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Abstract

This thesis consists of two parts, refereed as Part I and Part II.

Part I: Testing homogeneity of several location-scale populations.

The widely used method for testing homogeneity of several normal populations
is to test the equality of means based on the assumption that the variances among
different groups are same. But in practice, we often get data which are different not
only in means but also in variances.

Singh (1986) tests the homogeneity of several normal populations simultaneously
regarding commonality of means and variances based on a method by Fisher (1950).
However, this problem arises not only in normal populations but also in other popu-
lations. In this thesis, I extend Fisher’s method to location-scale models in general.
The location-scale models encompass all two parameter mean-variance models, such
as the normal, negative binomial and beta-binomial models. Two test statistics are
developed, one of which is based on the combination of two likelihood ratio statistics
and the other is based on the combination of two score test statistics. Theoretical
and empirical properties of these procedures are studied and applied to real life data
analysis problems.

Part II: Analysis of paired count data with zero-inflation and over-dispersion.

Data in the form of paired counts (pre-treatment and post-treatment counts) arise
in many fields such as biomedical, toxicology, epidemiology and so on. Poisson and
binomial models are the most widely used models for these data. Frequently encoun-

tered problems in these data are the presence of extra-zeros and extra-dispersion and,

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the possible correlation between the pre-treatment and post-treatment count.

In this thesis I developed methods of analysis for two different sets of paired
count data, one of the data set is obtained from an experiment on premature ven-
tricular contractions (PVC)(Berry, 1987) and the other set is a dental epidemiology
data representing decayed, missing and filled teeth (DMFT) index ( Béhning, Di-
etz, Schlattmann, Mendonca and Kirchner, 1999). I, then, study properties of these

methods and anslyse the PVC data and the DMFT index data.
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Chapter 1

Introduction

When data are obtained from several different groups in an experiment, a very com-
mon statistical inference problem is to test if these data come from the same popu-
lation. This problem can arise in many different areas. For example, a corn field is
divided into several parts, each part is treated with a different fertiliser to see if these
fetilisers have different effects; a teacher practices different teaching methods on dif-
ferent groups of students in her class to see if these methods yield different results; a
doctor treats patients with different medicines to see if the treatment effect is same or
not and so on. When we test this problem, the Fisher analysis of variance technique
is widely used, by which we test the equality of means based on the assumption that
the variances among different groups are same.

Hovewer, in practice, we often get data which are different not only in means but
also in variances. Snedecor and Cochran (1967, pp 324) observed that an application
of different treatments to otherwise homogeneous experimental units often results

in groups that are different not only in means but also in variances. Thus, testing
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Chapter 1. Introduction 2

homogeneity of several populations in terms of means and variances is of considerable
interest. The usual practice for testing homogeneity of several populations in terms
of means and variances is first to test for the equality of variances and once this
assumption is found to be tenable then to test the equality of means. Fisher (1950)
suggested combining several independent tests. We quote (Fisher, 1950, pp 99)

“When a number of quite independent tests of significance have been made, it
sometimes happens that although few or none can be claimed individually as signif-
icant, yet the aggregate gives an impression that the probabilities are on the whole
lower than would often have been obtained by chance. It is sometimes desired, taking
account only of these probabilities, and not of the detailed composition of the data
from which they are derived, which may be of very different kinds, to obtain a single
test of the significance of the aggregate, based on the product of the probabilities
individually observed.”

Assume that we wish to test a null hypothesis Hy : 8 € O, where Oy is a subset
of a parameter space ©. Suppose we have available p independent tests for testing
Hy. We wish to combine these p tests into an overall test for Hy. Several methods
of combining independent tests, including a method by Fisher (1950), are available.
None of these procedures are uniformly most powerful. However, Littell and Folks
(1971) have compared Fisher’s method with three other well-known methods via exact
Bahadur relative efficiency, and have found that Fisher’s method is always at least
as efficient as the other three methods and Littell and Folks (1973) have shown that
Fisher’s method is the most efficient.

Singh (1986) uses Fisher’s method for testing simultaneously the equality of means
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Chapter 1. Introduction 3

and the equality of variances of several normal populations. Singh uses a test statistic
which is the combination of two independent likelihood ratio statistics. However, this
problem arises not only in normal populations but also in other populations such
as an over-dispersed Poisson model, namely the negative binomial model and an
over-dispersed binomial model, namely the beta-binomial model. Both models are
widely used for count data with over-dispersion in many fields such as public health,
toxicology, epidemiology, sociology, psychology, engineering, agriculture and so on.
Also, this problem arises in many widely used lifetime models, such as, the Weibull
or extreme-value models.

In this thesis, we extend Fisher’s method to location-scale models in general.
Two test statistics are developed, one of which is based on the combination of two
likelihood ratio statistics and the other is based on the combination of two score
test statistics. Under the general location-scale setup asymptotic independence is
established for the two likelihood ratio statistics as well as for the two score test
statistics. Then, by applying the general results, we obtain specific test statistics for
testing homogeneity of several normal (u, o) populations, several negative binomial
(m, ¢) populations, several beta-binomial (7, ¢) populations and several Weibull (¢,
¢) populations . In the normal case exact independence of the two likelihood ratio
statistics is shown by Singh (1986). In this thesis, we show exact independence of the
two score test statistics. In all four cases simulations are conducted to compare the
two procedures. We conclude that Fisher’s method of combining two statistics, even
when they are only asymptotically independent, does, in general, perform well for

testing homogeneity of several populations in terms of the means and the variances.
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Chapter 1. Introduction 4

However, the score test statistics have simple forms, are easy to calculate, and have
uniformly good level properties. Therefore Fisher’s method based on combining two
score test statistics might be the method of choice.

Another problem considered in this thesis is the analysis of data in the form of
paired counts. Data in the form of counts arise in many fields such as biomedical,
toxicology, epidemiology and so on. Poisson and binomial models are most widely
used models for count data. However, a Poisson model and a binomial model may not
fit count data well. Frequently encountered problems in these data are the presence of
more zeros than what can be expected and the presence of over-dispersion, which lead
to a failure of the variance-mean relation of a Poisson model and a binomial model.
In practice, the paired counts data are obtained before and after an experiment and
the extra zeros may occur in different ways. For example, the data on premature
ventricular contractions (PVC), given as paired counts by Berry (1987) for before
and after drug administration, only have extra zeros after the drug administration,
while the DMFT index data (Bohning et al., 1999), which have the form of (DMFT1,
DMFT2) as paired count data for pre-treatment and after-treatment, have extra
zeros, in most situations, as the common pair of (0, 0). In this thesis, we develop two
different procedures to analyse data in the form of paired counts with zero-inflation
and over-dispersion.

The data on premature ventricular contractions (PVC), originally given as counts
by Berry (1987), are analysed by Farewell and Sprott (1988) as proportions. Condi-
tional on the total count before and after drug administration, a binomial distribution

is introduced. However, a binomial model may fail to fit a set of data in the form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction 5

of proportions either because of the presence of zero-inflation (Farewell and Sprott,
1988) or because of the presence of over-dispersion (Deng and Paul, 2000). In this
study, we use a zero-inflated beta-binomial model to develop procedures for testing for
treatment effect. Based on this model, we can analyse the treatment effect through
two parameters, namely, the zero-inflation parameter and the proportion parame-
ter. Note that the zero-inflation parameter represents the proportion of cure and the
proportion parameter represents the effect of the treatment on the uncured popula-
tion. Therefore to determine treatment effect we can (i) estimate the zero-inflation
parameter, the proportion of cure, and test whether the uncured population had any
improvement of their prevailing condition as a result of the treatment or (ii) test the
overall effect of the treatment. Results of a small simulation experiment, to study
small sample behavior of a score test and a likelihood ratio test, are reported and the
PVC data are analysed.

In biomedical and dental epidemiological experiments, data arise in the form of
pre-treatment and post-treatment counts. The DMFT data, a dental epidemiology
data set, are presented by (Bohning et al., 1999) for a prospective study of caries
prevention of school-children from an urban area of Belo Horizonte (Brazil). To
study treatment effects, Bohning et al. (1999) use a zero-inflated Poisson regression
model (ZIPR) with the log function as the link and the pre-treatment count as the one
of the covariates to delete the baseline effect. We introduce a zero-inflated bivariate
Poisson regression model (ZIBPR) with a log-linear link for the ratio of the two mean
parameters of the bivariate Poisson distribution and jointly model pre-treatment and

post-treatment counts. We develop the EM-algorithm (Dempster et al., 1977) to
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Chapter 1. Introduction 6

obtain the maximum likelihood estimates of the parameters of the ZIBPR model.
Further, we obtain exact the Fisher information matrix of the parameters of the
ZIBPR model and develop a procedure for testing treatment effects of the method. A
model selection procedure is used to decide on an appropriate model. For the DMFT
index data, based on the model selected, we arrive at a ranking of the treatment
effects which coincides with that from a simple analysis of treatment effects.

This thesis consists of two parts. Part I, including Chapter 3, Chapter 4 and
Chapter 5, developes procedures for testing homogeneity of several location-scale
populations in general. We compare our precedure with the procedure proposed by
Singh (1986) for the normal case and apply the general method to several non-normal
cases. Part II, including Chapter 6 and Chapter 7, analyses the treatment effects of
paired count data with zero-inflation and over-dispersion. We develop two procedures,
one of which is illustrated by the PVC data (Berry, 1987) and the other is illustrated
by the DMFT data (Bohning et al., 1999).

In Chapter 2, we review some basic concepts and large sample hypothesis testing
procedures such as the likelihood ratio test and the C(a) test. We also give review
Fisher’s method for combining several independent test statistics, the EM-algorithm
and orthogonal transformations for parameters.

In Chapter 3, we extend Fisher’s method to location-scale models in general. Two
test statistics are developed, one of which is based on the combination of two likelihood
ratio statistics and the other is based on the combination of two score test statistics.
Under the general location-scale setup, asymptotic independence is established for

the two likelihood ratio statistics as well as for the two score test statistics.
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Chapter 1. Introduction 7

In Chapter 4, we use the general result of Chapter 3 to test the homogeneity of
several normal populations based on combining the score test statistics and compare
our method with the procedure proposed by Singh (1986). In the normal case, exact
independence of the two likelihood ratio statistics is shown by Singh (1986). In Chap-
ter 4, we show exact independence of the two score test statistics. Some simulations
are conducted to compare the two procedures.

In Chapter 5, by applying the general results, we obtain two procedures for testing
homogeneity of some non-normal populations. Here we consider two over-dispersed
discrete models, namely the negative binomial model and the beta-binomial model.
We also consider a widely used lifetime model, namely the Weibull or extreme-value
model. In all three cases, simulations are conducted to compare the two procedures.

In Chapter 6, we develop score tests to test for treatment effect in the PVC
data based on a zero-inflated beta-binomial model. Results of a small simulation
experiment, to study small sample behavior of a score test and a likelihood ratio test,
are reported and the PVC data are analysed.

In Chapter 7, a zero-inflated bivariate Poisson model is proposed to analyse the
DMFT index data. We develop an EM-algorithm to obtain the maximum likelihood
estimates and a procedure for testing treatment effects based on a zero-inflated bi-
variate Poisson regression model. We illustrate our procedures by the DMFT index
data of Bohning et al. (1999).

In Chapter 8, a summary of this thesis and some discussions of future research

are given.
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Chapter 2

Some Preliminaries and Review

2.1 /n consistent estimators

Let 6,,mn = 1,2, ..., be a sequence of estimators of 0. If the quantity lén — 0]=0(n*/?)
in probability as n — oo, then the estimator 0, is called a \/n consistent estimator
of 6.

V1 consistent estimators were first suggested by Neyman (1959) for constructing
the C(a) test. Also noted by Moran (1970).

If 6, is a sequence of maximum likelihood estimates of 6, then by the asymp-
totic properties of maximum likelihood estimators, it can be showed that maximum

likelihood estimator is 1/n consistent.

2.2 Likelihood ratio test

Suppose X1, Xs, ..., X, be a random sample of size n from the population of X, which

has a distribution function f(X,)\), where A = (8, ¢)" with
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Chapter 2. Some Preliminaries and Review 9

0 = (01,05,...,6,) and ¢ = (¢1, 2, ..., bs) -

Then the likelihood can be given as L(Xi, X5, ..., Xy, A). It is of interest to test
the null hypothesis Hy : 0 = 6y = (010,62, -..,050)" against H; : 6 # 6y treating
¢ = (¢1, b2, ..., $s) as the nuisance parameter.

The likelihood ratio for testing Hy is defined as

~

L(Xl,X2; ---,Xm 90) ¢)

N L(Xl,Xz, ---,Xn79~07($)‘

Let log refer to the base e logarithm. Then, the log-likelihood ratio statistic is

given by
LR=-2 lOgA = 2(l1 — lo),

where lo = log L(X1, X3, ..., Xn, 60, ¢) is the maximized log-likelihood under Hy with ¢
as the maximum likelihood estimate of ¢ under Hy and I; = log L(X1, Xa, ..., Xn, 0, )
is the maximized log-likelihood under the alternative hypothesis with 8o and ¢ as the
maximum likelihood estimates of § and ¢ under H; respectively. Under the null
hypothesis Hy, for a large n, the statistic LR is distributed approximately as a chi-

square with p degrees of freedom.

2.3 Score test

Let I = I(6, ¢;y) be the log-likelihood for data y = (y1, ..., ) With parameters 6 =
(6,...,6,) and ¢ = (é1,...,¢s), where 0 is the parameter of interest and ¢ is the
nuisance parameter. Suppose we wish to test

Hy : 6 = 6y against Hy : 0 # 6y,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Some Preliminaries and Review 10

Further, let
- ol [al az]’
00)p_g, L0017 06p] |gug,’
S
a¢ o=t _a¢17..-,a¢s 9:607
0%l
Ipp=FE| —g—— :
( 0000 0290)
o2l
Ig¢ =F\| - R
(-5,
and
0%l
ILis=FE\| 5= .
ol [ 1. . . fici
Now, define S = i B%, where B = Ipyl; is the partial regression coeflicient
matrix obtained by regressing —g—é— on g—; The dispersion matrix of S is

[99-¢ = Ige - Ig¢I‘;¢II¢9.
Then, it can be shown (Neyman, 1959) that asymptotically, as n — oo
-1 2
If = (¢1,...,0s)" in S and Iy, is replaced by some \/n-consistent estimator

¢= (d;l, s és)', then, asymptotically, as n — oo,
SF—1 & 2
S'Tgg.65 ~ Xy

where S and jgo.d, are obtained by replacing ¢ by ¢ in S and Igg.4. This is Ney-
man’s C(a) test. Further, let é be the maximum likelihood estimate of ¢ under

Hy, and 1& and f99.¢ be the estimate values obtained by replacing ¢ by ¢? in ¥ and
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Chapter 2. Some Preliminaries and Review 11

Iy0.4 respectively, then S reduced to 1. The C(a) statistic then reduces to g fe‘,fqgﬁ.
Asymptotically, as n — oo, 1/3’1:,;,?4,7,[3 ~ X%p)- This is Rao’s score test (Rao, 1947).
The score test is a special case of the more general C(a) test in which the nui-
sance parameters are replaced by maximum likelihood estimates. The score test is
particularly appealing as it requires estimates of the parameters only under the null
hypothesis, and often produces a statistic which is simple to calculate. For more dis-

cussion on the choice of C(a) or score tests see Breslow (1990) and Paul and Banerjee

(1998).

2.4 Fisher’s method of combining independent tests

Assume that we wish to test a null hypothesis Hy : 8 € Og, where Oy is a subset of
a parameter space ©. Suppose we have available p independent tests for testing Hp.
We wish to combine these p tests into an overall test for Hy.

Let T ... T® be p independent sequences of test statistics for testing Hy. We
wish to combine 7, ... T® into an overall statistic 7,,. Then, Fisher’s method
of combining the independent tests 7", - -- , T®) is given by T\ = —2log 1,29,
where L = 1 — FO (T®) and FO(t) = R{T® < ¢} is the null cumulative dis-
tribution function of T®. Then L®, i = 1,2, ..., p, are independently and uniformly
distributed over (0, 1) for § € ©y. Further, for § € O, the quantity —2log L®
has a chi-square distribution with 2 degrees of freedom, and hence, the quantity
T = —21og [[, L®= —25",log LY has a chi-square distribution with 2p degree of

)

freedom under Hy. A large value of T indicates evidence against the null hypoth-

esis.
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Chapter 2. Some Preliminaries and Review 12

Several methods of combining independent tests, including a method by Fisher
(1950), are available. None of these procedures are uniformly most powerful. How-
ever, Littell and Folks (1971) have compared Fisher’s method with three other well-
known methods via exact Bahadur relative efficiency, and have found that Fisher’s
method is always at least as efficient as the other three methods and Littell and Folks

(1973) have shown that Fisher’s method is the most efficient.

2.5 Orthogonal parameter and orthogonal transformation

Let | = I(6, ¢;y) be the log-likelihood for data y = (v, ..., yn) with parameters 6 =

(61,...,0,) € © and ¢ = (o1, ..., ¢s)" € D, where 0 is the parameter of interest and ¢

is the nuisance parameter, and © and ® are the corresponding parameter spaces.
Orthogonality is defined with respect to the expected Fisher information matrix.

We define 8 to be orthogonal to ¢ if the elements of the information matrix satisfy

. ol al ol?
egn, = B (‘aﬁ&ﬂ = (‘aekla%) =0

for ky =1,...,pand ks = 1,...,s. If this holds for all # € © and all ¢ € ®, then 6 and
¢ are globally orthogonal.

Under global orthogonality, the scores ol and oL are uncorrelated and E o

— and — ar Nncorr n - =
& gonatly, 50 2 3¢ e 5094

As noted in Cox and Reid (1987), it is not in general possible to find an orthogonal
parameter. Cox and Reid (1987) give a special case in which a scalar parameter 1 is
orthogonal to the other parameters A, Aq, ..., As.

Suppose (¥, @1, @2, ..., ds) is the original parameter for which log-likelihood func-
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Chapter 2. Some Preliminaries and Review 13

tion is (1, @) = L(, 1, @2, ..., ds). Further, suppose that we have the transformation

¢1 = ¢1(’(/})>‘)7 ¢2 = ¢2(¢7A)7 ---7¢s = ¢s(¢7)‘))

where XA = (A1, Ao, ..., A,
The dependence of ¢ on 1 and A can be determined by the following partial

differential equations

—~ Oy, .
Z Z¢k1¢k28_,wl = _1’1/’¢k27k2 = 17 ey 8, (21)

k1=1

) ol dl . ol 0l
where Uy bry = E <3¢k1 ————8¢k2> and Uy = E <—5’9—[;8¢k2>.

According to the theorem of Frobenius in differential geometry (Boothby, 1975,

page 159), the equations in (2.1) have a general solution. A special case of this trans-
formation occurs if we have only one scale parameter ¢ and one location parameter
¢. So we have the transformation (¢, ¢) = (¢, ¢(1, \)), such that ¢ and A are orthog-
onal to each other. We can get this transformation through the partial differential

equation

2.6 Bivariate Poisson distribution

Suppose that variables Z;,7 = 0, 1,2 are independent Poisson random variables with
parameters Ag, A; and A, respectively. Let
X=Z0+Z1 andY=Z0+Z2,

then (X,Y) is distributed as bivariate Poisson distribution with the probability func-
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tion

min{z,y} )\glc_i)\g—i)\é
PT‘(X =z,Y = y) = exp(—)q — A — )‘0) Z (1; — i)l(y — i)"i"
p ! 12!

and we have E(X) = A; + A, E(Y) = Aa + A and Cov(X,Y) = Aq.
More details of the bivariate Poisson distribution can be found in Holgate, (1964);
Irwin, (1963); Paul and Ho, (1989); Kocherlakota and Kocherlakota, (1992), and

Karilis and Ntzoufras, (1998).

2.7 EM algorithm

The EM-algorithm is a general iterative method to obtain maximum likelihood esti-
mates in incomplete data situations. It was first proposed by Hartley (1958) and was
generalized by Dempster, Laird and Rubin (1977). Let y € R™ denote a vector of
observed data and z € R™ a vector of unobservable data. Then the complete data are
given by (y, z). Furthermore, let f(y, z;8) denote the joint density of the complete
data depending on an unknown parameter vector 6.

Then the maximum likelihood estimate of § can be obtained iteratively by the
EM-algorithm using an E-step and an M-step. If 6 denotes a starting value for
g, the (p + 1)th cycle of the EM-algorithm consists of the following two steps for
p=0,1,..

E(xpectation)-step:
Compute the expectation M(8|6®),
where M (6]6®) = Ellog f(y, z;0)|y; 6®)] = [log[f(y, z 0)]k(2ly; 6®))dz .

Here k(z|y; 6®)) is the conditional density of the unobservable data z, given the ob-
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served data y and the value §®, which is the estimate of § in the pth cycle.
M (aximizing)-step:
Determine §®+1) by maximizing M (8|0®)) with respect to 6.

The iterations are stopped according to a termination criterion, e.g., if

10) — gP+1)] /16®)| < ¢ is satisfied.
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Part 1

Testing Homogeneity of Several
Location-Scale Populations
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Chapter 3

Tests of Homogeneity of Several Location-scale

Populations : The General Results

3.1 Introduction

The widely used Fisher analysis of variance technique tests the equality of means
based on the assumption that the variances among different groups are homogeneous.
But in practice, we often get data which are different not only in means but also in
variances. Snedecor and Cochran (1967, p 324) observe that an application of different
treatments to otherwise homogeneous experimental units often results in groups that
are different not only in means but also in variances. Thus, testing homogeneity of
several populations in terms of means and variances is of considerable interest. The
usual practice for testing homogeneity of several populations in terms of means and
variances is first to test for the equality of variances and once this assumption is found
to be tenable, the equality of means is tested.

For testing simultaneously the equality of means and the equality of variances of

17
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Chapter 3. The General Results 18

several normal (i, 02) populations, Singh (1986) uses a test statistic based on the
combination of two independent likelihood ratio statistics. Singh’s procedure is based
on a method by Fisher (1950) for combining two or more independent test statistics
to test a general hypothesis.

The purpose of this chapter is to extend Fisher’s method to location-scale models
in general. Two test statistics are developed, one of which is based on the combination
of two likelihood ratio statistics and the other is based on the combination of two score
test statistics. Under the general location-scale setup, asymptotic independence is
established for the two log-likelihood ratio statistics as well as for the two score test
statistics.

In Section 3.2, we extend Singh’s procedure for the likelihood ratio procedure
to the general location-scale model and show asymptotic independence. In Section
3.3, we derive the score test statistics. Fisher’s procedure for combining two score
statistics and the asymptotic independence of the two score statistics are given in

Section 3.4. A conclusion is given in Section 3.5.

3.2 Fisher’s procedure for combining two log-likelihood ra-

tio test statistics and their asymptotic independence

Consider a location-scale family of distributions f(z,v,¢), where 1 is the location
parameter and ¢ is the scale parameter. Suppose we obtain data z;1, Zi, ..., Tin, from

the ith, i = 1, ..., k, population with parameters 1; and ¢;. Then, the log-likelihood
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can be written as

k n;
= L wherel;=Y log f(zij, i ¢:),i=1,..,k
=1

7=1
Now, let ¥ = (¢, ..., %), ® = (¢1,...,¢x)". Define the parameter spaces

© = {(¥,®) | ¢; and ¢;,7 = 1,...,k are unspecified },

B ={(T,®) | Y, =9,¢; = ¢,i =1,...,k, where ¢ and ¢ are unspecified },

B, ={(¥,0) | ¢ = ¢,i=1,...k, where ¥ and ¢ are unspecified }.

Suppose we wish to test

Hy: oy, =1,¢; = ¢,a=1,...,k, where ¢ and ¢ are unspecified against H; : at
least two 1’s or two ¢’s are not same.

Then the test by Fisher’s method is the combination of two independent tests
corresponding to the following hypotheses:

Hi: ¢ =,6; = ¢,i=1,...,k, where ¢ and ¢ are unspecified against Hj: at

least two v’s are not same and ¢; = ¢,7 = 1,... k, where ¢ are unspecified.

and

Hy: ¢;i=¢,i=1,...,k, where A are unspecified against Hy: at least two ¢'s are
not same.

Let LR be the log-likelihood ratio statistic for testing Hy against H;. Similarly,
let LRy and LR; be the log-likelihood ratio statistics for testing H| against H] and
H] against H{ respectively. Further, let lo, 1,15 denote the estimated values of log-
likelihood function under Gy, ©; and O respectively. Then, the log-likelihood ratio
statistics for testing Hy against Hy, Hj against H; and H{ against H; are

LR = 2(l — b),

LRy = 2(h — bo)
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and

LRy = 2(ly — 1)

respectively.

Now, LR = 2(l; — lAO) = LRy + LR,. Asymptotically, as n; — oo0,i = 1,--- ,k,
LR~ X%(k—l) under ©g, LR; ~ x2_, under ©9 and LRy ~ x2_, under ©;.

Since the parameter space ©; D Oy, we can conclude that all of the above as-
ymptotic results also hold under 8¢ and by using the Cochran’s Theorem (Cochran,
1934), the two statistics LR; and LR, are asymptotically independent.

Let Ly(t;) = Pr(LRy > t; | H}) and La(ts) = Pr(LRy > to | HY). Further, let
M be the test statistic of Fisher’s procedure for combining two log-likelihood ratio
test statistics.

Since LR, and LR, are asymptotically independently distributed, then, following

Fisher’s method,
M1 = -2 IOg[Ll(LRl)LQ(LRQ)]

is approximately distributed as x2. Thus, we reject Hy in favor of Hy, if M) > x3(«),

where x2(a) is the 100a% point of the x? distribution with 4 degrees of freedom.

3.3 The derivations of the score test statistics S; and S,

As in Section 3.2, to develop Fisher’s procedure for combining two score test statistics,
we need to obtain the test statistic S; for testing hypothesis H{ against Hj and the test
statistic Sy for testing hypothesis H{ against H;. However, the score test statistics

S; and S may not be independent or asymptotically independent in general. To
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obtain score test statistics S; and S, which are asymptotcally independent in general,
we need to transform the parameters (14, ¢;), ¢ = 1,...,k, into a set of orthogonal
parameters (¢;, A;), 1 = 1,...,k (Cox and Reid, 1987, p3). Let (¢i, ¢ = ¢i(¥i, Mi)),

i =1,...,k , be such transformations which satisfy

: . O .
Z¢i¢i+7’¢i¢iaj;_ =0,i=1,...,k, (31)

27 27,
where i¢i¢i =F <-— 82&1921)) and ’i¢i¢i =F (—%) .

Then the hypotheses given above can be expressed in terms of the orthogonal

parameters as

Hy: =19, A\ =XNi=1... k where ¢ and ) are unspecified against H; : at
least two 1’s or two A’s are not same.

Then the test by Fisher’s method is the combination of two independent tests
corresponding to the following hypotheses:

Hy: oy =, A = A0 =1,...,k, where ¢ and A are unspecified against Hj: at

least two 1’s are not same and \; = \,i = 1,...,k, where A are unspecified.

and

H{: \;=\,i=1,...,k, where X are unspecified against H7: at least two \’s are
not same.
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3.3.1 The derivation of score test statistic S; for testing H
vs Hj

We now derive the score test statistic S; for testing H| against Hi. For convenience

we write the log-likelihood in terms of the orthogonal parameters as

k T
I" =) 17, where,lf =Y log f(zij, v, $i(1, M), i = 1,.., k.
i=1

i=1

Reparameterize 9;,7 = 1, ..., k, under Hj, by 9; = ¢ + o; with ag. = 0.
Let
o = (aq,...,a5-1) and Wi = (Y, A).

Then testing Hy is equivalent to testing & = 0 with w; being treated as a nuisance

parameter.
or*
Let s; = — ,
oo, o
and
N 02l* o%l*
A=F (‘&vaa' ) G=F (‘aaawi =) bi=F (‘awawa )

If we use the maximum likelihood estimate @ of the nuisance parameter w under
the null hypothesis Hj in s1, Ay, C; and Dy, then the score test for testing Hj against
Hj is

~ A A —1 A
Sl = §1I(A1 - ClDl Cll)—lgl.
Note that A; can be simplified as

2 7% 2 7%
)2(-5al ) (ol L))
a=0 8052 a=0 8ak— 1 1la=0

Further, note that the transformatin of (11,49, ..., ¥x) to (o, ) is only a linear trans-

, o
A, = diag {E <_8 5

a7

formation. So the parameter («,®) is still orthogonal with A. Now, based on the
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orthogonality of the parameter (o, ) to A, the off-diagonal elements of the matrix
D; and all elements of the second column of the (k — 1) x 2 matrix C; are zero. We

can simplify D; and C] as

( o2
E (-aalaq?b a=0> 0

oul
El - 0

Al
E(-o— 0
( 6ak'—law a=0>
and
o2l
2 (_ 2 ) 0
Dl = 8¢ a=0 -
0 gl %"
o2 00
Note that
32l* a2l:< ‘
b <_301i3’¢1 a=0> =E (_3¢2 a=0) =1, k-1,
and
E<_ﬁ > _zk:E<_a2z; )
81/12 o=0 i=1 8¢2 a=0 ’

Then the inverse of A; — C;D7'C] is

’
a:O)

where 1_1)x1 = (1,1,---,1)".

11’

2
b ("fw

AT+
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ol oLt
Further, we have — = — ,i=1,...,k—1, and —
2 N %
Note that when we use the maximum likelihood estimate @ of the nuisance parameter
.o
wy in —

ol

obtain

ol alr

_k
—21::1%

a=0 a=0

l*
under Hy, the estimated value of —

oY

is 0. From above results, we
a=0

a=0

ol
o

ol
and £ | ——2
, ( oy

where $y; and 9y;, 4 = 1, ..., k, are the estimated values of

7
Hp

3.3.2 The derivation of score test statistic Sy for testing H{

i =1,..., k, respectively.

vs HY

For the derivation of the score test statistic Sy for testing H against H} we repa-
rameterize A;,1 = 1,...,k, by \; = A+ ; with 8, = 0. Let 5’ = (b, ..., Ok—1) and
wy = (11,v9, ..., ¥k, A) . Then testing H{ is equivalent to testing § = 0 with wy being

treated as a nuisance parameter.

E3

Further, let so = g 7

and

,3=0’

o%l* o2l* o2l*
Ay =F| — ,Co=FE| — ,Do=FE| — - .
2 < opop’ ﬂ=o> ’ ( 0B 0wy ﬂ=0> ’ ( OwrOuwy ﬁ=0>

If we use the maximum likelihood estimate @, of the nuisance parameter wy under

the null hypothesis Hy in s9, A3, Cy and D,, then the score test for testing H{ against

HY is

Sy = §2,(AA2 - égﬁg_légl)_lgg.
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Note that A; can be simplified as

o o o
El-2%| | El-%%| ) El-5m .
( 067 ﬁ=o> < 003 ;3:0) ( 85}%—1 ﬂ:o)]

Further, as in Section 3.3.1, the transformation of (A1, As, ..., Ax) to (B, ) is only a

Ay = diag

linear transformation. So the parameter (3, \) is still orthogonal with (1, s, ..., ¥k).
Now, we can obtain the off-diagonal elements of the matrix Dy and all elements of

the first k columns of the (k — 1) x (k + 1) matrix Cy are zero. D, and C; can be

)

simplified as

k
—N— el - 82l*
55,00

k
—— 821*
0---0 EI| -
C2: ( aﬁ2a>\ ﬂ=0> ’
PN Pl
0---0 EI -
( aﬁk_laALO) )
and
o
b ('a\pa\y' ﬁ_(,) 0
D2= - a2l*
0 EF| ——
(-55]..)
Note that

2 7%
o 0
ERE))

o
=E|-=2
)55

i=1,..k—1,
B8=0
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")

and

%1 i %
E <_6‘)\2 M) _;E <_a>\2

Then the inverse of Ay — CyD3 1C’§ is
11/

2 2k ’
oN |45,
where 1(-1)x1 = (1,1,---,1)".
ol ol
= = ,i=1,..,k—1 and — .
9B B=0 2 B=0 2 B=0 B8=0

Note that when we use the maximum likelihood estimate @y of the nuisance parameter

*

A+

ol ol

— k _t
- Zi:l a)\

Further, we have

*

wy In — under H{, the estimated value of — is 0. From above results, we
O | 5—g 28 P
obtain
kE a0
S2i
H=3%
i—1 2i
I¥ ol
where 89; and 0y;, 7 = 1, ..., k, are the estimated valuesof —-| and F | —— ,

it =1,..., k, respectively.

3.4 Asymptotic independence of the two score test statistics
S1 and S, and Fisher’s procedure for combining two
score test statistics

Theorem 1 Under Hy, asymptotically, as n; — 00,7 = 1, ..., k, the two statistics S

and Sy are independent.

Let S be the score test statistic for testing H, against H;. As in the proof of

the indepedence of LR; and LRy in Section 3.2, if we can prove that under Hy,
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asymptotically S = S; + S and the distributions of S, S; and Sy are Xg(k_l),xi_l
and x2_,, then by using the Cochran’s Theorem (Cochran, 1934), the asymptotically
independence of S; and S> can be established.

Proof

For this we first need to derive the score test for testing Hy against H;. Now,
reparameterize ¢; and A\;, ¢ = 1,...,k, under Hy, by ¢, = ¢ + a4,7 = 1,..., k, with
o =0and \; = A+ 6,1 =1,...,k, with 8y = 0. Then testing Hy is equivalent to
testing o = 0 and § = 0 with w = (¢, A)’ as nuisance parameters.

The score test statistic for testing H, against H; is obtained in Appendix A.l.

Now we have

S = So1 + Soz,

a2

22
k So014 k Sooi . .
where So1 = Y .4 AOMI and Spp = >, "9% with the estimated values of sq; =

Vo1 Vo2i
ol} o oL} o2l
—! v =F| —— , 802 = — d vogi=F | — = yi=1,...k,
30 | Vo1 < 5y HO) Sozi = 3 . and vop < a2 Ho) b
respectively.

Now, asymptotically, as n; — 00,4 = 1,...,k, the distributions of S, S; and S,
are Xj_1) Xa—1 and xj_, under Ho, H, and H, respectively. Note that the two null
hypotheses Hy and Hy are the same. It is then obvious that Sp; = S;. Further, S5 is
obtained by using the maximum likelihood estimates z/A)i,i =1,2,...,k and A under
H{ and Sy, is obtained by using the maximum likelihood estimates ¥ and X under
Hy. Since, under some regularity conditions, the maximum likelihood estimates are
consistent, then, asymptotically, as n; — 00,7 = 1,--- |k, under Hy, the estimates

¥ii=1,...k and ¥ all converge to ¥ and \ converges to A. Thus, S» and Sy are
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asymptotically equivalent. So asymptotically, we have

S =25+ 5.

Therefore S; and S, are asymptotically independent.

Note that if the original parameters are orthogonal then the parameters A and
® are identical, and S; and S, involve the parameters ¥ and & instead of ¥ and A.
However, in the situations where the original parameters of the distribution are not
orthogonal, we need to express the score test statistics in terms of the estimates of

the original parameters as

5y = s _ _Q{LM
BT\ 0 igg

bl
HYp=),9=4

2,
vy = (iwﬂbi - l) o
boidi /| HY p=ih p=
; ( Ol; )
2 =
ad)i H! \I’=\i/,¢=¢
and
gi = Ui HY W= ¢=¢

The details of derivations of 8;;, ¥1;, $2; and 0U; are given in Appendix A.2.
Through those expressions, we can calculate the score test statistics S; and S, without
solving the partial differential equations (3.1).

Let M; be the test statistic of Fisher’s procedure for combining two score test
statistics. Now, according to the Fisher’s method, let

Li(t1) = Pr(S1 > t1 | H)) and Lo(te) = Pr(Sy > t2 | Hy).

Then it follows that
M2 = -2 ].Og[L]_(Sl)L2(SQ)]

is approximately distributed as x?.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. The General Results 29

3.5 Conclusion

Singh (1986) develops a procedure for testing homogeneity of several normal popu-
lations based on combining two separate independent likelihood ratio test statistics
using a method proposed by Fisher (1950). We extended Fisher’s method to test
homogeneity of several location-scale populations using two likelihood ratio statistics
as well as two score test statistics. Asymptotic independence of the two likelihood

ratio statistics and also of the two score test statistics have been established.
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Chapter 4

Tests of the Homogeneity of Several Normal

Populations

4.1 Introduction

The purpose of this chapter is to use the general result of Chapter 3 to test the
homogeneity of the several normal populations based on combining the score test
statistics and to compare our procedure with the procedure proposed by Singh (1986).
Singh (1986) uses Fisher’s method for testing simultaneously the equality of means
and the equality of variances of several normal populations. For the case of several
normal populations, exact independence of the two likelihood ratio statistics is shown
by Singh (1986). In Chapter 3, we show, in general, the asymptotic independence of
the two log-likelihood ratio statistics and also of the two score test statistics.

In this chapter, we develop a procedure to test the homogeneity of the several
normal populations based on combining two score test statistics and we show exact

independence of the two score test statistics. Simulations are also conducted to

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. Homogeneity of Several Normal Populations 31

compare the procedure based on the score tests with that developed by Singh (1986).
We also include the four other large sample tests in the simulation comparison. These
are (i) the log-likelihood ratio test for simultaneously testing the equality of means
and the equality of the variances; (ii) the score test for simultaneously testing the
equality of means and the equality of the variances; (iii) the ordinary log-likelihood
ratio procedure in which we first test the equality of the variances by using a log-
likelihood ratio statistics and once this hypothesis is not rejected we test for the
equality of the means by using a log-likelihood ratio statistic; (iv) the ordinary score
test procedure in which we first test the equality of the variances by using a score
test statistic and once this hypothesis is not rejected we test for the equality of the
means by using a score test statistic.

In Section 4.2 we first review the procedure based on the likelihood ratio tests
developed by Singh (1986) for testing the equality of the means and the equality of
the variances of several normal populations, and then we develop a procedure based
on score tests. In Section 4.3, we prove exact independence of the two score test

statistics. Simulations are conducted in Section 4.4. The conclusions are given in

Section 4.5.

4.2 Homogeneity of several normal N(u,o?) populations

4.2.1 The likelihood ratio procedure

Singh (1986) applies Fisher’s method to test homogeneity of several normal popula-

tions. Let N(u;,0?2), i =1,2,...,k, denote the ith normal distribution.
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Then, testing homogeneity of the k normal populations implies testing
Hy : p; = p,0? = o2, for all i against Hy: at least two u’s or two 0?’s are unequal,
where 1 and o2 are unspecified.

To test the above hypothesis the usual practice is to test the following two hy-
potheses separately.
H{ : p; = p,0? = o2, for all i against H]: at least two u's are unequal and o2 = o2,
for all 4, where u and o2 are unspecified,

and

HY: % = 0% for all i against HJ: at least two 02’s are unequal, where o2

are
unspecified.

Let i, ..., Zin, be the sample from N(u;,0?). Further, let n = S3F n,;, % =
S wy/n, & = T nidi/n, 62 = Y0 (w02 ns, 0 = Y, S0 (35— 3)?
52 =YF nid?/n, 2 =n62/(n; — 1), s =nd/(n— k).

Then, the likelihood ratio statistic for testing H, against H; is

Zn, T, — )2}/ {(k-1) an 2}

and the log-likelihood ratio statistic for testing H, against H; is

k
V =nlogo? — Zniloga?.

i=1
Under H}, T} has an exact F(k — 1,n — k) distribution. Under Hy, V is asymptoti-
cally distributed as x?_,(«). Using a Bartlett correction, a modified likelihood ratio
statistic is

Ty = C~Yulogs® — 3% v;log s?},

where v; =n; —1,i=1,...k,v=n—kand C =1+ {3 r v —v1}/3(k - 1).
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It is well known that the Bartlett-corrected likelihood ratio statistic approximates
better to the 7 ; distribution than its uncorrected counterpart.

It can be shown that the statistics 77 and T» are independently distributed (Singh,
1986). Now, define

Li(ty) = Pr(Ty > t; | HY)

and

Ly(te) = Pr(Ty > to | HY).
Further, let NM; be the test statistic of Fisher’s procedure for combining statistics
T and T. Since T3 and T5 are independently distributed, then following Fisher’s
method (Singh, 1986)

NM=-210g[G1(T1)G2(T)]
is approximately distributed as x?(4). Thus, we reject Hp in favor of Hy, if NM; >
x3(a), where x3(«a) is the 100a% point of the x? distribution with 4 degrees of free-

dom.

4.2.2 The score test procedure

Let 1, ..., Tin, be the sample from N(u;,02), i = 1,..,k. As in section 4.2.1, the
hypothesis in which we are interested is
Hy : p; = p,0? = o, for all i against Hy: at least two u’s or two o%’s are unequal,
where u and o? are unspecified.
Then, following Singh (1986), we have two hypothesis:
2

Hy i = p,02 = o2, for all i against H}: at least two u’s are unequal and o? = o2,

for all 4, where u and o? are unspecified.
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and

HY: 0% = o2, for all i against H}: at least two o°’s are unequal, where o2 are

unspecified.

The same notations n, Z;, Z, d;>, 62 and &2 of Section 4.2.1 are used here. Then

following the general results in Chapter 3, the score test statistic for testing H| against

Hiis
S (@i — 7)?
NSl = ~3
)

and the score test statistic for testing HY against H” is
g i1, ag 1

Using the properties of the Dirichlet distribution, it can be shown that the two
statistics N.S; and NSy are exactly independent. The proof is given in Section 4.3.

Now, define

Li(t;) = Pr(NSy > t; | HY)

and

Lo(t2) = Pr(NSy > ta | HY).
Further, let N M, be the test statistic of Fisher’s procedure for combining statistics
NS; and NS,. Since NS; and NS, are independently distributed, then following
Fisher’s method

N Ma=—210g[L1(NS1)Ly(NS5)]
is approximately distributed as x%(4). Thus, we reject Hp in favor of Hi, if NMy >
x2(a), where x2(a) is the 100a% point of the x? distribution with 4 degrees of free-

dom.
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4.3 Proof of exact independence of NS; and NS,

For convenience we write N.S; and NS; as

NSy =n/(1+ = mlji - E)Q) =n/ (1 + ﬁ) , (4.3.1)
Zf=1 u
and
b n2 u2 ’ n n
NS, = ; o (m> -5 =5T2-3, (4.3.2)

where u? = > i (@i~ %;)%,4=1,2,..., k. It now suffices to prove that ST1 and ST2
are independently distributed. To prove this we use the following lemma .

Lemma (Hogg and Craig, 1995, p. 187): Let z1, 9, ..., 2x be independent random
variables, each being I'(a, 1) with

Yy = o 7i:1a27"'ak_1)
T+ Tyt o+ Tg

Yo = T1+2To+: -+ Tk
Then
(1) (y1,92, .-, Yk—1) ~ Dirichlet Distribution with parameter (as,as,- - , ),
(2) i has gamma distribution ~ D(3F, o, 1),
(3) i is independent of (y1,ya, ..., Yk—1)-

Using the above Lemma we only need to prove that each component of ST2 ,

2
namely, —l:i’-——g, 1=1,2,...,k — 1, is independent of ST1.
i=1 """

From the property of the normal distribution of the z;; ’s, we know that under

ni—l

Hy, 2u?/c? i = 1,2,...,k — 1 are distributed as I' ( ,1). Further, under Hy,
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Zle n:(Z; — z)? has distribution as o%x?(k — 1) and also it is independent with

u2,i=1,2,...,k . Now, let

2

2u? u?
i = : = : 7i=1727"'ak_17
Y 2ud + 2ud+, - -+, +2ul Zle u?

k
v = 20l 42U, H2ul = ZZuf
i=1

Then, from the property (3) of lemma and the above results we see that each of
2

U
the random quantities 3  u2 , b n;(Z; — Z)* and 5 1=12,..,k—1are
i=1 Ui
2
us
independent of each other and hence ST1=S"F  ni(z;—z)%/ S5, u? and —— are

k
Zi:l u’L2

indpendently distributed from which the independence of N'S; and NS; is established

under Hj.

4.4 Simulation

A simulation study was conducted to compare the performance, in terms of size and
power, of the statistic NM; based on the likelihood ratio statistics and the statistic
N M, based on the score test statistics for testing homogeneity of several normal pop-
ulations. In the comparison we have also included four other the log-likelihood ratio
statistics and the score test statistics, given in what follows, for simultaneously test-
ing the equality of means and the equality of variances of several normal populations.

Using the notations in Section 4.2, these procedures are

(i) the log-likelihood ratio statistic (LR)

k 52
LR = Z n; log —%
i=1

14

for simultaneously testing the equality of the means and the equality of the variances,
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(ii) the score test statistic (S)

oo i@ =2 | T nil(@ )+ 0} - o]’

for simultaneously testing the equality of the means and the equality of the variances,

(iii) the ordinary log-likelihood ratio procedure (LRO) in which we first test the
equality of the variances by using the log-likelihood ratio statistic 75 and once this
hypothesis is not rejected we test for the equality of the means using the log-likelihood
ratio statistic 77, and

(iv) the ordinary score test procedure (SO) in which we first test the equality of
the variances by using the score test N.S; and once this hypothesis is not rejected we
test for the equality of the means using the score test statistic N.S;

We have considered K=2, 3 and 4 populations, two nominal levels & = 0.05 and
o = 0.10 and equal sample sizes from each population. Results for k=3 and k=4
are similar. So, we give results for only k=2 and k=3. For calculating empirical size
we generated samples from N(0, 1) populations. For calculating empirical power we
generated samples from N(u, o%) populations for values of y and o2 given in Table
4.1 to Table 4.4. Each simulation experiment was based on 10,000 samples. Results
of the simulations are presented in Table 4.1 to Table 4.4. However, those results for
LRO and SO, in general show, either extremely conservative or liberal behavior. So,
we omitted simulation results for these procedures in the chapter.

Results in Table 4.1 to Table 4.4 show that the likelihood ratio test statistic
(LR) for simultaneously testing the equality of means and variances of several normal

populations shows liberal behavior. The corresponding score test statistic (S) shows
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conservative behavior for small sample sizes. The statistic NM; maintains level well
in all situations studied here. The statistic N M, shows some conservative behavior
for k=2 and small sample sizes. Otherwise it maintains level well. Power of both of
these statistics are similar, although the statistic NM; shows slightly better power
properties than the statistic N M for small k (k=2) and small samples, because the
later is conservative in these situations. However, for larger k, N M, has some edge

over NM;. It seems for large sample sizes that the statistic S will perform as well as

the statistics NM1 and NM,.

4.5 Conclusion

Singh (1986) developed a procedure for testing homogeneity of several normal popu-
lations based on combining two separate independent likelihood ratio test statistics
using a method proposed by Fisher (1950). We have developed procedures for testing
homogeneity of several normal populations based on combining two separate inde-
pendent score test statistics using Fisher’s method. Exact independence of the two
score test statistics have been established in the normal case. Compared with the
ordinary method to test the homogeneity of several normal distribution, we see that
Fisher’s method works well irrespective of whether we combine two likelihood ratio

test statistics or two score test statistics.
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Table 4.1: Empirical power(%) of different statistics for testing homogeneity of K = 2
populations when data are simulated from the normal distributions N(u;,0?),i=1,2
based on 10,000 simulations; o = 0.05

Sample  Test (g1, o)

size Statistic (o % o % )

(0.0,0.0) (0.0,0.32) (0.0,0.64) (0.0,1.2) (0.0,2.0) (0.0,3.0)
(1.0,1.0) (1.0,1.40) (1.0,L.75) (1.0,3.5) (1.0,4.0) (1.0, 5.0)

3 NM; 4.58 6.57 11.29 26.41 49.93 76.31
LR 10.83 13.81 21.05 43.44 67.70 87.75

N M, 3.28 4.83 9.24 21.71 45.96 74.05

S 0.91 1.46 3.26 7.86 22.38 44.03

7 NM; 5.38 8.24 16.14 42.71 71.61 92.60
LR 9.66 13.77 23.76 54.86 80.10 95.68

NM, 4.14 7.02 14.38 37.97 69.51 91.89

S 2.25 3.91 8.33 23.56 53.50 82.70

9 NM,; 5.02 9.23 20.44 56.77 85.00 98.11
LR 7.92 13.52 26.71 64.63 89.09 98.82

NM, 4.30 8.13 19.19 93.39 84.13 97.98

S 2.65 5.63 13.95 42.84 76.05 95.96

11 NM,; 5.14 10.23 24.35 66.72 91.90 99.64
LR 7.38 13.61 29.64 72.37 94.02 99.77

NM, 4.68 9.49 23.15 64.32 91.54 99.63

S 3.35 7.45 18.72 96.88 87.67 99.21

13 NM; 4.839 11.37 29.0 75.84 96.27 99.89
LR 6.71 14.40 33.94 79.70 97.21 99.93

N M, 4.45 10.67 28.31 74.21 96.24 99.89

S 3.55 8.54 24.00 68.61 94.35 99.79

15 NM; 4.93 12.73 33.84 82.91 98.12 99.96
LR 6.49 15.70 38.23 85.28 98.48 99.97

NM, 4.61 12.22 33.06 81.77 98.07 99.95

S 3.74 10.34 29.49 78.24 97.41 99.93

20 NM; 4.97 16.02 44.26 93.00 99.76 100.0
LR 6.10 18.09 47.30 93.71 99.81 100.0

N M, 4.69 15.93 43.81 92.75 99.76 100.0

S 4.09 14.02 40.60 91.02 99.64 100.0
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Table 4.2: Empirical power(%) of different statistics for testing homogeneity of K = 2
populations when data are simulated from the normal distributions N(u;, 02),i = 1,2
based on 10,000 simulations; a = 0.10

Sample  Test (1, p2)

size Statistic (o %, o %)

(0.0,0.0) (0.0,0.32) (0.0,0.64) (0.0,1.2) (0.0,2.0) (0.0,3.0)
(1.0,1.0) (1.0,1.40) (1.0,1.75) (1.0,3.5) (1.0,4.0) (1.0, 5.0)

) NM, 9.77 12.59 19.56 41.04 66.22 87.16
LR 18.23 22.58 32.01 57.68 78.46 93.68

NM, 7.95 10.78 17.91 37.57 64.62 87.14

S 4.54 6.61 12.02 25.93 50.76 76.92

7 NM; 10.74 15.28 25.86 58.09 82.65 96.58
LR 16.58 22.21 34.91 67.50 88.14 98.01

NM, 9.71 14.38 25.10 56.01 82.23 96.50

S 7.85 11.55 21.36 48.89 77.01 94.75

9 NM,; 9.94 16.85 31.60 69.82 91.97 99.30
LR 14.25 22.46 38.76 75.94 94.46 99.50

NM, 9.33 16.20 31.18 68.78 92.01 99.28

S 8.07 14.03 27.75 64.53 89.57 98.92

11 NM,; 10.35 17.66 35.90 78.34 96.30 99.88
LR 13.46 22.35 41.69 82.26 97.29 99.93

NM, 9.92 17.30 35.64 77.82 96.34 99.89

S 8.80 15.62 33.40 74.70 95.18 99.83

13 NM,; 9.91 19.46 41.89 85.34 98.36 100.0
LR 12.63 23.8 46.63 87.83 98.70 100.0

NM, 9.67 19.26 41.75 85.04 98.36 100.0

S 8.76 17.85 39.40 83.09 97.98 99.96

15 NM,; 10.19 21.41 47.13 90.00 99.16 100.0
LR 12.48 25.19 51.34 91.68 99.33 100.0

NM, 10.06 21.18 46.94 89.74 99.18 100.0

S 9.10 20.10 45.33 88.47 99.00 100.0

20 NM, 9.67 25.80 97.36 96.45 99.91 100.0
LR 11.87 28.41 60.17 96.91 99.92 100.0

Ny 9.49 25.68 97.45 96.47 99.91 100.0

S 9.38 24.66 55.68 95.84 99.88 100.0
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Table 4.3: Empirical power(%) of different statistics for testing homogeneity of K =

3 populations when data are simulated from the normal distributions N (u;, 02),i =

1,2, 3 based on 10,000 simulations; o = 0.05

Sample Test (;1,1, Ha, ,u,3)
size Statistic (0’%, 0%, (7?2,)

(0.0,0.0,0.0) (0.0,0.08,0.32) (0.0,0.32,0.64) (0.0,0.64,1.2) (0.0,1.0,2.0) (0.0,1.5,3.0
(1.0,1.0,1.0) (1.0,1.10,1.40) (1.0,1.2,1.75) (1.0,1.75,3.5) (1.0,2.0,4.0) (1.0,2.5,5.0)

3 NM; 4.98 6.29 9.45 20.89 38.66 63.42
LR 12.66 15.39 20.61 38.30 59.54 81.42

NM, 4.83 6.29 9.72 22.09 40.06 63.75

S 2.19 3.07 5.27 12.93 25.18 43.68

7 NM,; 2.06 7.30 12.67 32.83 99.25 85.36
LR 10.32 13.47 21.07 45.97 71.15 91.83

NM, 4.96 7.34 13.01 33.75 59.55 84.83

S 3.13 4.89 9.35 25.16 45.55 69.57

9 NM,; 4.92 8.11 15.92 44.77 74.87 95.02
LR 8.70 13.34 22.92 95.03 82.71 97.19

NM, 4.79 8.13 16.33 45.22 74.69 94.58

S 3.50 6.48 13.14 36.39 63.61 86.87

11 NM,; 4.99 8.93 19.13 55.84 85.48 98.54
LR 7.76 12.86 24.46 62.99 89.19 99.21

NM, 5.01 9.18 19.69 55.91 85.16 98.37

S 3.81 7.48 15.57 46.99 76.13 95.31

13 NM,; 5.11 10.12 22.78 65.23 91.93 99.59
LR 7.28 13.49 28.02 72.05 94.14 99.83

NM, 5.01 10.31 23.44 65.07 91.56 99.52

S 3.86 8.72 20.43 98.75 85.89 98.48

15 NM,; 5.04 10.82 26.04 73.91 95.56 99.86
LR 7.00 13.52 31.00 78.52 96.73 99.91

N M, 4.99 10.85 26.83 73.87 95.35 99.83

S 3.95 9.72 23.79 67.39 92.14 99.54

20 NM,; 5.14 13.49 34.95 87.11 99.23 100.0
LR 6.34 15.90 38.76 89.33 99.40 100.0

NM, 5.04 13.74 35.74 86.78 99.20 100.0

S 4.01 12.88 33.14 85.18 98.63 100.0
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Table 4.4: Empirical power(%) of different statistics for testing homogeneity of K=3
populations when data are simulated from the normal distributions N(u;,02),7 =
1,2, 3 based on 10,000 simulations; o = 0.10

Sample Test (,uh M, N3)
size Statistic (0 % ) U% O g )

(0.0,0.0,0.0) (0.0,0.08,0.32) (0.0,0.32,0.64) (0.0,0.64,1.2) (0.0,1.0,2.0) ( 0.0,1.5,3.0
(1.0,1.0,1.0) (1.0,1.10,1.40) (1.0,1.2,1.75)  (1.0,1.75,3.5) (1.0,2.0,4.0) (1.0,2.5,5.0)

3 NM,; 9.82 12.09 16.97 33.14 93.96 77.43
LR 20.94 24.19 31.41 51.83 71.40 89.13

N M, 10.12 12.61 17.95 35.21 55.59 77.86

S 6.37 8.74 12.68 26.05 43.54 63.68

7 NM,; 10.12 13.62 21.46 46.87 72.77 92.60
LR 17.31 21.82 31.53 59.16 81.47 96.18

NM; 10.07 13.96 22.19 47.98 73.24 92.30

S 7.98 11.13 18.34 39.68 62.65 83.81

9 NM, 9.89 14.89 25.69 58.83 85.00 97.87
LR 15.96 21.55 33.82 68.30 89.85 98.94

NM, 9.90 15.17 26.49 99.41 85.00 97.70

S 8.18 13.19 23.28 52.29 78.10 94.49

11 NM,; 10.07 16.16 29.82 69.03 92.21 99.46
LR 14.13 21.05 35.94 74.73 94.32 99.72

N M, 10.22 16.39 30.69 69.17 92.10 99.40

S 8.34 14.03 26.82 62.20 87.25 98.58

13 NM,; 10.11 17.50 34.36 76.97 96.00 99.86
LR 13.53 21.67 40.86 81.64 97.14 99.94

NM, 10.09 17.83 35.17 77.09 95.94 99.86

S 8.80 16.10 32.80 72.02 93.45 99.58

15 NM; 10.14 18.57 38.22 83.39 97.98 99.97
LR 12.87 22.64 43.54 86.49 98.51 99.98

NM, 10.11 19.15 39.14 83.55 97.87 99.95

S 8.73 17.42 36.68 79.61 96.52 99.87

20 NM,; 9.99 22.09 47.52 92.97 99.74 100.0
LR 12.13 25.05 51.54 94.33 99.79 100.0

NM, 10.02 22.53 48.33 92.88 99.69 100.0

S 8.96 21.62 46.28 90.89 99.42 100.0
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Chapter 5

Tests of the Homogeneity of Several Non-normal

Populations

5.1 Introduction

In Chapter 3, we obtain general results for testing homogeneity of several location-
scale populations. In Chapter 4, we obtain and compare two statistics for testing
the homogeneity of the several normal populations. In this chapter, by applying
the general results, we obtain two procedures for testing homogeneity of some non-
normal populations. Here we consider two over-dispersed discrete models, namely
the negative binomial model and the beta-binomial model. We also consider a widely
used lifetime model, namely the Weibull or extreme-value model. In all three cases
simulations are conducted to compare the two procedures. We omit the details of
derivation of the log-likelihood ratio statistics for these three models. They are easy
to obtain but have complicated expressions involving estimates of the parameters
under the alternative hypotheses. We denote the log-likelihood ratio based statistics,
analogous to the statistic NM; discussed in Chapter 4, for testing homogeneity of

negative binomial, beta-binomial and Weibull populations by NBM;, BBM; and

43
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W B M respectively.

In section 5.2, we deal with several negative binomial (m, c) populations. In
section 5.3, we deal with several beta-binomial (7, ¢) populations. Section 5.4 is
devoted to the several Weibull (4, ¢) populations. The chapter ends with a concluding

section 5.5.

9.2 Homogeneity of several negative binomial N B(m, c) pop-
ulations

5.2.1 Fisher’s procedure for combining two score test statis-
tics
Now let ;1, ..., Tin, be a sample from the negative binomial distribution NB(m;, ¢;),

i =1, ..., k, with probability mass function

Prix =y = o) (em YT LT

where m is the mean and c is the dispersion parameter. Note that the mean and

variance of X are m and m(14+cm). Thus, homogeneity of the N B(m;, ¢;) populations,
t=1,...,k, impliesm; =mand ¢; = cforalli = 1,..., k. Let ¢y and ¢, be the common
value of ¢;,4 = 1,...,k, under Hj : m; = m,¢; = ¢, for all i and H{ : ¢; = ¢, for all
1 respectively. Then again following the results in section 3.2, the score test statistic

for testing H), against Hj: at least two m’s are unequal and ¢; = ¢, for all  is

£ ni(T; — T)?
NBS, = A
' 2; Z(1 + 67)

1=
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where ¢p is the maximum likelihood estimate of ¢y obtained by solving the maximum

likelihood estimating equation

k ng; Tij

nlog(1 +‘coa’c) = ZZ Z -1%.

=1 j=1 I=1
The score test statistic testing H{ against Hy: at least two ¢;’s are unequal is

k

d?
NBS, = .
where
g 1
~—9 n; A T 2 i
di=&7° 3y, [log(l +a) — 6y m !
o C1Z;
=917 &’

TEP AV
=gy, RO
G+, +1&)
and ¢; is the maximum likelihood estimate of ¢, obtained by solving the maximum

likelihood estimating equation

k ko ni Zij
il Ti) = —
2 mel )= 0 2 D)

These score tests have also been obtained by Barnwal and Paul (1988). From the
general proof in Section 3.2 it is obvious that, asymptotically, as n; — o0, =1, ..., k,
the statistics NBS; and NBS, are independent. We denote the statistic obtained by

combining the score test statistics NBS; and NBS; by NBM,.

5.2.2 Simulation

In the simulation study we considered K=2, 3 and 4 populations, two nominal levels
a = 0.05 and o = 0.10 and equal sample sizes from each population. Each simulation

experiment was based on 10,000 samples.
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For calculating empirical size, we generated samples from NB (m,c) populations
with equal m’s and equal ¢’s. Unequal m’s and unequal c¢’s were considered for power
calculations. Here also results for k=3 and k=4 are similar. So, we give results for
only k=2 and k=3 with a = 0.05 and « = 0.10 respectively. Results of the simulations
for k=2 with a = 0.05 and o = 0.10 are presented in Table 5.1 and Table 5.2, and
those for k=3 are presented in Table 5.3 and Table 5.4. In the simulation study we
have also considered other values of m. The empirical level and power results are
similar to those presented in Table 5.1 to Table 5.4. So, we omit them here.

Results in Table 5.1 to Table 5.4 show that the statistic NBM, is in general liberal,
whereas the statistic NBM, maintains level well. Power of the statistic NBM; is in
general larger than that of the statistic N BM,. This is not surprising as the statistic
NBM; is in general liberal.

Further, we have extended the simulation experiment to study size adjusted power
properties of these two statistics. The empirical 95% quantiles derived from the cor-
responding size simulation have been used to ensure that each test had approximately
the nominal size of 0.05. Empirical quantiles were calculated based on 40,000 repli-
cations and empirical power calculations were based on 10,000 replications. In Table
5.5, we provide empirical power values for k = 2, m; = mqe = 2.0, ¢; = ¢o = 0.05,
ny = ne = 10,15, 20,40 and for different combinations of the unequal m's and un-
equal ¢’s. Results in Table 5.5 show that both the size adjusted statistics NBM; and

N BM; have similar power.
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5.2.3 Example

Example 1 (McCaughran & Arnold, 1976). The data in Data sets, Table D.1 refer to
counts of embryonic dearths in a control group and two treatment groups. Analysis
of the data, based on the NB model, gives NBLR; = 3.259, NBLR, = 0.016,
NBS; = 3.01 and NBS, = 0.22. From these the values of NBM; and NBM,; are
3.275 and 3.023 with p-values .513 and .554 respectively. Neither of these procedures

reject the hull hypothesis of homogeneity of the two groups.
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Table 5.1: Empirical power(%) of different statistics for testing homogeneity of K=2

negative binomial populations when data are simulated from NB(m;,¢;), i = 1,2;

based on 10,000 replications; oo = 0.05

48

Sample Test (mq, mg)
size  Statistic (c1,¢2)
(2,2) (2,2.5) (2,3.0)  (2,3.5) (2,4.0) (2,4.5)
(0.05,0.05) (0.05,0.10) (0.05,0.15) (0.05,0.2) (0.05,0.25) (0.05,0.3)
10 NBM; 7.25 11.60 22.33 35.44 48.83 61.24
NBM, 4.23 6.70 14.01 24.38 35.45 46.64
15 NBM; 7.53 14.18 29.38 48.10 65.91 79.01
NBM, 4.65 9.40 22.42 39.86 97.49 71.47
20 NBM, 7.09 15.00 35.57 59.52 78.28 89.59
NBM, 4.47 10.94 29.34 93.08 73.29 86.18
30 NBM,; 6.27 18.45 49.94 78.88 92.93 97.94
NBM, 4.94 16.35 46.16 75.6 91.67 97.40
40 NBM; 6.75 23.76 62.80 89.45 97.92 99.73
NBM, 4.75 21.01 60.01 87.98 97.50 99.64
50 NBM; 5.52 27.20 72.92 95.25 99.47 99.96
NBM, 4.49 25.23 70.74 94.69 99.35 99.96
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Table 5.2: Empirical power(%) of different statistics for testing homogeneity of K=2

negative binomial populations when data are simulated from NB(m;, ¢;), i = 1,2;

based on 10,000 replications; o = 0.10

Sample Test (my, m2)
size Statistic (c1,¢2)
(2,2) (2,2.5) (2,3.0) (2,3.5) (2,4.0) (2,4.5)
(0.05,0.05) (0.05,0.10) (0.05,0.15) (0.05,0.2) (0.05,0.25) (0.05,0.3)
10 NBM; 13.29 19.73 33.04 48.81 63.02 73.45
NBM, 8.90 13.96 25.73 39.96 53.71 65.65
15 NBM,; 13.67 22.30 40.94 61.65 77.46 87.39
NBM, 9.66 17.41 35.51 55.55 72.71 84.14
20 NBM, 12.82 23.64 48.53 71.95 86.90 94.74
NBM, 9.43 19.83 43.81 67.96 84.41 93.40
30 NBM, 11.52 28.54 62.87 87.11 96.26 99.14
NBM, 10.03 26.38 59.69 85.01 95.7 98.87
40 NBM; 11.77 34.51 74.48 94.42 99.07 99.92
NBM, 9.70 31.85 73.07 93.71 98.93 99.92
50 NBM; 10.79 39.09 82.65 97.77 99.8 99.99
NBM, 9.16 36.85 81.25 97.64 99.7 100.0
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Table 5.3: Empirical power(%) of different statistics for testing homogeneity of K= 3
negative binomial populations when data are simulated from NB(m;,¢), i = 1,2,3;

based on 10,000 replications; a = 0.05

Sample  Test (mq, ma, m3)
size  Statistic (c1,ca,c3)
(20,20,20)  (20,225,25) (20,2530 (20,275,385 (20, 3.25 45)
(0.05,0.05,0.05)  (0.05,0.075,01)  (0.05,0.1,,15)  (0.05,0125,0.2)  (0.05,0.175,0.9)
10 NBM, 7.53 10.47 18.09 28.78 52.32
NBM, 4.66 6.07 10.45 17.80 35.64
15 NBM; 7.97 12.80 23.58 39.98 70.37
NBM, 4.94 7.87 17.40 30.64 60.01
20 NBM,; 7.57 12.71 29.63 51.43 83.80
NBM, 4.80 9.01 23.10 43.62 78.03
30 NBM, 6.13 15.2 41.84 70.36 96.29
NBM, 5.63 14.55 39.90 69.14 95.49
40 NBM, 6.10 17.41 51.97 82.63 99.19
NBM, 4.95 15.32 48.16 79.92 98.94
50 NBM,; 5.78 21.16 62.84 91.40 99.88
NBM, 4.74 21.12 63.83 91.34 99.83
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Table 5.4: Empirical power(%) of different statistics for testing homogeneity of K= 3
negative binomial populations when data are simulated from NB(m;,¢;), i =1,2,3;

based on 10,000 replications; o = 0.10

Sample  Test (mq, mg, mg)
size Statistic (c1,c¢2,c3)
(20,2.0,2.0) (20,225 2.5) (20,25, 3.0) (2.0, 2.75 3.5) (2.0, 3.25, 4.5)

(0.05,0.05,0.05)  (0.05,0.075,0.1)  (0.05,0.1,.15)  (0.05,0.125,0.2)  (0.05,0.175,0.3)

10 NBM, 14.06 18.38 28.85 41.66 65.97
NBM, 8.90 12.25 20.31 30.37 53.52
15 NBM, 15.04 20.91 35.04 53.11 81.27
NBM, 9.92 15.30 28.24 45.40 74.60
20 NBM, 13.24 21.20 42.54 64.31 90.45
NBM, 9.57 16.52 36.12 58.56 87.26
30 NBM,; 11.88 24.84 54.89 80.83 98.2
NBM, 9.63 21.5 51.25 77.61 97.59
40 NBM, 11.65 27.67 64.58 89.85 99.70
NBM, 10.00 25.11 61.82 88.25 99.60
a0 NBM, 11.23 31.78 73.91 954 99.97
NBM, 10.11 30.01 72.17 94.72 99.97
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Table 5.5: Size adjusted empirical power(%) of the statistics NBM; and NBM, for
testing homogeneity of K=2 negative binomial populations when data are simulated
from NB(m;,c;), ¢ = 1,2; empirical quantiles based on 40,000 replications; empirical

size based on 10,000 replications; o = 0.05

Sample  Test (my, mg)
size  Statistic (c1,¢0)
(2,2) (2,2.5) (2,3.0)  (2,35)  (24.0)  (24.5)

(0.05,0.05) (0.05,0.10) (0.05,0.15) (0.05,0.2) (0.05,0.25) (0.05,0.3)

10 NBM, 4.84 6.24 9.99 15.43 22.46 30.76
NBM, 5.11 6.58 10.94 17.40 25.17 33.59
15 NBM, 9.10 7.58 13.99 24.29 36.55 49.06
NBM, 5.03 7.46 14.11 24.72 37.25 90.35
20 NBM, 4.89 7.95 17.51 32.49 48.61 63.72
NBM, 4.94 8.19 17.98 32.97 49.22 64.27
40 NBM; 4.66 12.12 35.41 63.43 83.45 93.81
NBM, 4.75 12.16 35.24 63.43 83.60 93.80
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9.3 Homogeneity of several beta-binomial BB(r, ¢) popula-

tions

5.3.1 Fisher’s procedure for combining two score test statis-
tics

Now let %1, ..., Zin; be a sample from the beta binomial distribution BB(m;, ¢;),7 =

1,..., k, with probability mass function

m A [T5y(r(1 = ¢) +7¢) [Ty ™ (1 = m)(1 = ¢) + 79)

Pr(X =ajm) = (1 — g+ rd)

?

x
where 7 is the proportion parameter and ¢ is the dispersion parameter. Note that
the mean and variance of X are mm and mn (1 —m)(1+ (m — 1)¢) respectively. Thus,
testing the equality of means and equality of variances of the BB(;, ¢;) populations,
t=1,..., k, is equivalent to testing m; =7 and ¢; = foralli =1, ..., k.

Now, from the general results in Section 3.2, we obtain the score test statistic for
testing

H):m =m7,¢; = ¢, for all i against H] : at least two 7’s are unequal and ¢; = ¢,

for all 7 as

k &2
BBS; = Z 1

V14

_ _ 2
where s1; = [;; — lizlﬂz/lin, v = linn — li12/li22

~ A

ns 24 (1-9) mij—i; (1-9)
li = i r=Jl > ~ r=] ’ A N
1 Z“F F-PT -8 T -N0-9+0r-D3
n; Zij (T_l)_fr Mij —Tij (7‘_1)_(1_7})
lp =" [ 30% _ _ S _ -
e _Z 17AT(1—¢)+(7"—1)<¢>+Z =D+ (r—1)o
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g r—2
_Z:—z]l ~ A:|7

1-¢+(r—1)¢

N2 ma; Plzi; > 1) myj Pz <my; —r)
linn = (1— ¥ < r—1 = )
(=912 [Z R - 9) + (7"—1)¢>}2+Z {A =)A= ¢)+(r—1)8}?
e |_A(1L=9) cum Plzy > 1)
e = { R G T
(1- 7AT)A(l - 9) s Pz < my; — 1)
$ A=D1 =)+ (- 1))z
1 n; ~AQ My P(xw > T)
ll = == A T_] ~
22 7 2t [ i} = 3) + (r — Do)
P(IIJ,‘J < mi; — r) 1

= e - oD a1 D

and 7 and <13 are the maximum likelihood estimates of 7 and ¢ under Hj, obtained

by solving the maximum likelihood estimating equations

k n; i Mij —Tij
& — 1-9) _
ZZZW_ +(r—1)¢ 2 T-0-9+r-1p

i=1 j=1 r=1 r=
and
s (r—1)—7 "= (=) - (1-7)
2.2 2 i r-Tp T X Gomio9) 019
ey r—2
P e e
simultaneously.

Similarly, the score test statistic for testing
H{ : ¢; = ¢, for all i against H} : at least two ¢’’s are unequal , for all
is
k 2
BBS,; = -,

where
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R & Tij (r—1- mij—%ij (r=1)—(1-m)
{ZT‘ -9 +e-09 = T m0-910-17
T ¢' (r—1) ]
L v N P R e LY $U>T)
. &2 2 { 2t - @)+ (r = 1)@ P
Mij P(xij < mi; — T) Zmij 1

+(1—7?'1) Zr=1 {(1__7%1)(1_&5,)_'_(7__1)&/}2 T Lur=1 {1—¢/+(r—1)<23'}2

and 7;,7 =1, ...,k and (f)’ are the maximum likelihood estimates of m;,i =1, ..., k

and ¢’ under H{, obtained by solving the maximum likelihood estimating equations

n; ZLij 1 _ ¢/) ~ mij—Tsj (1 _ d)l) ) N
;r: i 1—45/ (r—1)¢/ ; -0+ =DF 0,i=1,...k,
and

k ng Tij g
i J (7-_]_)_77'Z J —Tij (T—l)—(]___ﬂ-i)
ZZ AP -T9 t L T 96— 09
my; .
" LT
simultaneously.

Again, from the general results in Section 3.2, it is obvious that, asymptotically, as
n; — 00,1 = 1,..., k, the statistics BBS; and BBS, are independent. We denote the

statistic obtained by combining the score test statistics BBS; and BBS; by BBMs.

5.3.2 Simulation

In the simulation study we considered K=2, 3 and 4 populations, two nominal levels
a = 0.05 and a = 0.10 and equal sample sizes from each population. Each simulation

experiment was based on 10,000 samples.
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For size calculation in the beta-binomial case, we generated samples from BB(w, ¢)
populations with equal 7’s and equal ¢’s. Unequal 7’s and unequal ¢’s were considered
for power calculations. The beta-binomial index m was generated from a discrete
uniform (1, 16) distribution, as in many toxicological data sets m varies from 1 to
16(see data in Data sets, Table D.2). Here also results for k=3 and k=4 are similar.
So, we give results for only k=2 and k=3 with a = 0.05 and a = 0.10 respectively.
Results of the simulations for k=2 of o = 0.05 and a = 0.10 are presented in Table
5.5 and 5.6 and those for k=3 of & = 0.05 and o = 0.10 are presented in Table 5.7
and 5.8.

According to results in Table 5.5 to Table 5.8, the statistic BB M, shows some con-
servative behavior for small sample sizes (n < 15); otherwise it holds level well. The
statistic BB M, maintains level well in all situations studied here. Power properties

of both the statistics are similar.

5.3.3 Example

Example 2. (Paul, 1982). The data in Data sets, Table D.2 refer to live foetuses in
a litter affected by treatment, and the number of live foetuses, for each of k=4 doses
groups: control(C), low dose(L), medium dose(M), and high dose(H). Analysis of the
data, based on the BB model, gives BBLR; = 10.89, BBLR, = 2.865, BBS; =
11.62 and BBS; = 2.38. From these the values of BBM; and BBM, are 10.56 and
10.855 with p-values 0.032 and 0.0285 respectively. Both procedures reject the hull

hypothesis of homogeneity of the four groups.
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Table 5.6: Empirical power(%) of different statistics for testing homogeneity of K=2

beta binomial populations when data are simulated from BB(m;, m;, ¢;), ¢ = 1,2;

based on 10,000 replications; a = 0.05

Sample  Test (1, 79)
size  Statistic (é1, #2)
(0.30,0.30)  (0.30,0.35)  (0.30,0.40)  (0.30,0.45)  (0.30,0.50)  (0.30,0.55)
(0100.10)  (0.10,0.12)  (0.10,0.14)  (0.10,0.16)  (0.10,0.18)  (0.10,0.20)
10 BBM, 2.50 3.72 7.63 15.31  25.53  39.06
BBM; 3.59 5.06 9.38 1592 2523  36.82
15 BBM, 3.62 6.37 1418 27.67 44.05 63.14
BBM, 4.62 7.02 14.09 27.08 43.19 59.48
20 BBM, 4.51 8.39 18.45 36.54 56.95 76.86
BBM, 4.66 8.17 18.24 3552 55.21  75.00
30 BBM, 5.23 11.42 2898 5534 79.27 93.16
BBM; 4.88 11.02 27.63 53.80 7841 93.09
40 BEM, 519 1369 36.50 67.03 89.86 97.82
BBM, 4.94 1291 36.10 6791 88.57 97.74
50 BBM; 5.48 14.91 44.5 7740  95.03  99.40
BBM, 4.82 14.87 4484 7851 9523  99.42
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Table 5.7: Empirical power(%) of different statistics for testing homogeneity of K=2

beta binomial populations when data are simulated from BB(m;, m;, &;),

based on 10,000 replications; o = 0.10

Sample Test (11, 72)
size  Statistic (91, P2)
(0.30,0.30)  (0.30,035)  (0.30,0.40)  (0.30,0.45)  (0.30,0.50)  (0.30,0.55)
(0.10,0.10)  (0.10,012)  (0.10,0.14)  (0.10,0.16)  (0.10,0.18)  (0.10,0.20)
10 BBM, 6.61 838 15.03 25,53 3821 52.76
BBM, 857 10.85 1801 2765 39.52 52.10
15 BBM; 8.07 12,72 23.18 4032 58.21 75.11
BBM, 10.15 14.04 2420 4025 57.62 73.67
20 BBM, 9.51 1495 2930 4963 69.56  85.61
BBM; 9.88  14.83 29.85 49.59 69.13 85.06
30 BBM, 10.86  18.87 38.11 63.31 8431  94.5
BBM, 10.04 1824 3754 6291 83.06 94.27
40 BBM, 1048 19.39 42.05 6840 87.38  96.62
BEM; 10.20 19.11 40.56 66.89 86.94 96.72
50 BBM, 10.29 2218 4930 77.89 9424 99.06
BBM, 10.17  21.56 49.30 79.31 93.95 98.94
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Table 5.8: Empirical power(%) of different statistics for testing homogeneity of K=3

beta binomial populations when data are simulated from BB(m;, m;, ¢), i = 1,2, 3;

based on 10,000 replications; a = 0.05

Sample Test, (71, T, T3)
size  Statistic (¢1, P2, P3)
(0.30,0.30,0.30) (0.30,0.32,0.35) (0.30,0.35,0.40) (0.30,0.37,0.45) (0.30,0.40,0.50) (0.30,0.42,0.55)
(0.10,0.10,0.10)/(0.10,0.11,0.12) (0.10,0.12,0.14)(0.10,0.13,0.16) (0.10,0.14,0.18) (0.10,0.15,0.20)
10 BBM; 2.24 2.96 6.19 11.46 20.49 32.11
BBM, 4.12 9.13 8.04 13.38 21.18 31.77
15 BBM,; 3.13 5.38 10.3 20.90 35.82 52.78
BBM, 4.49 6.73 11.67 20.81 33.84 50.44
20 BBM,; 4.04 7.32 14.74 28.52 47.94 67.96
BBM, 4.74 7.04 13.91 28.13 45.23 64.09
30 BBM; 4.83 9.22 21.39 42.52 66.45 85.60
BBM, 5.11 9.04 20.67 40.89 65.16 84.10
40 BBM, 5.04 10.57 29.16 57.68 82.50 95.62
BBM, 4.73 10.17 27.52 56.81 82.79 95.51
50 BBM, 4.83 11.71 34.18 67.03 90.44 98.23
BBM, 5.06 12.77 35.54 67.27 90.46 98.55
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Table 5.9: Empirical power(%) of different statistics for testing homogeneity of K=3

beta binomial populations when data are simulated from BB(m;, m;, &), i = 1,2,3;

based on 10,000 replications; o = 0.10

Sample

size

Test (7Tla 72, 7I'3)

Statistic (¢1, P2, P3)

10

15

20

30

40

(0.30,0.30,0.30) (0.80,0.32,0.35) (0.30,0.35,0.40) (0.30,0.37,0.45) (0.30,0.40,0.50) (0.30,0.42,0.55)

(0.10,0.10,0.10)(0.10,0.11,0.12) (0.10,0.12,0.14) (0.10,0.13,0.16) (0.10,0.14,0.18) (0.10,0.15,0.20)

BBM, 5.63 7.15 11.84 20.39 32.89 46.33
BBM; 8.81 11.13 16.28 20.39 34.35 47.03
BBM; 7.51 10.59 18.72 32.68 49.84 66.18
BBM, 9.70 12.70 21.22 33.41 47.42 64.55
BBM, 8.80 13.53 24.75 41.22 61.58 78.86
BBM, 9.46 13.55 23.36 40.83 59.90 76.33
BBM,; 10.06 16.25 32.83 55.87 77.16 92.19
BBM; 10.08 15.23 32.20 54.29 76.48 91.04
BBM, 10.68 18.12 41.87 69.69 89.98 98.05
BBM; 9.95 17.84 40.09 69.46 89.96 97.86
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5.4 Homogeneity of several Weibull W B(1), ¢) populations

5.4.1 Fisher’s procedure for combining two score test statis-
tics

Now let @1, ..., Tin, be a sample from the Weibull distribution W B(v;, ¢:),¢ =1, ..., k,

with probability density function

pix-o-(3) ()" |- ()

2 1
Note that the mean and variance of X are ¢I' (1 + %) and ¢? [F (1 + E) —I? (1 + E)]

respectively. Thus, testing the equality of means and equality of variances of the

B(1;, ¢;) populations, i = 1, ..., k, is equivalent to testing 1; = ¢ and ¢, = ¢ for
alli=1,...,k.
Now, from the general results in Section 3.2, we obtain the score test statistic for
testing
H| :; =1, ¢; = ¢, for all ¢ against Hj : at least two v’s are unequal and ¢; = ¢,

for all 2, as
2.
wBs, =3 i

where
s1 =1y — li2li12/li117
_ 2
vy = i — lm/lm,

_ 2
v = linn — lm/lm,

with I;; = A + Z 1 log < ) -3 <xfj>¢log (x—fj),
¢ =\e ¢
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nz’l;@ ne 5w S—(d
li2 = — + Zj:l ’Q[JZL';’?QS ('¢'+1)’
¢
L 6+ (1= )
111 — A2 )
- nl(l - 7)
112 — T~

¢
N\ 2
ligo = m; <£) )
¢ ~ ~
where 7 is Euler’s constant, and ¥ and ¢ are the maximum likelihood estimates
(m.le) of ¢ and ¢ under Hj . The m.l.e of ¢ is obtained by solving the maximum

likelihood estimating equation
k ng
N oy Dje Tiglog Ty
k n; -
D i1 Zj:l Lij

and (;AS can be obtained by

S\ 1/4
k i
n

Similarly, the score test statistic for testing

H{ : ¢; = ¢, for all i against H} : at least two ¢"’s are unequal, for all 7 is
Eog2
WBS, =>» =%,

U 2‘
=1 1’
Where

nab; e g
ou = P pty e,

A\ 2
Vo = 1y (3[}71) )
¢

and z/A)i,i =1,..,k and ngS’ are the maximum likelihood estimates of ¥;,i =1, ...,k

and ¢’ under H{, obtained by solving the maximum likelihood estimating equations

¥
—+ > log (—f’) -3 ( ZJ) log (Jl) =0,i=1,..,k,
w j=1 ¢ j=1 ¢ ¢

and
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S it kg . (0
—;“"‘“ + 2 Zj:l Wcﬁ ¢p~With) = 0,
simultaneously.
Again, from the proofs in Section 3.2, it is obvious that, asymptotically, as n; —

00,1 = 1,..., k, the statistics WBS; and W BS, are independent. We denote the

statistic obtained by combining the score test statistics W BS; and W BS,; by W B M.

5.4.2 Simulation

In the simulation study we considered K=2, 3 and 4 populations, two nominal levels
a = 0.05 and o = 0.10 and equal sample sizes from each population. Each simulation
experiment was based on 10,000 samples.

In the Weibull distribution case, for calculating empirical size, we generated sam-
ples from WB (9,¢) populations with equal %’s and equal ¢’s. Unequal ’s and
unequal ¢’s were considered for power calculations. Here also Results for k=3 and
k=4 are similar. So, we give results for only k=2 and k=3 with o = 0.05 and o = 0.10
respectively. Results of the simulations for k=2 of a = 0.05 and o = 0.10 are pre-
sented in Table 5.9 and Table 5.10. Those for k=3 are & = 0.05 and o = 0.10
presented in Table 5.11 and Table 5.12.

According to the results in Table 5.9 to Table 5.12, the statistic WBM; is in
general liberal, whereas the statistic W BM, maintains level well except for small
sample sizes (n < 15), where it shows some conservative behavior; otherwise it holds
level well. The power of the statistic W BM; is in general larger than that of the

statistic W BMs. This is not surprising as the statistic W BM; is in general liberal.
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Table 5.10: Empirical power(%) of different statistics for testing homogeneity of K=2

Weibull populations when data are simulated from W B(4;, ¢:), i = 1,2; based on

10,000 replications; o = 0.05

Sample  Test (Y1, ¥2)
size  Statistic (1, P2)
(1212) (1214 (1216) (1218 (1220) (1222
(3232)  (3234) (3236) (3288 (32,40) (32,42)
10 WBM, 735 9.14 13.11 19.2 26.88 35.20
WEBM, 2.81 4.02 723 1193 18.54 26.66
15 WBM, 6.7 9.056 156 24.75 36.67 49.91
WBM, 3.85 592 11.73 2058 31.93 44.88
20 WEBM, 6.65 9.84 17.84 30.79 46.27 61.73
WBM, 4.37 707 1491 27.72 43.68 59.92
30 WBM, 9.92 10.74 24.01 43.03 62.76 78.66
WBM, 445 9.13 22.13 41.74 62.63 7T8.77
40 WEBM, 5.82 11.58 29.59 5439 75.95 8§89.79
WBM, 4.77 10.51 29.03 5443 76.07 90.06
50 WBM, 5.82 1358 358 63.84 84.68 95.36
WBM, 442 12,78 3574 64.56 85.28 95.71
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Table 5.11: Empirical power(%) of different statistics for testing homogeneity of K=2
Weibull populations when data are simulated from W B(;, ¢;), i = 1,2; based on

10,000 replications; o = 0.10

Sample  Test (1, )
size  Statistic (41, ¢2)
(1212) (214 (1216 (1218 (1220 (1.222)
(3232)  (3234) (3236) (3238 (3240) (3242
10 WBM; 13.61 1594 21.35 29.02 38.15 48.02

WBM, 742 9.57 1439 21.55 3042 40.23

15 WBM, 12.6 16.05 24.77 36.07 49.63 62.38
WBM, 8.46 11.88 20.18 3139 45.17 58.81
20 WBM, 12.27 16.69 27.67 43.04 59.15 73.32
WBM; 9.01 1292 2442 40.1 57.15 719
30 WBM; 11.59 1832 35.14 5597 73.95 86.95

WBM, 8.96 16.09 32.73 5448 7290 86.91

40 WBM, 11.13 19.62 42.03 66.73 84.43 94.39
WBM, 924 1764 4082 66.09 84.56 94.46
50 WBM; 11.05 22.17 48.09 7492 91.12 978

WBM; 9.06 20.78 47.77 74.67 91.36 97.9
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Table 5.12: Empirical power(%) of different statistics for testing homogeneity of K=3

Weibull populations when data are simulated from W B(v;, ¢;), ¢ = 1,2, 3; based on

10,000 replications; o = 0.05

Sample  Test (11,2, 3)
size  Statistic (¢1, P2, ¢3)
(0.30,0.30,0.30) (0.30,0.32,0.35) (0.30,0.35,0.40) (0.30,0.37,0.45) (0.30,0.40,0.50) (0.30,0.42,0.55)
(0.10,0.10,0.10)(0.10,0.11,0.12) (0.10,0.12,0.14)(0.10,0.13,0.16) (0.10,0.14,0.18) (0.10,0.15,0.20)
10 WEBM, 7.87 9.41 12.19 16.8 2291 30.66
WEBM, 2.46 3.39 5.52 9.18 14.48  21.31
15 WEBM, 7.42 8.95 13.38 2035  29.81  40.05
WBM, 3.68 4.86 8.51 1559 2491  36.07
20 WBM, 6.67 8.77 1439 2430 37.09 51.84
WBM, 4.05 5.53 11.24 21.33 34.43 50.24
30 WBM, 6.26 9.3 18.89 34.41 52.9 70.16
WBM, 4.29 7.37 16.62  33.59  53.54  T71.58
40 WBM, 5.97 1066  23.15 44.2 66.04  83.32
WBM, 4.48 9.03 22.58 45.66 67.83 85.23
50 WBM, 5.70 11.74 28.96 54.58 77.04 91.31
wEBM, 4.54 10.09  28.88 56.3 79.09  92.73
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Table 5.13: Empirical power(%) of different statistics for testing homogeneity of K=3

Weibull populations when data are simulated from W B(v;, ¢;), © = 1,2, 3; based on

10,000 replications; o = 0.10

Sample Test (1,92, %3)
size  Statistic (41, 2, $3)
(0.30,0.30,0.30) (0.30,0.32,0.35) (0.30,0.35,0.40) (0.30,0.37,0.45) (0.30,0.40,0.50) (0.30,0.42,0.55)
(0.10,0.10,0.10) (0.10,0.11,0.12)(0.10,0.12,0.14)(0.10,0.13,0.16) (0.10,0.14,0.18) (0.10,0.15,0.20)
10 WBM, 14.61 16.13 20.41 26.67  34.57  43.09
WBM, 6.86 8.06 11.88 17.36 2494  33.65
15 WBM, 13.31 15.81 21.65 31.01 41.35 53.40
WBM, 7.67 10.0 16.04 25.17  36.57  49.05
20 WBM, 12.52 15.66  23.76 35.76 50.17  64.48
W BM; 7.99 10.74 19.43 31.73 47.42 63.28
30 W BM, 11.65 16.55 29.12 46.73 65.48 80.11
WBM, 8.46 13.41 26.17 45.6 65.49 80.7
40 WBM, 11.64 1768  34.36 56.86 76.78  89.82
WEM, 8.90 15.62 33.56 56.7 78.1 91.21
50 WBM, 11.00 19.39  40.66 66.26 85.42 95.26
WBM, 8.94 17.35  39.93 67.31 86.61 95.97
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5.5 Discussion and conclusion

Singh (1986) develops a procedure for testing homogeneity of several normal popu-
lations based on combining two separate independent likelihood ratio test statistics
using a method proposed by Fisher (1950). In Chapter 3, we extended Fisher’s
method to test homogeneity of several location-scale populations using two likelihood
ratio statistics as well as two score test statistics. Asymptotic independence of the
two likelihood ratio statistics and also of the two score test statistics have been estab-
lished. The problem of testing for the homogeneity of several populations, in terms of
the means and the variances, arises not only in normal populations but also in other
populations. That is why we included two important over-dispersed discrete distrib-
utions and also the Weibull distribution in our development of theory and simulation
comparison in this chapter.

The statistics based on combining two score tests hold level in all situations in-
vestigated here. The statistics based on combining two likelihood ratio statistics hold
level in general, although they show either liberal or conservative behavior in some
situations, particularly for small sample sizes. We conclude that Fisher’s method of
combining two statistics, even when they are only asymptotically independent, does
perform well for testing homogeneity of several populations in terms of the means
and the variances. However, the score test statistics have simple forms, are easy to
calculate, because they do not require estimates of the parameters under the alterna-
tive hypotheses and have uniformly good level properties. Therefore Fisher’s method

based on combining two score test statistics might be the method of choice.
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Chapter 6

Test of Treatment Effect in Pre-drug and
Post-drug Count Data with Zero-inflation and

Over-dispersion

6.1 Introduction

Data in the form of pre-treatment and post-treatment counts, such as premature
heart beats, tumor cells, epileptic seizures, etc., arise in numerous applications. The
purpose of this chapter is to present a procedure for testing no treatment effect in these
data sets. As an example we consider the data given in Data sets, Table D.3. The

data on premature ventricular contractions (PVC) originally given as counts by Berry

(1987) are analysed by Farewell and Sprott (1988) as proportions. The data pertain to
twelve patients who experienced frequent premature ventricular contractions (PVCs)
and were administered a drug with antiarrhythmic properties. One-minute EKG

recordings were taken before and after drug administration. The PVCs were counted

70
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on both recordings. The observations occur as paired data (z;, y;), which are the pre-
drug and post-drug count, respectively, for the ith patient. Assume that z; is a Poisson
variate with mean A; and that for patients who are not cured y; is independently
Poisson with mean §A;. In order to eliminate the “incidental” nuisance parameters
Ai, one for each uncured subject, Farewell and Sprott (1988) use the conditional

distribution of y; given m; = x; + y;, which is

fsplm) = | |- p =01, m
Yi
where p = BAi/(A\i + 6X;) = 8/(1+ B). A binomial model may fail to fit a set of data
in the form of proportions either because of the presence of zero-inflation or because
of the presence of over-dispersion. Let w be the probability of cure implying that

yi = 0. Then, the distribution of y;, conditional on m; can be written as a mixture

model (the zero-inflated binomial model).

Pr(gjm,) = w+ (1 —w)f(0;pjm;) fy; =0 6.1.1)
(1-w)f(ysplmi)  ify: >0

Using a score test based on this model Deng and Paul (2000) find significant zero

inflation in the PVC data. An over-dispersed model such as the beta-binomial model

with probability parameter 7 and dispersion parameter ¢ having probability function

M| L (v = ) +ré) [L2" (1 = m)(1 = ¢) +79)

f(yi;Tr) ¢|m1) = Hm,-—l(l _ ¢ + T¢)

Yi
may fit the data as well or better than the zero-inflated binomial model. Again, Deng
and Paul (2000) use a score test developed by Dean (1992) to show that there is

significant over-dispersion in the PVC data. They, in fact, fitted the binomial, the
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zero-inflated binomial and the beta-binomial model to the PVC data and concluded
that among these models the zero-inflated binomial model fits the data best. However,
they argued that the PVC data and other similar data may contain both zero-inflation
and over-dispersion. As a zero-inflated over-dispersed model one can consider the

zero-inflated beta-binomial model which is given as

Pr(ys|ms) = w+ (1 —w)f(0;m, ¢lm;) ify; =0 (6.1.2)
(1 —w) flysm, o|m;) ify, >0.

The parameter w is the zero-inflation parameter and the parameter ¢ is the intr-
aclass correlation parameter. The zero-inflation parameter can take negative values
provided "T{% < w < 1. Note that if w > 0, then P(Y = 0) > f(0;7, $|m;)
and if w < 0, then P(Y = 0) < f(0;7, ¢|m;). While the former indicates existence
of too many zeros (zero inflation), the latter indicates that there exist too few zeros
(zero deflation) in the data. Further, the intraclass parameter ¢ also may assume pos-
itive as well as negative values provided maz(; 1) < ¢ < 1 (Prentice, 1986). In the
limit as ¢ — 0 the zero-inflated beta-binomial model converges to the zero-inflated
binomial model.

Thus, the zero-inflated beta-binomial model is the most flexible model for the
analysis of data similar to the PVC data. Farewell and Sprott (1988) alluded to such
a model.

In this chapter we use this model to develop procedures for testing for treatment
effect. As one can see that treatment can affect two parameters, namely, the zero-

inflation parameter w and the parameter 7. Note that the parameter w represents the

proportion of cure and the parameter 7w represents the effect of the treatment on the
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uncured population. Therefore to determine treatment effect one can (i) estimate w,
the proportion of cure and test whether the uncured population had any improvement
of their prevailing condition as a result of the treatment or (ii) test the overall effect of
the treatment. Note that w = 0 indicates that the treatment fails to cure the disease
while 7 = 1/2 indicates that the treatment had no effect on the uncured population.
Therefore, we develop tests: (i) of Hy : m = 1/2 against H; : m # 1/2 treating w and
¢ as nuisance parameters and (ii) of H} : 7 = 1/2, w = 0 against H] : 7 # 1/2 or
w # 0 treating ¢ as a nuisance parameter. In particular we develop score tests and
likelihood ratio tests.

The score tests and the likelihood ratio tests are developed in Section 6.2. Some
simulations are carried out in Section 6.3 to study level and power properties of the
score and the likelihood ratio tests. In Section 6.4 we analyse the PVC data. A

discussion is given in Section 6.5.
6.2 Test for no treatment effect

6.2.1 The maximum likelihood estimates

We now give maximum likelihood estimates of the parameters under different hy-
potheses as these will be used in the score and the likelihood ratio statistics. Let
¥i,t = 1,...,n, be a sample of independent observations from the zero-inflated beta-

binomial model (6.1.2). Then, the log-likelihood can be written as

l(’777r7 ¢7y) = Zli("yaﬂa(ﬁ; yl)
i=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6. Test of Treatment Effect in Pre-drug and Post-drug 74

Z{_ lOg(l + ’7) + I{yi=0} 10g(’7 + fOi) + I{yi>0} 10g fyi})
i=1

M) s (r1= ) +r) L2 (A=m(A =) +r9)  _ w
i T2 (- ¢ +r9) 1w

and fo; = m=_1((1_1_ (1 —¢) +re)
[[% (1—¢+1¢)

meterized w into y. Thus w = 0 implies v = 0.

where f,, =

. Note that for convenience we have repara-

Olo; Oly;

Now, let lo; = log(foi), 1, = log(fy,). Further, let loimy = 870r’ loigy = %,
aly, al,,

l;i(ﬂ) 8_7r and l’ ¢ = 8—;’ Explicit expressions for these terms are given in the

Appendix B. Then the maximum likelihood estimates of the parameters v, m and ¢

are obtained by solving the estimating equations

- foil i)
Z{I{yi=0}m + Iyi>0pl yam } = 0,
i=1 t

- Joil' vi(p) ,
E I, — + Irsond s =0
1.:_1{ {yz O} ,.y _|_ fOi {yz>0} yz(d’)}

and

Z{I{yl_O}

simultaneously. These are the estimates under the general alternative in which none

_1}—0

of the parameters are specified. We denote these by ¥4, 7 and gz~$ Further, under
the null hypothesis Hy : 7 = 1/2, the maximum likelihood estimates of v and ¢ are

obtained by solving the estimating equations

fOzl 0i(¢)
Z{ w=0) ( =+ ooy Hrm/2 = 0

and

1+ 7
Z{ =0 70 1} r=1/2 =0
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simultaneously and the maximum likelihood estimator gzg’ of the nuisance parameter
¢ under the null hypothesis Hy : 7 = 1/2,~ = 0 is obtained by solving the estimating
equation

> Uymorligg) + L0y i) Hrmrjo = 0.
=1

6.2.2 The score tests

The score test (Rao, 1947) is a special case of the more general C(a) test (Neyman,
1966) in which the nuisance parameters are replaced by maximum likelihood esti-
mates which are v/N (N=number of observations used in estimating the parameters)
consistent estimates. The score test is particularly appealing as it often maintains, at
least approximately, a preassigned level of significance ( see Bartoo and Puri, 1967).
Further, it requires estimates of the parameters only under the null hypothesis, and
often produces a statistic which is simple to calculate. For more discussion on the
choice of C(a) or score tests see Barnwal and Paul (1988), Breslow (1990), and Paul
and Banerjee (1998).

We want to obtain score tests for Hy : m# = 1/2 against H; : m # 1/2 when v and ¢
are treated as nuisance parameters and for H} : m = 1/2, v = 0 against Hj : 7 # 1/2
or v # 0 when ¢ is treated as a nuisance parameter.

Derivation of the score tests are quite involved. So, here we give the results
relegating the proof to the Appendix B. The score test statistic for testing Hp : m =

1/2 against Hy : m #1/2 is

Sy = \I;%/‘;f,
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where U; = ¥, (¢, 4)|x=1/2 and Vi = Vi(4, A)lw=1/2

with
ol n foil'oi(m)

V= or > i {Liy=0} v + foi + Lyes0plyimy

and

‘/12 I _ I¢¢I7%’Y -+ I 12 — 217(7[‘"@!,[7(?5

I¢¢>I'ry Im ( )
n (’Y + fOz).fOz il foOi l6 ) 1 n fOilz)i
Where I7r7r = {Zi=l (1 T "}/()ET;/ i fo) i{m) +l,,,:-ﬂ.}, I7r'y - m Zi:l{ ~ + ](ZOr) },
Ly = {3 (v + fOi)fOilgi(vr¢) - 7f0il6i(w)16i(¢) + 1), L, = 1 n {fmléi(rb)}
’ = A+ + foi) SRR R 17+f0i ’

n (vHfoi)foilll o =1 foi(th, 4\ )2 "
Iog = {320, o o Hish I = Ez’:l{—(

" " l

The quantities I, ., 0i(0)? L0i(me)? .

+ :
Ay Rk
» used above are given in the Appendix

B.

The statistic S;, asymptotically, as n — oo, has a x%(1) distribution. Note that
in this score test we use the maximum likelihood estimates of v and ¢ under the null
hypothesis Hy : 7 = 1/2.

The score test for Hj : 7 =1/2,v =0 against H : 7 # 1/2 or vy # 0 is
AN A=A
Sy = WhVy Wy,

with \112 \Ifz(¢’) and V2 I/2(¢3'), where Uy = (%, %) I

H(’,,
with
ol

ol = Z?:l{l{yi=0}l6i(w) + Ly >0)l'ys(m) Ha=1/2
Hy

and
al Lyi—o0y
= =-n4+) ._

0|y 2im Jos
and

w=1/2
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Jrn Jry

Vo = Iy — Lol Iy, with I = Iy = Iy = (Jpmy Jo), Tz = T

Jny Ty
The quantities Jrr, Jry, Jyy, Jom, Jpy and Jyg respectively are Iy, Iny, Ly, Ign, 1gy

and I;4 defined earlier by replacing 7 by 1/2, v by 0.
The statistic S, asymptotically, as n — oo, has a x?(2) distribution. Note that in
this score test we use the maximum likelihood estimate of ¢ under the null hypothesis

b:m=1/2,y=0.

6.2.3 The log-likelihood ratio tests

The likelihood ratio statistic for testing Hp : m = 1/2 against Hy : m # 1/2 s
LR1=2( (3,7, & 9)-13, 5, ;)
and that for testing Hj: m = 1/2,7 =0 against H] : 7 #1/2 or v # 0 is
LR2= 2( I(%, 7, ¢;)-(0,.5, 43 1)),
where [(0,.5, ¢/;y)) is the maximized log-likelihood under the null hypothesis Hj :
T =1/2,7=0,I(&,.5 ¢;y)) is the maximized log-likelihood under the null hypothesis
Hy : 7 =1/2 and I(@, 7, ¢;y) is the maximized log-likelihood under the alternative
hypothesis Hy : w # 1/2 or H} : w # 1/2 or 7y # 0.
Asymptotically, as n — oo, the distribution of LR1 is x%(1) and that of LR2 is

x*(2).
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6.3 Simulation

We now report results of a simulation study conducted to examine the empirical size
and power of the score test statistic S; and the likelihood ratio statistic LR1. Samples
of size n=12 and n=24 were considered. For n=12, the sample size configuration m;,
i=1,..., 12, considered were the total PVC counts 11, 11, 17, 22, 9, 6, 5, 14, 9, 7, 22,
51 in the data in Table D.3. For n=24 the sample size configuration considered were
11,11, 17,22, 9, 6, 5, 14, 9, 7, 22, 51, 11, 11, 17, 22, 9, 6, 5, 14, 9, 7, 22, 51. That is,
we just doubled the data considered for n = 12. Empirical size and power of the test
statistics S; and LR1 were calculated using data from the zero-inflated beta-binomial
distribution with = = .2, 4, .46, .50,.54, .6,.8, w = .05,.10,.20 and ¢ = .1,.2. Each
simulation experiment was based on 10,000 simulations. Empirical size and power
results of the test statistics S; and LR1 with ¢ = 0.10 are presented in Table 6.1 and
those with ¢ = 0.20 are given in Table 6.2. Note, the entries in column 8 with 7 = .5
of each of Table 6.1 and Table 6.2 represent empirical levels.

Both the statistics S; and LR1 hold level well and they both show excellent power
property. In the important range m < .5 power of the score test statistic S is slightly
better than the likelihood ratio statistic LR1 and for 7 > .5 power of the statistic LR1
is slightly better than the statistic S;. Note that 7 < .5 indicates positive treatment
effect, whereas m > .5 indicates negative treatment effect. Sample size also seems to
have an effect on power. For example, power with n = 24 is larger than that with
n = 12. Power also seems to be a decreasing function of ¢. For example, powers of
S1 and LR1 with o =0.05, w = .2, m = .6 and ¢ = .1 are .182 and .246 respectively.

With the same values of a, w, 7 and with ¢ = .2, powers of S; and LRl are only
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1191 and .1798 respectively. The power would be largest when ¢ is smallest, that is,
when we have a zero-inflated binomial model.

Our very limited simulation study (the results are not given here) revealed similar
properties of the statistics S; and LR2 as those of the statistics S; and LR1. The
statistics S; and LR2, however, showed some conservative behavior.

Either the score tests or the likelihood ratio tests can be used for testing the
presence of treatment effect. The score tests, however, may be preferable because they
use estimates of the parameters only under the null hypothesis and in the important
range w < .5, the power of the score test statistic Sy is slightly better than the

likelihood ratio statistic LR1.

6.4 Analysis of the PVC data

We now test for treatment effect in the PVC data. For this we fit three models to
the data, namely the beta-binomial model with 7 = 1/2 and unknown parameter ¢,
the zero-inflated beta-binomial model with 7 = 1/2 and unknown parameters y and

¢, and the zero-inflated beta-binomial model with unknown parameters =, v and ¢.

A

For the PVC data we obtain ¢ = 0.71, (0, .5, ¢/;y) = —25.275, 4 = 1.35, ¢ = 0.122,
I(%,.5,¢;y) = —19.462 and 7 = 1.262 # = 0.336, ¢ = 0.084, [(%, 7, d;y) = —18.03.
From these maximized log-likelihoods we obtain LR1 = 2.873 and LR2 = 11.62.
Further, the values of the score test statistics S; and S; are 2.59 and 8.358 respectively.

To test whether the uncured population had any improvement of their prevailing
condition as a result of the treatment, the p-values of the LR test and the score

test are 0.09 and 0.108 respectively. The conclusion from the likelihood ratio test
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is essentially the same as that from the score test. The tests show some evidence
of the effect of the treatment, though not highly significant. That is, treatment
has improved the prevailing condition of the uncured population. Also note that
treatment has resulted in a significant proportion of cure (w=0.575 ). To test the
overall effect of the treatment, the p-values of the LR test and the score test are 0.003
and 0.015 respectively. Both tests show a highly significant treatment effect for the

whole population.

6.5 Discussion

Berry (1987) used a paired t-test after logarithmically transforming the pre-drug and
the post-drug counts. For example, the y-data were transformed to z = log(y + ¢),
where ¢ is to be determined so that a function go(c) given in equation (5) of Berry
(1987) is minimum with respect to ¢. He concluded that there is a significant treat-
ment effect (p-value=.001). Note that Berry’s method uses the pre-drug (x) and the
post-drug (y) counts. As such, his test based on these data is an unconditional test.
Also, his method cannot estimate the zero-inflation and the over-dispersion parame-
ters. Our method, based on the zero-inflated beta- binomial model, is a conditional
(conditional on x +y = m) approach. Our method enables us not only to test for
over-all treatment effect, but also to test for effect of the treatment on the uncured
population. In addition, our model facilitates estimation of the proportion of cure
and the amount of over-dispersion present in the data. Note that the test of the hy-
pothesis Hj: 7 = 1/2,~ = 0 brings out the same conclusion regarding the treatment

effect (p-values being 0.003 and 0.015 based the likelihood ratio test and the score
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test respectively) as that of Berry ( the p-value for his test statistic being .001). Our
recommendation, however, is not to ignore Berry’s method. We agree with his state-
ment “Researchers should learn as much as possible from their data. This includes

looking at the data in various ways” (see discussion in Berry, 1987).
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Table 6.1: Empirical power(%) of the score test statistic S; and the likelihood ratio

statistic LR1 for testing no treatment effect when data are simulated from the zero-

inflated beta-binomial distribution with ¢ = 0.10 and different values of 7 and w.

The column under 7 = .5 represents the empirical level of the statistics S; and LR1.

Empirical level and power results are based on 10,000 simulations.

Sample size Test
o w statistic ™
.20 .40 .46 .50 .54 .60 . 80
12 .05 .05 Sh 98.04 29.32 858 442 7.60 2841 97.20
LR, 96.83 28.11 7.84 486 919 31.97 99.12
.10 Sy 97.25 29.10 837 458 6.87 23.90 91.52
LR, 96.21 26.71 837 5.23 9.17 29.97 97.38
.20 S 94.74 26.56 8.87 4.58 6.08 18.21 76.36
LR, 9351 2583 838 496 7.46 2455 92.53
10 .05 Sy 99.28 43.52 17.03 10.11 1598 44.24 99.34
LR, 98.76 40.27 1491 949 16.74 4588 99.70
.10 Sy 99.04 43.41 1594 9.78 14.34 39.58 97.79
LR, 98.40 39.47 14.74 10.38 16.24 43.34 99.15
.20 Sy 97.98 41.07 16.86 10.84 13.60 34.00 92.50
LR, 97.01 37.61 14.96 10.02 14.39 37.00 96.94
24 .05 .05 S 100.0 55.33 13.64 4.69 12.81 53.94 99.98
LR; 99.99 5425 1269 5.47 1539 59.51 99.99
10 Sy 99.97 55.16 13.54 4.81 11.51 48.65 99.93
LR, 99.97 53.74 13.24 546 13.83 54.32 100.0
.20 S 99.95 50.39 13.24 5.04 9.72 42.83 99.35
LR, 99.92 50.90 12.74 5.70 10.98 49.42 99.93
10 .05 S 100.0 68.52 22.95 10.10 22.02 68.03 100.0
LR, 99.99 67.28 21.31 10.65 24.74 71.69 100.0
.10 St 99.99 68.25 22.64 10.16 20.30 64.65 100.0
LR, 100.0 66.31 22.07 10.96 23.01 67.05 100.0
.20 S 99.97 64.31 21.87 10.64 18.53 58.80 99.80
LR, 99.98 63.61 21.38 10.67 18.29 62.37 100.0
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Table 6.2: Empirical power(%) of the score test statistic S; and the likelihood ratio
statistic LR1 for testing no treatment effect when data are simulated from the zero-

inflated beta-binomial distribution with ¢ = 0.20 and different values of 7 and w.

The column under 7 = .5 represents the empirical level of the statistics S; and LR1.

Empirical level and power results are based on 10,000 simulations.

Sample size Test
a w statistic m
.20 .40 .46 .50 .54 60 .80
12 05 .05 S1 86.68 21.27 7.78 529 8.69 23.66 94.89
LR, 79.18 17.17 6.65 6.09 10.09 25.84 95.76
.10 S 8421 209 796 5.18 6.87 18.01 82.92
LR, 76.84 17.91 7.25 6.02 895 2267 89.04
.20 Sy 79.49 20.72 846 520 527 1191 57.10
LR, 7224 1691 7.16 580 805 17.98 73.72
10 .05 S1 92.74 32.58 14.58 11.65 16.43 36.50 97.75
LR, 87.54 2591 1235 11.37 17.59 37.92 98.21
.10 S1 90.98 31.83 14.8 10.97 14.19 30.55 91.78
LR, 85.86 26.83 12.74 11.82 16.20 33.72 94.13
.20 Sy 88.18 32.11 15.63 11.08 13.21 24.92 77.56
LR, 82.10 26.62 13.47 11.61 14.74 28.45 84.80
24 .05 .05 S1 99.16 39.32 11.00 5.67 10.42 38.48 99.69
LR, 08.22 31.24 846 5.37 12.32 40.61 99.89
.10 S1 98.53 37.78 11.06 5.11 8.41 32.27 98.40
LR, 97.94 3291 880 5.52 10.63 35.12 98.68
.20 Sp 97.62 34.52 10.39 5.32 7.63 26.37 92.97
LR, 96.41 31.80 10.15 5.84 9.45 31.17 96.73
10 .05 S 99.67 51.62 18.15 10.96 18.88 52.79 99.92
LR, 99.25 43.48 14.65 10.34 20.25 53.79 99.97
.10 S1 99.46 50.06 18.51 10.65 16.63 46.46 99.44
LR, 08.99 44.88 15.23 10.73 17.95 48.43 99.55
.20 Sy 98.84 46.76 17.46 10.90 15.07 40.72 97.32
LR, 98.29 43.91 17.14 11.19 16.72 43.86 98.76
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Chapter 7

Treatment Effect of DMFT Data Based on

Zero-inflated Bivariate Poisson Regression Model

7.1 Introduction

In biomedical and dental epidemiological experiments data arise in the form of pre-
treatment and post-treatment counts. For example, Bohning, Dietz, Schlattmann,
Mendonca and Kirchner (1999) present dental epidemiology data of a prospective
study of caries prevention of school-children from an urban area of Belo Horizonte
(Brazil). The children were all 7 years of age at the beginning of the study. Dental
status was measured by the decayed, missing and filled teeth (DMFT) index. Only
the eight deciduous molars were considered, which implies that the smallest possible
value of the DMFT index is 0 and the largest is 8. The prospective study was for
a period of two years. The aim of the caries prevention study was to compare four
methods, namely, oral health education, enrichment of the school diet with rice bran,
mouthwash with 0.2% sodium fluoride solution and oral hygiene. Six schools took part
in the study. Interventions were carried out according to the following scheme: School

1, oral health education; School 2, all four methods together; School 3, the control
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Treatment Effect of DMF'T Data 85

group; School 4, enrichment of the School diet with rice bran; School 5, mouthwash
with 0.2% sodium fluoride solution; School 6, oral hygiene. The six treatments were
randomized to the six schools, so that all children of a given school received the same
treatment. 797 school children were examined both before and after the trial, their
dental status evaluated and the DMFT index computed. The DMFT index data for
the six treatments (schools), denoted as DMFT1, at the beginning of the study and
those, denoted by DMFT?2, at the end of the study are given in Béhning et al. (1999).
Also given in Bohning et al. (1999) are information regarding the covariates Gender
(Female, Male) and Ethnic group (Dark, White, Black).

To study treatment effects Bohning et al. (1999) use a zero-inflated Poisson re-
gression model (ZIPR) of the DMFT?2 data with School (School 1 to 6), Ethnic group
(Dark, White, Black), Gender (Female, Male) and log(DM FT'1 + 0.5) as covariates.
In this chapter, we use a bivariate zero-inflated Poisson regression model (ZIBPR)
for the paired data (DMFT1, DMFT2), with School, Ethnic group and Gender as co-
variates. The main difference between their modeling approach and ours is that they
use log( DM FT1+ 0.5) in the ZIPR model as a covariate, whereas, we jointly model
DMFT1 and DMFT2. We develop an EM-algorithm (Dempster et al., 1977) to obtain
the maximum likelihood estimates of the parameters of the ZIBPR model. Further,
we obtain the exact Fisher information matrix of the parameters of the ZIBPR model
and develop a procedure for testing treatment effects. A model selection procedure
is given to decide on an appropriate model. For the DMFT index data, based on the
model selected, we arrival at a ranking of the treatment effects which coincides with

that from a simple analysis of treatment effects.
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In Section 7.2, we introduce the zero-inflated Poisson regression model (ZIPR)
and zero-inflated bivariate Poisson regression model (ZIBPR). An EM-algorithm for
obtaining the maximum likelihood estimates is developed in Section 7.3. In Section
7.4, we obtain the exact Fisher information matrix for model ZIBPR, which is given
in Appendix C, and develop the procedure for testing treatment effects for the DMFT
index data. Analysis of the DMFT index data and a comparision of the analysis by

Bohning et al. (1999) are given in Section 7.5.

7.2 The zero-inflated Poisson and bivariate Poisson regres-

sion models

Let y represent the DMFT2 count. A commonly used model for y is the Poisson

model

f(y, A) = exp(—=A)AN¥/yl. (7.2.1)

In practice, however, a Poisson model may not fit count data of the type DMFT2,
because of the presence of more zeros in the data than what can be expected under
a Poisson model. A model that takes account of the extra zeros in the data is the

zero-inflated Poisson model.

w+ (1 —-w)f(0,)), fy=0,
fily, A, w) = (7.2.2)

(1 - w)f(yv )‘)’ Ify >0,
where w is the zero-inflation parameter. This model can be generalized by including
covariates into the model. Note, our purpose is to test for the effects of the treatments

after accounting for covariates including the base-line DMFT index. Suppose there
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are k treatments and p covariates, including the DMFT1 counts. Now, let z; be a
k x 1 vector of covariates representing the treatments and 0, = (611, B2, -.., i)’ be
the corresponding k x 1 regression parameters. Further, let zo be the p x 1 vector
of other covariates, such as Gender, Ethnic group, log{( DM FT1 + 0.5) etc., and
B2 = (P21, P2z, .-, Pop)’ be the corresponding p x 1 vector of regression parameters.

Then, model (7.2.2) can be written as

w4+ (1—w)f(0,x), ify=0,
fily, \w) = (7.2.3)

1 =w)f(y, V), if y >0,
with log A = 251 + 2,5;. We denote this model as zero-inflated Poisson regression
model (ZIPR). Note that the ZIPR model (7.2.3) is equivalent to the ZIPR model by
Bohning et al. (1999) in which they introduce an intercept term. In our ZIPR model
(7.2.3), P11, P12, - - -, Pix are the effects of the k treatments. Then, testing for no
effect of the jth treatment is equivalent to testing Hy : Gy; = 0, i=1,..., k.

However, note that the data (DMFT1, DMFT2) are paired count data as these are
obtained before and after application of a treatment. It may then be more appropri-
ate to consider a bivariate zero-inflated Poisson model for the paired data (DMFT1,
DMFT?2). Denote (Y1,Y2) as the paired data (DMFT1, DMFT2). Then, the bivari-
ate Poisson model for (Y7,Y;) (see Holgate, 1964; Irwin, 1963; Paul and Ho, 1989;
Kocherlakota and Kocherlakota, 1992, and Karilis and Ntzoufras, 1998) can be writ-

ten as

min{y1,y2} —i\y2—i\q
Uiy
1 2 0

f2(y1,“yzi Ao; A1, )\2) = eXP(—/\l — A2 — Ao) Z (

2.4
i—o Y1~ )y — B)l’ (7.2.4)

where E(Y1) = A1 + do, E(Ya) = A2 + Xo and Cov(Y3,Ys) = Xo. Here we use a
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log-linear model for the ratio of the two mean parameters A\; and Ao
log(A2/A1) = zym + To7s, (7.2.5)

where, z1 is a k x 1 vector of covariates representing the treatments and ; is the
corresponding k x 1 regression parameters, I, is the (p — 1) X 1 vector of covariates,
such as, gender, ethnic group etc., and 7, is the corresponding (p — 1) x 1 vector of
regression parameters. Note Ay = A\j exp(z}y1 + Z472), so that A; can be considered
to be a parameter corresponding to the base-line counts DMFT1.

As in the Poisson regression model, a bivariate Poisson regression model may
not fit paired count data of the type (DMFT1, DMFT2) because of the presence
of more paired zeros in the data than can be expected under a bivariate Poisson
regression model. A model that takes account of the extra zeros in the data is the
zero-inflated bivariate Poisson regression model (ZIBPR). Let € be the proportion
of pairs of observations (y1,y2) having extra zeros. Then a bivariate zero-inflated

Poisson regression model can be written as

0+ (1 —0)£2(0,0] Ao, A1, A2), if (y1,%2) = (0,0),
f3(y1, 2] 6, Ao, A1, A) =

(1= 0)fay1, val Aoy A1, A2),  ifyr > 0,92 >0,

(7.2.6)
with Ay = A exp(xjy1 + Z572). Note that this model can be further generalized by
introducing two additional zero-inflation parameters: one when zero inflation occurs
for 4, and not for ¥, and the other when zero inflation occurs for y, and not for y;.
To avoid complications we do not consider such a model. Note that under model

(7.2.6) testing for no effect of the ith treatment is equivalent to testing Ho : v1; = 0,
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i=1,..k

7.3 Estimation of the parameters of the zero-inflated bivari-

ate Poisson regression models.

Dempster et al. (1977) interpreted mixture data as incomplete data by regarding an
observation on the mixture model as missing its component. The zero-inflated bivari-
ate Poisson model can be interpreted as a mixture of a bivariate Poisson distribution
fa(y1, y2| Ao, A1, A2) and a distribution with a point mass of one at (0, 0) with mixing
probability 6.

Let (Y145, Yoi;) denote the (DM FT1, DM FT?2) index of the jth observation in the
ith treatment, 7 = 1,..,m;, and ¢ = 1,...,k. Now, the observation (0, 0) may come
from a bivariate Poisson distribution or from a distribution with a point mass of one

at (0, 0). Let

1, if (Y15, y2i;) is observed from fo(y1,ya| Ao, A1, A2) ,
Iij =

0, otherwise.

In the application of the EM algorithm we consider I;; as missing data.

Further, the pair of random variables (Y}, Y3) has a bivariate Poisson distribution,
ifY1,=Z1+Zyand Yy = Zy+ 27y, where Z;,7 = 0, 1, 2 are independent Poisson random
variables with parameters Ao, A; and A, respectively (Kocherlakota and Kocherlakota,
1992). Thus, for j = 1,...,n;, @ = 1,..., k, we can write y1;; = 2155 + 20i; and yo;; =
29ij + Z0ij, and consider zg;; as missing data.

In the application of the EM algorithm, the incomplete data consist of y;;; and

ya2;; and the corresponding complete data consist of Y145, ¥2i5, 20i5 and L5, j = 1,...,ng,
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t=1,...,k. Note that under the complete data setup, yii; — 20ij, Y2i; — 20i; and 2p;;
are independent Poisson distributed with densities f(y1i; — 20ij, A1s), S (Y2ij — 2045, A2ij)
and f(zoi;, Aoi) respectively. Therefore, the complete likelihood function is
c 1-Ii;
L*= H 9&- ’)[(1 — 00) f (Y1ij — 2065, Ma) f (Yaij — 20855 Maiz) f (20i5> Noi)] ¥
{6 (w155 ,y2¢5)=(0,0)}

H [(1 = 00:) f (i — 201 M) f (Wi — 2033, Aaij) f (Z0igs Aoi)]™,
{6 (W1i5,92:5)7(0,0)}

where Agij = Apexp(zy;m + Toyv2) for j = 1,..,m, ¢ = 1,..,k and 0y is the
zero-inflation parameter for ith treatment, ¢ = 1,...,k. Then, the complete data

log-likelihood function is given by

Z 2{(1 - Iij) 10g(901-) + Iz’j log(l — 901)

i1 =1
+  Iijlog[f(y1ij — 20i5, Mi) f(Yaij — Zoij, A2ij) f(20i5, Aoi)]}-

Let zj; = (205, %%;), At = (A1, Arzy o Ak)'s Ao = (Rot; Aoz, -y Aok)’s B0 = (Bot,

o2, 90k)l, andy' = (’)’L’Yé) with ’Yi = (’)’117712, ---,’Ylk) and ’Yé = (’721,722, ---,’Yz(p—l))-

The complete data log-likelihood I can be then written in a simplified form as
© = l%)\l + l/\o + l90,

where

k  n
l’y,/\l = Z Z ylz] 2054 10g<>\11) A — log(ylij - inj)!
+ (yzzg inj) Ty — Ati eXP(CUQﬂ) - 10g(y2ij - ZOij)!]a

ko n;
by = ZZ Iij (2065 10g Aoi — Xoi — log(20:5)]],

k n;
loy = ZZ ilog(1 — 06:) + (1 — L) log(60:)].
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The maximum likelihood estimates of the parameters 71, 2, A1, Ags and Oo;, 1 = 1, ..., k
can be found by using the EM algorithm. The E-step and M-step of the EM algorithm
are described below.

E-step:
Calculate the expectations of the missing data zp;; and I;; conditional on the incom-

plete data (y145,y2i5), 7 =1, ...,mi, ¢ = 1,..., k, respectively as
min{yii;,y2i; }
Uij = E(ZOij|?/1ija ?/Zij) = Z TP?"[ZOij = TIYuj = Y1ij, Yoij = y2ij]
r=1

min{y1s;,¥2:5}

= Z TPT[ZOU =1, Y1ij = Y1ij, Yoij = Y2ij]
PrYi; = y1ij, Yoi; = Yoij]

r=1

min{y1i;,y24; }

_ Tf(Ta AOi)f(ylz'j -7 >\1i)f(y2z‘j -7, >\2ij)
>, (1)
F3(Y1ij, Yaij| Oois Aois A, Aaij)

r=1
S 0925} 3 (1 — Gos) £ = 1, M) f (i — 7 o) f (Waig — 7 Daig)
f3(y135, Y2ij| Goir Mo, Avis Aaij)
Aoi(1 — Hoz-)zzg{yw_l’y%_l} Flyng — 1=, M) f(yai — 1 — 1, Aayy) £ (1, Aoi)
f3(y1ij; y2ij‘ Boi, Mois M, )\21'3')
Fa(ri; — 1, y2i5 — 1] Xoiy Aviy A2ig)
J3(Y1ij» Yaij| Oois Moiy Ais, Aaij)

= >\0i(1 - 901)

)

and

vij = E(li|y1y, v2i5) = PrlL; = UYu; = vuij, Yo = Yaij)
Prili; = 1,Y1; = Y1ij, Yoi; = Yij]
PT[YUJ' = ylz‘j7Y2¢j = y2ij]
_ Fa(vis, Y2i3| Aois Miy Aaij)
— (1 - 60) |
f3(Y1is, Y2is] Oois Aois A1iy A2ij)

M-step:
Now, replacing zq;; and I;; by u;; and v;; respectively in [, 5, {5, and lg,, we obtain
lA,,, Ay ] Ao and igﬂ. Note, to maximize ¢ for given values of vi; and u;;, we only need to

maximize [ Ao igo and l:,, A, separately. Thus by maximizing ] Ao We obtain
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ZT 1 VijUij
an sz )

and by maximizing lao, we obtain

B =1— >y Vi /i =1,k

Aoi = i=1,...,k,

To find maximum likelihood estimates of v and Ay;, i=1, ..., k, we need to use the
Newton-Raphson method. For this we first need to calculate the first derivatives of

lA% A, With respect to v and A;’s, which are

3[7 At Zni Y1ij + Y2ij — 2Usj ; .
s — i —1-= —r.. =U . 21,...,k,
O\ =1 & A exp(=2;;7) Mot

and

(9[ A y21, i

j=1

where U, is (k+p — 1) x 1 vector and Uy, = (Ux;;, Uryg, -y Uny,)'- We then need to

calculate the entries of the observed (2k +p — 1) x (2k + p — 1) information matrix

obs obs
Jobs — I/\1/\1 I/\l’)’

AL T ?

obs obs
I .Y I

ol ol
obs WA obs obs’ __ A
where I35, = < 81%;) R =105 = ( m@k;@;)
kxk kx (k+p—1)

I
and I = ( 2L

with

75)
oY (k+p—1)X (k+p-1)

?

5’17 M iv [yuj + Y2i; — 2uij:|
a)‘%z =1 ’ )‘%z
al2 N n; )
_ﬁ’aiy’ = sz’j [eXp(—xiﬂ)] Lijs
7 j=1

ol k&
ny’:';; = szij [)\u exp(— zﬂ)] CUU

i=1 j=1
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Then, given the values of ,\ﬁs), ~®) and (I;\”l’f,y)(s) at the s—th step, the values of the

parameter estimates at the (s + 1)—th step are

s+1 s
e\ o

Il
+
—
—
=
SN’
L

,Y(s+1) ,y(s) U’s’S)
To obtain the mle’s of parameters 1, 2, A1;, Ao; and Oy;, ¢ = 1, ..., k, we need to iterate

between the E-step and M-step until convergence.
7.4 Tests for treatment effects

Our interest is to test for the treatment effects after controlling for the effects of other
covariates. Note, for the DMFT index data we have six treatments (schools) and 3

other covariates. Now the observed data log-likelihood is

k. n;

I = Zzlog[f3(ylijay2ij|90@'7)\01‘7)\11‘7)\21‘]')]7 (7.4.1)

i=1 j=1
where Agij = Ay exp(zy;71 + Th;72) for j=1,..,n; and i =1, .., k.

Let I be the expected information matrix for the parameters v, A, Ao and 6y,
obtained from the observed data log-likelihood (7.4.1). Note that there are 3k para-
meters \i;, Ao; and 6g;,% = 1, ..., k in the zero-inflated bivariate Poisson distribution, k
treatment parameters v,;,7 = 1, ..., k and p—1 regression parameters 7yy;, % = 1,...,p—1

reprmeter of interest and ¢’ = (74, A}, Ap, 8p) is the nuisance parameter. Now partition

I as

1’7171 I’Yl<i>

/

I’n ¢ I‘M’
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Then, the approximate covariance matrix of 4; is I""M = (I,,,, — 171¢I;(;Iin o)
(McCullagh and Nelder, 1989, Page 472), where 4; is the maximum likelihood esti-
mate of 7;.

If we use the maximum likelihood estimates §; and ¢ = (52, A1, Ao, o) of the
parameters v; and ¢ = (72, A1, ho, 6) in I™™, we obtain I, the estimate of "™,
Thus the asymptotic variance of 4y;, 1 = 1, ..., k, is given by the corresponding ith

diagonal element of the matrix [™7. Then the effect of the ith treatment is tested

by

Zi = "3’11'/\/ ’UCLT(’S’M), (742)

which is asymptotically distributed as N(0,1).
Now, denote the control group as c. Then, to test the effect of the ith group
relative to that of the control group, we compare 4y;, ¢ # ¢, with 44, for which we

use

Zi — _ ;yli _A'A)’ch _ 7 (743)
Vvar(31:) — 2cov(Fi, H1e) + var(fae)

where cov(%1:, 41) is the (4,c)—entry of /"™ | and i = 1,2,...,k and i # c. The

statistic Z;. then is asymptotically distributed as N(0, 1).

7.5 Analysis of the DMFT data

In this section, we deal with the analysis of the DMFT index data discussed earlier
(for the data see Data sets, Table D.4). We first analyse the data using the ZIPR

model (7.2.3) with log-likelihood.

lo = Z?=1 Z;Ll log f1(yaij, Aaij, wi)
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with log Agi; = 29,61 + 25;;02, for j = 1,..,m; and ¢ = 1,...,6. Let (a1, 032 and
B20 be the components of Oy corresponding to the covariates gender, ethnic and
log(DMFT1 + 0.5) respectively.

We first test whether the zero-inflation parameter or j = 1,...,m; and i = 1,...,6.
Let (a1, 822 and fgo be the components of [, corresponding to the covariates gender,
ethnic and log(DMFT1 + 0.5) respectively.

We first test whether the zero-inflation parameter w varies from school to school.
For this we consider two models:

Model ZI: Each school has different zero-inflation parameters w;,i = 1, ..., 6, treat-
ment effects 0,7 = 1,...,6, and common regression parameter Js.

Model ZII : Each school has different treatment effects 61,7 = 1, ..., 6, and common
zero-inflation parameter wy, common regression parameter Js.

The maximized log-likelihoods along with the number of parameters estimated
for the above two models are given in Table 7.1. Analysis of the results in Table
7.1 shows that zero-inflation parameters are not significantly different from school to
school and Model ZII is the model of choice. Note that the values of log-likelihoods
in Table 7.1 have some differences with those in Table 2 of Bohning et al. (1999, page
203). For example, the values of maximized log-likelihood for Model ZI and Model
ZII are -1228.89 and -1232.02, and the corresponding log-likelihood values obtained
by Bohning et al. (1999) are -1242.68 and -1246.89 respectively. This difference could
be the result of the precision used in the calculation. We used double precision in
our Fortran programming. However, the conclusion regarding the choice of the model

remains the same.
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We next check if we can eliminate any or both of the two covariates gender and
ethnic group from the model. For this we consider the following sub-models of Model
ZII:

Model ZII1: Each school has different treatment effects (y;,¢ = 1,...,6, and
common zero-inflation parameter wy and common regression parameter (; and B
corresponding to ethnic group and log(DMFT1 + 0.5).

Model ZII12: Each school has different treatment effects 31,7 = 1,...,6, and
common zero-inflation parameter wy and common regression parameter Jso and (g
corresponding to gender and log(DMFT1 + 0.5).

Model ZII3: Each school has different treatment effects 31;,7 = 1,...,6, and
common zero-inflation parameter wg and By corresponding to log( DM FT1 + 0.5).

The maximized log-likelihoods along with the number of parameters estimated for
models ZII1 — ZII3 are also given in Table 7.1. Analyses of these results in Table
7.1 show that neither of the two covariates has significant effect. So, our final model

is Model Z113 with log-likelihood

b= Yo, > iy log f1(yaij» Azij» wo),

where, log Agyg; = ;01 + Baolog(yry; +0.5), for j = 1,...,m; and 4 = 1,...,6. The
maximum likelihood estimates of the parameters of the ZII3 model together with

their standard errors and other relevant quantities (test statistics) are given in Table

7.2.
Based on the Z-values in Table 7.2 the schools can be ranked, in terms of improve-

ment in dental hygiene, from most significant improvement to the least significant

improvement as School 2, School 5, School 1, School 6, School 3 and School 4. Now
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we compare all schools with the control group (School 3). The Z, values to do these
comparisons are also given in Table 7.2. It can be seen that the schools that signif-
icantly improved compared to School 3 are School 2, School 5 and School 1. These
results coincide with those in Table 1 of Bohning et al. (1999). Note, their final model
includes the covariates such as gender and ethnic. We do not include these covariates
as they do not contribute significantly to the model fitting (see Table 7.1).

We now analyse the data using the ZIBPR model (7.2.6). Recall that the observed

data log-likelihood for this model is

6

I = Z log[f3(Yuigs Yaij| Ooir Mois Asis Azig)], (7.5.1)
i=1 j=1

where Agi; = Ay; exp(m’uj”yl +§:’2ij72) forj=1,..,n;and7=1,...,6. Let 51 and ~yq3 be
the components of v, corresponding to the covariates gender and ethic respectively.

In what follows we fit the model (7.5.1) and a few sub-models to the DMFT index
data. The models considered are:

Model I: Each school has different zero-inflation parameters 6y;,7 = 1,...,6, co-
variance parameters Ag;,i = 1,...,6, Ay, 7 = 1,...,6 parameters, treatment effect pa-
rameters 7vi;, ¢ = 1, ...,6 and common regression parameter ;.

Model II: Each school has different covariance parameters Ag;, 72 = 1,...,6, Ay, 0 =
1,...,6 parameters, treatment effect parameters v;;,¢ = 1,...,6 and common zero-
inflation parameter fy, and common regression parameter yo.

Model III: Each school has different zero-inflation parameter 6y;,7 = 1,...,6,
A1, 1 = 1,...,6 parameters, treatment effect parameters vy;,¢ = 1,...,6 and common
covariance parameter Agp and common regression parameter ys.

Model IV: Each school has different A;,7 = 1, ..., 6 parameters, treatment effect
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parameters 7yy;,% = 1, ...,6 and common zero-inflation parameter fyy, common covari-
ance parameter Ago and common regression parameter ;.

The maximized log-likelihoods along with the number of parameters estimated
for the above four models are given in Table 7.3. Analysis of the results in Table 7.3
shows that Model I is the model of choice. Again, we next check if we can eliminate
any or both of the two covariates gender and ethnic group from the model. For this
we consider the following sub-models of Model I:

Model I1: Each school has different zero-inflation parameters 6y;,7 = 1,...,6,
covariance parameters Ay, % = 1,...,6, Ay;,¢ = 1,...,6 parameters, treatment effect
parameters 7;;,7 = 1,...,6 and common regression parameter ys; corresponding to
the covariate ethnic group.

Model I2: Each school has different zero-inflation parameters 6y;,7 = 1,...,6,
covariance parameters \g;,2 = 1,...,6, A\y;,4 = 1,...,6 parameters, treatment effect
parameters 7,4 = 1,...,6 and common regression parameter 7y, corresponding to
the covariate gender.

Model I3: Each school has different zero-inflation parameters 6y;,7 = 1,...,6,
covariance parameters Ao, ¢ = 1,...,6, Ai;,¢ = 1,...,6 parameters, treatment effect
parameters vyy;,2=1,...,6

The maximized log-likelihoods along with the number of parameters estimated for
models I1-I3 are also given in Table 7.3. Analyses of these results in Table 7.3 show

that neither of the two covariates has a significant effect. So, our final model is Model
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I3 with

6 ny
I = Z 10g[f3(y1ij,y2ij]901'7)‘01',)‘11,)‘21'3')]; (7.5.2)

i=1 j=1

where Agi; = Ay; exp(zy,;v1) for j =1,..,n; and i = 1, ...,6. The maximum likelihood
estimates of the parameters of the Model I3 together with their standard errors and
other relevant quantities (test statistics) are given in Table 7.4.

From the Z-values in Table 7.4, we see that dental hygiene significantly improved
for all schools. Again, based on these Z-values we can rank the schools, in terms
of improvement in dental hygiene, from the most significant improvement to least
significant improvement as School 1 , School 5 , School 2, School 3, School 4 and
School 6. Note these rankings differ from those obtained by analysing the data using
the ZIPR model. However, these rankings of the schools coincide with those that can
be seen from the mean difference 41; — 9o;, ¢ = 1, ..., 6, where 7; and 7,; are the means
of the DMFT1 and DMFT?2 respectively (see Table 7.5).

We note further that dental hygiene improved not only for the school children in
which some treatments were applied, but also for the children in the control group.
This finding coincides with that found by Bohning et al. (1999). Bohning et al.
(1999) explain the improvement as “There are two possible explanations for this. One
possibility is a trend in dental caries that has affected all the schools in the BELCAP
study in a similar way. However, it could be that during the study, especially while
the intervention phase was in progress, information from one school to another could
have been passed over (spillover effect). Frequently meetings were held between the
co-ordinators of the BELCAP study and the heads of the schools, to discuss matters

concerning the execution of the programs. So, in this case a spillover effect cannot
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be completely excluded.”

We now compare improvement of dental hygiene in School 1, School 2, School
4, School 5 and School 6 with School 3 (control group). The Z. values are given
in Table 7.4. It can be seen that dental hygiene did not improve significantly in the
schools in which treatments were applied compared to that in School 3. Thus, it looks
as though improvement in dental hygiene occured among the children of all schools

mainly because of the awareness of dental hygiene as a result of the experiment.
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Table 7.1: Maximized log-likelihoods under ZIPR models

log-likelihood number of
Model value parameters in model
ZI -1228.49 16
ZII -1232.02 11
ZII1 -1232.024 10
ZI12 -1232.770 9
ZII3 -1232.773 8
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Table 7.2: Parameter estimates of the ZIPR model ZI13 with standard errors

Standard
Parameter Estimate error of 81 Z-value Z.-value
School 1 (f11) -0.369 0.095 -3.891 -2.597
School 2 (B12) -0.462 0.098 -4.692  -3.291
School 3 (513) -0.136 0.087 -1.569 0.000
School 4 (814) -0.112 0.087 -1.281 0.287
School 5 (B15) -0.372 0.090 -4.113  -2.703
School 6 (516) -0.216 0.091 -2.380  -0.875
log(DMFT1 + 0.5)(82) 0.733 0.040 18.342

wo 0.045

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Treatment Effect of DMFT Data 103

Table 7.3: Maximized log-likelihoods under the ZIPBR model

log-likelihood number of
Model value parameters in model
I -3016.21 27
IT -3026.94 22
II1 -3031.92 22
v -3041.27 17
In -3016.30 26
I2 -3017.37 25
I3 -3017.39 24
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Table 7.4: Effect estimates with standard error for DMFT index data based on model

I3

Standard
Parameter 6o Ao A1 " error of y; Z-value Z.-value
School 1 (y11) 0.085 0.838 3.427 -1.052 0.106 -9.941 0.322
School 2 (y12) 0.222 0.453 3.098 -0.927 0.104 -8.891 1.003
School 3 (y13) 0.088 1.844 2211 -1.111 0.151 -7.349 0.000
School 4 (y14) 0.131 1.185 2.615 -0.706 0.103 -6.861 2.211
School 5 (y15) 0.221 1.256 3.010 -1.247 0.134 -9.293 -0.674
School 6 (y16) 0.143 1.219 2.196 -0.907 0.136 -6.626 1.001
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Table 7.5: Averages of DMFT1, DMFT2 and their differences

average DMFT1 DMFT2 DMFT1-DMFT2

School 1 3.90 1.86 2.04
School 2 2.76 1.31 1.45
School 3 3.70 2.35 1.35
School 4  3.30 2.15 1.15
School 5 3.32 1.65 1.67
School 6 2.93 1.81 1.12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7. Treatment Effect of DMFT Data 106

Table 7.6: The Rank of treatment effect for different models according to Z-value.

Béhning et al. Rank Rank Rank for average

Model (1999) in Table 7.2 in Table 7.4 (DMFT1-DMFT2)
School 1 3 3 1 1
School 2 1 1 3 3
School 3 6 5 4 4
School 4 5 6 5 5
School 5 2 2 2 2
School 6 4 4 6 6
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Chapter 8

Summary and Future Research

This chapter summarizes the conclusions of this thesis and recommends some prob-

lems for future research.

8.1 Summary

This thesis consists of two parts. Part I, including Chapter 3, Chapter 4 and Chapter
5, developes procedures for testing homogeneity of several location-scale populations
in general. We compare our procedure with the procedure proposed by Singh (1986)
for the normal case and apply the general method to several non-normal cases. Part
I1, including Chapter 6 and Chapter 7, analyses the treatment effects of paired count
data with zero-inflation and over-dispersion. We develop two procedures, one of which
is illustrated by the PVC data (Berry, 1987) and the other is illustrated by the DMFT

data (Bohning et al., 1999).

107
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For testing simultaneously the equality of means and the equality of variances of
several normal populations, Singh (1986) uses a test statistic based on the combination
two independent likelihood ratio statistics. Singh’s procedure is based on a method
by Fisher (1950) for combining two or more independent test statistics to test a
general hypothesis. We extend Fisher’s method to location-scale models in general.
Two test statistics are developed, one of which is based on the combination of two
likelihood ratio statistics and the other is based on the combination of two score
test statistics. Under the general location-scale setup, asymptotic independence is
established for the two likelihood ratio statistics as well as for the two score test
statistics. Then, by applying the general results, we obtain specific test statistics for
testing homogeneity of several normal (u, o) populations, several negative binomial
(m, c¢) populations, several beta-binomial (7, ¢) populations and several Weibull (1,
¢) populations . In the normal case exact independence of the two likelihood ratio
statistics is shown by Singh (1986). In this thesis, we show exact independence of the
two score test statistics. In all four cases simulations are conducted to compare the
two procedures. We conclude that Fisher’s method of combining two statistics, even
when they are only asymptotically independent, does, in general, perform well for
testing homogeneity of several populations in terms of the means and the variances.
However, the score test statistics have simple forms, are easy to calculate, and have
uniformly good level properties. Therefore Fisher’s method based on combining two
score test statistics might be the method of choice.

Another problem considered in this thesis is the analysis of data in the form

of paired counts with zero-inflation and over-dispersion. As we point out before,
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Poisson and binomial models are most widely used models for count data. However,
those model may not fit count data well, when the data exhibit zero-inflation and
over-dispersion. In practice, the paired counts data are obtained before and after an
experiment and the extra zeros may occur in different ways. For example, the PVC
data, given as paired counts by Berry (1987) for before and after drug administration,
only have extra zeros after the drug administration, while the DMFT index data
(Bohning et al., 1999), which have the form of (DMFT1, DMFT2) as paired count
data for pre-treatment and after-treatment, have extra zeros, in most situations, as
the common pair of (0, 0).

For the PVC data, the score test statistic for testing for treatment effect in data
is obtained based on a zero-inflated beta-binomial model, which allows us to analyse
treatment effects while considering the effect of zero-inflation and over-dispersion.
Results of a small simulation experiment, to study small sample behavior of a score
test and a likelihood ratio test, are reported and the PVC data are analysed. Both the
score tests and the log-likelihood ratio tests show good properties. Either the score
tests or the log-likelihood ratio tests can be used for testing the presence of treatment
effect. The score tests, however, may be preferable because they use estimates of
the parameters only under the null hypothesis. For the DMFT data, we introduce
a zero-inflated bivariate Poisson regression model (ZIBPR). We jointly model the
pre-treatment and the post-treatment counts. A model selection procedure is given
to decide on an appropriate model. For the DMFT index data, based on the model
selected, we arrive at a ranking of the treatment effects which coincides with that

from a simple analysis of treatment effects.
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8.2 Future research

For univariate case, based on a Poisson model and a binomial model, we can ob-
tain a zero-inflated Poisson and a zero-inflated binomial model. Further, based on
an over-dispersion model such as a negative binomial model and a beta-binomial
model, we can obtain zero-inflated negative binomial and zero-inflated beta-binomial
model, which are widely used to fit the count data with zero-inflation and over-
dispersion (Deng and Paul, 2000, and Hall, 2000). Therefore, for data in the form of
paired counts with zero-inflation and over-dispersion, it would be of interest to de-
velop zero-inflated bivariate Poisson model and zero-inflated bivariate binomial model
as well as zero-inflated bivariate negative binomial and zero-inflated bivariate beta-
binomial model to fit paired counts with varying zero-inflation and over-dispersion
parameters. In this thesis, we analyse the PVC data based on the zero-inflated beta-
binomial model and the DMFT index data based on the zero-inflated bivariate Poisson
model. And also the bivariate Poisson model can be further generalized by introduc-
ing two additional zero-inflation parameters: one when zero inflation occurs for the
pre-treatment count and not for the post-treatment count and the other when zero
inflation occurs for post-treatment count and not for the pre-treatment count. The
detail discussion is omitted here. In this section, we focus on testing the homogeneity

in the presence of the nuisance parameters.

In Chapter 3, we extended Fisher’s method to location-scale models in general.
Under the general location-scale setup asymptotic independence was established for
the two score test statistics by using the transformation of original parameters 1) and

¢ to the orthogonal parameters 1 and X according the results of Cox and Ried (1987).
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We found that:

(1) Compared with the score statistics which are obtained without using the or-

thogonal transformation, the score test statistics in Chapter 3 have simpler
ol?
OO

likelihood estimates dA) and ) of parameters ¢ and A\ are asymptotically inde-

expressions. The reason is that F ( ) = (0 and hence the maximum

pendent. This simplifies the information matrix.

(2) Even though it may not be easy to get explicit solution of the partial differential
equation (3.2.1), our score test statistics can be obtained in terms of the original

parameters without solving such a partial differential equation.

Cox and Ried (1987) outline the properties of orthogonality of 1 and X\. We list

some of them here, which are related to our problems of interest.
(1) The maximum likelihood estimates 1) and X are asymptotically independent;

(2) The asymptotic standard error of ¥ of 1 is the same irrespective of whether

is treated as known or unknown;

(3) ¥ = ¥()\), the maximum likelihood estimate of ¢ when ) is given, varies only

slowly with A.

According to these properties, we may conclude that the orthogonal nuisance

parameters may have less effect on the score statistics than those obtained by using
non-orthogonal nuisance parameters. It would be of interest to derive the score test

statistic with the orthogonal nuisance parameters and compare it with the one without
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such transformation to see if we may gain some better properties to test a statistical
hypothesis based on the orthogonal nuisance parameters.

Testing homogeneity in the presence of the nuisance parameters are widely dis-
cussed. In the following, we are interested in three cases based on score test statis-
tics. We obtain the score test statistics for: (I) Testing homogeneity in presence of
common nuisance parameters; (II) Testing the homogeneity against central mixture
alternatives; (IIT) Testing homogeneity, in terms of departure from simple models, in
generalized linear models. Conducting simulations and applying the above results are
the interest of future study.

(I) Test of homogeneity in the presence of common nuisance parameters

Let Y;; be the random variable for the observation j of group ¢, j = 1,...,n;,
i=1,..,kwith N = ZLI n;. We assume that the probability density function of Y;;
is f(yi; i, ¢) and I; = Z;zl log f(yi5; s, @) is the log-likelihood function for y;’s. The

usual homogeneity hypothesis in the presence of the common nuisance parameters is

Hy : Y1 = Y9 = ... = ¢, = 1, where ¢ and v are unspecified vs Hy : ¥;, 1 = 1,..,k
are not all same, where ¢ is unspecified.
By dly Ol
Let spe = | =—, 5 s d
el Snt <6¢8¢ aw)Han
0

Ay = diag (100, 160, ., 10"),

1) (1)
Ip Ly \
2 (2)
C., = Ly Iyg
(k—1) (k—-1)
\Low  Tus )
and
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k i k.G
Die1 Iasni Zi:lzz(ln)z&

Dnt =
k 1 k i
Zi:l Ii(bzﬁ Zi:l I<§>dz
. 921, , %, ; &,
where I¥) = B —=%| |, I¥) = B[ —— and IY = B| -2 |,
irp ( 3¢2 Ho) P OO H ¢ 3¢2 Ho
i=1,2,..k

If we use maximum likelihood estimates g@ and <;AS of the nuisance parameters ¥

and ¢ in sp;, Ant, Cne and Dy, then the score test for testing Hy against H; is
N O S S
Snt = Snt (Ant - CntDnt Cnt ) Snt- (821)

Now, we want to derive the homogeneity test statistic in the presence of a common
orthogonal parameter. For this we need to transform the parameters (v;, ¢), i =
1,...,k, into a set of orthogonal parameters (¥}, ¢), i = 1, ..., k(Cox and Reid, 1987).

Let (¥;(v¥?F, @), &), i =1, ..., k, be such a transformation which satisfies

@ , ;0 O _
I¢i¢ + Iwm a¢ -

0,i=1,...,k, (8.2.2)

| 2. . 2.
where Igi)d, =FE (— aii 5 ¢) and Ifb% =F (— g Jé) Then the above homogeneity

hypothesis is equivalent to
Hy - Yf =5 = ... = ¢f = ¢*, with ¢* and ¢ being unspecified vs H; : ¢}, i =1, .., k,
are not all the same and ¢ is unspecified.

As in Section 3.2, in terms of the original parameters (1, ¢) under Hp, the score

statistic S; is given by

S=Y 4, (8.2.3)

)
Hyp

. . . ol;
where §,; and 0y, 7 = 1, ..., k, are estimated values of —

O

2
0 _ ol

Hp
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it =1,..., k, obtained by replacing the nuisance parameters ¢ and ¢ by the correspond-
ing maximum likelihood estimates 7,@ and qAS under H.

Both of the score test statistics S; and S,,; can be used to test homogeneity in the
presence of the common nuisance parameter ¢. It would be of interest to compare
performances of these score statistics, both theoretically and by simulation which will
be subject of future investigation.

(IT) Test of homogeneity against central mixture alternatives

Mixture distributions are widely used to obtain a over-dispersion family of sam-
pling models. Test for mixtures are usually limited to a specific mixing. For example,
by mixing the Poisson distribution with the gamma distribution, we obtain the neg-
ative binomial distribution and by mixing the binomial distribution with the beta
distribution, we obtain the beta-binomial distribution. Liang (1987), Zelterman and
Chen (1988) develop score test statistics based on the central mixture model as the
alternative to test the homogeneity. This central mixture model is obtained by a
general mixture without specifying any distribution. In this section, we develop a
score test statistic by using orthogonal transformation to test homogeneity against
central mixture alternative based on the model proposed by Liang (1987).

Let Y;; be the random variable for observation j of group ¢, j = 1,...,n;, i =
1,...k, with N = Zle n;. We assume that the probability density function of Y;; is
f(ij; ¥i, ). The usual homogeneity hypothesis in presence of the common nuisance

parameter is
Hy: iy =g = ... = ¢ = 9, where ¥ and ¢ are unspecified vs Hy : ¢;, i = 1,..., k,

are not all the same, where ¢ is unspecified
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Assume that ¥; = ¢ + H%Z,-, ¢t =1,..., k, where the 2;’s are independently distrib-
y

uted from an unknown distribution F with zero mean and unit variance. Let

Li(ys;0,9,¢) = > log [ / F (Wi + 022, 9)dF (2) (8.2.4)
i=1

is the log-likelihood function based on the mixed model for the y;’s. Then, the hy-
pothesis of homogeneity is equivalent to the hypothesis

Hy:0=0vs H :6>0.

Under some regularity conditions, the score test statistic developed by Liang

(1987) for testing Hy is

R .1
Scnt = Scnt/vcntzy (825)
where
k k
1 ol; 9%,
Sent = = EZ I:( ) 8?,[)2] )
i= =1 Hy
and
-1
. o Ty Uy G0y
Uent = o0 — (’59’1})7 ZGd)) 3
gy loo 194

2
with 299 = E 1E al ’i9¢ = Zl-czlE %
i= 89 % Ho

are the estimated values of Sent and ve,; by replacing the nuisance parameters ¢ and

2
) , .., etc, and 3.,; and Dep

¢ with the corresponding maximum likelihood estimates 1& and g?) under Hy.
Now, we develop the score test statistic by using the orthogonal nuisance parame-

ters. For this we need to transform the parameters (6, ¢, ¢) into a set of orthogonal

parameters (6, ¥*, ¢*), such that 6 is orthogonal to (¢*, ¢*)(Cox and Reid, 1987). Let
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(0, ¥(6, ¢, ¢*), ¢(8,v*, $*)) be such a transformation which satisfies the equation

gp oy % 9
gg) — - : (8.2.6)
o Ty 26 10y

Now, in terms of the orthogonal parameters, we denote the likelihood function based

on the mixed model for the y;’s as

I = Zz* Yiji 0,0, ¢ Zlog Uf Y " + 032, ¢ )dF(zz)] . (8.2.7)
ok ooy ouap 1oL\ &
W {%%*%%*5 {(%) : awz”
Vet = i39|H0 Zz~ E 80

) 2
oY o¢ .
Note that — and — in the expressions for s.; and v.; can be expressed in terms

a0 00

of 444, tgy,..-etc from (8.2.6). So we can calculate the quantities s, and v, in terms of

Let

oLz
Sct = E?:l 50

bl

o
and

oly

original parameters 1 and ¢, without solving the partial differential equation (8.2.6).
If we use maximum likelihood estimates 12) and qAﬁ of the nuisance parameters 1 and
¢ in s, and v, then the score test for testing Hy against H; is

Y

Again, both of the score test statistics S.,; and S, can be used to test the homo-
geneity against central mixture alternatives. Comparing the performances theoreti-
cally and through a simulation study would be interesting.
(ITI)Test of homogeneity for generalized linear models

Mixed effects models based on a generalized linear model are widely used in many

statistical studies. These models can be used to fit cluster data which may have
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interclass correlation within clusters. Jacqmin and Commenges (1995) develop a
score test of homogeneity for mixed effect models. In this section, we develop a score
test statistic by using an orthogonal transformation to test homogeneity based on the
model proposed by Jacqmin and Commenges (1995).

Let Y;; be the random variable for observation j of group 4, j = 1,...,n,, i =
1,...,k with N = Z§=1 n;. We assume that the probability density function of Y;; is
f(yij; ¥s, @). Further, we assume that the probability density function of Y;; is defined

as:

f(Yij3 055, ¢) = exp %;_g(_()_”_) + C(yij, ) (8.2.8)

The mean and variance of Y;; are p;; = E(Y;) = ¢'(8;;) and 02 = var(Y;;) = ¢g" ().
If 6;; is a linear combination of the vector explanatory variables, then (8.2.8) specifies
a generalized linear model , where 6;; is the canonical parameter, ¢ is the dispersion
parameter, and (¢')~! is the canonical link (McCullagh and Nelder, 1989).

The mixed effects model considered by Jacqmin and Commenges (1995) is
01;_7' = Xz;ﬁ + Zijai, (829)

where (3 denotes a p x 1 vector of fixed effects with associated design vector X,;, and
o is the scalar random effect with associated covariate Z;;.

Let o; = o + D%v,-, where the v;’s are independently and identically distributed
with unspecified distribution F' with zero mean and unit variance. We denote the

log-likelihood function as

li = Z;l(ym‘;D,ﬁ,a,qﬁ) = Z;log {/f(yij;ﬂ,a + Dy, $)dF(v)|,  (8.2.10)
j= j=
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The hypothesis of homogeneity is Hy: D =0vs H; : D > 0.

To derive score test statistic for Hp, Jacqmin and Commenges (1995) first as-
sume that the dispersion parameter ¢ is known and (o, 3) are considered as nui-
sance parameters. Following Liang (1987) and Chescher (1984), the score test statis-
tic Hs(o, B, ) is obtained (for details, see Jacqmin and Commenges, 1995, page

-~

1239). Further, when the parameter ¢ is unknown, a consistent estimate ¢ =
21_12 1 (Yij—1i5)?/ (Z, 12 e '(6; )) is used to replace ¢ in the statistic Hs(a, 3, ¢).
So Hg(a, B, qAS) is the statistic to test homogeneity when the parameter ¢ is unknown.
Now, in the following (IIIA) and (IIIB), we simplify the information matrix
through an orthogonal transformation and obtain the exact variance of the score
function. Further, we obtain score test statistics S; and S corresponding to the sta-
tistics Hs(a, 3, ¢) and Hg(w, B, (Z;) A simulation study to compare the performance
of these procedures would be interesting.
(IITA) Score test of homogeneity when ¢ is known
For this we need to transform the parameters (D, 8, «) into a set of orthogonal
parameters (D, 8*, «*), such that D is orthogonal to (8*, o*)(Cox & Reid, 1987). Let

(D, B(D, B*, o), a(D, B*, a*)) be such a transformation which satisfies the equation

bon i da ;
oo afl 5—D— aD
= — , 8.2.11
7} » 8/8 . ( )
tap 88 oD 18D

2
where iqq = Zi;l E (%) y lag = Zle E {(gg) <g—gl)] ,eery €LC.

Now in terms of the orthogonal parameters, we denote the log-likelihood function
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based on the mixed model as

=Y D57 0) = Y log | [ Sl 007 + D )P (82:12)

j=1 Jj=1
Let
ok o JrouY a8 olda 1|[aL\? 8%
31“2i=1a—DHO—Zf=1{(@) 9D T 39D ' 2 (aa) Yaar|f|
and

N ol
v = ZDD‘HO = Zi’c=1E <6D

2
Ho)

3} 0
Note that 8_; and a—gin the expression of s; and v; can be expressed in terms of

taa, Lap,---€tc from (8.2.11). So we can express the quantities s; and v; in terms of the

original parameters 3 and o without solving the partial differential equation (8.2.11).
If we use maximum likelihood estimates B and & of the nuisance parameters 3 and «

in s; and vy, then the score test for testing Hy against H; is

(IIIB). Score test of homogeneity when ¢ is unknown

For this we need to transform the parameters (D, 3, a, ¢) into a set of orthogonal
parameters (D, §*, o*, ¢*), such that D is orthogonal to (8*, o*, ¢*)(Cox and Reid,
1987). Let

(D, B,a,¢) —(D, B(D, B*,a",¢"), (D, ", ", ¢*), §(D, 5*, a*, ¢*))

be such a transformation which satisfies the equation

. . . Oa )

laa o lag 8_D oD

g B | . '

Zlaﬁ 68 134 -8—% =" 11D |> (8'2'13)
g 09 .

’L;¢ Z),@tﬁ Lo a—D 1D
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2
where i, = Zle E (%) , baB = Zf=1 E {(gg) (gg’)] )., tC.

Now, in terms of the orthogonal parameters, we denote the log-likelihood function

based on the mixed model as
lf =Y Uy D, 070", ¢7) =) log [/f(yij;ﬁ*,oz* + D%vi,¢*)dF(”i)] - (82.14)
j=1 j=1

Let

)

~— 8D

k oL\ 88 ol da AL 8¢ 1| [oL\? %
= —t =+ e+ = + 5

4 06/ dD  dadD 949D 2 |\ O« da?

Hyp

and

. al;
Vg = ZDD|H0 = Zf=1 E 9D

Jda 0 0
il —ﬁ and —¢ in the expressions of s; and v, can be expressed

oD’ 8D oD

in terms of 44, tag,..., etc from (8.2.13). So we can calculate the quantities s, and

Hg

Again note that
v9 in terms of the original parameters 3, a, ¢ without solving the partial differential

equation (8.2.13). If we use maximum likelihood estimates B, & and ¢ of the nuisance

parameters 3, « and ¢ in sy and vy, then the score test for testing Hy against H is
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Table D.1: Counts of embryonic deaths in a control group and two treatment groups

(McCaughran & Arnold, 1976, Table 6)

Number of frequency

deaths control group dose level 1 dose level 2

0 7 5 4
1 2 4 2
2 1 0 3
3 0 1 0
4 0 0 1
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Table D.2: Toxicological data from Paul (1982)

Groups

Control, C (1 1 4
(i)12 7 6

Low dose, L o 11

()5 117
Medium dose, M (i) 2 3 2
()4 4 9
High dose, H i1 0 1

(i)9 107

0 00 O0O01

6 7 8 107 8

54 6 3 8 5

4 6 7 3 136 8 117

4 45 3 86 86

1 0 00 0 3 240

11104 8 10128 7 1

(i) Number of live foetuses affected by treatment. (ii) Total number of live foetuses.
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Table D.3: The PVC counts for twelve patients one minute after administrating a

drug with antiarrhythmic properties (Berry, 1987)

Patient PVCs per minute

number Pre-drug(z;) Post-drug(y;) Total(m;)

1 6 5 11
2 9 2 11
3 17 0 17
4 22 0 22
5 7 2 9
6 5 1 6
7 ) 0 )
8 14 0 14
9 9 0 9
10 7 0 7
11 9 13 22
12 51 0 o1
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Table D.4: The DMFT index data (Bohning, Dietz, Schlattmann, Mendonca and Kirchner,
1999)

observation DMFT1 DMFT2 Gender Ethnic School

b e O HOH OMEHR OO OO R OMROROORRFREFRHOOOORRHOOODOOHLORORRHLOOR L O
e WONWNONNWRNNFRNNNNNDN NN NN RRFRSRERDDWWR NN FHENDNDNNNDFDNFWR N DN WN DN WW W
P e e e b S R R b b b b b b e b b b b b R R e e b b e e e S e b b R R R R e b e ke e e

[ 4

[«3]
CCUR R R RO ITOOOOOUTJOO RO RARRUTONDGDRECTWARANOONNNWWARNOTIO WONEREOWNNFNO
N WhR HEFNONWE R TN NOOR RO S OWNMEMRERBRWHWERNFEFOFWHERENNNNNOWNRL, WO WN O W
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Data sets

DMFT2 Gender Ethnic School

DMET1

observation

i I R I A R I I I I I I I I R B I R B I R I R I I B B B B TR B o B B o B I R I B I R B I IR R B B B B e IR I e B e B e B B B B B B B e B B B ]

MO AN A ANNMMANANNNN A NN NN AN =AM~ ANANANRNANMNONAENNSMOMOAANARANNNMO A AN~

——- OO0 10 "0 0 OO M mMOmMmmOO—~00 0 —0000QCOO 11000 —"AmMmmdOO0O0 1O ~OOO 1O OO O —rfrdrdedi

H A N ANNOCON N INONNMHFHANMNMOOANISI NN OO NMNMANNNO =AW NNNNAONOMNMO~NOOO - ANMNAFTNOOIFOAFOONO—A~-OF

O NFNONMNMNOVOO+ONMMIDNFOOOINNDDODONONFTONNONMEIOCOMOONFHF—NNAFTANW IO IOO0 O FO I FOM
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observation DMFT1 DMFT2 Gender Ethnic® School
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

NNOONNOOMRHRNOOWNNONMNODOOOCONWNUID~JORPRDNMN RO OOONNFROINWOROWHENDONP R ODIWOUIODOIUTAE AW WO O
NHHOOUIOHOOOFRRRINHOODOFROOONMEINDNEHEWOOORHOOOHROFHROORARRFRROMHONRFEFMHWAMAODOROOOONWEAWENODNK O N
QOO0 MHOOOODOHRRREFREFHEFREHOOOOORORREEFEHOOOOHOOFRFHOFROOHRMHRFEOOHOHOOROFHOORHFRFFRFOOHFHOOORR
CO GO DD b L0 b DD GO ek b b bt b DD bt DD = DD DD b bt DD b e GO B R DD R DD DD GO = RO ND RD AD GO 2 ket N GO = R DD R GO RD b = GO DD N DO DD DD BN BND - RND e e e DD QO
NONNNONNNNODONNNOOMORRNOMRNNDMONMONNNNMNNNNDMNNNNNOMRONNNNNNNONNNNMNONDODONONNONNNNDONNMODONNODNNONDMOAMNNDINDDNDDNDRNNN NN
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observation DMFT1 DMFEFT2 Gender Ethnic School
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

b CTWINNDWOR TR I A WO OONIOWNRONUIOWWOOODOONCOWORHROHANUIOTIOOWWONDNIWOOWDMHOWO OO OO U
WNRNHNNWOWEH RWANNBROOOOUMIONOCONNRRFNWOORRFOONOONWRRARBRFROMONOWORRFAFPONONRFEFHORWOWOWH
MO HOOFHFR OOORORHMEBEMIHM EFOOORHOORFPEHEEHEHRRREREEFEOOREHOOREHEHEOHOROFOORFFOOOOOOORRHEEFEOORH
DO ket RO GO b L0 DO DD DD 0O b e b LD b R e GO b B R ked B R b RO RO GO R A = DD RO DD A BD = B = NS N e b = RO RO N RO GO = QO DD RO DD GO B = WO N WO N BN
WWWWWWWWwWWwWLWwWWwiNNNNNNNNNNNNNONNNNNRENDONNONDNNNOONNNNNDNNDNNNNNDNODNNNMNDNNNNDNNNDNDNNDREDNDDNDNNNNRNDN N R
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observation DMFT1 DMFT2 Gender Ethnic School
266 27 3
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
204
295
296
297
208
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

W AR MTOWO= JUIONONNHAONWUNMNOONUIONOOWTIHFHEIRFROXPARMNDNDIRVOONDORTCTIUTDNDWWOON OUWWO UL NP 0 R d B =W oY
OV WH MO OUR OO ONWER OO WOWNOUINRFRARNFHFODCODUMUIOFRF REROOWUIOOAWWWNARCOCWOOARNRFEFWWHNREDNDODN
OO R RROOOORRRRMROORRPRORRRPREEFEREEREQOQOOOFOOOROMEOMEEREERERFROHEOHOMMPEPPOOFROOFORRFRRPRRFEREROORR
WM R WM RRRRWRRERERFEEBPRWONFRWWWNNEFENNNNRP,RS,WOWNRFRRNWOWNNRRNNNNNWWWFRNDNEFEFERNNNDD AP WRN WRE W R e
WWWWWWWWWWWWWwwWwRWwwWwWwWwWWwWwWwWwWwWwWwWwWwWwWwWwWwwwWwWwWwwwWwWwwWWwWwwwwWwwwwWwwwbwwwwwwww wwwwww
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observation DMFT1 DMFT2 Gender Ethnic School
336 5 1 0
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
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368
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370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

NN RO WO WM-I~10O—WWNWROROCORRFRINDRWNHRWRGORNRINORWHRWOHITTNWANTOSOTINO00O SO Ut
BOORFNFRFOWER MN R WONMNMNNNNNNNFREAFRWWNWHOONDWN WO MR WONPERWOWONHOWRWREFNOONAGOOITUIOUTN O W O k= = kOt
IR S O R HE O R OO R R PR HOR M EHEEREEEOODODOO OO bbbk kd Ol b hd el H R R OO HOOOHFRMHFOOOFREREHEFOODOOO
== e DO A NI DO DD GO = DD b DD bt b= RO R N b b b= b O = NN R NN N RN R = WERNRFERHENMNMNRENBEWRNRF S R DN W NN W NN
AR R W R R R R R R R R R R R W W W W WWWWWWWWWWWWWWWwWwwWwWwWwwWwWwWwWwWwWwWwwwWwWwwwWwwwwww WoLWwWwwww W www
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observation DMFT1 DMFT2 Gender Ethnic School
406 6 0 4
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

= OWNNWHR HOENRWWAOWWONHFOODOW R OWUIRNPEROIONWOAMKWORFEFNWINONNROWWHRUOOROHRFRFWORONRFEOWWKA
COOHOROOOHFRFOOO+FHFOORCOCOOHRREHEHOFRMFERFEFOOOOODOHRMHHHOOOOREHFPOODOOOOOEFEFEEFEOROROORRPROFHKEFHOO
R R R R R R R R R R R B S R R R R R R R R A R R R R R R B R R R R R D R R R B R R R R R R R R R R R R R R R R R R R R R R R R R R R

WD OWOWONROPRONORNHOHMMOONDRIOHDVOOH RWRROXEIT-HITIOR WNRWOHNWOOUMEBRNOOFRFHEMRORJOOOOUIN
b hed DD et G b b b e el pd hend b DD ORD = AD ND B e s DO AT  RD e S WRNI DD W R RO = e R A DD RO B ke ke DD L0 = RO = RO RO DD A R L0 LODD M B = 0NN N
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observation DMFT1 DMFT2 Gender Ethnic School
476 4
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
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495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
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515
516
517
518
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520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

N OO ~TNMORWWIORNDOOOJOORONWITIARWANRNODOWUNO R BHEFNUUNOUIREFEUIUUOOR OOWHOUMOOK OO UTW A ON Y
NOOO R PO WOWWNMFHOORINOWOODOMMEBVIWNINER UIF OOUIOWWONONRFRRHEHWWWWINNOONODODNFRP,ORFRFRWOORUDIWR—O W
OO0 OO R R R R OOQOOHOORMEEROMEORIMIEHEHERRFOOOODOOFROHRROROMRERE,OOHOOORORREFORKREHERPL,OROOR
R R D WHNERENEFRENMNNENDWONDWRRWRERH RN F R ENDEESDD SO R H WK R =R R R W N WK M e e N b e ks 2 WM N
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observation DMFT1 DMFT2 Gender Ethnic School
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
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593
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595
596
597
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599
600
601
602
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605

AR OO ONNTNCITUNUI AR IOWOORNNOUIOCOUMUMFRFNOOXOFWUWMOU R RPBRHWOKW-JIWHERODIOD WO
NONOONOUHROF WMRARRHORARUUMIODOHOOWNIUIIOOOORWNFERFONNOWNFEFEFONANWONOUEERBWWOWWH
O R OFR OO0 EFEFOMROOORMEMEMROOOFEOOOR OO MEOMFORFROORRFMHFOOM R OO M -
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observation DMFT1 DMFT2 Gender Ethnic School
606 0
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

il NS ORORFWOFROR OO R ROWITOUIDNDOWRHRONNUIONUIOOOONOMNROUIINOONTONOSOTWONUOE Ut
HOMRQUOINMROWOROOAROONCHOOODOOONWRHRUMIOUMIOHRONOOKRINWOR AWOONORODOARHHOFUUHFOOGMWRNRNIBDLWOWWRE
COOHMREMEMEBREROOOOOODODMHR R OQOOOHMHOOROQOCOOMRMHMOOORMEROOHFEFRPOOOOOOHOHR,OOR,HFRPOOOOHROHOOROCO
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observation DMFT1 DMFT2 Gender Ethnic School

676 2 3 0 2 6
677 0 0 0 2 6
678 4 0 0 1 6
679 2 0 0 2 6
680 0 0 0 1 6
681 4 4 0 1 6
682 6 5 1 1 6
683 2 0 1 2 6
684 1 0 1 3 6
685 4 1 1 2 6
686 6 6 0 1 6
687 3 3 0 2 6
688 0 1 0 1 6
689 6 2 1 2 6
690 5 3 0 2 6
691 8 5 1 2 6
692 0 0 1 2 6
693 2 1 1 2 6
694 7 6 0 2 6
695 2 0 1 2 6
696 4 2 1 2 6
697 7 5 1 2 6
698 7 5 1 1 6
699 1 0 0 1 6
700 1 6 0 2 6
701 1 0 0 2 6
702 3 1 1 1 6
703 4 1 0 1 6
704 0 0 1 3 6
705 5 5 1 2 6
706 6 3 1 2 6
707 4 1 0 2 6
708 0 1 1 2 6
709 7 6 0 2 6
710 3 4 1 2 6
711 2 1 0 2 6
712 2 0 0 1 6
713 4 0 0 2 6
714 1 0 0 1 6
715 0 1 0 2 6
716 1 1 0 2 6
717 2 2 1 2 6
718 0 0 0 2 6
719 2 2 0 2 6
720 2 1 1 1 6
721 5 2 0 2 6
722 2 3 0 2 6
723 4 4 1 2 6
724 3 0 1 1 6
725 4 2 0 2 6
726 4 4 0 2 6
727 3 1 0 2 6
728 2 1 1 2 6
729 1 1 1 2 6
730 0 0 0 2 6
731 7 0 0 3 6
732 3 1 0 3 6
733 0 1 1 2 6
734 2 2 1 2 6
735 0 2 1 3 6
736 6 5 1 2 6
737 0 0 1 1 6
738 5 6 0 2 6
739 8 6 0 2 6
740 3 2 0 1 6
741 1 0 0 2 6
742 5 3 1 1 6
743 7 4 0 1 6
744 2 1 1 1 6
745 6 4 1 2 6
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observation DMFT1 DMFT2 Gender Ethnic School
746 2 1 1
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A 136

Appendix A

A.1. Derivation of the score statistic S

Reparameterize ¥; and X\;, ¢ = 1, ..., k, under Hy, by ¥; =¥ +;,¢t = 1, ..., k, with
ar =0and \; = A+ 5;,i = 1,...,k, with By = 0. Then testing Hy is equivalent to
testing @ = 0 and § = 0 with w = (¢, \) as nuisance parameters.

Now, let

(o (o oo \
dada’ 0=0,8=0 80466 a=0,8=0
A= )
o o
E\| - E| -
2 (ele) 25,00,
2 7%
e )
000" | o 50
C =
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a=0,ﬂ=0>

If we use the maximum likelihood estimate @ of the nuisance parameter w under the

and

Al
b=E <—8w(9w’

null hypothesis Hy in s, A, C' and D, then the score test for testing Hy against H; is
~ A AT A -1
s=¢(A-cD7C) s

As in Section 3.3, note that parameters («, 1) are orthogonal with parameters (3, A).
Then, by using the notations so;, Ao, Coi, 2 = 1,2 and D, the expressions for s, A,

D and C can be simplified as

A01 0
A= ,
0 Agp
where,
I 2 [ 2 7% 2 1% T
App =diag | E —-a——l—— E _8_[ . F _8[
g a 2 ) a 2 bl b a 2 ]
| A7 | a=0,8=0 Q3 | 4—0,8=0 -1 la=0,8=0/ |
and
- 82l* 82l* 82l* -
Ap =diag |E | —— E| —— o B ——— :
and
Co
C= ,
Co2
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(o & \ (v &(_2 )
E 0010 | g 5o 0 0 B OO | —g g0

a=0,8=0 and 002 = aﬁ2a)\ a=0,4=0

)

2 7%
5 (_ 8?1
where Cy; = i

0 ]
w0p0) ) \ OB_107

%l
5 (_a s ) 0
D= a=0,8=0

h 021"
0 El -
< 2% a:O,ﬁ:O)

Then the matrix A — CD~!C’ can be simplified as

%
\” (‘aak_la«p

and

, o2l
- O? | 4m0,=0
A-CD'C = a=06= )
o°l*
0 Agy — o/E | —
02 — C2Cly/ ( E)Y; a:O,,B:O)

ol* or* .
Also let sg; = — and sg = . Then the score test statistic for

dor a=0,3=0 op a=0,8=0

testing Hy against H; can be written as
S = So1 + Soe,

where
o
02

Al
Sor = 8¢y

Aoy — Coi Gy /E (

-1
'§01
a=0,8=0

and
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21

-1
—_—— Sp9.
a)\Z a:O,,B:O) ]

Similarly as in the proofs for S; and S3, we have

At
Sog = 85,

12102 - C’ogé&/E (

o o;
El - =F|— yi=1,..,k—1,
0o, 00 a=0,,3=0) ( op? a:(),ﬁ=0)
ol o’
E| — =F| ——= ,i=1,..,k—1,
B,BzaA a:O,,B=0) ( oN? a=0,ﬂ=0>
&2 k o
E - = Zi: E - : )
o2 a=0,ﬂ=0> 1 ( oy a=0ﬁ=0)

and

oAl k o
El- = E|-Z2 :
( 8)‘2 a:O,,H:O) . ( 8)\2 a:O,ﬁ:O)

We can obtain the score test statistic S for testing Hy against H; as

S = So1 + Sog,
v 8tu b S
where So1 = > ;. —— and Sp2 = Y ,_; —— with the estimated values of sp1; =
Voti Vo2i
olx ol olr o2l
- , Uo1g = El - L , 802 = -+ and Uogi:E — 1’ y 1 = 1, ...,k‘,
o |y, ( o? Ho) oA | g, ( 02 HO)
respectively.

A.2. Derivations of the sqy;, vy, s9; and vy, ¢ = 1,..., k, in terms
of the original parameters

For this, first, we need to express the first derivatives of the log-likelihood function
I¥, i = 1,..., k, with respect to the orthogal parameters ¢; and A; in terms of the

original parameters 9; and ¢; of the log-likelihood function I;, i = 1, ..., k. We have

o ol ol og

o, O * 0d; 3101"2 =Lk
o olop

. 8¢i8)\i’z_1""’k'
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82: ol \ 2 21 ol \? 0%l
Note that F (——5%2) =F <3¢i) , B (—BAf) =F (3)%-) and £ (—8%6)\) =
5 (2 o
O 0N )
So we can obtain
ar\? al;, Al 0\ ?
g (azpz-) = (55 * 5400
AL N\* o (9l Bl a:\> _ [ 8l \?
- (aw) e (&m aqsi) ¥ (a«m) b (&m)
8¢)z 8¢i 2-
= szwz + 2 "pzﬁbz awz + (5—,&;) Z¢i¢i’
ol \? Db i A
b (3>\i) a <3>\i) E<3¢i ) B (6&) s
o
From (3.1), replacing —— 59, by —iy,6/14:4:, We can obtain
oo (P Ohivg,
BTN 0¢itpg )

(fpews — 2,5,/ 16:8:)

- <a¢1> o
EE

Note that, generally,

., k. However, when

bi
N’
we calculate the score statistics Sy, the denominator and numerator have this common

factor, which cancel out. Thus, the quantities sy;, v1;, Sg; and vy;, 4 = 1, ..., k, in terms

of the original parameters, are
(61 6l ’L¢Z¢z>
S1 =
oY 09 iy,
Uy = (%w - %iqs,-/ ¢i¢i)7

ol
9¢;

S9; = and Vo = ’L'¢i¢1..
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Appendix B: Derivation for score test

In what follows we derive the score test statistic S for testing

Hy : m = 1/2 against H; : m # 1/2 when v and ¢ are treated as nuisance
parameters.

The statistic Ss can be obtained following similar steps.

Consider the log-likelihood [ given in Section 6.3.2. Now, Define
ol
Com|y,

The asymptotic variance of ¥, is

¥y

_ I¢¢I72w + Iw% — 2Ly Inplyg

V2 = I1r7|' b
' I¢¢IW—I§7
Fod! ol 02l
here Iy = B{———} , Iny = E{— L, = B{—2y I =
wiere { 871-2} H ¢ E{ aﬂ_agb} o I¢¢ { 8¢2 Ho Y
02l 0%l %l
E{— Ly = E{— and I, = E{— .
{ aﬂ_a,y} Ho ¢ { aﬂ_a(b} H Y9 { a,ya¢} Ho

Then, it can be shown that (Neyman, 1966) asymptotically, as n — oo, the
distribution of S; = ;2 / V42 is chi-square with 1 degree of freedom. If the nuisance
parameters y and ¢ are replaced by their maximum likelihood estimates 4 and ngS,
which are y/n-consistent, in ¥; and V1, then, asymptotically, asn — oo, S; = \1;12 / \712
is x2(1).

We now evaluate the score function ¥; and the elements of the variance V2,
namely, the quantities Irr, Ir4, etc.

Define the functions
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loi = log(fOi) and l’yi = IOg(fyi)'

Then, it can be seen that

i =) log[(1—m)(1—¢) +(r = 1)¢] = ) log[l — ¢ + (r — 1)g],
r=1 r=1
and
m; Yi mi—Yi

li = log +Zlog[7r(1—¢) (r—1)¢ Zlog[l—ﬂ 1 =)+ (r—1)¢]

Yi

— Zilog[l — ¢+ (r—1)9).

Further, using these in the log-likelihood ! and taking its derivative with respect to

7 we obtain

\Ijl 8l . Z { fOillOi(’n’) +I l/ }
on i=1W{y=0} o N+ foi {y:i>0}b yi(m) S

Further, we see that
62l0z alOi 2

—— foi(y + foi) = vfoi( ) 0%l
Inn = {- } E{Z Iiy.=0) o= (v + foi)? on— _ I{yi>0}a_7ryz_)}’
52l0z 5l0, (9l0z
g " 709 e (1 + fo)? % omag
8 l()i 8l01
82 n _WfOi(’Y + foi) — vfoi( 5 - 3 )? 81,
Iy = E{“EEE} = E{Z(I{yizo} ¢ (Y + fo)? ? (O8N ey Y )}
i=1 t
8lOzf )
I""’)’ = E{_aﬂ_a,y} E{Z {yz—O} ’}’+f ) }
alO'L
82l 8¢ fOi

<
3
It

{ 8¢8 } E{Z {y—O}( +f0i)2},
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and
L= B{- 23} = {Z S
(v + foi)?
To obtain the quantities Irr, Irs etc. in closed form we need the quantities in what
follows.
oy
losr) = 80 Z (1 —7)( f-)(r—l)df

=1

ms

/ 3101 i r—l - (1—-m) r—2
boig) = Z I-m1-—@) +(r—1)¢ ;1—¢>+(7‘—1)¢’

. _%_ Yi (1_¢) B
bitm) = 51 _;w(l—fb)ﬂr—l)qﬁ ; Q-m(1-¢)+(r—1)¢’

1

, _ 8li_yi (r—1)— 7"—1 —(1—-m)
lyi(¢>) - 8_2_?;_:7{( — ¢) + T—1¢ Z 1l-m)(Q—-¢)+(r—1)¢
r—2

‘Z<1—¢+<r—1>¢)‘

r=1

v+ foi

Ellan) = Pl = Om) = 1= o =
1— foi

T and E(ly,5019(y:)) = (1 —w) 30, (9(wi) fu) =

> uie1(9(i) fy:), where g(y;) is a function of y;.

R E(I{y,>0}) = P’I"(yi >

Olmi) =1—w—(1—w)fu=
L
1+~

" — “alei - c (1 _ ¢)
loiamy = B On2 ) = Z {1-m)(1=¢)+ (r—1)¢}?

r=

mq

" —leol . ('I" — 1)
e = Bl grag) = Lm0+ ¢ DI

{r-1)-01-m}° 2)°
= {1-7m)(1—-¢)+(r—1)¢}? Z{1—<J5+ (r—1)¢}*’

ST
S
=
js
o))
| ©
[V
!
L[]z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B 144

" o "'al
[ —EZI{y>O} 32 = 1_'_722[ a2 i

" 32l
l7r¢ = ZE‘[{ZI>O}3 a¢

n m;

% r—1 . r—1
- 1+722:12{ ¢) + (r—1)¢}? Z:{1—7r é) + (r—1)¢}2]"

i=1 y;

n my

i 1 ]
- 1+’Y ZZ[ZW +7-_1¢ Z 1——7‘(‘ ¢)+(,’.__1)¢]fyz

i=1 y;=1 r=1

¢ no m; Y
- AT X g

i=1 y;=1 r=

(1—7T (1 —6) o= o, 1
) ZZ[Z {]__ﬂ. ¢)+(,’._1)¢)2}]fyi'

i=1 y;=1 r=1

+

Now it can be shown that

>

yi=1 r=1

Yi my

_ P(y; > )
e DN o e gy

and

NS 1 _ “ Ply; <mi—r1) — fo
Z[Z; {(1—77)(1—¢)+(7"—1)¢}2]fyi - ;{(1—W)(1—¢)+(T—1)¢}2'

yi=l r=

Further, from E (g_jr) = 0 we obtain

= fOzl Oi(m
ED Iysolyml] = _E[Z{I{y =0} ( )] 1o Z Joiloimy-
i=1
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Again,
E[ Iz’ lliﬂ'] = zﬂfl
; {y:>0} by, () 1_,_,),;%2_ yi(m)Jy
B ﬂ n ms Yi 1
R E? 2D DM e v

Mi—y; 1
R DR e i ey

Using these results we obtain

b (1= 9 Py >7) & Py <mi— 1) — f
o = 147 ;[;{w(1—¢)+(r—-1)¢}2+;{(1—w)(1—¢) (r—1)¢>}2]

=1 r
and
" -1 - 1 & yz 2 ’I“)
= il i(7)
i ¢(1—¢>)(1+v);f° ’ 1+'7 Z;{wl— +(r—1)g}p
+ (1—7!')(1—-¢) & i P(yiémi—r)—foi
¢(1+7) g {l-mI-¢)+(-1)¢}
E(a2 - i ily obtained by defi —¢ e _
ggz ) 1s more eas12yo ained by 2e ning ¢ = 5 8¢2 =
a@éz (g;) o, (g ¢2) where, in (9612 , ¢ is replaced by -1—% Then, proceeding in

the mannar in which [ e and I = Were obtained, it can be shown that

, -9,
l¢2¢ = EZ Lyis0)—3 15— 8¢>2

_ 2 Py, >r)
a 1+7)Z[ Z{7r1—¢>>+<r—1>¢}2

yz sz—’f') fOi

+ = Z{l—w -9+ (r—1)¢}2

1
- f°’2{1—¢+<r—1)¢}2 ¢>1+ 2Zf°’l°’
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Using these results on the right hand side of the expressions for I, Ir4 etc, after

simplification we obtain

(v + foi) foiltigmmy — Vfoi(lsimy)?
(1+v) {7+ for)

Im = E{——} {Z + e}y

’Y + f01 fOZ 0i(mg) ’onz 0i(m) Oz

e = Blg 8¢>} {Z L+ + for) +hral,
to = B(-g - (3 I bl
Iny = E{“aizfﬁ ng{%ﬁi}’

Ly = E{- 8287 1474 Z{ {YO;O}:

n 1
I, = E{— } Z{_ 1_|_fy (1+7)('7+f0i)}-
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Appendix C: The expected Fisher information ma-

trix of zero-inflated bivariate Poisson regression model

Consider the log-likelihood [ in equation (7.4.1). For j = 1,...,n;, i = 1,...,k,
define the following quantities.
AS) = Y15 — (1~ 00:)(A1i + Aoi),
Ag) = yai; — (1 — b0:i)(Aaij + Aoi),
AP (1= 6y) fo(yri; — 1, y2i5 — 1] Xoiy Auay Azig) 1
“ T3(Y1izy Yaij| 0, Mois Ais A2ij) ’
A(4) — 6y1ij,y2ij (07 0) _1
Y f3(ylij7y2ij| 0, Aois A1i, )\21']') ’
L, if (y1i5, y2i5) = (0,0),
where 5y1ij,y2ij (0,0) =
0, otherwise,
Now write A;; = (Az(-;),Ag),Ag),Ag))’. Further, fori=1,..k, j =1,...,n; , let

( 0 0 1
1 )\Oz
- 0 =22
)\li >\lz
1 .
0 _ >\Oz
A2ij A2ij

\ 0 0 0

Boi
B

Ooi

1
1 — 6y,

)

/
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be a 4 x 4 matrix. Now, let Ci(;) be the sth row of the matrix C;;, s =1,2,3,4.
Then, the first derivatives of [ with respect to the parameters Ag;, Ai;, 6o, 7 =

1,...,k, and ~ are given by

ol =)
o~ 20

j=1
ol X ) ’ 3)
B3 = Zl[cij Ay + eXP(xij’Y)Cij Aij]a
j=
ol T
390' - Z [Cl(.;l)AU] ’
) j=1

and

O s @
% = ZZ)\ZijCij AijCL’i]‘.

i=1 j=1

To find the expected Fisher information matrix we need to evaluate expected values

of the second mixed partial derivatives, which can be expressed in terms of the prod-

L o2 ol o\’ ol?
uct of the first derivatives as FE (~ 6787’) =F KE) ($> }, E (— 573>\1i) =

(@) ()

Now, it can be seen that E(A;;) = 0, E(A;;Aj;) =0, if i # i or j # j'. Denote

E(A;;Al,) by Vi;, which is a 4 x 4 symmetric matrix. It can be shown that
Vii(1,1) = (L = 60:) (Mai + Aoa)[1 + Ooi(Ari + Xai)],
Vij (1,2) = (1 — 60:)[Aoi + Oo(Ars + Xoi)(Aai; + Aai)]
Vii(1,3) = (1 — 6o;) + 00:(1 = 00:)(A2ij + Aoi),
Vij(1,4) = = (1 — 60:) (A1s + os),
Vii(2,2) = (1 = 00;) (Aaij + Aoi)[1 + Ooi(Ass + Aoi)],
Vii(2,3) = (1 = 00;) + 60i(1 — 8o0i) (Nasj + i),

V;J‘(27 4)=-(1- ‘901')()\21'3' + Xoi),
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Vii(3,3) = (1 — 60:)Qi; — (1 — 00:)?,
oo oo Ja(yr = 1,ya — 1] Aoi, Mg, Aaij)
where Qi = 2 =1 2= Fo(y1, va| Aoi, Aviy A2ij)
Vi (3,4) = —(1 - 6i),
_ (1 = 60;)[1 — exp(—A1i — Aaij — Aoi)]
Bo; + (1 — 6o;) exp(—A1s — Aaij — Aoi)’
Now, partition the (4k+p—1) X (4k +p—1) expected Fisher information matrix

Vij(4,4)

I as
(I’Y’Y I’Y>\1 Iw\o 1700\
I'/y)q I>\1>\1 IM/\O I>\100
I’IY)\O

! ! !
\I'yeo I)\1¢90 ‘[)\000 ‘[0000}

Now, we obtain the elements of the partitioned matrices I, I, ..., etc. Using the

/
I)\l)\o I)\o)\o I>\000

above results we obtain the (k +p — 1) x (k + p — 1) matrix I,, as

Iy, = Zf:l E;'Lil[A%ijci(;)v;jci(;)l]wijxgj'

Note that each of the matrices I,,, I,5, and I,4, is of dimension (k+p—1) x k.
Now let Iy, (2), Iyx, (%) and I,g,(¢) be the ith column, i = 1, ..., k, of the matrices I,y,,
L), and I,4, respectively. Then it can be shown that

I (1) = 305 Mg [COV O + exp(al;7) CPViC P sy,

Iyno(i) = 54 May[C VisCF L,

Lioo(4) = 5 Aasg[CF Vis O Ny

Further, note each of the matrices In,n, Zo080s Lroros Airer A6, @0 Ingg, 1S @
k x k diagonal matrix. Now let Iy,x,(%,%), Topao(4,%), Dnone(%5%), Iagag(4,%), Irg0(2,1%)
and Iy, (%,7) be the (i,7)th element, i = 1, ...,k of the matrices Tps,, Iaores Ir1ros

I,6, and Iy, respectively. Then it can be shown that
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Dux (i,4) = S5 OV C +2 exp(aly) CP Vi O + exp(2a,7) COV, 09T
Toono (1, 9) = Y72, [C f*)‘/ijgifl) ]
Lo (ir) = Y7 [CPV00],
(i) = SGLIC VOl + exalwl;m O 105,
Do (i) = 3L [CHViCRY + expl(alm) O Vi O,
1) = D5% [C(l)V ct )] respectively.

This completes evaluation of the elements of the matrix I.
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