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ABSTRACT

Fueled by recent government mandates to deliver public functions by the use of 

biometrics, multimodal biometrics authentication has made rapid progress over the past a 

few years. Performance of multimodal biometrics systems plays a crucial role in 

government applications, including public security and forensic analysis. However, 

current performance analysis is conducted without considering the influence of noises, 

which may result in unreliable analytical results when noise levels change in practice.

This thesis investigates the application of statistical methods in performance analysis of 

multimodal biometric systems. It develops an efficient and systematic approach to 

evaluate system performance in different situations of noise influences. Using this 

approach, 126 experiments are conducted with the BSSR1 dataset. The proposed 

approach helps to examine the performance of typical fusion methods that use different 

normalization and data partitioning techniques.

Experiment results demonstrate that the Simple Sum fusion method working with the 

Min-Max normalization and Re-Substitution data partitioning yields the best overall 

performance in different noise conditions. In addition, further examination of the results 

reveals the need of systematic analysis of system performance as the performance of 

some fusion methods exhibits big variations when the level of noises changes and some 

fusion methods may produce very good performance in some application though 

normally unacceptable in others.
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CHAPTER 1 INTRODUCTION

1.1 MOTIVATION

Biometric authentication is a young yet fast evolving science that establishes an identity 

based on the physical or behavioral attributes of an individual. It has been seen the 

emerging technologies replacing their alphanumeric counterparts with traits that cannot 

be forgotten, easily stolen, or given to another person. Furthermore, multimodal 

biometric systems have been established (Jain, 2004a) to outperform the unimodal 

biometric systems.

Performance of multimodal biometrics systems plays the crucial role especially when 

these systems are employed in government, financial or forensic applications. Many 

researches on performance analysis of multimodal biometrics systems have been 

conducted. The first attempt of performance evaluation took place in 2000 (Blackburn, 

2000) and there have been reports of several other testing on the performance of different 

biometric systems in specific applications afterwards (Maio, 2004), (Wilson, 2004a). 

Those studies are all based on the testing protocol that lacks the thorough study of the 

system performance in the variety of noise presences. The influence of noise on the 

system performance, however, may result in different analysis results when the noise 

varies.

1.2 CONTRIBUTIONS

This thesis is intended to study the performance of multimodal biometrics systems under 

the influence of various noises in a systematical manner and identify the most optimum 

design of a multimodal system under noise disturbances. In addition, the cost of 

evaluation should be reduced to the minimum despite the exponential growth of possible 

noise conditions and system parameters.

1
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To achieve the above goals, following the principle of Design of Experiments (DoE), this 

thesis proposes a statistical approach to model noise influences on system performance, 

to evaluate performance under the noise disturbances efficiently and systematically, and 

to identify optimum configurations.

1.3 ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 introduces the basic concepts of 

biometrics and multimodal biometrics, as well as different normalization methods and 

fusion techniques. Chapter 3 examines performance analysis approaches and metrics for 

multimodal biometrics system. The relationship between noise factors and performance is 

also investigated. Chapter 4 presents the problem domain and discusses robust parameter 

design for performance and proposed statistical approach in detail. Chapter 5 explains the 

tools and databases to be used in implementation, and expected results. Finally, the 

conclusions are presented in Chapter 6.

2
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CHAPTER 2 MULTIMODAL BIOMETRICS

2.1 OVERVIEW

Biometric authentication, or simply biometrics, is a young yet fast evolving science that 

establishes an identity based on the physical or behavioral attributes of an individual, 

including fingerprint, face, voice, gait, iris, signature, hand geometry and ear (Ross,

2006).

Biometrics have been seen the emerging technologies replacing their alphanumeric 

counterparts with traits that cannot be forgotten, easily stolen, or given to another person.

2.1.1 Biometrics traits

According to Jain et al. (Jain, 2004b), a potential biometric trait should meet the 

following listed requirements:

1. Universality - the trait should be possessed by each individual in the given population.

2. Distinctiveness - the trait should be unique for each person within that population.

3. Permanence - the trait should not change over a period of time with respect to the 

matching algorithm.

4. Collectability - the trait should be easy to collect automatically in modern biometric 

systems and must be measurable quantitatively.

5. Performance - the trait should lend itself to fast and accurate identification.

6. Acceptability - people should be able to accept the use of a certain biometric trait.

7. Circumvention - reflects how easily the biometric trait can be spoofed using fraudulent 

methods.

There are two major groups of biometric traits (see figure 2.1), physical or behavioral 

traits. The first group includes fingerprint, hand geometry, iris, retina, face, palmprint, ear

3
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structure and DNA etc. The second group consists of voice, gait, signature dynamics and 

keystrokes dynamics.

W

(e)

(b)

(f)

(c)

(g)

(d)

(i) 0) (k) (1)

Figure 2 .1  Physical traits include (a) Fingerprint; (b) Hand-geometry; (c) Iris; (d) Retina; (e) Face; 

(f) Palmprint; (g) Ear structure; (h) DNA; Behavioral traits consist of (i) Voice; (j) Gait; (k) 

Signature and (1) Keystroke dynamics. (Nandakumar, 2005)

4
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2.1.2 Biometrics applications

Biometrics offers a natural and reliable solution to the problem of identity determination 

by recognizing individuals based on their physiological and/or behavioral characteristics 

that are inherent to each person. Biometrics technique has made rapid progress over the 

past few years. Especially due to recent government mandates stipulating the use of 

biometrics for delivering crucial public functions.

The US-VISIT program (United States Visitor and Immigration Status Indicator 

Technology), for example, is a border security system that validates the travel documents 

of foreign visitors to the United States. Currently, fingerprint images of left- and right- 

index fingers of a person are being used to associate a visa with an individual entering the 

United States; in the future, all ten fingers may be used thereby necessitating the 

development of efficient data capture as well as fusion algorithms.

Figure 2.2 The US-VISIT immigration system (Wikipedia, 2007)

Generally biometrics is being increasingly incorporated in several different applications. 

These applications can be categorized into three main groups (Ross, 2006):

1. Commercial applications

5
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Computer network login, electronic data security, e-commerce, Internet access, ATM or 

credit card use, physical access control, mobile phone, PDA, medical records 

management, distance learning.

2. Government applications

National ID card, managing inmates in a correctional facility, driver's license, social 

security, welfare-disbursement, border control, and passport control.

3. Forensic applications

Corpse identification, criminal investigation, parenthood determination, missing child.

2.1.3 Biometric system modules

Ross et al. (Ross, 2003) describes a simple biometric system with four major modules:

(1) Sensor module which acquires the trait in the form of raw biometric data. An example 

is a fingerprint sensor that captures fingerprint impressions of a user.

(2) Feature extraction module which processes data to extract a feature set with compact 

representation of the trait. For example, the position and orientation of minutiae points in 

a fingerprint image would be extracted in the feature extraction module of a fingerprint 

system.

(3) Matching module which employs a classifier to compare the extracted feature set 

against those in the template by generating a matching score. For example, in this 

module, the number of matching minutiae points between the query and the template will 

be computed and treated as a matching score.

(4) Decision-making module in which the user’s identity is established or a claimed 

identity is either accepted or rejected based on the matching score generated in the 

matching module.

6
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2.2 MULTIMODAL BIOMETRICS

2.2.1 Why multimodal biometrics

Most biometric systems relying on the evidence of a single source of information for 

authentication (e.g., single fingerprint or face) have to contend with a variety of problems 

(Ross, 2004):

(a) Noise in sensed data: Noises presented in the acquired biometric data are mainly 

contributed by defective or improperly maintained sensors (e.g., accumulation of dirt on a 

fingerprint sensor) or unfavorable ambient conditions (e.g., poor illumination of a user’s 

face in a face. A fingerprint image with a scar, or a voice sample altered by cold are also 

examples of noisy data.

(b) Intra-class variations: The biometric data acquired from a user during verification will 

not be identical to the data used for generating the user’s template during 

enrollment.These variations may be due to improper interaction of the user with the 

sensor (e.g., incorrect facial pose), or use of different sensors during enrollment and 

verification, (e.g., optical versus solid-state fingerprint sensors), changes in the ambient 

environmental conditions (e.g., illumination changes in a face recognition system) and 

inherent changes in the biometric trait (e.g., appearance of wrinkles due to aging or 

presence of facial hair in face images, presence of scars in a fingerprint, etc.).

(c) Inter-class similarities: In a biometric system comprising of a large number of users, 

there may be inter-class similarities (overlap) in the feature space of multiple users. For 

example, currently used appearance-based facial features have limited distinguishing 

abilities. Because of the genetic factors, a number of specific groups (e.g., father and son, 

identical twins, etc.) are hard to be identified.

(d) Non-universality: The biometric system may not be able to acquire meaningful 

biometric data from a subset of users. In other words, not all biometric traits are strictly 

universal. For example, a report (NIST, 2000) by the National Institute of Standards and

7
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Technology (NIST) to the United States Congress concluded that approximately two 

percent of the population does not have a legible fingerprint and therefore cannot be 

enrolled into a fingerprint biometrics system.

(e) Spoof attacks: This type of attack is especially relevant when behavioral traits such as 

signature or voice are used. However, physical traits such as fingerprints are also 

susceptible to spoof attacks.

Due to these limitations imposed by unimodal biometric systems, error rates are fairly 

high, which makes them unacceptable for deployment in security critical 

applications. It is estimated that if NY airports, which boast an average of more than

300.000 passengers pass through daily, deploy unimodal biometric systems like 

fingerprint, face or voice for identification respectively, there would be 600 falsely 

rejected (and inconvenienced) passengers per day for fingerprints, 30,000 for face and

45.000 for voice. Similar numbers can be computed for false accepts.

2.2.2 Multimodal biometrics

Multimodal biometrics is the usage of more than one physiological or behavioural 

characteristic to identify an individual. It involves the fusion of two or more technologies 

such as fingerprint, facial recognition, iris scanning, hand geometry, signature 

verification, or speech recognition.

It is must be noted that multimodal biometrics does not only refer to multiple biometric 

traits scenario, (Nandakumar, 2005) illustrates fusion in multi-modal biometrics systems 

can be implemented in the following five scenarios, among which the first four scenarios 

are based on the same biometric trait (see figure 2.3):

1) Multiple Instances of the same biometric may be combined (e.g., multiple face images 

of a person obtained under different pose/lighting conditions).

8
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2) Multiple Sensors may be used to capture the same biometric (e.g., optical and solid 

state fingerprint sensors).

3) Multiple Representations and matching and/or feature extraction algorithm may be 

used on the same biometric reading to give separate results (e.g., multiple face matchers 

like PCA and LDA).

4) Multiple Units of the same biometric may be taken (e.g., two different fingerprints or 

both irises);

5) Multiple Biometric Traits may be captured.

Some of inherent limitations of the unimodal biometric can be alleviated by fusing the 

information presented by multiple sources. A multimodal system demonstrates increased 

improvements in anti-spoofing, and the ability to deal with large user population and 

acceptable error rates. The difficulty to forge multiple biometric traits within a certain 

time frame makes spoofing attacks hard to be conducted. In addition, those people who 

are missing some traits like a mute person or a person without several fingers can be 

identified by using multimodal biometrics.

9
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Figure 2.3 Sources of multiple evidence in multimodal biometric systems (Nandakumar, 2005)

Another significant advantage the multimodal biometrics brings over uniodal biometrics 

is the obvious increase of system performance. These systems with multiple and 

independent sources of evidence can offer more reliable and higher verification rates, and 

improve the accuracy greatly.

10
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Michigan State University (Ross, 2003) has conducted a study on evaluating the ROC 

curves of fingerprint, facial and hand geometry systems (see Figure 2.4). The 

performance of any individual modality is far below the performance of the combination 

of all the three modalities.

Facs + Fingerprint + Hand Gaomaliy

Fingerprint

Hand <3e«ne»iy

— ‘—

Hf* 10* to"’ 10° 101 1<f
False Accept Rate (%)

Figure 2.4 ROC Curve for a system utilizing multiple biometric traits (Ross, 2003)

2.2.3 Fusion in biometrics

Information fusion is the essential element in multimodal biometrics. Information fusion 

in multimodal biometrics is the integration of data pertaining to multiple independent 

biometric devices. Fusion in multimodal biometric systems can take place at three major 

levels, namely, feature level, score level and decision level. Figure 2.5 displays the fusion 

of a biometric system at various levels.

Feature Extraction level: Combining different feature vectors that are obtained from 

one of the following sources: multiple sensors for the same biometric trait, multiple 

instances of the same biometric trait, multiple units of the same biometric trait or multiple

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



biometric traits. Combining more feature vectors results in one vector with higher 

dimensionality and may increase the probability of correctly identifying a person. 

However, integration at the feature level is difficult to achieve in practice because of the 

‘curse of dimensionality’ problem (Duda, 2001), unknown relationship between the 

feature spaces of different biometric systems, and inaccessible feature vectors for most 

commercial biometric systems

Although information fusion at an early stage results in more effective performance than 

performing fusion at later time, the above obstacles prevent most of the researchers from 

studying integration at the feature level.

F ing t'rp rin t
Fingerprint
templates

f ' •• -i ...... • i.. -------- ,— ....... ............... ...
Feature Extraction 

Module Matching Module Decision Module •Accept/Reject

j Template's

 1 7 ....
- M W  ~  l )M\
tan!

DM \-**Accept/Rqea FI- **tec«fH/Rejeet

Acteptfflejtxl

Feature Extraction 
Module

Face

Matching Module

Face
Templates

Decision Module •cept/Rejm

Figure 2. 5 A bimodal biometric system showing the three levels of fusion (FU: fusion module, MM: 

matching module, DM: decision module). (Ross, 2003)
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Decision level (or abstract level): Integration of information at the decision level can help 

to reach the final decision when single biometric matcher individually decides on the best 

match based on the input presented to it. Methods at this level including majority voting 

(Lam, 1997), behavior knowledge space (Lam, 1995), weighted voting etc.

Fusion at decision level is the least informative and least effective since it happens at the 

last stage of the system processing. It does not work well enough, and often gives a 

combined decision worse than the decision from the best individual biometric device.

Matching score level: This level is also known as confidence level or measurement 

level. Fusion at this level is much more effective than fusion at the decision level. 

Matching score is a measure of the similarity between features derived from a presented 

sample and a stored template. Each unimodal biometric system measures and calculates 

its own matching score and these matching scores are fused to reach a final match/ non 

match decision based on a certain decision threshold.

There are two approaches for consolidating the scores obtained from different matchers. 

One approach is to formulate it as a classification problem where for each biometric 

modality a feature vector is constructed using the matching scores. This feature vector is 

then classified into one of two classes: "Accept" (genuine user) or "Reject" (impostor 

user). In general the classifier used in this scenario has the ability to learn the decision 

boundary irrespective of the generation of feature vector. The output scores of the 

different modalities can be non-homogeneous (distance or similarity metric, different 

numerical ranges, etc). They are not required to be processed before being fed into the 

classifier.

The second approach combines the individual matching scores to generate a single scalar 

score, which is then used to make the final decision. Since the matching scores are 

heterogeneous, to ensure a meaningful combination of the scores from the different 

modalities, normalization is required to transform these scores into a common domain.

13
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(Snelick, 2005) analyzed the advantages of fusion at matching score stage in several 

aspects. Firstly matching score fusion does not affect the existing proprietary biometric 

systems, allowing for a common middleware layer to handle the multimodal application 

but with a small amount of common information. These existing and proprietary 

unimodal biometric systems can be easily combined into a multimodal biometrics system 

given some basic information provided. Secondly the data from prior evaluations of 

single-modal biometric systems can be reused. This avoids live testing or re-running 

individual biometric algorithms.

Another advantage is that the matching scores output by the matchers contain the second 

richest information about the input pattern next to the feature vectors; however it is much 

easier to access and to combine the scores generated by the different matchers compared 

to fusion at the feature extraction level.

Consequently, integration of information at the matching score level is the most common 

approach in multimodal biometric systems nowadays.

2.3 COMBINATION APPROACH TO SCORE LEVEL FUSION

When comparing the two approaches for score level fusion, experiments indicate that the 

combination approach performs better than the classification approach (Ross, 2003); we 

will therefore discuss more about combination approach to score level fusion.

Prior to combining scores of different matchers into a single score, several issues need to 

be considered. First of all, the match scores generated by the individual matchers may not 

be compatible. For example, one matcher may output a distance (dissimilarity) measure 

while another may output a similarity measure. Furthermore, the outputs of the individual 

matchers may have different numerical scales (range).For example, one matcher may 

output the interval within (0,1) while another output the interval within (0,100). Finally, 

the match scores may follow different probability distributions. Normalization technique 

is then used to address the problems.

14
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2.3.1 Normalization methods

To address the problem of incomparable classifier output scores in different combination 

classification systems, normalization methods are used to change the location and scale 

parameters of the matching score distributions at the outputs of the individual matchers.

In such a way, various matching scores of different matchers are converted into a 

common domain and can be combined later on (Jain, 2005).

It is highly desirable that the normalization of the location and scale parameters of the 

matching score distribution must be robust and efficient. Huber (Huber, 1981) defines 

robustness as insensitivity to the presence of outliers and efficiency as the proximity of 

the obtained estimate to the optimal estimate when the distribution of the data is known. 

Huber also argues even though many techniques can be used for score normalization, the 

challenging work is to identify a technique that can be both robust and efficient.

The following is a list of normalization methods that are commonly used and their

robustness and efficiency have been examined. We denote a raw matching score set {S k

*

} of all scores for a matcher, and the corresponding normalized score set as { S & }.

1) Min-max normalization

Min-max is the simplest normalization technique. It is best suited for the case where the 

bounds (maximum and minimum values) of the scores produced by a matcher are known. 

In this case, we can easily shift the minimum and maximum scores to 0 and 1, 

respectively. Min-max normalization keeps the original distribution of scores except for a 

scaling factor and transforms all the scores into a common range [0,1].

The normalized scores are given by

, $k — r n in
s< = ---------------- ,

m a x  — m i n
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We can estimate the minimum and maximum values for a set of matching scores from the 

training set even if the matching scores are not bounded. But the method is not robust in 

that case as it is highly sensitive to outliers in the training set used for estimation.

2) Decimal scaling normalization

Decimal scaling can be applied when the scores of different matchers are on a 

logarithmic scale. For example, if one matcher has scores in the range [0;l]and the other 

has scores in the range [0;100], the following normalization could be applied.

s k  ~ 1 0 n ’

where n = log 10 max (s,).

The problems with this approach are lack of robustness and the assumption that the 

scores of different matchers vary by a logarithmic factor (Jain, 2005). If the matching 

scores of the modalities are not distributed on a logarithmic scale, then this normalization 

technique cannot be applied.

3) Z-score normalization

Z-score is the most commonly used score normalization technique. The normalized score 

is calculated using the arithmetic mean and standard deviation of the given data. If we 

have known the nature of the matching algorithm, it will work well by using this scheme, 

otherwise we have to estimate the average score and score variations of the matcher from 

a given set of matching scores.

The normalized scores are given by

where f-l is the arithmetic mean and (7 is the standard deviation of the given data.
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We can see both mean and standard deviation are sensitive to outliers and Z-score 

method is therefore not a robust one. Furthermore, a common numerical range of the 

normalized scores from the different matchers is not promised by using Z-score method. 

And due to the fact that mean and standard deviation are only the optimal location and 

scale parameters for Gaussian distribution, the output of Z-score normalization for a non- 

Gaussian distribution input fails to keep the original distribution.

4) Median and median absolute deviation (MAD) normalization

The median and median absolute deviation (MAD) is insensitive to outliers and the points 

in the extreme trails of the distribution. Hence, median and MAD method is robust and is 

given by

j  _  8k — m e d i a n  

“k =  M A D  ’

where MAD =median(|S k - median|).

However, the median and the MAD estimators have a low efficiency compared to Z- 

score method (Jain, 2005).

5) Tanh-estimators normalization

The tanh-estimators introduced by Hampel et al. (Hampel, 1986) are robust and highly 

efficient.

The normalization is given by

-i=Htouh(o-oi(£̂ ) ) +1}’
Where f iGH and <j gh are the mean and standard deviation estimates, respectively, of the 

genuine score distribution as given by Hampel estimators.

Hampel estimators are used to reduce the influence of outliers in the distribution based on 

the influence (y/) - function below

17
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II 0 <  [a,| <  a.

ip (u) — <
a * sign(u) a <  |« | <  b.:

a  * Manign{u) * j k < u < (

0

The Hampel influence function can reduce the influence of the points at the tails of the 

distribution (identified by a, b, and c) during the estimation of the location and scale 

parameters. This method is therefore insensitive to outliers. However, tradeoff between 

the robustness and efficiency of this method should be decided cautiously. If too many 

points from the tail of the distributions are removed, estimation becomes robust but not 

efficient. Otherwise efficiency increases and robustness goes down when points from the 

tail are kept as many as possible. Practically parameters (a, b, and c) are chosen 

depending on the amount of noise in the training data set because it decides the extent of 

robustness the system requires.

2.3.2 Fusion methods

In the famous theoretical framework (Kittler, 1998) for consolidating the evidence 

obtained from multiple classifiers, Kittler et al. offer a number of fusion schemes 

including Min rule, Max rule, Sum rule and Product rule. These techniques can be 

applied to the system only if the output of each modality is in the form of 

P(genuine|X),where X is the input pattern. That is, what to be fused in the system is the 

posteriori probability of user being “genuine” given the input biometric sample X. 

However, practically most biometric systems output a matching score s.

One solution is approximating P(genuine|X) by P(genuine|s) which can be calculated 

from the matching scores. But Jain et al. (Jain, 2004b) argue that without corresponding
18
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confidence measure, the calculated value of P(genuine|s) is not a good estimate of 

P(genuine|X) and this can result in poor recognition performance. Hence, when 

consolidating the matching scores of individual modalities which don’t offer confidence 

measure, it would be better to combine the matching scores directly using an appropriate 

method without converting them into probabilities.

The following is the fusion techniques that use the multiple normalized scores directly 

and combine them into a single score.

If S, is the matching score from i th modality, s represents the resulting fused score.

1) The Simple Product Rule combines the scores by multiplying all of the 

individual scores.

f i  -mmm f !  I *  O  ^  **' i%*3 " »> i •: » r. „
I £  f t

2) The Simple Sum Rule combines the scores as a linear transformation.

s  =  ( a , 5,  -  h { ) +  . . .  +  ( a n s n ~  b a )

a and h  represents the weights and biases, respectively, which can be specified 

by the user.

3) The Simple Max Rule is the maximum score from the different modalities.

S = Max ( s,,  s 2,......s„ )

4) The Simple Min Rule is the minimum score from the different modalities.

S  = Min ( s ,, s    s„ )

In addition to the above techniques, BGI/ LRGI is another fusion method that have been 

used in many existing biometric system.

5) Biometric Gain against Impostor (BGI) / Likelihood Ration of Genuine to Impostor 

(LRGI)
19
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The BGI is a very useful concept. It is a measurement about how many times more likely 

we believe it that the claimant is an impostor, after having made biometric measurements, 

than we believed it beforehand. Its mathematical definition is the ratio of the a posteriori 

to the a priori probabilities of the claimant being an impostor. (Sedgwick, 2004)

Probability of being an impostor, given the biometric evidence too

BGI = -----------------------------------------------------------------------------------------------

Probability of being an impostor, given only prior knowledge

The modified BGI as the Likelihood Ratio of Genuine to Impostor (LRGI) is a very good 

approximation to the BGI during most of the time.

Probability of seeing the evidence from an impostor

BGI « LRGI = ---------------------------------------------------------------------------------------

Probability of seeing it from the expected genuine subject

Every score that comes out of the biometric devices is transformed to the LRGI scale.

This is a score normalisation process. Then the various scores are combined by 

multiplication or by addition of the log likelihood ratios. This characteristic of BGI/LRGI 

fusion method exempts itself from score normalization in the sense it can normalize and 

fuse the matching scores together and no normalization is needed when using this fusion 

method.

Due to the fact some biometric traits can not be reliably obtained in some cases (e.g. good 

quality faces can not be obtained from users with dry faces), Jain and Ross (Jain, 2002) 

have proposed the use of user specific weights for computing the weighted sum of scores 

from the different modalities. For the example of dry face users, a lower weight can be 

assigned to the face score while raising the weight to the scores of the other modalities

20
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The same scheme can be applied to threshold. (Jain, 2002) has shown that the use of user- 

specific weights and thresholds can improve the performance by approximately 3% and 

2%, respectively. However, this method requires learning of user-specific weights from 

the training scores available for each user.

21
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CHAPTER 3 PERFORMANCE ANALYSIS ON

MULTIMODAL BIOMETRICS SYSTEM

The performance of the biometric system has received increasing concerns especially 

when biometric systems are employed in public security, financial or forensic 

applications. Bad performance of a biometric system may contribute to very serious 

problems. However, performance analysis of a complete biometric system is a 

comprehensive and challenging task which involves the concerns about matching or 

technical performance, engineering performance, security performance and user’s 

habituation and privacy etc (Ross, 2006). In this thesis, we mainly focus on the matching 

performance of a biometric system.

3.1 MATCHING PERFORMANCE METRICS

There are a number of matching performance metrics evaluating a multimodal biometrics 

system to a given application, including accuracy, cost and speed of the system. Hong et 

al. (Hong, 1999) believe that as the higher speed processors are becoming available at 

cheaper prices and as the cost of the biometric sensors is dramatically reduced, the 

accuracy performance of biometrics systems plays a much more significant role than 

others in its performance assessment.

3.1.1 Identification error rates

Biometric systems are designed to make binary decisions accepting the authorized 

enrollee and rejecting the impostors. There are two types of identification errors the 

system probably makes: it may either falsely accept an impostor (FA) or falsely rejects an 

enrollee (FR). These are also called False Match (FM) and False Non-Match (FNM) 

respectively.
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False Acceptance is caused by the incorrect judge that an impostor has matched to an 

enrollee’s template stored in the system’s database. And false rejection is caused by the 

incorrect judge that an enrollee does not match his or her own enrollment template.

FA is considered the most serious of biometric security error, with an unauthorized 

person being admitted. A FR results in convenience problems, since genuinely enrolled 

identities are denied access to the application, or at least will have to go through some 

further check to be admitted.

False Acceptance Rate (FAR) is defined as the ratio of the number of false acceptances 

divided by the number of identification attempts. False Rejection Rate (FRR) is 

accordingly defined as the ratio of the number of false rejection divided by the number of 

identification attempts. In many cases, Genuine Acceptance Rate (GAR) which is the 

complement of FRR is used to replace FRR (GAR=1-FRR).

Genuine and impostor scores are used to help calculating FAR and FRR.Genuine scores 

are matching sccores that result from comparing elements in the target and query sets of 

the same subject. Impostor scores are matching scotes resulting from comparisons of 

different subjects.When a large number of genuine and impostor scores is available and a 

matching score threshold is chosen, FAR and FRR then can be derived based on the 

threshold. Figure 3.1 shows two curves representing the genuine and impostor probability 

density functions respectively, a matching score threshold t  is chosen.

Then the FRR is the area under the genuine density function to the left of the threshold 

and the FAR is the area under the impostor density function to the right of the threshold.
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Figure 3 .1  Error rates as function of threshold(Ross, 2006)

Mathematically, let p(s\genuine) and p(s\impostor) represent the probability density 

functions of the score s under the genuine and impostor conditions, respectively. Then for 

a particular threshold t ,

FAR( t )= | ° p (s  I impostor)ds 

f r r ( t ) =  p ( s  I genuine)ds
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If the match score represents a distance or dissimilarity value, then FAR(t)  and FRR(t) 

may be expressed as follows:

It is noticeable from figure 3.1 that there is no way decreasing both these errors 

simultaneously. The figure illustrates that changing the threshold to decrease FAR 

increases the FRR. Therefore, if the threshold setting is increased to make the access 

harder for impostors, some enrollees may find it more difficult to gain access. 

Determining appropriate thresholds is one of the predominant focuses in performance 

analysis. It requires knowledge of system scale, estimates of prior probabilities of 

genuine and impostor subjects, and risk/cost functions for false rejections and false 

acceptances.

3.1.2 Receiver operating characteristic (ROC)

An ROC is a precise complete specification of a single biometric matcher’s performance. 

It provides a biometric system the ability to distinguish subjects previously known to the 

system (enrollees) from subjects not known to the system (impostors.).

(Bolle, 2003) depicts the process of generating a ROC curve as follows:

Suppose for the moment that the integrals of FAR and FRR can be evaluated for any 

threshold T. In a multimodal biometric system, after the calculation of every fusion score 

from multimodal scores, each fusion score is used as a threshold. Then the functions FAR 

(T) and FRR (T) give the error rates when the match decision is made at some threshold 

T. A mapping table of the threshold values and the corresponding error rates (FAR and 

FRR) are stored. And at last the error rates can be plotted against each other as a two- 

dimensional curve based on the previous mapping:

FAR(<)= {  p (s  | impostor)ds

f r r (  t ) =  | genuine)ds

ROC (T) = ( FAR (T), FRR (T)).
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We can operate the matcher using any point (i.e. operating point) on the ROC. But 

practically we choose a desired operating point based on the FAR or FRR which is 

meaningful for a particular system. And then we can determine the corresponding 

threshold from the mapping table.

In many cases, the GAR and the FAR are plotted against each other to yield a ROC 

curve. The FAR and FRR (GAR) behavior is expressed in terms of a Receiver Operating 

Characteristic (ROC) curve (Germain, 1999).

Furthermore, ROC is the most common measurement for comparing two or more 

biometric systems. When comparing two ROCs, one may be consistently superior (its 

GAR is higher at every FAR). We say that one system is more accurate than another 

when its ROC is consistently superior. But this is rare case, in most common cases the 

two curves may cross over, which means the GAR of curve a is lower than that of curve 

b at a specified point of FAR, while GAR of curve a may be higher than GAR of curve b 

at another point of FAR. Hence it is important to ensure we must comparing GARs based 

on the same FAR which is decided in the context of different biometric applications. 

Figure 3.2 (Jain, 2004b) displays the typical operating points of different biometric 

applications. We can see from the figure high security applications focus on the low FMR 

(i.e. FAR) which requires a low rate of unauthorized user gaining access into the secure 

system. On the other hand, forensic applications (e.g corpse identification) do not want to 

miss any possible subject, such that they are tolerant with the false acceptance rate. 

Furthermore they prefer high FAR because that can bring more conveniences in 

biometric selection and implementation than system with low FAR.(Bolle, 2003). As 

(Jain, 2004b) pointed out the lack of understanding of the error rates for a specific 

application is a primary source of confusion in assessing system accuracy in vendor/user 

communities.
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False Rejection Rate (FRR)

Figure 3 .2  Typical operating points of different biometric applications (Jain, 2004b)

3.1.3 Other accuracy performance metrics 

The Equal Error Rate (ERR)

Other than the ROC which presupposes having a known operating point, people are 

always desiring a performance summary that can reduce the information in the ROC to a 

single number. Choosing a best matcher for one is just a matter of choosing the one with 

the best performance figure (Bolle, 2003).

The equal error rate is one of the metrics that have been attempted but with great 

limitations so far.

The EER point is the point at the intersection of the line FAR=FRR with the ROC of the 

matcher. The Equal Error Rate is the value of the error rates at the point
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EER=FAR=FRR. In figure 3.3 (Bolle, 2003), the Equal Error Rate EERa of matcher a is 

clearly less than the Equal Error Rate EER6 .

The EER can tell us if one system performs better than other but only in narrow range of 

points FAR = (EEa, EEZ>) and FRR = (EEa, EE6 ).Beyond that range, the ROC curves 

may cross over each other and the EER would be invalid as displayed on Figure 3.3. That 

is why the EER is an unreliable summary of system accuracy.

T~~oo
FRR

matcher a
m atcher h

F A R .

F A R jj

. T—4» “CO
  FAR

(FARc,FRRc)

Figure 3 .3  Equal Error Rate Example

The Failure to Acquire Rate (FTA)

Besides the two types of errors (false accept and false reject) indicated in section 3.1.1, a 

biometric system can encounter other types of failures which will affect the accuracy 

performance as well. The Failure to Acquire (FTA) (also known as Failure to Capture 

(FTC)) rate denotes the proportion of times the biometric device fails to capture a sample 

when the biometric characteristic is presented to it. This type of error typically occurs
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when the device is not able to locate a biometric signal of sufficiently good quality (e.g., 

an extremely faint fingerprint or an occluded face image). The FTA rate is also impacted 

by sensor wear and tear.

3.2 PERFORMANCE ANALYSIS OF MULTIMODAL BIOMETRICS SYSTEM

3.2.1 Matching performance analysis approach

The evaluation of biometrics systems can be carried out from three different perspectives: 

technology evaluations, scenario evaluations, and operational evaluations (Philips, 2000).

1) Technology evaluation: Technology evaluation compares competing algorithms 

from a single technology on a standardized database. Since the database is fixed, 

the technology evaluation results are repeatable. Some organization, often a 

government agency, releases databases at some point, and test participants submit 

their algorithms within some period of time after the release of the test data. The 

results are then compared over these pre-collected databases.

2) Scenario evaluation: Testing aims to determine the overall performance of a 

complete system in an environment that closely models a real-world target 

application. As each tested system will acquire its own biometric data, the 

evaluation will receive slightly different data even if we acquire samples from the 

same individuals. Evaluation results may be repeatable only in the carefully 

controlled condition.

3) Operational evaluation: An operational evaluation involves performance 

measurement in a real environment with real users. In general, operational 

evaluation results will not be repeatable.

If a database can be representative of the user population and the inevitable collection

problems can be engineered away or statistically modeled better, technology evaluations
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are a reasonable and relatively cheap way to compare performance of different biometric 

systems (Bolle, 2003).

Snelick et al. (Snelick, 2005) have summarized the general testing framework derived 

from previous works, (Philips, 1996) and (Philips, 2003), for evaluating the matching 

performance of multimodal biometrics system based on technology evaluation.

There are five major steps in this framework:

1) For each modality, two sets of biometric signatures- a target and a query set are 

assembled respectively. The target set stores the set of signatures of enrolees, i.e. 

subjects known to the system. The query set contains signatures of users that are 

to be compared against the target set. Each comparison of query and target 

signatures generates a matching score and stores in the similarity matrix, whose 

size is query set size by target set size.

2) Normalization technique is used to transform the matching scores of different 

modalities and map them into a common domain. The transformed scores 

representing different biometric modalities are then combined using fusion 

method into a single fused matching score.

3) Each fused score is used as a threshold and compute the corresponding genuine 

acceptance rate (GAR) and false acceptance rate (FAR). Those rates (GAR and 

FAR) and the threshold values will then be stored in a mapping table which 

derives the plotting of the ROC curve for the system eventually.

4) Repeat steps 1-3 for different combinations of competing matching algorithms, 

normalization techniques like min-max, z-score, median and MAD, and tanh 

estimators, and fusion techniques like simple sum of scores, maximum score, 

minimum score, sum of posteriori probabilities (sum rule), and product of 

posteriori probabilities (product rule).
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5) The ROC curves of combinations of varied factors will be compared and the 

desired combination of factors will be identified in the context of the applications.

This evaluation framework allows designers to evaluate the matching performance of 

biometric systems by varying different factors influencing the matching performance 

such as the biometric traits, matching algorithms, normalization schemes, and fusion 

methods. Systems can then be built to optimally suit a particular application based on 

evaluation results.

To illustrate this testing methodology, Snelick et al. evaluated the performance of a 

multimodal biometric system that used face and fingerprint classifiers and the database 

for conducting the experiment provides more than 1000 users. The results showed that 

the min-max normalization followed by the sum of scores fusion method generally 

provided better recognition performance than other schemes.

FRVT 2000 (Face Recognition and Verification Test) (Balckbum, 2000) was the first 

attempt to characterize performance measures for assessing commercially available face 

identification systems. The five participating vendors had to compute an all-against-all 

match of a database of 13,872 face images with varying parameters of compression, 

image distance, and facial expression.

There are also many other evaluations on the performance of different biometric systems 

have been analyzed following the general framework, but methodologies have been 

extended and adapted according to specific applications. For example, Indovina et al. 

(Indovina, 2003) carried out their experiments on the virtual multimodal database and 

found out the variation in matching performance among these virtual user sets is not 

significant. Wilson et al. (Wilson, 2004b) analyzed the matching performance in 

conjunction with a watch-list for the US-VISITIDENT system. A watch-list refers to a 

database of people who are of some interest. For instance, the FBI may be watching 

criminals who are on a so-called “do not fly” list at airports. The improved methodology
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highlights the potential usefulness of biometric identifiers, such as face and fingerprints, 

to be associated with the watch-list for better and more reliable outcomes.

3.2.2 Database data partioning

Data partitioning plays an important role in the performance analysis process. The input 

dataset is partitioned into two sets, the training dataset and testing dataset respectively 

such that the analysis is initially performed on the training subset, while the testing subset 

is retained for subsequent use in confirming and validating the initial analysis. In other 

words, the matching score distribution of the training set is examined and a suitable 

model is chosen to fit the distribution and the normalization parameters are determined 

based on the model, and the testing set which is completely separate from the training set 

will then be used to evaluate the performance of the system by using those parameters 

derived from the training set.

This statistical practice of partitioning the sample of data into subsets is also called cross 

validation. There are basically three ways of cross validation (Samoska, 2006):

1) Re-substitution validation

All the available data is used for training as well as testing, training and test sets are 

the same.

2) Holdout validation

Data will be divided into independent training and test sets according to the specified 

percentages. The testing dataset is chosen randomly from the initial sample to form 

the validation data, and the remaining observations are retained as the training data. 

After normalization parameters are estimated from the training set, the testing set is 

normalized using these parameters and the fusion method is executed. Normally, less 

than a third of the initial sample is used for validation data.

3) Leave one out validation.
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As the name suggests, leave-one-out cross-validation (LOOCV) involves dividing 

the dataset to n-1 different training samples and 1 testing sample, for N different 

times. The N results from the folds then can be averaged (or otherwise combined) to 

produce a single estimation.

Since the normalization parameters depend heavily on the selected data points in the 

training set and testing set, the subsequent performance metrics such as the probability 

densities of genuine and impostor scores, the FAR and FRR, and ROC also vary from 

different data partitioning methods. Consequently the evaluation analysis may be 

significantly different depending on the way of partitioning the dataset. Figure 3.4 

displays the obviously different probability density curves of a fingerprint biometric 

system based on two different partitioning methods (Re-substitution and Hold-out) and 

same normalization method (Decimal scaling).
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Figure 3. 4 (A) Hold-out partitioning and Decimal scaling normalization 

(B) Re-substitution partitioning and Decimal scaling normalization

3.3 NOISE AND MATCHING PERFORMANCE

3.3.1 Noise sources

Noise is an inevitable factor that affects the performance of biometric systems 

significantly as shown in Figure 3.5.
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(a) (b)

Figure 3. 5 Examples of noisy biometric data, (a) A noisy fingerprint image due to smearing deposits;

(b) A blurred iris image due to loss of focus

The sources of noise are various: Noise can come from the acquired biometric data 

through the defective or improperly maintained sensors as we discussed in section 2 .2 .1  

like the accumulation of dirt on a fingerprint sensor or unfavourable ambient conditions 

Noise can also be due to the user’s physical or behavioural characteristic like a 

fingerprint image with a scar, or impression to impression variation.

(Mansfield, 2002) has analyzed and categorized the factors that could possibly influence 

the system performance, which are also the sources of noise as in the following list:

1. Population demographics: Age, Gender, Ethnic Origin etc.

2. Application: User familiarity, Time elapsed between enrolment and verification, 

Time of day (Behaviour and physiology can change during the day) etc.

3. User physiology: Beards& Moustaches, Disability, Height etc.

4. User behaviour: Accent, Facial expression, Movement, Pose etc.

5. User appearance: Contact lens, Hair style, Tattoo etc.

6 . Environmental influences: Background (Color, noise or other voices etc),

Lighting (Lighting levels, direction, reflection etc), Weather (Temperature, Humidity 

etc), etc)
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7. Sensor and hardware: Sensor wear, Sensor quality, Sensor variations, 

Transmission channel etc)

8 . User interface: Feedback(e.g. Did they see their submitted fingerprints?), 

Instruction, Supervision (e.g. User attempts due to the differences and changes in 

supervisors) etc)

Although noise can be summed up in eight categories, the exact list of sources of noise 

can never be enumerated.

3.3.2 Influence of noise on matching performance

The matching performance of biometrics system is analyzed based on the matching 

scores. Matching score is a measure of the similarity between features derived from a 

presented sample and a stored template. However, essentially we should use this metric:

P (genuine| X), which is the posteriori probability of user being “genuine” given the input 

biometric sample X.

Verlinde et al. (Verlinde, 1999) have examined the relationship between the matching 

score S and the input biometric sample X. It is revealed that the matching score S is 

related to P (genuine| X) as follows:

S = /(P (g en u in e |X ))+ 7 (X)

W here/is a monotonic function and 77 (X) is the error made by the biometric system that 

depends on the input biometric sample X. This error could be due to the noise introduced 

in the previous section or error made by feature extraction and matching processes.

If we assume that 77 (X) is zero, we will have S - f  (P (genuine| X)), which means the 

output matching score S can accurately reflect the capacity of the system in identifying 

the system input -  biometric sample X. However, 77 (X) can not be zero as noise is 

existent everywhere and every time. Furthermore, the value of 77 (X) is uncertain because
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the noise varies greatly among different applications, points of time and environments 

etc.

Consequently matching scores can not exactly reflect the capacity of the system under the 

influences of noise, and the performance analysis results based on matching scores may 

change under different noise influences.

3.3.3 Related work to reduce noise

Being aware the existence of noise, many endeavors have been devoted to reduce it 

throughout the authentication process from the acquiring phase to decision phase. For 

example the feature extraction typically engages enhancement operations to suppress the 

inherent noise from the acquired raw data (Sanderson, 2003). However, the enhancement 

procedure in itself may add spurious (e.g. extraction errors) information to the original 

raw data, so does the matching process (Ross, 2006). Thus, noise is existent at any stage 

in a biometric system and it can not be eliminated completely. Consequently, more and 

more efforts have been attempted to analyze the performance of biometrics system under 

the influence of noise and to develop approaches that make the robust performance under 

the noise disturbance.

Some researches have been focusing on the effect of influencing factors on the 

performance, and have attempted to figure out the extents the performance of the system 

varies with variations of the particular factors because of noise. Given et al. (Givens, 

2004) proposed the use of ANOVA (Analysis Of Variance) to study the statistical effects 

of demographic features such as age, sex, facial hair, etc on face recognition 

performance. Mitra et al. (Mitra, 2007) further extend the previous fixed effects models 

to a random effects model so that performance of the system on the potentially different 

databases can be predicted by using various explanatory variables incorporated with the 

random effects model.
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If all sources of noise, such as sensor noise, feature noise and distortions between pairs of 

matching face templates could be modeled, the error rates could be computed 

analytically. However, the most difficult issue is the modeling of all sources. As we have 

discussed, it is clear there is no possibility to identify and model all noise sources (Bolle, 

2000). Therefore those researches are only limited to the analysis of the effect on the 

performance by several or a few particular noise which are known in the evaluation. The 

analysis on the overall performance of biometrics system influenced by all possible noise 

can not be conducted in this way.

Other efforts, from another perspective, take the whole environment into consideration to 

investigate the performance of recognition systems under various environments when the 

noise changes. Wang and Ji (Wang, 2006) have introduced a concept of "perfect 

recognition" which depends on the intrinsic structure of a recognition system to model 

the performance of face recognition without empirical testing. System performance can 

be used to select system parameters offline to achieve optimal or near-optimal 

performance.

There are two major drawbacks of this method when applying it to evaluate the 

performance under various environments caused by system errors. First of all, the 

statistical model needs to explicitly identify each possible environment that affect the 

performance, which is an extremely difficult task in practical implementation. 

Consequently it cannot totally model the performance under all possible environments 

under the noise disturbance. Secondly, as the crucial metric is extracted from perfect 

recognition similarity scores (PRSS) and is inherently dependent on the particular device, 

the evaluation is difficult to achieve when the number of competing devices increases 

because of the heterogeneous issues.
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CHAPTER 4 PROPOSED STATISTICAL METHODOLOGY FOR

PERFORMANCE ANALYSIS

4.1 PROBLEM DOMAIN

As we have discussed, the traditional testing framework allows system designers to 

evaluate multimodal biometric systems by varying different factors like the biometric 

traits, matching algorithms, normalization schemes, fusion methods and sample 

databases. The performance of multimodal system, however, is evaluated at a point of 

time and the result is affected by a certain noise factor. If we conduct the same evaluation 

for several times, the results of repetitions may have variations because different noise 

will have different influences on the process. Moreover, these variations may lead to a 

diverse evaluation result differing from the previous one. Therefore, the evaluation of 

multimodal system should take the inevitable noise factors into consideration even 

though they are out of designer’s control.

Another challenging problem confronting us thereafter is that the experiments will 

usually take several days or weeks with the exponential growth of combinations of 

variety of noise factors and the system parameters when we are intending to carry out a 

systematic research on them.

Little work has been done to address the above problems. In this chapter, we are 

proposing a statistical methodology that helps to determine optimum configurations of 

the multimodal system in the presence of uncontrollable noise disturbance in an efficient 

and systematical way.

4.2 ROBUST PAPAMETER DESIGN

The proposed methodology falls into the category of robust parameter design for system 

performance. The objective of robust parameter design is to select the optimum levels for 

the controllable system parameters so that the system will be functional, will exhibit a
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high level of performance under a wide range of conditions, and will be robust against 

noise factors that cause variability.

Design o f experiments (DoE), which is the most efficient approach for organizing 

experimental work, is offered as an empirical method of robust parameter design. DoE 

selects a diverse and representative set of experiments in which all factors are 

independent of each other despite being varied simultaneously. The result is a causal 

predictive model showing the importance of all factors and their interactions. These 

models can be summarized as informative contour plots highlighting the optimum 

combination of factor settings. It involves many experimental methods like comparison, 

randomization, replication and use of factorial experiments instead of the one-factor-at-a- 

time method etc.

4.3 DESIGN OF EXPERIMENTS

4.3.1 P-diagram

DoE begins with determining the objectives of an experiment and selecting the process 

factors for the study. The Parameter Diagram (P-Diagram) (Ross, 1995) has been utilized 

as a visualization tool for the understanding the well-defined development scope of a 

software system and the identification of the design specifications, control factors, and 

noise factors that affect the quality characteristic of a system. As shown in Figure 4.1 this 

schematic diagram includes control factors, noise factors, signal factors and performance 

metrics. Signal factors refer to the input of the system; Control factors are the parameters 

that can be specified by the designer; and noise factors, in the other way around, are the 

parameters beyond the control of the system designer.
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Noise Factors

m
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Software System

Performance
Metrics

Control Factors

Figure 4.1 P-Diagram of Software System

Our objective is to determine the most robust parameters configuration in the 

consideration of multimodal biometrics system performance. Under the general testing 

framework, we identified the signal factors as the extracted feature data or the matching 

scores of different biometric traits, the control factors could be the varied feature 

extraction algorithms, matching algorithms, data partitioning methods, normalization 

methods, and fusion methods etc, the noise factor are variety of operational imprecision 

or errors occurred in the process of evaluation as we have discussed in section 3.3.1. 

However, we may consider there are n  types of noise in a multimodal system with n 

modalities in part because one modality can use just one noise as an aggregate of all the 

noise occurred in this modality. In addition, different modalities have different types of 

noise as they are independent from each other.

The performance metric is selected from various scenarios that could be the Genuine 

Acceptance Rate (GAR) or False Acceptance Rate (FAR) at a specific False Acceptance 

Rate (FAR), the Equal Error Rate (EER) or the Failure to Acquire Rate (FAR) etc.
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4.3.2 Gaussian noise model

Since this proposed methodology is designed to study the system performance under 

noise disturbances, we need to investigate all the possible noise in a systematic way. The 

Gaussian noise model is utilized in aiding in the simulation of all the possible noise.

An ideal matcher will generate perfect scores with zero deviation for all matching pairs of 

the same finger/face. In practice, poor quality matching pairs and the errors occurring in 

extraction/matching process result in significant deviations for the matching scores. In 

experiment, we allow the assumption (which are valid for many applications) that the 

deviations of each matching score for a single modality are distributed following a zero- 

mean Gaussian distribution model, where the deviations can be described by its variance 

(cr sigma). (The 1-D Gaussian distribution has the form shown in Figure 4.2) In other 

words, the simulated matching score will be the sum of the matching score without noise 

and a random, Gaussian distributed noise value. Nevertheless, different noise factors may 

cause varied deviation ranges as shown in Figure 4.2, three different Gaussian 

distributions represent the deviations caused by three different noise. We use deviation 

rate which is the ratio of the maximum score deviation over the score scale of a specific 

modality matcher to characterize the deviation range of the noise caused by the matcher.

Please note that the matching scores without noise do not exist in the real world because 

of the irresistant existence of noise. Practically to conduct our experiments we adopt the 

matching scores acquired by domain experts as the approximated noise-free matching 

scores. Because domain experts, compared to other users of the system, are experienced 

in reducing the noise such that the deviations from the ideal matching scores can be 

limited to the minimum.

On the grounds of Gaussian noise model and deviation rate, the noise factors now can be 

investigated systematically.
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Figure 4 .2  1-D Gaussian distributions with mean 0 and different variances <7

4.3.3 Levels specification

After the parameters of control factors and noise factors have been identified, we need to 

decide the levels for each parameter. That is, the test values for every type of parameter 

in the design of experiments. It is easy to conclude that in the testing framework of 

multimodal biometrics system, the levels for control factors are the different partitioning 

methods for partitioning parameter, different normalization methods for normalization 

methods, different fusion methods for fusion parameter etc. These types of parameters are 

all discrete values. However, noise factors keep the presence in the form of continuous 

values. This situation can be resolved by expressing the levels as interval values (Llado, 

2002). In a strategic manner we can specify several intervals for the levels of noise 

factors that influence the performance metrics significantly.

4.3.4 Orthogonal arrays

When the parameters and levels have been identified, the full factorial experiments can 

be carried out to study the influence of different combinations of factors on the system
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performance in a systematic way. However, the experiments can easily become 

extremely costly and time-consuming with the exponential growth in the combination of 

parameters when the system becomes more and more complicated. Statisticians have 

developed more efficient test plans, which are referred to as Orthogonal Arrays (OAs). 

OAs use only a portion of the total possible combinations to estimate the main factor 

effects and interactions (Hedayat, 1999).

Orthogonal Arrays are characterized by the number of parameters and their levels. The 

appropriate OA can be retrieved from the references like (Ross, 1995) or online resources 

(e.g. the Orthogonal Array Library maintained by N.J.A. Sloane available at 

http://www.research.att.com/~nias/oadir/index.htm1 V

4.3.5 Evaluation matrix

Traditionally the idea of exploring the system performance under noise disturbance is to 

have a full factor-effect-analysis by checking all the possible combinations of all the 

factors including control factors and noise factors until the combination for best 

performance is found. Nevertheless, there is a major drawback for this method. If the 

combination is finally found, can instructions be supplied with the system to tell users to 

apply the system only according to that combination which includes uncontrollable noise 

factors? The answer is impossible. We may instruct the users to use the optimum 

configuration of controllable factors by separating the control factors from the noise 

factors and to find some combination of control factors most robust to different noise 

combinations. Furthermore, with the power of Orthogonal Array to evaluate several 

factors in a minimum of tests, the experiments can be conducted in an efficient but still 

systematic way.

The Evaluation Matrix is applied based on the above two ideas. The template of an

evaluation matrix consists of three regions (Table 1). The left region contains u control

factors (cf), n combinations of the control factors (cfc), and an n x u array of control factor

combination values (cfv) assigned by the orthogonal array of control factors. Similarly,

the right-upper region contains v noise factors (nf), m combinations of the noise factors
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(nfc), and a v x m array of noise factor combination values (nfv) assigned by the 

orthogonal array of noise factors. The right-lower region is an array R whose elements

r'J , 1  -  i ^  n and 1 -  j ^ m + 2 , collect experiment results and analysis values like 

mean and S/N. The form of evaluation matrix makes it capable to simulate the variation 

in the performance due to the noise parameters and to determine the optimal 

configuration with proper measurements

nfci nfc, . . . nfcro
»/»u nfv ij nfi%m l i f t

. . .

nf%j . . . nf%m lift
. . .

Cf! e f t eft nfih>. i . . . nft /  mean S/N
cfci cfr l .  1 e M  (U n,i r u 1‘l.m T l.m +l l’l,m +2

' * ,
cfc, cfVi.k C-fVLu f i t . . . l i.m + l l*,m+2

cftv, cfVn.l cjVn* e/tVj.u r«j . . . l‘n,j . . . I'u.HI l'ri,fn+2

Table 1 Template of an Evaluation Matrix

4.3.6 Signal-to-noise ratio (S/N)

After the experiments have been conducted, the final step of DoE is to identify the 

optimal control parameters configuration within the system under evaluation.

Instead of many analyses just addressing which factors might affect the average response 

(i.e. mean value of performance) the Signal-to-Noise Ratio method is used to take both 

the mean and variation into account. The method consolidates all the repetitions for the 

same control parameter combination to reflect the amount of variation present and 

transform them into another value for measuring the variations, namely signal-to-noise 

ratio (S/N) (Ross, 1995). The measurement of the ratio is stated as the ratio of signal level 

to noise level, normally expressed in decibels (dB).
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There are three typical types of S/N ratios available depending on the characteristics of 

the system under evaluation. They are called lower is better (LB), nominal is the best 

(NB), and higher is better (HB).

We can choose the appropriate formula for different performance metrics. For Genuine 

Acceptance Rate (GAR), HB is chosen and for other metrics like Failure to Acquire Rate 

(FAR), LB should be applied. NB is not applicable in the practice of multimodal 

biometrics system evaluation.

Finally, elements vi m+2 for 1 < i ^ n, in the last column of array R are calcul ated by the 

formulas given in Eq.4.1 for HB or Eq.4.2 for LB (Ross, 1995).

/
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W  2 =  - 1 0 1 0 »

] i f f

—  Z
tfTI

1
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CHAPTER 5 EXPERIMENTS AND DISCUSSION

5.1 EXPERIMENTAL ENVIRONMENT

5.1.1 NIST BSSR1 database

5.1.1.1 Why choose NIST BSSR1

According to the performance testing approach we have discussed in section 3.1.1, we 

need a database to conduct our proposed methodology. There are a number of multimodal 

biometrics databases for performance analysis released by different organizations or 

government agencies publicly (Ulery, 2006), we chose the NIST (National Institute of 

Standards and Technology) BSSR1 (Biometric Scores Set - Release I) dataset based on 

the following two reasons:

1. NIST BSSR1 is a true multimodal database

Multimodal database can be either true or virtual. However, Poh and Bengio argue 

that using virtual versus true multimodal databases to evaluate the performance needs 

further investigation (Poh, 2005); we choose a true multimodal database for the 

reliable performance analysis.

2. NIST BSSR1 is the largest true multimodal biometric database among all the 

public domain.

The performance metrics of a biometric system such as accuracy, throughput, and 

scalability can be estimated with a high degree of confidence only when the system is 

tested on a large representative database (Ross, 2006).

5.1.1.2 NIST BSSR1 Overview

The NIST BSSR1 (NIST, 2004) is a multimodal biometric match score database. There is 

no face and fingerprint images of the subject available in the dataset but matching scores.
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BSSR1 is comprised o f face and fingerprint matching scores from the same set of 517 

individuals. For each individual, the set contains one score from the comparison of two 

right index fingerprints, one score from the comparison of two left index fingerprints, and 

two scores (from two separate matchers referred to as ‘C’ and ‘G’) from the comparison 

of two frontal faces. So, there are four match scores for each subject (one for each 

modality) as shown in figure 5.1.

Set 1
Finger x Face

Face by C 
Left Index by V

Right Index by V

517 Enrollees

Face by G

Figure 5 . 1NIST (BSSR1) dataset (NIST, 2004)

5.1.1.3 Data structure

A matching score results from the comparison of two images, representing the 

comparison of an enrolled user's image (gallery set) with a subsequent image of either the 

same or another user (probe set).The gallery set has 517 subjects which also comprise 

the probe set. Whenever a comparison for any modality happens, a similarity file is 

generated which contains a genuine score and the full cross-comparison non-matching 

scores, i.e.516 genuine scores. Therefore, for each modality, there are 517 similarity files 

which have 517 genuine scores and 266,772 (516x517) impostor scores.
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Along with the similarity files, there is a user.xml file with entries for every similarity 

file. Every entry records the similarity file location and name in the tree, as well as a 

unique subjected for the similarity file. By figuring the k-th entry of the similarity file in 

the users.xml file, we can recover the genuine score from the corresponding similarity 

file which is also the k-th score. The other 516 scores in the similarity file are certainly 

impostor scores.

Since each modality is independent from each other, they have adopted four different 

score scales. Table 2 shows the score scale and Min/Max values for each modality.

Modality
Score

Scale

Minimum

Value

Maximum

Value

Face C 1 -1 0.898

Face G 50 54.835 83.494

Left Index 

Finger
250 0 246

Right Index 

Finger
250 0 257

Table 2 Match Score In Four Modalities

5.1.2 BSSR PROCESSOR

In order to process the data in BSSR1 dataset in accordance with the proposed 

performance analysis methodology, the BSSR Processor is implemented in Java 5 which 

benefits from its portability to any operating system containing JAVA installation.

The BSSR Processor includes two components, the score extractor and Gaussian noise 

generator respectively. The score extractor generate two comma delimited files for each 

modality, one file containing the genuine scores for the modality and the other file
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containing all the impostor scores. These two types of matching scores are extracted and 

reorganized by the extractor component based on the BSSR1 dataset mechanism.

The Gaussian noise generator is designed to simulate the matching scores for any 

modality in the noise factor condition by using Gaussian noise model. The scores can be 

generated on the basis of original dataset when specifying the score scale for a specific 

modality and the deviation ratio caused by the Gaussian noise. The deviation ratio may 

be set according to the experiment designing. In this way, the Gaussian noise generator 

permits the capacity to generate matching scores for a modality with any score scale and 

in any assumed Gaussian noise condition.

5.1.3 MUBI off-line analysis tool

Our experiments have been carried out using the Multimodal Biometric (MUBI) analyser 

which can be downloaded from the Center for Identification Technology Research 

(CITeR) web site at department of Computer Science and Electrical Engineering in West 

Virginia University (http://www.citer.wvu.edu/downloads/software.phpT MUBI 

was developed as an independent multimodal biometrics system analysis tool in a great 

effort to empower biometric system designers to evaluate different normalization and 

fusion methods and to choose the “the best” integration techniques in the context of their 

application (Samoska, 2006).

The inputs of MUBI analyser are the genuine and the impostor scores for each modality. 

Several modalities can be added to make up a multimodal biometrics system so as to 

evaluate the performance of this hypothetical system as shown in figure 5.2.

After the modalities have been added to a system, the densities of genuine and impostor 

scores for each modality can be plotted, the data partitioning of a chosen method can be 

created and a number of normalization and fusion methods then be employed. A ROC 

curve will eventually be plotted for the system designer to study the performance of the 

selected combination of techniques as shown in Figure 5.3.
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5.2 EXPERIMENTS

5.2.1 Identifying P-diagram parameters and levels

By examining the performance analysis framework for the multimodal biometrics 

system, we identified three major parameters for control factors (in capital letters) and 

corresponding levels of each parameter (in numbers) that affect the performance outcome 

significantly as following:

“A”— Partitioning methods l).Re-substitution 2).Hold-out 3).Leave-one-out;

“B”— Normalization methods l).Min-Max 2).Decimal Scaling 3).Z-Score 4).Median 

and MAD 5).Tanh-Estimators;

“C”— Fusion methods l).Simple Sum 2).Simple Product 3).Simple Minimum 

4).Simple Maximum 5).BGI;

Meanwhile, the four modality matchers whose information are corrupted by the noise 

independently can be identified as four different parameters for noise factors (in 

lowercases) and each of the four parameters may have three different noise deviation 

levels (in numbers) as following:

“a”—Face C modality matcher 1) withinl% deviation 2) within 5% deviation 3) within 

10% deviation);

“b”—Face G modality matcher 1) within 1% deviation 2) within 5% deviation 3) within 

10% deviation);

“c”—Left Index Finger modality matcher 1) within 1% deviation 2) within 5% deviation 

3) within 10% deviation);

“d”—Right Index Finger modality matcher 1) within 1% deviation 2) within 5% 

deviation 3) within 10% deviation);

In the context of our application, we identified the performance metric for our 

experiments as the Genuine Acceptance Rate (GAR) (%) at 0.1% False Acceptance Rate 

(FAR) of different multimodal biometrics system.
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The P-Diagram encompassing the above parameters and levels is shown in Figure 5.4.

___ Face C matcher noise:
Face G matcher noise 
Le t  Index Finger matcher noise 
Right Index Finger matcher noise

111

Matching scores
Multimodal Biometrics System

GAR at 0.1% FAR

PaititiGmngmethods 
Normalization methods 
Fusi on methods

Figure 5 .4  P-Diagram of Multimodal Biometrics System

5.2.2 Gaussian noise model for matching scores

According to the instructions in section 4.3.2 we take the NIST dataset as the roughly 

noise free matching scores. Gaussian noise model and deviation rate will be applied 

based on the NIST dataset.

Since Multimodal biometrics system has different score scales for each modality, (In 

BSSR1 dataset, Face C scores are within [0,1], Face G scores are within [50,100], Left 

Index Finger and Right Index Finger scores are both within [0,250]), we characterize the 

possible spread range of noise values by three levels of deviation rates, within 1%, within 

5%, within 10% of the original matching score respectively. Because the deviation 

extents influenced by most common noise generally fall within these three levels.

Each modality out of the four modalities is independent and their noise values may fall in 

any level of deviation extent when conducting experiments every time. We therefore 

generate all the possible combinations of matching scores of different modalities at three 

noise levels.
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5.2.3 Orthogonal arrays (OA) and evaluation matrix

As we have discussed previously, the number of experiments would be large if we carry 

out our experiments by using full factorial experiment. In that scenario, the combinations 

for uncontrollable noise factors alone are 3 x 3 x 3 x 3=81. And this number has to multiply 

the number of control factors combinations for the final evaluation matrix.

Equipped with the power of Orthogonal Array to evaluate several factors in a minimum 

of tests, therefore, we can derive an orthogonal array L9 for the noise factors which 

slashed the number of combinations to 9 and it is around 11% of the original. Table 3 is 

the OA for noise factors.

a 1 1 1 2 2 2 3 3 3

b 1 2 3 1 2 3 1 2 3

c 1 2 3 2 3 1 3 1 2

d 1 2 3 3 1 2 2 3 1

Table 3 Orthogonal Array for noise factors

Compared to noise factors OA, the OA for control factors is a little complicated due to 

the facts that BGI fusion method is capable of both normalizing and fusing the matching 

scores, it does not require separate normalization before using BGI fusion method and 

BGI can not be done with leave-one-out partition method.

We came up with a way to split BGI out the other four fusions for a full factorial 

experiment combined with partitioning methods. We then have two combinations when 

BGI is present,

A 1 2
B  * *

C 5 5
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And the remaining combinations can still be reduced by using orthogonal array. Now we 

have partitioning parameter with 3 levels, normalization parameter with 5 levels and 

fusion parameter with 4 levels. We should modify basic Orthogonal Arrays to 

accommodate a mixture of three-, five-, and four-level factors. The following LI 2 array 

(Table 4) is the solution for mixed level design.

A 1 1 1 1 2 2 2 2 3 3 3 3

B 1 2 3 4 1 2 3 5 1 2 4 5

C 1 2 3 4 2 3 4 1 3 4 1 2

Table 4 Orthogonal Array for control factors

Consequently, we can build a 14 x 9 evaluation matrix for this multimodal biometrics 

system as table 5 according to the proposed methodology.

5.2.4 Signal to noise ratio (S/N)

The signal to noise ratio (S/N) is chosen accordingly following “the higher the better’' 

(HB) rule in the proposed methodology, the ratio equation is given as following:

}Lm+2

■.J \
1 w *

— Z i 
-  it r,>< iJ

Where f  • . is the GAR value at 0.1% FAR and m is the number of noise combinatioins 

(size of noise array).
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1 2 3 4 5 6 7 8 9 No.

S/N

Ratio

(dB)

1 1 1 2 2 2 3 3 3 a

1 2 3 1 2 3 1 2 3 b

1 2 3 2 3 1 3 1 2 c

No. A B C 1 2 3 3 1 2 2 3 1 d/Mean

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

5 2 1 2

6 2 2 3

7 2 3 4

8 2 5 1

9 3 1 3

10 3 2 4

11 3 4 1

12 3 5 2

13 1 * 5

14 2 * 5

Table 5 Evaluation Matrix for NIST BSSR1

5.3 EXPERIMENTAL RESULTS

5.3.1 Matching scores disrtibution and gaussian noise model

After the extraction of genuine and impostor scores for each modality, we plotted the 

probability density functions (pdfs) of genuine and impostor scores for each modality 

from the original dataset to analyse the distribution of two types of scores as Figure 5.5, 

Figure 5.6, Figure 5.7, and Figure 5.8 respectively.
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The scores for each modality, however, have been deviated after the employment of 

Gaussian noise model. The ranges of deviation vary depending on the specified deviation 

rates. Table 6 presents a comparison about the changes of genuine score range, impostor 

score range, Minimum and Maximum values of matching score for a modality at different 

rates of Gaussian deviation.

Modality
Gaussian

Deviation

Genuine Score 

Range

Impostor Score 

Range

Minimum

Value

Maximum

Value

Face C

Original [-1,0.898] [-1, 0.732] -1 0.898

Within 1% [-0.996,0.893] [-1.005, 0.732] -1.005 0.894

Within 5% [-1.009, 0.912] [-1.022, 0.739] -1.022 0.912

Within 10% [-0.974, 0.897] [-1.044, 0.729] -1.044 0.897

FaceG

Original [64.806, 83.494] [54.835, 76.482] 54.835 83.494

Within 1% [64.867, 83.594] [54.998, 76.581] 54.998 83.594

Within 5% [64.911,83.571] [54.954, 76.896] 54.954 83.571

Within 10% [64.337, 84.863] [53.724, 77.868] 53.724 84.863

Left

Index

Finger

Original [4.0,246.0] [0,45.0] 0 246

Within 1% [3.968, 246.515] [-1.197, 44.481] -1.197 246.515

Within 5% [2.240, 247.052] [-5.665,45.010] -5.665 247.052

Within 10% [0.210,244.051] [-10.622,49.342] -10.622 244.051

Right

Index

Finger

Original [0, 257.0] [0,43.0] 0 257

Within 1% [0.073,256.994] [-1.180,42.535] -1.18 256.994

Within 5% [1.995,256.991] [-6.074,44.055] -6.074 256.991

Within 10% [0.278, 253.294] [-12.357, 40.204] -12.357 253.294

Table 6 Comparison of matching scores of four modalities at different deviation rates
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The distributions of probability densities of genuine scores and impostor scores also have 

been changed accordingly. Figure 5.9 illustrates the deviation of curves of probability 

densities for genuine scores and impostor scores for modality Right Index Finger at 10% 

deviation rate compared to the original.
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Figure 5. 9Deviation o f density distribution o f Right Index Finger

5.3.2 Performance analysis

After the generation of different matching scores datasets based on Gaussian noise 

model, a series of performance analysis have been conducted in different aspects.

1) Performance of unimodal and multimodal biometrics system.

The multimodal biometrics system can achieve much better performance than any 

unimodal biometric system. Figure 5.10 shows the ROC curves of four single 

modalities and the ROC curve after the fusion of them (Simple Product).
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2) Performance of the same normalization and fusion methods based on different 

partitioning methods.

Using different partitioning methods makes performance variation as shown in Figure 

5.11 which displays two ROC curves by the same normalization and fusion (BGI) 

based on different partitioning methods (Re-substitution vs. Hold-out).
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Figure 5 .1 0  Performance of multimodal and unimodal biometrics systems
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Figure 5.11 Performance o f different partitioning methods

3) Performance of different normalization methods followed by the same fusion 

method and based on the same partitioning method.

Using different normalization methods makes performance variation as shown in 

Figure 5.12 which displays two ROC curves by Simple Sum fusion method and 

different normalizations (Min-Max vs. Zscore) based on resubstitution partitioning

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-rrt̂ rw?-** NifrG of 4 Yv>«**sil «**■•*-*

Uf i. m«ttb&d:Miir**M.** rT<*imall3ta1

* ■ « « » * * »  R O C S  C

f u s i o n  m « * h o e i  S I  m p l e  S u m  r u t «

«OC C««r«

FALSE ACCEPT RATE f%)

Figure 5 .1 2  Performance of different normalization methods

4) Performance of different fusion methods after the same normalization and 

partitioning methods.

Using different fusion methods makes performance variation as shown in Figure 5.13 

which displays two ROC curves by different fusions (Simple Minimum vs. Simple 

Product) after Min-Max normalization and based on Hold-out partitioning.
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100

5.3.3 Evluation matrix and Robust design

After conducting 126 experiments of different combinations of control factors and noise 

factors, we collected the experiments results and now have the evaluation matrix filled up 

as shown in Table 7. The mean value of each row and related Signal to Noise (S/N) ratio 

were also computed.

By investigating the results, it is concluded that the first combination of control factors is 

the overall winner for the most robust design. In other words, the application of re­

substitution partitioning, Min-Max normalization and Simple Sum fusion techniques on 

the multimodal biometrics system with the four specific modalities has been proved to 

have the best GAR performance at 0.1% FAR under the inevitable noise disturbances.
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1 2 3 4 5 6 7 8 9 No.
S/N

Ratio

(dB)

1 1 1 2 2 2 3 3 3 a

1 2 3 1 2 3 1 2 3 b

1 2 3 2 3 1 3 1 2 c

No. A B C 1 2 3 3 1 2 2 3 1 d/Mean

1 1 1 1 99.424 99.135 99.28 99.247 99.28 99.247 99.28 99.548 99.28 99.302 39.939

2 1 2 2 95.101 94.236 92.807 93.524 92.939 94.428 93.516 94.277 93.948 93.864 39.449

3 1 3 3 84.15 84.582 82.709 84.036 84.006 84.639 84.15 82.229 83.573 83.786 38.462

4 1 4 4 97.983 99.28 99.135 98.795 96.974 96.235 98.847 97.44 95.101 97.754 39.800

5 2 1 2 97.152 97.152 97.152 97.152 98.101 98.101 98.101 92.247 97.152 96.923 39.724

6 2 2 3 88.449 89.399 91.297 84.494 87.5 90.348 86.551 81.646 85.443 87.236 38.799

7 2 3 4 99.051 99.051 99.051 95.253 98.101 99.051 99.051 95.253 99.051 98.101 39.830

8 2 5 1 99.842 98.101 99.051 98.101 98.101 99.842 97.152 98.101 99.051 98.594 39.876

9 3 1 3 86.167 85.443 84.652 84.652 86.551 84.968 86.709 83.386 86.551 85.453 38.633

10 3 2 4 78.481 76.741 71.994 78.165 77.215 71.519 79.114 76.108 71.044 75.598 37.549

11 3 4 1 99.367 99.525 98.892 98.576 99.367 99.367 99.367 99.367 98.892 99.191 39.929

12 3 5 2 99.051 98.559 98.271 98.271 98.559 98.703 98.559 98.559 97.983 98.502 39.869

13 1 * 5 98.559 99.135 98.559 98.795 98.271 98.795 98.559 98.494 99.28 98.716 39.888

14 2 * 5 98.101 99.841 98.101 99.051 99.842 99.051 99.842 98.101 97.152 98.787 39.893

Table 7 Evaluation Matrix

A l— A3: Resubsitution/ Hold-out/ Leave-one-out
B1--B5: Min-Max / Decimal Scaling / Z-Score / Median and MAD / Tanh-Estimators 
C l—C5: Simple Sum/ Simple Product/ Simple Minimum / Simple Maximum / BGI 
a l-a3 : 1% / 5% /10% (so does bl~b3, c l-c 3 , d l-d 3 )
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5.4 DISCUSSION

By analyzing the experimental data in the evaluation matrix (Table 7) we found some 

control factors combinations have consistent performances in different noise conditions. 

For example, the performance of the combination No.l varies between 99.135% and 

99.548%; the performance of the combination No.l 1 varies between 98.576% and 

99.525%. However, other control factors combinations have significant changes when 

noise factors differ. For example, the minimum performance value for combination No. 6 

is 81.646% while maximum value is 91.297%. The performance of combination No. 10 

also jumps from 71.044% to 79.144%. It is therefore that the performance analysis of 

multimodal biometrics system can not be made just upon a certain condition; the most 

robust selection should be chosen after investigating all possible conditions by using the 

proposed systematic approach.

In addition, the experimental results do not mean the losers can not perform as good as 

the chosen winner all the time. They may even perform better when the operating point 

changes in other applications. Because the performance metric GAR is related to a 

specific FAR greatly. When the requirement for the FAR of the application changes (i.e. 

operating point changes), the GAR value will change accordingly. Take control factors 

combination No. 3 for example, the mean value of GAR at 0.1% FAR is only 83.786%. 

But when the FAR value rises, the GAR hikes rapidly as we can see in Figure 5.14. This 

combination may be adopted by the applications (e.g forensic application) which prefer 

high FAR when taking other elements into account as we have discussed in section 3.2.2.
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Figure 5 .14  GAR changes with the FAR value

Another issue worth noting is that equipped with Orthogonal Array (OA) technique, the 

proposed methodology can achieve more efficiency when the number of parameters or 

levels increases. Table 8 has illustrated the numbers of full factorial experiments needed 

for different parameters (either control factor or noise factor) and levels among the 

common scenarios for multimodal biometrics systems. Table 9 has derived the 

corresponding numbers of experiments needed by using Orthogonal Array technique. We 

can see from Table 10 that the percentage of experiments by OA divided by 

corresponding full factorial experiments slashes when the number of parameters or levels 

increases.
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3 3 3 4 4 4 5 5 5 noise factor 
parameters

3 4 5 3 4 5 3 4 5 levels
control factor 
parameters levels full factorial 27 64 125 81 256 625 243 1024 3125 fu ll factorial

3 3 27 729 1728 3375 2187 6912 16875 6561 27648 84375
3 4 64 1728 4096 8000 5184 16384 40000 15552 65536 200000
3 5 125 3375 8000 15625 10125 32000 78125 30375 128000 390625
4 3 81 2187 5184 10125 6561 20736 50625 19683 82944 253125
4 4 256 6912 16384 32000 20736 65536 160000 62208 262144 800000
4 5 625 16875 40000 78125 50625 160000 390625 151875 640000 1953125
5 3 243 6561 15552 30375 19683 62208 151875 59049 248832 759375
5 4 1024 27648 65536 128000 82944 262144 640000 248832 1048576 3200000
5 5 3125 84375 200000 390625 253125 800000 1953125 759375 3200000 9765625

Table 8 Number o f experiments based on full factorial experiment

3 3 3 4 4 4 5 5 5 noise factor 
parameters

3 4 5 3 4 5 3 4 5 levels

control factor 
parameters levels

orthogonal
arrays 9 16 25 27 16 25 27 16 25 orthogonal

arrays

3 3 9 81 144 225 243 144 225 243 144 225
3 4 16 144 256 400 432 256 400 432 256 400
3 5 25 225 400 625 675 400 625 675 400 625
4 3 27 243 432 675 729 432 675 729 432 675
4 4 16 • 144 256 400 432 256 400 432 256 400
4 5 25 225 400 625 675 400 625 675 400 625
5 3 27 243 432 675 729 432 675 729 432 675
5 4 16 144 256 400 432 256 400 432 256 400
5 5 25 225 400 625 675 400 625 675 400 625

Table 9 Number of experiments based on orthogonal array technique
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 CONTRIBUTIOINS OF THE RESEARCH

This thesis developed a statistical approach for performance analysis of multimodal 

biometric systems, and presented experiment results with the four modality BSSR1 

dataset. The statistical approach has made it possible to systematically study the 

performance of different fusion methods and normalization techniques in the presence of 

noise. In addition, observations made from this study not only identified the fusion 

methods best in performance, but also produced useful guidance for the practice of 

system performance analysis. Although only four out of many types of possible biometric 

information are used in experiment, the method is general and can be applied to 

applications that require large volume, high-dimensional experiments.

6.2 DIRECTIONS OF FUTURE WORK

There are two directions of future work we may pursue to work towards:

• Expanding the application of the proposed methodology in a broader spectrum 

The factors we have studied by using the proposed methodology in this thesis is only a 

subset of factors influencing the performance of multimodal biometrics system. 

(Mansfield, 2002) has analyzed and summed up the factors that could possibly influence 

the system performance as we have discussed in section 3.3.1:

1. Population demographics (e.g. Age, Gender, Ethnic Origin etc)

2. Application (e.g. User familiarity, User Motivation etc)

3. User physiology (e.g. Beards& Moustaches, Disability, Height etc)

4. User behaviour (e.g. Facial expression, Movement, Pose etc)

5. User appearance (e.g. Contact lens, Hair style, Tattoo e tc )

6. Environmental influences (e.g. Background, Lighting, Weather etc)

7. Sensor and hardware (e.g. Sensor quality, Transmission channel etc)

8. User interface (e.g. Feedback, Instruction, Supervision etc)
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In the future, in a more elaborate and effective manner, we may identify the above factors 

as control factors and noise factors respectively and select the influential factors in the 

context of different biometrics applications to construct the analysis models for different 

performance metrics based on variety of scenarios.

• Conducting our experiments on a larger database 

As we have discussed, the performance metrics of a biometric system such £is accuracy, 

throughput, and scalability can be estimated with a high degree of confidence only when 

the system is tested on a large representative database. Due to the limited conditions we 

have employed the largest database in public for our experiments; however, it is still 

small compared to other proprietary databases. For example, face (Phillips, 2003) and 

fingerprint (Wilson, 2004) recognition systems have been evaluated on large databases 

(including samples from more than 25,000 subjects) acquired from a diverse population 

under the changing environmental conditions.

Our future experiments may employ a larger database which can be better representative 

of the population and each biometric trait can preferably exhibit realistic intra-class 

variations by collecting data over multiple sessions spread over a period of time and in 

different environmental conditions).
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