 1 3 1
82 0 2 1 1 1
83 5 2 0 3 1
84 4 3 1 3 1
85 0 0 0 2 1
86 3 1 0 1 1
87 2 1 0 2 1
88 0 1 0 1 1
89 3 2 0 3 1
90 7 5 0 2 1
91 7 2 0 2 1
92 6 3 1 2 1
93 6 2 1 3 1
94 3 1 0 2 1
95 0 0 0 2 1
96 6 2 0 2 1
97 7 0 1 2 1
98 4 3 1 2 1
99 4 0 1 3 1
100 1 1 1 3 1
101 2 2 0 2 1
102 2 0 0 2 1
103 4 0 0 2 1
104 2 0 1 2 1
105 2 1 0 1 1
106 5 1 1 3 1
107 1 2 0 3 1
108 7 3 0 2 1
109 4 1 0 2 1
110 5 4 1 1 1
111 4 3 1 2 1
112 0 0 0 2 1
113 0 0 0 2 1
114 7 4 0 2 1
115 8 0 1 2 1
116 5 1 1 3 1
117 6 4 0 1 1
118 4 0 1 1 1
119 8 0 1 2 1
120 4 2 1 3 1
121 7 6 1 3 1
122 4 1 1 2 1
123 6 1 1 1 1
124 4 0 1 1 1
125 3 4 1 1 2
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observation DMFT1 DMFT2 Gender Ethnic School
126 6 2 1 1 2
127 0 0 1 3 2
128 3 1 0 2 2
129 6 2 0 1 2
130 6 0 0 1 2
131 2 2 1 1 2
132 3 4 0 2 2
133 5 3 0 1 2
134 4 4 1 2 2
135 5 3 1 2 2
136 7 2 1 1 2
137 0 0 1 2 2
138 6 0 0 2 2
139 5 0 0 2 2
140 3 0 1 2 2
141 6 4 0 2 2
142 1 0 1 1 2
143 4 6 0 3 2
144 2 0 0 1 2
145 8 4 1 1 2
146 4 3 0 2 2
147 2 1 1 3 2
148 1 1 0 1 2
149 3 2 0 2 2
150 0 0 1 2 2
151 4 1 1 1 2
152 0 0 1 3 2
153 3 4 1 2 2
154 2 1 0 1 2
155 5 4 0 1 2
156 1 0 1 3 2
157 2 0 0 2 2
158 2 1 1 2 2
159 0 0 1 2 2
160 0 1 0 2 2
161 0 0 0 1 2
162 4 0 1 3 2
163 8 0 0 2 2
164 4 1 0 2 2
165 6 1 0 1 2
166 4 0 0 2 2
167 1 0 1 1 2
168 0 0 1 2 2
169 7 3 1 3 2
170 6 1 1 1 2
171 5 2 0 1 2
172 2 1 1 2 2
173 3 1 0 1 2
174 2 2 0 1 2
175 0 0 0 2 2
176 8 0 0 2 2
177 0 0 0 1 2
178 0 1 1 1 2
179 0 0 1 2 2
180 0 0 1 1 2
181 2 0 1 2 2
182 0 1 1 1 2
183 2 2 1 1 2
184 2 1 0 1 2
185 3 1 0 1 2
186 0 0 0 1 2
187 0 0 0 3 2
188 2 0 0 2 2
189 1 1 1 1 2
190 6 0 1 3 2
191 7 5 1 1 2
192 0 0 0 2 2
193 0 0 0 1 2
194 2 1 0 3 2
195 2 2 0 3 2
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observation DMFT1 DMFT2 Gender Ethnic School
196 5 1 1 2 2
197 4 3 1 2 2
198 0 0 0 3 2
199 7 3 0 2 2
200 0 0 1 3 2
201 0 3 1 1 2
202 8 1 1 2 2
203 1 0 0 3 2
204 6 1 0 2 2
205 3 1 0 2 2
206 0 2 0 2 2
207 6 0 0 1 2
208 3 2 0 3 2
209 0 0 0 1 2
210 0 1 1 1 2
211 8 4 1 1 2
212 6 1 0 3 2
213 2 4 0 2 2
214 0 0 1 1 2
215 3 3 0 2 2
216 3 0 1 2 2
217 6 2 0 2 2
218 0 0 1 1 2
219 7 5 0 1 2
220 0 0 1 1 2
221 5 1 1 1 2
222 2 4 1 2 2
223 4 4 0 2 2
224 1 1 0 1 2
225 0 3 1 2 2
226 6 2 1 1 2
227 3 0 0 2 2
228 0 0 0 2 2
229 2 2 1 2 2
230 0 0 1 2 2
231 0 0 1 2 2
232 0 1 1 1 2
233 0 1 1 1 2
234 0 0 1 2 2
235 3 0 1 2 2
236 8 3 1 3 2
237 0 2 0 2 2
238 5 1 0 2 2
239 7 2 1 1 2
240 0 2 1 1 2
241
242

4
2

0
0

0
0

1 2
2

243 3 2 0 1 2
244
245

0
7

0
5

1
1

1 2
2

246
247

0
0

0
0

1
1

1 2
2

248 1 0 1 1 2
249
250

0
3

0
4

1
1

1 2
2

251
252

4
7

2
2

1
1

1 2
3

253 5 4 0 1 3
254 4 3 1 1 3
255 5 4 0 1 3
256 4 1 0 3 3
257 6 3 0 2 3
258 3 0 1 2 3
259 6 3 1 2 3
260 2 2 0 3 3
261 2 2 0 1 3
262 3 1 1 3 3
263 5 2 1 2 3
264 4 2 0 1 3
265 5 3 1 2 3
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observation DMFT1 DMFT2 Gender Ethnic School
266 5 1 1 2 ’ 3
267 3 2 1 1 3
268 1 0 0 1 3
269 4 2 0 1 3
270 4 1 1 3 3
271 2 2 1 1 3
272 4 1 1 1 3
273 8 3 1 1 3
274 4 3 1 3 3
275 2 1 1 1 3
276 1 2 0 3 3
277 5 4 1 2 3
278 0 0 0 3 3
279 3 0 0 1 3
280 5 3 1 1 3
281 0 0 0 1 3
282 6 4 0 2 3
283 3 2 1 2 3
284 3 3 1 2 3
285 6 3 1 2 3
286 5 3 1 1 3
287 5 4 0 1 3
288 1 0 1 2 3
289 0 0 0 2 3
290 6 5 1 1 3
291 2 3 0 3 3
292 0 0 1 3 3
293 0 0 1 3 3
294 8 4 1 2 3
295 4 5 1 2 3
296 7 1 1 2 3
297 6 6 1 1 3
298 6 5 1 2 3
299 4 5 0 3 3
300 8 6 1 2 3
301 8 6 1 1 3
302 1 1 0 2 3
303 4 2 1 3 3
304 7 4 0 1 3
305 1 1 0 1 3
306 1 2 0 2 3
307 7 5 1 2 3
308 3 0 0 2 3
309 6 2 0 1 3
310 2 3 0 2 3
311 0 0 0 3 3
312 5 3 1 3 3
313 2 2 1 1 3
314 0 0 1 1 3
315 0 0 1 2 3
316 5 4 1 3 3
317 3 3 1 1 3
318 2 2 0 1 3
319 0 0 1 1 3
320 4 1 1 1 3
321 1 0 0 1 3
322 2 0 0 1 3
323 8 6 1 3 3
324 2 1 1 1 3
325 0 1 1 1 3
326 5 5 1 1 3
327 7 6 0 2 3
328 1 1 0 2 3
329 0 0 0 2 3
330 8 6 0 3 3
331 0 1 1 1 3
332 5 3 1 1 3
333 4 1 1 2 3
334 4 5 0 1 3
335 3 0 0 2 3
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observation DMFT1 DMFT2 Gender Ethnic School
336 5 1 0 1 3
337 5 5 0 2 3
338 5 4 0 2 3
339 0 1 0 1 3
340 6 4 0 1 3
341 0 0 0 3 3
342 8 3 1 2 3
343 8 6 1 2 3
344 0 2 1 1 3
345 5 5 1 3 3
346 7 5 1 2 3
347 6 5 0 1 3
348 0 0 0 1 3
349 7 4 0 2 3
350 2 2 1 1 3
351 6 5 1 1 3
352 3 2 1 1 3
353 5 1 0 2 3
354 7 3 1 1 3
355 7 1 0 3 3
356 6 3 0 1 3
357 3 0 1 2 3
358 1 1 0 1 3
359 3 2 0 2 3
360 5 6 1 2 3
361 6 3 1 1 3
362 2 0 1 1 3
363 7 3 1 2 3
364 4 4 1 1 3
365 2 2 1 3 3
366 4 0 1 1 3
367 5 3 0 1 3
368 1 1 1 1 3
369 3 1 1 2 3
370 1 1 1 2 3
371 2 0 1 2 3
372 3 5 1 1 3
373 8 6 1 1 3
374 4 3 1 2 3
375 2 2 0 2 3
376 1 3 0 2 3
377 4 2 0 2 3
378 4 0 0 2 3
379 0 0 0 1 3
380 0 1 0 2 3
381 6 3 0 2 3
382 4 2 0 1 3
383 8 3 1 3 3
384 1 3 1 1 3
385 3 1 1 1 3
386 2 1 1 1 3
387 3 2 1 1 3
388 3 2 1 2 4
389 1 2 1 2 4
390 6 2 2 4
391 8 2 1 1 4
392 7 0 1 1 4
393 7 3 1 2 4
394 5 1 1 1 4
395 3 2 2 4
396 0 5 1 4
397 3 4 1 3 4
398 6 3 1 2 4
399 0 0 2 4
400 5 1 1 2 4
401 7 2 1 2 4
402 1 1 2 4
403 7 5 1 1 4
404 7 6 1 1 4
405 7 4 1 1 4
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observation DMFT1 DMFT2 Gender Ethnic School
406 6 4 0 2 4
407 2 3 0 2 4
408 5 3 0 2 4
409 0 0 1 3 4
410 0 1 1 3 4
411 0 2 0 3 4
412 0 0 1 1 4
413 7 5 1 2 4
414 4 3 0 1 4
415 0 1 0 2 4
416 1 1 1 3 4
417 1 0 0 3 4
418 1 1 1 2 4
419 0 0 0 1 4
420 0 0 1 2 4
421 2 5 1 2 4
422 4 1 1 2 4
423 5 3 1 1 4
424 6 3 0 1 4
425 0 0 0 1 4
426 3 1 0 2 4
427 2 2 0 1 4
428 1 2 0 3 4
429 0 0 0 1 4
430 3 2 0 2 4
431 4 3 1 1 4
432 7 5 1 1 4
433 3 1 1 2 4
434 4 4 0 2 4
435 0 0 0 1 4
436 5 3 0 2 4
437 1 1 0 2 4
438 7 5 1 2 4
439 4 3 1 1 4
440 8 2 1 1 4
441 0 0 0 2 4
442 8 6 0 2 4
443 3 0 0 1 4
444 4 4 0 3 4
445 1 2 0 2 4
446 0 1 0 2 4
447 8 5 1 3 4
448 8 3 1 1 4
449 1 0 1 1 4
450 2 4 0 2 4
451 6 5 1 1 4
452 0 0 1 2 4
453 8 6 1 2 4
454 5 0 0 1 4
455 1 1 0 1 4
456 0 2 0 1 4
457 1 0 1 1 4
458 2 3 0 2 4
459 4 3 0 2 4
460 0 0 1 1 4
461 2 4 1 2 4
462 0 3 0 2 4
463 4 3 0 1 4
464 6 4 0 1 4
465 4 2 1 1 4
466 7 1 1 1 4
467 0 0 0 1 4
468 3 1 0 1 4
469 0 4 0 1 4
470 3 3 1 1 4
471 8 5 0 3 4
472 2 2 1 1 4
473 6 3 0 2 4
474 8 5 0 1 4
475 3 1 0 1 4
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observation DMFT1 DMFT2 Gender Ethnic School
476 5 3 1 2 4
477 2 0 0 1 4
478 0 1 0 2 4
479 4 1 1 3 4
480 3 3 0 1 4
481 5 5 1 1 4
482 6 4 1 1 4
483 0 0 1 1 4
484 6 0 1 1 4
485 8 3 1 1 4
486 4 1 0 2 4
487 1 1 1 1 4
488 0 0 1 1 4
489 0 1 0 1 4
490 5 2 1 1 4
491 0 0 0 2 4
492 1 2 0 3 4
493 3 0 0 2 4
494 0 0 1 1 4
495 0 2 0 3 4
496 4 2 0 2 4
497 6 3 1 1 4
498 5 3 1 2 4
499 5 3 1 2 4
500 1 3 0 1 4
501 1 1 1 1 4
502 5 4 0 2 4
503 0 1 1 3 4
504 6 2 1 1 4
505 5 0 0 2 4
506 2 2 1 1 4
507 1 0 0 2 4
508 8 5 0 2 4
509 4 3 0 2 4
510 0 0 0 1 4
511 5 5 0 2 4
512 3 0 0 1 4
513 0 0 1 1 4
514 0 1 1 1 4
515 8 5 1 2 4
516 6 4 1 1 4
517 4 2 1 1 4
518 3 2 1 1 4
519 4 3 1 2 4
520
521

7
5

5
4 1

2
1

5
5

522 2 1 1 1 5
523
524

0
4

1
0 1

1
1

5
5

525 0 0 1 1 5
526 0 0 1 3 5
527 7 3 1 2 5
528 0 0 0 3 5
529 6 2 0 2 5
530 2 1 1 3 5
531 1 0 0 2 5
532 0 0 0 1 5
533 8 1 0 2 5
534 3 2 0 2 5
535 3 3 1 1 5
536 4 3 1 2 5
537 0 0 1 1 5
538 5 3 1 2 5
539 7 6 1 1 5
540 1 1 0 3 5
541 5 4 0 2 5
542 5 2 0 1 5
543 2 0 0 2 5
544 1 0 0 1 5
545 5 2 0 1 5
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observation DMFT1 DMFT2 Gender Ethnic School
546 1 1 1 2 5
547 6 3 1 2 5
548 3 3 1 1 5
549 6 0 0 3 5
550 7 3 0 2 5
551 6 3 1 2 5
552 4 4 1 2 5
553 3 4 0 1 5
554 7 4 0 1 5
555 8 5 1 2 5
556 0 0 1 1 5
557 3 2 1 2 5
558 1 0 0 3 5
559 4 3 0 1 5
560 4 2 1 2 5
561 4 4 0 2 5
562 5 2 1 2 5
563 0 0 0 3 5
564 5 1 1 1 5
565 3 1 1 1 5
566 8 2 0 2 5
567 1 3 1 2 5
568 0 0 0 2 5
569 8 2 1 2 5
570 0 2 0 1 5
571 0 0 0 2 5
572 2 1 0 2 5
573 1 2 1 2 5
574 5 3 0 2 5
575 5 4 1 1 5
576 0 0 0 2 5
577 0 0 0 2 5
578 5 0 1 1 5
579 0 0 1 1 5
580 7 5 1 1 5
581 2 2 0 2 5
582 4 3 0 1 5
583 0 0 0 1 5
584 0 0 1 1 5
585 3 1 0 2 5
586 0 0 1 2 5
587 7 0 1 2 5
588 6 5 1 2 5
589 4 4 1 2 5
590 1 0 0 1 5
591 5 1 0 3 5
592 5 1 0 2 5
593 5 4 0 2 5
594 5 5 1 2 5
595 7 1 0 2 5
596 0 0 0 1 5
597 4 1 0 1 5
598 8 5 0 3 5
599 0 0 1 2 5
600 8 2 0 1 5
601 0 0 1 3 5
602 0 0 1 2 5
603 4 2 1 2 5
604 1 0 1 3 5
605 6 2 0 1 5
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observation DMFT1 DMFT2 Gender Ethnic School
606 6 1 0 2 5
607 5 3 0 3 5
608 4 3 0 1 5
609 6 3 1 3 5
610 5 2 0 1 5
611 7 2 0 1 5
612 0 2 1 1 5
613 3 1 0 1 5
614 7 3 1 1 5
615 6 5 0 2 5
616 2 0 0 3 5
617 0 1 0 2 5
618 7 5 0 1 5
619 8 1 1 3 5
620 0 0 1 2 5
621 2 1 0 1 5
622 5 1 0 2 5
623 5 4 1 2 5
624 0 0 1 2 5
625 4 0 0 1 5
626 6 4 1 1 5
627 0 0 0 2 5
628 2 2 0 3 5
629 6 0 0 2 5
630 0 0 0 2 5
631 6 3 0 1 5
632 5 4 0 1 5
633 6 4 1 1 5
634 0 0 1 3 5
635 5 3 1 1 5
636 2 2 0 2 5
637 2 4 0 1 5
638 0 0 1 3 5
639 1 0 1 1 5
640 3 2 0 1 5
641 0 0 0 3 5
642 6 1 0 1 5
643 5 1 1 3 5
644 0 0 1 2 5
645 7 5 1 2 5
646 3 0 0 1 5
647 8 5 0 2 5
648 4 1 0 2 5
649 4 3 0 2 5
650 6 2 1 1 5
651 0 0 0 1 5
652 6 0 0 2 5
653 0 0 1 2 5
654 0 0 1 2 5
655 0 0 0 1 5
656 8 0 0 2 5
657 7 1 0 1 5
658 0 0 0 1 5
659 1 2 1 2 5
660 0 0 1 2 5
661 1 0 0 1 5
662 6 4 0 1 5
663 3 0 0 3 5
664 1 0 0 2 5
665 1 1 0 2 5
666 0 0 0 2 5
667 4 3 1 1 5
668 0 0 1 2 5
669 1 1 1 2 5
670 2 2 1 1 5
671 8 5 1 1 5
672 5 0 1 2 5
673 1 1 0 2 5
674 1 0 0 2 5
675 1 1 0 2 6

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Data sets

observation DMFT1 DMFT2 Gender Ethnic School
676 2 3 0 2 6
677 0 0 0 2 6
678 4 0 0 1 6
679 2 0 0 2 6
680 0 0 0 1 6
681 4 4 0 1 6
682 6 5 1 1 6
683 2 0 1 2 6
684 1 0 1 3 6
685 4 1 1 2 6
686 6 6 0 1 6
687 3 3 0 2 6
688 0 1 0 1 6
689 6 2 1 2 6
690 5 3 0 2 6
691 8 5 1 2 6
692 0 0 1 2 6
693 2 1 1 2 6
694 7 6 0 2 6
695 2 0 1 2 6
696 4 2 1 2 6
697 7 5 1 2 6
698 7 5 1 1 6
699 1 0 0 1 6
700 1 6 0 2 6
701 1 0 0 2 6
702 3 1 1 1 6
703 4 1 0 1 6
704 0 0 1 3 6
705 5 5 1 2 6
706 6 3 1 2 6
707 4 1 0 2 6
708 0 1 1 2 6
709 7 6 0 2 6
710 3 4 1 2 6
711 2 1 0 2 6
712 2 0 0 1 6
713 4 0 0 2 6
714 1 0 0 1 6
715 0 1 0 2 6
716 1 1 0 2 6
717 2 2 1 2 6
718 0 0 0 2 6
719 2 2 0 2 6
720 2 1 1 1 6
721 5 2 0 2 6
722 2 3 0 2 6
723 4 4 1 2 6
724 3 0 1 1 6
725 4 2 0 2 6
726 4 4 0 2 6
727 3 1 0 2 6
728 2 1 1 2 6
729 1 1 1 2 6
730 0 0 0 2 6
731 7 0 0 3 6
732 3 l 0 3 6
733 0 l 1 2 6
734 2 2 1 2 6
735 0 2 1 3 6
736 6 5 1 2 6
737 0 0 1 1 6
738 5 6 0 2 6
739 8 6 0 2 6
740 3 2 0 1 6
741 1 0 0 2 6
742 5 3 1 1 6
743 7 4 0 1 6
744 2 1 1 1 6
745 6 4 1 2 6
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observation DMFT1 DMFT2 Gender Ethnic School
746 2 1 1 2 6
747 7 3 0 1 6
748 0 0 1 1 6
749 2 2 1 2 6
750 3 2 0 1 6
751 0 0 0 2 6
752 3 4 0 2 6
753 0 1 1 2 6
754 6 5 1 2 6
755 4 3 0 2 6
756 0 0 0 2 6
757 0 0 1 1 6
758 7 2 1 3 6
759 3 2 0 2 6
760 1 3 1 2 6
761 1 3 0 3 6
762 6 2 1 2 6
763 6 3 0 2 6
764 2 1 1 2 6
765 0 0 1 2 6
766 7 2 1 2 6
767 1 0 1 1 6
768 0 1 0 1 6
769 7 1 1 2 6
770 3 2 1 2 6
771 6 2 1 2 6
772 4 0 0 2 6
773 7 1 1 2 6
774 2 2 1 1 6
775 0 0 0 2 6
776 0 0 1 2 6
777 4 3 1 1 6
778 0 0 1 1 6
779 6 2 0 2 6
780 2 0 1 2 6
781 6 2 1 2 6
782 1 0 1 1 6
783 3 0 1 3 6
784 7 6 1 1 6
785 0 0 0 2 6
786 6 2 1 2 6
787 0 0 0 2 6
788 3 5 0 2 6
789 0 1 0 2 6
790 2 2 0 2 6
791 2 1 1 2 6
792 0 1 1 3 6
793 7 3 1 2 6
794 0 0 1 2 6
795 2 1 1 2 6
796 0 0 0 1 6
797 2 1 1 2 6
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A p p en d ix  A

A .I . D erivation  o f  th e  score s ta tis tic  S

Reparameterize ipi and Aj,  i = 1 , k, under H i, by ipi = ip + c q ,  i = 1 , k, with 

— 0 and Aj =  A +  % =  1 , . . . ,k ,  with [A =  0. Then testing H 0 is equivalent to

testing a  = 0 and (3 =  0 with ui = (ip, A ) as nuisance parameters.

Now, let

f d l * \
da.
dVp_

\ d ( 3 j a=0,/3=0

E

A

E

d 2l*
d a d a '

d 2l*
df3da'

a=0,/3=0 j

a=O,0=Oj

E  -

E

d 2l*

dad(3'

d 2l*
d/3df3'

a=0,/?=0 ,

a=0,/3=0 J )

E

C

E

d 2r
d a d u '

d 2l*
df3duj'

a=0,f3—0 .

a=0,/3=0 )  J
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and

D = E
a2r

d u d  u ' a=0,/?=0,

If we use the maximum likelihood estimate u  of the nuisance param eter u  under the 

null hypothesis H 0 in s, A, C  and D, then the score test for testing H q against Hy is

=  3' ( A  -  C D  C s.

As in Section 3.3, note th a t param eters (a, ip) are orthogonal with param eters ((3, A). 

Then, by using the notations s0i, A0.t, Coi, i = 1,2 and D, the expressions for s, A , 

D  and C  can be simplified as

A  =

where,

Aoi — diag 

and 

Aq2 = diag 

and

C

Y 0 A q2 j

E

E

d2l*
d a 2

d2l*

'W t

a —0,/3=0 <

a=Q,(3=0j

,E

,E

d2l*
d a l

d2r

’M

a=0,/3=0 .

q=0,/3—0 ,

,E

,E

d2l*

d a L i

d2r

' W i

a=0,8=0 >

a=0,(3=Q /

( c  \(-'01

Ĉ()2 J
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( {  d2r  E

where Cqi =
E

da\dip

d2l*

ct=0,[3=0 ,

da^dip a=0,/3—0y

E
d2l* 

d a k-\dip
and

0
a = 0 ,/9 = 0  J )

(  ( d2r
0 E

and C'02 =

d(3 i d \ a=0,(3=0 j

0 E
d2l*

dfodX 06=0,0=0 ,

0 E
d2l* 

dpk- i d \ a = 0 ,13=0/ J

D
dip2 a = 0 ,/3 = 0  ,

E
o2r

\ d \ 2 x=Q,p=Oj

Then the m atrix A  — C D  C' can be simplified as

/  (  d2l
4 n  -  C o iC 'J E

A  -  C D ~l C
dip2 a=O,0=O t

\
A 02 ~  W J E

d2V
d \ 2

dl*
Also let soi =  t t -  da

dl*
and S02 =  m

a=O,0=O U>J

testing H q against H \ can be w ritten as

06=0 ,p=oJ

. Then the score test statistic for
a=0,f3=0

S  — Soi +  S 0 2 ,

where

-S'oi — £01  

and

A-oi — CoiC'Q1/  E
d2l*
dip2 06=0,[3=0 .

S01
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502 — s02 Aq 2 — C02C02/ E
d 2l*
dX2 a=0,P=Q

Similarly as in the proofs for Si and S2 , we have

S02-

E  -

E

d2r

E  

and 

E

daidip

d2l*
dfiidX

d2l*
dip2 Q=

d2l*
dX2 ct=

rpi*

, = E [ ~ Wa=0,/3=0  /  \  u l P a=0,/3=0 ,

= E  -
on*

a=0,f3=0 , d\2

, i =  1, k — 1,

, i =  — 1,

=  E t i E  -

= Y L , e

a= 0,/3= 0y

d2l*
dip2 

d2l*

a=0,/3=0 1
dX2

a = 0,/3=0 ,

a=0,/3=0 <

We can obtain the score test statistic S for testing against H \ as

S  =  S o i +  S 02,

S2 • s2 •
where Soi =  and S02 =  V i- i  with the estim ated values of son =

v o n  V 02i

d ll  
dip

respectively.
Ho

d2l*
dip2 , $ 0 2 i

H 0 j

d ll
dX

and v02 i= E
Ho

d2l* 
",dX2

, i = 1
H 0 y

A .2. D eriva tion s o f  th e  su ,vu ,S 2i and V2 i ~  in term s

o f th e  orig inal param eters

For this, first, we need to express the first derivatives of the log-likelihood function 

I*, i = 1 with respect to the orthogal parameters ipi and A, in term s of the

original param eters ipi and cpi of the log-likelihood function k, i — 1,..., k. We have

dl* = dU_ dU_d^i_ .
dipi dipi d(pidipi,%
dl* dhdcPi
dXi d<pi dXi ’•••’ ‘

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A  140

Note that E  =  e (  , E  ( = e (  and E  ^  ^

E

dip? J \d ip i  J  ’ V d t f  J  \ d X i  J V d'ipidXi
d l  dl*
dipi dXi 

So we can obtain

E ( ^ l )  = E ( +  dl* d(k
d i p i )  \ d i p i  d (pi d i p i )

E  {  9li V I 2 d ^ E  (  dli dli \  ( d^Y E  (  dli V
\ d i p i )  d ip i  \ d i p i  d p i )  \ d i p i )  \ d i p i )

d p i  ( d p i \ 2 .

=  l^  + 2l^ e P i ^ \ d P i j  Hi*i '

( d i r ) 2 = ( ! f a \ \ ( n 2\  = ( d t L\ 2 .
U a J  [dXi) [dPi )  U a J

dcf) ■From (3.1), replacing —j -  by we can obtain
Q'lpi

' d l{  d l i
s l i  =

Kd ip i  d p i  

V li  =  _

-  ( ^ ± \
S2i \ d p i  J  dXi ’

and
-  ( ^ i V  ■V2i U aJ

c)(b'Note that, generally, we cannot find the quantities —4 i — 1,..., k. However, when
d X i

we calculate the score statistics S 2 , the denominator and numerator have this common
factor, which cancel out. Thus, the quantities ŝ , v u , .ŝ  and v t̂, i — 1,..., k, in terms
of the original parameters, are 

 ̂ d l i  d l i
i =

d p i  dpi  

v u  =  ~  Hi<t>i) >

- d l * A  _  •
$2i Q(j).
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A p p en d ix  B: D erivation  for score te st

In what follows we derive the score test statistic S \  for testing 

H q : 7r =  1/2 against H i  : it ^  1/2 when 7 and <p are treated as nuisance 

parameters.

The statistic S2 can be obtained following similar steps.

Consider the log-likelihood I given in Section 6.3.2. Now, Define

d l

1 dir Ho

The asymptotic variance of is 

V 2 — TV l  ----- -*7T7I

where / Ir = 

d 2l

d 2l

E

j -̂7r<̂ 7/{

T T — T2 ’

d 2l
’Ho ^ < 3 0
a 2/

Ho

Ho dirdcj)

d 2l
and -

Ho W

d 2l

E ^ ~ d ^ Ho

H o

Then, it can be shown that (Neyman, 1966) asymptotically, as n  —> 00, the 

distribution of Si =  ' & 2/ V 2 is chi-square with 1 degree of freedom. If the nuisance 

parameters 7  and (p are replaced by their maximum likelihood estimates 7  and </>,

/s 2 * 2
which are \/n-consistent, in dq and Vi, then, asymptotically, as n  —» 00, Si =  dq /Vi 

is x 2(l)-

We now evaluate the score function \Eq and the elements of the variance V 2, 

namely, the quantities 7^ ,  7^ ,  etc.

Define the functions
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ki =  log(/oi) and lyi = log(/w). 

Then, it can be seen th a t

k i  = £ l o g [ ( l  -  0 ( 1  -  </>) +  (r -  1)0] -  J ^ lo g [ l  -  0 +  (r -  1)0],
r = 1 r = l

and

^  =  log

/ \
rrii Vi m,-yi

+ 1° s [7r(1 -  <̂ ) +  (r  -  +  J ]  log[(l -  7T)(1 -  0) +  (r -  1)0]
r = lv Vi J

mi

-  & + (r  -

r=1

r = 1

Further, using these in the log-likelihood I and taking its derivative with respect to

7r we obtain

91 _  .- j  foil
Ott

Further, we see th a t
7 +  foi

d 2l0i

i=1

f o i { l  +  f o i ) - l f o i ^ P )
d ki \2 
An  -

Itt4> = E {-

d ir2 '

d 2l

d n d f )

(7 +  f o i f
-h„>

02/

B { -
2 = 1

,  ,  . ,  x ,  <9/0.t 5/0l
n ~'a  +  /Oil _  lJOi~R— <T7i irrY^rr d ’K d f  d n  50

I =  M 2 ^b 'h /i= °} ------

<92/o* » / „ s „ ,dloi
2 =  1 (7 +  /oi)2

52/ ■^ <,y» \-i
d7r<90"’

{yi>o} ^ 2  'j  ’
( 7  +  /oi)72

■̂7T7

d l 0i

H - A k )  = E { ± h » ,= 0 } ^
2 = 1

foi

d n d 'y '

d 2l

(7 +  / 0O2 

dloi

h

0}
50 foi

2 = 1 (7 +  / o * ) !
■ )>
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and

Jrr E i  gP  £ { E  ( l + 7 )2 + / (v.=o}(7 +  /o .)2}-

To obtain the quantities 1 ^ ,  1 ^  etc. in closed form we need the quantities in what 

follows.

d ki A  - ( 1  -  0), /  _  C'tOi _  V "1
04W (1 — tt) (1 - 0 )  +  ( r - l ) 0 ’

z _  <9£o; _  (r —  1) —  (1 —  7 r )  y r  r —  2
0lW 2 - j _  7r) ( i  _  0) _|_ (r  _  2-s i  _  ^  _|_ (r  _

A  ( 1 - 0 )  ( 1 - 0 )7/ _  ^a/z _  ^  V)_____________________________________
dir ^  7r(l — 0) +  (r — 1)0 ^  (1 — 7r)(l — 0) +  (r — 1 )0 ’

=  dlyi A  ( r - l ) - T T  T ?  (r  ~  1) — (1 ~  7r)
Vli.ft) f)sk /  J rrfi 1   sh\ (rp   1  ̂sh /  J^0 tt(1 -  0 ) +  (r  -  1)0 ( l - 7 r ) ( l  —0 ) +  (r — 1)0

y v  r — 2
“ j' (1 — 0 +  (r — 1)0)'

£(/{Wi=o}) = ^ (j/i = 0|mj) = u  + (1 -  w)/oi = - y p p > ^ (J{̂ >o}) = P r (Vi >

0|mi) =  1 -  w -  (1 -  u ) f 0i = y —"  and £ ( / {yi>0}p(2/i)) =  (1 -  w) Y ^ A M v d f y t )  =

127^ 1(9 ( V i ) f y d  i where 0(2/0 is a function of j/<.
1 + 7

in _  F (~ d 2k i s __ - y  (1 -  0 )2
0i(7T7r) 0  0  /  Z _ ^571-2 {(1 -  7r) ( l  -  0) +  (r -  1)0}2’

1" =  F ( ~ d 2l o i ) _  V ___________~(r ~ 1)__________
»<*(**) dnd(j)) { (i _  ^  ^  +  (r  _

- 5 2Z0̂  A  {(r —  1) —  (1 —  7 r ) } 2  ^  ( r - 2 ) 21" =  F(  i  =  V "  l v  -  -‘d ~  V1 -  y+ J _________ ____________
*oi(u) oj.2 > Z ^ / n  _ + i m  - + I 4 - / V -  1 U 1 2  Z w n -5 02 ^ { ( l - 7r ) ( l - 0 ) +  ( r - 1)0 }2 “ j' {(1 — 0 + ( r _  1)0 }2’
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n   p p ]  1 71 m i  f p ]

c  =  £ £ ( / t e> „ , + + )  =  t^ E E F o ^_  . 'y*
i = l  ' 1 = 1  y i-

( 1 _ 0 ) 2  " !
E E E1 +  7 trf^^{7r(l-0) + ( -̂l)0PVi

m i - y i" " t  y t

+ E { ( l - T) ( l - 0 )  +  ( r - l ) ^ 1/»'

ra _  f p ]

u  =  E £ f e > ° }  i ^ r )  
i=l

n  rrn y i .  r r i i - j / ;»«• »»«a yi T' 1  T  1

^  § » ? 1!S  {^(1 -  <t>) +  (r -  W 2 “  §  {(1 -  tt)(1 -  0) +  (r -  ! ) « + » ■JK =
j  n  rrn yi m i - y i  ^

0(1 +  7) ^ J 2 ^ S 7r(1 - ^ )  +  (r _  1)^ 5  (1 - 7r)(1 - ^ )  +  (r ~ 1)(/,^ !/i
n mi yi 1

n ,W ) y ^ y v y > __________ 1_________
0(! + 7) “  “  {tt(1 — 0) + (̂  — 1)0}2 2/1
( l - 7 r ) ( l - 0 ) ^ ^ m̂ ____________ 1____________

0(1 +  7) ((I  — 7r)( l  — 0 ) +  (r — 1)0 )2

Now it can be shown th a t

m i j/i 1 rrn

Vi

and

r r V  -__________ 1/ =  V ______ p{yi - r)______
M l  -  * )  +  ( r  ~  m 2 l h i  f r t  M l  - 4 > )  +  ( r -  m 2

• *H "H yi  1  »»t'i 7- ) /  -  \  £
W r W  1 ■> , _  v +  P{Ui < mi ~  r) — foi

{ ( ! - * ) { ! - t )  +  ( r - m * 11"  "  ^ { ( l - ^ ) ( l - 0 )  +  ( r - W

dl
Further, from £ 4 — ) =  0 we obtain 

37T

_ _ _ f  I 1 _ _

s i E ^ i ' W l  =  - • B[ E { t » , . 0 ) ;! ^ ]  =  E / o i 4 w
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Again,

n  1 n rrii

=  1 1 -■ viM fV*
i= 1 ' i = l  t / i= l

~ , n  m-i yi 1

-  t^ E E E
Vi

rrti—yi

E (1 _ ̂ )(1 _ ̂ ) + (r _!)/»»•
Using these results we obtain

7// _  (1 ~  0) P ( V i > r )  \-A P { y i  <  rrii — r )  — f d

"  ”  1 + 'y t f  ̂  W 1 -  0  +  (r -  1 w  ^  -  ^X1 -  0  +  (»■ -  w 2

and

in _  _____ ~1 f /' -  ~  ^  V" V ' ______ >  r)
*  0 ( i - < A ) ( i + 7 ) t r / ”' ” (' ) ^ ( i + 7 ) t r ^ w i - 0 ) + ( r - i w

(1 - t t )(1 ~  0 ) y  y  P(2/i <  rrii — r )  — / oi
<M1 +  7 ) ^  ^ { ( i - * ■ ) ( ! - 0 ) +  ( r - 1 )0 }2-

E(—E) is more easily obtained by defining c = ,  ̂and using the fact that =
00  ̂ 0  002

02L. ,0c,2 3L 32c, . 32L. . . 1 — 0  __TTA'̂ rr) + w—(t-w), where, m —4, c is replaced by —-—. Then, proceeding in 
o c z oq> o c  o<pz a c z 0

the mannar in which l"^ and 1"^ were obtained, it can be shown that
_ n  — r)2 I

_  1 Y [tt2 V  -  r)_____
02(f +  7) ~ f  “  M 1 -  0) +  (r -  1)0}2

+  f l -  I2 Y  P ( ^  < m j - r ) -  foi
“ J {(! -  tX 1 -  4>) + (r -  1)0}2
mi  ̂ 2 H

^  ~~ /0i) S  {1 — 0 +  (r — 1)0}2  ̂ “  0(1 +  7 )2 fo i lo i^ -
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Using these results on the right hand side of the expressions for / T7r, 

simplification we obtain

J _  p f  d2l , _  ('y ^  /o*)/ô Oi(7r7r) — 7/oi(^)i(7r)) ,
W  h  ( l + 7 ) ( 7  +  / « )  " h

J _  T?(  1  _  f 0 i ) f 0 i 0̂i(TT(j)) 'yfodoi(ir)^Qi(<p)  , , / /

^  ( 1  +  7 ) ( 7  +  /o i )  +  ' ”

r _  Elf ^  1 _  rV ^  ^  /o i)/o i^°i(^) i f o S o i ^ ) )  | ?// 1

( l  +  7 ) ( 7  +  / o 0  +  * }>

r -  F r d i 1 iW 1
^  5 ^ 7  1 +  7 “ ' 7 +  /oi

<92/ , 1 ^  r foiloi(ir)
b.

jr -  p r  1 _  1 Y ^ r - ^ W ) - !

/  =  P f  ^  -j _  Y ^ r  1_______ I_____________1___________ 1

1 ^72> (1 +  7 )2 (1 +  7)(7  +  / o0 ) -

etc, after
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Appendix C: The expected Fisher information ma­
trix of zero-inflated bivariate Poisson regression model

Consider the log-likelihood I in equation (7.4.1). For j  =  1 i — 1,..., /c,

define the following quantities.

Aij* — yuj — (1 — #oi)(Aii + Aoi),

A . =  y u j  — (1  — 0o i ) ( \ 2i j  +  Aoi ) ,

4 3) = (i -  eQl)
f z i y i i j i  V2ij\ ®■ Aqit Ah, X‘2ij)

A-(4) Jyuj,y2ij (0 , 0)
V - 1,

f z i y i i j i  V2ij\  Aoi, A n ,  A2ij)

1 , if (yuj, y2ij) =  (0 , 0 ),
where Syuj,y2ij(0,0) =  <

0, otherwise,

Now write Ay — {A \]\ A -f , A w \ A f h ' . Further, for i = 1, ...k, j  = 1,..., rq , let

Ca =

(
0  0

1

Ah

0

0

1

1

Aoi
Ah
Aoi

A2 ij A2 ij

0 0

\
@0i 

@0i

0oi 

1
l - 0 Oi /
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be a 4 x 4 matrix. Now, let be the s th  row of the m atrix Ctj , s =  1, 2, 3,4.

Then, the first derivatives of I with respect to  the param eters A0i, A^, 80i, i — 

1 , k, and 7  are given by

dl
dXoi

dl
d \u

dl

=  £ d , % .
j = 1 

rii

=  + e x p
3=1

Oi

and

d'y

t=i

k rii 

i = l  j = l

a;.y

To find the expected Fisher information m atrix we need to evaluate expected values 

of the second mixed partial derivatives, which can be expressed in term s of the prod­

uct of the first derivatives as E  

dl
E

(r)(rA&yJ \&r , e
dl2

d-ydXu

\d^f J  \ d X u ^

Now, it can be seen th a t E (A ij) — 0, E {A ijA!i,-,) =  0, if i 7  ̂ i' or j  7̂  j '.  Denote

E (A ijA'ij) by Vij, which is a 4 x 4 symmetric matrix. It can be shown th a t

Vij( 1 , 1 )  =  (1 — 60 i ) (Xu  +  Aoj)[l +  8oi(Xu +  Aoi)],

Vij{ 1 , 2) =  (1 — doi)[Aoi +  #o(Ai; +  Aoi)(A2ij +  Ao;)] ,

Vij( 1, 3 )  =  (1 — ft),) +  ft ) i( l  ~  6oi)(X2ij +  Aoi),

Vij ( l ,A)  — — (1 — ft)i)(Alj +  Aoi),

Vij(2, 2) =  (1 — 0oi)(X2ij +  Aoi)[l +  0oi(Xu +  Ao*)],

Vij (2, 3) =  (1 — ft)j) +  ft}i(l — ft)i)(^2ij +  Aoi),

Vij( 2 ,4) =  —(1 — 0oi)(X2ij +  Aoi),
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Vi j (3 , 3) =  ( l - d 0i )Qi j -  ( l - e 0i)2,

-U _   Y^oo Y ^°° f 2 (y  1 ~  ~  lj Apj,  A n ,  -^2ij)
j  ~  ^ 1=1 ^ 2=1 /a(yi, V 2 \ Aoi, Ah , X2ij) ’ 

U,(3,4) =  - ( l - 0 Oi), 

,4 v =  (1 -  floi)[l -  exp(—A n  -  X2ij -  A 0 i)]

J i +  (1 — @oi) exp(—An — X2ij — Aoj) ’
Now, partition the (4k + p — 1) x (4A; +  p  — 1) expected Fisher information m atrix

I  as

Z77 TyAl Z7 A0 Ty0o

V
7 A1 -0\iAj ■̂AiAo Zaj ô

V
7 A0

VAi A0 A qXo I\o&o

V
7^0

T'Ai#0 OO Ie0eo

1 =

Now, we obtain the elements of the partitioned matrices Z77, / 7Ai, •••, etc. Using the 

above results we obtain the (k + p — I) x  (k + p — 1) m atrix / 77 as

b , = It. Y ^ A f i ' S ' v l j c f } x l j ^ j .
Note th a t each of the matrices I1\ l , Z7a0 and Lto(i is of dimension (k + p — I) x  k. 

Now let lyA o(i) and / 7e0(i) be the ith. column, i —  1, k, of the matrices Z7a 15

Z7a0 and Z70o respectively. Then it can be shown tha t

Aai 00 =  E "iiA 2y[C'̂ 2VijĈ 3) +exp(x'ijj ) c £ )VijCijy}xij,

u w = e ?=i A2
,(4)'!
'*7

Further, note each of the matrices ZAlAj Ie0e0, h 0\ 0, AiA0, h ^ o  and h 0e0 is a 

k  x  k diagonal matrix. Now let Z a ^ M ) ,  Ie0e0(i,i), h 0a0(M ) , JaiAo(M)> 

and I \Qe0(i,i)  be the (*, i) th  element, i =  1, of the matrices Ie0e0, I \ 0\ 0, Z a ^  

Za10o and Za06>0 respectively. Then it can be shown th a t
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h ,x A i ,  i) =  E J i i lC f  KJC f% 2exp(4 .7)C ^ K jC f+ e x p (247)4 3V iJC f']  

W t f l  =  E " i i [ c ? V « c < f > ' ] ,

W m ) =  £ ”i i [ c ? V ,3c f  1,

= E"ii[C«)'/«C'i,2) + e x P ( x ' » l ) C i j ) v i i G i j } ]>

=  T ," U lC i j )v <ic i ?  ] respectively.

This completes evaluation of the elements of the m atrix I.
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