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Abstract

Red carotenoid-based pigmentation is characteristic of salmonid eggs. Though 

this incurs metabolic costs for maternal accumulation/allocation, and increases predation 

risk to the eggs, to date there has been no empirically supported adaptive explanation 

documenting benefits to offset the costs of red egg pigmentation in salmonids. This study 

investigates relationships between maternal egg carotenoid concentrations and measures 

of survival and immune function in larval and juvenile salmon. Chinook salmon 

(Oncorhynchus tshawytscha) possess a rare genetic polymorphism resulting in red- and 

white-fleshed phenotypes representing the most diverse range of naturally occurring flesh 

and egg carotenoid-based pigmentation known in any single salmonid species. In this 

study Chinook salmon eggs representing a wide range of carotenoid pigmentation were 

selected, fertilized and reared as maternal families following standard hatchery protocols 

with incubation survival measured. At the smolt stage, disease resistance was measured 

via interparitoneal injection with live Listonella anguillarum, and time to 10% mortality 

(LT10) in each family was used as a measure of resistance. Carotenoids and antibodies 

were extracted and concentrations (ug/g) measured by HPLC/UV-visible absorption and 

ELISA respectively in each family at different stages of embryonic development; 

unfertilized eggs (both), eyed-stage eggs (carotenoids only) and swim-up stage offspring 

(both). Astaxanthin was the primary carotenoid in all the eggs and the concentration 

declined in all families during development. Antibody levels varied widely among 

families at both stages measured, and in general were higher at the swim-up stage. A 

significant relationship was found between smolt stage disease resistance and mean egg 

carotenoid concentrations by family in a single regression, and this relationship was also 

significant in a multiple regression with independent covariates of egg carotenoid and
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antibody levels, with egg carotenoids being the significant predictor. While no 

relationship was observed for incubation survival, a significant relationship was found 

between the decline in egg carotenoid and increase in antibody levels to the offspring 

swim-up stage. This study provides new evidence that carotenoid pigments and 

immunological function dynamics in salmon eggs and developing offspring are related 

a complex fashion, reflecting a possible mechanism contributing to the published 

relationships between egg carotenoid and offspring fitness.
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CHAPTER #1 

Why are salmon eggs red? 

A General Introduction

1.1 Carotenoids and Retinoids

Carotenoids are a class o f over 600 hydrophobic compounds characterized by a 

long (40) carbon chain with a conjugated n electron system as well as methyl-, and in 

some isoforms, oxygenated, side groups (Figure 1.1).

Figure 1.1: Examples of 

molecular carotenoid 

structures, top to bottom: 

astaxanthin, zeaxanthin, lutein, 

canthaxanthin, (1- 

cryptoxanthin, and p-carotene. 

Hydrogen atoms have been 

omitted for clarity.

These molecular structural characteristics for carotenoids facilitate the absorption of 

radiation in the visible wavelength range of the electromagnetic spectrum (typically 440- 

490 nm), and the reflection of the characteristic red to yellow colour commonly 

associated with carotenoids. This is exemplified by the red to yellow colouration of 

salmonid and bird eggs and yolks (Craik 1985; Blount et. al. 2000).

H O

WO „ _  ,O H

H

H O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

Synthesized in plants and obtained by animals through their diet (Goodwin 1986; 

Stahl and Sies 2005), carotenoids serve a diverse range of critical biological functions.

The most notable of these are carotenoid-based ornaments, often part of secondary sexual 

signals, are believed to convey health or fitness benefits to potential mates (Hamilton and 

Zuk 1982; Skarstein and Flostad 1996).

At the cellular level, carotenoids are metabolic precursors to vitamin A and other 

retinoids (Goodwin 1954; Tanumihardjo 2002; Mora et. al. 2004). Retinoids are well 

known for their roles in embryonic pattern formation (Kraft et. al. 1994) and disease 

resistance (Sommer 1989; W olf 1996) through regulation of apoptosis (Sumantran et. al. 

2000; Palozza et. al. 2004; Sacha et. al. 2005), chemotaxis (Demvinska-Kiec et. al. 2005) 

and intercellular communication (Stahl et. al. 2000).

Carotenoids are also powerful antioxidants (Mortensen et. al. 2001; though for 

conditions o f carotenoids as pro-oxidant see Palozza 2005). In synergy with other dietary 

antioxidants (Bohm 1997; Stahl et. al. 1998) and their conjugated proteins (Bhosal and 

Bernstein 2005) carotenoids help maintain the functional stability/integrity of biological 

systems and organs (Kurashige et. al. 1990; Liebler et. al. 1997; Sujak et. al. 1999; 

Cantrell et. al. 2004). Xanthophyll carotenoids, with their polar end groups (Figure 1.1), 

span bi-lipid membranes, influencing membrane physical and structural integrity, similar 

to cholesterols (Wiesyaw et. al. 2005). Carotenoids and their retinoid metabolic 

derivatives can also act as transcription enhancers (Silveira and Moreno 1998) through 

interactions with promoter regions, or by stabilizing mRNA transcripts such as those of 

connexion 43, which contributes to gap junction intercellular communication, essential to 

normal development and cancer prevention (Zhang et. al. 1992; Hanusch et. al. 1995; 

Stahl et. al. 2000; Bertram and Vine 2005). Additionally, carotenoids and retinoids
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3

stimulate oestrogen production (Ng et. al. 2000), which upregulates production of 

vitellogenin (vtg) and very low density lipoprotein (VLDL) (Speake et. al. 1998). These 

compounds (VLDL and vtg) then form complexes with maternal carotenoids and other 

yolk resources, assisting in their transport to developing oocytes (Ando et. al. 1986a, b &

c), where vtg and VLDL then serve as precursors of protein and lipid resources 

(respectively) for developing embryos (Speake et. al. 1998; Hiramatsu et. al. 2002). The 

high metabolic rate associated with embryonic development generates elevated levels of 

oxidative by-products (Danapat et. al. 2003; Dreon et. al. 2004). Yolk carotenoids, in 

synergy with other antioxidants, mediate peroxidative damage to the lipid-rich embryonic 

tissues, membranes and organ systems (Speake et. al. 1998), as well as other maternal 

resources such as antibodies (Haq et. al. 1996), preserving their integrity for the 

developing embryo (Blount et. al. 2000). As most developmental resources are 

colourless, carotenoids offer a visual signal of the abundance and integrity o f egg/yolk 

resources.

1.2 Carotenoids/Retinoids and Immune Function

Dietary carotenoids increase circulating carotenoid levels. Then, following 

vaccination, carotenoid supplemented individuals show increases in immune measures 

such as vaccine-specific antibody levels (Kiss et. al. 2003), and maintaining the integrity 

of red blood cells during free radical attack (Alonso-Alvarez et. al. 2004). Immune 

activation is rapidly mirrored by reductions in circulating carotenoids (Faivre et. al.

2003). Inverse correlations between circulating levels of carotenoid and antibody are 

frequently reported in adult birds (Saino et. al. 1999; Verhulst et. al. 1999; Ohlsson et. al. 

2003; Kiss et. al. 2003; Peters et. al. 2004) and formed part o f the immunocompetence
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4

handicap hypothesis in studies of sexually mature threespine sticklebacks (Folstad and 

Karter 1992) and Arctic charr (Skarstein and Folstad 1996). The intensity of male 

secondary sexual carotenoid pigmentation used in female mate choice has been correlated 

with reduced parasite loads in guppies (Houde and Torio 1992) and the threespine 

stickleback (Milinski and Bakker 1990; Folstad et. al. 1994; Bakker et. al. 1999), and 

these correlated traits have been shown to be heritable in their offspring (Barber et. al. 

2001) or confer other offspring fitness advantages (Reynolds and Gross 1992). In birds, 

maternal carotenoid supplements increase egg levels of maternally allocated carotenoids 

and vaccine-specific antibodies (Haq et. al. 1996a; Kiss et. al. 2003); as well as 

endogenous antibody production from in vitro mitogen challenge in the bursa of newly 

hatched chicks (Haq et. al. 1996b). Vitamin A and retinoids also boost the recovery 

potential from a number of diseases in humans (see reviews by Sommer 1989; Wolf 

1996) and are well known for their interactive roles with immune cells and processes in 

vitro and other mammal species (Smith and Hayes 1987; Geissmann et. al. 2003; 

Langmann et. al. 2005). Carotenoids mediate oxidative DNA damage in leukocytes and 

cancer cells, decreasing in vitro proliferation (Dulinska et. al. 2005) and inducing in vitro 

apoptosis (Stacewicz-Sapuntzakis et. al. 2005) in cancer cells. Additionally, carotenoids 

and retinoids both act as cofactors inducing T-cell immune process cascades in vivo in 

humans (Alexander et. al. 1986; Jonasson et. al. 2003), mice (Jyonouchi et. al. 1994) and 

in vitro cell culture (Garbe et. al. 1992; Jyonouchi et. al. 1995; Stephensen et. al. 2002).

1.3 Evolutionary Processes: Carotenoids in Sexual vs. Natural Selection

Carotenoid-based pigments are often a vital part o f secondary sexual signals in 

birds (Hamilton and Zuk 1982) and fish (Skarstein and Folstad 1996). Darwin first
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proposed such ornamental colouration as being evolutionarily driven by sexual selection 

(Darwin 1871). Recently, several studies have documented correlations between the 

carotenoid-based pigment intensity o f sexual ornaments and measures o f fitness both 

within individuals (e.g. Alonso-Alvarez et. al. 2004) and from parent to offspring (e.g. 

Barber et. al. 2001). Salmonids develop nuptial ornaments at sexual maturity, some of 

which are carotenoid-based, such as the intense red skin colour o f male sockeye salmon 

(Oncorhynchus nerka) or the red belly in both sexes of Arctic charr (Salvelinus alpinus). 

Mature Chinook salmon (O. tshawytscha) develop darker skin colour, though not 

predominantly red. Males grow a hump behind their head and a kype with sharp teeth 

used to fight for access to spawning females. Dominant males cue on the quiver and redd 

digging behaviours o f gravid females, and approach to fertilize her eggs as they are laid. 

Neither male nor female see the eggs; hence egg pigmentation is not a sexually selected 

trait. Carotenoid pigments are highly visible, especially within cryptically coloured 

stream beds (pers. obs.). High visibility increases predation risk (Wieland and Koster 

1996; Godin and McDonough 2003), and thus egg carotenoid pigmentation should be 

selected against. Additionally, maternal dietary intake, metabolism and allocation of 

carotenoids to maturing oocytes incur metabolic costs (Schiedt, et. al. 1985; Tonissen et. 

al. 1989; Metusalach, et. al. 1996). Evolutionarily speaking, salmon offspring should 

derive benefits o f egg carotenoids, which offset the costs o f maternal provisioning and 

egg predation risk; yet, to date, there has been no empirically supported explanation why 

salmonids allocate such high levels of carotenoids to their eggs.
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1.4 Carotenoids in Salmonid Aquaculture: Early Survival and Disease Resistance

The characteristic red of salmon flesh and eggs drives consumer marketability and 

is due to the presence of dietary carotenoids (Storebakken et. al. 1987; March and 

MacMillian 1996). Traditionally, salmonid egg pigmentation has been interpreted as a 

sign of quality, thought to contribute to higher fertilization, hatching or offspring survival 

(Hubbs and Stavenhagen 1958; Yarzhombek 1964 and 1970). Relationships between egg 

yolk carotenoids and offspring survival are well established in birds (Blount et. al. 2000). 

Similar correlations have been documented in salmonid fish under conditions of oxidative 

stress syndromes such as M74 in the Baltic (Pettersson and Lignell 1999), Cyuga and 

early mortality syndrome (EMS) in the Finger Lakes of New York state, and in the North 

American Great Lakes (Palace et. al. 1998), all of which entail early yolk-sac fry 

mortality within affected maternal families. Investigations of healthy salmonid 

populations, however, have not empirically supported the egg carotenoid-offspring 

survival relationship (Torrissen 1984; Craik 1985; Tveranger 1986; Christainsen and 

Torrissen 1997). Craik (1985) proposed a hypothesis that a minimum egg carotenoid 

threshold level is necessary for optimal offspring survival, as opposed to the often tested 

linear relationship between these two variables, perhaps explaining some of the lack of 

empirical support for the egg carotenoid-offspring survival assertions. From a review of 

published data spanning decades, continents and numerous salmonid species, Craik 

(1985) proposed that in salmonids, a minimum carotenoid threshold range of 1-3 ug/g egg 

was required to ensure “acceptable” offspring survival rates, typically above 85%, while 

egg batches with carotenoid levels below this tend to experience rapid, exponential 

declines in offspring survival relative to their egg carotenoid concentrations. Similarly, 

studies of salmonid populations experiencing M74 and EMS proposed a minimum
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carotenoid concentration range of 0.1-0.3 ug/g egg as being required for basic oxidative 

protection, as egg batches with carotenoid levels below this range typically experienced 

almost total offspring failure regardless of other resource levels (Lundstrom et. al. 1999).

1.5 Carotenoids: Genetic Differences in Absorption/Retention Capacity

Variations in the capacity for dietary carotenoid absorption, metabolism and 

deposition involve a heritable component in salmonids (see review within Blanc and 

Choubert 1993). While salmonid species worldwide are known for their red carotenoid- 

based flesh and egg pigmentation (Craik 1985; Ando et. al. 1989), Chinook salmon 

(Oncorhynchus tshawytscha) are an exception. Chinook are the only salmonid species to 

have two distinct carotenoid-based flesh colour phenotypes, termed red-fleshed and 

white-fleshed (Prince 1916; Milne 1964; Godfrey 1975), with egg pigmentation mirroring 

that of the maternal flesh colour type (Hard 1986; Withler 1986; Hard et. al. 1989).

In mammals “low responders” to dietary carotenoids have between 50% (Bowen 

et. al. 1993) to 99% (Stahl et. al. 1995) reductions in circulating carotenoid levels 

compared to conspecifics receiving identical diets (Chew et. al. 2000; Lin et. al. 2000; 

Hickenbottom et, al, 2002). Similarly, white-fleshed Chinook salmon can have flesh 

carotenoid levels as much as 95% below those of their red-fleshed counterparts when 

evaluated by visual comparison to carotenoid flesh-pigment colour charts (McCallum et. 

al. 1987) or by thin layer chromatography (Ando et. al. 1992). Flesh colour, when treated 

as a threshold trait, is highly heritable in Chinook salmon, with the mean heritability of 

dam and sire components estimated at 0.8 (Withler 1986). Controlled by a genetic 

polymorphism, Chinook flesh colour is believed to involve two loci, each requiring a 

dominant allele for expression of the red-flesh phenotype (Withler 1986). White-fleshed
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individuals lack the specific molecules necessary for carotenoid transport and/or 

deposition/retention in the flesh (Ando et. al. 1994), and perhaps it is these molecular 

transport & deposition factors that are controlled by the two proposed loci, the lack of 

either leading to the white-fleshed phenotype. While the occurrence of white-fleshed 

Chinook is far less extensive than the more common red-fleshed variety (Hard et. al.

1989), white-fleshed Chinook have nonetheless long been recognized in native cultures 

and commercial fisheries (Prince 1916), and are thus presumed to represent a viable 

evolutionary strategy. Chinook salmon therefore provide an exceptional opportunity to 

test for correlations between carotenoids and measures o f fitness in healthy fish, offering 

a wide range of egg pigmentation levels without the need for artificially manipulating the 

maternal diet.

1.6 White- and Red-Fleshed Chinook Salmon of this Study

For this study, eggs from wild populations o f the two flesh-colour phenotypes 

were chosen, along with a domestic red-fleshed population. Since marketability is largely 

driven by flesh colour, domestic populations of white-fleshed Chinook salmon are 

currently unavailable. Eggs of wild stock were obtained from British Colombia DFO 

(Department of Fisheries and Oceans Canada) enhancement hatcheries; white-fleshed 

Chinook salmon from the Chehalis River (Fraser river tributary), and red-fleshed Chinook 

salmon from the Quinsam River (Vancouver Island). Domestic red-fleshed Chinook 

salmon were selected from broodstock at Yellow Island Aquaculture Ltd. (YIAL, Quadra 

Island, B.C.), where all rearing and field experiment took place (see figure 1.2).
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YeUaw Island Agriculture Ltd.
Quadra Island, BC 

Source of domestic (RFd) eggs, 
rearing & field experiment site

Quinsam River 
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RFw eggs
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Figure 1.2: Sampling locations map, west coast o f British Columbia, Canada.

WF = White-flesh, RFw = Red-flesh wild and RFd = domestic (red-flesh) Chinook 

salmon (Oncorhynchus tshawytscha)
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1.7 Pilot Study: Novel Methodology

In a preliminary study, it was hypothesized that perhaps white-fleshed Chinook 

salmon may incorporate different carotenoid isoforms rather than simply reduced levels 

of astaxanthin, the carotenoid reported in a majority of salmonids (e.g. 16 species from 4 

genera worldwide as examined in Ando et. al. 1989). However, a comprehensive review 

of the literature revealed that the most common method of carotenoid analysis for 

salmonid flesh and eggs involved either visually scoring with comparison to salmonid- 

flesh-colour scoring charts (Springate and Nickell 2000), by variations involving a crude 

acetone extraction and single wavelength spectral analysis compared to astaxanthin or 0- 

carotene, or by limited simple separation using thin layer chromatography (Ando et. al. 

1992). To date, no published methodologies were located which could adequately 

separate and quantify the closely related oxygenated carotenoid isoforms we hypothesized 

as potentially comprising the carotenoid profile of the white-fleshed and domestic 

Chinook salmon eggs. We therefore developed an analytical procedure to identify 

components of the carotenoid profile in Chinook salmon eggs, which was based on 

advanced separation by high performance liquid chromatography (HPLC) and coupled 

with either UV/visible absorption, mass spectrometric or electro-spray detection and 

quantification (Li et al. 2005). This study revealed that astaxanthin was the major 

carotenoid in the present Chinook salmon eggs, and thus the approach for carotenoid 

quantification in the present thesis was based on these findings. The portions of the 

analytical methodology utilized in this study are described in abbreviated form in the 

Methods and Materials, Carotenoid Determination section o f Chapter 2. The abstract of 

this publication is included as appendix 2 at the end of this thesis.
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1.8 Thesis Objectives

This thesis examines measures of fitness in Chinook salmon offspring in relation 

to measures o f maternally allocated egg/embryonic carotenoid levels. Measures of 

carotenoids include concentrations (ug/g) at three stages of embryonic development; (a) 

unfertilized eggs, (b) as the embryonic eye spots become visible in the egg (eyed stage 

eggs) and (c) at the end of yolk-sac absorption, just prior to the start o f exogenous feeding 

(swim-up stage offspring). Measures of fitness are described below and in the thesis 

results chapters, each of which has been organized with the intent that the sections will 

stand alone as manuscripts for submission and publication in peer-reviewed scientific 

journals; any overlap in content or wording of these thesis chapters is solely for this 

purpose.

The objectives o f this thesis are to examine possible offspring benefits of red carotenoid- 

based pigmentation in the eggs of Chinook salmon, manifest as:

1) Correlations between measures of egg carotenoids and offspring survival including, 

levels (ug/g) o f egg carotenoids and embryonic survival (%) during the first 4 months 

post-hatch, and survival following a challenge with a common marine bacterial pathogen 

(Listonella anguillarum) reported as (LT10) resistance at the smoltification stage (8 

months post-hatch, just prior to salt-water introduction).

and

2) Correlations between measures of egg/embryonic carotenoids and immunological 

function. Selected immune measures include levels of (1) maternally allocated antibody 

(ug/g) in the unfertilized eggs, (2) offspring antibody levels (ug/g) at swim-up, up to the
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point where endogenous antibody expression begins, and (3) the relationship of the above 

variables to survival following a disease challenge at the smolt stage, 8 months post­

hatch.
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CHAPTER #2 

Why are salmon eggs red? 

Egg carotenoids and offspring survival in Chinook salmon 

0Oncorhynchus tshawytscha)

2.1 Introduction

The eggs of salmonid fish are coloured red by carotenoids, as are the yellow to red 

egg yolks of many bird and reptile species (Blount 2000). Carotenoids (Figure 1.1) are 

antioxidant compounds synthesized in plants and obtained by animals through the diet 

(Goodwin 1986; Stahl and Sies 2005). Marketability in salmonids is largely driven by the 

characteristic colour o f their flesh (Prince 1916) which is due primarily to the xanthophyll 

carotenoid astaxanthin (Skrede and Storebakken 1986; Nickell and Springate 2001). 

Traditional salmon hatchery practices were based on beliefs that the redness of eggs is 

indicative o f egg quality, i.e. redder eggs confer increased fertilization, hatching success, 

and offspring survival (Hubbs and Stavenhagen 1958; Yarzhombek 1970; Czeczuga 

1975). Indeed, studies of salmonid populations under oxidative stress (such as M74 in the 

Baltic, Cyuga Syndrome in the New York Finger Lakes or early mortality syndrome 

(EMS) in North America’s Great Lakes) have found that maternal egg batches pale in 

colour were both low in carotenoids and incurred the highest rates of yolk-sac stage 

offspring mortality (Palace, et. al. 1998; Pettersson and Lignell 1999). Studies of healthy 

salmonids however, have found no similar correlations (Torrissen 1984; Craik 1985; 

Tveranger 1986; Christiansen and Torrissen 1997). Carotenoid pigmentation such as in 

salmonid eggs is highly visible to potential predators, especially against streambed
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aggregate (pers. obs.); the colour and shape is renowned as fisherman’s bait. High 

visibility invariably increases predation risk (Wieland and Koster 1996; Godin and 

McDonough 2003), hence egg carotenoid pigmentation should be selected against. 

Additionally, the degree to which animals absorb, metabolize, allocate and retain 

carotenoids from the diet is heritable (Blanc and Choubert 1993; Araneda 2005) and 

involves metabolic costs (Goodwin 1986; Olsen and Owens 1998). Therefore, salmonid 

offspring ought to derive sufficient benefit from carotenoid pigments to offset the costs of 

both maternal accumulation and allocation, as well as increased egg predation. However, 

to date, there has been no empirically supported adaptive explanation why salmonids 

allocate such high levels of carotenoids to their eggs, which begs the question, why are 

salmon eggs red?

Birds provide some of the most brilliant and best studied examples of visible 

carotenoid-based structures (Darwin 1871; Hamilton and Zuk 1982; Gray 1996; Moller 

et. al. 2 0 0 0 ), and relationships between maternal/egg yolk carotenoid levels and 

reproductive fitness/offspring survival are well established (reviewed in Blount et. al. 

2000). The nutritional properties and developmental processes o f bird eggs and embryos 

have been the best studied of any animal, and have proved to be useful models of 

embryonic physiology and development among vertebrate taxa (Speake et. al. 1998). 

Recent studies have suggested several potentially overlapping mechanisms for 

carotenoid-fitness correlations, of which some may be involved in salmonid egg 

carotenoid allocation. Carotenoids and their metabolic retinoid derivatives have been 

shown to increase oestrogen production in cancer cells in vitro (Ng et. al. 2000). 

Anthropogenically sourced estrogen mimic compounds are known to stimulate 

vitellogenin (vtg) production in other species (Tyler et. al. 1996; Boon et. al. 2002), while
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maternal estrogen levels are related to vitellogenin (vtg) production in rainbow trout (Van 

Bohem and Lambert 1981), and maternal oestrogen stimulates production of vtg and very 

low density lipoprotein (VLDL) in birds (Speake et. al. 1998). Maternal resources 

(including carotenoids) are bound by vtg for transport to developing oocytes in salmon 

(Ando et. al. 1986). Xanthophyll carotenoids such as astaxanthin easily exchange 

between lipoproteins such as vtg and particularly VLDL (Tyssandier et. al. 2002), which 

are essential precursors o f egg yolk proteins and lipids (respectively) in developing 

embryos of birds (Speake et. al. 1998) and fish (Matsubara et. al. 1999; Reith et. al. 2001; 

Hiramatsu et. al. 2002). So effectively, maternal carotenoids levels may influence 

expression levels of vtg and VLDL, these compounds in turn influence the levels of 

carotenoids and other resources transported to developing oocytes, themselves becoming 

the most important resources for developing embryos and oxidatively protected by 

carotenoids and other antioxidants.

The high metabolic rate of embryonic development elevates the production of 

oxidative by-products (Blount et. al. 2000). Yolk carotenoids, in synergy with other 

antioxidants (Bohm et. al. 1997), mediate the subsequent peroxidative damage, preserving 

the integrity of the lipid-rich embryonic tissues and developing organs systems (Speake, 

et. al. 1998), membranes (Sujak et. al. 1999) and maternally allocated resources (Haq et. 

al. 1996) o f the developing embryo. Cross-fostering experiments in birds indicate that 

availability of carotenoids in early development, both via endogenous egg levels and/or 

exogenous early post-hatch parental feeding, increases offspring capacity for carotenoid 

absorption and use into adult life (Fitze et. al. 2003a and b; Koutos et. al. 2003; Blount et. 

al. 2003). In effect, early high carotenoid availability appears to “prime” an individual’s
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metabolic capacity for more efficient carotenoid use throughout life than is possible with 

low early life carotenoid levels.

The majority of egg carotenoid-offspring survival studies in salmonids have 

experimentally manipulated maternal diets with various levels of carotenoids (Harris 

1984; Tveranger 1986; Christiansen and Torrissen 1997), or have compared records of 

egg carotenoid pigmentation and offspring survival from different hatcheries, each with 

different rearing protocols, physical conditions, species of salmonid and in many cases at 

least somewhat subjective scoring of pigmentation (Craik 1985). In this study we 

eliminated potential bias due to differences in species, manipulations of maternal diet, 

physical rearing conditions and subjectivity by ( 1 ) taking advantage of the exceptional 

opportunity provided by the carotenoid-based flesh and egg colour phenotypes of 

Chinook salmon (Hard 1989), (2) rearing all experimental fish in a common hatchery, and 

(3) chemically extracting, analyzing and quantifying carotenoid content (Li et. al. 2005). 

Controlled by a genetic polymorphism resulting in reduced carotenoid accumulation 

capacity (Withler 1986), Chinook salmon flesh-colour phenotypes have the most diverse 

range of carotenoid levels in flesh and eggs o f any salmonid species known (Craik 1985; 

Ando et. al. 1989; 1991; and 1994; Bjerkeng 2000).

In this study Chinook salmon maternal egg batches were selected to maximize the 

range of carotenoid levels naturally found in healthy fish. Carotenoids were measured 

through development and were regressed against measures of incubation survival and 

specific disease resistance in smolt stage offspring. This analysis provides a test of the 

early life survival benefits resulting from maternally-derived red egg carotenoid pigments
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2.2 Methods and Materials

2.2.1 Reagents, Standards and Solvents

Chemically pure analytical standards of astaxanthin were obtained from Alexis 

Corp. (through Fisher Scientific), and p-carotene, lutein, zeaxanthin, canthaxanthin and 

P-cryptoxanthin were generously donated by Roche Vitamins Canada Inc. HPLC grade 

methanol, methyl-ferf-butyl ether (MtBE) and acetone were obtained from Merck 

(Darmstadt, Germany). All other reagents and solvents were o f high analytical grade 

supplied by VWR Scientific Products (Suwanee, GA, USA). Water was obtained from a 

Milli-Q (Millipore, San Jose, CA, USA) filtration system equipped with a 0.22 |im filter

2.2.2 Rearing and Sampling

In October and November 2002, eggs from 31 mature female Chinook salmon 

were selected from 3 spawning populations chosen for their diverse range o f carotenoid 

accumulation capacity. Eggs o f ocean-returning (wild) Chinook salmon were obtained 

from DFO enhancement hatcheries in British Columbia, Canada. Maternal egg batches 

representing the red-fleshed (wild) phenotype (RFw) were obtained from the Quinsam 

River (Vancouver Island) and the white-fleshed (wild) phenotype (WF) from the Chehalis 

River, tributary of the Harrison, in the lower Frasier River system, known to have among 

the highest proportions o f white- to red-fleshed Chinook salmon spawners (Hard et. al. 

1989). Eggs o f red-fleshed domestic Chinook salmon (RFd) were also included, selected 

from broodstock at Yellow Island Aquaculture Ltd. (YIAL, Quadra Island, B.C.), where 

all rearing and field experiments took place (see Figure 1.2 for locations map).
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Eggs were taken from 16 females on October 31st (10 RFw, 6  RFd), and from 15 

females on November 13th (10 WF, 5 RFd), 2002. Subsets of 25 eggs per female were 

frozen (-20°C) for shipping, then stored at -80 °C until carotenoid extraction. Remaining 

eggs (N ± sd = 359 ± 25 per female) were fertilized with sperm from a common domestic 

male (1 per spawn date), creating 2 sets of half-sib families. Fertilized eggs from each 

family were held in separate compartments of a vertical incubation stack and reared under 

standard hatchery conditions in fresh water at approximately 8 °C. As the eye spots of 

developing embryos became visible at the eyed egg stage (accumulated thermal 

units/degree days (ATU) ± sd = 341 ± 9.0), eggs were subjected to a mechanical shock, 

and all unfertilized/dead eggs were removed and counted. A subsample of 25 eyed eggs 

from each family were frozen for shipping and preserved at -80 °C until carotenoid 

extraction. The eggs o f two RFd families were entirely non-viable, having overgrown 

with fungus and were removed from the experiment. The eggs of two WF families 

located in incubation compartments immediately adjacent to the non-viable, fungal 

infected RFd families also suffered heavy losses due to the fungus, with survival rates of 

31% and 13% respectively at the eyed egg stage. Offspring survival in these families 

were found to be statistically low (p < 0.05) and extremely low (p < 0.01) outliers (Dixon 

1950) compared to the remaining WF group (mean ± sd = 76.24 ± 9.83, n = 8 ), and the 

entire data set (WF, RFw and RFd family mean ± sd = 83.99 ± 10.77, n = 27), and hence 

were removed from this stage of analysis. Survival of these two families from the eyed 

egg to swim-up stage was within the normal range (89.39% and 93.94%) o f both the WF 

group (family survival % mean ± sd = 88.62 ± 7.94, N=10) and the entire data set (WF, 

RFw and RFd family survival % mean ± sd = 91.29 ± 8.91%, n = 29). No other statistical 

survival outliers were identified and subsequent analyses from eyed egg stage onward
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included n ± sd = 264 ± 20 eggs in each of 29 families. Eggs were checked 3-4 times 

each week, with mortalities removed and tabulated by family. Once offspring had 

completely absorbed their yolk-sacs just prior to the start of endogenous feeding (swim- 

up stage, ATU ± sd =1045 ± 9.0, family survival % mean ± sd = 91.29 ± 8.91) an 

additional 20 offspring per family were weighed and frozen (as above). Remaining 

offspring (N ± sd = 163.28 ± 18.24) from each o f the 29 families were transferred to 

individual 200 L barrels for the remainder of freshwater rearing. Each barrel received 

approximately 250 mL of Organic Chinook Fry Grower (Taplow feeds, Victoria, BC) 

daily, was cleaned and mortalities removed 2-3 times per week.

2.2.3 Carotenoid Determination

Carotenoids were extracted and quantified in duplicate batches of approximately one 

gram (2-4) eggs per maternal family. Appropriate recovery tests and internal standards 

were applied, with extraction, resolution and measurement of carotenoids as described in 

Li et. al. (2005). Briefly, under dimmed lights the crude egg homogenate was extracted 

with acetone, followed by phase separation by acetone-water/methyl-tm-butyl-ether 

(MtBE). The majority o f all carotenoids partition into the MtBE layer, which was then 

condensed, filtered, sealed under nitrogen and stored at -80 °C until analysis. Extracts 

were analyzed in triplicate at 3 injection volumes using a Waters 2695 HPLC. A gradient 

elution o f methanol (MeOH) and MtBE over 25 minutes was used, and eluting 

carotenoids were detected and quantified via UV-visible absorption (k  maximum of 480 

nm). Carotenoids were identified and quantified by comparison to the retention times and 

signal responses o f the carotenoid standards. External standards included astaxanthin,
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lutein, zeaxanthin, canthaxanthin and (3-carotene. (3-Cryptoxanthin was used as internal 

calibration standard at a concentration of 50 ppm with 100 uL added per gram of sample 

and a 90% mean recovery. Peak areas were averaged by injection volume, concentrations 

calculated (ug carotenoid/g original sample) and averaged by extract and family at each 

development stage. All quality assurance and control assessments for the generation of 

accurate and precise quantitative data are described in Li et al. (2005).

All possible laboratory precautions were taken to minimize potential carotenoid 

degradation in the samples and extracts to ensure as accurate a measure of sample 

carotenoid levels as possible. However, due to logistical issues the discrepancy between 

shipping and laboratory storage temperatures (-20°C and -80°C respectively) and the fact 

that the sample carousel of the HPLC injector did not have cooling capabilities with 

which to keep the extracts below room temperature during analyses raises the possibility 

that some thermal degradation could have occurred. The extent of possible sample 

carotenoid degradation is expected to be minimal, as storage o f the working stocks of 

external and internal carotenoid standards in both pure and mixed isoforms solutions were 

stored at -20°C, and underwent the same treatment as the sample extracts. These working 

standard aliquots were periodically analysed for concentration accuracy, and were reliable 

to over 95% accuracy during typical one month periods. As subsamples initially were 

frozen to -20°C over a 24 hour period, shipped by next day courier packed in gel packs or 

dry ice and all were received frozen, to be immediately placed in the -80°C laboratory 

storage, any possible degradation would be expected to be minimal. As well, during 

analysis, the sample extracts were left in the injection carosel no longer than necessary, 

and for equal time as the standards. Any thermal or other degradation which may have
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occurred would be expected to be relative among all families and populations of a sample 

period, and therefore our reported analyses are expected to be reliable. Future researchers 

should note however that there does exist the possibility that if  different carotenoid 

isoforms were present among the eggs o f the white-fleshed (WF) Chinook salmon 

phenotype (as proposed in a preliminary hypothesis) and if  these potentially different 

isoforms were to undergo more rapid oxidation compared to the isoforms detected, that 

the carotenoid profile reported for these WF families may not be 100% accurate. Future 

researchers could ameliorate this possibility by collaborating with an analytical lab close 

to the field site, where a small subset o f the white-fleshed eggs could be extracted and 

analysed immediately, or at least properly stored at the more appropriate -80°C 

temperature until such time as this is possible.

2.2.4 Disease Challenge

At smoltification (ATU ± sd = 2057 ± 11.9, weight ± sd = 5.45 ± 0.40 g), 714 fish 

from 23 families were included in an experimental challenge with the causative agent of 

vibriosis, a common Pacific marine pathogen. Briefly, a live vibrio culture was obtained 

(Dr. A. Osborn, Pacific Biological Station, Nanaimo B.C.), and verified (Bergy’s Manuel 

of Determinative Bacteriology, 2001), then grown on marine agar at 25°C for 

approximately 30 hours, until a homogeneous lawn o f bacteria covered the agar. A stock 

suspension was prepared in PBS (phosphate buffered saline, 0.85% saline, 0.1% peptone, 

pH 7.04) and diluted to an approximate bacterial concentration of 105 cfu/mL according 

to the McFarland field standards method (McFarland 1907). The stock was kept at 4°C to 

retard growth, while working aliquots were removed and kept on ice during experimental 

injections (10-12 mL working aliquot dosed 4-6 families). Fish (N = 31 ± 1/family) were
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netted, anaesthetized by brief exposure to tricane methanosulfate (30-45 sec., 50 mg/L 

H2 O, 2:1 sodium bicarbonate buffer), weighed and injected with 0.1 mL of either the 

vibrio suspension (N = 2 1 ± l ) o r a  PBS blank (N = 10). Mortalities were removed every 

2 - 6  hours, with mortality number and time since the start of the challenge calculated and 

recorded for each family. Dose concentration was verified by dilution series of each 

dosing aliquot and the stock at the beginning and end of each challenge day. Briefly, 20 

uL/dilution was aliquoted, dropped and smeared on a marine agar plate with a modified 

glass rod in triplicate and incubated at 25 °C for 16 to 20 hours, at which time the number 

of colonies/plate (ie: the # of colonies per 20uL) were counted. Replicates were averaged 

and dilutions calculated to obtain a dose concentration in colony forming units (cfu) for 

each injection batch of families. Dose concentration averaged 3.12 ± 1.7 xlO5 cfu/mL (± 

1 sd) throughout the duration of the challenge. A previous study involving a similar 

vibrio challenge at this facility resulted in extreme mortality with little variation in the 

LT5 0  resistance measured among families (Bryden et. al. 2004). In an effort to obtain a 

more realistic measure of bacterial resistance, the current study expanded the 

measured/reported range of disease resistance in two ways. The time to and total 

mortality number/family was decreased and variability among families increased by 

lowering the bacterial challenge dose from 106  cfu/mL (Bryden et. al. 2004) to 105 

cfu/mL in the present study. This lower challenge dose greatly reduced the absolute 

mortality number/family such that, although some families still experienced virtually total 

mortality of all challenged individuals, other families incurred 3 or less mortalities over 

the entire 2 week course of the experiment. As such, the time to second death within 

families or LT1 0 was chosen as a robust measure o f bacterial resistance. Differences in 

dose were statistically accounted for by calculating the mean LT 1 0/injection batch and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

reporting family challenge survival as the ratio of family LTi0/mean LTio of injection 

batch.

2.2.5 Statistical Analyses

Differences in spawning dates were corrected by calculating the % survival, 

weight and change in carotenoid concentration/ATU by family and converting these to 

common ATU equivalents for each development stage (288 and 992 for eyed egg and 

swim-up stages respectively). Dixon’s (1950) outlier test was used to examine highest 

and lowest values of each data set for outlier status. Statistical outliers (at p < 0.05 for 

calculated critical value) were removed prior to further analyses (Dixon 1950). All 

statistical analyses were preformed using the statistical software SPSS 12.0 for Windows, 

including Levene’s homogeneity o f variances test was used (as it is a standard output of 

SPSS analyses used) to evaluate normality distribution within and between data sets. 

When data to be compared had significantly non-homogeneous variances (reported as (p) 

of Levene’s critical value), data were transformed sequentially by arcsin (V  ) (for % 

values), then by log (or log + 1 for values less than 1) with Levene’s test significance 

examined following each transformation, or non-parametrically rank ordered when 

assumptions o f variance homogeneity could not be met (Zar 1999). Differences in family 

means (reported as mean and standard deviation) were examined between maternal 

origins (WF, RFw, RFd) for carotenoid levels (ug/g) at unfertilized, eyed egg and swim- 

up fry, and for % survival from unfertilized to eyed egg and from eyed egg to swim-up 

stages by either t-test (for WF-RFw only) or by ANOVA (for WF, RFw RFd 

comparisons), with post-hoc Tukey’s Honestly Significant Differences (HSD) test (p 

values reported) for any F value indicating significant differences (Zar 1999). Then, due
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to non-homogeneity of variances following all parametric data transformations and non- 

parametric tests for eyed egg to swim-up fry survival, this survival stage was examined 

by student’s T-test (t and p values reported) between the (a) two flesh-colour phenotypes 

(ie: RF (w+d) vs WF), and (b) between wild (RFw + WF) and domestic (RFd) groups.

Empirical relationships of measures of survival on egg carotenoids were examined 

by single and multiple regression models. The dependent variables included measures of 

survival during embryonic incubation (ie: % survival from (1) unfertilized egg to eyed 

egg stages and (2) eyed egg to swim-up fiy stages) as well as at smolt stage following (3) 

a live vibriosis disease challenge (LTio). The independent variables included levels 

(ug/g) o f maternally derived egg carotenoids at different stages o f embryonic incubation 

(ie: (1) unfertilized eggs, (2) eyed eggs and (3) swim-up fiy). Each set of dependent 

versus independent variables were examined in both a single as well as a multiple 

regression model including the co-variate o f eyed egg weight (g) as a surrogate o f 

maternal effects (Heath and Blouw 1998) to extract any possible confounding interactions 

this may have had on these relationships. Results o f each analysis are reported as co­

efficients o f (1) signed Pearson’s correlation (+/- PC) with corresponding 1-tailed 

directional (p (i)) significance denoting the direction, relative correlational contribution 

and its significance in that direction for individual factors in the analysis, and (2) 

regression (R ) with corresponding 2-tailed (p(2 )) significance denoting the relationship 

and corresponding model significance contributed by each additional co-variate added to 

the model (Zar 1999).
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2.3 Results

2.3.1 Egg Carotenoid Level Differences through Embryonic Incubation.

The main carotenoid detected in all eggs was astaxanthin. Maternally derived egg 

carotenoids levels declined by the swim-up stage in all families (Figure 2.1).
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Figure 2.1: Family mean declines in maternally derived egg carotenoids (ug/g) through 

embryonic development as accumulated thermal units (ATU) in Chinook salmon 

offspring representing maternal flesh-colour phenotypes and a domestic populations. 

(WF) white-fleshed (wild), (RFw) red-fleshed wild, and (RFd) red-fleshed domestic.
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2.3.2 Family Survival Differences through Embryonic Incubation:

Offspring survival was examined between the different maternal origins (Table 

2.1). ANOVA results revealed RFw families had significantly higher incubation survival 

compared to their WF counterparts at all stages examined, and RFW had significantly 

higher survival compared to the RFd families both from the unfertilized to eyed egg 

stages and from the unfertilized egg through to swim-up (Table 2.1).

Table 2.1: Statistical comparisons of offspring incubation survival differences among 

Chinook salmon maternal flesh-colour phenotypes and a domestic population

(i) ANOVA comparing offspring survival from unfertilized to eyed egg stage
origin n mean sd

W F a 8 76.241 9.828
RFwb 10 92.138 6.234
R Fda 9 81.899 10.021

F = 7.787, p = 0.002
Tukey's HSD post-hoc results: RFw significantly different from WF (p = 0.002) and from RFd (p = 0.042)

(ii) Offspring survival from eyed egg to swim-up stage
WF 10 88.615 7.94

RFw 10 96.172 1.83
RFd 9 88.828 12.55

variances significantly non-homogeneous following all data transformations (see appendix 2, Table 2.1 aiii- 
v), therefore data was re-analyzed non-parametriucally below._______________________________________
(iii) Non-parametric analyses of eyed egg to swim-up survival among maternal origins

WFa 10 9.10
RFwb 10 20.40
RFdab 9 15.56

X2 = 8.862, asymptotic p = 0.012 
Mann-Whiney U test results: RFw significantly different from WF (p = 0.001)

_____________________________RFd not significantly different from either WF (p = 0.221) or RFw (0.414)
(iv) ANOVA comparing offspring survival from unfertilized egg to swim-up

WFa 9 59.481 14.665
RFwb 10 88.621 6.414
RFda 9 73.464 16.920

F =  11.509, p = 0.000286
Tukey’s HSD post-hoc results: RFw significantly different from WF (p = 0.00018)

and from RFd ( p = 0.050)
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Regression analyses of incubation survival versus carotenoid levels revealed no 

significant relationships at either the unfertilized to eyed egg nor the eyed egg to swim-up 

stages (Table 2.2). Carotenoids remaining at the eyed egg stage were significantly related 

in a 2-tailed manner to survival throughout the entire embryonic period from unfertilized 

egg to swim-up, and unfertilized egg carotenoid levels showed a 1-tailed directional 

significant correlation with survival during this period. This indicates that while a 

unidirectional relationship likely exists such as that lower levels of carotenoids correlate 

with lower survival, that higher egg carotenoids do not necessarily correlates with higher 

survival. In multiple regression analyses the maternal effect (eyed egg weight) covariate 

emerged consistently as a significant predictor o f survival (Table 2.2). Relationships are 

well established in salmonids between survival and maternal effects (see Heath and 

Blouw 1998) and in particular between offspring survival and egg weight in juvenile 

Chinook salmon (Fowler 1972). As this was not the focus o f these experiments, weight- 

survival correlations will not be discussed further (Table 2.2).

2.3.2 Disease Challenge Survival and Egg Carotenoids

Disease resistance (LTi0) following the live vibriosis challenge at the smolt stage was 

positively correlated with egg carotenoid concentrations (ug/g) at both the unfertilized 

egg (R2 = 0.183, p < 0.041) and eyed egg (R2 = 0.197,/? < 0.034) stages among all 

Chinook salmon maternal origins (Figure 2.2, Table 2.2).
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Table 2.2: Hierarchical OLS regression results* examining measures of Chinook salmon 

egg and offspring survival on measures o f maternally derived egg carotenoids (ug/g) and 

maternal effects as eyed egg weight (g) at different developmental stages.

Model Summary
measures Models variable(s) r P (i) n R2 P (2)

Survival % U-E 1 Carotenoid U 0.286 0.074 27 0.082 0.148
2 Carotenoid U 

Eyed egg weight
0.286
0.376

0.074
0.032

25 0.195 0.092

Survival % E-S 1 Carotenoid U 0.205 0.143 29 0.042 0.286
2 Carotenoid U 

Eyed egg weight
0.205
0.28

0.143
0.079

27 0.106 0.26

1 Carotenoid E 0.112 0.281 29 0.013 0.562
2 Carotenoid E 

Eyed egg weight
0.112
0.28

0.281
0.079

27 0.079 0.374

1 Carotenoid S 0.023 0.453 29 0.001 0.907
2 Carotenoid S 

Eyed egg weight
0.023
0.28

0.453
0.079

27 0.081 0.361

Survival % U-S 1 Carotenoid U 0.363 0.029 28 0.132 0.057
2 Carotenoid U 

Eyed egg weight
0.363
0.342

0.029
0.042

26 0.219 0.059

1 Carotenoid E 0.390 0.020 28 0.152 0.040
2 Carotenoid E 

Eyed egg weight
0.390
0.342

0.020
0.043

26 0.203 0.074

1 Carotenoid S 0.162 0.206 28 0.026 0.411
2 Carotenoid S 

Eyed egg weight
0.162
0.342

0.206
0.043

26 0.122 0.223

Disease Challenge 1 Carotenoid U 0.428 0.021 23 0.183 0.041
2 Carotenoid U 

Eyed egg weight
0.428
0.032

0.021
0.446

21 0.184 0.16

1 Carotenoid E 0.444 0.017 23 0.197 0.034
2 Carotenoid E 

Eyed egg weight
0.444
0.032

0.017
0.446

21 0.212 0.117

1 Carotenoid S 0.154 0.242 23 0.024 0.484
2 Carotenoid S 

Eyed egg weight
0.154
0.032

0.242
0.446

21 0.024 0.806

“"Hierarchical ordinary least squares regression model results include: signed correlations (r) and 1-tailed 
significance (p(i)) to denote directional contributions of each individual variable to the model; single 
followed by multiple regression (R2) with corresponding 2-tailed significance (p(2)) to denote the overall 
relationship between model 1 variable (single R2) and model 1 + 2  variables (multiple R2) to the model. 
Development stages denoted as: U = unfertilized eggs, E = eyed stage eggs, S = swim-up stage offspring, U- 
E = survival between unfertilized and eyed egg stages, E-S = survival between eyed egg and swim-up stages, 
U-S = survival between unfertilized egg to swim-up stages, disease challenge measured as LT(10); significant 
relationships at p < 05.
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Figure 2.2: Relationship between disease resistance (LTio following vibriosis challenge) 

vs carotenoid levels (ug/g) at two development stages of eggs in Chinook salmon 

maternal populations; (a) unfertilized eggs, and (b) eyed egg stage.

Maternal effects as eyed egg weight (g) was examined as a covariate with the 

carotenoid concentrations in multiple regression analyses, however, this was not a
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significant predictor of smolt stage disease resistance, nor were the carotenoid 

concentrations at the swim-up stage (Table 2.2), or any other variable examined 

(appendix 2, Table 2.2).

2.4 Discussion

This study reports new evidence supporting traditional beliefs that in salmonids, 

carotenoid-based egg pigmentation is indicative of egg “quality” (Hubbs and Stavenhagen 

1958; Yarzhombek 1970; Czeczuga 1975). While this study reports higher egg 

carotenoid and survival levels among the progeny of the RFw families, this is likely a 

population effect, as regression analyses showed no empirical 2-tailed significance 

between survival and egg carotenoid levels. These results support studies reporting no 

empirical relationship between egg carotenoids and early offspring survival among 

various salmonid species under hatchery conditions (Torrissen 1984; Craik 1985; Craik 

and Harvey 1986; Tveranger 1986; Christiansen and Torrissen 1997). Additionally, Hard 

et. al. (1989) reviewed of decades o f DFO hatchery records for 30 Chinook salmon 

spawning populations from N. California through S.W. Alaska and the Asian Pacific Rim, 

as well as a worldwide literature review of other salmonid species, they speculated that 

egg carotenoid-offspring survival correlations may only become pronounced when 

incubation conditions become suboptimal, and hence may not be evident in optimal 

hatchery conditions. Similar to a study by Hard (1986), results of this study found that 

while survival may have been obscured by egg size no significant differences in offspring 

embryonic incubation survival could be directly attributed to maternal egg carotenoid 

levels at any development stage examined (Tables 2.1 and 2.2).
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Listonella anguillarum is a common bacterial pathogen in the Pacific marine 

environment, representing an environmentally encountered threat. As such, our results 

support a relationship between egg carotenoids and offspring survival in the face of 

environmental stress, such as those reported by Palace et. al. (1998) and by Pettersson 

and Lignell (1999). Our results most closely match those of Christiansen et. al. (1995) 

and a pilot study (Bryden and Tyndale unpublished data). Both these studies demonstrate 

significant relationships between salmonid early carotenoid availability (carotenoid levels 

in the early freshwater diet and eggs respectively) and offspring resistance to common 

marine bacterial pathogens (Aeromonas salmonicida and Listonella anguillarum 

respectively) at the smolt stage, when young salmonids first enter the marine environment 

and those in hatchery settings are typically vaccinated against the above pathogens to 

enhance survival (Erdal and Reitan 1992; Akhlaghi 1999 respectively).

Vibriosis is a ubiquitous bacterial disease threat to saltwater Pacific salmonids, 

causing financial losses in aquaculture (Egidius 1987) and thus, standard hatchery 

vaccination protocols are common prior to saltwater introduction o f smolt stage offspring 

(Akhlaghi 1999). Carotenoids and their metabolic retinoid derivatives are well known to 

enhance resistance to, and recovery from, numerous diseases in humans (Sommer 1989; 

W olf 1996), while interactions between carotenoids and immune function have been 

documented in birds (Saino et. al. 1999; Peters et. al. 2004) and mammals (Alexander et. 

al. 1986; Bendich and Shapiro 1986; Chew et. al. 1999, 2000; Kim et. al. 2000); 

Additionally, carotenoids and their metabolic retinoid derivates have been shown to 

protect valuable host resources via antioxidant mediation, such as; a) red blood cells in 

immune challenged Zebra finch (Alonso-Alvarez et. al. 2004), b) skeletal and cardiac 

muscle following prolonged exercise in dogs (Baskin et. al. 2000; Aoi et. al. 2003) and c)
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liposomal membrane lipids in humans (Bhosal and Bernstein 2005). Our results support 

those o f Craik (1985) and others where egg carotenoids are metabolised through 

embryonic development. Results clearly suggest that available carotenoid levels during 

these metabolically sensitive initial 4 months post-fertilization are correlated with disease 

resistance at smoltification (8 months post fertilization) as evidenced by the relationship 

between disease resistance versus egg carotenoid levels at both the unfertilized and eyed 

stages found in this and a pilot study (Bryden and Tyndale unpublished results). The 

enhanced resistance to vibriosis comes as offspring prepare to enter the marine 

environment, and hence may represent an important survival benefit to offspring with 

high maternal carotenoid allocation.

Following yolk-sac absorption, swim-up stage salmon offspring begin exogenous 

feeding, replacing depleted matemal-egg carotenoids (and other resources) from their 

freshwater diet. As the assimilation o f dietary carotenoids begins around 150 g (Hard 

1986), the ratio of feed supplement costs to marketable flesh-pigment returns results in 

most hatcheries not supplementing carotenoids until saltwater stages (Storebakken and 

Choubert 1991; Nickell and Bromage 1998). Underyearling Chinook salmon in Alaskan 

lakes have been observed to have red flesh, facial bones and fin rays at as little as 10 g in 

size (pers.obs. Hard 1986). These observations are supported by freshwater carotenoid 

supplementation studies in Coho and Atlantic salmon where flesh pigmentation was more 

dependent on consumption rate than fish size (Spinelli and Mahnken 1978; Christiansen 

et. al. 1995). Christiansen et. al.’s (1995) carotenoid supplemented offspring also showed 

significantly increased resistance to an Atlantic marine bacterial pathogen, Aeromonas 

salmonicida, causative agent of fumunculosis (Erdal and Reitan 1992), which is among 

the first study to investigate effects of freshwater carotenoid supplementation on juvenile
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salmon bacterial disease resistance. Our results are also among the first documented 

relationships between egg carotenoid levels and bacterial disease resistance in young 

salmon. While freshwater offspring feed in this study was not supplemented with 

carotenoids, small amounts are known to be present (pers. Comm. B. Hicks, Taplow 

Feeds, Victoria, B.C.). If correlative relationships reported in birds of early carotenoid 

availability enhancing metabolic absorption and use capacity for carotenoids throughout 

life (Koutsos et. al.2003; Fitze et. al. 2003a and b; Blount et. al. 2003) apply in salmonids, 

then offspring from eggs with higher carotenoid levels may have been better able to 

absorb the limited amounts available from their freshwater diet, thus leading to increased 

carotenoid availability to affect disease resistance. This may in part account for the 8 

month time differential between measured egg carotenoid levels and smolt stage disease 

resistance. This study underscores the importance o f early life carotenoids in young 

salmonids for development of effective survival mechanisms when faced with 

immunological challenge such as bacterial pathogens.

We propose that maternal allocation of carotenoid-based pigmentation in 

salmonid eggs represents an adaptation for increased offspring survival, though not 

necessarily in the timeframe o f embryonic incubation. Egg carotenoids may perform two 

non-exclusive functions in young salmon. First, salmonid egg carotenoid pigmentation 

may be indicative of the overall resource base of the egg, thus darker pigmentation 

indicates better provisioned eggs, leading to fitter offspring who are then better equipped 

to overcome environmental stress, including immunological challenges. Additionally, 

egg carotenoid levels in salmonids may influence the metabolic capacity o f offspring 

(priming the organism’s metabolism) to better absorb/incorporate carotenoids from the 

diet throughout ontogeny, thus leading to a superiorly provisioned antioxidant system for
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the organism throughout life, as has been shown in birds (Koutos et. al. 2003; Fitze et. al. 

2003a and b; Blount et. al. 2004), better enabling offspring to deal with environmental or 

immunological stress.

This study provides compelling evidence that early carotenoid availability in the 

red pigmentation of salmonid eggs results in higher offspring survival through increased 

disease resistance at the smolt stage. This is the first report o f survival benefits offsetting 

the costs of maternal carotenoid allocation and the associated increased egg predation 

risk, costs inherent to the nearly universal red eggs of salmon. These results suggest that 

hatchery protocols could be modified to ameliorate losses to smolt stage bacterial 

outbreaks by selecting for redder pigmented eggs at spawning and by supplementing 

dietary carotenoids to salmon try. Our results further suggest that carotenoids affect 

survival in Chinook, at least in part, through interactions with immune function. Further 

research should focus on the nature o f the immunological implications o f maternally 

allocated carotenoids in salmonids, not only for commercial and government aquaculture, 

but also to better understand the relationship between carotenoids and health across 

animal taxa.
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CHAPTER #3 

Why are salmon eggs red?

Carotenoids and immune function in the 

eggs and offspring of Chinook salmon (Oncorhynchus tshawytscha)

3.1 Introduction

Carotenoids are antioxidant compounds that absorb radiation in the visible 

wavelength region of the electromagnetic spectrum and depending on their specific 

structures reflect in the yellow-red colour spectrum. Synthesized in plants and obtained 

by animals through the diet, carotenoids serve a diverse range of critical biological 

functions, including: (a) vitamin A pre-cursors (Goodwin 1954 and 1986), (b) sexually 

selected ornaments believed to signal superior health/fitness (Hamilton & Zuk 1982; 

Folstad and Karter 1992; Zuk et. al. 1995; Moller et. al. 2000), (c) transcription enhancers 

of metabolic enzymes (Sharoni et. al. 2004), developmental (Blount 2004) and 

immunological (Garbe et. al. 1992) resources, as well as (d) the mediation or 

enhancement o f immune responses (Chew and Park 2004).

Domestic animal feed is typically supplemented with carotenoids to enhance 

either (a) pigment driven marketability, such as the red colour o f salmon flesh and eggs 

(Craik 1985; March and MacMillan 1996) and pigmentation of poultry feathers, flesh and 

egg yolks (Schiedt et. al. 1985), or b) vitamin A status, general health and survival in 

mammals (Goodwin 1954 and 1986; Chew 1995). Birds provide the most brilliant of the
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visible carotenoid-based ornamental displays, and studies in birds have led to many 

findings of cost-benefit tradeoffs in carotenoid physiology (e.g. Hamilton and Zuk 1982; 

Moller et. al. 2000). In fish, carotenoids have been primarily studied for their role in the 

pigmentation of flesh (Ando et. al. 1989) and eggs in relation to offspring survival and 

fitness (as in Chapter 2 and Craik 1985).

Published studies of carotenoid-immune function relationships in salmonids are 

relatively rare, with a few exceptions (Christainsen et. al. 1995; Thompson et. al. 1995; 

Skarstein and Folstad 1996; Amar et. al. 2001 and 2004), and to the knowledge of the 

author, no studies of carotenoid-immune function relationships in the eggs and offspring 

of healthy salmonids have yet been published. Comparisons in the present study on 

Chinook salmon are therefore largely limited to taxa other than salmonids, though 

whenever possible, examples from salmonids or at least other fish taxa have been 

incorporated. However, it is likely reasonable to assume that general mechanisms of 

carotenoid physiology can be applied to salmonid eggs and their offspring, given the 

conservation o f cellular, molecular, physiological and transcriptional regulation 

mechanisms related to carotenoids and their retinoid derivatives in diverse vertebrate 

taxa.

Maternal dietary carotenoid intake correlates highly with yolk carotenoid levels in 

birds (Blount et. al. 2000) and fish (Harris 1984). It is well established in birds that 

matemal/yolk carotenoid levels enhance offspring survival (e.g. Blount et. al. 2000). 

Traditionally, fish hatchery practices have been based on beliefs that similar relationships 

between egg carotenoid pigmentation and measures of offspring performance exist in 

salmonids, such as increasing fertilization, hatching success or survival (Hubbs and 

Strawn 1957; Hubbs and Stavenhagen 1958; Yarzhombek 1964 & 1970). Indeed, in
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salmonid populations experiencing oxidative stress positive correlations have been 

documented between carotenoid-based egg pigmentation and early offspring survival. 

Examples of this include: M74 syndrome in the Baltic (Pettersson and Lignell 1998 and 

1999; Pickova et. al. 1998 and 1999), Cyuga Syndrome in the Finger Lakes region of 

New York state, and early mortality syndrome in the North American Great Lakes 

(Palace et. al. 1998; Lundstrom et. al. 1999).

Positive correlations between measures of carotenoids and immune function have 

been documented in guppies (Houde and Torio 1992), Arctic charr (Skarstein and Flostad 

1996) and Atlantic salmon (Christainsen et. al. 1995), as well as in birds (Ruff et. al.

1974; DufVa and Allander 1995; Saino et. al. 1999), and mammals (Alexander et. al.

1986; Bendich and Shaprio 1986; Chew 1995; Chew et. al. 1999 and 2000). These 

diverse studies suggest that carotenoids have a conserved or basic role in immune 

function. The current paradigm is that carotenoids act in synergy with other antioxidants 

(Bohm et. al. 1997; Burke et. al. 2000), mediating host damage from toxic oxygen radical 

species (Burton 1989; Chew 1995; Krinsky and Yuem 2003; Chew and Park 2004). Such 

radicals may be produced during an initial innate immune response (Ellis 1988), through 

physiological changes such as aging (Gale et. al. 2001; Massimino et. al. 2003) or 

reproduction (Alonso-Alvarez et. al. 2004), exposure to environmental factors such as 

organohalogen organic contaminants (Asplund et. al. 1999) or ultraviolet sunlight 

radiation (Obermuller-Jevic et. al. 1999). In effect, carotenoids protect the integrity of 

the biological resources of an organism from oxidative degradation, providing health 

benefits. Another hypothesis is that carotenoids enhance the specific immune response 

by directly influencing the production of antibody, as suggested by increased antigen-
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specific antibody titers with dietary carotenoid supplementation in mammals (Jyonouchi 

et. al. 1994; Chew et. al. 2000) and birds (Kiss et. al. 2003).

Antibodies are immune recognition proteins produced (in part) as a specific 

im m unological response to foreign antigens (Bernstein et. al. 1998). Maternal antibodies 

are allocated to developing oocytes both for embryonic passive immune protection and as 

a metabolic resource (Takahashi and Kawahara 1987; Mor and Avtalion 1988 and 1990; 

Takemura and Takano 1997). Maternally allocated fish egg antibody is metabolised 

during embryonic development (Chantanachookhin, et. al. 1991), and endogenous 

offspring antibody expression begins at approximately four weeks post-hatch in rainbow 

trout (Oncorhynchus mykiss) (Tatner & Manning 1983; Razquin et. al. 1990), Atlantic 

salmon {Salmo salar) (Ellis 1977 and 1988) and Chum salmon {Oncorhynchus keta) 

(Nagae et. al. 1993). In birds, maternal carotenoid supplementation increases egg 

allocated levels of both carotenoids and vaccine-specific antibody titres (Kiss et. al. 

2003), and enhances endogenous antibody production after in vitro mitogen challenge of 

the bursa from newly hatched chicks (Haq et. al. 1996). Additionally, early carotenoid 

availability, whether via endogenous egg and/or exogenous post-hatch parental feeding, 

has been shown to increase offspring capacity for carotenoid absorption and metabolism 

through ontogeny in chickens (Koutos et. al. 2003) and zebra finches (Blount et. al. 

2003); in effect “priming” an organism’s metabolic systems for more efficient absorption 

of available carotenoids throughout their lifetime.

Mammalian studies have identified “low responders” to dietary carotenoid 

supplementation (Bowen et. al. 1993; Stahl et. al. 1995; Chew et. al. 2000; Lin et. al. 

2000; Hickenbottom et. al. 2002), who show reduced absorption and/or metabolic 

capacity for dietary carotenoids, ranging from 50% (Bowen et. al. 1993) to 99% (Chew
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et. al. 2000; Lin 2000) reductions compared to con-specific responders receiving identical 

diets. Additionally, carotenoid “low responders” have also shown significantly reduced 

measures of immune function (Chew et. al. 1995). In salmonids, the degree to which 

dietary carotenoids are absorbed, metabolised and deposited in flesh is heritable (Blanc 

and Choubert 1993), though salmonids worldwide are characterized by red flesh and eggs 

(Prince 1916; Craik 1985; Ando et. al. 1989). Chinook salmon, however, are an anomaly, 

possessing a rare genetic polymorphism leading to two flesh-colour phenotypes, termed 

red-fleshed and white-fleshed (Prince 1916; Hard 1985; Withler 1986). Studies have 

shown that white-fleshed Chinook salmon flesh-carotenoid levels may be reduced by as 

much as 95% compared to their red-fleshed counterparts when measured by single 

wavelength spectral analysis of crude acetone extracts (Ando et. al. 1992), and that flesh- 

colour differences are mirrored in their eggs (March and MacMillian 1996). Results of 

this study were more conservative, finding a 45% reduction in family mean carotenoid 

levels (ug/g) in the eggs of the white-fleshed (mean ± sd = 1.62 ± 1.5, n = 10) compared 

to those of the red-fleshed (mean ± sd = 2.95 ± 1.3, n = 19) Chinook salmon populations 

(Chapter 2).

Chinook salmon flesh colour polymorphisms represent an exceptional opportunity 

to study relationships between egg carotenoids and measures o f offspring immune 

function in healthy fish across a wide range of naturally occurring egg pigmentation 

levels without the need of maternal diet manipulation. In the current study, sources of 

Chinook salmon eggs were selected to maximize the range of egg carotenoid-pigment 

levels found in healthy fish. Carotenoids were measured at three stages of embryonic 

development; unfertilized eggs, eyed stage eggs and swim-up stage offspring and were 

regressed against three measures o f immunological function: (1) levels o f passively
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acquired maternal antibody in the unfertilized eggs, (2) offspring antibody levels at the 

beginning at the swim-up stage, as endogenous antibody expression begins (just prior to 

the start of feeding) and (3) disease resistance at the smolt stage (just prior to saltwater 

introduction) in response to a live marine pathogen (Listonella anguillarum) challenge.

3.2 Methods and Materials

3.2.1 Chemical and Materials

As described in Chapter 2 Methods and Materials Chemicals and Materials.

3.2.2 Sample origins, rearing and collection protocols

In October and November 2002, eggs were obtained from 31 mature female 

Chinook salmon from 3 spawning populations chosen for their diverse range of 

carotenoid pigmentation (see General Introduction Chapter 1, section 1.6 for description). 

Briefly, eggs from wild populations of red-fleshed (RFw) and white-fleshed (WF) 

Chinook salmon were obtained from the Department o f Fisheries and Oceans, Canada 

(DFO) enhancement hatcheries and domestic red-fleshed (RFd) Chinook salmon were 

selected from broodstock at Yellow Island Aquaculture Ltd. (YIAL, Quadra Island, B.C.) 

(see Figure 1.2 map), where all rearing and field experiments took place (see Chapter 2 

for detailed description). Briefly, 31 sexually mature female Chinook salmon were 

artificially spawned, 16 on October 31st (10 RFw, 6 RFd), and 15 on November 13th (10 

WF, 5 RFd), 2002. A subsample o f 25 eggs per female were frozen (-20°C) and stored (- 

80 °C) until extraction o f carotenoids and antibody. Remaining eggs were fertilized and 

each family was held in a separate compartment o f a vertical incubation stack and reared 

under standard hatchery conditions. As the eye spots of developing embryos became
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visible (eyed egg stage, ATU (accumulated thermal units or degree days) ± sd = 341 ± 

9.0), eggs were mechanically shocked, and all unfertilized/dead eggs were removed and 

counted. Two RFd families with fungal infected, non-viable eggs were removed from 

analyzes. A second subsample (N = 25 eggs/family) were preserved as above, with n ± sd 

= 264 ± 20 eggs in each of 29 families remained. Eggs were checked 3-4 times each 

week and mortalities removed. Once offspring had completely absorbed their yolk-sacs 

just prior to the start of endogenous feeding (swim-up stage ATU ± sd = 1045 ± 9.0) an 

additional 20 offspring/family were preserved (as above). Remaining offspring were 

transferred to 200L tanks (1/family), each receiving ca. 250 mL of Organic Chinook Fry 

Grower (Taplow feeds, Victoria, BC) daily. Tanks were cleaned and mortalities removed 

2-3 times per week until offspring reached smoltification stage and were ready to enter 

the marine environment.

3.2.3 Carotenoid Determination

Carotenoids were extracted in duplicate batches o f approximately one gram of (2- 

4) eggs per maternal family, analyzed in triplicate by HPLC, identified and quantified by 

comparison to authentic and pure carotenoid standards, as described in Li et. al. (2005). 

See Chapter 2, Materials and Methods: Carotenoid Assays for a more detailed 

description.

3.2.4 Antibody Assays

Antibodies were extracted and quantified from approximately 1 to 3 grams of 

unfertilized egg, or 4 individual swim-up stage offspring per maternal family. To preserve 

the conformational integrity of the antibodies, all solutions were ice cold when used and
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all incubation stages were conducted in a 4°C refrigerator. Eggs/offspring were weighed, 

counted and homogenized by first fine razor-blade chopping, then crushing by mortar and 

pestle. Homogenate was suspended in phosphate buffered saline (PBS, pH 7.04 with 

0.02% sodium azide to suppress bacterial contamination) to a 10% concentration (e.g., 1 

g egg in 10 mL PBS). The suspension was vortexed 1 minute and stored at 4°C overnight. 

The following day suspensions were vortexed another minute, centrifuged 10 minutes 

(2500 rpm, 4°C), and the supernatant was removed, sealed and stored at -80°C until 

analysis by enzyme linked immunosorbant assay (ELISA).

ELISAs for total antibodies were conducted on 96 well plates, though only 60 

wells/plate were used, with the outer row on all sides filled with distilled water at each 

incubation stage to minimize evaporation effects on well concentrations. A dilution series 

of each extract was made in PBS (as above) and 100 uL of each dilution was added to 

individual wells in triplicate along with 100 uL of carbonate coating buffer (pH 9.6). 

Plates were incubated overnight and the following day the wells were washed 3 times 

with PBS. Bovine serum albumin (BSA) was used as a control to block the non-specific 

binding of the primary antibody to other proteins in the sample extracts, with 300 uL 

added to each well and incubated 2 to 3 hours. Wells were washed 3 times with PBS and 

lOOuL of primary antibody (mouse anti-salmon Ig, 1 ug/mL, CLF003AP Cedarlane Labs 

Ltd., ON, Canada,) was added to each, and incubated 1 hour. Wells were washed 3 times 

again with PBS and 100 uL of HRPO-secondary antibody (horseradish peroxidase linked 

rabbit-anti-mouse-Ab, 5ug/mL PBS) was added to each well and incubated 1 hour. Wells 

were washed 3 times with PBS, 150uL of (ABTS) substrate specific to ARPO was added, 

incubated 1 hour in the dark and absorbance was read in a plate reader at 540 nm.
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Absorbance readings were corrected by subtracting the mean o f blank/control well 

readings, and triplicate extract dilutions were averaged.

Immunoprotein (antibody) concentrations were calculated for each sample as in 

appendix 3. Briefly, replicates of BSA (bovine serum albumin) were used as a blank and 

a row of primary antibody in dilution series was run simultaneously with replicate 

dilutions o f each sample assayed. The antibody standard absorbance readings were 

averaged by dilution and the average absorbance of BSA blanks subtracted to generate an 

adjusted absorbance, which was plotted against the corresponding dilution concentrations 

to generate a scatterplot. A regression line o f adjusted absorbance by dilution 

concentration of the antibody standard was calculated. The absorbance readings of the 

sample dilution replicates were averaged and the averaged BSA blank reading was 

subtracted, giving an adjusted absorbance for each dilution o f the sample. The regression 

equation was then used to calculate the concentration of antibody in each dilution of 

sample, which was then multiplied by the dilution factor. The calculated values for each 

dilution factor which fell within the range of the calibration curve were averaged to obtain 

the concentration o f antibody (ug/g) within each original sample.

3.2.5 Disease Challenge

At smolt (2057 ± 11.9 ATU, fish weighed approximately 5.45 ± 0.40 g), n = 714 

fish from 23 families were included in an experimental challenge with the causative agent 

of vibriosis, a common Pacific marine pathogen (as described in Chapter 2 Material and 

Methods, Disease Challenge section). Briefly, a live vibrio culture was obtained (Dr. A. 

Osborn, Pacific Biological Station, Nanaimo B.C.), verified (Bergy’s Manuel of 

Determinative Bacteriology, 2001) and grown to a homogeneous bacterial lawn, from
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which a stock suspension was prepared in PBS and diluted to approximately 105 cfu/mL, 

(McFarland 1907). The stock was kept at 4°C and working aliquots on ice throughout the 

experiment. Fish (31 ± 1/family) were anaesthetized in tricane methanosulphate, weighed 

and injected with O.lmL of either the vibrio suspension (N = 21 ± 1) or a PBS blank (N = 

10). Mortalities were removed every 2-6 hours, with family and time since challenge 

recorded. Dose concentration was verified by growing a smear o f 20 uL/series dilution 

from each dosing aliquot and the stock at the beginning and end of each challenge day. 

After 16-20 hours the colonies were counted and mean colony forming unit (cfu)/mL was 

calculated for each challenge day aliquot. Challenge dose concentrations averaged 3.12 

(± 1.7) xlO5 cfu/mL throughout the duration of the challenge. Challenge response was 

quantified as time to second death (time to 10% mortality, or LTio) within families. 

Differences in dose were statistically accounted for by reporting the ratio of family 

LTio/mean LTio o f the appropriate injection batch.

3.2.6 Statistical Analyses

Data were tabulated, calculated and statistically evaluated as described in Chapter 

2 Methods and Materials Statistical Analyses. Differences in family mean levels of 

carotenoid (reported as mean and standard deviation) were examined at the unfertilized 

egg stage between the two wild flesh-colour phenotypes (exhibiting normal distributions) 

by student’s T-test (t and p values reported). Family mean carotenoid levels at the eyed 

egg stage and the change in carotenoid levels from unfertilized to eyed egg stage were 

examined among the three maternal population origins (exhibiting noremal distributions 

following log transformation) by ANOVA (F and p values reported), with any significant 

differences examined by post-hoc Tukey’s Honestly Significant Differences (HSD) test (p
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values reported) (Zar 1999). Family mean egg antibody (Ab) level differences between 

the wild origin flesh-colour phenotypes (distributions heterogeneous following all 

parametric transformations) by Mann-Whitney Test (meadians reported). Family mean 

Ab level differences at swim-up and the family mean changes to swim-up (normal 

distributions following log transformation) were examined by ANOVA (mean and sd 

reported) with Tukey’s HSD post-hoc reported for differences between groups. Statistical 

analyses o f mean family differences are tabulated as described above in table 3.1 for 

carotenoids and 3.2 for antibody. Ordinary least squares regression analyses (single and 

multiple) were preformed to examine the relative effects between variables ie: comparing 

measures o f antibody versus carotenoids, or disease resistance versus carotenoids and 

antibody, with eyed egg weight included as a measure of maternal effects (Heath and 

Blouw 1998). Analyses were conducted and significant results reported in Table 3.3 (as 

in Zar 1999). All results (including non-significant relationships) tabulated in appendix 2 

Table 3.3 at the end of the thesis.

3.3 Results

3.3.1 Carotenoids

The main carotenoid detected in all the eggs was astaxanthin, with small amounts 

of canthaxanthin in the eggs o f the domestic families. Levels are reported as total 

carotenoids (astaxanthin + canthaxanthin) in ug/g. The eggs from the RFw group had the 

highest mean carotenoids levels, and compared to their WF counterparts, RFw eggs had 

significantly lower levels o f carotenoids at both the unfertilized stage (RFw mean ± s.d.= 

2.893 ± 1.063, N=10; WF mean ± s.d.= 1.619 ± 1.526, n = 10; t = -2.157, p < 0.045) and 

eyed stage (RFw mean ± s.d.= 2.155 ± 0.782; WF mean ± s.d.= 0.944 ± 0.899, n = 10; F
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= 6.743, p < 0.004, Table 3.1 and appendix 2 Table 3.1ai). The mean egg carotenoid 

levels of the domestic families were a bit of an anomaly (Figure 3.1a). At the unfertilized 

egg stage both the family mean and variation (sd) of this group were highest of the study, 

with mean carotenoids being closer to those of the RFw families, though among family 

variation was closer to that found in the WF families, resulting in no significant 

differences in an ANOVA between the three groups (see appendix 1, Table 3.1aii).

Table 3.1: Significant differences in family mean egg carotenoid levels (ug/g) between 

Chinook salmon of different maternal flesh-colour phenotypes and a domestic population.

a) T-test comparing egg carotenoids (ug/g) between maternal Chinook salmon 
phenotypes

Development stage Measure Maternal Origin n Mean sd
unfertilized eggs carotenoids (ug/g) WF a 10 1.619 1.536

RFwb 10 2.893 1.063
t = -2.157 p = 0.045

b) ANOVA comparing carotenoid measures between maternal origins
i) Eyed eggs Carotenoids (ug/g) WFa 10 0.944 0.899

RFwb 10 2.155 0.782
RFda 9 1.286 0.522

F  = 6.1 Ay, p  = 004
RFw significantly different from WF (p = 0.004) and from RFd {p = 0.049) using Tukey's HSD test

ii) Unfertilized to eyed egg Carotenoid % WF a 10 1.619 0.141
change RFw° 10 1.347 0.243

(log +1) RFdac 9 1.552 0.3
F =  3.646; p  =0.040

RFw and WF significantly different (p =0.039) using Tukey's HSD test 
Superscripted letters differentiate groups with significantly different means by Tukey’s HSD post-hoc 
WF = white-flesh, RFw = red-flesh wild and RFd = red-flesh domestic

Between the unfertilized and eyed egg stages the decline in family mean 

carotenoid levels was still highest and most variable among the domestic compared to the 

WF or RFw families (Figures 3.1a and 3.3a), resulting in significant non-homogeneity 

between the group variances, necessitating (log +1) data transformation, after which no
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significant differences emerged (see appendix 1, Table 3. lbii). When the % carotenoid 

decline was examined, even though the mean carotenoid decline in the WF families was 

the lowest o f the three groups, their low starting levels resulted in their having 

significantly higher % decline than the their RFw counterparts (WF % decline ± sd = 

42.64 ± 14.36, n = 10; RFw % decline ± sd = 24.27 ± 12.973, n = 10, t = 3.002, p < 0.008; 

appendix 2, Table 3. lbiii).

The similar % decline between the WF and RFd families, even given the much 

higher RFd variation among families (RFd % decline ± sd = 42.83 ± 29.44, n = 9) 

necessitated data transformation due to non-homogeneity of variance prior to ANOVA, 

revealing overall significant difference between the three WF, RFw and RFd groups (F = 

3.646, p < 0.04) driven by the WF-RFw difference (Tukey’s HSD p < 0.039) and no 

statistical differences between the RFd and either WF or RFw families (Table 3.1biv). 

These dynamics resulted in statistical differences between the three groups in family 

mean eyed egg carotenoid levels (mean ± sd for RFw = 2.155 ± 0.782, n = 10; for RFd = 

1.286 ± 0.522, n = 9; and for WF = 0.944 ± 0.899, n = 10, F = 6.743, p < 0.004), with the 

RFw family means being significantly higher than any of the others (Tukey’s HSD post- 

hoc comparisons of RFw-WF p < 0.004 and RFw-RFd p < 0.049), with no significant 

difference between the WF and RFd family carotenoid means at this stage (Table 3.1b).

By the swim-up stage maternal egg carotenoids had declined in all families 

(Figures 3.1a, 3.3a) and there were no statistical differences between the family groups in 

either means, amount or % decline (see appendix 1 and Table 3.1).
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Figure 3.1: Changes in (a) maternally derived egg carotenoids and (b) antibody levels 

(ug/g) through embryonic incubation as accumulated thermal units/degree days (ATU) in 

Chinook salmon offspring representing maternal flesh-colour phenotypes and a domestic 

population. Lines represent individual maternal families and graphs maternal origins as 

(WF) white-fleshed (wild), (RFw) red-fleshed wild, and (RFd) red-fleshed domestic.
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3.3.2 Antibody

Maternally allocated antibody (Ab) levels in the unfertilized eggs varied greatly 

among families both within and among different maternal origin groups (Figure 3.1b). 

Two domestic families had the highest mean egg Ab levels o f the study (6.29 and 13.89 

ug/g) which were revealed by Dixon’s outlier test to be statistically high (p < 0.05) and 

extremely high ( p < 0.001) outliers respectively (Dixon 1950). Even with their removal 

and parametric data transformation, variances in family egg Ab levels were still 

significantly non-homogeneous, necessitating non-parametric rank ordering prior to 

analyses. Aside from the two high outlier families, the majority of domestic family mean 

Ab concentrations were comparable to those of the RFw families (ie: < 0.6ug/g, see 

Figure 3.1b). In a non-parametric Kruskal-Wallis analysis no statistical differences were 

identified between the rank order of family median egg Ab levels among the three groups, 

wether or not the statistical high outliers were included (Appendix 2, Table 3.2a). 

Following this a Mann-Whitney test was used to examine mean family Ab differences 

between the wild origin maternal flesh-colour phenotypes. The rank order o f egg Ab 

levels of the WF families were significantly higher than those o f the RFw families 

(median of family Ab level rank of WF = 12.33, n = 9, of RFw = 6.67 n = 9, Z = -2.252, 

asymptotic (2-tailed) and exact (1-tailed) p = 0.024, Table 3.2a).

Antibody levels at swim-up had similarly non-homogeneous variances between 

the maternal origin groups. However, following log transformation the mean family Ab 

level variances among groups were then homogeneous and those of the domestic group 

were significantly highest and the most variable, with those of the two wild groups being 

not significantly different from eachother (see Table 3.2 bi).
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Table 3.2: Significant differences in family mean antibody levels (ug/g) in eggs and 

offspring o f Chinook salmon of different maternal flesh-colour phenotypes and a 

domestic population.

a) Mann-Whitney Test comparing egg antibody level rank orders between red-fleshed 

maternal Chinook salmon of wild and domestic origins

Development stage______Measure_____________ Phenotype______n______________ Median________
unfertilized egg rank Ab WFa 9 12.33

RFwb 9 6.67
Z = -2.252,asymptotic (2-tailed) & exact (1-tailed) p  = 0.024

b) ANOVA comparing measures of embryonic antibody between maternal Chinook 

salmon maternal origins

Development stage_______Measure________Maternal Origin_____ n______ Mean_________ sd_____
i) Swim-up offspring Ab (log (ug/g) + 1) W Fa 9 0.774 0.234

RFwa 9 0.722 0.350
RFdb 7 1.663 0.562

F =  14.08, p = 0.0001
RFd significantly different from both WF (p = 0.013) and RFw (p =0.010) using Tukey's HSD test

ii) egg-swim Log (Ab change W Fa 8 0.542 0.685
ug/g) RFwa 8 0.757 0.493

RFdb 7 1.666 0.603
F =  7.274; p  = 0.004

RFd significantly different from both WF (p = 0.005) and RFw (p =0.021) using Tukey's HSD test 
Maternal origins: WF = white-flesh, RFw = red-flesh wild and RFd = red-flesh domestic 
Superscripted letters different for groups with significantly different means by Tukey’s HSD post-hoc test

The mean change in family Ab levels from egg to swim-up among each maternal 

origin group increased (Table 3.2bii), though in a few individual families this decreased 

(Figure 3.1b). As many of the WF families initially had high egg Ab levels and increases 

were not as substantial as those o f the other two groups, coupled with one WF family 

having a substantial decrease (Figrue 3.1b), resulted in the mean Ab level change o f WF 

families being negative, and no significant differences were found between families of the 

WF and RFw phenotypes (see appendix 2, Table 3.2bi). The domestic families had a 

substantially higher mean Ab level increase between egg and swim-up than families of
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the wild origin groups, with little variation in the increase among the domestic families 

(Figure 3.1b). This resulted in significant non-homogeneity of variances between the 

three groups (see appendix 2, Table 3.2bii). Following log transformation, the significant 

differences in the change of family mean antibody levels were driven by the significantly 

higher increases among the domestic families (Figure 3.1b), with no difference between 

the wild flesh-colour family phenotypes (Table 3.2bii). There were no significant 

differences in the % change in family mean antibody levels between any of the maternal 

origins (see appendix 2, Table 3.2).

3.3.3 Carotenoid-antibody correlations

As mentioned above, mean family levels of egg carotenoids declined (Figure 3.1a, 

Table 3.1bii) while those o f antibody (Ab) rose (figure 3.1b, Table 3.2c) between the egg 

and swim-up stages in each maternal origin group o f eggs and offspring, however there 

were no significant relationships between maternally derived egg levels of these 

compounds (see appendix 2, Table 3.3a). Instead, significant relationships emerged at the 

swim-up stage between measures of Ab and carotenoids in both levels (ug/g) at, change 

in levels (ug/g) to and percent (%) change in levels to swim-up stage (Figures 3.2, and 

Table 3.3).

Results of regression analyses were examined for dependent variables of swim-up 

stage measures of (log + 1 ug/g) Ab (Table 3.3a) and the change in Ab levels (log +2 

transformed) to swim-up (Figure 3.2, Table 3.3b) versus the independent variables as 

measures o f carotenoids as either levels (ug/g) remaining at or (%) decline to swim-up 

stage and the covariate for maternal effects of eyed egg weight. For antibody levels (log 

+ 1 ug/g), egg weight (wt) was negatively correlated and the most significant predictor
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(co-efficient -0.499, pa) < 0.008), with carotenoid (ug/g) levels and (%) decline also both 

being significant predictors, with levels being negatively correlated (co-efficient -0.398, 

p(1) < 0.024, multiple R2 with egg wt = 0.323, p(2, < 0.02), and % decline being positively 

correlated (co-efficient = 0.454, p(1) < 0.011, multiple R2 with egg wt = 0.390, p(2) < 0.007; 

Table 3.3 a).

a  A Red-fleshed wild ^
R2 = 0.167 °  White-fleshed wild R2 = 0.199

■ Red-fleshed domestic P <  0.033P <  0.053
2.50

ZOO

1.00

aso

aoo
1001.00 1.50 zooaoo aso

Carotenoids (ug/g) at swim-up Carotenoid (%) decline to swim-up

Figure 3.2: Relationships in swim-up stage offspring between the changes in mean

family levels of antibody (log + 2 ug/g) vs carotenoids as (a) levels (ug/g) remaining in

(no significant relationships) and (b) % decline to swim-up stage among offspring of

different maternal Chinook salmon flesh-colour phenotypes and a domestic population.

For the change in antibody levels (log + 2 ug/g) from egg to swim-up, egg weight 

(wt) was no longer a significant predictor (co-efficient -0.293, p(1) < 0.099, Table 3.3b). 

Higher carotenoid (ug/g) levels significantly predicted lower changes in antibody levels 

(co-efficient -0.409, p(1) < 0.026), though the significance o f the effect was unidirectional,
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and not significant in a 2-tailed analysis (R2 = 0.167, p(2) < 0.053, Figure 3.2a). Greater 

(%) declines in egg carotenoids to swim-up significantly predicted a higher increase in 

antibody levels over the same period (co-efficient +0.446, p(1) < 0.016). This effect was 

significant in both directions (single R2 = 0.199, p(2) < 0.033, Figure 3.2b), and this 

relationship was strong enough to remain significant in a multiple regression including 

the independently non-significant maternal effects predictor of eyed egg weight (g)

(multiple R2 = 0.292, p(2) < 0.045; Table 3.3b).

Table 3.3 Hierarchical OLS regression models* of significant relationships in Chinook

salmon offspring immune measures vs measures o f egg carotenoids at different

development stages and maternal effects as eyed egg weight (g).

a) Offspring antibody (log + 1 ug/g) on measures of remaining egg carotenoids (ug/g or % ug/g) 

at swim-up and maternal effects as eyed egg weight (g)

Hierarchical Model Summary
Models Independent variables r  p m n R2 pm

1 Carotenoid (ug/g) at swim-up -0.398
_______ t—LU_______

0.024 25 0.158
----- ----------

0.049
2 Carotenoid (ug/g) at swim-up 

Eyed egg weight
-0.398
-0.499

0.024
0.008

23 0.323 0.020

1 Carotenoid % decline egg to swim-up 0.454 0.011 25 0.207 0.022

Carotenoid % decline egg to swim-up 0.454 0.011 23 0.39 0.007
Eyed egg weight -0.499 0.008

b) changes in antibody egg to swim-up (log + 2 transformed ug/g) on measures of remaining egg 

carotenoids (ug/g or % ug/g) in swim-up offspring and maternal effects as eyed egg weight

Hierarchical Model Summary

Models* Independent variables r P(D n R2 P<2)
1 Egg carotenoids remaining a t swim-up -0.409 0.026 23 0.167 0.053
2 Egg carotenoids remaining at swim-up -0.409 0.026 21 0.232 0.093

Eyed egg weight (g) -0.293 0.099
1 Egg carotenoid % change at swim-up 0.446 0.016 23 0.199 0.033
2 Egg carotenoid % change at swim-up 0.446 0.016 21 0.292 0.045

Eyed egg weight -0.293 0.099
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c) Smolt stage offspring disease resistance LTio to vibriosis on measures of egg carotenoids 

(ug/g) in unfertilized, eyed stage eggs or change in egg levels to swim-up with co-variants of 

antibody levels (ug/g) in unfertilized eggs and maternal effects as eyed egg weight (g)

. . .  Model SummarvHierarchical
Models* Independent variables r pm n R2

1 Carotenoid (ug/g) -  unfertilized egg 0.428 0.021 20 0.183 0.041
2 Carotenoid (ug/g) -  unfertilized egg 

Antibody (ug/g) -  unfertilized egg
0.428
0.299

0.021
0.101

20 0.337 0.031

3 Carotenoid (ug/g) -  unfertilized egg 
Antibody (ug/g) -  unfertilized egg 
Weight (g) -  eyed egg

0.428
0.299
0.102

0.021
0.101
0.339

19 0.346 0.087

1 Carotenoid (ug/g) -  eyed egg 0.444 0.017 20 0.197 0.034
2 Carotenoid (ug/g) -  eyed egg  

Antibody (ug/g) -unfertilized egg
0.444
0.299

0.017
0.101

20 0.322 0.037

3 Carotenoid (ug/g) -eyed egg 
Antibody (ug/g) -  unfertilized egg 
Weight (g) -  eyed egg

0.444
0.299
0.102

0.017
0.101
0.399

19 0.324 0.109

""Hierarchical ordinary least squares regression model results include: signed correlations (r) and 1-tailed 
significance (p(i)) to denote directional contributions of each individual variable to the model; single followed by 
multiple regression (R2) with corresponding 2-tailed significance (ppj) to denote the overall relationship between 
model 1 variable (single R2) and model 1 + 2  variables (multiple R2) to the model; significant relationships a t p <  
05 in italics.

3.3.2 Disease Challenge

Increased resistance time (LTio) following a live ip vibriosis challenge at the 

smolt stage was positively correlated with higher egg carotenoid concentrations (ug/g) at 

both the unfertilized and eyed egg stages (Chapter 2, Figure 2.3). In a multiple regression 

analysis the co-variate o f unfertilized egg Ab levels (ug/g) increased the significance of 

this relationship (from single R2 = 0.183,p (2)< 0.041 to multiple R2 = 0.337, p a)< 0.031), 

even though egg Ab levels were not a significant predictor (co-efficient 0.299, p(1) <101, 

Table 3.3c). Similarly, the multiple regression o f vibrio resistance versus co-variants of 

eyed egg carotenoid and unfertilized egg antibody levels was also significant, though the 

addition of unfertilized egg antibody levels reduced the significance of this relationship 

(from single R2 = 0.191 ,pa) < 0.034 to multiple R2= 0.322, p (1) < 0.037), with higher eyed 

egg carotenoid levels significantly predicting longer disease resistance times (co-efficient
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= 0.444,/?(„ < 0.021). The maternal effect eyed egg weight (g) co-variate decreased the 

power o f both multiple regressions to non-significance (Table 3.3c). Other variables and 

relationships examined with respect to vibrio resistance in this study did not improve or 

indeed show any other significant relationships (see appendix 2, Table 3.3 c).

3.4 Discussion

This study provides new insight into potential mechanism(s) of carotenoid- 

immune function relationships in juvenile salmon, in that the % decline in family egg 

carotenoid levels to the swim-up stage was significantly related to the increase in family 

mean Ab level during the same stage. Carotenoids have been proposed to be signals of 

superior immune function in birds (Hamilton and Zuk 1982; Blount 2004), mature Arctic 

charr (Skarstein and Folstad 1996), juvenile Atlantic salmon (Christiansen et. al. 1995) 

and mammals (Chew and Park 2004). One theory is that the antioxidant action of 

carotenoids (in synergy with other antioxidants) preserves the integrity of host resources 

(such as lipids, proteins, membranes, tissues and organ functions) against damage from 

oxygen radicals (Kurashige et. al. 1990; Krinsky and Yuem 2003), such as those 

generated during an innate immune response (Bernstein et. al. 1998). Thus carotenoids 

signal superior immunity through overall higher quality resources and better functioning 

systems leading to superior health. Other theories involve more direct effects of 

carotenoids on immunological measures. Studies have shown carotenoids and their 

metabolic retinoid derivatives to be involved in the mediation o f T-cell immune 

processes, such as by (1) stimulating receptor pathways (Stephensen et. al. 2002), (2) 

triggering Go-i cell cycle activation, (3) as co-factors in transcription regulation and (4) in 

intercellular communication mechanisms imperative to adequate mediation o f immune
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responses, the maintenance of healthy or purging of foreign, damaged or diseased cells 

(Garbe et. al. 1992). Our results support other findings that carotenoids themselves 

influence antibody production (Alexander et. al. 1986; Bendich and Shapiro 1986; 

Jyonouchi et. al. 1994; Chew et. al. 2000; Kiss et. al. 2003; Peters et. al. 2004) and that 

measures of egg carotenoid levels influence disease resistance at smoltification, possibly 

with interactions of antibody, though the exact mechanisms remain to be investigated.

In the current study, the primary carotenoid in all eggs was astaxanthin, with small 

amounts o f canthaxanthin present in the domestic family eggs. Egg carotenoid levels 

decreased with each subsequent developmental stage to swim-up in all families, while 

antibody levels rose to the swim-up stage in the majority of families compared to mean 

unfertilized egg levels of these compounds. Our results suggest that the relative decline 

in egg carotenoids through embryonic development in some way influences levels of 

endogenous antibody expression at the swim-up stage. Circulating measures of 

carotenoids and antibody have shown to be inversely correlated following immune 

activation in birds (Saino et. al. 1999; Verhulst et. al. 1999; Ohlsson et. al. 2003; Kiss et. 

al. 2003; Peters et. al. 2004) and mammals (Jyonouchi et. al. 1994; Chew et. al. 2000; 

Jonasson et. al. 2003) as well as at sexual maturity in fish (Skarstein and Folstad 1996), 

and perhaps a form of this effect was involved in observed correlations.

An interesting finding of this study is that matemal-egg allocation patterns were 

very different between the two Chinook phenotypes and population origins, not only for 

carotenoid levels (as was expected and discussed in Chapter 2) but also for levels of 

antibody (Figures 3.1 & 3.2). While no empirical linear correlations were found between 

the levels of these two groups of compounds in the eggs, the RFw families had 

significantly higher mean egg carotenoid levels than the WF families at the unfertilized
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and eyed egg stages. Egg antibody levels showed significant non-homogeneity of 

variances between the groups following all parametric data transformations, necessitating 

a non-parametric rank ordering of their levels prior to statistical comparison. Following 

this, the RFw families had significantly lower level ranks than those of their WF family 

counterparts (Table 3.2a). Conversely, mammalian low responders to carotenoids show 

significantly reduced levels of circulating carotenoids, similar to the WF families of this 

study (Bowen et. al. 1993; Lin 2000), while mammalian low carotenoid responders also 

showed reduced levels of circulating antibody (Chew et. al. 2000); though the WF eggs of 

this study were both higher and substantially more variable in antibody levels than the 

RFw eggs (Figures 3.1 and 3.2, Table 3.2ai). While egg antibody and carotenoid levels 

together in a multiple regression correlated positively with disease resistance at the smolt 

stage (Table 3.3ci), the eggs of the white-fleshed group had both lower carotenoid and 

higher, more variable antibody levels both in the eggs and swim-up fry (Tables 3.1a and 

3.2ai) than their RFw counterparts.

Skarstein and Folstad (1996) coined the “immunocompetence handicap 

hypothesis” in their studies of Arctic charr where they proposed that sex hormones 

mediate inverse correlations between circulating carotenoid and antibody levels during 

sexual maturation and spawning. They further speculated that higher carotenoid levels 

translated to better functioning of the innate immune system, and hence to lower levels of 

specific antibody required for immune defence. Here, it could be similarly interpreted for 

the present study that, as the antioxidant potential of carotenoids in Chinook salmon eggs 

were depleted, the requirement for antibody increased, and hence expressed levels of 

antibody increased. A possible mechanism for this proposed interaction could involve 

carotenoids and/or their derivatives as transcription enhancers. Retinoids (e.g. vitamin A)
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are metabolic carotenoid derivatives known to boost recovery from a number of diseases 

in humans (see reviews by Sommer 1989; W olf 1996), and are important regulators of the 

immune response (Garbe et. al. 1992; Stephensen et. al. 2002; Geissmann et. al. 2003). 

Dietary carotenoid supplementation boosts maternal production and egg allocation of 

vaccination induced antibody levels (Kiss et. al. 2003), while maternal carotenoids boost 

in vitro mitogen induced antibody production in the bursa o f newly hatched chicks (Haq 

et. al. 1996). If carotenoid antioxidants mediate host damage from toxic oxygen by­

products, they do so at the expense of their own oxidation. Since increases in circulating 

antibody correspond to decreases in circulating carotenoids (Faivre et. al. 2003; Jonasson 

et. al. 2003; Alonso-Alverez et. al. 2004) then perhaps as carotenoid antioxidant 

mediators are depleted, the subsequent rise in oxidative by-products may have triggered 

the observed increased production of antibody. Conversely, consider the relationship 

between retinoids, inflammatory cytokines (IC) and dendritic cells (DC), where in the 

presence of ICs, retinoids increase DNA binding, maturation and differentiation of DCs, 

expression of MHCII and co-stimulatory molecules and enhancement o f antigen-specific 

T-cell responses, leading to increased antibody expression. In the absence o f ICs, 

retinoids induce DC apoptosis, protecting the host from unwanted DC action (Geissmann 

et. al. 2003). A majority o f carotenoid studies reporting immune activation relationships 

have found these to be mediated by T-cell mechanisms (Alexander et. al. 1986; Bendich 

and Shapiro 1986; Jyonouchi et. al. 1994; Jonasson et. al. 2003; Massimino et. al. 2003). 

Perhaps then, carotenoid-immune function relationships are mediated via carotenoid 

conversion to vitamin A or other retinoids, which then act as the direct immune activation 

factors. The results o f this study lead to the proposition of two not necessarily exclusive 

possible hypotheses with respect to Chinook salmon:
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1) Carotenoids act primarily as antioxidants and as this capacity is depleted, 

oxidative derivatives then stimulate the production of antibody.

2) Carotenoids act as antioxidants and are metabolised to retinoids, which then act 

as cofactors of T-cell activation, increasing circulating antibody levels.

Either o f these possibilities could explain the observed relationship between carotenoid 

decline and increased antibody levels. Either of these could also explain the inverse 

relationships reported in other studies between carotenoid-pigmentation and infection, 

immune activation and/or antibody levels (Jyonouchi et. al. 1994; Skarstein and Folstad 

1996; Saino et. al. 1999; Verhulst et. al. 1999; Chew et. al. 2000; Jonasson et. al. 2003; 

Ohlsson et. al. 2003; Amar et. al. 2004; Peters et. al. 2004). As well, since both 

hypotheses incorporate carotenoids as antioxidants this could in part account for some of 

the conflicting carotenoid-immune activation results reported by others. Some examples 

o f conflicting relationships between carotenoid levels and measures of immune function 

include: (1) cell mediated but not humoral immune measures being correlated with 

carotenoids, (2) specific but not innate immune measures being correlated with 

carotenoids, or (3) certain types of immunoglobulin (e.g. IgG) but not others (e.g. IgM) 

being correlated with increased measures of carotenoids (e.g. Christiansen et. al. 1995; 

Thompson et. al. 1995; Hill 1999; Hartley and Kennedy 2004). Alternatively, the 

correlation between remaining egg carotenoids and expressed antibody at swim-up could 

be entirely a maternal effect, as suggested from the analysis of swim-up stage antibody 

when multiply regressed against the co-variants o f eyed egg weight and remaining egg 

carotenoids or carotenoid % remaining. However, analyses examining the change in 

antibody from egg to swim-up when multiply regressed against the same carotenoid and 

egg weight co-variants revealed only the carotenoid measures to be significant predictors
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with the maternal effects egg weight co-variate dropping entirely out of significance. If 

the correlations between different measures of egg carotenoid and antibody at swim-up 

were actually spurious, they would not be expected to show such similar results unless 

they were autocorrelated, which could also be the case here, although, if  the two were 

autocorrelated it could be expected that this would represent a maternal effect. If these 

variables were really a maternal effect and not in factcorrelated (or autocorrelated with 

maternal effects) of their own accord, then the maternal effect co-variate should be the 

most significant predictor regardless of the analytical measure. The fact that these 

different measures o f these two compounds are significantly related in all of the different 

analyses examined and all are more a maternal effect, except for the relative change of the 

two, which are significantly related to eachother though not related to maternal effects 

shows there is some connecting factor between carotenoids and antibodies in embryonic 

development, even though the mechanism of their interaction remains unclear and 

undefined.

Results of this study also show that levels o f egg carotenoids and antibody 

together in a multiple regression significantly predict resistance to an intraperitoneal 

bacterial challenge with a marine pathogen (Listonella anguillarum) at the smolt stage. 

The inclusion of the egg antibody co-variate in the analysis of the relationship between 

disease resistance and egg carotenoids increases the R2 and decreases the p value of the 

multiple versus single regression results (single regression o f disease resistance versus 

egg carotenoids R = 0.183, p(2 ) < 0.041; multiple regression of disease resistance versus 

co-variants o f egg carotenoid and antibody levels R2 = 0.337, pp) < 0.031), though 

carotenoids were the only significant predictor. Similarly, Christiansen et. al. ’s (1995) 

significant relationship between offspring freshwater dietary carotenoid supplementation
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and a co-habitant disease resistance challenge found no difference between the dietary 

groups in vaccination induced antibody levels (measured by ELISA at 4 months post­

vaccination), though did find that the supplemented offspring had red blood cells 

significantly more resistance to oxidative attack than the unsupplemented offspring.

While the Tyndale and Bryden (unpublished) pilot study did not examine any specific 

immune measures such as antibody levels, no significant relationships were found 

between non-specific immune measures such as lysozyme or stress response and egg 

carotenoid levels; nor was the significant relationship between disease resistance and egg 

carotenoid levels enhanced by multiple regression analyses including these other non­

specific immune measures as co-variants. The current study did not examine post­

challenge antibody levels, and egg antibody levels only contributed as covariates with the 

significant egg carotenoid level predictor to an overall multiple regression o f smolt stage 

disease resistance, and were not independent predictors of this relationship. Our results 

suggest that the % decline of egg carotenoids through embryonic incubation is related to 

the relative increase in antibody levels during the same time period, and that egg 

carotenoid levels affect offspring fitness in Chinook salmon via disease resistance at the 

smolt stage, possibly in part through interactions with egg antibody levels, though these 

were not independently correlated. This study is thus one of only a handful that addresses 

possible mechanisms behind the long asserted egg carotenoid -  offspring survival 

relationships in salmonid fish.
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CHAPTER 4:

Why are salmon eggs red?

Conclusions, Discussion and Future Directions

4.1. Conclusions and Disscussion

This thesis addresses the question “Why are salmon eggs red?”; specifically, what 

benefits do offspring o f darker pigmented eggs gain to offset the costs o f both maternal 

accumulation/metabolism/retention (Goodwin 1986; Olsen and Owens 1998) and egg 

predation risk (Wieland and Koster 1996; Godin and McDonough 2003; Hasson 2004; 

Van der Veen 2005) inherent to red eggs? While animals obtain carotenoids from plant 

synthesized dietary sources, many published correlative and mechanistic relationships are 

well accepted concerning health, survival and/or reproductive fitness benefits of 

carotenoids in life forms as diverse as plants, algae, copepods, shellfish, fish, birds and 

mammals. Carotenoid absorption and retention efficiency is hereditary in salmonids (see 

review by Blanc and Choubert 1993), especially so in the anomalous Chinook salmon 

with their genetic polymorphism for distinct red- and white-flesh colour phenotypes 

(Withler 1986). In contrast the sexual selection driven carotenoid- red nuptial skin colour 

in Sockeye salmon (Oncorhynchus nerka) has led freshwater populations (differentiated 

as the kokanee salmon morph, O. nerka) with limited dietary carotenoids to genetically 

diverge to maintain this sexually selected trait (Craig and Foote 2001; Foote et. al. 2004; 

Craig et. al. 2005). Non-anandromous Kokanee salmon possess a heritable genetic 

polymorphism leading to dietary carotenoid absorption/retention that is more than three
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times as efficient as their anandromous Sockeye salmon counterparts who feed in the 

carotenoid-rich Pacific Ocean (Wood and Foote 1996; Craig and Foote 2001; Foote et. al. 

2004; Craig et. al. 2005). Flesh-carotenoid colouration in Chinook salmon is not likely to 

be under sexual selection, and as salmon egg carotenoids in general are maternally 

derived and not seen by either sex during reproduction, egg carotenoids are also not likely 

to be under sexual selection. The red carotenoid pigmentation of Chinook salmon flesh 

and salmon eggs in general would be expected to be maintained by natural selection for 

benefits of the carotenoids themselves; benefits which should offset the costs of 

carotenoid accumulation/retention and egg predation risk. Egg carotenoids are 

metabolized through embryonic development, so it would seem that if  naturally selected 

benefits for egg carotenoids exist, this would be their realm of influence. Empirical 

studies however, have found no correlations of red eggs or the carotenoid levels they 

represent increasing embryonic survival in the hatchery (see review by Craik 1985 and 

citations of previous chapters). In organohalogen-stressed environments, salmon egg 

carotenoid-embryonic survival correlations have been documented (Palace et. al. 1998; 

Pettersson and Lignell 1999), though offspring survival has been ameliorated by egg 

thiamine bathing (Amcoff et. al. 1998), irregardless of carotenoid levels (Homung et. al. 

1998). This leads us back the fundamental question addressed by this thesis; why are 

salmon eggs red?

Results of this thesis provide new insight into the benefits offspring acquire from 

darker pigmented eggs. Concurring with others (cited above & in previous chapters), this 

study found no definitive empirical relationship between levels of egg carotenoids and 

embryonic hatchery survival. Offspring benefits manifest at the smolt stage (just prior to 

saltwater transfer) following challenge with the live, marine bacterial pathogen of
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vibriosis (see Chapter 2, Table 2.2). Similarly, Christiansen et. al. (1995) found that by 

carotenoid supplementation of freshwater diets, Atlantic salmon offspring were more 

resistant to the bacterial pathogen of furunculosis. Vibriosis represents a ubiquitous 

environmental threat to Pacific saltwater salmonids, and standard hatchery protocols 

include vaccination prior to saltwater introduction. Wild spawned salmon have no such 

advantage, and egg carotenoids were significant positive predictors of survival following 

vibrio encounter. Comparisons of carotenoid and antibody levels in eggs and progeny of 

the different maternal origins suggested these compounds may be related in an inverse, 

albeit complex fashion; though a regression analysis of these variables across all sample 

origins was non-significant. Smolt stage vibriosis resistance was significantly predicted 

by egg carotenoid levels. When disease resistance was multiply regressed on co-variate 

measures of egg carotenoid and antibody (Ab) levels, the relationship was still significant, 

with carotenoids as the significant positive predictor and Ab levels not showing any 

independent significant correlation with the observed disease resistance. This suggests 

that, if  an interaction between levels o f these compounds exists, the interaction is a 

complex one, with further research needed to elucidate an exact mechanism and its 

relation to disease resistance. Regression analyses o f swim-up stage Ab levels on egg 

carotenoid measures of either (a) percent decline to and (b) levels remaining at the 

offspring swim-up stage showed significant relationships; though multiple regression 

including maternal effects co-variate o f eyed egg weight revealed this to be obscured by 

egg weight or other maternal effects this represents. However, when the change in Ab 

levels between egg and swim-up stages was examined either as the change in absolute 

levels (ug/g) or as percent (%) antibody levels increased, the only significant predictor 

were the egg carotenoid measures, either as (a) % egg carotenoids declined to or (b)
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carotenoid levels (ug/g) remaining at swim-up. Maternal effects as egg weight (g) were 

not significantly related to either the change in Ab level (ug/g) or % increase from egg to 

swim-up, nor to vibriosis resistance with egg carotenoids or egg carotenoids and Ab co­

variants. The inclusion of the maternal effects co-variate in any of these multiple 

regression models reduced to the models to non-significance. This suggests that while the 

levels o f antibody in swim-up stage offspring may be largely a maternal effect as 

indicated by egg weight being the most significant predictor, the relative amount (ug/g or 

%) o f antibody gained (expressed) compared to the levels present in the eggs is in some 

way related to interactions with the relative decline in egg carotenoid levels 

simultaneously occurring, regardless of weight or other maternal effects this represents.

The significant findings of this thesis are that maternally derived egg carotenoids 

are statistically predictive of disease resistance in smolt stage Chinook salmon. Also, that 

the relative changes in levels of antibody and egg carotenoid during embryonic 

development are likely inter-related, regardless o f maternal effects driving the absolute 

Ab levels at swim-up. This thesis provides new insight into benefits gained by salmon 

offspring offsetting the costs of red eggs, and together with a synthesis of the published 

literature, suggests some possible mechanisms o f action.

Following breeding studies o f the Chinook salmon phenotypes, consultations with 

fisheries personnel and their written records since their inception spanning the Northwest 

Pacific (northern California to northwest Alaska and Asia), and an extensive review of the 

worldwide salmonid literature, Hard et. al. (1989) proposed that egg carotenoids most 

likely increase the range of environments in which salmonid offspring are able to flourish. 

Chinook salmon, being the largest o f salmonid species in adulthood, are ecologically 

specialized in their freshwater spawning habitats to larger freshwater drainages (Ricker
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1972). White-fleshed Chinook salmon, which marine catch records indicate are 

consistently larger than their red-fleshed counterparts (Milne 1964; Godfrey 1975; Fraser 

et. al. 1982), are even further specialized in their freshwater spawning habitats. Of the 30 

Chinook salmon populations examined by Hard et. al. (1989) spanning northern Oregon 

to northwest Alaska, those with the highest proportions of white- to red-fleshed Chinook 

salmon (reported as % white-flesh in brackets) spawn exclusively in either the short 

coastal rivers of southeast Alaska (2.6 - 37.1%), the larger coastal rivers of northern B.C. 

(primarily the Skeena 41.2%) or the lower tributaries of the Frasier river watershed 

(53.8%). Where populations predominated by red-fleshed Chinook salmon spawn in the 

same rivers as populations predominated by the white-flesh Chinook salmon, darker 

pigmented Chinook salmon eggs (indicative of red-fleshed dams) tend to be spawned 

either earlier in the season and/or in the upper reaches of these same rivers. Red-flesh 

Chinook salmon spawn throughout the rest of the Pacific Rim, whereas white-flesh 

Chinook salmon spawners are virtually unknown other than in those locations described. 

Coastal watersheds tend to maintain lower temperatures and receive higher precipitation 

than more inland streams, leading to conditions favouring higher water oxygenation; 

perhaps a requirement of white-fleshed Chinook offspring due to their relative lack of 

carotenoids. This theory could account for the lack of egg carotenoid-offspring survival 

results in hatchery experiments, as water quality (such as temperature and velocity, 

promoting optimal oxygenation) is typically maintained at optimal levels.

Egg carotenoid-offspring survival relationships are well established in birds (Blount 

et. al. 2000). With regards to the above proposed hypothesis for salmonids, bird embryos 

are relatively enclosed from the environment, with more limited oxygen transfer 

compared to salmonid eggs; and this could account for the more prevalently documented
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egg carotenoid-offspring survival relationships. An integrated theory proposed by Blount 

et. al. (2000 and 2004) and discussed in Chapter 2 is that carotenoids are indicative of a 

higher overall resource base. Through integrated processes, carotenoids assist in 

upregulating the maternal expression of the critical egg resources vitellogenin (vtg) and 

very low density lipoprotein (VLDL), primary precursors o f embryonic proteins and 

lipids (respectively). These compounds bind and transport other maternal resources, 

including carotenoids, to developing oocytes, dissociating as they are needed during 

embryonic development. The close proximity of carotenoids and other antioxidants 

protect precursor and formed proteins, lipids, membranes and developing systems from 

oxidative damage associated with the toxic by-products generated during the high 

metabolic rate o f embryonic development (as proposed and referenced in Blount et. al. 

2000 and 2004). Studies indicate that similar processes likely operate in salmonid fish 

(Ando et. al. 1986a, b and c). Studies have also shown that higher available levels of 

carotenoids during egg development and early post-hatch parental feeding in birds leads 

to life-long enhancement of dietary carotenoid absorption and metabolic efficiency (Fitze 

et. al. 2003a and b; Blount et. al. 2003; Koutos et. al. 2003). If similar mechanisms 

operate in salmonid fish, this could explain the 8 month time-lapse in the relationship 

between egg carotenoids and smolt stage vibriosis resistance; especially given that egg 

carotenoids were metabolised to low levels after only 4 months at swim-up. Though the 

freshwater feed of this study was not supplemented with carotenoids, small amounts are 

known to be present (pers. comm. B. Hicks, Research Co-ordinator, Taplow Feeds, 

Victoria, B.C.). If the carotenoid absorption capacity was more efficient in offspring o f 

darker pigmented eggs, these offspring would have absorbed more o f the limited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

carotenoids from their freshwater diet than offspring of lighter pigmented eggs, resulting 

in greater carotenoid availability at smoltification to affect disease resistance.

Hamilton and Zuk (1982) first documented significant relationships between 

carotenoid-based pigmentation and lower body burdens of parasites in birds, suggesting 

carotenoids signal superior immune function or resistance mechanisms. A proposed 

mechanism involves inverse correlations between carotenoid-antioxidants and antibody, 

where antioxidants contribute to innate immune mechanisms, and if sufficient to ward off 

infection, spare the induction of costly specific immune cells and their antibody products 

as first proposed in the immunocompetence handicap hypothesis (Folstad and Karter 

1992; Skarstein and Folstad 1996). Dietary carotenoids increase circulating carotenoid 

levels and boost vaccination induced antibody production (Kiss et. al. 2003). Immune 

activation is rapidly mirrored by reductions in circulating carotenoid levels (Faivre et. al. 

2003). If carotenoid antioxidants do mediate non-specific immune responses (Amar et. 

al. 2004), they do so at the expense of their own oxidation. In this system, a possible 

trigger to up-regulate the production o f antibody could be an oxidative derivative 

signalling the decline o f carotenoid levels, and hence the need to upregulate specific 

antibody production. This theory could account for the observed relationship between 

greater percent decline (or lower remaining levels) of egg carotenoids correlating with 

higher offspring antibody levels.

One final line o f reasoning involves sexual versus natural selection mechanisms 

operating on carotenoid pigmentation. Contrast the genetic polymorphisms related to 

carotenoid accumulation and retention in Chinook salmon with those of Sockeye/kokanee 

salmon. Under natural selection, Chinook salmon polymorphisms resulted in relaxed 

carotenoid absorption and retention mechanisms in certain populations, resulting in
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distinct red- and white-flesh/egg phenotypes, even when both morphotypes receive 

carotenoid supplemented diets. Under sexual selection, Sockeye/kokanee salmon 

polymorphisms have increased carotenoid absorption and retention efficiency in the 

landlocked freshwater kokanee, resulting in visually indistinguishable bright red 

spawning colouration of both Sockeye and kokanee morphotypes; even though the diet of 

anandromous Sockeye are considered carotenoid rich, compared to the carotenoid poor 

freshwater diet of non-anandromous kokanee salmon. If the benefit o f salmon egg- 

carotenoid pigmentation is largely to preserve offspring survival in oxidatively sub- 

optimal environments as proposed by Hard et. al. (1989), and red eggs incur predation 

costs (Wieland and Koster 1996; Godin and McDonough 2003; Hasson 2004; Van der 

Veen 2005), it would seem logical that populations adapted to spawn in optimal 

freshwater environments, such as where white-fleshed Chinook salmon are most 

prevalent, would most readily undergo selection for reduced egg carotenoid pigmentation, 

especially if  carotenoid pigments are not being maintained by sexual selection pressures.

4.2 Future Research

One line o f future research would be to investigate cost-benefit relationships o f egg 

carotenoid pigmentation, as well as the theory that salmon egg carotenoids maintain 

offspring survival in sub-optimal conditions. Potential costs could be examined by a 

survey of the spawning streams of predominantely white- and red-fleshed Chinook 

salmon for the relative prevalence o f common egg predators. If spawning streams where 

the white-flesh phenotypes prevail are found to have higher incidences of predators this 

could help drive natural selection toward reduced egg pigmentation. Potential benefits 

could be tested by obtaining Chinook salmon eggs from a wide range o f pigmentation
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levels. Subsets of each maternal egg batch could be analyzed for carotenoid levels and 

the rest fertilized and incubated under either control conditions or exposed to 

environmental stress, such as: different water quality parameters (e.g. temperature, flow 

rate, oxygenation level), or exposed to common pathogens of Chinook salmon eggs (e.g. 

fungus) or offspring (e.g. bacterial, Sauter et. al. 1987) and survival rates measured. 

Results would provide information either supporting or disproving Hard et. al.’s (1989) 

hypothesis, and provide insight into the cost-benefit relationships involved in red egg 

pigmentation during embryonic development in salmon.

Another line of research could investigate the plasticity of carotenoid pigment 

expression under sexual selection. If commercial hatcheries for Sockeye and/or Kokanee 

salmon exist, these would represent populations were sexual selection for carotenoid skin 

pigments is reduced or non-existent due to artificial spawning techniques commonly 

employed in hatcheries. Investigations could then examine responses o f each morphotype 

to high and low dietary carotenoid levels by examining pigments in the flesh, skin and 

eggs for evidence o f relaxed selection on carotenoid absorption and retention capacities. 

This would provide evidence of the effects of evolutionary selection mechanisms 

operating on carotenoid physiology in salmonids.

In conclusion the results o f this thesis indicate that higher egg carotenoid levels 

provide offspring with the benefits of increased resistance to bacterial pathogen 

challenge, in particular vibriosis. Additionally, results in embryonic salmon support 

previous work with adult salmonids, birds and mammals that levels of antibody and 

carotenoids tend to be related in a complex, inverse fashion. Taken collectively these 

results suggest that egg carotenoids enhance survival in stress related conditions, such as 

with pathogen encounter, at least in part through interaction with immunological
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mechanisms. This is perhaps one of the benefits maintaining red carotenoid-based 

pigmentation in the majority of salmonid species, phenotypes and populations worldwide.
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APPENDIX 2: Detailed Results of all Statistical Analyses

Table 2.1: Comparison of offspring survival between families of, WF = white-flesh, RFw = 
red-flesh wild and RFd = red-flesh domestic maternal Chinook salmon origins 
a) ANOVA results comparing offspring survival of different maternal origins

incubation survival stage measure origin N mean sd
(i) unfertilized to eyed egg % W F -a  8 76.241 9.828

RFw - b 10 92.138 6.234
RFd - a 9 81.899 10.021

F = 7.787, p = 0.002
RFw significantly different from WF (p =0.004) and from RFd (p =0.049) using Tukey's HSD test

(ii) eyed egg to swim-up % WF 10 88.615 7.94
RFw 10 96.172 1.83
RFd 9 88.828 12.55

variances non-homogeneous, data transformations required

arcsin WF 10 1.108 0.15 
RFw 10 1.301 0.068 
RFd 9 1.154 0.26 

variances non-homogeneous, data transformations required

log WF 10 1.946 0.043
RFw 10 1.983 0.008
RFd 9 1.944 0.067

variances non-homogeneous, data transformations required

rank WF 10 9.1 4.7
RFw 10 20.4 5.7
RFd 9 15.6 10.6

variances non-homogeneous, data transformations required

(b) t-test results comparing Chinook salmon offspring survival from eyed egg to swim-up
of different maternal origin groups

groups compared measure groups compared N mean sd
(i) red- vs white-fleshed % WF 10 88.615 7.94

RF(w+d) 19 92.698 9.27
t = -1.818, p = 0.248

(ii) wild vs domestic % wild (WF+RFw) 20 92.394 6.82
domestic 9 88.838 12.55

variances non-homoqeneous, data transformations required

arcsin wild (WF+RFw) 20 1.204 0.15
domestic 9 1.154 0.26

variances non-homoqeneous, data transformations required

log wild (WF+RFw) 20 1.964 0.035
domestic 9 1.944 0.067

variances non-homoqeneous, data transformations required

rank wild (WF+RFw) 20 14.8 7.7
domestic 9 15.6 10.6

t = -0.232, p = 0.819
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Table 3.1a: Statistical comparisons of carotenoid levels (ug/g) in the eggs and offspring of 
Chinook salmon between maternal origins
i) T-test results comparing carotenoid concentrations (ug/g) in Chinook salmon eggs and 
offspring comparisons between maternal white- and red-fleshed phenotypes

development
stage phenotype N mean sd

unfertilized eggs WF 10 1.619 1.536
RFw 10 2.893 1.063

t = -2.157;

eyed eggs WF 10 0.944 0.899
RFw 10 2.155 0.782

t =-3.213;

swim-up WF 10 0.478 0.553
RFw 10 0.807 0.616

t =1.578;/? =0.225

ii) ANOVA results comparing carotenoid concentrations (ug/g) in Chinook salmon eggs and 
offspring between maternal origins of wild white- and red-fleshed phenotypes and a domestic 
red-fleshed population, 

development
stage phenotype N mean sd

unfertilized eggs WF 10 1.619 1.536
RFw 10 2.893 1.063
RFd 9 3.002 1.637

F =  2.846; p  =0.076

eyed eggs WF - a 10 0.944 0.899
RFw - b 10 2.155 0.782
R F d-a  9 1.286 0.522

F =  6.743; p  =0.004
RFw significantly different from WF (p =0.004) and from RFd (p =0.049) using Tukey's HSD test.

swim-up WF 10 0.478 0.553
RFw 10 0.807 0.616
RFd 9 0.621 0.699

F =  0.702; p  =0.505
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Table 3.1b: Statistical comparison of the decline in carotenoids through embryonic incubation in 
Chinook salmon eggs and offspring between maternal origins.

i) T-test results of absolute change in carotenoid levels (ug/g) between wild white- and red-fleshed
phenotypes

development stage phenotype N mean sd
A caro unfert-eyed egg WF 10 0.675 0.736

RFw 10 0.738 0.458
t = -0.230; p  = 0.821

A caro unfert-swim up WF 10 1.141 1.342
RFw 10 2.086 1.178

t = -1.674;/? = 0.111

ii) ANOVA results comparing absolute change in carotenoid levels (ug/g) between wild white- and red-
fleshed phentypes and a domestic population

maternal
development stage origin N mean sd
A caro unfert-eyed egg WF 10 0.675 0.736

RFw 10 0.738 0.458
RFd 9 1.612 1.988

variances non-homogeneous, transformation required
log (Au-e +1) WF 10 0.196 0.151

RFw 10 0.226 0.116
RFd 9 0.337 0.258

F =  1.54; 0=0.233

A caro unfert-swim up WF 10 1.14 1.34
RFw 10 2.08 1.17
RFd 9 2.48 1.8

F =  2.17; p  =0.133

iii) T-test results comparing % decline in carotenoid concentration (ug/g) of Chinook salmon eggs and 
offspring between wild white- and red-fleshed maternal phenotypes

development stage phenotype N mean sd
unfert-eyed egg WF 10 42.640 14.362

RFw 10 24.265 
t =  3.002; p = 0.008

12.973

unfert-swim up WF 10 68.568 17.398
RFw 10 69.871

f = -0.147; p = 0.885
22.113
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Table 3.1b (continued): Statistical comparison of the decline in carotenoids through embryonic 
incubation in Chinook salmon eggs and offspring between maternal origins.

iv) ANOVA results comparing % decline in carotenoid concentration (ug/g) of Chinook salmon eggs 
and offspring between wild white-, wild red- and domestic red-fleshed maternal origins

development stage
maternal
origin N mean sd

% A unfert-eyed egg W F -a 10 42.640 14.362
RFw - ab 10 24.265 12.973
RFd - ac 9 42.827 29.438

variances non-homogeneous, transformation required
sin"1 (% A unfert-eyed egg) W F -a 10 0.447 0.164

RFw - ab 10 0.247 0.137
RFd - ac 9 0.481 0.378

variances non-homogeneous, transformation required
log (% A unfert-eyed egg) W F-ab 10 1.619 0.141

RFw - c 10 1.347 0.243
RFd-be 9 1.552 0.3

F  = 3.646; p  = 0.040
WF and RFw significantly different (p = 0.039) using Tukey's HSD test

development stage phenotype N mean sd
% A unfert-swim up WF 10 68.568 17.398

RFw 10 69.871 22.113
RFd 9 78.319 23.803

F =  0.582; p  =  0.566

Table 3.2a: Statistical comparisons of antibody levels in the eggs and offspring of Chinook 
salmon.

i) T-test results comparing measures of antibody in Chinook salmon eggs and offspring between
maternal wild white- and red-fleshed phenotypes
development

phenotype N mean sdmeasure
unfertilized
eggs Ab (ug/g) WF 9 1.859 1.726

RFw 9 0.47 0.859
variances non-homogeneous, transformation required

log (Ab (ug/g) +1) WF 9 0.377 0.286
RFw 9 0.128 0.172

variances non-homogeneous, transformation required
rank Ab WF 9 16 7.18

RFw 9
t =

8.78 6.7 
2.206; p  = 0.042

swim-up Ab (ug/g) WF 8 1.683 2.02
RFw 9

t =
1.088 1.38 

0.717; p  = 0.484
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ii) ANOVA results comparing measures of antibody in Chinook salmon eggs and offspring from 
wild white-fleshed, wild red-fleshed and domestic red-fleshed maternal origins
development
stage___________ measure__________phenotype___________ N___________mean__________ sd
unfertilized
eggs Ab (ug/g) WF 9 1.859 1.726

RFw 9 0.4698 0.859
RFd (-outliers) 6 0.3089 0.152

variances non--homogeneous, transformation required
log (Ab (ug/g) 
+1) WF 9 0.377 0.286

RFw 9 0.128 0.172
RFd (-outliers) 6 0.1145 0.235

_________________________________________ variances non-homogeneous, transformation required
a) Kruskal-Wallis comparison of egg antibody level rank orders between maternal Chinook salmon 
maternal origins, with outliers

Maternal
development stage measure origin N median
unfertilized egg rank Ab WF 9 16.33

RFw 9 8.56
RFd 8 15.88

X2 = 5.768, asymptotic p = 0.056

ai) Kruskal-Wallis comparison of egg antibody level rank orders between maternal Chinook salmon 
maternal origins, with outliers
unfertilized egg rank Ab WF

RFw
RFd

9
9
6

..........X2

16.33
8.56
12.67

5.449, asymptotic p = 0.066

swim-up Ab (ug/g) WF 8 1.683 2.01
RFw 9 1.089 1.38
RFd 6 15.975 11.96

variances non-homogeneous, transformation required
log (Ab (ug/g) WF 9 0.745 1.387
+1) RFw 9 0.239 0.274

RFd 6 1.112 0.373
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Table 3.2b: Statistical comparison of the change in antibody through embryonic incubation in Chinook 
salmon eggs and offspring between maternal origins.

i) T-test results examining the change in antibody in Chinook salmon from eggs to swim-up between white- 
and red-fleshed maternal phenotypes
development
stage measure phenotype N mean sd
egg-swim A Ab cone WF 7 -0.129 1.569

RFw 8 0.715 1.942
t = -0.916;;? = 0.376

A Ab % WF 7 70.48 70.998
RFw 8 1157.839 1515.18

variances non-homogeneous, transformation required
arcsin (%A Ab) WF 7 doesn't work for %  increase

RFw 8

log (A % Ab +1) WF 7 1.471 0.79
RFw 8 2.581 0.778

t =  -2.129-p  = 0.017

ii) ANOVA results examining the change in antibody levels of Chinook salmon from eggs to swim-up between 
wild white- and red-fleshed phenotypes and a domestic population.
development
stage measure phenotype N mean sd
egg-swim A Ab cone WF 7 -0.129 1.569

RFw 8 0.715 1.942
RFd 6 13.39 0.311

variances non-homogeneous, transformation required
log | (A Ab conc)+l | W F -a  

RFw - a
7
8

0.135
0.233

0.209
0.323

RFd - b 6 1.067
F =  19.295; p  = 0.000

0.337

RFd significantly different from WF (p=0.000) and RFd (p=0.000) using Tukey's HSD test
A Ab % WF 7 70.48 70.998

RFw 8 1157.839 1515.18
RFd 5 3233.741 29.33.719

variances non-homogeneous, transformation required
log (% A Ab +1) W F -a 7 1.471 0.79

RFw - b 8 2.581 0.778
RFd - b 6 3.273

F=9.872;p=0.001
0.624

WF significantly different from RFw (p=0.025) and RFd (p==0.001) using Tukey's HSD test
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Table 3.3: Hierarchical OLS regression of immunological parameters on maternally derived egg 
carotenoids in Chinook salmon eggs and offspring.

3.3 a) Regression analyses examining relationships between Chinook salmon egg/offspring antibody 
levels (ng/g) and measures of carotenoids and eyed egg wt. to account for maternal effects_________

Development Dependent 
stage variables

Hierarchical
Model independent

variables r Pm

Model Summarv

N R2 Pm
1 Car (ug/g)

i) unfertilized Ab (ug/g) unfer -0.112 0.201 24 0.013 0.602
eggs 2 Car (ug/g)

unfer 23 0.101 0.346
wt (g) eye -0.317 0.07

ii) swim-up Ab (log+1) 1 Car
offspring unfertilized

egg (ug/g) 0.229 0.136 25 0.052 0.271
2 Car

unfertilized
egg (ug/g) 23 0.341 0.016
wt (g) eye -0.499 0.008

1 Car eye
(ug/g) -0.233 0.142 25 0.05 0.284

2 Car eye
(ug/g) 23 0.252 0.055
wt (g) eye -0.499 0.008

1 Car swim-up
(ug/g) -0.398 0.024 25 0.158 0.049

2 Car swim-up
(ug/g) 23 0.323 0.02
wt (g) eye -0.499 0.008

1 A car u-e
(log+1) 0.378 0.031 25 0.378 0.062

2 A car u-e
(log+1) 23 0.384 0.008
Wt (g) eye -0.499 0.008

1 A caro u-s 0.37 0.034 25 0.137 0.068
2 A caro u-s 23 0.404 0.006

wt (g) eye -0.499 0.008
1 % A car u-e

(log+1) 0.261 0.104 25 0.068 0.208
2 % A car u-e

(log+1) 23 0.288 0.034
wt (g) eye -0.499 0.008

1 % A car u-s 0.454 0.011 25 0.207 0.022
2 % A car u-s 23 0.39 0.007

wt (g) eye -0.499 0.008
f l B H H l i ■ ■ ■ IlHlIllS
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Table 3.3 b) Regression analyses examining relationships between Chinook salmon egg to 
offspring change in antibody levels and measures of carotenoids and eyed egg wt. to account 
for maternal effects

Model Summary

Dependent Hierarchical
variames 
A Ab

ivioaei
1

muepenueiu vuriauies
Car unfert egg (ug/g) 0.202

h m
0.178 23 0.041

M (21
0.356

(log+1) 2 Car unfert egg (ug/g) 
wt (g) eye -0.23 0.158

21 0.109 0.353

1 Car eye (ug/g) -0.244 0.131 23 0.059 0.262
2 Car eye (ug/g) 

wt (g) eye -0.23 0.158
21 0.085 0.451

1 Car swim-up (ug/g) -0.427 0.021 23 0.183 0.042
2 Car swim-up (ug/g) 

wt (g) eye -0.23 0.158
21 0.196 0.14

1 car A u-e (log+1) 0.356 0.048 23 0.127 0.096
2 car A u-e (log+1) 

wt (g) eye -0.23 0.158
21 0.176 0.175

1 caro A u-s 0.347 0.052 23 0.121 0.105
2 caro A u-s 

wt (g) eye -0.23 0.158
21 0.181 0.165

1 % car A u-e (log+1) 0.262 0.114 23 0.069 0.227
2 % car A u-e (log+1) 

wt (g) eye -0.23 0.158
21 0.108 0.359

1 % car A u-s 0.434 0.019 23 0.188 0.039
2 % car A u-s 

wt (g) eye -0.23 0.158
21 0.213 0.115

ii) % A Ab 1
(log+1) Car unfert egg (ug/g) 0.087 0.347 23 0.008 0.693

2 Car unfert egg (ug/g) 
wt (g) eye 0.039 0.434

21 0.008 0.928

1 Car eye (ug/g) -0.098 0.329 23 0.01 0.659
2 Car eye (ug/g) 

wt (g) eye 0.039 0.434
21 0.015 0.871

1 Car swim-up (ug/g) -0.365 0.044 23 0.133 0.087
2 Car swim-up (ug/g) 

wt (g) eye 0.039 0.434
21 0.146 0.207

1 log (Au-e +1) 0.203 0.177 23 0.041 0.354
2 log (Au-e +1) 

wt (g) eye 0.039 0.434
21 0.044 0.635

1 A caro u-s 0.213 0.165 23 0.045 0.33
2 A caro u-s

wt (g) eye 0.039 0.434
21 0.046 0.654

1 log (% car A u-e) 0.289 0.091 23 0.083 0.181
2 log (% car A u-e) 

wt (g) eye 0.039 0.434
21 0.089 0.432

1 % car A u-s 0.366 0.043 23 0.134 0.086
2 % car A u-s 

wt (g) eye 0.039 0.434
21 0.145 0.245
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Independent
co-variate

Hierarchical
Model

independent
variables r Pm

Model Summary

N R2 Pm

i) levels of 1 Car (ug/g) unfer 0.428 0.021 20 0.183 0.041
carotenoids 2 Car (ug/g) unfer 20 0.337 0.031

and Antibody Ab (ug/g) unfer 0.299 0.101
3 Car (ug/g) unfer 19 0.346 0.087

Ab (ug/g) unfer
wt (g) eye 0.102 0.339

1 Car (ug/g) unfer 0.428 0.021 23 0.183 0.041
2 Car (ug/g) unfer 21 0.233 0.092

Ab rank unfert 0.205 0.187
3 Car (ug/g) unfer 21 0.236 0.194

Ab rank unfert
wt (g) eye 0.032 0.446

1 Car eye (ug/g) 0.444 0.017 20 0.197 0.034
2 Car eye (ug/g) 20 0.322 0.037

Ab (ug/g) unfer 0.299 0.101
3 Car eye (ug/g) 19 0.324 0.109

Ab (ug/g) unfer
wt (g) eye 0.102 0.339

1 Car swim-up (ug/g) 0.154 0.242 23 0.024 0.484
2 Car swim-up (ug/g) 21 0.03 0.761

Ab swim-up (log+1) -0.134 0.281
3 Car swim-up (ug/g) 21 0.032 0.902

Ab swim-up (log+1)
wt (g) eye 0.032 0.446

ii) change in 1 Carotenoid 0.305 0.079 23 0.093 0.158
carotenoid 2 A car u-e (log + 1) 21 0.165 0.197

(log (ug/g)+l) Ab unfer rank -0.134 0.281
from 3 A car u-e (log +1) 21 0.18 0.323

unfertilized to
a i r a / i  a r t r r

Ab unfer rankeyea egg, 
n\t\\c order of wt (g) eye 0.032 0.446
X U l i i V  V l  V l v l  V A  ■

unfertilized 1 A caro u-s 0.395 0.031 23 0.156 0.062
egg antibody 2 A caro u-s 19 0.389 0.019
and eyed egg A Ab cone

weight I (log+1) | -0.316 0.094
3 A caro u-s 21 0.403 0.046

A Ab cone
I (log+1) |

wt (g) eye 0.032 0.446
iii) log (%) 1 Carotenoid -0.058 0.397 23 0.003 0.794

change in (a) 2 Carotenoid 19 0.104 0.417
carotenoid Antibody to swim-up 0.316 0.094

levels from 3 Carotenoid to eyed
unfertilized to egg 21 0.105 0.633

eyed egg 
stages, (b)

Antibody to swim-up

antibody to
swim-up and Eyed egg weight 0.032 0.446
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(c) eyed egg
weight

iv) log (%) 1 Carotenoid to swim-
change in up 0.16 0.233 23 0.026 0.465
carotenoid 2 Carotenoid to swim-
and antibody up 19 0.225 0.13
levels from Antibody to swim-up -0.357 0.067
unfertilized 3 Carotenoid to swim-
egg to swim- up 21 0.237 0.242
up stage and Antibody to swim-up
eyed egg
weight Eyed egg weight 0.032 0.446
Table 3.3 c) OLS regression analyses examining relationships between offspring disease resistance 
and measures of carotenoids, antibody and maternal effects as eyed egg weight (g) in Chinook salmon 
egg and offspring
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Appendix 3: Sample calculations for conversion of raw ELISA data into sample 

antibody concentrations (ug/g)

replicate 1
ELISA raw absorption data

replicate 2

replicate 3

blank std Ab dilution Sample Q3-4 Blank ave 0.10561 l a
0.106 0.108b 0.104c

0.11 0.119 0.112 abs vs dilution regression data
0.109 0.136 0.127 std dilution absorbance
0.112 0.175 0.146 x (Ab mg/mL) y (adj abs)

0.11 0.229 0.176 0.000062 0.0057(b_a)
0.105 0.383 0.272 0.000125 0.0141 

0.00025 0.0274
blank Ab Q3-4 0.0005 0.0627
0.094 0.106b 0.1° 0.001 0.1463
0.103 0.111 0.11 0.002 0.2774
0.102 0.126 0.116 range 0.0057 - 0.2774
0.112
0.105

0.166
0.214

0.136
0.163 0.3 R e g re s s io n  of a b s o rb a n c e  rea d in g  by 

a n tib o d y  d ilu tio n  *
0.106 0.388 0.269 „  0.25

I 02 s '

blank Ab Q3-4 |  0.15
S
S 0.1 -5

s '

0.104 0.12b 0.112° ^ s  y = 1 3 9 .7 5 x -0.0063
0.105 0.129 0.12 <  0.05 R2 = 0.9981
0.098 0.137 0.141
0.103
0.108
0.109

0.164
0.25

0.378

0.152
0.193
0.259

) 0.0005 0.001 0.0015 0.002 0.0025 
antibody standard dilution (mg/mL)

\b  conc’n = (adj abs +0.0062)/139.75

calculation of antibody (ug/g) in sample from data
adj abs Ab conc'n (diluted) 

-2.77778E(c‘a) too low
0.008388 1.05108E
0.022388 2.05287E
0.039055 3.24548E
0.071722 5.58299E
0.161055 0.001197

average of dilutions smpl (mg/mL) 
conversion: mg/mL sol'n to ug/g sample

antibody level of sample Q3-4 = 3.18 ug Ab / g sample

sample dilution 
0.03125 

0.0625 
0.125 

0.25 
0.5 

1

Multiplied by dilution factor

6.56927E 
2.56609E 
8.11370E 
2.79149E 
0.001197 
3.18010E 
3.180103
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