
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Web service searching Web service searching

Ismail Jaghmani
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Jaghmani, Ismail, "Web service searching" (2005). Electronic Theses and Dissertations. 4556.
https://scholar.uwindsor.ca/etd/4556

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4556?utm_source=scholar.uwindsor.ca%2Fetd%2F4556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Web Service Searching

By

Ismail Jaghmani

A Thesis
Submitted to the Faculty of Graduate Studies and Research

Through the School of Computer Science
In Partial Fulfillment o f the Requirements for

The Degree of Master o f Science at the
University o f Windsor

Windsor, Ontario, Canada

2005

© 2005 Ismail Jaghmani

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09795-7
Our file Notre reference
ISBN: 0-494-09795-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

With the growing number of Web services, it is no longer adequate to locate a Web

service by searching its name or browsing a UDDI directory. An efficient Web services

discovery mechanism is necessary for locating and selecting the required Web services.

Searching mechanism should be based on Web service description rather than on

keywords. In this work, we introduce a Web service searching prototype that can locate

Web services by comparing all available information encoded in Web service description,

such as operation name, input and output types, the structure o f the underlying XML

schema, and the semantic o f element names. Our approach combines information-

retrieval techniques, weighted bipartite graph matching algorithm and tree-matching

algorithm. Given a query, represented as set of keywords, Web service description, or

operation description, an information retrieval technique is used to rank the candidate

Web services based on their text-base similarity to the query. The ranked result can be

further refined by computing their structure similarity. Data types are matched by

modeling the underlying XML schema as tree; each node in the tree represents an

element in the schema. A tree-matching algorithm is implemented to compute the data

type similarity. The experimental results demonstrated the flexibility, efficiency and

effectiveness introduced by the proposed approach.

Keywords: XML, XML schema, schema matching, mapping, schema similarity, tree

matching, WSDL, SOAP, Vector Space Model, WordNet, name similarity, node

similarity, structural similarity, Information Retrieval, Graph Matching

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I wish to express my appreciation and gratitude to the thesis supervisor Dr. Jianguo Lu

for his guidance and encouragement throughout the course o f this research work.

Thanks are also extended to Mr. Xiaolei Yuan for data collection and Mr. Ju Wang for

his constructive discussions.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents
ABSTRACT... HI

ACKNOWLEDGEMENTS...IV

LIST OF FIGURES...VII

LIST OF TABLES.. IX

CHAPTER 1: INTRODUCTION..1

CHAPTER 2: BACKGROUND... 4

2.1 Pr e l im in a r ie s .. 4

2.1.1 XML and XML Schem a.. 4

2.1.2 SO A P.. 10

2.1.3 W SD L... 11

2.1.4 Bipartite Matching Concepts...15

2.1.5 WordNet and JW N L...17

2.2 Related Work ... 18

2.2.1 Information Retrieval..18

2.2.2 Software Engineering..19

2.2.3 XML Schema Matching...20

2.2.4 Web Services Discovery..23

CHAPTER 3: OVERVIEW OF OUR MATCHING SYSTEM... 33

3.1 Searching Criteria ... 34

3.1.1 Keywords Search..34

3.1.2 Operation Search... 34

3.1.3 Service Search... 34

3.2 F iltering Mo d e s ...35

3.2.1 Text Comparison... 35

3.2.2 Structure Similarity...35

CHAPTER 4: TEXT COMPARISON..37

4.1 Introduction... 37

4.2 Documents comparison... 38

4.2.1 Web Service as Document...40

4.2.2 Representing Web Service as a Vector..44

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 E x p e r im e n t D e s i g n a n d R e s u l t A n a l y s i s ...47

4.3.1 Data Collection... 49

4.3.2 Performance...50

4.3.3 Results Analysis.. 54

4.4 C o n c l u s i o n .. 55

CHAPTER 5: STRUCTURE SIMILARITY...56

5.1 In t r o d u c t i o n ... 56

5.2 W e b S e r v ic e s S i m i l a r i t y ... 56

5.3 O p e r a t io n s S i m i l a r i t y ..57

5.3.1 String Similarity.. 58

5.3.2 Parameters Similarity... 61

5.4 T im e C o m p l e x i t y A n a l y s i s ..76

5.4.1 Operations Similarity... 76

5.4.2 Parameters Similarity... 77

5.4.3 Data Types Sim ilarity.. 77

5.5 E x p e r i m e n t s .. 78

5.5.1 Performance...78

5.5.2 Results Analysis.. 89

CHAPTER 6: CONCLUSION AND FUTURE W ORK... 90

6.1 C o n c l u s i o n .. 90

6 .1 F u t u r e W o r k ...91

REFERENCES..92

APPENDIXES... 99

A : W e a t h e r C a t e g o r y L is t o f W e b s e r v i c e s ..9 9

B: O p e r a t io n s L i s t .. 100

C: S a m p l e L is t o f W e b s e r v ic e s f r o m o u r r e p o s i t o r y .. 1 0 2

VITA AUCTORIS... 104

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1: Example o f XML Structure...5

Figure 2: Example of XML Schema Built-in Type.. 7

Figure 3: Example o f XML Schema Simple T ype..8

Figure 4: Example o f XML Complex Type... 8

Figure 5: Example o f XML Schema Complex Type Structure...9

Figure 6: Example o f XML Schema Group Element Structure... 10

Figure 7: WSDL Description for Currency Converter Web Service...................................14

Figure 8: Relationship between WSDL Elements... 15

Figure 9: Bipartite Graph Matching... 16

Figure 10: Bipartite Graph Stable Matching.. 17

Figure 11: Common Sub-Structure...22

Figure 12: DAML-S Architecture... 23

Figure 13: IRS II Architecture..25

Figure 14: SWSDL Service Description.. 26

Figure 15: Web Service Searching Framework.. 33

Figure 16: Precision and Recall Diagram...48

Figure 17: Structure o f Operation Search Q uery.. 51

Figure 18: Operation Search Precision and Recall G raph...52

Figure 19: Web Service Search Precision and Recall Graph...53

Figure 20: WSDL Messages Structure.. 62

Figure 21: XML Schema Constraining Facets Exam ple... 68

Figure 22: Complex Type Element Structure Example... 70

Figure 23: XML Structure o f All Indicator..71

Figure 24: Comparison of All Indicator.. 72

Figure 25: XML Structure of Sequence Indicator.. 73

Figure 26: Comparison o f Sequence Indicator... 73

Figure 27 : XML Structure Choice Indicator...74

Figure 28: Comparison of Choice Indicator...74

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 29: XML Structure o f Built-in Type and Complex Type..75

Figure 30: Comparing Primitive Type Element to Complex Type Elem ent...................... 76

Figure 31: Operation Structure Similarity Precision and Recall G raph80

Figure 32: Operations Name Structure Similarity Precision and Recall G raph.................81

Figure 33: Operations Parameters Structure Similarity Precision and Recall G raph 82

Figure 34: Web Services Structure Similarity Precision and Recall G raph....................... 83

Figure 35: Relation between Number of Operations and Execution Time for USWeather

..84

Figure 36: Relation between File Size and Execution Time for USW eather..................... 85

Figure 37: Relation between Number of Operations and Execution Time for

W eatherForecast... 86

Figure 38: Relation between File Size and Execution Time for WeatherForecast............ 86

Figure 39: Relation between Number of Operations and Execution Time for

WeatherByZip... 87

Figure 40: Relation between File Size and Execution Time for W eatherByZip................88

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
Table 1: Term Weight Calculation Based on TF-IDF M ethod... 45

Table 2: Operation Search R esult... 51

Table 3: Web Services Search Result...53

Table 4: Cardinality Table for XML Built-in T ypes..67

Table 5: Complex Type Relationship Indicators.. 71

Table 6: Operation Similarity Results...79

Table 7: Operation Name Similarity Results...81

Table 8: Operation Parameters Similarity Results.. 82

Table 9: Web Services Structure Similarity Results...83

Table 10: Relation between Number o f Operations and Execution Time for USWeather84

Table 11: Relation between File Size and Execution Time for USWeather....................... 85

Table 12: Relation between Number of Operations and Execution Time for

W eatherForecast... 85

Table 13: Relation between File Size and Execution Time for WeatherForecast 86

Table 14: Relation between Number of Operations and Execution Time for

WeatherByZip..87

Table 15: Relation between File Size and Execution Time for W eatherByZip............... 87

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction
Web service technology has won the support of major software vendors such as

Microsoft, IBM, and Sun Microsystems. Integrated Drivers IDC estimated that software,

services, and hardware business created by the demand for Web services could increase

from $1.6 billion in 2004 to $34 billion by 2007 [70].

Web services are self-contained self-describing software components that can be

published, accessed and even brokered over the Internet. A Web service is defined by the

world wide Web consortium (W3C) [78] as “A software system identified by a URI,

whose public interfaces and bindings are defined and described using XML. Its definition

can be discovered by other software systems. These systems may then interact with the

Web service in a manner prescribed by its definition, using XML based messages

conveyed by Internet protocols. ’’

Web service elevates the Web functionality from document oriented to application

oriented. It is motivated by two drawbacks in the current software development practice.

One is that the plethora o f the services provided on the Web nowadays is meant for

human use, not for applications to access and integrate. The other drawback is that the

existing distributed component models such as Common Object Request broker

Architecture (CORBA), Distributed Component Object Model (DCOM) are based on

standards other than Hyper Text Markup Language (HTTP) and Extensible Markup

Language (XML), which means they are not easy to be accessed over the Internet, or go

through the firewalls. Web service technology is meant to combine the better of the two

approaches while avoiding the drawbacks. It is a new model of distributed computing that

provides a language and platform-independent syntax. Web services allow the application

functionality to be defined in reusable standard format providing an easy way to integrate

business applications and reduce the time and cost for application development and

maintenance.

Three key parts of a Web service are: Web Services Description Language (WSDL),

XML Schema, and Simple Object Access Protocol (SOAP). While WSDL provides the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

syntax to describe the interface of Web Services, XML Schema is the language used in

WSDL to define the data types of input and output messages. SOAP is a transport

protocol used for communicating messages and data for WSDL.

With the growing number of Web services, it is no longer adequate to locate a web

service by searching its name or by browsing the Universal Description Discovery and

Integration (UDDI) directory. An efficient Web service discovery mechanism is

necessary for locating and selecting the required Web service. An automatic Web

services discovery and composition is one of the main concerns in the area of software

engineering [15].

UDDI [75] defines a centralized registry for service discovery that is based on keywords

search and leaves many things open such as how to locate similar Web services. WSIL

[76] is a different model that complements UDDI by providing a lightweight model to

improve service discovery. However, neither UDDI nor WSIL represent services

description, therefore, they are no help for discovering services based on what they

provide. Both UDDI and WSIL rely on other service description mechanism such as

WSDL [77],

The research problem is how to accomplish flexible, efficient and effective Web service

discovery using WSDL specifications. The difficulty in solving this problem arises from

the fact that WSDL is described using XML structure. Matching between two XML

documents is turned out to be very expensive in term o f computational time. In addition

WSDL describes data types using XML schema that can be o f a very complex structure.

In this work we describe a novel approach for searching Web services. The proposed

approach provides three search criteria with two filtering modes. The filtering modes are

text comparison and structure similarity. The text comparison-filtering mode treats the

query and the target, documents as text and determines the similarity using information

retrieval techniques. The structure similarity considers the structure o f the query and the

target and computes the similarity based on their structures. The search criteria are a

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keywords search, an operation search and a Web service search. The keywords search

takes a set of keywords as a query and returns a list of Web services. The operation

search takes an operation description as a query and returns a list o f operations. The Web

service search takes a Web service as query and returns a list of Web services.

In particular, our goal is to build Web services search mechanism based on WSDL

specifications with the following aspects:

• Speeding up the computational time by:

o Combining bipartite graph matching with recursive tree matching

o Using top-down approach

■ Matching process starts by comparing operations

■ Input parameters of the source operation are only compared with

input parameters of the target operation

■ Output parameters of the source operation are compared only with

output parameters of the target operations

o Eliminating all irrelevant Web services using less computational cost

filtering mode

o Caching parameters

• Including most o f data type syntax

o Occurrence indicators, order indicators and group indicator

o Considering the similarity between data types from different categories

• Providing a flexible search engine that provides keyword search, operation search,

and Web service search

• Providing a detailed experimental evaluation on a set of over 1400 Web services

The remaining of this work is organized as follows. Section 2 describes the research

background. Section 3 presents an overview of our approach. Section 4 describes text

comparison. Section 5 describes structure similarity. Chapter 6 describes the conclusion

and future work.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background

2.1 Preliminaries

Web services neither required to be described using XML nor required to carry XML

message or be bounded to a protocol capable of carrying XML messages. However using

such technologies provides a platform-independent mechanism for application written in

different programming languages to communicate over the Internet. Distributed

technologies such as DCOM, CORBA, and Java Remote Method Invocation (Java RMI)

are complex to implement and most of them require runtime libraries to be installed in the

communicating systems. In addition to that, some systems provide additional application

level for services such as garbage collection and session management that increase their

complexity [73].

With the introduction o f XML the industry and the academia focus has been shifted to

develop additional technology such as Document object Model (DOM), Simple API for

XML (SAX), XML Path Language (Xpath), Extensible Markup Language

Transformation (XSLT), Simple Object Access Protocol (SOAP), XML schema and

WSDL. These developments offer a set of technologies for Web services, where services

are described and exposed on the Web using WSDL and communicate with each other

using protocol capable of carrying XML messages. The objects exchanged between

services are defined using XML schema.

In this section, a review of technology standards related to Web services are introduced.

The basic concepts o f XML and XML schema, the WSDL structure and how it embraces

the use of XML schema and SOAP are described. Furthermore the graph and the tree

concepts are introduced.

2.1.1 XML and XML Schema

XML stands for Extensible Mark-up Language. It was released by the World Wide Web

Consortium (W3C) on February 10, 1998[66]. XML design is similar to Hypertext Mark-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

up Language (HTML) [68]. Unlike XML, HTML was designed to display data, and its

centre of attention was on how data is represented. It describes the presentation of the

data on the browsers. It defines the style of the document by defining tags for heading,

text format, links, tables, etc. All HTML tags are not case sensitive and all of them are

predefined. However, XML was designed to describe the structure o f data, not its

presentation. XML file can be displayed in different formats with different content using

Cascading Style Sheet (CSS) [64] and XSLT [82]. Unlike HTML, XML tags are case

sensitive and not predefined. The basic unit in an XML structure is called element. An

element is defined by its opening tag (<>) and closing tag (</>). XML document

consists of strictly nested hierarchy of elements with a single root (top-level element). All

other elements in the document are either direct or indirect children o f the root element.

An XML document must be syntactically correct and all opening tags must have

corresponding closing tags. An XML document can be easily displayed on the Web or

transferred to another document using XSLT. In HTML any change in the document tag

will lead to the change in the way the document is displayed by the browser. However,

an XML document can be displayed in different format and any changes in the document

tags do not necessarily change the way the document is displayed. The XML structure is

self-describing; each tag either describes what kind of information it contains or how this

information is going to be interpreted. The following XML structure describes

information about a car: (figure 1)

<car >
< type>

Ford
</type>
<year>

2004
</year>
<colour>

black
</colour>

</car>

Figure 1: Example of XML Structure

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The <type> element describes the type of the car. The <year> element describes the year

the car was manufactured and the <colour> describes the colour o f the car. XML can be

processed and created by any application; the only thing required to process an XML

document is an XML parser. The flexibility and simplicity of defining an XML document

makes it ideal to store, carry, publish and exchange data among different applications and

platforms.

The structure of an XML document can be controlled using Document Type Definition

(DTD) [67] or XML schema [80], Different applications can communicate and extract

information from the same XML document as long as they use the same DTD or the

same XML schema. However, unlike DTD, XML schema supports data types and wider

range of constrains. The XML schema was proposed by Microsoft and became W3C

recommendation in May 2001. An XML schema is an XML structure. It is used to

specify and describe the structure and the content of XML documents.

Independent organizations can agree on a common XML schema for exchanging XML

messages. Each organization uses the standard XML schema to verify that the data they

receive is valid. When an XML document is processed, the parser compares the XML

document with its associated XML schema to ensure that the XML document confirms

the rules specified in the schema. Each element that appears in an XML instance must

have an element declaration in the schema.

An XML schema defines a type system and constrains to describe an XML document. It

organizes types as built-in type, simple type, and complex type. It supports an extensive

set of built-in types that covers most of the types supported by other programming

languages (e.g. string, int, floa t etc.). The built-in types are basic atomic data types that

are built into XML schema. The build-in types comprise of primitive type such as int,

float and derived types such as positivelnteger. Other derived types can also be created by

restricting built-in types. An XML schema has 19 built-in primitive data types and 25

built-in derived types. A new derived type can be constructed using simpleType or

complex type. A simpleType is defined by constraining a built-in type using constraining

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

facets. For example, string type facets are length, minLength, maxLength, pattern,

enumeration, and whiteSpace. A complex type is defined as a list of types where each

type can be built-in, simple or complex.

Consider the following XML element:

<car>Ford </car>

The car element can be constrained to contain only a value of type string.

< element name=”car” minOccurs=”0” maxOccurs=’T” type=”string”/>

Figure 2: Example of XML Schema Built-in Type

The XML schema illustrated in figure 2 indicates that the car element can contain any

value as long as the type o f the value is string. XML schema also allows users to define

the cardinality o f an element, that is the number of times an element can occurs. The

cardinality can be specified by the attribute minOccurs (the minimum number of

occurrences o f an element) and the attribute maxOccurs (the maximum number of

occurrences o f an element). In the above car element, the cardinality specifies that the

element is optional as its minOccurs is set to zero and its maxOccurs is one. The range of

cardinality is between 0 and unbounded.

As described in figure 3, the car element can be further restricted by defining it as a

simple type.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<element name="car" type= “carlnfo”/ >
<simpleType name= “carlnfo” >

Restriction base="string">
<enumeration value="Ford" />
<enumeration value="BMW" />

</restriction>
</simpIeType>

or

<element name="car" >
<simpleType >

Restriction base="string">
<enumeration value="Ford" />
Enumeration value="BMW" />

</restriction>
</simpleType>

</element>

Figure 3: Example of XML Schema Simple Type

Figure 3 illustrates two different syntaxes of XML schema simple type that can be used to

restrict the value o f the car element. Both syntaxes presented in figure 3 indicate that the

car element is a simple type and it’s value is restricted using enumeration facet to be

only Ford or BMW. Neither a built-in type nor a simple type can contain children

elements.

Complex type elements can contain children elements. For example, the car element can

have children elements as follows: (figure 4)

<car>
<type> Ford </type>
<year> 2004 </year>
<colour> black</colour>

</car >

Figure 4: Example of XML Complex Type

The above structure can be described using a complex type as follows:

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<element name=”car” >
<complexType >

<sequence>
<element name="type" type="string" />
<element name="year" type="date" />
<element name="colour" type="string" />

</sequence>
</complexType>

</element>
or

<element name=”car” name= “carlnfo” />

<complexType name= “carInfo”>
<sequence>

<element name="type" type="string" />
<element name="year" type="date" />
<element name="color" type="string" />

</sequence>
</complexType>

Figure 5: Example of XML Schema Complex Type Structure

Figure 5 illustrates two different syntaxes of XML schema to describe a complex type

element. Both syntaxes indicate that the car element is a complex type with three

children. There are three kinds of indicators that restrict the order of complex type

children elements; namely sequence, choice, and all. The sequence element indicates that

the children elements should appear in the specified order; the choice element indicates

that only one child element should appear and the all element indicates that the children

elements can appear in any order. The XML schema presented in figure 5 indicates that

the type, year and colour elements should appear in the specified order.

In addition to built-in types, simple types and complex types, XML schema also defines a

group element that provides a way of component reuse. For example, the schema in

figure 5 can be written as:

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<element n a m e -’car” >

<complexType >
<group name=”carInfo”/>

</complexType>
</element>

<group name=”carInfo”>
<sequence>

<element name="type" type="carType" />
<element name="year" type="date" />

<element name="color" type="string" />
</sequence>

</group>

<simpleType name= “carType” >
Restriction base="string">

<enumeration value="Ford" />
Enumeration value="BMW" />

</restriction>
</simpleType>

Figure 6: Example of XML Schema Group Element Structure

The complex type element car references the group element carlnfo. The first child of the

group element references a simple type element carType.

An element can also reference another element using the re f attribute for example:

Elem ent name=”truck” ref=”car”/>

For elements, types, groups to be referenced by another element, they have to be direct

children of the root element.

2.1.2 SOAP

The Simple Object Access Protocol SOAP [72] was proposed to W3C by HP, IBM,

Microsoft and many other organizations in May 2000. The latest version of SOAP is

SOAP 1.2 and it became a W3C recommendation on June 24, 2003. The specification

defines SOAP as “a lightweight protocol intended fo r exchanging structured information

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in a decentralized, distributed environment. It uses XML technologies to define an

extensible messaging framework providing a message construct that can be exchanged

over a variety o f underlying protocols. The framework has been designed to be

independent o f any particular programming model and other implementation specific

semantics"]J2\ Unlike CORBA and COM, SOAP is an XML based protocol. It is easy to

implement and does not require any software packages to install. SOAP did not introduce

any new schema language, instead it refers to XML schema for syntax validation. SOAP

defines a way of communicating messages between applications implemented with

different programming languages and running on different platforms. The SOAP

framework consists of the following XML elements: Envelop, Header, Body and Fault.

The SOAP Envelope element is the root element of the SOAP message. It encapsulates

all other elements and is used to identify a SOAP message. If a message is carried using

HTTP protocol the Envelope element will directly follow the HTTP header. The SOAP

Header element is optional and it contains auxiliary information such as security features.

The SOAP Body element is required and it represents the message carried by the SOAP.

It can contain any number of elements. The SOAP Fault element is optional and it

represents an error format. Each fault element must contain faultCode element followed

by faultString element. The faultCode element is used to classify the error and the

faultString element is used to provide human readable description o f the error message.

2.1.3 WSDL

WSDL (Web Service Description Language) [77] was submitted to W3C by Ariba, IBM

and Microsoft on March 15, 2001. It defines the mechanism of interacting with a

particular Web service. It provides the available tasks in form of operations, input/output

messages, and binding information. WSDL comprised o f five major elements that

describe three aspects o f a Web service. The types, messages and portTypes elements,

describe what tasks the service provides. The binding element describes how to connect

to the tasks provided by the service. The service element describes where the service is

located.

• <definitions> The definitions element, acts as a root for the rest o f the WSDL

structure.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• <service> The service element provides a name for the service, and encloses one or

more port elements. Each port element specifies a location where the service can be

accessed. A port is defined by associating a network address with a port type. The

binding element describes the protocol and the data format for operations provided by

the service. Multiple ports mean multiple transports for the same service. This allows

the use of any network protocol capable of carrying XML data. For example, some

endpoints may use both HTTP and SMTP.

• <binding> The binding element includes a name attribute that provides a unique

name for the binding among all bindings defined in the WSDL document. The

binding element describes how to access a Web service by connecting port types to a

port. It defines what operations a service provides, and what protocol should be used

to access them.

• <portType> Each port type defines a name attribute that provides a unique name for

the port type among all port types defined in the WSDL document. Port types are

reusable and can be bound to multiple ports. They are logical grouping o f operations

where each operation describes a sequence of messages that may be exchanged with

the Web service. These massages are defined via input and output elements.

There are four types o f operations:

One-way: Messages sent without a reply required.

Request/response: The sender sends a message and the received sends a reply.

Solicit response: A request for a response.

Notification: Messages sent to multiple receivers.

It is important to note that WSDL does not describe how, for example, solicit-

response and notification types of operations are implemented.

• <message> Each message contains a name attribute that provides a unique name for

the message among all messages defined in a WSDL document and one or more part

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

element. Each part element defines an operation’s parameter. Each part element

contains two attributes; name attribute provides a unique name among all parts of a

message and typing attributes, which can be an element that refers to an element in

the schema or type that refers to XML schema data type. If the data type is not a

build-in data type, then it must point to a type described in the schema element.

• <types> Types element encloses data type definitions that are relevant to the Web

service exchanged messages. It contains a schema element that describes data types

using XML schema type system.

In addition to the above structure, WSDL defines a documentation element that can be

nested in any o f the above elements. The main purpose of the documentation element is

to provide human readable information about the element that contains it.

Figure 7 describes currency converter Web services using WSDL:

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<definitions>
<types>

<schema targetNamespace="http://tempuri.org/">
<element name="USDConvert">

<complexType>
<sequence>

<element name="ConvertTo" type="string" />
<element name="Amount" type="double" />

</sequence>
</complexT ype>

</element>
<element name="USDConvertResponse">

<complexType>
<sequence>

<element name="USDConvertResult" type-'double" />
</sequence>

</complexType>
</element>

</schema>
</types>
<message name="USDConvertSoapIn">

<part name="parameters" element="USDConvert" /></message>
<message name="USDConvertSoapOut">

<part name="parameters" element-'USDConvertResponse" /></message>
<portType name="CurrencyConverterSoap">

<operation name="USDConvert">
<input message="USDConvertSoapIn" />
<output message="USDConvertSoapOut" />

</operation>
</portType>

<binding name="CurrencyConverterSoap" >
<soap:binding transport=http://schemas.xmlsoap.org/soap/http

style="document" />
<operation name="USDConvert">
<soap: operation soap Action-'http ://tempuri. org/U SDConvert"

style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
</binding>
<service name="CurrencyConverter">

<port name-'CurrencyConverterSoap
binding="CurrencyConverterSoap">

<soap:address location="http://www31 .brinkster.com/
webcomponents/CurrencyConverter.asmx" />
</port>

</service>
<defmitions>

Figure 7: WSDL Description for Currency Converter Web Service

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://tempuri.org/
http://schemas.xmlsoap.org/soap/http
http://www31

Figure 8 illustrates the relationship between WSDL elements:

ODeration (s')

port(s)

Binding(s)

OutDut oarameters

Input Message

Innut narameters

Output Message

service

portType(s)

Figure 8: Relationship between WSDL Elements

In summary, a Web service is a network endpoint (ports) that provides an interface. The

endpoint can be implemented in any programming language. The interface is bound to a

concrete protocol and message format via one or more bindings, which are ways to

communicate with the service. For example, a service may provide both a STMP and a

HTTP interface. The binding lists the operations it supports, and what protocol to use to

access that operation. The port type specifies what messages to send using the specified

protocol. The messages are defined separately, which allows the reuse of the same

messages. Each message consists of a number of parameters. Each parameter is a single

object, defined in XML syntax.

2.1.4 Bipartite Matching Concepts

In this section we introduce a brief description of some of graph concepts and how it can

be used in Web service matching. A graph can be defined as a set of vertices (nodes) and

edges (lines that connect the nodes), each of them connect some pair o f vertices. A graph

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is called a directed graph if its edges go from one vertex to another in a specific direction.

A graph is called undirected if its edges have no direction. The in-degree of a vertex is

the number of edges incident to it and the out-degree is the number o f edges incident

from it. A graph is called weighted graph if each edge is assigned a weight value. To

model a problem as a graph, objects are viewed as vertices, and their relation as edges. A

tree can also be modeled as a graph by considering the root element as a vertex that has

zero in-degree and out-degree equal to the number of its direct children. A special type of

graph is called a bipartite graph [56]. The bipartite graph is a graph where its vertices can

be partitioned into two subsets such that edges are only connecting nodes from different

sets. The bipartite graph has been extensively used to solve matching problems. One of

the classical problems is the assignment of workers to tasks to increase efficiency such

that every worker is assigned to at most one task and every task is assigned to at most one

worker. This problem can be represented as a graph by representing workers and tasks as

vertices where the edges represent a weight that reflects the effectiveness of a worker at a

given task. If we separate the workers and tasks to two separate subsets, the graph

becomes a bipartite graph and the problem becomes a bipartite graph matching problem.

The solution to this problem is finding the maximum total weight such each worker only

assigned to one task.

0.8

C ^ ^ D
0.6

Figure 9: Bipartite Graph Matching

Using bipartite assignment matching, vertex A is matched to vertex B and vertex C is

matched to D to maximize the total sum.

Another type o f matching in a bipartite graph called the stable matching. Instead of

optimizing the result to find the maximum total sum of the weight, the stable matching

ensures that no pair will have higher weight than the current pair. A matching is stable if

there is a vertex v and vertex u such that v can’t be matched to another vertex u , with

higher weight.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 10: Bipartite Graph Stable Matching

The stable bipartite matching will match A to D and C to B. Even though the total sum is

reduced but the matching is stable. The most common algorithm to solve bipartite graph

matching problem is the Hungarian method [31] which grantee to find a solution in

polynomial time.

2.1.5 WordNet and JWNL

WordNet is a lexical database containing the relations among English words. Its

development began in 1985 by Princeton University [38,79,44]. WordNet has been used

extensively in natural language processing [40,60]. The basic unit in WordNet is synset,

representing a specific meaning of a word. A synset is the set of words that share the

same sense (synonyms). The synsets are connected to each other with different types of

relationships, such as hypernym ; y is a hypernym of x if every x is a kind o fy (e.g. vehicle

is the hypernym o f car). The synset includes nouns, verbs, adjectives, and adverbs. Each

synset consists of synonym words and pointers to the hypernymy, hyponymy, antonymy,

entailment, and meronymy/holonymy. The pointers represent the relation between a word

in one synset and other synsets. The search process is first directed to an index file that

contains the address o f the synset in which the search word occurs. Depending on the

search type (e.g Synonyms, Hypernym), the search can traverse many pointers from one

synset to another until no further pointer encountered. The pointer traversing defines the

path length of the search.

Java WordNet Library (JWNL) [69] is a Java API for accessing the WordNet relational

dictionary. For example, getlmmediateRelationship (sourceWord, targetWord) will looks

at whether the target word is one of the words in one of the synsets list of the source word

and returns its ranking location in the list. The getSenseCountQ returns the word's number

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of senses (sense count). The fmdRelationships(sourceSynset, targetSynset, PointerType)

finds the relationships between sourceSynset and targetSynset based on the PointerType.

For example a pointerType can be hypernym for a hypernym relation. The getDepthQ API

returns the depth o f a relationship. A depth of relation is the path from the root (source

word) to the target word. The larger the depth the less the compared words are related.

2.2 Related Work

Our work is directly related to information retrieval, software reuse, XML schema

matching and Web services discovery and matching

2.2.1 Information Retrieval

Information retrieval is the process of searching for information that is relevant to the

user needs within a collection o f data. There are three information retrieval models [3,

42], the Boolean, the probabilistic and the vector space. The Boolean model is based on

the “exact match”; the probabilistic and the vector space models are based on the “best

match”. Boolean retrieval model returns only fully matched information. The major

problem with the Boolean retrieval model is that it is inflexible and unable to rank

retrieved information according to their relevance to a query. It does not allow for a form

of relevance ranking of the retrieved information. The Boolean model will exclude any

information that does not precisely match the requested query [49, 42]

The probabilistic retrieval model [3] uses the statistical distribution of terms in the

documents. It calculates the probability of the document being valued and returns a list of

the information based on their probabilities.

The vector space model [48, 3] treats text and query as vectors in multidimensional

space. The dimensions are the terms used to represent the text. Determining whether

information is relevant for a given query requires computing similarity measures between

the two vectors. For example, the cosine correlation similarity measures are to calculate

the cosine angle between the two vectors. The more similar a vector representing a text is

to a query vector, the more that text is relevant to the query. The result of the cosine

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

correlation is a value between 0 and 1. The value of the correlation similarity is used to

rank the retrieved information by relevance. If the similarity value is below a predefined

threshold value, the information is considered irrelevant and will not be retrieved.

One of the most used methods for measuring term frequency is the TF-IDF (Term

Frequency-Inverse Document Frequency) [42,48]. It is the process of weighting the

relevance of a term to a document. The number of times a term t appears in a document d

is called term frequency and denoted as tf(t,d). The larger is tf(t, d), the more the t is

related to document d. The times that the term t appears in the entire document is called

the document frequency, denoted as dft. The larger is dft, the less t can discriminate

between documents. Thus, for a given document d, the relevance o f a term t to a

document d is proportional to tf(t,d), and inverse proportional to df.

2.2.2 Software Engineering

The software components retrieval have leveraged the searching process to a new level

by not only searching based on keywords, but also matching software components for

their reuse. Two software components are compared to determine whether one

component can be substituted for another.

Luqi L. [34] has suggested that formal specification is suitable as basis for the retrieval

and the reuse o f software components. J. Jeng and H. Cheng [27] presented a foundation

for using software specification matching for the retrieval o f reusable software

components. They defined an exact match, a relaxed match and a logical match at

component and method levels.

H. Cheng and Y. Chen [6] established a semantic foundation to reason about the

connection between a specification match and its usefulness for determining software

reusability. They showed that the relaxed plug-in match is the most general reuse-

ensuring match.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Zaremski and Wing [58, 59] defined and used a formal specification to describe the

behaviour of software components to specify when two software components are related.

They have presented a signature matching to locate software for reusable components.

They considered function and module components, and defined function matching and

module matching. The signature of the function is its type and the signature of the

modules is a multi-set o f user defined types and multi-set of function signature. For both

function match and module match the exact and the relaxed match were considered.

2.2.3 XML Schema Matching

XML schema matching is a process of finding the correspondence between elements in

schemas. It plays a crucial role in many application such XML schema integration and

XML message mapping. XML schema matching is challenging problem due to the

flexibility of XML schema itself. XML schema allows identical concepts to be described

differently.

XML schema matching should consider both the syntax and semantic o f the schema. The

syntax of the schema includes the structure and the data they describe and the semantics

includes the meaning o f the data they describe [43]. The relations between names often

involve pre-processing such as tokenization and auxiliary resources such as finding

synonyms using dictionary. However, the structural relations vary according to how the

schemas are presented. XML schema is usually modeled as a graph or tree, then graph or

tree matching algorithms are used to find the structural correspondences.

A. Nierman and H. V. Jagadish [41] defined a tree edit distance-based measure that

computes the structural similarity between two XML documents. The distance measure is

utilized using different operations to transform one tree to another. The operations are

Relable, Insert, Delete, Insert Tree, and Delete Tree. The edit distance between two trees

is the sequence of steps that can be applied to transform one tree to anther. The operations

are limited to sub-trees that were originally contained in the source or destination tree. A

tree that has been inserted via Insert Tree may not have additional node inserted and a

tree that has been deleted may not previously have had a node deleted. The cost of

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transforming a source tree to destination tree via the transformation operations determines

the similarity between the two trees. The lower is the cost, the more similar the two XML

trees are in term of structure.

CUPID [35] is a general schema-matching model that is meant to match schemas such as

relational schema and XML schema. Schema is considered as a set o f elements that can

be tables or columns in relational schema, or elements and attributes in XML schema.

The matching process in CUPID covers both the linguistic matching and the structure

matching. Linguistic matching is primarily based on the schema element’s name. The

linguistic matching includes normalization of schema elements by considering

abbreviation, acronyms, punctuations using tokenization and expansion techniques.

Elements are clustered into categories based on their names and types. A thesaurus is

used to compare elements’ similarity based on their synonym and hypernym relationship.

However, a pre-match effort is needed to specify domain synonyms and abbreviation [8].

The structure matching is based on a tree structure. Two elements are similar if their

leaves are similar, and the similarity of their leaves increases if they have similar

ancestors. The process o f matching is based on a bottom-up approach that pays more

attention to the leaf elements.

COMA [7] is another hybrid system aimed to be a general-purpose schema matching.

Similar to CUPID, COMA matching process includes linguistic and structural aspects of

the schemas. However COMA combines a set of matchers to perform different schema

matching. It maintains a library of different matchers that can be combined to produce the

complete result. A new matcher can be added to the library. The matching process can

result in multiple matching candidates based on the correspondence between the schema

elements. The final choice depends on the user. COMA can also perform one or multiple

iterations that can be combined with user feedback to improve the matching result.

COMA currently supports three kind of matcher namely simple, hybrid, and reuse

oriented. Each of these matchers exploits different parts of the schema information to

determine the schema similarity.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LSD [9, 10] is a matching system that uses matching-learning techniques to match new

schema to previously determined global schema. The user supplies the mapping from

data source to the global schema. The pre-processing step looks to the data source to train

the learner. The source data is the set of the schema needed to be matched. The learner is

an object that can remember the pattern and the rules of matching which can be applied to

match other data source. The idea is that, after the learner has been trained, it will have

enough information to map subsequent data sources. There are several learners defined in

LSD, each o f which processes certain type of information from the schema.

Recent work on XML schema matching is the tree-matching algorithm introduced by Ju

Wang [61]. The aim of his work was to match XML schemas with a large number of

nodes. In addition to the mapping between tree nodes, his algorithm restructures the tree

by identifying the approximate common substructure in the two trees. This common

substructure is derived from a sub-tree by deleting a node. Consider the following sub

structures:

7 7 ’

Figure 11: Common Sub-Structure

The sub-structures 77 and T2 are compared, the node b in 77 is removed and its children

become children of its parent node producing the structure presented by TV. Matching T2

with T1 ’ will of course produce higher similarity than matching T2 with 77. However the

structure o f T1 has been changed largely to increase the similarity score. In addition to

restructuring the compared trees, the algorithm does not consider any of an XML

schema’s order indicators in the matching process. The goal behind restructuring the tree

and ignoring the order indicators was to increase the overall similarity. This approach

pays less attention to the structure similarity and the execution time to increase the

overall similarity.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4 Web Services Discovery

Recently, a considerable amount of research has been devoted for building a rich

semantic description for Web services to enable effective and efficient discovery. A

discovery o f Web services consists of semantic matching between the description of the

requested service and the description of the advertised services. The semantic description

of Web services is modeled using ontologies to represent concepts in Web service and

their relations. The Web service ontology defines a semantic Web service that describes

the capability, the conditions, and the restrictions of a Web service. The ontology

description usually attempts to build a Web service description language that is

expressive, clear, flexible, and extensible. It would include functional capabilities, non

functional capabilities and information about the domain of the Web service. The

following are semantic Web service frameworks developed to support Web service

discovery:

DAML-S[1,2], OWL-S [36] are a formal language that supports the specification of

semantics information in RDF [71] format. It is designed based on a set o f a domain-

specific semantics of ontologies. DAML-S is meant to support Web services discovery,

invocation and composition under specific constrains. It characterizes the service as

profile, model, and grounding.

Mode!Profife

Sendee

What service d o e H o w service w o r k H o w to access the service?

Figure 12: DAML-S Architecture

The service profile describes what the service does. It describes the functional and non

functional properties o f the service including input types, output types, pre-condition,

post-condition, name, and quality o f services. The service profile is actually a summary

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the descriptions provided in the service model and service grounding. The service

profile is intended for the purpose of advertisement; it includes only the functionality that

is publicly provided. It includes three types of information: a text description primarily

for the use by a human use, a functional description defines what the service provides and

the conditions that have to be satisfied in order to successfully use the service, and

functional attributes’ address and properties. The attributes’ address and properties are

used to include information about the service other than the functional information (e. g.

geographic scope, quality guarantees). The service mode describes how the service

works. It defines what happens when the service is being executed. It is comprised o f two

components; process ontology and process control ontology. The primary entry of the

process ontology called process. A process is a class that has input, output, preconditions

and effect. The process control ontology is intended to monitor and control the execution

of a process. Service grounding specifies how a Web service can be accessed. It provides

information such as communication protocols and specifies details such as port number.

The correspondence between profile, model, and groundings is not necessarily one-to-

one, however, there must be at least one grounding. DAML-S is still immature and not

supported by current tools and the cost of formally defining the services makes its

adoption unlikely [62].

IRS-II [39] is a framework aimed to support heterogonous Web services publication,

discovery and composition. It provides a publishing support, a client API, brokers and

registry mechanism. IRS-II is based on UPML (unified problem method development

language) [12]. The UPML framework is structured as classes of components where each

class is described by means o f ontology. A domain model describes the domain of an

application such as vehicles, a medical disease. A task model provides a generic

description of tasks to be solved such as input types and output types, the goal to be

achieved and the pre-conditions. The problem solving methods provide abstract

implementation-independent descriptions of reasoning processes, which can be applied to

solve tasks in specific domains. The bridge specifies the mapping between different

model components within an application.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In general IRS_II is comprised of three main components: IRS-Server, IRS-Publisher and

IRS-II Client. These components are communicating using SOAP protocol.

S
IRS-II
Server

O ntdoQ r

S

— 1IRS-II Client J — IRS-II Publisher
P

Figure 13: IRS_II Architecture

The IRS II server contains the semantic Web service description. It provides two levels

of descriptions: knowledge base level where the description is stored using domain

model, tasks model and problem solving methods. The IRS-II publisher links the Web

service to the semantics description inside the IRS_II server. Web services can be

published using IRS-II java API where the developer has to specify the location of the

IRS-II server via a host and port number and the problem solving methods using service

name and ontology. The IRS-II client provides an interface for Web services invocation.

The invocation process is achieved by asking the IRS-II client for a task to be located and

invoked by the IRS-II broker.

WSMF [13] Web Service Modeling language provides a conceptual model that describes

a Web service. WSMF is organized around two principles: strong decoupling of the

components of e-commerce application and strong mediation. The strong decoupling is

achieved via interfaces to keep the amount of interactions scalable. The strong mediation

is to enable vast communication of Web services. WSMF consists o f four main elements:

ontology, goal repositories, Web service, and mediators. The ontology provides the

definitions of terminologies used by the other elements. It defines formal semantics for

terminologies to enable the reuse o f these terminologies. The goal repositories define the

problem solved by the Web service. This is generally what the client has when searching

in a Web service. The goal repositories consists of pre-conditions that describe what the

service requires to be executed; post-conditions describe what a service return as a

response to the client input. A mediator is used to solve the interoperability of the Web

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

service. For example, a mediation of dynamic service invocation is when a Web service

invokes another Web service to provide its functionality.

WSDA [23] is Web service discovery architecture that defines Web service discovery

layer for describing interoperable interfaces, operations, and protocol binding. It is

described in SWSDL [24, 25]. SWSDL is simplified version of WSDL. It provides a

service as a set of related service interfaces. Each interface has an interface type which

defines a set of operations and arguments. An operation is bound to one or more

protocols and network endpoints via binding definitions. For example, a service can be

structured as the following:

<service>
<interface type = "http://gridforum.Org/interface/Scheduler-l.0">

<operation>
<name>void submitJob(String jobdescription)</name>
<allow> http://cms.cem.ch/everybody </allow>
<bind:http verb-'GET" URL="https://sched.cem.ch/submitjob"/>

</operation>
</interface>

</service>

Figure 14: SWSDL Service Description

The service is a scheduler type and its syntax and semantics o f operations are specified at

the location defined by the type attribute of the interface element. The name element

defines the operation name as submitJob and its parameters of type string. The bind

element specifies that the operation is bound to HTTP protocol. A service is identified by

a URL and retrieved using HTTP Get request to the identifier.

WSAD includes service descriptions, service identification, and a query support. It

supports XML data model for heterogonous content interaction. It defines four types of

interfaces: presenter, consumer, minQuery and XQuery. The presenter interface allows a

client to retrieve services. It defines an identifier for the services to be retrieved and a

service description that is associated with the identifier. The identifier is described by

URI and the retrieval mechanism is HTTP protocol. An HTTP request to the identifier

will return a service description. The service description can be bound to a protocol to

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://gridforum.Org/interface/Scheduler-l.0
http://cms.cem.ch/everybody
https://sched.cem.ch/submitjob%22/

connect to the service. The consumer interface works like a registry service. It allows the

provider to publish a tuple set to the user. The tuple set comprise o f a set o f attributes

normally link, type, context, time stamp and metadata. The link is a URI to the service

description. The type describes what kind of context is being published. A time stamp

defines the tuple lifetime. The metadata may describe any other information that has not

been described by the attributes such as retrieval from UDDI. The minQuerry interface

supports a query in select-all style. For example, getTuple() will return all tuples. The

XQuerry interface supports the XML query language [81]. The presenter, consumer and

minQuerry are bounded to HTTP protocol and the XQuery interface is bound to peer

database protocol [24, 25].

SCDL [15] describes a capability matching for Web services. The structure o f SCDL

comprised of a set o f elements, including name that defines the name of the Web service.

Ontology Description is used to describe the used terms. Types are used to define the

variable types. Input for declaring input variables and output for declaring the type of the

output variables. Pre-conditions and pre-constrains to describe the conditions and

constrains have to be imposed on the input variables. Post-condition and post-constrains

to describe the conditions and constrains have to be imposed on the output variables. This

structure is described using XML schema. Two specifications in SCDL are plug-in

matched if their signatures match. Their signature match if there is a sub-sumption

relation for every clause in the set of input conditions constrains o f one specification and

a clause in the set o f input condition constrains in the other specification, and there is

similar sub-sumption relation for their output condition constrains.

Bianchini Davi [5] Described ontology based methodology for e-service discovery. Their

methodology supports both the publication phase and the searching phase. Their

approach is designed to be fully compatible with UDDI in a way users can either use the

UDDI API or the API provided by their approach. A service context is defined in term of

location, time zone, and available channels in both location and time. Channels are

characterized by device, and network for defining end-to-end link, network interface for

defining how a device could be connected to the network, and application protocol

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specifies the application protocol is supported by the device according to the network and

the network interface. The functional description of the service can be defined according

to WSDL. The non-functional description of the web services is characterized by a set

of Quality Parameters. For example, a video on demand Web service would define

parameters as frame-rate and colour depth. The searching process is described by a

semantic analysis of the service functionality, context and quality. The functionality

similarity is done using interface similarity analysis and behaviour similarity analysis.

The interface similarity analysis is preformed through measuring the similarity between

the set of coefficients defined in the interface. If WSDL is used to represent the interface

specification, the interface analysis will compare all operations and their input and output

parameters’ information. A behaviour similarity analysis describes each major

functionality provided by the service is associated with a state-chart diagram. The state-

chart diagram describes how the execution of the service is preformed. The context

similarity considers the comparison of location, time zone, and channel constrains. The

quality similarity considers comparing the characteristics of quality o f service parameters.

The thesis is based on LARKS, and agent matching system [54], Larks is a matching

agent that uses a sequence o f filters based on specific models that perform both syntactic

and semantic matching. The process o f matching uses different filters to narrow the set of

matching candidates. A context matching filter matches software agents based on their

context. A profile comparison filter matches software agents based on their text using TF-

IDF method and vector space model. A similarity matching filter matches software agents

based on their semantic. A signature matching filter matches software agents based on

their input and output parameters. A constrain matching filter matches software agents

based on their pre-conditions and post-conditions.

Whiles the above approaches are promising to revolutionize Web service discovery by

providing the rich formal descriptions, they are still immature and not supported by

current tools and industrial community.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The UDDI project [75] is founded by IBM, Microsoft, and Ariba and currently more than

200 organizations are sponsoring the project [74]. Public UDDI operators are currently

managed by IBM, Microsoft, HP, and SAP. Three versions of UDDI has been released so

far; version 1.0 was released on September 2000, version 2.0 was released on June 2001

and version 3.0 was released on July 2002. UDDI uses XML, SOAP, WSDL and HTTP

standards to provide a standard mechanism to publish and to locate a Web service.

UDDI framework consists o f a registry containing the Web service information. It is

organized around two specifications: the information specifications and the API

specification. The former defines the data structure, while the latter defines the API for

inquiring and publishing Web services. The UDDI data structure is comprised of four

entity types: <businessEntity>, <businessService>, <bindingTemplate> and <tmodel>

known as technical model. Service provider uses these entities to register information

about the offered services. The type of information registered in UDDI registry is

commonly known as white pages, Yellow Pages, and Green pages.

• White pages: contains basic business contact information. It allows to discover the

services based on the contact information

• Yellow Pages: contains basic information that categorizes businesses. It allows

others to discover Web services based on their category.

• Green pages: contains technical information about the offered services.

This information is represented in UDDI as an XML structure with the businessEntity

element as top-level element. The bussinesEntity element describes a business that

provides a Web service. It contains contact information, set o f services description, and

technical information. The services description is defined by one or more

bussinessServices element. Each businessServices element represents a service

description, name, category and technical description. The technical description is

represented by one or more bindingTemplate entities. It consists o f technical information

about service entry point. In addition to the technical description, each bindingTemplate

has a reference to tModel entities. The tModel entities are used to describe the behaviour

of the service, what standards it follows, what specifications the service complies with,

and how to invoke the services. It consists of related information that facilitates

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication between a client and a Web service. The tModel is also includes an entry

pointing either to the service URL or to WSDL file description.

Each of the above core entities has a key that can be used to retrieve information about

the corresponding entity.

The API specification is divided into two sections:

• The publisher API and,

• The inquiry API

The publisher API allows the service provider to access the UDDI registry to manage the

information advertised about their business. It provides the functions required to create,

update or delete service information. The inquiry API allows the user to locate and obtain

information about an entity. It supports three pattern of inquiry: browse pattern, drill

down pattern, and invocation pattern.

The browse pattern starts with some general information, performing a search, and results

in a huge list of records. This search is usually followed by drill-down pattern to select

more specific information. The drill-down pattern requires prior knowledge of a core data

structure entity key (one of the values returned by the browser pattern).

Passing an entity key as search criteria retrieves detailed information about the

corresponding entity. The invocation pattern is used in case of failure in the service

invocation.

Locating Web services in UDDI registry is largely based on a single search criterion. A

potential user must identify a keyword such as business name, service name, or business

location to extract information out of the UDDI registry. The search process generally

starts with the browse pattern to extract general information, followed by a drill-down

pattern to find specific detailed information.

Some research work has been focusing on WSDL description to build Web service

searching systems. W. Yiqiao and S Eleni [63, 62] have described a method for web

services discovery and matching that combines the structure and the semantic information

of WSDL file. They defined a keyword search using vector space model and structure

similarity based on the tree-edit distance algorithm [16]. In their approach, WSDL is

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viewed as hierarchal structure with the data type lie in the lowest level of the hierarchy.

They adopted a bottom-up approach where the similarity of two WSDL files starts by

comparing their data types. The result of data types’ similarity is a matrix o f all possible

pair-wise combinations o f source and target of data types. The second step is to compare

the source messages to the target messages. The result is matrix o f all pair-wise

combinations of source and target messages scores. The similarity o f messages is based

on the similarity o f their parameters scores. The third step is to compare the services’

operations. The result o f operations similarity is based on the pair-wise combinations of

the source and target operations. The similarity of two services is based on computing the

pair-wise correspondence of their operations that maximize the total sum. Data types are

compared based on their compatibility. Two data types are considered compatible with

score of ten, semi-compatible with score of five or non-compatible with score of zero. If

data types being compared are complex types, their elements are collected to produce

lists of simpler data types. The total score is the highest matching score o f their elements.

If the data types being compared have the same grouping style a bounce score o f ten is

added to the total score.

The main drawback o f this approach is that it compares all possible combination of data

types. It does not distinguish between output data types and input data types. For example

if there is an operation A with input data type as X and output data type as Y and

operation B with input data type as Z and output data type as W, data type comparison

will match all pairs (X, Z), (X, W), (Y, Z), and (Y, W).

In addition to comparing all pairs o f data types and messages which is not required, the

algorithm does not consider most of data type syntax such as maximum occurrence,

minimum occurrence, sequence indicator, choice indicator, grouping and It does not

compute the similarity between data types from different categories such as simple type

to complex type.

Xin Dong [11] have described a search engine for Web service (Woogle). Their approach

is based on operation search rather than WSDL search. Their algorithm is based on the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classical agglomerative clustering [28]. Similarity between two operations is based on the

similarity between their vector op(w, f, I, o). Where w is the text description of the Web

services to which the operation belongs, f is the textual description o f the operation, and I

and o, are the input and output parameters respectively.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Overview of Our Matching System

Web service technology makes it possible for developers to choose from either building

all pieces of their applications or using Web services created by others. An individual

organization does not have to supply every piece for a solution. It can compose a Web

service from different providers to build the complete solution. A crucial step is to be

able to efficiently locate and select Web service. This is particularly important in

automatic Web service composition when the output of one service is passed as input to

another service. As the Web service paradigm becomes more and more popular; the need

for flexible Web service discovery becomes more essential. It is becoming one of the

major challenges o f Web service technology [4], The searching process should be

flexible enough to return a ranked list of Web services based on their closeness to the

query.

In our prototype, a mechanism that includes text similarity and structural similarity of

Web services is introduced.

.._l ~ ^

WSDL WordNet
Repository Dictionary

Keywords
Operation

WSDL

text Structure
com parison Similarity

Figure 15: Web Service Searching Framework

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A different algorithms are combined to produce flexible, effective and efficient Web

searching framework that combines two filtering modes with three searching criteria.

3.1 Searching Criteria

A user can either search for Web services using a keyword search by providing a list of

keywords, operation search by providing an operation description, or service search by

providing a Web service description.

3.1.1 Keywords Search

The keyword search uses only the text comparison mode described in chapter 4. The

query is determined by the keywords obtained from the user input.

3.1.2 Operation Search

In operation search, the query is an operation description obtained from the user input.

The structure o f the requested operation and the advertised operations are taken into

consideration. The user enters information such as operation name, input parameters and

output parameters. The search process compares all information provided by the user to

all operations in the repository. The similarity is computed based on the similarity mode

chosen by the user (Text Comparison or Structure Similarity). The result is a list of

operation ranked based on their similarity to the query.

Definition 3.1 (operation search)

Request operation o, advertised Web Services W ----- > List o f similar operation

sim (o, W) = (o e W : sim(o, o)} ^> L

Given a request operation o and Web services collection W the searching returns L, a list

of all operations similar to the query operation.

3.1.3 Service Search

The query is a URI pointing to the location of the Web services description. The system

compares the requested service to all services advertised in the repository. The similarity

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is computed based on the similarity mode chosen by the user (Text Comparison or

Structure Similarity). The result is a list of similar Web services are ranked based on

their closeness to the query.

Definition 3.2 (web services searching)

Request Web service w, advertised Web Services W > List o f similar Web services

sim (w, W) = {w e W : sim(w, w)}^> L

Given a request Web service w and Web Services repository W, the searching returns a

list of Web service that are similar to the requested Web service.

3.2 Filtering Modes

The similarity filtering modes are organized as two increasingly stringent filters. Each

filter narrows the set o f matching candidates with respect to a given filter criterion.

3.2.1 Text Comparison

The text comparison filter measures the similarity of a request to advertisements based on

the vector space model [48]. The vector space model is based on building n dimensional

vectors for the query and the distinct terms in each candidate service. The query and the

collection of services are transformed to text. They are tokenized, stemmed and their stop

words are removed. The relevance of a document to a given query is based on computing

a distance measure between the query and the document using the cosine similarity

measure.

3.2.2 Structure Similarity

The structure similarity computes the similarity between the query and the advertised

services based on the structure o f their corresponding elements. The structure similarity

returns operations and services that are similar in some way to the advertisements and

hence would match if the request is slightly modified. There are two forms o f operation

similarity: operations similarity and partial operation similarity. Operation similarity

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specifies all the information required for search. In partial operation similarity, the user

can specify only a subset of the required information. For example, users may be more

interested in the type of the output. Allowing users to define an input that can be matched

to any input in the advertised operations is more useful in this case. Depending on the

search criteria, the structure similarity will return a list of operations or Web services with

a score value between [0, 1] describing how close the result is to the query. As the

computational cost o f the structure similarity is high, only Web services returned by the

text comparison are passed to the structure similarity.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Text Comparison

4.1 Introduction

The goal of the text comparison is to use the information retrieval techniques to measure

the relevance between a query and documents. These techniques rely on unstructured text

description of the query and the documents. The process o f relating a query to a

document includes analyzing the statistical information about terms that appear in the

documents and how these terms are related to the query. This statistical information is

used to compute a weight for each term based on the frequency of a term in an individual

document and in a collection of documents. The weight measuring involves identifying

terms in a stream of text by pre-processing documents using tokenization, removing stop

words and stemming. After the pre-processing phase, all terms in the collection of

documents are indexed for fast document retrieval. The index is only needed to be built

once, stored on the hard disk and loaded to the memory as needed. The index contains

every unique term in the collection of documents. Each term points to the list of

documents that contains the term and its frequency in each document. The term

frequency is an indication about documents relevance to that term and it is used as base

for measuring document relevance.

One of the most used models to calculate the similarity between a query and documents

based on the term weighting is the vector space model. The vector space model has been

extensively investigated in the literature. The advantages o f using vector space model in

information retrieval are its effectiveness, efficiency, ranked retrieval, and terms are

weighted by importance [18, 19]. In this thesis we use the vector space model for Web

service retrieval and filtering.

The main rationale behind using text comparison in Web service searching is to provide

fast Web service retrieval mechanism using keyword search and to filter irrelevant Web

services before being processed by the structure similarity. The structured similarity

requires a significant computational time. As the number o f candidates Web services can

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be extremely large, using vector space model as filtering method will significantly reduce

query processing time.

4.2 Documents comparison

Documents comparison is similar to the most conventional search on the Internet. It

measures the relevance o f the query to a document using the vector space model. Vector

space model is based on building n dimensional vectors where the query and each

document in a collection of documents are represented by a vector o f non-negative terms’

weight. Once the terms’ weights are determined, the similarity between a query and a

document is measured using the cosine similarity function. When the angle 6 between

two vectors is close to zero the cosine approaches one and when the angle between them

approaches ninety the cosine approaches zero. From the law of cosines:

COS 9 = p r r - T 4.1
\q\\d\

—> —► —>

Where q . d is the dot product of the query vector q and a document d . If we have two

vectors q=(2,3,4,5) and d=(6,7,8,9) the dot product of the two vectors

q.d=(2*6)+(3*7)+(4*8)+(5*9). The |q| and |d| are the absolute values o f the query vector

and the document vector. The absolute value o f |q |jd |=v22 + 3 2 + 4 2 + 52 *

a/62 + 7 2 + 82 + 9 2

Measuring the similarity between the query q and the document d using cosine function is

as follows:
->■ - >

sim(q, d)= 4.2

Equation 4.2 indicates that the similarity between a query and a document is the

similarity between their vectors, which is equal to the dot product o f the vectors divided

by their absolute values. The numerator of equation 4.2 can be represented as: q.d=(wi,d

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* wi,q)+ ... +(wn,d * wn,q) where wi,d is the weight of a term i in a document d and wi,q

is the weight of term i in a query q.

Where j is a term in n collection of terms. The importance o f j in a document d,

dependence on its statistics in d and its statistics on the entire collection of documents D.

Assigning a weight for each unique term in each document determines the relevance of

the term to the document. The most useful and widely used term weighting method is the

TF-IDF (term frequency-inverse term frequency), which is entirely being based on a

single term statistics. Given a document d e D where D is the set o f document in the

repository. Let t v ...,tn be terms occurring in the document d. The number of times a

term t occurs in the document d is called the term frequency tf(t,d) o f the term t in the

document d. The number o f documents in which the term t occurs at least once is called

document frequency df(t) of the term t. The relevance o f a document d based on a term t

is proportional to the number of times the term t occurs in the document d and inverse

proportional to document frequency df(t) o f the term t. The larger is tf(t, d), the more

likely the t is related to document d. The larger is df(t) the less t can discriminate between

In the TF-IDF weighting method, the weight of a term t in a document d is o f the form

4.3

documents

Wt, d=tf(t, d) *idf

Where the id f is the inverse term frequency and it is computed as follows:

idf=log D/df(t)

Wt, d=tf(t, d) *log D/df(t)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If a term appears in every document, its inverse document is equal to zero. For example if

the number of documents in the entire collection is 1000 and the number o f documents

contains a term / is 1000, then the inverse document is equal to log 1000/1000=0. The idf

of a term is constant cross documents collection and needed to be calculated only once.

The denominator of equation 4.2 is called the cosine normalization factor. It normalizes

the length of documents such that document length has no effect on the similarity score

[32], Other normalization techniques are the Maximum t f Normalization and the Byte

Length Normalization [51]. The Maximum //'Normalization modifies each term tf in the

document by the maximum term max-tf in the document. Since some of the resulted

values are low, the normalized values are usually recalculated. For example the Smart

system increases the tf factor as (0.5+0.5*— ——) and the INQUERY system as
m a x -//’

(0.5+0.6*— ——) [51]. The Document Length Normalization modifies the term
m a x - / /

weighting based on document size [52]. For example the weight value can be calculated

as (- ^ -) where ndl is the normalized document length ndl=document length/ average
ndl

documents length [14].

4.2.1 Web Service as Document

Representing Web services and the query as text documents will enable using the vector

space model for Web service searching. A keyword search can be used for fast Web

service retrieval. An Operation and a Web service filtering can be used to prune off the

irrelevant Web services to reduce the computational time required by structure similarity

described in the next chapter.

To determine Web service relevance to a given query, the query and the Web service are

converted to text documents. They are tokenized, stemmed and their stop words are

removed. The tf-idf weighting method is applied for each term in the query and in the

collection of Web services. Then, the query and the advertised Web services are

represented as vectors. The similarity between the query vector and the Web services

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vectors are determined by the angle between the query vector and each vector o f the Web

services.

Example 1:

Consider the following portion of Web services as the collection of Web services in the

repository:

• Temperature unit converter service:

<portType name="ChangeTemperatureSoap">
<operation name="ChangeTempUnit">

<inputmessage-'ChangeTempUnitSoapIn" />
<output message-'ChangeTempUnitSoapOut" />

</operation>
</portType>

• Energy Unit converter service:

<portType name="EnergyUnitSoap">
<operation name="ChangeEnergyUnit">

<input message="ChangeEnergyUnitSoapIn" />
<output message="ChangeEnergyUnitSoapOut" />

</operation>
</portType>

• Currency converter service:

<portType name="CurrencyConvertorSoap">
<operation name="ConversionRate">

<documentation>
Get conversion rate from one
currency to another </documentation>

<input message="ConversionRateSoapIn" />
<output message="ConversionRateSoapOut" />

</operation>
</portType>

Consider running the following query on the above collection:

• Query: “temperature unit converter”.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1.1 Tokenization

The first step in documents processing is the tokenization. Tokenization separates the

tokens of a compound word in such way that every individual token is identified and

treated as atomic unit (separate term). It separates compound words based on

punctuation marks, abbreviation, and case. For example the string “getLatestStockValue”

is tokenized to “get” “Latest” “Stock” “Value”. There is no general agreement on how

documents are tokenized. It is usually depend on the underlying applications [21]. As

Web services are described using WSDL, which is an XML structure, a lot o f information

is not considered in the tokenization process. For example, tag names, namespace values

and attributes names are ignored. This information is ignored because it occurs in all

WSDL files and has no effect on the search result. Failing in removing this information

will increase the index size. A tokenizer is implemented to parse all strings in the query

and the advertised Web services.

Tokenizing the WSDL portions and the query presented in example 1 will produce the

following texts:

• Temperature unit converter: “change temperature soap change temp unit change

temp unit soap in change temp unit soap out”

• Energy Unit converter: “energy unit soap change energy unit change energy unit

soap in change energy unit soap out”

• Currency converter: “currency converter soap conversion rate get conversion rate

from one currency to another conversion rate soap in conversion rate soap out”

• Query “Temperature unit converter”

Note that tags names and attributes names are ignored. For example “<portType” and

“<operation” do not appear in the tokenized text. Removing these keywords by the

tokenizer is more efficient than adding them to the stop word. Also note that all terms are

transformed into lower case

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1.2 Removing Stop Words

Once the query and the advertised Web services are converted into a sequence of tokens,

stop words are removed. The stop words are words that are meaningless and merely noise

and can be eliminated without affecting the accuracy o f the retrieval process. Usually

English text is composed of the same few words and some of these words may not be

useful for Web service retrieval process. Removing the stop words also reduces the index

size and thus increases the indexing process. If we consider the following set of terms as

part of the stop words {in, out, another, from, one, to}. The tokenized version of example

1 can be presented as the following:

• Temperature unit converter (with 15% length reduction): “change temperature

soap change temp unit change temp unit soap change temp unit soap

• Energy Unit converter (12% length reduction): “energy unit soap change energy

unit change energy unit soap change energy unit soap”

• Currency converter (with 28% length reduction): “currency converter soap

conversion rate get conversion rate currency conversion rate soap conversion rate

soap”

• Query “Temperature unit converter”

In this thesis, the stop words list provided by the Department o f Computing Science at the

University of Glasgow [65] was used. Note that this list has been modified to include

terms that are related to Web service description.

4.2.1.3 Stemming

After removing the stop words the query and the documents are stemmed for term

normalization. Stemming is the process of removing morphological variants and suffixes

from terms (e.g. “ing”,”ed”). In literature several types o f stemmers have been developed.

Two of the most popular stemmers are Lovins, 1968; Porter, 1980. Both Porter stemmer

[45, 46] and Lovins stemmer [33] are similar, however Porter stemmer is intended to

reduce the number o f processing steps in Lovins. Porter stemmer consists of five steps;

for example step one deals with plurals and past participles such as removing ‘s’, ‘ies’

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and “ed”. Since the algorithm is performed in steps, it is possible that one term is

transformed by more than one step. If a term has less than four letters no stemming is

performed. For example, using Porter stemmer the terms “transform”, “transformation”

and “transforming” are stemmed to “transform”. As both the query and the documents

are stemmed, all terms with the same root as the query are returned. In this study Porter’s

stemmer has been implemented.

After removing the stop words, the stemming form of example 1 can be presented as:

• Temperature unit converter: “chang temperatur soap chang temp unit chang

temp unit soap chang temp unit soap

• Energy Unit converter: “energi unit soap chang energi unit chang energi unit soap

chang energi unit soap”

• Currency converter: “currenc convert soap convers rate get convers rate currenc

convers rate soap convers rate soap”

• Query “Temperatur unit convert”

Note that all terms have been converted to their roots. For example the term

“temperature” in the temperature unit converter document and the term “temperature” in

the query are both converted to “temperatur”

4.2.2 Representing Web Service as a Vector

Assume we have the three documents presented above “Temperature unit converter”,

“Energy Unit converter” and “Currency converter” and we would like to use the vector

space model to search for the query “temperature unit converter”.

The total unique terms in the collection is eleven {chang, temperatur, soap, temp, energi,

unit, currenc, convert, convers, rate, get}. This will produce vectors o f length eleven.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following table is used to calculate the weight of each term based on its frequency in

a document and in the collection of documents.

terms tf wi=tf*idf
q d l d2 d3 dfi D/dfi idf q d1 d2 d3

chang 0 4 3 0 2 3/2 0.1761 0 0.7044 0.5283 0
temperatur 1 1 0 0 1 3/1 0.4771 0.4771 0.4771 0 0

soap 0 3 3 3 3 3/3 0 0 0 0 0
temp 0 3 0 0 1 3/1 0.4771 0 1.4314 0 0
energi 0 0 4 0 1 3/1 0.4771 0 0 1.9085 0

unit 1 3 4 0 2 3/2 0.1761 0.1761 0.5283 0.7044 0
currenc 0 0 0 2 1 3/1 0.4771 0 0 0 0.9542
convert 1 0 0 1 1 3/1 0.4771 0.4771 0 0 0.4771
convers 0 0 0 4 1 3/1 0.4771 0 0 0 1.9085
rate 0 0 0 4 1 3/1 0.4771 0 0 0 1.9085
get 0 0 0 1 1 3/1 0.4771 0 0 0 0.4771

Table 1: Term Weight Calculation Based on TF-IDF Method

Note that the larger the number of documents contain a term, the less the idf of the term.

As the term “soap” appears in all documents, its idf is zero and consequently its weight is

zero.

From table 1, the three documents and the query can be presented as vectors of eleven

elements describing the weight of each term.

Query: (0, 0.4771, 0, 0, 0, 0.1761, 0, 0.4771, 0, 0, 0)

Temperature unit converter: (0.7044, 0.4771, 0, 1.4314, 0, 0.5283, 0, 0, 0, 0, 0)

Energy Unit converter: (0.5283, 0, 0, 0, 1.9085, 0.7044, 0, 0, 0, 0, 0)

Currency converter: (0, 0, 0, 0, 0, 0, 0.9542, 0.4771,1.9085,1.9085, 0.4771)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|q|= Vo.47712 +0.17612 +0.47712 -0.6973

|dl|= Vo.70442 +0.47712 +1.43142 +0.52832 =3.052

|d2[= V0.52832 +1.90852 +0.70442 =4.417

|d3|= Vo.95422 +0.47712 +1.90852 +1.90852 +0.47712 =8.6505

q.dl=0.4771 *0.4771+0.1761 *0.5283=0.3206

q.d2=0.1761 *0.7044=0.1240

q.d3=0.4771 *0.4771=0.2276

sim(q,dl)=0.3206/(0.6973*3.052) =0.1506

sim(q,d2)=0.1240/(0.6973*4.417)=0.04

sim(q,d3)=0.2276/(0.6973*8.6505)=0.03

The vector space model will sort the documents in decreasing order o f their relevance to

the query as:

1. Temperature unit converter

2. Energy Unit converter

3. Currency converter

Note that only portion o f the Web services is used in the above example. In real

application the complete document is considered. The query is either a keywords for a

keyword search, operation description for operation search or a W eb service description

for Web service search. The Web services retrieved by the operation search and Web

service search are passed to the structure similarity for further refinement.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Experiment Design and Result Analysis

This section presents the experimental design and the results analysis for evaluating the

vector space model for Web service retrieval. It is important to emphasise that our

objective is not to evaluate the vector space model. Our objective is to evaluate the use of

vector space model for fast retrieval of Web services and for Web services filtering. Our

experiments, study the effectiveness of the system in retrieving documents relevant to the

user query.

The most common way to evaluate an information retrieval system is to measure how

many relevant documents have been retrieved and how early in the ranking they were

listed. The most used technique is the recall and the precision measure. In the ideal case,

when all and only all the relevant document retrieved, the precision=recall=100%.

However recall can be easily maximized by returning all possible documents. On the

other hand, precision can be maximized by returning only few related documents.

Measuring the precision and recall requires that documents are either relevant or

irrelevant to the query. Human interaction required in determining a set of queries and

which documents in the collocation is considered as relevant to specific query.

The vector space model is investigated based on effectiveness and time and space

efficiency. The effectiveness is measured based on the type o f documents retrieved with

respect to a given query. It measures whether the retrieved documents are relevant to the

query and whether all the relevant documents are retrieved.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In particular we are investigating the following points to evaluate the system:

• Measuring the recall and precision

• Top-K precision (measuring how early the relevant Web services appear in the

ranked result)

• Response time to the query

• Time required for the pre-processing of the candidate Web services (tokenization,

removing stop word, stemming, indexing)

• Size of the index compared with the original size of the Web services collection.

The precision and recall measures assume that the set of documents are either relevant or

irrelevant. If we donate the set of relevant documents retrieved as A and the set of

irrelevant documents retrieved as B, and the set of relevant documents that are not

retrieved as C, the precision =A/(AUB) which is the ratio of relevant documents retrieved

to the total number o f retrieved documents . The recall = A/(AUC), which is the ratio of

relevant documents retrieved to the total number of relevant documents in the collection.

This is illustrated in figure 10:

Relevant Web services Web services retrieved

Collection of Web services

F igure 16: Precision and R ecall D iagram

The precision and recall are inversely related, such that when the recall goes up the

precision goes down and when the precision goes down the recall goes up. If the goal of a

search is comprehensive retrieval (includes general terms), then we should be looking for

higher recall, which consequently produces low precision.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another way o f evaluating information retrieval systems based on the precision and

recall is to measure the precision at Top-k recall. For example, measuring the precision at

k equal; 1, 5, 10 and 25 percent recall points. The top-k precision is calculated by

considering only the top-k as returned value. For example, if the returned list is 100, a top

10% will measure the precision at the top returned 10. If all the top 10 are related to the

query, the precision is equal to 100%. This approach measures how many relevant

documents appear at the top of the returned result. It assumes that the user is interested in

looking at the top k documents for a particular query. For all experiments we measured

the recall and precision, and top-k precision for recall points; Top-1%, Top-5%, Top-

10%, Top-25%, Top-50%, and Top-75%.

In order to thoroughly evaluate the system, we ran three kinds o f experiments. The

difference between these experiments is the query structure. The first kind of experiments

uses keyword as a query. The second kind of experiment uses an operation description as

query and the third kind of experiments uses Web service description as query.

All of our experiments are preformed on a computer with single x86 Family 6 Model 6

Stepping 2 Authentic AMD -1.539 GHz CPU and 753,136 KB RAM. The operating

system is Microsoft Windows 2000 Professional. All programs are developed using Java

J2RE 1.4 “j2rel.4.2_04”

4.3.1 Data Collection

A considerable amount o f Web services have been used in evaluating the system. These

Web services have been collected from a variety of resources. The data domain of the

collection contains over 1,400 Web services description documents collected from over

900 hosts. The size o f the collection is over 18 MB. The Web services cover various

domains such as stock quotes, unit converters, weather forecast, currency exchange, etc.

We have used the weather category as a base for our experiments. All queries are

formulated to be related to weather services. The weather category contains 17 Web

services presented in appendix A.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that operations and Web services exceeding a specified threshold will be passed to

the structure similarity measure described in the next chapter.

4.3.2 Performance

Results have shown that the time required for the pre-processing o f the candidate

documents (tokenization, removing stop word, stemming, indexing) was 42204

Millisecond. The size o f the index was 2.63 MB. The length o f the index was 9,589

unique terms. We ran the following three kinds of experiments:

4.3.2.1 Keyword Search

The effectiveness of keyword search was evaluated using the term “weather” as a query.

The keyword search has achieved precision=recall=100%. The response time to the query

was 15 millisecond.

4.3.2.1 Operations Searching

In the operation search, the query is an operation description. The query is first

transformed to text and than matched to all Web services in the repository. The result

exceeding a threshold is passed to the structure operation similarity for further

refinements. Three operations each from different weather Web service have been used as

queries. The query is structured as in figure 11.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation name: GetWeatherReport

■ Input data type:
<element name="GetWeatherReport">

<complexType>
<sequence>

<element name="ZipCode" ty p e - ’string" />
</sequence>

</complexType>
</element>

■ Output data type:

<element name="GetWeatherReportResponse">
<complexType>

<sequence>
<element name="GetWeatherReportResult" type="string" />

</sequence>
</complexT ype>

</element>

Figure 17: Structure of Operation Search Query

Table 2 presents the operations similarity results:

Operations used as Query
Number of

Services
Retrieved

Number of
Services above
the Threshold

Precision Recall Response
Time(ms)

USWeather:

GetWeatherReport
17 16 100 94.1 374

WeatherForecast:

GetWeatherByPlaceName
37 24 62.5 88.23 392

WeatherByZip:

GetWeatherByZip
69 32 50 94.1 422

Table 2: Operation Search Result

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following measurements are calculated based of the average performance of the

operation presented in the above table and only results exceeding the specified threshold

5% are considered in the measurements. The precision is equal to the number of relevant

Web services above the threshold divided by the total number of Web services above

threshold. The recall is equal to the number of relevant Web services above the threshold

divided by the total number of relevant Web services in the repository. The total

response time to the query was 396 millisecond. The overall precision is 70.83% and over

all recall of 92.15%. The top-k precision has achieved 100% precision at Top-1 % recall,

100% precision at Top-5 % recall, 100% precision at Top-10 % recall, 94.4% precision

at Top-25% recall, 86% precision at Top-50% recall and 78.7% precision at Top-75%

recall. The following graph illustrates the distribution of precision at different recall

points.

Operation Similarity

100

80

60

40
25 50

Top-K %
75 100

Figure 18: Operation Search Top-k Precision Graph

4.3.2.1 Web Service Search

In the Web service search the query is a Web service. The query is first transformed to a

text and then matched to all Web services in the repository. Web services exceeding the

threshold are passed to the structure similarity for further refinements. Three Web

services each from the weather category have been used as queries.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Web service used as
Query

Number of
Services

Retrieved

Number of
Services above
the Threshold

precision recall Response
Time(ms)

US Weather 38 16 100 94.1 437

WeatherForecast 56 21 76.19 94.1 531

WeatherByZip 79 31 51.6 94.1 500

Table 3: Web Services Search Result

The following measurements are calculated based of the average performance of the Web

services presented in table 3 and only results exceeding the specified threshold are

considered in the measurements. The precision is equal to the number o f relevant Web

services above the threshold divided by the total number o f Web services above

threshold. The recall is equal to the number of relevant Web services above the threshold

divided by the total number o f relevant Web services in the repository. The response time

to the query was 489.3 millisecond. The over all precision is 75.9% and over all recall of

94.1%. The top-k precision has achieved 100% precision at Top-1 % recall, 100%

precision at Top-5 % recall, 100% precision at Top-10 % recall, 95.8% precision at Top-

25% recall, 88.3% precision at Top-50% recall and 81.3% precision at Top-75% recall.

The following graph illustrates the distribution of precision at different recall points.

Web Services Similarity

100

80 -

60 -

40
2 5 5 0

Top-K %
1007 5

Figure 19: Web Service Search Top-K Precision Graph

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Results Analysis

The experiments results have shown that the time required for the pre-processing and the

indexing is relatively high. That is because the pre-processing phase runs on every term

in the documents. However since the pre-processing is only computed once on the

collection o f documents, it does not largely effect the query processing. The size of the

index is relatively small comparing to the original size of the candidate documents. It is

14.2% of the original size o f the repository.

The query processing time for Web services search is higher than the operation search

and the keyword search. This is expected as Web service file is larger than the size of the

operation and consequently the pre-processing will require more time.

For a keyword search, the precision and recall achieved 100%. This is because a single

keyword precisely identifies the query and there are no general terms that can raise the

recall. Broad or general terms will achieve a comprehensive retrieval, and consequently

reduce the precision. An operation search has shown a lower precision than the keyword

search and that is due to the larger number of terms appearing in the operation

description. Although the operation filtering has precision less than the keyword search,

the Top-k precision analysis has shown that most of the relevant documents appeared on

the top of the retrieved list. Web services search have achieved similar precision as the

operation search. However, the number of Web services retrieved by the Web service

search is larger then the operation search. This is expected as the Web service description

has more terms than operation description. As Web service description usually use

similar terms in all elements, both operation search and Web services search have

retrieved most of the relevant Web services and ranked most of them at the top of the

retrieved list. Text comparison has succeeded in filtering over 98% of the irrelevant Web

services.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Conclusion

This chapter described how information retrieval techniques can be used for web service

searching. Vector space model relies on terms statistics to measure the similarity between

a query and documents. The more precise is the query terms, the higher the precision of

the retrieved documents. Results have shown that vector space model can be used for fast

retrieval and works well as filtering mechanism for Web services. The vector space

model does not rely on term semantic and does not consider the structure o f the Web

service. It treats Web services as text documents and roughly prunes off Web services

that are irrelevant for a given query.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Structure Similarity

5.1 Introduction

With the growing number o f Web services, it is inadequate to measure Web services

similarity based only on text-base similarity. The semantic and the structural information

are crucial components in identifying similar Web services. There is an increasing need

to automatically identify the semantic and structural similarity o f Web services for

searching, clustering and composition. In order to compute the semantic and the

structural similarity between two Web services, it is required to measure the relations

among their corresponding elements. Particularly to specify rules for measuring the

similarity between two elements and to identify how close two elements should be in

order to be considered similar. The goal is to further refine the operations and the services

similarity computed by the text comparison by comparing them based on their semantic

and structure similarity. The structure similarity will return not only operations and web

services that are exactly similar, but also operations and services that are similar in some

way and hence would be considered similar if the query is slightly modified.

In this chapter, the structure similarity o f two Web services is measured based on the

similarity of their operations. The similarity o f two operations is based on the similarity

of their names, input and output parameters. The semantic similarity is measured using

WordNet dictionary [79]. The structure similarity is measured using a tree matching

algorithm. The returned list is ranked between 0 and 1 based on there closeness to the

query.

5.2 Web Services Similarity

WSDL files expose the services they offer over the Internet using interfaces to

operations. Among other things, operations are the most important component of Web

service and the focal point of interacting with Web services. In the following, we take an

abstract of view of Web service as a collection of operations, i.e., a Web service w is

defined as follows:

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W = { 0 \ > °2> - ’° n}

Where w is a Web service, Oi (7>= 1, i<=n) is an operation

Web services similarity is computed based on their operations similarity, which in turn

based on their input and output parameters. However, the Binding element of WSDL file

is not considered in the similarity measure as it describes how users and applications can

communicate with operations.

Measuring the similarity between two Web services based on their operations can be

modeled as a bipartite graph-matching problem. This can be preformed by comparing

each operation in one Web service to all operations in the other Web service. The result is

two sets of operations where each operation in one set has similarity weights with all

operations in the other set. The maximum sum of the similarity between the two Web

services is computed using the Hungering assignment algorithm described in section

2.1.4.

The total similarity score is computed as follows:

sim(w, w)=(max ' ^ isim(oi,oJ))/\w\
i e w j e w

Where i and j are the indexes of the operations in the source Web service w and the

operations in the target Web service w' respectively. |w[denotes the total number of

operations in the source Web service.

5.3 Operations Similarity

An operation is considered as a sequence of three components (name, input type, and

output type). The structural similarity of two operations is computed based on the

mentioned components.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 5.1 (operation similarity)

sim (O, O ') = s im (0 name, O' „ame)*0.5 + sim (0 type,o \ypJ* 0 .5

Where O name is the name o f the source operation and O name is the name o f the target

operation. The final similarity score is normalized to a range between 0 and 1. O lype is the

source operation parameters and O'type is the target operation parameters. The similarity

of operations’ parameters is computed as follows:

sim (O lype,o type) =sim (T ip,T ip)*0.5+ sim (Top,T op)*0.5

Where T jp is the input parameters and T op is the output parameters.

Names similarity is computed as described in section 5.3.1. Input parameters and output

parameters similarity is computed as described in section 5.3.2. The final similarity score

is a value ranges between 0 and 1.

5.3.1 String Similarity

String similarity method is used to compute the similarity between any two names. A

name can be an operation name defined by the attribute name in the operation tag or

element name defined by the attribute name in the element tag. The similarity of two

strings relies on pre-processing steps such as tokenization and elimination the stop words.

If a string is defined as a set of terms { tv ..., t n}, where a term is a single word. Two

strings S={tv ...,tn} and S ={tv ...,tm} are similar if their terms are similar based on

definition 5.2.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each term in the resulting string is used as atomic unit in finding the similarity between

two name fields. The relation between terms is measured using the WordNet Dictionary

described in section 2.1.5.

In this study, only the synonyms and the hypernym are considered. Considering all

relations is computationally expensive and will not contribute much to the similarity

measures. Two terms are semantically similar if their WordNet synsets are connected.

The strength of a relationship is calculated as follows:

' S - S . + l '

depth
5.1

Where Semsjm (t , t) is the semantic similarity between the source term t and the target

term t . Sc is the sense size and it represents the number of senses o f the source term. S n

is the sense ranking number of the target term in the source senses and it represents how

early in the returned list is the target term appears. The depth represents the path between

the source term and the target term. The depth of a synonyms relation is always equal to

one since they are directly connected.

This formula gives more importance to the most frequent sense as they appear at the

beginning o f the sense list [79]. This formula has been applied to both synonyms and

hypernyms relations. As described in section 2.1.5 the JWNL APIs [69] is used to access

the WordNet dictionary to obtain the values of the parameters mentioned above.

Example:

Measuring the relations between car and automobile is as follows:

The noun "car" has 5 senses in WordNet.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. car, auto, automobile, machine, motorcar — (wheeled motor vehicle; usually

propelled by an internal combustion engine; "he needs a car to get to work")

2. car, railcar, railway car, railroad car — (a wheeled vehicle adapted to the rails of

railroad; "three cars had jumped the rails")

3. cable car, car - (a conveyance for passengers or freight on a cable railway; "they

took a cable car to the top of the mountain")

4. car, gondola — (car suspended from an airship and carrying personnel and cargo

and power plant)

5. car, elevator car — (where passengers ride up and down; "the car was on the top

floor")

From the above, the term automobile appeared as a first sense in the term car senses and

the total car senses are five. The similarity of the car to the automobile is as follows:

5 -1 + 1

Semsim (car, automobile) = ---- ̂ = 1

The total result is evaluated to 1 as the automobile is one of the most frequent used

synonyms for car. For example measuring the similarity between car and cable car will

result in similarity score equal to 0.6 since the cable car is the third in the list of most

frequent used synonyms

The above procedure is applied to every two terms in the compared strings.

The result is two lists o f terms where each term in one list has a similarity weight with

every term in the other list. The final score is determined by applying the Hungarian

algorithm on the two lists.

After computing the semantic similarity of operations’ names, the semantic and the

structure similarity o f their input and output parameters is computed. The goal is to

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determine which parameter in the source operation corresponds to which parameter in the

target operation that maximizes the total sum of parameters’ similarity weight.

5.3.2 Parameters Similarity

In WSDL, parameters are defined using message elements. Each massage can be either

input message or output message. Each message defines one or more part element. Each

part element defines an operation’s parameter. The messages are described separately to

allow messages reuse. Since each massage can be either input or output, more than one

operation may use the same input/output parameters. Caching these parameters will speed

up the computation time. Given that, measuring parameters similarity consumes most of

operations similarity time, a cache hit will significantly reduce the time required for

computing the similarity. When parameters are compared, we first consult the cache. If

the result is in the cache, it is returned without any further computations. If it isn't in the

cache, the parameters similarity is computed and stored in the cache.

The parameter (part element) consists of two attributes; name attribute and typing

attribute. The name attribute defines the name of the parameter and the typing attribute

defines the type o f the parameter. The typing attribute can be either an element with a

value referencing an element in the types’ element o f WSDL or type with a value as built-

in data type.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider the following messages:
4

• message 1:
<message name="ChangeForceUnitHttpGetIn">

<part name="ForceValue" type="string" />
</message>

• message 2:
<message name="ChangeForceUnitSoapOut">

<part name="parameters" element="ChangeForceUnitResponse" />
</message>

• type 1:

<element name=" ChangeF orceUnitResponse ">
<complexType>

<sequence>
<element name="ChangeForceUnitResult" type="double" />

</sequence>
</complexType>

</element>

Figure 20: WSDL Messages Structure

In message 1 the name o f the parameter is “ForceValue ” and the typing attribute is a type

indicating that the type is built-in type with a value of “string”. However in massage 2

the name parameter is “parameter ” and the typing attribute is an element pointing to the

type 1 which must be defined in the types’ element of WSDL file. In this case, the name

of the parameter is considered as “ChangeForce UnitResponse " and the type as a complex

type.

As described in section 2.1.3, WSDL defines types using types’ element, which contains

the schema element. The schema element organizes data types as sets of “element”,

“simpleType”, or “complexType”. An “element”, a “simpleType” or a “complexType”

that is direct child o f the schema (global element) represents a particular data type of an

input/output parameter. Therefore, element, simpleType, and complexType that are direct

children of the schema are technically data types. A data type can also reference any

other data type and can be referred by other elements more than once.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let O and O be two structure operations

0= (Ip v Ip 2,... Ip O pv O p2,...O pm) fo r source operation O

O = (Ip \,Ip2,...Ip n; O p\,O p2,...O p m) for target operation O

Where Ip denotes the input parameters and Op denotes the output parameters.

The similarity between two parameters is computed as follow:

s im (0 ,0) = ((max ^ sim{Ipi, Ip j)) / max(\Ip\, \Ip \))*0.5+((max 'YJsim{Opi,Opj)) /
i e O je O ieO JeO

max(\Op\,\Op |))*0.5

The similarity of operations’ parameters is measured based on the similarity o f their input

parameters and the similarity of their output parameters. The final score is normalized to

a value range between 0 and 1.

The similarity o f any two parameters is based on the similarity of their names (identifiers)

and the similarity o f their type. The similarity of their names is computed based on the

string similarity described in section 5.3.1. The similarity o f their data type is based on

the structure of the XML schema describing their types and is computed based on the

similarity of two nodes in XML schema. There are two steps in computing nodes

similarity; first is modeling the two schemas as trees and second is measuring the

similarity between nodes in the trees.

5.3.2.1 Schema Modeling

If the schema element is modeled as a root of tree, all data types and referenced data

types will be represented as direct children (known as global elements) o f the root. The

similarity between two data types becomes the similarity between two global elements.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A labelled tree is used to represent the structure of the schema. The schema <schema>

element is parsed and its elements are translated into nodes with the name of element as

the label of the node. Each element in the schema (“element”, “complexType”,

“simpleType”, “group”, “sequence”, “all" and “choice”), is represented by a node in

the tree. For example, the root element has its label as ‘schema”. It is important to notice

that the order indictors are also represented as nodes.

The Order indictors are used to describe the order in which their children elements

should occur. The all indictor indicates that its direct children elements can appear in any

order, but must appear once and only once. The choice indicator indicates that only one

of its direct children elements can appear. The sequence indicator indicates that all of its

children elements must appear in the specified order.

Based on their type, elements may be either non-terminal (non-leaf nodes) or terminal

(leaf nodes). For example an element that is a built-in type (i.e. float) will be modeled as

a leaf node and an element that is a complexType type will be modeled as non-leaf node.

The tree structure reflects the nesting relations of the schema elements, which in return

reflects the structure o f data types. As data types in WSDL are direct children of schema

element, the root o f the tree is always ‘schema’. The label o f a node determines the

importance of its children order. For example the order of direct children of the schema

element is irrelevant as each element is an atomic unit that describes the structure of a

particular data type. On the other hand, the order of children of a sequence node must be

considered in the similarity measure.

During the modeling, both reference and group definitions are considered. The reference

definition is a mechanism to simplify XML schema structure through enabling the reuse

by sharing common segments. There are two methods of reference in XML schema

specification; data type referencing and name referencing. Data type referencing is

created by the clause “type=dataTypeName” where “dataTypeName ” is a complexType

or a simpleType. The name referencing is created by the clause “ref=elementName,,

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where “elementName ” is a name of another element. All referred types must be global

elements. The group definition provides a way of component reuse. It groups a set of

related elements using the tag <group name= “groupName” >. The group element can

be referenced by any other element using “groupName

5.3.2.2 Nodes Similarity

XML Schema similarity has attracted a lot o f attention due to the extensive adoption of

XML-based representation of data. As described in section 2.2.3, several algorithms have

been developed to measure the similarity between XML schemas. Some of these

algorithms measure the similarity of XML files based on common DTD [41], Others are

developed for general-purpose schema matching including the relational schema and

XML Schema [7,35]. Since these algorithms did not specifically developed for XML

schema, they do not consider all of XML schema properties and most o f them require

human interaction ore globally defined schema.

In this work, we propose XML schema similarity algorithm. The aim of this algorithm is

to match nodes (sub-trees) instead of the matching the over all schemas. As we are

targeting a small XML trees, any changes to the structure o f a node will largely affect the

accuracy of the result. Thus the proposed algorithm gives special importance to the node

structure by considering all the properties of XML schema structure. Each node has

structure that defines the properties of an element including name, category, type, max

occurrence, and min occurrence.

The similarity between the names o f any two nodes (elements) is computed based on the

string similarity described in section 5.3.1. As described in section 2.1.1, XML schema

allows the specification of minimum and maximum occurrences with range from 0 to

unbounded. It is unnecessary and cumbersome to compare all the cardinalities in this

range. Thus, the total similarity of nodes is reduced by factor of 10% if their occurrence

attributes do not match. For example if the total similarity o f nodes names and data type

is 1, the total score will be reduced to 0.9 if there occurrence attributes do not match.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The type similarity of two elements is measured based on their category. In XML schema

elements are organized into three categories; built-in type, simple type, and complex type.

The similarity between any two types z and z is computed based on the following rules:

o If r and z are built-in type, their similarity is measured based on their types

similarity obtained from cardinality table,

o If r and z are simple types, their similarity is measured based on base their

type and their facets. Constrain facets are considered only i f the two elements

have the same base.

o If z and t are complex type, their similarity is measured based on their list

types { z x, . . . , z j and { z \ , . . . , z ' j

o If z is a built-in type and z is a simple type, only the base type of the simple

type is considered. However penalty is applied,

o If r is a built-in type and z is a complex type, the build-in type element is

compared with all complex type list of types { z \ , . . . , z ' j .

o If z is a simple type and r is a complex type, the simple type is compared

with complex type list of types {z\ , . . . , zn}

• Similarity of Built-in Data Types

There are forty-four built-in types (e.g. int, float,...), including nineteen primitive and

twenty-five derived. For example, a built-in type parameter can be defined as follows:

<element name= “temperature” type= “float”/>

The above element defines a parameter of type float with a name as temperature. Instead

of measuring the similarity between each two built-in types, a compatibility table

obtained from [61] is used. The use of the compatibility table is to reduce the matching

time. It divides the built-in types into a set of classes based on their relationships as

described by XML schema specifications. It assigns a relationship weight between any

two classes. The built-in types are organized into seven classes; binary, Boolean,

dateTime, float, idRef integer, and string. The complete list of each class is presented in

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

appendix C. The similarity weight between any two classes is determined based on table

4.

binary boolean dataTime float idRef integer string

binary 1
boolean 0.2 1

dataTime 0.3 0 1
float 0.8 0.1 0.2 1
idRef 0 0 0 0 1

integer 0.6 0.6 0.6 0.9 0 1
string 0.6 0.6 0.8 0.6 0.9 0.7 1

Table 4: Cardinality Table for XML Built-in Types

The similarity between two built-in data types is computed in two steps: the first step is to

transform any two built-in types x and x to a class type.

Definition 5. 3 (transformation similarity)

sim Tram (x , x ') = 3 a transformation function 8 such that sim (8 (x), 8 (x)) is

maximized

Where sim Tram (x ,x) is the similarity o f types x and x

Example:

Consider comparing nonNegativelnteger with negativelnteger and nonNegativelnteger

with double. First the types are mapped to a class type using transformation function 8 .

If the two types belong to the same class, their similarity score is evaluated to 1, as shown

in (a). If they belong to two different classes, their similarity score is computed based on

table 4, as shown in (b).

(a) Similarity o f two types belong to the same class

8 (nonNegativelnteger) -» integer

8 (negativelnteger^ —>■ integer

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sim (integer, integer)=1

(b) Similarity o f two types belong to the same class

S (nonNegativelnteger) —»■ integer.
8 (double) —> float.

sim(integer, floa t)=0.9

• Similarity of Simple Data Types

A simple type is defined in term of its base type b and it’s constrain facet list 1(c), where

be Built-in data type. There are over twelve constraining facets that can be applied to a

simple type. As described in section 2.1.2, these facets depend on the base type. For

example, the constraining facets for string base are {length, minLength, maxLength,

pattern, enumeration, whiteSpace}.

Example:

<element name="car" type= “carType”/>

<simpleType name=“carType”>
Restriction base="string">

Enum eration value="Ford" />
Enum eration value="BMW" />

</restriction>
</simpleType>

Figure 21: XML Schema Constraining Facets Example

The above example defines a simple type element. Its name is a car and its base is string.

This definition indicates that only the “Ford” and “BMW” are accepted as input values.

The similarity o f two simple types is determined by the similarity o f their base and their

facets.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 5.4 (simple type similarity) given two simple types T= (b, 1(c)) and T ’=

(b\ I ’(c)),

sim slmpiCType (T> T)=sim(b, b')+sim(l(c),l' (c))

The total similarity o f two simple types is based on measuring the similarity o f their bases

and the similarity o f their constraining facets. As the base e Built-in type, measuring the

similarity of their bases is considered as measuring the similarity o f two built-in types.

However the constraining facets similarity is determined based on the similarity of their

constrains lists 1(c) and / (c). Constrains lists are compared only and only if they belong

to the same base.

• Similarity of Complex Data Types

Complex type element is a tuple (r R), where t = { r , , tJ , n> 1, r, e {built-in type,

simple type, complex type} and R is an order relationship R e {sequence, all, choice}, that

define the order o f the list elements { r , ,..., tJ . Each element r, e {Built-in type, Simple

type, Complex type}.

It is important to notice that a complex type is recursively defined when r, is a Complex

type. This recursive process will terminate at a point when all elements in t have types

t, € {Built-in type , Simple type}. It is also important to notice that the length of the list

type r is not determined. The similarity between two complex type elements r andr do

not require that the le n (r) is equal to len(r). The following example shows a recursive

structure of a complex type:

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<element name=”car” >
<complexType >

<sequence>
<element name="type" type="carInfo" />
<element name="color" type="string" />

</sequence>
</complexType>

</element>

<complexType name=”carInfo”>
<all>

<element name="carType" type="string" />
<element name="year" type="date" />

</all>
</complexType>

Figure 22: Complex Type Element Structure Example

Note that the car element is a complex type that has one of its element recursively defined

by referencing another complex type “carlnfo”. Note that car element has a sequence

relation for its children elements indicating that “carType” and color should be in the

specified sequence. The “carlnfo” is defined as a complex type with two children.

However, its children defined using an all indicter indicating that the order of the children

is not important.

The similarity o f two complex type elements is based on the relationship o f their children

elements. The comparison process will use the following relationship rules to compute

the similarity o f any two complex type elements:

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source Target Applied
Relationship

Sequence Sequence Sequence
Sequence Choice Choice

All All All
All Sequence Sequence
All Choice Choice

Choice Choice Choice
Choice all All
Choice Sequence Sequence

Table 5: Complex Type Relationship Indicators

o Similarity of All Elements

The all relationship indicates that its children elements can appear in any order.

The similarity between two complex types r and t with all relationship is

computed based on definition 5.5.

Definition 5.5 (all similarity)) given two complex types T= (1(c)) and T ’= (I’(c))

with all relation

d m reorder (T ,T)= (max sim(ri , t j)) / max(len(T),len(T)
i e r j e r '

Each element r, in one list is compared to every element r'; in the other list. The

maximum sum is calculated using the assignment Hungarian algorithm, then, the

sum is divided by the larger length of the two lists.

Consider the following example:

<complexType> <complexType>
<all> <all>

<element name= “email” type = “string”/> <element name= “email” type= “string"/>
< element name= “phone" type= “ string"/> <element name= “phone” type= "string"/>
<element name= “fa x ” type= “string"/> <element name= “fa x ” type= “string”/>

</all> </all>
</complexType> </complexType>

Figure 23: XML Structure of All Indicator

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fax fax

Figure 24: Comparison of All Indicator

Each element in one complex type is compared to all elements o f the other

complex type. The total similarity is the maximum sum of the similarity scores of

all elements such that each element in the source is matched with only one

element in the target.

o Similarity of Sequence Elements:

The sequence relationship restricts the order of its children to be in the specified

sequence. The similarity o f sequence children is computed as follow:

Definition 5.6 (sequence similarity) given two complex types T=l(t) and T ’=

l ’(r) with sequence relation

Shnsequence (T,T) = Y Jsimf n T ') / max(len(T),len(T))
ier

A mapping function will map each element x , in the source x to the

corresponding element r, in target r .

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider the following example:

<complexType> <complexType>
<sequence> <sequence>

<element name= email type= string /> <element name= “email” type= “string’'/>
<element name= “phone" type= “string"/> <element name= “phone" type= “string"/>
<element name= Fax type= string /> <element name= “Fax" type= “string"/>

</sequence> </sequence>
</complexType> </complexType>

Figure 25: XML Structure of Sequence Indicator

Figure 26: Comparison of Sequence Indicator

The similarity is computed as follow:

Total similarity=(sim(email,email) +sim(phone,phone) +sim(fax,fax))/3.

o Similarity of Choice Elements:

The choice relationship indicates that only one element o f its children can appear.

In the choice relationship, elements are compared using all relationship rules.

Only the pair that scores the maximum value is considered as the final score.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 5.7 (choice similarity) given two complex types T= (l(r)) and T ’=

(l’(r)) with choice relation

sim (T,T) =max(sim(ri, T f)

Consider the following example:

<complexType> <complexType>
<choice> <choice>

<element name= “email” type= “string”/> <element name= “phone" typ e - “string"/>
<element name= "address ” typ e - “string"/> <element name= “email" typ e - “string’7>
</choice> <element name= “fax" type= “string”/>

</complexType> </choice>
</complexType>

Figure 27 : XML Structure Choice Indicator

conptexTyps

Figure 28: Comparison of Choice Indicator

The highest similarity score o f any pair is considered as the final similarity score. The

highest similarity pair is determined using the Hungarian stable matching algorithm.

• Similarity Between Built-in Data Type and Simple Type:

Simple type element consists o f a base and facets. However, when compared with a built-

in type, the facets constrains are ignored. The comparison process considers only the

base. Both types are compared as built-in data types. As the two data types belong to

different categories a penalty factor a is applied.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Similarity between non-complex Type and Complex Type:

Comparing two complex types is determined based on their children {x j , . . . ,xn} and their

relationship R. However, the similarity between non-complex type element x and a

complex type x is computed by comparing non-complex type x to the complex type

children {r , xn}. For example if x and r, are both build-in type, then the similarity

between two built-in type elements is applied. If x is a built-in type and r, is a complex

type, then we recursively compare x to all elements of r, .the recursive process will

terminate when all elements are built-in types and simple types. The total score is

calculated as follows:

Definition 5.8(non-complex type to complex type similarity)

sim (x , x) = 'Y_t (sim (x,xlf) / le n (x ')

Consider the following two elements:

<element name= “name” type= “string”>

<element name=personalInfo>
<complexType>

<all>
<element name= “name" type= “string”/>

<element name= “contactlnfo” />
<complexType>

<all>
<element name= “email" type= "string"/>
<element name= “phone" type= “string"/>

</all>
</complexType>

< /element >
</all>

</complexType>
</element >

Figure 29: XML Structure of Built-in Type and Complex Type

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 30: Comparing Primitive Type Element to Complex Type Element

sim(name,personalInfo)=
(sim(name, name) +sim(name, contactInfo))/len(personalInfo)

sim(name,contactInfo)= (sim(name, email)+ sim(name,phone))/len(contactInfo)

It is important to notice that as the depth of the tree of the complex type grows or the

number of its children increases, the total score decreases.

5.4 Time Complexity Analysis
There are three major steps in computing the structural similarity o f Web services. The

first is the operation similarity. The second is the parameters similarity. The third is the

data types similarity.

5.4.1 Operations Similarity

Given two web services w and w each containing a collection of operations:

w = {Oi, ...,OnJ

w ’ = {O ’i, . . . ,0 ’m}

Where n and m are the number of operations in the source and the target Web services

respectively. Each operation in the source Web service is compared with all operations in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the target Web service resulting in time complexity equal to 0(m x n) . However

computing the total sum using the Hungarian Method for Weighted Bipartite Graph
o

requires polynomial time complexity equal to 0(n+m) [31].

5.4.2 Parameters Similarity

Given two operations O and O ’, each containing collections of input parameters and

output parameters:

O= (Ipv Ip 2,...Ip n; O pv O p2,...O pm) fo r source operation O

O = (Ip \,Ip2,...Ip ' ■; O p\,O p2, ...Op m) for target operation O

Where Ip denotes the input parameters and Op denotes the output parameters. The

complexity of comparing the input parameters of the source operation to the input

parameters of the target operations is equal to 0 (n x n) , where n is the number of input

parameters of the source operation and n is the number of input parameters o f the target

operations. The total sum of input parameters similarity is computed using the Hungarian
i i

Method for Weighted Bipartite Graph resulting in time complexity equal to 0(n+ n) .
i 5

Similarly, the time complexity of the output parameters similarity is equal to 0(m+ m) .

5.4.3 Data Types Similarity

Given two XML types u and v, their structural similarity is determined based on their

category. Consequently, their time complexity is determined based on their structure.

Case 1: Both u and v are either built-in types or simple types (do not have children).

Clearly, the time com plexity in this case is a constant.

Case 2: Both u and v are complex types. In this case, the complexity depends on their

children ordering relationship (all, sequence or choice) and the number of children

elements of u and v. Assume the number of children of u is equal to n and the number of

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

children of v is equal to m, then if their ordering relation is choice or all, the complexity is

equal to 0(m x n) . If their relation is a sequence, then the complexity is equal to 0(n).

However computing the total sum using the Hungarian Method for Weighted Bipartite

Graph will require 0(n+m) time complexity.

Case 3: Type u is non-complex type and type v is a complex type. In this case u is

compared with all children o f v resulting in complexity equal to 0(n)

From the above analysis, the worst case for our algorithm is a polynomial time
3

complexity equal to 0(n) .

5.5 Experiments

This section presents the experimental design and the results analysis for evaluating the

performance of the similarity measure algorithm. In particular we are measuring the

recall, precision, Top-K precision and the response time to the query. We ran three kinds

of experiments to evaluate the system. The first kind of experiment uses operation

description as a query. The second kind of experiment uses partial operation description

as query and the third kind o f experiment uses Web service description as query. All

experiments are preformed on the same set of queries, machine and data collection used

in chapter 4.

5.5.1 Performance

5.5.1.1 Operation Similarity

Operation similarity measures the relevance of operations in the collections of Web

services to query operation. Web services are broken down into operations and the query

operation is compared to each operation in the collection. It is possible that not every

operation in a Web service relevant to the query and operations in the same Web service

may have different ranking scores.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Measuring the performance of operations similarity requires identifying all operations

that are relevant to the query operation. We have specified a total o f 36 operations 18 of

them are relevant to the queries operations. All operations similarity measurements are

preformed on this set o f operations. The total set of operation and their Web services are

presented in appendix B.

The same set of operations descriptions presented in the text comparison is used as

queries to measure the structure similarity. The result is a list o f operations names

proceeded by the name of the Web services that contains the operation. Table 5.3

presents the experiments result:

Operations used as
Queries

Num ber'of
operation

above
Threshold Precision Recall Response

Time(ms)

Response
time(ms)
Caching

US Weather:

GetWeatherReport
36 19 94.7 100 5344 5015

WeatherForecast:

GetWeatherByPlaceName
36 20 95 100 3750 3750

WeatherByZip:

Get W eatherByZip

36 20 90 100 2422 2403

Table 6: Operation Similarity Results

The average performance of the operations exceeding a threshold o f 25 % is as follows:

The response time to the query without using the cache was 3838 millisecond. The

response time to the query using the cache was 3722 millisecond. The precision is 93.23

% and recall of 100%. The top-k precision has achieved 100% precision at Top-1 %

recall, 100% precision at Top-5 % recall, 100% precision at Top-10 % recall, 90%

precision at Top-25% recall, 93.3% precision at Top-50% recall and 95.5% precision at

Top-75% recall. The following graph illustrates the distribution of precision at different

recall points.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation Structure Similarity

100

c
80 -co

w
60 -o

£Q.

0 25 50 75 100

Top-K %

Figure 31: Operation Structure Similarity Precision and Recall Graph

5.5.1.2 Operation Partial Similarity

In previous discussion of operation similarity users have to specify operation name, input

parameters and output parameters to be able to search for similar operations. A more

practical approach is to allow the user to specify only a sub set o f the required

information. For example, users may have difficulty determining the type o f the input

because they are more interested in the type of the output. Allowing users to define an

input type that matches any type in the advertised operations is more useful in this case.

In this section we will investigate the partial operation structure similarity using either

operation name or parameters structure as query. This kind of search does not exploit full

aspects of the structure similarity; however it gives a general assessment about operations

related to the query. The user can provide more information for more precise similarity.

Table 7 described the results of structure similarity using only the operations name as

query.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Queries as operation
names

Number of
operation above

Threshold
Precision Recall

Response
Time(ms)

USWeather:

GetW eatherReport
36 18 100 100 1734

WeatherForecast:

GetWeatherByPlaceName
36 19 94.7 100 1954

WeatherByZip:

GetWeatherByZip

36 20 90 100 1969

Table 7: Operation Name Similarity Results

The average performance o f the operations exceeding a threshold of 25 % is as follows:

The response time to the query was 1885 millisecond. The over all precision is 94.9%

with over all recall of 100%. The top-k precision has achieved 100% precision at Top-1

% recall, 100% precision at Top-5 % recall, 100% precision at Top-10 % recall, 93.3%

precision at Top-25% recall, 92.6% precision at Top-50% recall and 95.3% precision at

Top-75% recall. The following graph illustrates the distribution o f precision at different

recall points.

Operation Name Similarity

100

■E 80 - c o
w
o 60 -
£Q.

40
0 25 50 75 100

Top-K %

Figure 32: Operations Name Structure Similarity Precision and Recall Graph

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8 described the results of structure similarity using only the operations parameters

as query.

Queries as operation
parameters

Number of
operation above

Threshold
Precision Recall Response

Time(ms)

USWeather:

Get W eatherReport
36 17 53 50 4703

WeatherForecast:

GetWeatherByPlaceName
36 17 47 44 3063

WeatherByZip:

GetWeatherByZip

36 13 53 72 1625

Table 8: Operation Parameters Similarity Results

The average performance of the operations parameters exceeding a threshold of 25 % is

as follows: The response time to the query was 3130 millisecond. The over all

precision is 50 % and over all recall of 55%. The top-k precision has achieved 100%

precision at Top-1 % recall, 100% precision at Top-5 % recall, 66% precision at Top-10

% recall, 65% precision at Top-25% recall, 64% precision at Top-50% recall and 58%

precision at Top-75% recall. Figure 5.16 illustrates the distribution of precision at

different recall points.

Operation Parameter Similarity

100

80 -

60 -

40
25 50

Top-K %
10075

Figure 33: Operations Parameters Structure Similarity Precision and Recall Graph

From figure 26 and figure 27, both name similarity and parameter similarity have 100%

precision at very low recall point. However at higher recall points name similarity has

much higher precision

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1.3 Web Services Similarity

In Web services similarity, the structure of all Web services pass the text comparison

filter is compared with the query. In addition to the precision, recall and top-k precision

we investigated the relationship between the response time, file size and the number of

operations in the Web service. The affect of caching has been also investigated. Only

results exceeding a threshold o f 25% are considered.

Query
File
size

bytes

o f
oper.

Number
Services above

Threshold
Prec. Recall Response

time(ms)

Response
time(ms)
Caching

USWeather 4544 3 16 14 100 87.5 16313 10953

WeatherForecast 10482 6 21 17 70 75 78640 40844

WeatherByZip 4954 3 31 25 56 87.5 24422 18500

Table 9: Web Services Structure Similarity Results

The following measurements are based on the average performance. The response time to

the query without using the cache was 39791 millisecond. The response time to the query

using the cache was 23432 millisecond. The over all precision is 75.3% and over all

recall of 83.3%. The top-k precision has achieved 100% precision at Top-1 % recall,

100% precision at Top-5 % recall, 100% precision at Top-10 % recall, 88.6% precision

at Top-25% recall, 83.5% precision at Top-50% recall and 75.6% precision at Top-75%

recall. The following graph illustrates the distribution of precision at different recall

points.

WebServices Structure Similarity

100

8 0 -

6 0

4 0
2 5 5 0

T o p - K %

7 5 100

Figure 34: Web Services Structure Similarity Precision and Recall Graph

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, the relations between the WSDL sizes, the number of operations and the

execution time have been also measured.

Table 10 and figure 29 illustrate the relation between the number o f operations and the

execution time for USWeather Web service.

Number of

Operation in the

Target Service

Average Execution

time with Caching

Average Execution time

with

No Caching

1-5 199 280

5-10 589 828

15-20 2281 4211

Table 10: Relation between Number of Operations and Execution Time for USWeather

USWearher Web Service

5000

^ — C a c h in g
- - N o C a c h in g

4000

3000

2000

1000

20 25

N um ber of Operation

Figure 35: Relation between Number of Operations and Execution Time for USWeather

Table 11 and figure 30 illustrate the relation between the file size in kilo bytes and the

execution time for USWeather Web service.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File size
Average execution

time with Caching

Average execution time

with No Caching

l-5k 31 47

5-10k 310 425

10-15k 500 750

20— 25k 1570 2625

Table 11: Relation between File Size and Execution Time for USWeather

USWeather Web Service

3000
 C a c h in g

- - No C a c h in g
2500

2000

1500

1000

500

0
0 10 20 30

File Size in k

Figure 36: Relation between File Size and Execution Time for USWeather

Table 12 and figure 31 illustrate the relation between the number of operations and the

execution time for WeatherForecast Web service.

Number of

Operation in the

Target Services

Average execution

time with Caching

Average execution time

with

No Caching

1-5 199 280

5-10 589 828

15-20 2281 4211

Table 12: Relation between Number of Operations and Execution Time for WeatherForecast

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WeatherForecast Web Service

9000
8000
7000
6000
5000
4000
3000
2000
1000

 C a c h in g

- - No C a c h in g

20 25

Number of Operation

Figure 37: Relation between Number of Operations and Execution Time for WeatherForecast

Table 13 and figure 32 illustrate the relation between the file size in kilo bytes and the

execution time for WeatherForecast Web service.

Target Web

Service File size

Average execution

time with Caching

Average execution time

with No Caching

l-5k 31 47

5-10k 310 425

10-15k 500 750

20— 25k 1570 2625

Table 13: Relation between File Size and Execution Time for WeatherForecast

WeatherForecast Web Service

10000 C a ch in g

- - No C a ch in g8000 -

6000 -

4000 -

2000 -

30 40

File Size in k

Figure 38: Relation between File Size and Execution Time for WeatherForecast

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 14 and figure 33 illustrate the relation between the number of operations and the

execution time for WeatherByZip Web service.

Number of

Operation in Target

Web Services

Average execution

time with Caching

Average execution time

with

No Caching

1-5 199 280

5-10 589 828

15-20 2281 4211

Table 14: Relation between Number of Operations and Execution Time for WeatherByZip

WeatherByZip Web Service

2500
-— C a c h in g

- - N o C a c h in g
2000

1500

1000

500

10 15 20

Number of Operation

25 30

Figure 39: Relation between Number of Operations and Execution Time for WeatherByZip

Table 15 and figure 34 illustrate the relation between the file size in kilo bytes and the

execution time for WeatherByZip Web service.

File size
Execution time with

Caching

Execution time with No

Caching

l-5k 31 47

5-10k 310 425

10-15k 500 750

20— 25k 1570 2625

Table 15: Relation between File Size and Execution Time for WeatherByZip

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WeatherByZip Web Service

2 0 0 0 n
 C a c h in g

- - N o C a c h in g1500 -

1000 -

500 -

20 25 30

File Size in K

Figure 40: R elation betw een F ile Size and E xecution T im e fo r W eatherB yZ ip

From the above tables and figures, the execution time increases with the file size or the

number of operation o f the target Web services. As the size of file increase, the number

of operations in the file increases. The higher the number of operations in a Web services,

the larger the possibility of parameters reuse, the more effective the cache is.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Results Analysis

The experiments results have shown that the time required for operations similarity is

much less than the time required for the Web services similarity. That is expected as a

Web service may contain more than one operation. The cache has almost no effect on the

operation similarity and that is due to the collection o f operation selected for the

experiments. As the set o f operation has been selected form different Web services and

from different categories to measure the effectiveness of the system, it is not expected

that these operations would use the same parameters. The query response time for

operation search is less than 4 seconds and operation search has archived over 90%

precision with 100 % recall and most of the related services have been ranked at the top

of the returned list. The partial operation search has shown that operation name similarity

achieved higher recall and precision and less execution time than the operation

parameters similarity. Web service structure similarity response time is higher than the

operation search response time. The average response without cache is less than 40

seconds and with using the cache is less than 25 seconds. Web service search has

achieved an average over 75% precision and over 80% recall. The effect of the cache is

apparent with Web services containing more than 15 operations or file size over 10 k.

5.6 Conclusion

In this chapter we have described the structure similarity measure for operation search

and Web service search. Bipartite graph matching and tree matching algorithm have been

used to measure the similarity o f operations and Web services. The names similarity has

been computed using WordNet dictionary. The input parameters o f the source operation

are only compared to the input parameters of the target operation and the output

parameters of the source operation are only compared to the output o f the target

operation. A caching mechanism has been used to increase the computational time. XML

schema syntax such as element cardinality and order indicators and group style has been

considered. Extensive evaluation of the system has shown the system preformed well in

term of efficiency and effectiveness.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusion and Future Work

6.1 Conclusion

There are five contributions of this work:

• A novel approach for Web service searching based on bipartite graph

matching

• A new algorithm for XML schema matching based on recursive tree matching

• Increasing the speed of the matching process by utilizing parameters caching

• Introducing a search engine that provides three searching criteria with two

filtering modes

• Extensive experiments on matching real life Web services and comparative

analysis

The experiments results of text comparison have shown that the time required for the pre

processing and the indexing of Web services collections was relatively high. However

since the pre-processing is only computed once on the collection o f documents, it does

not largely effect the query processing. The size of the index was only 14.2% of the

original size of the total collection. Both operation filtering and web services filtering

have achieved high precision and recall and were able to rank the relevant results at the

top of the retrieved list. Text comparison has succeeded in filtering over 98% of the

irrelevant Web service. In the structure similarity, experiments results have shown that

operation similarity has achieved over 90% precision with 100 % recall and web service

similarity have achieved over 75% precision and over 80% recall. The response time for

operation query is much less than the response time for a Web services query. The cache

has almost no effect on the operation structure similarity; however, it has enormous effect

on Web service similarity especially web services with large number o f operations. The

partial operation search has shown that operation’s name similarity achieved higher recall

and precision and less execution time than the operation’s parameters similarity.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Future Work

The system can be extended to include signature matching. The signature matching is

crucial for automatic Web services composition, where the output o f one operation is

automatically passed to another operation. The signature matching should return a

Boolean matching score that indicates two operations can be integrated or not. For

example the use o f WordNet dictionary and type cardinality tables will not be effective in

this case. The type matching sub system can also be extended to include subtypes. The

subtype measure will be able to identify when a type is included in anther type based on

the structure o f the two types and consequently determines whether the two types can be

substituted. Other Web service discovery benchmark can be implemented and compared

with the results obtained from our system to identify the weakness and advantages of the

system.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

1. A. Ankolekar et al: DAML-S: Semantic Markup fo r Web Services, Proceedings of the
International Semantic Web Workshop, 2001.

2. A. Ankolekar et al., DAML-S: Web Service Description fo r the Semantic Web. The

semantic Web-ISWC 2002: Proc. 1st Int’l Semantic Web Conf. (ISWC), Springer-

Verlag, Berlin, 2002, pp. 348-363.

3. N.J. Belkin and W.B. Croft. Information filtering and information retrieval: two
sides o f the same coin? CACM, Dec. 1992. 35(12), pp. 29-37 (8)

4. Boualem Benatallah and Fabio Casati: An Overview o f Standards and Related
Technology in Web Services. Distributed and Parallel Databases, 12, 135-162, 2002

5. D. Bianchini, V. De Antonellis, B. Pemici, P. Plebani: Ontology based methodology
fo r e-Service discovery, Information Systems Journal

6. B. Cheng and Y. Chen, "A Semantic Foundation fo r Specification Matching," in
Foundations o f Component-Based Systems, Eds. M.Sitaraman and G. Leavens,
Cambridge University Press, 2000. pp. 91-109

7. Hong-Hai Do and E. Rahm. COMA-A system fo r flexible combination o f schema
matching approaches. Proceedings of the 28th VLDB Conference, Hong Kong,
China., 2002

8. Hong-Hai Do, S. Melnik and E. Rahm. Comparison o f schema matching evaluations.
Proceedings o f Gl-Work “Web and Database”, Oct. 2002.

9. A. Doan, P. Domingos, and A. Levy. Learning Source Descriptions fo r Data
Integration. In Proceedings o f the International Workshop on the Web and Databases
(WebDB), Dallas, Texas, 2000. pp. 81-92, 2000

10. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas o f disparate data
sources: A machine-learning approach. In proc. SIGMOD Conference, 2001

11. X. Dong, A. Halevy, J. Madhavan, E. Nemes and J. Zhang: Similarity Searching fo r
Web Services. Proceedings o f the 30th VLDB Conference, Toronto, Canada, 2004

12. D. Fensel, etal: The Unified Problem-solving Method development Language UPML.
Knowledge and Information Systems Volume 5, Issue 1, Pages: 83-131 Springer-
Verlag New York, Inc. New York, NY, USA, March 2003

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.
http://informatik.uibk.ac.at/users/c70385/wese/wsmf.bis2002.pdf (viewed April 2004)

14. M. J. Fisher, J. E. Fieldsend and R. M. Everson. Multi-Objective Optimisation fo r
Information Access Tasks, viewed January 28, 2005 at

http://www.dcs.ex.ac.uk/people/mifisher/MOOIA.pdf

15. Xiang Gao; Jian Yang; Papazoglou, M. P; The Capability Matching o f Web Services.
Multimedia Software Engineering, Proceedings. Fourth International Symposium on
,11-13 Dec. 2002 Pages:56 - 63

16. M. Garofalakis, and A. Kumar. Correlating XML Data Streams Using Tree-Edit
Distance Embeddings. In Proceedings of ACM PODS’2003. San Diego, California,
June 2003, pp. 143-154. ACM Press.

17. David Grossman: Information Retrieval. Viewed December 2004 at
http://ir.iit.edu/~dagr/cs529/files/ir book/

18. David Grossman: Retrieval Strategies and Vector Space Model, Implementation
details, viewed in December 15, 2004 at: http://ir.iit.edu/~dagr/cs529/files/handouts/
03VectorSpaceImplementation-6per.PDF

19. Grossman, Frieder and Goharian, Boolean Vector Space. Viewed December 15 2004
at: http://www.eng.auburn.edu/~gilbert/Comp7120/Concept-50/IR-
BooleanVectorSpace.pdf

20. S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. Approximate XML
Joins. In ACM SIGMOD, Madison, WI, Jun. 2002.

21. B. Habert et al: Towards Tokenization Evaluation. In Proceedings o f LREC-98, pages
4:27-431, 1998.

22. J. Hendler and D. McGuinness, The DARPA Agent Markup Language. IEEE
Intelligent Systems, vol. 15, no. 6,Nov./Dec. 2000, pp. 72-73.

23. Wolfgang Hoschek. The Web Service Discovery Architecture. In Proc. o f the Int’l.
IEEE/ACM Supercomputing Conference (SC 2002), Baltimore, USA, November
2002. IEEE Computer Society Press.

24. Wolfgang Hoschek: A Unified Peer-to-Peer Database Framework fo r XQueries over

Dynamic Distributed Content and its Application fo r Scalable Service Discovery.

PhD Thesis, Technical University of Vienna, March 2002.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://informatik.uibk.ac.at/users/c70385/wese/wsmf.bis2002.pdf
http://www.dcs.ex.ac.uk/people/mifisher/MOOIA.pdf
http://ir.iit.edu/~dagr/cs529/files/ir
http://ir.iit.edu/~dagr/cs529/files/handouts/
http://www.eng.auburn.edu/~gilbert/Comp7120/Concept-50/IR-

25. Wolfgang Hoschek: A Unified Peer-to-Peer Database Protocol. Technical report,
DataGrid-02-TED-0407, April 2002
http://dsd.lbl. gov/~hoschek/t>ublications/DataGrid-02-TED-0407.pdf

26. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: A look behind the
curtain. Proc. o f the 22nd ACM Symposium on Principles of Database Systems
(PODS) (pp. 1-14). San Diego, CA, USA: ACM Press. 2003

27. J. J. Jeng and B. H. Cheng. Specification matching fo r software reuse: a foundation.
Proceedings of ACM software Engineering Note, pages 97-105, 1995

28. L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & suns, New York, 1990

29. M. Klein and A.Bemstein. Searching fo r Services on the Semantic Web Using
Process Ontologies. Proceedings of the First International Semantic Web Working
Symposium. Stanford CA. July 30-August 1-2001

30. Andras Komai: How many words are there?. Glottometrics 2002/4 61-86. Viewed
December 20 2004 at http://www.komai.com/Papers/hmwat.pdf

31. H. W. Kuhn, The Hungarian method fo r the assignment problem, Naval Research
Logistic Quarterly, pp. 83-97, 1955

32. D.L. Lee, Chuang Huei and K. Seamons: Document ranking and the vector-space
model Software. IEEE, Volume: 14, Issue: 2, Mar/Apr 1997 Pages: 67 - 75

33. J. B Lovins: Development o f a stemming algorithm. Mechanical Translation and
Computational Linguistics 1968; 11,22-31

34. L. Luqi. Normalized specifications fo r identifying reusable software. Proceedings of
the 1987 Fall Joint Computer Conference on Exploring technology: today and
tomorrow, Dallas, Texas, United States IEEE Computer Society Press, Pages: 46 -
4 9 , 1987

35. J. Madhavan,, P Bernstein, and E. Rahm: Generic schema matching with Cupid.
Proceedings of VLDB 49-58, 2001

36. D.L. Mcguinness, R. Fikes, J. Hendler, L.A. Stein: DAML+OIL: an ontology
language fo r the Semantic Web. Intelligent Systems, IEEE, Volume: 17, Issue:
5, Sept.-Oct. 2002 Pages: 72 - 80

37. M. Mecella, B B. Pernici, and P. Craca: Compatibility o f e-Service in a Cooperative

Multi-Platform Environment. In Proc. Of the second VLDE International Workshop

on Technologies for e-service, Room September 15-2001

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://dsd.lbl
http://www.komai.com/Papers/hmwat.pdf

38. George A. Miller: WordNet: a lexical database fo r English. Communications of the
ACM. Volume 38, Issue 11. (November 1995) Pages: 39 - 41

39. E. Motta, J. Domingue, L. Cabraland, and M. Gaspari. IRSII: A Framework and
Infrastructure fo r Semantic Web services. In The SemanticWeb - ISWC 2003, volume
2870 of LNCS, pages 306 - 318. Springer, 2003.

40. Hwee Tou Ng and Hian Beng Lee: Integrating multiple knowledge sources to
disambiguate word sense: an exemplar-based approach. Proceedings o f the 34th
conference on Association for Computational Linguistics Santa Cruz, California
Pages: 40 - 47 1996

41. A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Documents.
In Int’l Workshop on the Web and Databases (WebDB), Madison,WI, Jun. 2002.

42. N. Oren. Reexamining t f id f based information retrieval with genetic programming.
Proceeding o f the 2002 Annual Research Conference o f the South Africa.2002, pp.
224 - 234

43. K. Passi, L. Lane, S. Madria, B.C. Sakamuri, M. Mohania and S. Bhowmick: A Model
fo r XML Schema Integration. In Proc. of 3rd Intl. Conf. EC-Web, Springer LNCS
2455, pp. 193-202, Aix-en-Provence, France, Sept. 2002.

44. T. Pedersen, S. Patwardhan, and J. Michelizzi: WordNet: -.Similarity - Measuring the
Relatedness o f Concepts, the Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI-04), July 25-29, 2004, San Jose, CA

45. M. F. Porter: An algorithm fo r suffix stripping. Morgan Kaufmann Multimedia
Information and Systems Series, Readings in information retrieval. Pages: 313 —
316, 1997

46. M. F. Porter: The Porter Stemming Algorithm. Viewed Feb 2004 at
http://www.tartarus.org/~martin/PorterStemmer/

47. E. Rahm and P. A. Bernstein: A Survey o f Approaches to Automatic Schema
Matching. VLDB Journal 10: 4, 2001

48. G. Salton, A. Wong, and C. S. Yang: A vector space model fo r automatic indexing.
Communications o f the ACM, Volume 18, Issue 11, November 1975, Pages 613-620

49. G. Salton , E.A. Fox and H. Wu: Extended Boolean Information Retrieval.
Communications of the A CM, 1983, 26(11), pp. 1022-1036.

50. G. Salton, Automatic Text Processing: The Transformation, Analysis and Retrieval o f
Information by Computer, Addison-Wesley, Reading, MA, 1989.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tartarus.org/~martin/PorterStemmer/

51. Amit Singhal, Chris Buckley, and Mandar Mitra: Pivoted document length
normalization. Proceedings o f the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, August 1996

52. A. Singhal and M. Kaszkiel: A case Study in Web Search using TREC Algorithm. In
the tenth international conference on World Wide Web, Hong Kong, May 2001

53. Sycara, K.; Widoff, S.; Klusch, M.; Lu, J., LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace. Journal of Autonomous Agents and
Multi-Agent Systems, Kluwer Academic, 5, pp. 173-203, 2002.

54. K. Sycara, J. Lu, M. Klusch and S. Widoff. Matchmaking among heterogeneous
gents on the Internet. Proceedings o f the 1999 AAAI Spring Symposium on
Intelligent Agents in Cyberspace, March, 1999

55. R. Steigerwald, L. Luqi, V. Berzins: A tool fo r reusable software component retrieval
via normalized specifications. System Sciences, 1992. Proceedings o f the Twenty-
Fifth Hawaii International Conference on, Volume: ii, 7-10 Jan. 1992 Pages: 18 - 26
vol.2

56. Steven L. Tanimoto, Alon Itai and Michael Rodeh: Some Matching Problems fo r
Bipartite Graphs. Journal of the ACM (JACM). Volume 25 , Issue 4 Pages: 517 -
525 (October 1978)

57. A. Tsalgatidou and T. Pilioura: An overview o f standards and Related Technology in
Web services. In: International journal of Distributed and Parallel Databases, Special
Issue on E-services, 12(2), Kluwer, Sep 2002, 135-162

58. A. M. Zaremski and J. M. Wing: Signature matching, a tool fo r reusing software
libraries. ACM Transactions on Software Engineering and Methodology, Vol. 4, No.
2, April 1995, Pages 146-170

59. A. M. Zaremski and J. M. Wing: Specification Matching o f Software Components.
ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4,
October 1997, Pages 333-369

60. Paola Velardi, Paolo Fabriani, Michele Missikoff: Using text processing techniques to
automatically enrich a domain ontology. Proceedings o f the international conference
on Formal Ontology in Information Systems - Volume 2001

61. Ju Wang: Matching XML Schemas by a New Tree Matching Algorithm: Master thesis.
University o f Windsor. Computer Science Department. 2004

62. Y. Wang and E. Stroulia.: Semantic structure matching fo r accessing web-service
similarity. Proceedings of the First International Conference on Service Oriented

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computing (ICSOC2003), volume 2910 of Lecture Notes in Computer Science, pages
194-207. Springer-Verlag, 2003

63. Y. Wang and E. Stroulia. Flexible interface matching fo r web-service discovery. In
Proceedings o f 4th International Conference on Web Information Systems
Engineering (WISE2003).

64. Cascading Style Sheets, level 2, CSS2 Specification, W3C Recommendation 12-May-
1998 http://www.w3.org/TR/REC-CSS2/

65. Stop words list: Department o f Computing Science at the University o f Glasgow.
Viewed Jan.23 2005 at
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

66. Extensible Markup Language (XML) 1.0 (Second Edition) W3C Recommendation 6
October 2000 http://www.w3.org/TR/2000/REC-xml-200010Q6

67. Guide to the W3C XML Specification ("XMLspec") DTD, Version 2.1
http://www.w3.org/XML/1998/06/xmlspec-report.htm

68. HTML 4.01 Specification W3C Recommendation 24 December 1999
http://www.w3 ,org/TR/REC-html40/

69. JWNL (Java WordNet Library): http://sourceforge.net/proiects/iwordnet/

70. IDC Integration Drivers, http://www.intelligenteai.com/020528/509razor.ihtml
(viewed May 28, 2002)

71. Resource Description Framework (RDF) Schema Specification version 1.0:
http://www.w3.org/TR/2000/CR-rdf-schema-2000Q327/

72. SOAP/1.1 Note and the SOAP Version 1.2 Recommendation
documents, http://www.w3. org/TR/ soap/

73. The birth o f Web service: October 2002 issue o f MSDN Magazine
http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx
(retrieved Oct. 2004)

74. The Evolution ofU D D I UDDI.org White Paper:
http://www.uddi.org/pubs/the evolution of uddi 20020719.pdf

75. Universal Description Discovery & Integration (UDDI) Version 3.0, Published

Specification, 19 July 2002 http://uddi.org/pubs/uddi v3.htm# Tocl2653676

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/REC-CSS2/
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
http://www.w3.org/TR/2000/REC-xml-200010Q6
http://www.w3.org/XML/1998/06/xmlspec-report.htm
http://www.w3
http://sourceforge.net/proiects/iwordnet/
http://www.intelligenteai.com/020528/509razor.ihtml
http://www.w3.org/TR/2000/CR-rdf-schema-2000Q327/
http://www.w3
http://msdn.microsoft.com/webservices/understanding/webservicebasics/default.aspx
http://www.uddi.org/pubs/the
http://uddi.org/pubs/uddi

76. Web Services Inspection Language (WSIL) Version 1.0, November 2001, http://www-
106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

77. Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001
http ://www. w3 .org/TR/wsdl

78. Web Services Architecture, W3C Working Draft 14 May 2003
http://www.w3.Org/TR/2003/WD-ws-arch-20030514/#id2608426

79. WordNet - a lexical database fo r the English language: Princeton University
http://wordnet.princeton.edu/

80. XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October
2004 http://www.w3 .org/TR/xmlschema-2/

81. XQuery 1.0: An XML Query Language (11 February 2005)
http://www.w3 .org/TR/xquerv/

82. XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16 November 1999
http://www.w3 .org/TR/xslt

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://www.w3.Org/TR/2003/WD-ws-arch-20030514/%23id2608426
http://wordnet.princeton.edu/
http://www.w3
http://www.w3
http://www.w3

Appendixes

A: Weather Category List of Web services

Service Name Web Services Location
1 Airport Weather http ://live. capescience. com: 8 0/ccx/Airport W eather
2 DOTSFastWeather http ://ws2. serviceobj ects .net/fw/F ast W eather. asmx
3 GET_ Weather http://wwwl 1 .brinkster.com/bgx/webservices/GET_W

eather. asmx
4 Global Weather http://www.webservicex.com/globalweather.asmx
5 HurricaneServiceService http://weather.terrapin.com/soap/servlet/rpcrouter
6 ndfdXML http://www.nws.noaa.gov/forecasts/xml/SOAP_server/

ndfdXMLserver. php
7 ndfdXML http://weather.gov/forecasts/xml/SOAP_server/ndfdX

MLserver.php
8 Service http://www.ejse.com/WeatherService/Service.asmx
9 US Weather http://www.webservicex.com/usweather.asmx
10 WeatherByZip http://www.innergears.com/WebServices/WeatherByZ

ip/W eatherByZip. asmx
11 W orld W eatherBylC AO http://www.innergears.com/WebServices/WorldWeath

erBylC AO/W or Id W eatherBylC A 0 . asmx
12 WeatherlnformationServic

eService
http://www.ops-
cij.gr.jp:8081/axis/services/weatherInformationService

13 WeatherS ervice http://www.learnxmlws.com/services/weatherretriever.
asmx

14 WeatherService http://www.lostsprings.eom/weather/WeatherService.a
smx

15 WeatherFetcher http: // glkev. webs. innerho st. com/ glke v_ws/W eatherF et
cher.asmx

16 W eatherF orecast http ://www. webservicex. net/W eatherForecast.asmx
17 WeatherService http: // www. stanski .com/ services/worldweather/weathe

r.asmx

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wwwl
http://www.webservicex.com/globalweather.asmx
http://weather.terrapin.com/soap/servlet/rpcrouter
http://www.nws.noaa.gov/forecasts/xml/SOAP_server/
http://weather.gov/forecasts/xml/SOAP_server/ndfdX
http://www.ejse.com/WeatherService/Service.asmx
http://www.webservicex.com/usweather.asmx
http://www.innergears.com/WebServices/WeatherByZ
http://www.innergears.com/WebServices/WorldWeath
http://www.ops-
http://www.learnxmlws.com/services/weatherretriever
http://www.lostsprings.eom/weather/WeatherService.a

B: Operations List

Service Name Web Services Location Operation Name
1 StockServices http://glkev.webs.innerhost.com/glkev_ws/StockServices.

asmx
GetQuotes

2 DOTSFastWeather http://ws2.serviceobjects.net/fw/FastWeather.asmx GetWeatherByZi
P

3 DOTSFastWeather http://ws2.serviceobjects.net/fw/FastWeather.asmx GetWeatherByIP
4 DOTSFastWeather http://ws2.serviceobjects.net/fw/FastWeather.asmx GetWeatherHisto

ricalByZip
5 DOTSFastWeather http ://ws2. serviceobj ects.net/fw/FastW eather. asmx GetWeatherByW

MOID
6 G E T W eather http://wwwl 1 .brinkster.com/bgx/webservices/GET_Weat

her.asmx
G etW eatherR ep
ort

7 GlobalWeather http://www.webservicex.com/globalweather.asmx GetWeather
8 ForceUnit http://www.webservicex.net/ConvertForec.asmx ChangeForceUni

t
9 TorqueUnit http://www.webservicex.net/ConvertTorque.asmx ChangeTorqueU

nit
10 CountrylnfoLooku

pService
http://cs.uga.edu:8080/axis/services/um%3acountryInfoL
ookup

CountrylnfoLoo
kup

11 CurrencyConverter ,http://www31 .brinkster.com/webcomponents/CurrencyC
onverter.asmx

USDConvert

12 US Weather http://www.webservicex.com/usweather.asmx Get W eatherRepo
rt

13 MediCareSupplier http://www.webservicex.net/medicareSupplier.asmx GetSupplierByZi
pCode

14 DOTSEmailV alida
te

http://ws2.serviceobjects.net/ev/EmailValidate.asmx ValidateEmail

15 WeatherByZip http://www.innergears.com/WebServices/WeatherByZip/
W eatherByZ ip. asmx

GetWeatherByZi
P

16 WorldWeatherByl
CAO

http://www.innergears.com/WebServices/WorldWeather
BylCAO/WorldWeatherBylCAO.asmx

GetWeatherBylC
AO

17 Weatherlnformatio
nServiceService

http://www.ops-
cij ,gr.jp:8081/axis/services/weatherInformationService

getWeather

18 WeatherService http://www.learnxmlws.com/services/weatheiTetriever.as
mx

LogOn

19 WeatherService http://www.learnxmlws.com/services/weatherretriever.as
mx

LogOff

20 WeatherService http://www.learnxmlws.com/services/weatherretriever.as
mx

GetWeather

21 WeatherFetcher http://glkev.webs.innerhost.com/glkev_ws/WeatherFetch
er.asmx

GetWeather

22 WeatherFetcher http:// glkev. webs, innerhost.com/glke v_ws/W eatherF etch
er.asmx

GetLicWeather

23 WeatherForecast http://www.webservicex.net/WeatherForecast.asmx GetWeatherByZi
pCode

24 WeatherForecast http://www.webservicex.net/WeatherForecast.asmx GetWeatherByPl
aceName

25 FreeFaxService http ://www. OneOutBox. com: 80/cgi-bin/soap/outbox. cgi SendFreeFAX

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://glkev.webs.innerhost.com/glkev_ws/StockServices
http://ws2.serviceobjects.net/fw/FastWeather.asmx
http://ws2.serviceobjects.net/fw/FastWeather.asmx
http://ws2.serviceobjects.net/fw/FastWeather.asmx
http://wwwl
http://www.webservicex.com/globalweather.asmx
http://www.webservicex.net/ConvertForec.asmx
http://www.webservicex.net/ConvertTorque.asmx
http://cs.uga.edu:8080/axis/services/um%3acountryInfoL
http://www31
http://www.webservicex.com/usweather.asmx
http://www.webservicex.net/medicareSupplier.asmx
http://ws2.serviceobjects.net/ev/EmailValidate.asmx
http://www.innergears.com/WebServices/WeatherByZip/
http://www.innergears.com/WebServices/WorldWeather
http://www.ops-
http://www.learnxmlws.com/services/weatheiTetriever.as
http://www.learnxmlws.com/services/weatherretriever.as
http://www.learnxmlws.com/services/weatherretriever.as
http://glkev.webs.innerhost.com/glkev_ws/WeatherFetch
http://www.webservicex.net/WeatherForecast.asmx
http://www.webservicex.net/WeatherForecast.asmx

26 LocalTime http://www.ripedev.com/webservices/LocalTime.asmx LocalTimeByZip
Code

27 Newsservice http://www.dotnetpro.de/xmlwebservices/news.asmx GetLatestNews
28 Newsservice http://www.dotnetpro.de/xmlwebservices/news.asmx GetLatestNewsSi

nee
29 Phonebook http://www.barnaland.is/dev/phonebook.asmx Search
30 GeoPlaces http://www.codebump.com/services/placelookup.asmx GetPlaces Within
31 USZip http://www.webservicex.com/uszip.asmx GetlnfoByZIP
32 Service http://www.ejse.com/WeatherService/Service.asmx GetWeatherlnfo
33 Service http://www.ejse.com/WeatherService/Service.asmx GetExtendedWe

atherlnfo
34 Service http://www.ejse.com/WeatherService/Service.asmx GetlraqWeatherl

nfo
35 WorldTime http://upload.eraserver.net/circle24/worldtime/worldtime.

asmx
GetTime

36 ZipcodeLookupSer
vice

http://www.winisp.net/cheeso/zips/ZipService.asmx CityToZip

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ripedev.com/webservices/LocalTime.asmx
http://www.dotnetpro.de/xmlwebservices/news.asmx
http://www.dotnetpro.de/xmlwebservices/news.asmx
http://www.barnaland.is/dev/phonebook.asmx
http://www.codebump.com/services/placelookup.asmx
http://www.webservicex.com/uszip.asmx
http://www.ejse.com/WeatherService/Service.asmx
http://www.ejse.com/WeatherService/Service.asmx
http://www.ejse.com/WeatherService/Service.asmx
http://upload.eraserver.net/circle24/worldtime/worldtime
http://www.winisp.net/cheeso/zips/ZipService.asmx

C: Sample List of Web services from our repository

Web services are collected using google APIs by searching for each file with extension
WSDL
http://www.atomic-x.com/xmlservices/HvperlinkExtractor.asmx7wsdl
http://www.atomic-x.com/xmlservices/dnslookunservice.asmx7wsdl
http://ga-lms.cs. ait.ac.th:8081/axis/services/LMSService?wsdl
http://services.bio.ifi.lmu.de: 1046/prothesaurus/services/BiologicalMarkupService?wsdl
http://services.bio.ifi. lmu.de: 1046/prothesaurus/services/BiologicalNameService?wsdl
http://ws.strikeiron.com/GlobalAddressVerification7WSDL
http://ws.strikeiron.com/GlobalAddressVerification7WSDL
http://ws.strikeiron.com/IndianAddressVerification7WSDL
http://ws.strikeiron.com/StrikeIronDirectoryService7wsdl
http://www.bs-byg.dk/bzip2.wsdl
http ://www.tradeshowdatabase .com/soap/service?wsdl
http://ws.cdyne.com/phoneverifv/phoneverify.asmx7wsdl
http://ws.strikeiron.com/MarketIndices7WSDL
http ://www. xignite. com/ xfunddata.asmx? W SDL
http://ws.strikeiron.com/ZacksSummary7WSDL
http://www.webservicex.net/WeatherForecast.asmx7WSDL
http://ws.strikeiron.com/DoNotCall7WSDL
http://www.xignite.com/xInvestorRelations.asmx7WSDL
http://www.quisque.com/ff/chasses/crvpto/crypta.asmx7WSDL
http ://www. xignite. com/xrates. asmx? WSDL
http://sms.idws.com/soap/smsservice.dll/wsdl/ISMSService
http://www.seshakiran.com/QuoteService/QuotesService.asmx7wsdl
http://wsdl.wsdlfeeds.com/odp.cfc7wsdl
http://www.webservicex.com/uklocation.asmx7WSDL
http://www.webservicex.com/hcpcs.asmx7WSDL
http://live.capescience.com/wsdl/FOPService.wsdl
http://digilander.libero.it/mamo78/KRSS DAML Service.wsdl
http://www.webservicex.com/countrv.asmx7wsdl
http://glkev.webs.innerhost.com/glkev ws/StockServices.asmx?WSDL
http://www.stgregorioschurchdc.org/wsdl/Calendar.wsdl
http://www.esvnaps.com/WebServices/DailvDiblert.asmx7WSDL
http://www.nims.nl/soap/oms.wsdl
http://www.SoapClient.com/xml/SOLDataSoap.wsdl
http://www.SoapClient.com/xml/SOLDataSoap.wsdl
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl
http://services.xmethods.net/soap/um:xmethods-delaved-quotes.wsdl
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl
http://www.OneOutBox.com/wsdl/FreeFaxService.wsdl
http ://www. drbob42. co. uk/c gi-bin/Euro42/wsdl/IEuro
http ://www. foxcentral. net/foxcentral. wsdl
http://www.gxchart.com/webchart.wsdl

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.atomic-x.com/xmlservices/HvperlinkExtractor.asmx7wsdl
http://www.atomic-x.com/xmlservices/dnslookunservice.asmx7wsdl
http://ga-lms.cs
http://services.bio.ifi.lmu.de
http://services.bio.ifi
http://ws.strikeiron.com/GlobalAddressVerification7WSDL
http://ws.strikeiron.com/GlobalAddressVerification7WSDL
http://ws.strikeiron.com/IndianAddressVerification7WSDL
http://ws.strikeiron.com/StrikeIronDirectoryService7wsdl
http://www.bs-byg.dk/bzip2.wsdl
http://www.tradeshowdatabase
http://ws.cdyne.com/phoneverifv/phoneverify.asmx7wsdl
http://ws.strikeiron.com/MarketIndices7WSDL
http://ws.strikeiron.com/ZacksSummary7WSDL
http://www.webservicex.net/WeatherForecast.asmx7WSDL
http://ws.strikeiron.com/DoNotCall7WSDL
http://www.xignite.com/xInvestorRelations.asmx7WSDL
http://www.quisque.com/ff/chasses/crvpto/crypta.asmx7WSDL
http://sms.idws.com/soap/smsservice.dll/wsdl/ISMSService
http://www.seshakiran.com/QuoteService/QuotesService.asmx7wsdl
http://wsdl.wsdlfeeds.com/odp.cfc7wsdl
http://www.webservicex.com/uklocation.asmx7WSDL
http://www.webservicex.com/hcpcs.asmx7WSDL
http://live.capescience.com/wsdl/FOPService.wsdl
http://digilander.libero.it/mamo78/KRSS
http://www.webservicex.com/countrv.asmx7wsdl
http://glkev.webs.innerhost.com/glkev
http://www.stgregorioschurchdc.org/wsdl/Calendar.wsdl
http://www.esvnaps.com/WebServices/DailvDiblert.asmx7WSDL
http://www.nims.nl/soap/oms.wsdl
http://www.SoapClient.com/xml/SOLDataSoap.wsdl
http://www.SoapClient.com/xml/SOLDataSoap.wsdl
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl
http://services.xmethods.net/soap/um:xmethods-delaved-quotes.wsdl
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl
http://www.OneOutBox.com/wsdl/FreeFaxService.wsdl
http://www.gxchart.com/webchart.wsdl

D: XML Schema built-in data types and categories

Datatype Category
string string
boolean boolean
float float
double float
decimal float
duration dataTime
dateTime dataTime
time dataTime
date dataTime

primitive gYearMonth dataTime
gYear dataTime
gMonthDay dataTime
gDay dataTime
gMonth dataTime
hexBinary binary
base64Binary binary
anyURI string
QName string
NOTATION string
normalizedString string
token string
language string
IDREFS idRef
ENTITIES string
NMTOKEN string
NMTOKENS string
Name string
NCName string
ID idRef
IDREF idRef
ENTITY idRef

derived integer integer
nonPositivelnteger integer
negativelnteger integer
long integer
int integer
short integer
byte integer
nonN egativelnteger integer
unsignedLong integer
unsignedlnt integer
unsignedShort integer
unsignedByte integer
positivelnteger integer

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

NAME:
PLACE OF BIRTH
YEAR OF BIRTH
EDUCATION:

Ismail Jaghmani
Zawia, Libya
1968
Bright Star University of Technology, Libya
1985-1990 B. in Sc Engineering

Concordia University, Montreal Canada
1997-1999 M. Sc. In Engineering

Concordia University, Montreal, Canada
2001-2002 G. D. Computer Science

University o f Windsor, Windsor, Canada
2002-2005 M. Sc. Computer Science

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Web service searching
	Recommended Citation

	tmp.1619625137.pdf.b0JfK

