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ABSTRACT

This thesis presents an improved VLSI architecture to perform different arithmetic
operations, multiplication, division and square rooting, along with addition and
subtraction. The architecture is highly regular, requires only three conirol bits 10 choose
among five differcnt operations. Through the use of a redundant binary number system
and pipelining, the execution time for each operation is identical and is independent of the
wordsize of the array. Moreover. the improved architecture is capable of being
implemented using the dynamic switching tree technique. Finally, the improved
architecture has been designed utilizing 2 0.8 micron BiCMOS technology and has a

throughput rate of 100 Megasamples per second for each operation.
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

In digital signal procesing (DSP). there is a well established need for high
~erformance implementations of the basic arithmetic operations. All DSP systems require
fast multiply and add/subtract operations while the more complex systems have 2
requirement for division and square root. Itis evident that the speed of the basic arithmetic
operations has considerable consequences on the performance of current DSP systems.
With the rapid growth of integrated circuit technology, complex DSP systems which were
prohibitively expensive in hardware terms, are usually implemented on 2 single chip.
Furthermore, many arithmetic accelerating schemes (¢.g. redundant number systems) are

taking this advantage to improve the performance of current arithmetic algorithrrs.

Several architectures which share hardware to perform multiplication, division and
square root have been proposed [1} {2] |3]. The architecture described by Kamal [1],
exhibits regularity and local communication. However, its throughput rate is wordlength
dependent and severely limited by carry propagate arithmetic. A similar array architecture
was proposed by Agrawal [2]. The carry-save method is engaged instead of the carry
propagate arithmetic. However. the result digits are in conventional binary form and result
in lengthy communication paths for long wordlengths. The bit-serial architectures

described by Zurawski and Gosling [3] and Ercegovac and Lang [4] do not address any
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regularity and local communications which are suited for VLSI implementation.
Additonally, relatively complex control is required and the throughputs are dependent on

the wordlength.

The VLSI architecture proposed by McCanny and McQuillan 5} is capable of
performing combined multiply-accumulate, division and square root operations at a very
high throughput rate by employing pipelining and redundant arithmetic system. Moreover,
the architecture is highly regular, requires minimal control and can be reconfigured on
every cycle. The execution time for euch operation is the same and the throughput rate is
independent of the wordsize of the array. The focus of this thesis is to implement an
improved architecture which has a betier performance. and utilizes less number of standard
cells than the previous architecture. This improved architecture employs many of the
characteristics from the original architecture, including regularity, equal execution time for
each operation, and precision independent throughput and simple control. Furthermore,
add and subtract operations are combined with the existing operations on the improved
architecture. The final VLSI implementation wtilizes 0.8um BiCMOS technology, one of

the most advance technologies available nowadays.
1.2 ORGANIZATION OF THESIS

This thesis consists of five chapters. The first chapter serves to briefly present the
contents and then to lay out the structure of the remaining chapters. Chapter 2, is divided
into two sections. The first section is devoted to a review of Signed Digit Number
Representation (SDNR) [6], in particular, the Signed Binary Number Representation
(SBNR) [7]. Different radix-2 redundant adders are also discussed. In the second part of
the chapter, multiply, division and square root algorithms which employ the redundant

arithmetic system are briefly discussed through the use of examples.
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In Chapter 3, a unified algorithm to perform muliply, divide and square root
operations and VLSI architecture to implement the algorithm purposed by McCanny and
McQuillan [5] are discussed in detail. Based on the original architecture, an improved
architecture is proposed in this chapter. Comparisons between two architectures are made

in terms of the number of standard cells required and performance.

Chapter 4 briefly describes the Hardware Description Language (HDL), Verilog,
which used to describe the function of the architectures and perform the switch-level

simulation. VLSI implementation of the architectures are presented in this chapter.

The final chapter, Chapter 5. concludes the work with 2 summary and few

suggestions are also made to give direction to future research in this area.



Chapter 2

REDUNDANT
NUMBER SYSTEMS
AND ALGORITHMS

2.1 INTRODUCTION

Over the years, the demand for higher performance and higher functionality VLSI
processors has increased substantially. Therefore, there is also need 1o improve the
performance, area, efficiency, and functionality of the arithmetic units contained within
these VLSI processors. The basic arithmetic function, addition, is often implemented by
using the ripple carry adder, which uses a minimum number of gates, but forces 1 long
delay in producing the sum since the carry must be propagated through the entire number.,
Several methods are described in the literature [8] [9] that overcome the problem generated
by carry propagation. One of the techniques is to introduce redundancy into the number
systems to accelerate arithmetic operations. Redundancy can also provide structural
flexibility to these number systems. This chapter will be divided into two main sections.
The first section deals with the general concept of Signed Digit Number Representation
(SDNR) {6), which is the basic fundation of the SBNK adder. The first section will also
examine the general characteristic properties of signed-binary number. Methods for
redundant addition will be discussed through the use of examples. The second section of
this chapter will deal with the algorithms that are used as the basis of the work. This

section will discuss the division, square root and multiply algorithms.
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2.2 SIGNED DIGIT NUMBER REPRESENTATIONI[6]

The Signed Digit Number Representation (SDNR) was originally proposed by
Avizienis to eliminate carry propagation chains in operations such as additdon, subtraction,
multplicaton and division. Signed-digii numbers differ from conventional numbers in that
the individual digit comprising 2 number allows both positive and negative digit values and
since the individual digit contains all the sign information, there is no need for an explicit
mechanism (such as 2’s corzplement) to handle the overall sign of a number, For example,
in 2 radix-2 SDNR, the individual digit may assume values 1, 0 or -1 ( denoted by 1 ).
Signed-digit representations are redundant, that s, each radix r digit z; assumes more than
r different values. In conventional (non-redundant) number representation, only r values of
a digit (0, 1, ..., r-1) are allowed. In signed-digit (redundant) number representation, the
value a (where a is the maximum digit magnitude) is chosen from the following range:

—(r-1)<a<r-| for radix r 2.1)

The smallest set of digits is termed the minimally re2undant set and contains at least
r+1 values ( where r is the radix ). The largest set of digits is termed the maximally
redundant set and contains at most 2r-1 values. For example, in higher radices, there is
some choice available in the digit set that can be chosen: symmetric digit sets for radix-4
can be chosen as either {2....2} or {3.....3). The other reason that signed-digit numbers
are termed as redundant is that any given algebraic value may have several possible
representations. For example, value 13 may be represented several ways in radix-2 SDNR
as 1101, or 1117, or 100TT. etc. The characteristic properties of signed-digit
represeniations are listed below.

1. The algebraic value Z of the number z composed of n+m+1 digits

(2, 31792, --- 2.,) is given by the conventional expression:
-
Z=Y:r'  where radixris a positive integer (2.2)

ien
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2. The algebraic value Z=0 has a unigue representation. it and only if all 2, =0.
3. The sign of the algebruic value Z is given by the sign of the most significant

(left most) nonzero digit.

4. To form the representation of the additive inverse -Z, the sign of every
nonzero digit z; is changed individually.

S. The addition and subtraction of two signed-digit operands Z and Y satisfies
8§, = (2 Zis Vi Zicpe Nen) Vi, where 8, are digits in the representation

of the sum or difference s, =z,=y,. In other words. S, isa function of

the sum or difference of three adjacent operands.

Ta a conventional binary number system. the addition of two binary numbers
requires a computation time at least proportional to the logarithm of the wordlength of the
operands, because of carry propagation from Least-Significant Bit (LSB) through Most-
Significant Bit (MSB). This is usually the bottleneck for speed improvement in digital

integrated systems. The addition of two binary numbers is sketched in Figure 2.1.

ag [0,1] bg [0,1]
4y [0.1] by 10.1]

I o (0.1
|

. ol § s010.1]
2, [0,1] by [O,1} . s1 (0,1}

¢, [0,1]

Cne1 [0,1] S [0:1]
Figure 2.1: Classical addition with carry propagation
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As the global delay of the adder depends on the carry delay, the basic full adder cell is
ootimized regarding this criterion. Redundency in a number system allows methods of
addition to be devised in which each digit of the result is a function only of the digits in a
few adjacent positions of the operands and does not depend on the other digits in any way.
Thus the features of redundancy in a number system has several important consequences.
It allows parallel arithmetic operations to be performed completely without full carry
propagation from the Least-Significant Bit (LSB) through to the Most-Significant Bit
(MSB). Thus the time required for an operation such as parallel addition or subtraction is
constant and does not dependent on the wordlength. In other words, it provides flexibility
to the structure of the arithmetic units. A corollary of this is that it is possible to pipeline

such zn adder so that it operates from the most significant digit first.
2.2.1 SIGNED BINARY NUMBER REPRESENTATION

Of particular interest in this thesis is the Radix-2 SDNR known as the Signed
Binary Number Representation (SBNR) which has a digit set {1,0,1}. Each SBNR digit
requires a two bit representation implying a multiplicity of possible encoding schemes.
Two encoding schemes which are particularly useful are the sign-and-magnitude and the

(+,-) schemes which are defined in Table 2.1.

Digit sign-and-magnitude (+,-)

d ds dm dar d-

0 00 01

1 01 11

-1 11 00

d docsn't existin (£) 10 10

Table 2.1: Encoding schemes of SBNR digits
Note: d: don’t care
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In the sign-and-magnirude scheme, the SBNR digits are coded as the sign and magnitude
bits, that is d"=(ds,dm). In the (+.-) scheme, an SBNR digit is coded as d"=(d*.d") where
d"=d*+ (d"-1). The d* bit is coded such that d* =0 implies 0 and d* =1 implies 1, while
the d- bit is coded such that d- =0 implies -1 and d- =1 implies 0. An important property of
the (+.-) scheme is that the SBNR adders can be constructed from simple binary full

adders. The structure of the (+.-) scheme adders will be discussed later in this section.
2.2.2 REDUNDANT BINARY ADDER

A redundant binary or SBNR adder in which all digit sets are ( 1.0.1} was first
discussed by Avizienis[6]. He showed that the parallel addition or subtraction dictates a
three level structure. The result digit 5, depends only on the three adjacent operands
2, g YiarZict»Yip» % and ¥, The operation of the redundant binary adder is described by the

following equations(2.3a - 2.3c):

24y =24 (2.3a)
w,t_, =20+, (2.3b)
s,=w 0 (2.3¢)

where z; and y, are the operands, w, and w', are defined as intermediate sum digits, ¢, and
¢, are the mansfer digits, and 5, is the sum digit. The term transfer digit is used here
instead of the commonly used terms “carry”™ or “borrow” for two reasons. First, the
wansfer digit may assume both positive and negative values in either addition or
subtraction. Second, unlike the “carry”™ or “borrow™ of conventional addition or
subwraction, the transfer digit is never propagated past the first adder position on the left.

The structure of the adder is shown in Figure 2.2. The sum of operands is realized in three

steps. In the firststep, 7 is 1 whenever z +y, >1. In the second step, transfer digit 7, is
1 only if 7 +w; =2. This ensures that ;, and 7, cannot be equal 10 +] or -1 at the same
rime. At the last step, the sum digit. s,. is simply obtained by the free addition of ransfer

digit 7., from the adjacent digit and sum digit w,.
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Ky
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Ky
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(2) ) (2)
t'il W'il fi-ll W'i4j, l'i’4 W'i:],
3 3) (3

it \l \1! \;4

Figure 2.2: Redundant binary adder

2.2.2 MODIFIED REDUNDANT BINARY ADDER

Based on the concept introduced by Avizienis, the logic design and implementation
of redundant binary adders have been investigated by several other authors[10] [11] [5].
Here, only the logic design by Robertson | 10] will be discussed. The logic design will be
used as the basic foundation in the improved arithmetic architecture in the following

chapier.

The logic design introduced by Robertson [10] is very similar to the design by
Avizienis [6]. but with the combination of the first two stages, it results in a relatively
simple logic design compared to the previous one. The redundant binary adder constructed

with two inputs and one output. in the digit set {1,0,1}, The structure of the adder is

shown in Figure 2.3, and the operation of the redundant binary adder is shown in egn. 2.4:

[ +k =2m, +a (2.42)
a +m_ =2b, +d, (2.4b)
s =d+b_ (2.4c)
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3) (3) (3)
5§ l *.11 \J

Figure 2.3: Modified redundant binary adder

At ith position, inputs [ .k are the operands of the adder/subtractor structure, and with
output operates at one non-redundant m;,, and one redundant digit a (an asterisk beside a
symbol denotes a redundant binary digit chosen from digit set (1,0,1}). The sumof [ and

k equals (2m,, +a;) (2.4a) must be chosen from one of the following combinations (2.52

-2.5¢):
m., €{1,0}, ¢ €[0.1.2) (2.53)
m,, €{0.1), a €(2,7,0) (2.5b)
2m,,, e{1.1}. a e(1.0.1) (2.5¢)

Combining the first two levels of the original structure does result in a relatively
simple logic design. With the combination of the first two stages, the format of transfer
digit a; no longer needs to be considered. For the symmetric adder, the algebraic

relationships are listed below and Figure 2.4 [ 10] depicts the operations shown below:

d+b =y for the final block (2.6)
[+k +m_ =2m +2bh+d,  forthe combined block 2.7
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m Jmi_l ny 3 m3
~ o o ““‘m*'

:

b; lfl by 41 b2 42 ﬁ.

(2) 2)
Sivl \lyl \31

Figure 2.4: Moditied 2-level redundant binarv adder

In spite of equations 2.6 and 2.7, m, can be made independent of m,_,. The final result
digit s is still a function only of the digits in three adjacent digital positions of the
operands. The chosen sets for m,. h. d are {01, {1.0}. {0,1} respectively. Before
proceeding further, one has to fix the binary representation for the redundant binary digit
set {1.0.1). The term redundant is used here because there exists more than one way to
represent a redundant binary number by using the two-bit binary number. Robertson has
shown that there exists only nine distinct ways. under permutation and negation, of
representing three values 1 .0 and 1 from the redundant digit set with a two-bit binary
number. The nine formats are shown in Table 2.2. Since it is sometimes necessary to feed

the output of the redundant adder as an operand to the input of the next redundant adder,

the result digit s; should have the same binary representation as the operand digits [ and

k.
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¢ 1 233 56 7 809
o olo o 0 0o 4 0 0 1 7
o tf1 1 o1 1 1t 1111
1 07T ¢ 0 7T 0 1 T 0 0O
1 110 7 7T 4 7. 17T 7 Y1 1

Table 2.2: Nine distinct formats of representing
a redundant binary digit with two bits

Note: s =[s".s7].d:don"tcare and 1 : -1

Some rather interesting details are encountered in the design of this redundant binary adder.
From equation 2.7, whenever ([ +4 +m,_) is algebraically O or 1, ~b, and m, can be
both 0 or both 1. This results in the introduction of “Coupled don’t care™ cases in the truth
table. Table 2.3 shows the truth table for the combined block of the redundant binary adder
using format 2 from Table 2.2. . & and s are represented by pairs of bits (1.07),
(k",k?) and (s'.s?) respectively. The horizontal pairs of ¢’s across b, and m, are the
“coupled don’t cares”. A horizontul pair of ¢’s can be both 0 or both 1.

The complexity introduced by the “coupled don’i cares™ is greatly reduced by the

important constraints that the transfers 5, and m, be now-propagating. This means that m,
must be independent of m,_, from the adjacent unit. Therefore, in Table 2.3, the “ccupled
don’t cares” for minterms 1, 4, 19 and 28 must have the values 1, 1, 0, and 0 respectively.
This requires the upper 16 function values of m, to match the lower 16 function values of
m.. With four minterms of “coupled don’t cares™ being fixed, there remain only six
“coupled don’t cares” of the values of m, needed to fill the table. Figure 2.5 shows the
Kamaugh maps for m, from Table 2.3. Similar karnaugh maps for b, and d, arc shown

in Figure 2.6 and Figure 2.7 respectively.
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2.3: Truth Table for the combined block of format

Table
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I°F 1"y
0001 11 10 O\ 00 01 11 10
00fc 1 0 d 0lc 1 0 d
k?kt’Olll.Cd} knkpo'lll::d
1o ¢ 074 T ¢ 0 d
10|¢ d~d 4 T—107d"d d d

0
m,,=0 m,, =1

Figure 2.5: Karnaugh maps for m, for the redundant adder with format 2

o rr
0001 1110 O \00011110
oolec 1 1 d 0 00lc 0 0 d
k;ukiy-OIIOSd}kpknglOOE:d
lllg 1l d 110? I d
10|ld 44 T-107d"d d d

0
m, =0 m;, =1

Figure 2.6: Karnaugh maps for b; for the redundant adder with format 2

P I"1?
0001 11 10 O, \\ 00 01 11 10
00 1 1 d 00 0 0 d
e 01|10 0 d e 01|01 1 d
i1 o 074 T T™1 d
10{d &~ dd 7 Tdd d d

0
m,,=0 m,,=1

Figure 2.7: Karnaugh maps for d, for the redundant adder with format 2
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With the introduction of “coupled don't cares”, the logical design of the redundant binary
adder will yield a simpler structure. The boolean functions of the redundant binary adder

of format 2 are listed below:

d=m_ ®F Ok d. €10,1) (2.62)
m, = kNP v kP) m; €{0,1) (2.6b)
b= kP VA PR v IR b el1,0) (2.6¢)
st =db, (2.6d)
sP=d @b, s; e(1,0,1} (2.6¢)

The other formats for the redundant binary adder will not be discussed here as they were
fully studied by Robertson [10]. The structure of the redundant binary adder is regular. It
provides flexibility to the structure of the adder. in other words, the wordlength of the
operands can be expanded easily without changing the addition time. This feature of the
redundant binary adder is shown in Figure 2.8. And this particular feature is illustrated
with an example on redundant binary addition as shown in Figure 2.9. This redundant

binary adder structure will be used as the basis of the work in the following chapter.

_ %
a, b, a; by 110,17 {1,0,1]
l My my l my
[0,1] 10,1} [0,1]
piG——— “tifpasvmgmm ] O
L L L
hpe— f— pap— 0
_bn _b'.?. _bl
(1,0 [1.0] l [1,0] J
_Sp _5 _50
[10,1] [1.0.1] [1,0,1]
Figure 2.8: n-bit redundant binary adder
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T=1T0117 K"=101T17
m, =0 b,,=0 i=0
Step |
D
G7
mj.}
bj-1
Sep2  19T1170 (58)
Step 1: obtain my;, b, and d, from the truth able(Fig 3.)

when m, =0, I'=0. I’=1, k=0and k=1 (i=1)
Step 2: addition of b, , and d,

Figure 2.9: Example of a redundant binary addition

2.2.3 (+,-) SCHEME SBNR ADDER

a,a, b, b, a; a3 b3 b; aj a] b} by a5 a, by by
JU | L
xyc xyc xyc
cC s c s C 5

°

.LI]L —
xyc xyc¢ Xyc
cC s c s
Rk

SBNR digit

Figure 2.10: (+,-) scheme SBNR adder
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As mentioned earlier in the section, (+,-) coding scheme SBNR adders [12] can be
constructed from simple binary full adders. The circuit to add two SBNR operands

a=(a*,a’) and b=(b*,b") is shown in Figure 2,10 [12].

2.2.4 CONVERSION BETWEEN REDUNDANT BINARY
AND BINARY NUMBERS

An n-bit unsigned binary number [x, X, ,...Xgl(x; €{0,1}) and an n-digit
redundant binary number {X__,X__,... Xolspa(X; €{1,0,1}) have the same value z:'_';xizi .
since the value of binary number {0.1} is a sub-set of the redundant binary number
{1,0,1). Therefore, no computation is required to convert an unsigned binary number into

an equivalent redundant binary integer.

A coiversion from an n-digit redundant binary number
X=[x, X, a-Xokpa(X, €{1,0,1}) into the equivalent binary unumber
Y=[Y Yoo Yola(¥; €(0,1)) has to be performed, because the binary system is the
standard representation used externally in most systems. The result, Y, is generated by
subtracting X~ from X", where X~ and X" are n-bit unsigned binary integers formed
from the positive digits and the negative digits in X respectively. This conversion can be
performed easily by the following equation (2.7):

nel

n-l n-1
Y=Y v2)=X(= Dx2)-X(= D x2) 2.7
im0 im0, x,mT

=i}, .\.:]

X=1T1011 (25)

- X" 101010 (42)
X 1T101T (25)< i
X~010001 (17)

X*=101010(42) X" =010001(17)
Y=X"-X"=42-17=25

Figure 2.11: Example on SBNR-binary conversion
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The conversion can be performed in a computation time proportional to log, n by means of
a carry look ahead adder. The number of computation elements of a carry look ahead adder

is proportional to n.

P — - - L—2a, sign bit
AN, A
14 +4 414
d,— - e~ -2, msb
d. o ]
d___14 {1 1
dm T "—az
0 1
d\ i & l! 4
dm—J_— ——-;],:!| ISb
0_-
1
dl.dm

=2Tm

Figure 2.12: Conversion circuitry

Although this approach achieves the desired objective, the subtractor increases the
delay through the chip. Therefore, an alternative scheme is needed which carries out the
conversion while the dara are being deskewed. and without affecting the latency. The ‘on-
the-fly’ conversion was first proposed by Ercegovac and Lang [13] [14] and a modified
version was later proposed by Knowles and McWhinter [15]. The conversion circuitry is
si;e'.u;n in Figure 2.12, and the corresponding equations describing the conversion circuitry

are:

If fi(l'ﬂ) =1: ai(ou:) = ai(l'n); fl(uuu =1 (28)
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a if d,=01 0 if d=0
If f,..=0:4a, .= il oo = - 2,
f .f;(ul) 0 as(w){ a.'(.-.) ‘f dj =T i{our) {l {f d 1 ( 9)

The operation of the array is explained in terms of columns of cells. As each digit can
affect those of higher significance, each digit is broadcast back up to the relevant column.
The estimate is represented by a-lines in each column. These bits are clocked across the
array together with the control bit f. This control bit is initially set 1o 0. Whenever 2
nonzero digit appears at a lower significance, determining the value of the g-bits above it in
the column, all the f-bits in these cells are set to 1. When the f-bit equals to 1, the esumate
value of @ cannot be altered. This ensures that a lower digit only affects the bits in an MSB

direction up to the next 1, but not any higher significance bits. If the next lower

significance is zero, then both value of f and a are unchangec. In any case, Idil is

appended to a,, . An example of the step by step conversion is given in Figure 2.13.

/ latches —

0|0ojoj0]j0]0 0"-"~0.31gnb1t
i BRI RIRI N
mstr1% 1] 0j0]0]0 0—-':0~msb
PRI BIRIBI NI N o
=1 111111 1—-::
W, m i1 1]1 g
=1 1]1}1 1—'§1§
- %0 1111 §
0 0]0]| 0—=i0}
-.. % 111 i
0,1 magnitude bit l *, 2 2_-: 5
0.1 control bit lsb ,T’—?-» Isb

/ o/ 0 \‘.\“‘

111011
011001

Redundant i inpug ¢

Binary output™’

Figure 2.13: Step by step SBNR-binary conversion
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2.2.5 REDUNDANCY OVERFLOW

One problem that arises with the SBNR is redundancy overflow. Redundancy
overflow occurs when a SBNR number occupies more than the minimum number of
signed digit positions. In other words, alternative representations of that number exist.
For example, adding a zero to an n digit SBNR operand can yield an n+1 digit result, but it
is obvious that an n digit result is sufficienr. However. it is possible to compress the result
back to an n digit word. In some cases, redundancy overflow can be accommodated by
increasing the wordlength to n+1 digits or by extending the degree of redundancy occupied
by the MSD, that is increasing the digit range of the MSD. An example of redundancy

overflow in addition is shown in Figure 2.14.

1701 ﬂj (-43)
1 @D

001i0 i1
100 i-1
101 160 di

: l 1 0 1110
* Redundunt overflow digit

Seven redundant digit

1 1011 10 -22)
2)  Six redundant digit

(-2
101110 (-2

Figure 2.14: Example of Redundancy Overflow

2.3 REDUNDANT COMPUTER ARITHMETIC

Since the inception of computers, much effort has been expended in search of fast
arithmeric techniques. These fast arithmetic techniques have been put into compact high-
speed circuits as the computation units in various VLSI systems for real-time applicatons.

One of the speed-up techniques is to introduce redundancy in the implementation of
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computer arithmetic. The judicious applicaticn of redundancy to the systems can increase
the speed of operations and provide structural flexibility. Three algorithms that employ
redundancy will be studied in the following sections. They are division, multiplication and

square-root. Methods of operation will be diszussed through the use of examples.
2.3.1 Division

Division is oae of the most complex basic binary arithmetic operations. Several
algorithms for fast computation of division of binary numbers have been proposed in the
literature. They can be broadly classified into restoring and non-restoring algorithms. The
restoring algorithm is another name for the pencil and paper division method that is usually
taught in grade school. The restoring method of division requires the subtraction of the
right shifted divisor from the scaled remainder at each step. If the partial remainder is
negative, a quotient bit ‘0" is selected as the quotient bit and the original remainder is
restored as the new remainder. Otherwise, 2”17 is selected as the quotient bit and the partal
remainder is the new remainder. In any case, the divisor is right shified one position. In
the non-restoring algorithm, both addition and subtraction are used to avoid the restoring
step when the partial remainder yields 2 negative number. Each step of the non-restoring
division method requires the right shifted divisor to be either added to or subtracted from
the scaled remainder depending on whether the quotient bit generated i the preceding row
was a ‘0" ora ‘1’ respectively. The introduction of redundancy into the algorithm can
speed up the computation time. First. less time is needed 10 form the partial remainder
since the carry propagation is limited. Also, with the quotient digit represented by
redundancy resulting in a comparison between the partial remainder and the divisor need
not be at the full precision. The most well-known non-restoring with redundancy method

is the SRT division[16] [17]. SRT division originated from three initial proposers; D. W.
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Sweeney of IBM, J. T. Robertson of the University of Hllinois and K. D. Tocher of

Imperial College. The first letter of each of their last names forms the acronym.

Performing division requires making a choice of quotient digits starting with the
most significant, and proceeding to the least significant digits. A quotient digit is
determined by estimating the partial remainder at each stage. The value of the quotient digit

is chosen from the redundant digit set {1.0.1). The complete quotient is accumulated by

the following equation:

n-l

Q=2 qr" 2.10)
1)

I radix

n: number of quotient digits calculated

Q Accumulated quotient result

q;: quotient digit

The quotient digit chosen at each stage in the division determines the operation of

computing the next partial remainder according to the equation:

R.., =R, - Dy (2.11)
r radix

R;: partial remainder at stage i

D: Divisor

q;: quotient digit

The dividend is initialized with rR,. In this method, the divisor and dividend must be

normalized to the same binary range, and the valid quotient digits are in the set {-

P...0,...p} where p is restricted to be in the range of %s p £r-1 according to Atkins

[37].
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011711 N=0.011111
Go=0 —P» 000000 (0*D) N=0.359375
- 13011 . D=0.11110
TPy pe— 11110 -4, *D) D=-0.6875
{ (000010
Q3=0——pw 00000 (0*D) Q=N/D=-0.52272727
@00 To00T1T
Y=Oe—p 00000  (O*D) Q=0.1000111

——— Q=0.5234375
———{hoo

Q=0 00000 (0*D)
00
qS=_l—b- _IT l—l() (‘ﬂlj*D)
100
Qg=l—p 11110 (-q4*D)

—— 0190

q7=1

Figure 2.15: Division example

With redundancy introduced into the SRT division, each quotient digit need only use an
approximation of the partial remainder, because small errors may be corrected with less
significant quotient bits of the opposite sign. Since an approximation of the partial
remainder is needed for the quotient bit selection, only a small number of the most
significant bits need to be examined. and it can be proved that it is onlt necessary to
examine 3 MSD’s of the partial remainder [18]. A division example is shown in Figure

2.15.
2.3.2 Square Root

Various rapid square-rooting algorithms, based on the classical non-restoring
method, are described by Metze [19] and Oklobdzija [20]. Metze’s binary algorithms also

give the square-root value in the notation with the digits -1, 0, 1. They are specially fitted
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to obtain the result with the minimal possible number of non-zero digits. Algorithms
described in {20] also cover non-binary number notations and take into account a bigger

number of various digits of the redundant notations of the squure root.

Classical binary non-restoring square-rooting is very similar to classical binary non-
restoring division method. In both cases, numbers are subtracted or added in successive
process steps to decrease the successive partial remainders. The main difference among
them is the way that these subtracted or added numbers are formed. But despite this
difference, many division methods. being moditications of the classical non-restoring
division, can be respectively adapted and used as square-rooting methods. Therefore, the
concept of redundancy in division can be upplied to the square-rooting method in a similar
manner. As in the division method, the square-rooting method is accelerated by decreasing
the tme to form a partial remainder. In addition, only part of the partial remainder is
needed to examine for the root digit extraction. The algorithm described by Majerski [21]

is described in this section.

The R; is the radicand and assumed to be in the range % <R <. and consequently

the square root § is normalized: }4 <S<1. The accuracy of the partial root, S;, at the jth

step is given by:
YR, -8 <2 (2.12)

The scaled remainder at the jth step cun be defined as follows:

Zj=2’(R—Sf) (2.13)
Therefore, the recurrence for computing successive remainders is:

Z;=2Z_,—s(25., +527) where j=1,2,3,..n (2.14)

At the j-1th step, s;, the root digit wiil be determined according to some criterion and the

partial remainder Z; is formed by the equation specified above. The term in brackets
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defines the root digit extractor. The initial remainder Zg. is set to the radicand R and the

initial estimate of the square root is SF%. The successive root digit extractors are in the

form specified by Tuble 2.4 given below:

Step Root digit extractors
j=1 0.5,0000....
=2 $1.052000....
j=3 $1.5205300....
j=4 SL83830540.“.

Table 2.4: Format of root digit extractors

A complete example is given below in Figure 2.16 to illustrate the procedures:

o 0111101
$0=0 =g 0000000 ..
—_—— Root digits
Joto1 e
szl g _ 010000 -5,5(0+s)x270) 0.100000..

(1001010

9=l el 101000 -52%(Sg+s2%2°2) 1.010000..

(1190100

Y=l e 110100 -53%(Sy+5252) | 1.101000..

=——{azohogo

S4=_1 5 111010 -54*(82*'54*24) 1.110100..
Q0T1100

s=1 N 111101 —55*(S3+85*2'5) 1.111010..
JTIDT10

Se=0mmgp 000000 -545(S+562-9)| 1.117100..

D10h100

$9=1
$=0.111101 V'$=0.838525492
$=0.703125 =0.110101101

15=0.0117101 Q=0.1117101
Q=0.8359375

Figure 2.16: Example of square-root
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2.3.3 Multiplication

Multiplication is one of the vital computer arithmetic operations in many digital
applications such as digital signal processing. process control and computer graphics.
High-speed multipliers are essential in real time signal processing systems providing
filtering, correlation, and range measurement. As a result, various high-speed multipliers

have been proposed and designed on a single-chip LSI [11]{22].

In practice, there are three common multiplier schemes: array multiplier, redundant
binary tree, and Wallace teef23]. The shift-add algorithm is a familiar multiplication
method. Parallel multipliers based on this algorithm have been widely used, 1.e. the array
multiplier. Again, employing redundancy into the multiplication can speed up the
computation time, since the partial product is formed independently of the wordlength.
Based on the shift-add aigorithm, Ercegovac | 13} proposed a similar algorithm to perform
the multiply-accumulate operation. The general multiply and add operation can be

expressed as:
M=X-Y+A (2.15)

Here, it is assumed that the multiplicand, X. is known at full precision at the start of
computation, whereas the multiplier Y and the addend A ars assumed to be available in a

digit-by-digit manner. For simplicity. it is assumed that all the operands are in the range

specified by Table 2.5.
Operands Ranges
Multiplicand X Vasixl< A
Multiplier Y Y <slr|<1
Addend A VaslAl<ls

Table 2.5: Ranges of the operands
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The partial multiplier Y;, accumulated at the jth step is defined as:

)]
Y=Y 4327 =Y y2" (2.16)

im]

Y; is a word representing the digits of the multiplier available at the jth step. The partial

addend A; is similarly defined. The residual function at the jth step, Z; is defined as:
Z,=2"%X-Y,+A-M ;) j=1,23,.n (2.17)

where M, is the partial result and n is the number of digits in the multiplier word, the

scaling factor 2/~% is introduced for convenience. The resulting radix 2 recurrence for
14

computing the multiply-accumulate expression M = X-Y + A is listed below:
Z,=2Z_,+2°X-y;-m,_; j=1,2,3,.n (2.18)

Z; is the residual at the jth step, m;_; is the result digit determined on the preceding step

where the digit is selected from SBNR digit set {T,O,l} » ¥j is the jth muldplier digit and the

initial residual is Z, =27°A. The latency of the algorithm &, for a redundant

representation of the residual is given by:

&> log,(4-1X|_.) (2.19)
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001100 X=0.0101
Y1=1 = _ 000101 X=0.3125
0110010 1
vyt 000000 TX=0.000101
0100

y3=1 my=1 —8#= _ 000101 Y=0.101
00 1 Y=0.625
=lewee 00000 -
—Top10 =0.0711

my=l=—8 00000 A=-0.375

—od100 3 A=0.00T1
MyeTondpe 00000 )
r___@[ﬁ M=X*Y + A
mg=0 —gp- 00000 M=-0.1796875
(010000
mg=1 ~=gp= _ 00000
s 000
my=1 8 00000

Figure 2.17: Example on Multiply-Accumulate

where |X]__. is the maximum value of the multiplicand. Result digits can be determined by

examining a low precision estimate of the residual at each step. For the ranges of operands

specified in reference [13], since |X| . = % then from equation 2.19, the latency of the

multiply-accurnulate operation is §=2. A complete example is given in Figure 2.17 to

illustrate the procedure.
2.4 SUMMARY

The purpose of this chapter is to introduce the basic concept of Signed-Digit
Number Representation proposed by Avizienis [6]. Three redundant binary adders have

been studied in detail, but only the redundant binary adder proposed by Robertson will be
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used as the basic foundation of the arithmetic architecture in the following chapter.
Methods to handle redundancy overflow and conversion between signed-binary number to
conventional binary number have been addressed. Three algorithms, muldplication,
division and square rooting, which employ redundancy have been discussed and examples

have been given.



Chapter 3

VLSI
ARCHITECTURES FOR
ARITHMETIC
OPERATIONS

3.1 INTRODUCTION

In digital signal processing(DSP), there is an established need for fast and efficient
hardware implementations of multiplication, division and square root operations. Over the
years, a substantial effort has been expended in the design of fast hardware multipliers,
since multiplication is the most frequently used operation in real-time digital signal
processing. In this chapter, we will present a detailed discussion of the design of multiple

operation arithmetic blocks.

This chapter can be classified into three main sections. The first section will briefly
discuss the basic concept of systolic arrays. In the second section, a published architecture
that performs multiply-accumulate, divide and square-root operations will be discussed.
The architecture has a high throughput rate; the execution time is the same for each
operation and is independent of wordlength. In the last section, an improved architecture
that provides multiply-accumulate, divide, square-root, as well as addition and subtraction
is presented. The throughput rate is estimated at 100 megasamples per second, utilizing a
0.8um BiCMOS standard cell library. The improved architecture requires lower area,

fewer cells, and is faster than the original architecture. In addition, the improved
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architecture is capable of being implemented using the dynamic switching tree technique,
one of the major focus areas which members of the VLSI Group at the University of

Windsor are actively pursuing.
3.2 BIT-LEVEL SYSTOLIC ARRAY

In digital design techniques, much attention has been paid to network design in the
form of a repeated pattern of identical circuits. Kung and Leserson [24] has made a notable
contribution of a class of pipelined, parallel processing arrays known as systolic armays. A
simple systolic array comprises a regular array of modules, each module containing limited
memory and being connected to its nearest neighbours, These modules are usually
identical, although some may differ on the boundary of the array. Three typical connected

patterns are shown in Figure 3.1.

—
1 7 L L
=
I

Linearly Connected Orthogonally Connected Hexagonally Connected

Figure 3.1: Three typical connected systolic arrays

They are the linearly connected, the orthogonally connected and the hexagonally connected
array. On each cycle, each module or processing element (PE) performs 2 specific

computation and stores the result. and the result previously stored in each PE is sent out to
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a neighbouring PE. All operations within the systolic array are synchronized and provided
by 2 global clock. In this action, data are pumped rhythmically across the array. This is

similar to the pumping action of the heart, hence the term “systolic™.

The systolic array concept has since been extended to 2 higher level of granularity
by McCanny and McWhirter who introduced the concept of bit-level systolic arrays [25].
In the latest designs, McCanny, Woods, Knowles and McWhirter present a number of
papers dealing with the bit-level systolic architecture on different DSP applications
including convolution [26] and correlation {27]. Bit-level systolic arrays retain the
temporal and spatial locality characteristics associated with word-level systolic arrays and
are particularly well suited for large-scale integration. Each PE in the architecture is a very

simple operation and local memory is provided by laiches.
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Figure 3.2: Bit-Level Systolic and Pipeline Arrays

The substantial throughput rates offered by systolic arrays can only be utilized,
however, when the whole system can maich similar levels of performance. For VLSI
designs, many architectures are designed as pipelined array and linear array processors.
Such arrays illustrate the desirable features of bit-level systolic arrays, including regularity

and locality of communication. One of the important consequences is that data are now
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allowed to be broadcast in each pipelined stage. Pipeline arrays rather than bit-level
systolic arrays are more commonly present in modern commercial DSP chips. Figure 3.2

shows the difference between the two arrays.
3.3 ADD-SHIFT-EXTRACT CONFIGURATION

In this section we discuss the “esign of pipeline arrays to perform add, shift and
extract operations. The shift and add function is basic, to many arithmetic operations. For
example, in the division method, the divisor is subtracted from the dividend and the divisor
is shifted one bit towards the lower-order significant (one bit to the right) before entering
the next stage. The quotient digit can be determined from the partial remainder and this
operation will continue unti! the desired result is achieved. This method is shown in Figure

3.3. The other arithmetic operations proceed in a similar fashion.

First Stage

\'G._O._l-.j Second Stage

o
j=l
(14
=5
=
w
=.
o4
&
e
—r
o
e - -
\/\/

Figure 3.3: Division method

In order to perform these computer arithmetic operations on a VLSI architecture, it is
necessary to map the add-shift configuration into the hardware. The first step is to partition
the word level operand into the digit level operand. For an n-digit precision operand and

result, it is obvious that the minimum requirement is an array of nxn blocks in which each
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block can perform digit level addition between two digit operands. Each row of the array
can be pipelined to maximize the throughput rate and this results in a digit-by-digit
operation at the end of each pipelined stage. In many of the architectures, data are
broadcast into each pipelined stage of the array, so that multiplication and addition can be
performed concurrently in every pipelined stage. The connection between each pipelined
stage allows shifting to be performed one-bit to the left when data are passing from the
preceding stage to the succeeding stage. The configuration of the add-shift-extract
operation is illustrated in Figure 3.4. A number of architectures dealing with this

configuration have been proposed [5] {11].

First Stage
Addition/Subtraction

> Second Stage

\ Y L]

One-bit shift
towards Isb

Figure 3.4: Add-Shift-Extract configuration

3.4 THE UNIFIED ALGORITHM

In order to develop a VLSI architecture for the combined operations of multiply-
accumulate, divide and square root, an common algorithm, that performs these three
operations, must first be established. We will use the previously discussed reduncdant
arithmetc in order to achieve high performance by computing from the most-significant

digit first.
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3.4.1 RATIONALE FOR REDUNDANT ARITHMETIC

Numerous algorithms of division and square root are inherently computed most-
significant bit first, since bits of higher significance must be computed first before lower-
order bits can be determined. Therefore, it is possible to implement these algorithms using
a conventional (i.e. non redundant) arithmetic. However, one major disadvantage of using
conventional arithmetic is that it is intrinsically slow for such operations. At each lteration
of the divide/square root algorithm, carry digits must propagate from the most-significant
bit (MSB) to the least-significant bit (LSB) before the output digit can be determined. The
problem associated with carry propagation is shown in Figure 3.5. As discussed
previously, this carry propagation from MSB to LSB can be eliminated by employing
arithmetic redundancy, e.g. carry-save or the signed binary number representation [6], and

performance can be increased through parallel addition/subtraction.

101
1001 ,/ 11000 >FirstStage
- 1001
00110
- 0000 >Second Stage
4]
Subtraction of 91 L tme
divisor from —""- 1Y 1 —_
partial remainder ;o3 1
Y - 7 —
° _? '-,"I ' 2
¥ ' 1] —
-1 3 1 3
<! /
0 /
time proportional
to n-digit
Figure 3.5: Divide/Square root (conventional) carry-propagate
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In a conventional binary repeated-addition algorithm for multiply-accumulate operaton,
usually operating under least-significant bit fashion, the computation of most-significant bit
involves the carry digits to be propagated from the lower order partial product. This

operation is fully demonstrated in Figure 3.6.

msb 1sb
X X X X4
L L L L
T :
i 1 Yo

1 I" : yl me
l_ 1] + v R} v ' v
mm m m m m m, My
msb 1sb
sin y X bcx
H I
coul cin p— FA
X S L

Figure 3.6: Conventional method for multiply-accumulate

In order to unify three operations in one algorithm, it is advantageous to compute the result
of the multiply operation iteratively, most significant digit (MSD) first. MSD computation
is also useful if only half of the most significant digits are required. To compute the most
significant digit in a digit-by-digit manner, MSD first, sufficient flexibility must be
introduced into the accumulating result to allow the effect of lower-order partial products
which are not known yet. In other words, provision must be established so that initial

overfunder estimates of the result can be compensated for later in the computation when
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lower-order partial products become available. This computaton flexibility is obtainable by

computing the result in redundant form.
3.4.2 UNIFIED ALGORITHM

In the previous chapter (Chapter 2), three algorithms have been introduced through
the use of examples. The radix 2 SRT division method[16], the analogous square root
algorithm[21] and the multiply-accumulate algorithm[28] have been used as the basis of the
architecture, All algorithms exploit redundancy in the representation of the operands and

results digits. Three algorithms 3.1, 3.2 and 3.3 can be re-written in a similar format as

follows:
Z;=2Z,,+y;- Yy X -m;, if mult-accum  (3.1)
Z;=2Z,_,-q;,-D if division (3.2)
Z;= 2Z, -9 (Qa+q,4 27y if square root (3.3)

These three algorithms for computing successive residuals can then be written collectively

in a simple unified algorithm as follows:
2,=2Z,_-b,-C,+n (3.4)
where Z; is the residual and C; is the result digit extractor at jth step. The recurrence

parameters C;, b; and »; are defined in Table 3.1. The product b; -C; defines the result

digit extractor multiple. Note that upper case variables refer to a complete word while

lower case variables refer to a individual digit of a word.
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Operation C, b; ;i

Division D 4j- 0
Mult-accum Yax =y, Mz
Squareroot | -2+ 422”7 @m 0

Table 3.1: Definition of recurrence parameters

The ranges of the operands for each operation are as shown in table 3.2. Note that each

operand is a SBNR number, therefore both positive and negative operands are permitted.

Operation Operands
MM:I;E??U? Al VasXialcls  K<y<l

%il-“ﬁ}%n VisiNi<Y  Yspl<1
ngafjs—om Yiss<1

Table 3.2: Ranges of Operands

The initial values for the unify algorithm 3.4, parameters 2Zp, Co, bo and ng are

summarized in table 3.3.

Operation 2Zs Co b ng
Division N D 0 0
Mult-accum % A % X -y 0
Square Root | 4R 0 0 0

Table 3.3 Initial values of the parameters

3.5 ORIGINAL ARCHITECTURE

This architecture was originally proposed by McQuillan and McCanny [5]. The

architecture is an array that performs multiplication, division and square-root operations.
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The basic function of the main array is 1o perform addition; with some special connections
and the use of multiplexing, different operations can be performed. In addition, with the
use of a redundant number system and pipelining, the execution time to perform each
operation is identical and does not depend on the wordlength. The circuit is highly regular,
requires only twe control bits and can be reconfigured on each cycle. Thers are six
different types of cell modules in the architecture, and each cell module serves a different

function.
3.5.1 REDUNDANT ADDITION

Based on the concept purposed by Avizienis [6], McQuillan and McCanny [5]
proposed another redundant addition method. Now, all operands and results from the
array have a digit set (2,1,0,1}. Each SBNR digit requires a 2-bit representation, namely
sign bit and magnitude bit. The SBNR digit is encoded similarly to the sign-magnitude
scheme described in Chapter 2, but with (1.0) denoting 2 instead of X or 0. The encoded

scheme is given in Table 3.4.

Valus ((:to‘g
0 (0 0)
1 0 1)
(1) (1n
-2(2) (1 0)

Table 3.4: Encoding scheme for the original architecture

The result digit z.,,(2,,,.5,, ) depends only on two adjacent operands. And the operation of
the redundant binary adder is described by the following equations (3.5a2-3.5b):

20 W= p S, Fi, p: ~ba.-c (3.52)
2 4S5, =wHl,, (3.5b)
where we (-2.-1.0}, 7 €{0.1}, t,, €{-1,0]

Sos € 0.1}, b,c,, €{T,0.1}
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msd I1sd
ci-pl bi?l s:n.av'ci bl sm.:l Ci.l bi-l sin.':-l

(1) (N (D

1 Wi+l W ML qWig
2) ) (2)
1 L 1

suul.ld snu!..s Suul.l—l
SBNR adder
Figure 3.7: Structure of the redundant adder

This parallel addition is performed in two stages. The first stage of the adder cell accepts

L, s, p £ o w operands p, a sum digit 5, and a transfer
0 0 0 (1) Q} digit ¢, and performs the addition in the
0 0 . 1 -1 form of equation 3.5a. Note that p is the
0 1 0 l -1 multiplication between two SBNR
0 0 -1 0 -l operands, b, and c¢,. The interim transfer
0 1 -1 0 0

1 -2 Sigit r', is passed to the second stage of
1 0 0 0 -1 )
- the adjacent adder cell. In the second stage,
1 0 1 0 0

1 -2 the adder cell computes the output sum s,
! ! 0 (1) g and transfer £ digits by adding interim
1 1 1 1 -1 wansfer digit 7,, from the right adjacent cell
1 0 -1 0 -2 - .
- and the interim sum w in the form of
1 1 -1 0 -1

Table 3.5: Values for interim transfer cquation 3.5b. The structure of this adder is
and interim sum

shown below in Figure 3.7
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w ! oul Lo St
0 O 0 0 The interim transfer ¢, and sum w digits can be
o t {0 1 computed according to equation 3.5a, and the values are
-1 0| -1 1
) ) 0 0 shown in Table 3.5. In the second stage of the adder,
2 ol-1 o values of the sum s,,, and transfer digit 7, are computed
2 11]-1 1 by free addition of the interim digit w and interim transfer
Table 3.6: Values of Transfer )
and Sum digit digit r',,, and the resuits of s, and 7,,, are computed as

illustrated in Table 3.6 respectively.

3.5.2 ARCHITECTURE

sgn(c;) sdm

. z,=0 2, z,
o1 gt b Pt
9 -21&37"1:1.:1:'1.._0
ar-s \
" InB =B w B = ) -
az=qs
"* —
- i rEsE ]
Q3= ; ‘
- = - —-*--
" 2 rEsE L,
qq4~TLs >4
s AuRE=Ei= == E
qs~—1s J }

Figure 3.8: VLSI Architecture for Multiplication, Division and Square Root

An architecture to implement the unified algorithm is illustrated in Figure 3.8. Note
that this architecture is performing 5x5 bit operations. The circuit comprises a pipelined
array of SBNR multiply-add cells (cell types 1, 1* and 3) bounded at the left hand edge by

type 2 cells. Cells 17 have additional multiplexing circuitry required for the square root
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operation. The S cells on the periphery of the main array implement the result digit

selection function given in Table 3.7.

Range of z<s-Y j21s-V, z=2]

Partial Remainder /2 2 /’ /2

Result digit (C 2 0) 1 0 1
(C<®) 1 0 1

Table 3.7: Selection function for Original Architecutre

The functional descriptions of the basic processing cells are given in Figure 3.9. The small
black squares represent pipelining delays (one latch). Two control bits, denoted by sdm
and mds are required to select between the three operations. Figure 3.8 illustrates a 5x5 bit

architecture, but can be expanded to any wordlength by incorporating the appropiate cells.

sdm
c. Su U ¢ Sdmyg
] p=~b-c, \ / Same as cell
s .y [-1,0,1] 2, +W=p+S, L b 2D {-1,0.1] type 1 except
taeg 1 -t 0] wel2-101" o ! ;.__.;3?6 1] ¢.=C, ifsdm=1
i 2+, =wH, | c.=b ifsdm=0
Co ot Cout ‘ i Seu  Cou
(-1,00 [0,1] [-1,0,1] .o [-1.0] 10,1} [-1.0,1]
S |
s : j"‘ /‘“ Same as cell
sbitestimates ol b (1011 DPe ] exceRt
RCSI.I]I L ] Tl ' — -ty 3 -
digit=—1 S of the sum and = 3 .00 p=-b-b };gm_?
[-10.1] transfer vectors { <dm p=-b-c, if sdm=
' L, S Ceu
sgnl0:1] .01 (0] -1,0,1]
[0,1] [-1,00
Sam t-xc i'o.h L™
mds .
, b=q if mds=l
bl A b [-1,0,1 _
n—] 2 __l:'h EO,I] : 5. =21, +5, )+, b=-y ifmds=0
[-1,0,1] 1= 2,0+ b 0 ifrmde
o Floattatn n=-q if mds=0
['1$0v1] mds
Figure 3.9: Functional description of the basic cells
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All operands and results from the array are signed binary numbers, each digit assuming
values from the digit set {2,1,0,1}. The array architecture accepts three input words,
namely, the multiplier Y, the initial extractor Cgp and an initial residual Zp; this is illustrated

in Figure 3.10.

) Co
sdmmds [-1,0,1] [-1,0,1]

10 ‘{]D Architecture
* Muttiplication

Q <] Divisicn
Square Root
[-1,0,1] d

Figure 3.10: Original architecture functionality

These are set equal to the appropriate operands to enable the array to perform one of the
three operations. The correspondence between the operation of the array and the control

bits is summarized in Table 3.8.

Operation MDS SDM  sen(Co)
Mult-Accum 0 1 0

Division 1 1 sgn(D)
Square Root 1 0 0

Table 3.8: Control bits of the original architecture

Each iteration of the algorithm is implemented by one row of the array, and the number of

rows and columns determine the digit of precisions. Consider the jth row: this row accepts

two SBNR input words, the scaled residual 2Z.; and the extractor Cj;, from the
preceding row. Moreover, two SBNR digits b; and n; are broadcast by type m cells

appended to the jth row. The digit b; is broadcast to all cells in jth row enabling the
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extractor multiple 1o be determined. Concurrently, digit n; is subtracted from the msd of

the residual by a type 2 cell. One important issue which has to be addressed is that of
redundancy overflow in each step from the addition of the redundant numbers. Although
in each iteration, the residual is only a fractional value, that is le|<1, the residual
representation of the residual can still overflow into the integer positions (see Chapter 2).
In the architecture, redundancy overflow is accommodated by extending the number of
integer positions from one to two digits in the range of the msd of the residual Zg. The
initial Zg, which is derived from the array inputs, is expressed in wansfer-sum form by
treating the sign bit as transfer digit and the magnitude bit as sum digit. This is clearly
illustrated in Figure 3.8. To ensure valid result digit selection, the S cell, in general,
examines the four MSDs from each of the sum and transfers vectors (9 binary lines in total)
together with the coefficient sign bit sgn(c). However, for the first S cell, only one
transfer and one sum digit are needed to be examined, namely the most significant sign bit
of the initial residual Zg and the M/DS control bit. This ensures that for division and square
oo, ]q0[=1 can be achieved and for multiply-accumulate, q1=0 as required. Finally, all
the results are computed in a digit skewed-purallel manner. The specific operation of the

array is now outlined for each operation.

Division:

sdmmds 20=0-2i223-- Cp=0.c;¢,03...
11 -"-‘0.0]12!13... =0.d1d2d3...

Yysm-ph| Original

=000... Architecture
Division
Q=N/D

Q=0.q1’q2q:5... |

Figure 3.11: Divider functionality




Chapter 3 VLSI Architectures For Arithmetic Operations 45

To perform a division operation, S/DM and M/DS are both set 1o 1. This configures the
cell types 1° and 3 as type 1 cells enabling the divisor to be passed to each row of the array
unchanged. Two input operands, N and D are needed for the operation; this is illustrated in

Figure 3.11.

The scaled residual 2Zg is initialized to the dividend N = 0.0nn;... and the quotient digit
extractor Cy is set to the divisor D. The S cell control bit sgn(cy) then equals the sign of
the divisor. Each row operates as follows: the quotient digit ;. from the previous j-1th
row is selected by the multiplexer m as the broadcast digit for the jth row of cells and
quotient extractor -g;.1D is computed. The new residual Z; is then determined by parallel
addition of the quotient extractor and the previous sum and ransfer digit vectors. And this

parallel addition is performed as described in the previous section 2.2.2.
Square Root:

The square root operation is selected when the control bits M/DS and S/DM are set 1o 1 and

0 respectively. The root digit extractor C is initialized 1o 0.00... while the scaled residual
27, assumes the value Y4 R =0.0r,r,.... and this is clearly illustrated in Figure 3.12.

sdm mds 2070-21%%-~ Co=0.c,0203.--
01 =00s;s5... =0.000...

L

Y=y1y2y3..t> Original

=000... Architecture
<:| Square Root
Q=S
Q=0.9,92q3-~.

Figure 3.12: Square Root functionality
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The extractor C; must be updated at each j th step as indicated in Table 2.4. Consider the j
th row: the root digit s;.; from the preceding j-1th row is broadcast to all cells in the j th
row and the extractor —s;_,- S, -sf_l .27 is computed. At this stage, the extractor Cj.y
will have been updated to store only the accumulating root §;-2 in signed binary form. The
S/DM control bit configures the type 3 cell enabling the term —s}., - 27 to be computed. As
with division, the new residual 2Z; is determined by the parallel addition of the root
extractor and the previous sum and transfer digit vectors. The 8 cells then select a valid
root digit q; from estimates of the residual. The coefficien: Cj is updated to hold the partial
root S,_, +q;_, - 27!, This updating is performed by the multiplexers in the 17 cells when
S/DM is set 1o 0 and does not contribute to the critical path through the array. All cell

outputs and control bits are latched and passed to the following row of the array.
Multipiy-Accumulate:

For the multiply-accumulate operation, the control bit M/DS and S/DM are setto 0 and 1
respectively. This enables the multiplier digit y; to be negated and broadcast to all cells in
the j th row. The previous result digit, m;.2, is also negated and passed to the type 2 cell.
Three input operands are needed for the operation, namely X, Y and A. The functionality

of this operation 1s shown in Figure 3.13.

sdmmds 20=0-212223... C0=0.¢,€203¢4Cs.-
10 =0.00a2a3... =0.000X2X3...

Y=Y1Y2Y3--t> Original
Architecture
Multiply-Accumulate
M=X-Y+A
Q=0.019293-
=0.0m1 mpm;..

Figure 3.13: Multiply-Accumulate functionality
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The quotient digit extractor Cg is set to the scaled multiplicand %X = 0.000x,x,... while

the scaled residual 27y is initialized 10 %_A =0.00a,a,.... Note that sgn(c1)=0. Since the

multiplicand is to pass through the array unchanged, the type 1% and 3 cells must be
configured as type 1 cells. This is achieved by setting S/DM to 1. The j th row computes
the partial product terms —y j%x. The new residual is then obtained by subtracting the
previous result digit m;.2 from the sum of the partial product terms and the previous sum
and transfer digit vectors. The next result digit is determined by the S cells. As before, all

cell outputs and control bits are latched and passed to the following row of the array.

The architecture has several desirable features which make it suitable for VLSI
implementation including regularity, local interconnections and simple, local control. The
critical path between latches has been estimated at 13 gate delays, and the simulation result
is shown in the following chapter (Chapter 4). The gate count per row has been estimated

at 32n+72 gate equivalents where n is the wordlength of input operand.
3.6 IMPROVED ARCHITECTURE

Based on the architecture purposed by McQuillan and McCanny [5]. An improved
architecture is proposed in this section. The improved architecture can perform
multiplication, division, and square-root, along with addition and subtraction. Despite of
the extra operations, the critical path has been eliminated from 13 down to 10 gate delays.
The array architecture on which the chip is based is the hardware description of the
combined algorithm of the operations. Again, with the employment of 2 redundant number
system and pipelining, the execution time for each operation is identical and independent of
the wordlength. The architecture uses the redundant binary adder that is described in the
previous chapter (chapter 2) as the basis foundation of the main armay. The architecture

requires only 3 control bits to select among the 5 different operations.
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3.6.1 THE UNIFIED ALGORITHM

The algorithm, which is similar to the one dew:ribed in the previous section (3.4.2),
but with the capability to perform addition and subtraction, is described in this section. The
algorithm combines the SRT division, square root and msd first binary muldpiication
described in the previous chapter (chapter 2). Also, by utilizing the feature of carry-free
addition provided by the redundant arithmetic, addition and subtraction operations can be
included in the unified algorithm. The corresponding unified algorithm equation (3.4), that

is derived in Chapter 2 is stated here:
Z;=22;,~b;-C;+n, (3.6)

where Z; is the residual and C; is the result digit extractor at jth step. The parameters C,,

b; and n; are summarized in the following Table 3.9:

Operation C, b; R,
Division D 9 0
Mult-accum %X =Y —m;_,

Squareroot | Q-2+ 4 27 g, 0
Addition 0 0 —a;»
Subtraction 0 0 —4;-;

Table 3.9: Definition of recurrence parameters for Improved Architecture

The accuracy of an accumulating result is governed by |Z — Z] < 2™, in which subscript i
indicates the number of the digit and Z, is the partial product. The resul: is accumulated by
appending successive result digits to the partial result without a carry propagation to

+2,-27. The initial values of the

i=1

previously determined result digits, that is Z, = 2,

parameters are tabulated in Table 3.10.
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Operation | 2Z, Co ny by

Division [ N D 0 0
Mult-accum | Y54 YiX 0 N
SquareRoot | J4S 0 0 0
Addiion | Y4A  MiB 0 0
]

Submaction | Y44 YB 0 0
Table 3.10: Initial values of the parameters for Improved Architecture

For the unified algorithm, the ranges of the operands for each operation are as shown in
Table 3.11. The ranges of input operands are similar to the ones shown in Table 3.2),

except for the addition of input operands for addition and subtraction operations.

Operation Operands
glv;s/i;n VisiNi<l4  Ksppi<1
Mulaccum | 1/ <[x}jAl< }5 Josy<1
M=X-Y+A
Sc;l:mj.s-Rom A 113!
Zﬁ’:“;ﬁm 0<iAbBI< 14

Table 3.11: Ranges of Operands for Improved Architecture
At each iteration, a simple digit result selection function is required for these five

operations. The comresponding selection function can be expressed as:

+1 if Z2Y
where ¢ =9 0 if -Y<Z<l) 3.7

9 _{ a if D20
B -1 if Zs-Y4

o« if D<O0
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where Z is an estimate comprising the three MSDs of the residual 2Z,, and the result
digits at jth step are espressed as ¢,_,, m,_, and q;_, . For division and square root
operations, the msd is computed at the end of the first iteration whereas for the multiply-
accumulate, acdition and subtraction operations, the msd is not generated until the end of

second iteration. The result digits have the following definition as tabulated in Table 3.12:

Result word Outputs ﬁ:;’;ls::;g
Q 4hq4:4y---4; 0.4,9:9;.--4;
M Omymymy...m,_,  O.myymy...my_|
A 0a,a,a,...q; &.34,0,...4;.,

Table 3.12: Definition of result digits

The number representation of the residual and the result are signed binary numbers,
assuming the values from the digit set {1,0,1}. Also, each SBNR digit is encoded
according to the sign-magnitude scheme described in the preceding chapter (Chapter 2).
Although the (+,-) scheme might yield a simple structure, periphery circuitry is needed to
convert the conventional binary number to SBNR number. The advantage in using the
sign-magnitude scheme is that conventional binary numbers can be entered directly from

the magnitude digits of the architecture while the sign digits are connected to ground.
3.6.2 REDUNDANT ADDITION

The main array, which consists of multiply-add cells, is based on the modified
redundant addition scheme described in Chapter 2. All operands and resuits from the array
are SBNR numbers and have a digit set of {1,0,1}. Each digit is represented by two bits (2
binary lines), and is encoded according to the sign-magnitude scheme as described in
chapter 2. The equations for the modified redundant addiﬁon algorithm derived in Chapter
2 are listed below:
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d+b=s for the final block (2.6)
[ +k& +m_ =2m+2b+d  for the combined block 2.7)
[k s €(1,0,1, d.m, €{0,1}, b, €{1,0)

In order to perform multiply-add functions, one of the operands has to be initialized as

*=p’-c, in which b and ¢ are both SBNR digits. As described previously, the

parallel multiply-add function is performed in two stages. The first stage of the SBNR
adder accepts operands b7, ¢;, [ and an interim transfer digit m,_, from the adjacent cell

on the right, which is lower order significant, performs multiplication between ; and ¢;,
and addition in the form of equation (3.8):

[w(b -c)+m_, =2m+2b +d; forthecombined block (3.8)
where b, ,c; €{1,0.1}

The interim transfer digit b, is passed 10 the second stage of the adjacent adder cell on its
left or its higher order significant which computes the output sign s7,, and magnitude s7,,

digits by adding the interim sum d,,, and the interim transfer from the adder cell on the

right. The sign and magnitude output digits are computed in Table 3.13 as follows:

Interim transfer | Interim surn Qutput
b; 4; (s;,s7)
0 0 (0,0)
0 1 0,1)
1 0 (1,1)
T 1 (0,0)

Table 3.13 Second stage of multiply-add cell
The values of m;, b, and d, can be computed according 1o Table 2.3 in the previous
chapter (Chapter 2). The structure of the multiply-add cel! described equation 3.8 is shown

in Figure 3.14.
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Figure 3.14: Structure of the multiply-add cell

3.6.3 ARCHITECTURE

sgn(cy) sgns(gg
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Figure 3.15: Modified VLSI Architecture for Multiplication, Division, Square Root
Addition and Subtraction
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The architecture to implement the unified algorithm is illustrated in Figure 3.15.
The architecture, which is similar to the previous architecture, corrprises a pipelined array
of SBNR multiply-add cells (celt iypes a, a¥, as), bounded at the left hand edge by type b
cells. Cell types a® and b* have additional multiplexing circuitry required for the square
root operation only. The default operation of these cells is the same as a and b cells
respectively. Tux S cells on the periphery of the main array implement the result digit
selection function, which is given in equation 3.7. Note th. * this architecture has the same

performance as the previous one. both performing 5x5 bit operations.

c, =-b-c
3 T' §m+g+ﬁ1m=2mm+2bm+d
by b [-10.1] defo] Cells af and b¥
m =4 a f=—m,[0]] Same as cell types
b, J b, [-10] d+b =z, a and b except
z, €. ¢,.=C,. ¢, =c, if sdm=0
[-1,0,1] {-1.0,1] Cu=b if sdm=1
£,a Cu Soi S:u Co Sow

b [10.1]) p=be,

b [1.0,1] p=-b<,
b f=—m,_[0.1]

: e —m, [0} :
(1.8.1] boilp STt B g STt
s\ e (-1.0.1) +m_+b +n S.;K}... e [-1.0,1] +m_+b_+n
{-1,0.1] [-1,0.1]
cll\ zll
' Same as cell sgn
bd% J b [-1,0,1] typeaexcept 3
m =] as [0,1] o hm 3 et 1 1 3 bitestmates
b, %1:[-1,0] p=-b-c, if sdm=1 ggl:-i_ § E= of the sumand
iﬂ sdm p==b-b if sdm=0 [-1.0,1]  transfer vectors
[-10.1] {-1.0,1] sgn[0,1]

Figure 3.16: Functional description of the Basic Cells for Improved Architecture

However, the total number of cell modules involved in the architecture is 35 compared to
40 from the previous architecture. The functional descriptions of the basic processing cells

are given in Figure 3.16. Three control bits, denoted by sdm, mds and as are required 1o
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select between the five operations. The addition of an extra control bit does not contribute
any delay to the critict! path. The control bits of the improved architecture are summarized

in Table 3.14.

Operation MDS  S/DM AS sgn{Co)
Mult-Accum 0 1 0 0

Division 1 1 0 sgn(D)
Square Root 1 0 0 o

Additon 0 1 1 ¢
Subtraction 1 1 1 0

Table 3.14: Control bits of the Improved Architecture

Each row of the array implements one iteration of the algorithm in equation 3.6,
again the number of rows and columns determine the number of precision digits. For

illustration, consider the jth row. The row accepts two SBNR input words from the

preceding row, namely, the scaled residual 2Z; | and the extractor C;.;. Each row also
acrepts two SBNR digits, b; and n; from the type m cell. According to control bits M/DS

and AS, b; is broadcast 10 all cells in the row and digit n; is subtracted from the msd of the

residual by boundary cell type b. Again, the redundancy overflow is presented in each
iteration of addition and is compensated by the type b cell. But in contrast to the design of
the type 2 cell, in the original architecture, the type b cell is a combination of the type 2 and
type 1 cells from the msd side. Since in each iteration the residual is a fractional value, that

is |zj| <1, it is possible to limit the wesdiength growth towards the integer position. This

is illustrated in Figure 3.17.



Chapter 3 VLSI Architectures For Arithmetic Operations 55

The S cells on the periphery of the main array are used for resulr digit selectdon. Each S
ccll examines only three MSDs from the sign and magnitude vectors together with
cocfficient sign bit sgn(c;), that is only 7 binary lines in total (6 MSD binary bits plus one
sign bit). Obviously the design of the § cell is in contrast 1o the design of the original
architecture, where the estimate comprises the four MSDs of the residual. With the
connections as shown in Figure 3.16, this ensures that for division and square root,
kio|=1 and for multiply-accumulate, addition and subtraction, q;=0 as rquired. The m1
cell and m cells on the boundary along the side of the S cells are used as muldplexers to
broadcast multiplier digits into the array. With control bit AS set to 0, this configures the
type ml cell as a2 type m cell. As control bit AS is set to 1, this enables the addend to be

passed in the first row of the array and negated thereafier.
Division:

To perform division operations, S/DM and M/DS are both setto 1 and AS is set to 0. This
configures cell types a¥ and as as type a cells enabling the divisor to be passed to each
subsequent row of the armay unchanged. The quotient digit extractor C, = ¢,c,C,... i set to

the divisor D =d,d.d,... and the

scaled residual 2Zg=1z2,2,2,... is
\ J S/ set to N =0n,n,...

correspondingly; this is

2 1 b
— | illustrated in Figure 3.18.
Y v

Q ; s
outputs output

1
1
0

tty

[Era— .

same values output

*0— — ol

Figure 3.17 Difference between type 2 cell
and tvpe b cell
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Z0=.22223... CQ=.¢,C2C3...

01 =.0n~,n3... =.d1d2d3...

j—.. INds

Y:le2y3..E> Improved

=000... Architecture
Division
Q=N/D

Q=0.9,929-

Figure 3.18: Divider functionality

The S cell contol bit equals the sign of the divisor. Like the previous architecture, the
control bits and the divisor are latched and passed through the array unchanged. The

procedures are the same as described in the previous architecture.

Square Root:

In order to perform the square root operation. S/DM must be set to 0, M/DS and AS are set
to 1 and 0 respectively. The root digit extractor C, = €,C,C;y... is initialized to 0 while the

scaled residual 2Zg=2,2,2,... is set1o Y4 R =.0r,r,.... as illustrated in Figure 3.19.

Y=}'1}’z}'3~-|:> Improved
=000... Architecture
Square Root

Q=I5

Q=0.9,9,q3--

Figure 3.19: Square Root functionality

The procedures of the operation are the same as described in the previous architecture, and

derails will not be discussed here. The root digit is updated by the multiplexers in types 2%
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cell and 1% cells. All the control bits and cell outputs are latched and passed through the

array.
Multiply-Accumulate:

The M/DS and AS signals which conwol the type m and m1 cells are both set to 0

thereby enabling the multiplier digit yj to broadcast to all cells in the jth row and the result

digit, m_,, to be passed to the type b cell. With S/DM set to 1, this configures type a#
and type as cells as type a cells enabling the multiplicand to pass through the array

unchanged.

=.2Z12p23... C0=.C1C2€3C4C5...
=.003.oa3... =.000X2X3...

Y=Y1Y2Y3---E> Improved

Architecture
Multiply-Accumulate
M=X'Y+A
Q=0.9;9293.--
=0.0m1 m2m3 .-

Figure 3.20: Multiply-Accumulate functionality H

The quotient digit extractor C, =c,c,Cy... is set to the scaled multiplicand
VX =000x,x,... and the scaled residual 2Zp=z2,2,.. is initialized 1o

%A =.00a,2,....The functionality of multiply-accumulate is illustrated in Figure 3.20. All

cell outputs are latched and passed through the array as specified previously.
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Addition/Subtraction:

E A
4B E  L=22%.. CO=C10030sCs--
11 (:il =.00032:13... =.000b:|_b3
Y=000... D Impr?ved
Architecture
Addition/Subtracticn
Q=A%B
Q=0.q,4q3--.
= ml .m2m3...
Figure 3.21: Addition/Suburaction functionality

To perform addition/subtraction operation, AS is set to 1 thereby enabling addend passes
into the first row of the array and performing addition with the augend. C, =¢,¢,C;... is
injdalized to the scaled addend %_B =.000b,b,... and the scaled residual 2Zp=z,z,z,... 1s

set o }/4A =.000a,3,...; this is illustrated in Figure 3.21. Control bit M/DS is setto O or |

regarding the operations of addition or subtraction. The result digit is determined by the S

cells and each result digit a,_, is subtracted from the sum of product at each iteration.

This improved architecture employs many of the characteristics from the original
architecture, including regularity, equal execution times for each operation, precision
independent throughput and simple control. Futhermore, add and subtract operations are
involved, and fewer cell modules are required to implement the improved architecture.
Finally, the critical parh for each pipelined row is estimated at 10 gate delays, and spice
simulation results will be shown in the next chapter to verify the actual timing delay. The
gate count per row for the improved architecture has been estimated at 21n+64 gate

equivalents.
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Conversion
/ circuitry

<
3
o -
c Main Array
* Typea +
5 ypP
3 type as +
A type a” cells
3
=]
-

Input skewing

latches

Figure 3.22 Floorplan of the architecture

As a result of pipelining, the array generates the outputs in a skewed-parallel
manner. Moreover, the output data are in sign-magnitude forma. {sign bit + magnitude
bit), therefore it is necessary to convert and deskew the data; this process can be achieved
by using the conversion scheme described in Chapter 2. This scheme allows the data to be
converted to 2 conventional binary form during the deskewing process. Before the input
operands enter the architecture, in a bit parallel manner, the multiplier operands must be
skewed. The multiplier skewing circuitry comprises a triangle array of larches and this
triangular configuration allows the multiplier operand to enter the circuitry in a bit parallel
manner but is accepted by the main array in a skewed-parallel manner. The overall
floorplan of the arithmetic architecture with output deskewing and input skewing circuitry

is illustrated in Figure 3.22.
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Flge 3.23 Architecture for Modified Architecture

The arrangement of cell modules shown in Figure 3.16 previously can be reconfigured as
shown in Figure 3.23. The structure of the main array is highly regular and is very suitable

for VLSI implementation.

3.7 COMPARISONS

In this chapter, an improved architecture to perform multiply-accumulate, division,
square-root and addition/subtraction operations has been proposed. The major differences

between the two architectures are summarized in Table 3.15.
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Previous Improved
Architecture | Architecture
Cell count/row
(n bit operand) n+l n
Critcal path/frow 13 10
) QOverflow | Overflow +
Boundary cell bound | multiply-add
Result estimates 4 MSDs 3 MSDs
(Scell) ( 10 bits ) (7 bits)
SBNR digits 37,01} | {1.01}

Table 3.15 Comparisons between two architectures

It is clear that the improved architecture exhibits a better performance over the original
architecture in terms of gate delay. Circuit comparisons and hspice simulations will be

discussed in the next chapter.
3.8 DYNAMIC SWITCHING TREE

In the preceding sections, the original architecture and the improved architecture
have been discussed. The two architectures utilize a small number of cell modules to
perform different arithmetic operations. In digital design techniques, these cell modules
can be either static or dynamic logic. Dynamic logic has a number of advantages over the
static logic, including low power consumption, less area and performance, yet the
drawback is timing constraints and charge sharing must be compensated in such design.
Details on designing dynamic switching tree will not be discussed here, but it is of interest
to compare the tree height between 1wo architectures. Normally, a two input circult
component will have a wee height of two. As the inputs increase, the tee height grows
correspondingly. Often, however, common output nodes can be merged together and the

transistor can be replaced by a wire, thus causing the tree height 1o be decreased [29] [30].
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Table 3.16 shows a comparison of the cell modules between the two architectures using the

switching tree technique.
Number Maxiumum

of Inputs Tree Height |
Type 2 10 6
Type b 12 5
Type 1 7 5
Type a 8 5
Type 3 ] 5
Type as 9 )
scell 10 8
select cell 7 S

Table 3.16: Comparisons of two architecture under switching tree technique
Note: Bold variables refer 1o the improved architecture

3.9 SUMMARY

This chapter briefly discussed the subject of bit-level systolic arrays and the
configuration of the structure that is common in the hardware implementation of basic
computer arithmetic operations. Algorithms and architectures have also been studied and
researched in details. A comparison between a recently published architecture, for
multplication, division and square root, and a new architecture, proposed in this thesis,
has shown that the improved architecture has a better performance in terms of latency and
number of cell modules needed. Finally, the improved architecture is capable of being

implemented using the switching tree technique witi: 2 maximum tree height of five.



Chapter 4

VERILOG MODELING
AND VLSI
IMPLEMENTATIONS

4.1 INTRODUCTION

In the previous chapter, an architecture to perform different arithmetic operations
was studied, and based on the original architecture, an improved architecture to perform
multiply-accumulate, division, square root and additon/subtraction was proposed. In
designing such a complex system, a hierarchical design methodology is employed. In this
chapter, Verilog [31], a hardware description language (HDL) and simulator will be used to
build and simulate the fundamental blocks up to the system level of the architecture. We
will also use both switch level and circuit level simulations to verify the functional
correctness of the system and the timing delays of the architecture. With the proposed
switching tree based cells, briefly discussed in the last chapter, SPICE simulations of those

cells will be perfermed in the following sections.
4.2 DESIGNING WITH VERILOG

Verilog is an extremely rich language, with a variety of language features that
supports the development of large scale designs. The features of the language governing
design decomposition allow partitioning of a large design into several small modules, each

of which is independently designed and described. and assembling of these modules
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together into a whole configuration. Details on the basic concepts will not be discussed
here. For a more detailed discussion on the subject, the reader should refer to references

[31] [32].

SBNR Input Operands (n-digit)

O O Multiply-add cell

module e
L+ i 1 vl 111 g L
ey
SBNR Qutput T T 1T 1 1 1 1T 1 1 Behavioral model

-digit O000s ee Latch il
(“gl)c (80022 Jachs

/’ %_gf
— —" ® @ - -
| I I I I I A A !

[cooeee Latches | Structural model
7T T 001 17T 1T 11
* Array ¢l
b Multiply-add cells

Figure 4.1: Hierarchical Swucture of Improved Architecture

In order to design a system, it is essential to first decompose the system into a number of
modules, in which each module can be either behavioral or structural. In general,
behavioral module is described by functions of blocks and structural module is described
by actual connections from nodes to nodes. For the improved architecture, it is an array
architecture and composed of many pipelined rows, and each row comprises a number of

cell modules. The hierarchical design structure is clearly illustrated in Figure 4.1.
4.2.1 BEHAVIORAL MODELING OF ARCHITECTURE

Considering the improved architecture, it is composed of six individual cell
modules and each module has its own functionality. For the type as cell, as illustrated in

Figure 4.2, the operations of the cell are described by its functional description: one cntrol
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bit, three SBNR input numbers and two interim transfer input numbers are required to

produce two interim transfer output numbers and two SBNR output numbers.

dm | - Function iprion
(1,01} c;, \ s. (1,01 :
. | p=bce
{1,0.]) b'— . p: - sdm s, +p+m, =2m_ +2b_ +d
Myt a5 fe—my, {0,1) b +d=s
bou’ L i L bin (T.0) ‘" .
1,005  Co Cou =0 if sdm=0
Figure 4.2: Type as cell and its functional description

Each SBNR number has a 2-bit binary representation, hence there is a total number of 11
input bits and 6 output bits for type as cell. From truth tables and Karnaugth maps,
boolean expressions can be obtained. These boolean expressions can be used as module
definitions for a behavioral model. The structure of the behavioral model will not be
described here, but basically the behavioral model has input and output declarations,
mudule interconnections and module definitions. Here, module definitions are expressed
as boolean equations. Figure 4.3 shows the behavioral description for the type as cell; the

behavioral descriptions for the other cell modules arc shown in Appendix A.

module
cellas(sdm,sn,sp,sbn,sbp,scn,scp,mi_1,bi_1,sno,spo,mi,bi,scno,scpo);
input sdm,sn,sp,sbn,sbp,scn,scp,mi_1,bi_1;

output sno,spo,mi,bi,scno,scpo;

wire sno,spo,mi,bi,di,scno,scpo;

assign mi= (sbn&~scné&scp) | (~sbn&sbp&scn) | (~sn&(~sbpl~scp));
assign bi= ~( (mi_1&(spMsbp&scp))) | (~sn&sp&sbp&scp);

assign di= (sbp&scp) A (mi_1 » sp);

assign sno=~di & bi_l;

assign spo=di A bi_l;

assign scno= scnésdm [ sbné~sdm;

assign scpo=scp&sdm | sbp&~sdm;

endmodule

Figure 4.3 Verilog behavioral description for type as cell
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We now show simuladon results that verify the functional correctness of the model. These
simulations are not concerned with the timing or delays associated with the circuit
components. The simulation of type as cell was performed under Verilog software, and it
is shown in Figure 4.4. All the SBNR input and output numbers have the same binary
representations, they are defined as (0.0)=0, (0,1)=1, (1,1)=T and (1,0)=X. The rest of

the cell modules are simulated in a similar fashion.
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Figure 4.4: Graohic simulation of type as cell

With all the cell modules successfully simulated according to their functional
requirements, the system is now constructed by incorporating all the cell modules in the
structure shown in Figure 3.16 in Chapter 3. For example, an 8x8 bit architecture is
partitioned into nine pipelined rows, and each pipelined row consists of eight individual cell

modules.
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Figure 4.5: Structure configuration of row 2

Each pipelined row comprises one S-cell (result digit selection cell), one m-cell
(multiplexer cell), one b-cell (boundary cell) and several numbers of type a cell and type as
cell (multiply-add cell). Vectors of SBNR numbers are also involved in the inputs and
outputs of the model. The structure configuration of row 2 from an 8x8 bit architecture is

shown in Figure 4.5.

module
row2(sn,sp,scn,scp,mds.sdm.as.vn.vp.qn.qp,sno.spo,scno,scpo.qno,qpo);
cella ¢5(1°b0,1°b0.bn.bp.scn[5}.scpi3].1°b0.1"b0.sno{5].spof 5],
mi[5],bi[5],scno[4],scpo[4]).

c4(sn[5],sp[5).,bn,bp,....

cellas c2(sdm,sn{3].sp[3].bn.bp.scn[2].scpl2}....);
cellam cl(sdm,sn[2].sp[2].bn.bp.scn[1].scp[1].mif2].bi[2],sno[1].spo[1],
sno{0].spo[0],scno[0].scpo(0}):

mcell!l me(mds.as.gn.gp....):
select sell(scn[0].sno[0].spo|(]....):
endmodule

Figure 4.6: Behavioral descrintion of row 2

The behavioral model of each row evokes the cell modules required, and the inter-

connections between each cell module. The behavioral structure of row 2 is described in
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Figure 4.6. The rest of the pipelined rows are described in a similar fashion and shown in

Appendix A.
16 bt
- _ sign - magnitude
mds sdlm as 7 16bit
l é l "O ‘D’sign + magnitude

16 bit AT :
s1gn -+ $tanl E
magnitude 3= row 1 :
vV | L E 1T ;

: row 2 :

16 bir = = :
sgmr ¢ | @ 1L 1T :
magnitude —— row 3 é
: PY :
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Figure 4.7: Srructure configuration of the improved architecture

As previously discussed. Verilog software is used to perform the switch-level simulations,
after each row is successfully simulated according 1o the configuration. The final step is 1o
construct the array architecture by linking every row together according to the structure
presented in Figure 3.16. The timing and delays associated with the entire system are not
of concern. The purpose is to verify the functional correctness of the complete system.

The structure configuration of the improved architecture is shown in Figure 4.7.

The final behavioral mode! of the improved architecture describes the inter-
connections between each pipelined row: vectors of input and output SBNR numbers are
also declared in the model. The behavioral description of the architecture is shown in
Figure 4.8. For the entire description of the improved architecture, the reader should refer

to Appendix A.
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module allrow(sn,sp,scn.scp.mds,sdm,as,yn,yp,sno,spo.qno,gpo.clk);

input [0:5] sn,sp,scn,scp,yn,yp:

input mds,sdm,as,clk;

output {0:5] sno,spo;

output [0:6] gno,qpo;

wire [0:6] gno.qpo:;

wire [0:5] sn,sp.....;

rowl rl(sn,sp,scn,scp.mds.sdrn.as,yn|0l.ypi0].snol,spol,scnol,scpol,
qno|C].gpol0]);

row2 r2(snol,spol.scnol,scpol,mds,sdm,as,yn[1],yp[1].qno[0],qpol0],
sno2,spo2,scno2,scpo2,qnofl].qpof1]):

row3 r3(sno2.spo2,scno.,...).

;:-n.dmodulc

Figure 4.8 Behavioral description of the improved architecture

For the 8x8 bit improved architecture. three input operands: C, 2Zy, and Y, and three
control bits: M/DS, S/DM and AS are needed for five different operations. A random

SBNR number generator written in "C’ is generated to produce the necessary SBNR input

operands for the switch-level simulations.

SBNR input operands .
] |
< - 3L
}?NR 0 [/ % Architecture
cg:ggrter ;C ( behavioral or
( behavioral ) \ Z structural )
A
L L
binary b[nar_v

operands outputs

Figure 4.9: Relatonship between the architecture
and the converter

Each SBNR operand is composed of sign and magnitude vectors, and hence in the
verification process. many SBNR operands are needed for each operation. As a result,
difficulty and confusion may prevent the designer from verifying the architecture.

Therefore, as a convenience for the designer, a SBNR-binary converter is constructed
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utilizing the behavior model of verilog. The behavior model is written in a fashion similar
to conventional imperitve programming languages. and it converts all the SBNR numbers
to binary numbers. The relatdonship between the architecture and the converter is shown in

Figure 4.9; the outputs from the converter are shown in Appendix B.

4.2.2 MIXED STRUCTURAL AND BEHAVIORAL

Figusre 4.10: Schematic diagram of type as cell

In the previous section, every cell module in the architecture, to the highest level of
hierarchy, has been verified and simulated under the behavioral model. Since six different
types of cell modules are used as the basic elements of the construction, these cell modules

can be implemented in terms of a logic gate network.

In this section, the structural model of the cell modules is constructed. All the cell modules
use primitive gates as the building blocks. Figure 4.10 shows the schematic diagram of the

type as cell. The cell has the functional description presented in Figure 4.3, and the input
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and output terminals are same as the ones described in the behavioral model of Figure 4.3,

The other cell schematic diagrams are in Appendix C.

The logical description of the type as cell is associated with primitive gates, and a
simulation must be performed to verify the functionality of the circuit component. One of
the advantages of designing the system hierarchically is that the abstract of the fundamental
cell module can be changed easily. The cell module as described in the previous behavioral
level model, can now be replaced by a structural model. From the structural configuration
of each pipelined row, the abstract of the cell module is just like a socket with the ability to
bind a component, either structural or behavioral. The structure of the entire architecture is
a mixture of structural and behavioral level descriptions; each cell module is implemented
by primitive gates, and the interconnections between the cell modules and pipelined rows

are described by the behavioral model.

4.3 STRUCTURAL ARCHITECTURE

The gate level structure of the architecture will be presented in th's section. The
architecture has been pipelined in which a number of latches are required for every row. In
this design, a scan path approach to testing has been employed as it provides excellent
observability and controllability at all points in the circuit. The pipeline latches are of the
negative-edge-triggered scan Jatch and occupy approximately about 40% of the total area of
the chip. To enable scan path testing, a giobal distributed testing signal is used to enable
the latches to be connected together as a shift register. The test vectors can be clocked into
the design via a test input pin and delivered to the inputs of any cell or row. The array can
then be set into normal operation mode and a test performed. Resetting the array into the
test mode enables the result of the test to be clocked out via a test output pin. The

operations of scan path testing are shown in Figure 4.11a and Figure 4.11b respectively.
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Figure 4.11: Scan path testing
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The Verilog output waveform of the architecture is shown in Figure 4.12. Because of the

pipelining, the output emerges in a skewed-paraliel manner, and conversion circuitry is

needed to convert the skewed SBNR outputs to conventional binary outputs. The circuitry

comprises a pipelined triangular array of cells, the one described in Figure 2.13, and is

appended to the output of the main array, which is the left hand edge of the array

architecture. The method employed to convert the signed binary output of the main array to
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a conventicnal binary form is described in section 2.2.4. The conversion circuitry also

deskews the output which is originally computed in a skewed-parallel form.
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Figure 4.12: Swiich level simulation of the improved architecture

For simplicity and convenience, the Automatic Placed and Rout method has been
employed to layout the entire architecture. Custom layout is very dme consuming and it is
casy to make errors in interconnecting between cell modules. For a large design, itis very
difficult and time-consuming to layout the architecture in a custom manner, even though a
more compact design might result. The mask layout of the architecture, utilitzing the
automatic place and rout method. is shown in Figure 4.13. The chip performs 8x8 bit
arithmetic operations with equal execution time for each operation. The area occupied by
the improved architecture is estimated at 3000x3000 um?2, and it consists of 3,400 primitive

gates.
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Figure 4.13: Mask Lavout of the architecture

4.4 HSPICE SIMULATION

It is clear that the critical path of each row is governed by SBNR digit q; broadcast

to the :eftmost five cells of each row. The multiplixer circuitry for the square root operaton

in the main array does not contribute any timing delay to the critical path. In any case, the

execution tme for each operation is the same. The critical path delay under Hspice

simulation is estimated at 10ns and it is clearly shown in Figure 4.14. The delay dme is

contributed by the data through the scan latch. type m cell, type b cell and select s cell.
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Figure 4.14: Hspice simulation of Improved Architecture

The Hspice [33] simulation results for the original architecture are not shown in this

chapter, but the comparison of timing delays between two architecture are tabulated in

Table 4.1.
Worst Case | Normal Case Best Case
Agﬁf“ﬂ 11.5 ns 741 ns 509 ns
Ahr’gg;o;:udm 92 ns 624 ns 424 ns

Table 4.1: Comparison of timing delays

From table 4.2 illustrated below, it is clear that the improved architecture has a number of
advantages over the original architecture, for instance less standard gates are needed, less

power dissipation occurs and better performance is given.
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Qriginal Improved
Architecture | Architecture
Standans Culls 3871 322
1("1{:\:% fsctlag;sfg‘;’ 12.21 ns 9.76 ns
C?igxm ;12 3220 x 3150 | 2915 x 2706

Table 4.2: Comparison between two Architectures

As proposed in the last chapter, the architecture can be implemented by employing
the dynamic switching tree technique. The schematic diagram of the magnitude bit of the
type b cell is shown in Figure 4.15. The schematic diagrams of the rest cell modules

constructed using the switching tree technique are shown in Appendix F.
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Figure 4.15: Switching tree diagram of rﬁagnitude bit of type b cell
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Domino logic is chosen as the basic dynamic circuit structure. Domino logic has a number
of advantages in terms of area, power dissipation and performance, yet the disadvantage is
that i1 is not logically complete, so that the complementary function must be implemented
separately. The timing delay of data through the multiply-add cells (type a) boundary cell
(type b} and select cell (type s) is estimated at Sns, and it is illustrated in Figure 4.16.

* default hspice simulation run title card

[J— /ckt in volts

[ /quotb in volts
5: i 1 13 _J 1 [] 1 1 -
af E
3F E
2 e
1f E
af 1 1 i 1 1 1 1 ! E

26n 25n
| Figure 4.16: Domino Logic delay

As the value shows, it is a very attractive number. The height or the switching transistors
of each block is at the acceptable range, so that it is very suitable for dynamic switching tree
implementation, but charge sharing and timing constraints must be compensated in such a
design. The charge sharing problem can be solved by charging some selective internal
nodes by extra pre-charge transistor, but the selection of internal nodes has to be verified
by simulation. Another solution is to ensure that the input signals are stable before entering
the evaluation phase. This can be achieved by delaying the clock signal to the function

block. By doing so, the internal nodes can be pre-charged in the pre-charging phase.
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4.5 SUMMARY

The original and improved architectures were constructed and simulated using
verilog software, which is a high-level hardware description language and switch-level
simulator. Both architectures were constructed under a behavioral and structural model.
Based on the simulation results under HSPICE software, it is indicated that the improved
architecture is capable of reaching 100 Mhz throughput rates by utilizing 0.8 pm BiCMOS
standard cells. By employing the switching tree technique, the improved architecture is
capable of running at 200 Mhz throughput rates. The improved architecture is proven to

utlize less cells, less chip area and is faster than the original architecture.
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CONCLUSIONS AND
FUTURE DIRECTIONS

5.1 CONCLUSIONS

In this thesis, an improved VLSI architecture to perform combined multiply-
accumulate, division, square-root and addition/subtraction operations has been
implemented utilizing 0.8um BiCMOS technology. The original architecture shows a
combination of fine grain pipelining and a judicious use of redundant arithmetic results in
the throughput rate of the architecture being independent of the operand wordlength. The
circuit exhibits regularity and local communications, and can be easily extended to any
wordlength due to its modular nature. Additionally, the execution time for each operation
is the same, and the circuit requires only minimal control and can be reconfigured on every
cycle. By retaining most of these characteristics from the original architecture, the
improved architecture has a better performence in terms of latency and number of cell

modules needed.

Signed Binary Number Representation (SBNR) and its usage to improve the
performance of the arithmetic operations has been studied in detzil. It has been shown that
with the introduction of redundancy into the number representation, the time required for
basic arithmetic operations can be accelerated. Additionally, redundancy can also provide

structural flexiblity to the system. Redundant binary addition, in which all digit sets are
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{1.0,1) execute independently of the operand wordlength, in other words, paralle!
addidon is achieved. Three algorithms that employ a redundant binary system have been
studied, they are multiplication, division and square root. With the elimination of carry
propagate during addition of two numbers, intermediate results can be obtained in a
constant time independent of the wordlength. Thus the time required for the computation in

each operation can be reduced and made independent of the operand wordlength.

Algorithms and architectures which perform combined arithmetic operations have
also been studied and researched. The unified algorithm is a combination of the SRT
division and square root schemes and msd first multiply-accumulate algorithm studied in
this thesis. The algorithm is characterised by most-significant digit (MSD) first
compuration and equal execution time for each operation. The combination of three
operations is the result of employing the concept of redundancy into the arithmetic system.
The array architecture by McCanny and McQuillan has been carefully studied. The
architecture operates on sign-magnitude operands and has a high throughput rate through a
given level of pipelining. The improved architecture which employs many of the
characterisitcs from McCanny and McQuillan’s architecture has been presented. The
architecture is capable of performing the three arithmetic operations offered by the original
architecture with the addition of .add/subtract operations. Furthermore, the improved
architecture is capable of being implementing using the dynamic switching tree technique

with a low wree height.

The original and improved architectures have been constructed and simulated by
using Verilog, a high-level description language and simulator. Verilog provides the
designer a technique to design the system hierarchically, by using different levels of
abstract description. Thus the designer can determine the correctness of the system before
actual VLSI implementation. Both architecutres have been simulated using Hspice, and the

simulation result show that the improved architecture has an improved performance over
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the original architecture. Additionally, the simulation results of the imporved architecture
have shown that a throughput rate of up to 100 Mhz can be achieved by using 0.8um
BiCMOS and the BNR standard cell library. Moreover, by employing switching tree

techniques, speeds up 10 200 Mhz can be reached with a wree height of five.
5.2 FUTURE DIRECTIONS

The improved architecture described in this thesis is for tixed point operations but
can be easily exteaded to implement a floating point system. The IEEE standard 754 [34]
can be used as the floating point standard since it is the widely acceptable floating point
standard nowadays. In two references [35] {36]. signed binary number representation
(SBNR) is introduced into the floating point standard, therefore exponent hundling,
rounding, normalisation etc. are less complex than that in conventional binary units.
However, a more detailed study should be undertaken in the area of applying the floating
point standard to redundant binary implementations. The ultimate goal is to produce fast,

area and power efficient designs for future technologies.
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- cell 1 --emmemmmramanas
module celll(sn,sp,sbn,sbp.scn.scp.mi_1.bi_1.sn0,5po,mi.bi.scno,scpo):

input sn,sp,sbn,sbp,scn,scp,mi_1,bi_l:

output sno,spo.mi,bi,scno,scpo;

wire sno,spo,mi,bi,di,scno,scpo;
assign mi= (sbné&~scn&scp) | (~sbné&sbp&scn) | (~sn&(~sbpl~scp)):
assign bi= ~{ (mi_1&(sp™sbp&scp))) | (~sn&sp&sbpdescp) );
assign di= (sbp&scp) » (mi_14sp);

assign sno=~di & bi_1;
assign spo=di A bi_1;

assign sCno=scn;
assign SCpPo=scp;

endmodule

cell 1a
module cellla(sdm,sn.sp.sba,sbp.scn.scp.mi_1.bi_1,sn0,spo,mi.bi.scno,scpo);

input sdm,sn,sp,sbn,sbp,scn,scp.mi_1.bi_I:

outpul $n0,spo.mi,bi,scno,scpo.

wire sno,spo.mi.bi.di,scno,scpo:
assign mi= (sbn&-~scné&scp) | (~sbn&sbp&scn) i (~sn&(~sbpl~scp));
assign bi= ~( (mi_1&(spr(sbp&scp))) | (~sn&sp&sbp&scp) ).
assign di= (sbp&scp) A (mi_1"sp):

assign sno=~di & bi_l;
assign spo=di ~ bi_l:

assign scno=scn&sdm | sbn&~sdm:
assign scpo=scp&sdm | sbp&~sdm:

endmodule

cell 3
module cell3(sdm.sn,sp.sbn,sbp.scn.scp.mi_1.bi_1.sno.spo.mi,bi.scno,scpo);

input sdm,sn,sp,sbn.sbp.scn.scp.mi_l.bi_l:
output sno,spo,mi,bi,scno,scpo:
wire sno,spo,mi,bi,di,scno,scpo:

assign mi= sdm&((sbn&~scn&scp) | (~sbn&sbp&scn) | (~sn&~scp)) |
(~sn&~sbp):
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assign bi= ~( (mi_18&sp&( (sdm&~scp) | ~shp)) |
(mi_1&~sp&sbp&(~sdm | scp)) |
(~sn&sp&sbp&(scp | ~sdm)) %

assign di= (sbp&(~sdm | scp)) A (mi_17sp):

assign sno= ~di & bi_l;
assign spo=di A bi_1;

assign scCro=scn;
assign SCpo=scp;

endmodule

cell comb
module comb(nn,np,s02,50p.sin.slp.sbnsbp.sen.scp.mi.bi.con.cop.scno.scpo):

input nn,np,s0n,sOp,sin,s1p,sbn.sbp.scn.scp.mi.bi:
output con,cop,scno,scpo;

wire con,cop,scno,scpo;

wire nn,np,sOn,s0p,sln,s1p,sbn.sbp.scn.scp.mi bi:

assign con= bi&( ~np&sOn&{~sbpl~scpl~s1pl-mi) |
~mi&~s1p&(npl~sOp) | ~mi&sbp&:scpé(~sOplsin) |
nn&~sOp | np&sOp&slin | ~np&~sOp&sin& (~scpl~sbp) ) |
~mi&( ~np&sOn&(~sbpl~scpl~sip) |
nn&~sO0p | np&sOp&sin | ~np&~s0p&sin&(~sbpl~scp)) |
~np&sOn&(~slp&~scp | sIn | ~s1p&-~sbp):

assign cop= ((s1p™(sbp&scp)) A mi) » bi:

assign scno=scn;
assign sCpo=scp;

endmodule

cell meelll
module mcell1(mds,as,qn,qgp,yn,yp.bn.bp.nn.np):

input mds,as,qn,qp.yn,yp;
output bn,bp,nn,np;
wire bn,bp,nn,np;

assign bn=~mds&~yn&yp | mds&~as&qn&qgp | ~mds&as;
assign bp=~mds&yp | mds&qp [ as:

assign nn=~(gn ! ~qp | mds&~as);
assign np=~({mds&~as | ~qp);
endmodule

cell meell
moduie mcell(mds,as,qn,gqp,yn,yp.bn,bp,nn,np);
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input mds,as,gn.qp.yn.yp;
output bn,bp,nn.np:
wire bn,bp,nn,np.gn.gp.mds,as;

assign bn=~mds&~as&~yn&yp | mds&~as&qné&qp:
assign bp=—mds&~as&yp | mds&~as&qp:

assign nn=~(gn | ~gp | mds&~as):
assign np=—~(mds&~as | ~qp);
endmodule

sclect
module select(al?,sOn,sOp.s1n.s1p.s2n,s2p.seln.selp);

input aD,s0n,s0p,s1a,s1p.s2n.s2p:
output seln,selp:

wire seln,selp;

wire aD,s0n,s0p.sinsip.s2ns2p:

assign seln=(aD & ~s0p & ~s1n & sip & ~s2n)1
(aD & ~s0n & s0p &(~s2ni~sln))|
(~aD & ~s0p & sln &(s2n!~s2p)) |
(~aD & s0n & (~slp | ~s2pisinis2n))

assign selp=(~s0n&s0p&~(sIn&s2n)) | (~sO0p&~s1né&slp&~s2n) |
(~sOp&s1n&(s2ni~s2p)) 1 (sOn&~(~s1n&s1p&~s2n&s2p)):

endmodule

rowl
module row1{sn.sp.scn,scp.mds.sdm.as.vn,yp.sno.spo.scno,scpo,qno.qpo);

input [0:5] sn,sp.scn,scp;

input mds,sdm,as,yn.yp;

output [0:5] sno,spo.scno.scpo:

output qno,qpo;

wire qno,qpo.seltmp;

wire [0:5] sn,sp.scn.sCp.sCno.sCpo.sno.Spos
wire [1:5] mi.bi;

// celli(sn,sp,sbn,sbp,scn,scp.mi_1.bi_1.sno.spo,mi,bi.scno,scpo)

celll ¢5(sn[5].sp[5].bn,bp.scn[5].scpl3].1'b0.1'b0.sno[5],spo[ 5],
mil5],bil 5].scnolS5],scpol51).

c4(sn[41.sp{4].bn,bp,scn{4].scp[4].mi[5].bif5].sno[4].spo[4],
mi[4],bi[4],scnol4).scpol4)).

¢3(sn[3],sp[3],bn.bp,scnf3].scpi3].mi[4].bi[4].sno[3].spol3],
mi[3],bi[3].scnol3].scpol3]).
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€2(snf2],sp[2].bn.bp.sca[2].scp| 2].mi| 3 ].bi| 3].snof2].spof2].
mif2],bi[2],scnof2].scpof2]).

cl(sn{1},sp[1].bn,bp.scn[1].scp(1].mi{2].bil2].sno[1].spo] 11,
mi[1],bi[1],scnol ],scpo[1])):

/f comb(nn,np,s0n.s0p,s1n,s1 p.sbn.sbp.sen.scp.mi.bi.con.cop.seno.scpo)

comb comb!(nn,np,1'b0,1'b0,sn{0].sp[0].bn,bp.scn|0].scp|0).mil 1].bi[ 1].
sno{0].spo| 0].scno|0],scpolO]):

// mcelll(mds,as,qn,qp.yn.yp.bn.bp.nn.np)

meelll me(mds,as,1'b0,1'60,yn,yp.bn.bp.an.np):

// select(aD,s0n,s0p,s1n,s1p,s2n.s2p.sein.selp)

assign seltmp=~as&mds;

select sell(scn[0].sn[1],seltmp.1'50.1'b0,1'b0,1'b0.qno.qpo):
endmodule

row2

module row2(sn,sp.scn,scp.mds.sdm.as.yn.yp.qn.qp.sno.spo.scno.scpo.qno.qpo):

input [0:5) scn,scp;

input [0:5] sn,sp;

input mds,sdm,as,yn,yp.qn.qp;

output [0:5] scno,scpo,sno.spo;

output gno,qpo;

wire qno,qpo;

wire [0:5] sn,sp,scn,scp,scno,scpo.sno.spo:
wire [1:5] mi,bi;

wire bn,bp;

// celll(sn,sp,sbn,sbp,scn,scp,mi_1,5i_1,sno.spo,mi,bi,scno,scpo)

celll ¢5(1'00,1'b0,bn,bp,scn[5],scp[5].1'60.1'b0,sno| 5].spoi5},
mi[5],bi[5],scno[S5].scpo[5]).

c4(sn[3],sp[5],bn,bp,scn[4],scp[4].mi]5].bi[5].sno[4].spol4],
mi[4],bi[4],scno{4],scpo[4]),

¢3(sn[4],sp[4],bn,bp,scn[3],scp[3].mil4].bi[4].snof3],spo[ 3],
mi[3],bi[3],scno[3],scpol31),

c2(sn[3],sp[3],bn,bp,scn[2],scpl2],mi| 3],bi[3],sn0[2],5pol 2],
mif2],bi[2],scno[2],scpo[2]);

/] cell3(sdm,su,sp,sbn,sbp,scn,scp,mi_1,bi_1,sno,spo,mi,bi,scno,scpo)
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cell3 cl(sdm,sn[2},sp[2],bn.bp,scn|1].scpl1].mij2].b1f2].sn0] ) l.spo[l].
mif11.bi{1].scnot 1],scpo[ 1]}

// comb{(nn,np,s0n,s0p,s1n,s1p.sbn.sbp.scn,scp.mi,bi,con,cop,scno,scpo)

comb combl(nn,np,sn[0],sp[0].sn[ I].sp[1 |.bn,bp,sen[0].scp[O}f.mi[ 1].bi[ 1],
sno|0),spo|0},scno0,scpo0);

assign scnof0]=sdmd&scno0 | ~sdmé&bn:
assign scpo|0]=sdmé&scpol | ~sdm&bp:

/1 mecell{mds,as,qn.qp.yn,yp.bn.bp.an.np)

mcell mc(mds,as.qn,qp.yn.yp.bn.bp.nn,np):

/I select(aD,sCn,s0p.sEn.s1p.s2n,s2p.selnselp)

select sell(sen[0],sno|0].spol0].sno] 1].spof 1].snof 2].spo]2].qno.qpo):

endmodule

row3
module row3(sn,sp,scn,scp.mds.sdm.as.yn.yp.gn.qp.sno.spo.scno,scpo.qno.qpo);

input [0:5] scn,scp;

input [0:5] sn.sp;

input mds,sdm,as,yn.yp,qn.qp:

output [0:5] scno.scpo,sno.spo.

output qno,qpo;

wire qno.qpo;

wire [0:5] sn,sp.scn.scp,scno.sCpo.sno.spos
wire [1:5] mi.bi;

wire bn.bp;

[/ cell1{sn,sp,sbn,sbp.scn.scp.mi_1.bi_l.sno.spo,mi.bi.scne,scpo)

celll ¢5(1'b0,1'b0.bn,bp.scn[5].s¢p[51.1'00.1'b0.sno[5].spo[5],
mi|5],bi][5],scnol5].scpolS]).

c4(sn[5].sp!5].bn,bp,scn[4].scp[4].mi]| 51.bi{5].sno[4].spof4].
mi[4],bi[4].scno[4].scpo[4]).

c3(sn[4],sp[4],bn.bp.scn[3].scpl3].mi[4].bi[4].sn0[3].spo[ 3],
mi[3],bif3].scnol3].scpo[ 3]

/1 cell3(sdm.sn,sp.sbn,sbp,scn.scp.mi_1.bi_1.sno,spo.mi,bi.scno,scpo)

cell3 c2(sdm,sn[3],sp[3].bn,bp.scn]2].scpl2].mif3],bi[3],snof2],spol2],
mif2].bi[2],scnof2].scpol2]):

/I cellla(sdm,sn.sp.sbn.sbp.scn.scp.mi_1.bi_1.sno,spo,mi,bi,scno,scpo)
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cellla cl(sdm.snf2].sp{2].bn.bp.scnf1].scpf 1 Lmi[2].bi{2].snof 1 |.spo[ 1].
mi] 11.bif1].scnofl].sepo[1]):

/! comb(nn.np,s0n,sOp.s1n.slp.sbn.sbp.scn.scp.mibi.con,cop.seno.scpo)

comb combl(nn,np,sn[0].sp[0].sn{1].sp[1}.bn.bp.scnf{0].scp[O].mi| 1].bif1}.
sno{0],spo[0].scno[0].scpol0)):

// mcell(mds,as,qn,qp,vyn,yp.bn.bp.nn.np}

mcell me{mds,as.qn.qp,yn,yp.bn.bp.nn.np):

/! select(aD,sOn,sOp,sln,slp,s2n.s2p.selin,selp)

select sell(scn[0].sno[0].spol0].snol 1]spel tlsnol2].spel2].qno.gpo):
endmodule

TOW cmcccemmmmccme e s e e v e
module rowd(sn,sp,scn,scp.mds.sdm.as.yn.yp.qn.gp.sno.spo.scho.scpo.qno,qpo).

input [0:5] scn,scp;

input [0:5] sn.sp:

input mds,sdm.as,yn,yp.qn.qp:

output [0:5] scno,scpo.sno,spo;

output gno,qpo;

wire qno,qpo;

wire [0:5] sn,sp,scn.scp.scno,scpo.sno.spo;
wire [1:5] mi,bi;

wire bn,bp;

/f celll(sn,sp,sbn,sbp,scn,scp,mi_1.bi_l.sno.spo.mi.bi.scno.scpo)

celll ¢5(1'b0,1'b0,bn,bp,scn[5],5cp[S1.1'b0.1'b0,snolS.spol5].
mi[5],bi[5],scno[5],scpol5]).

c4(sn[5),sp[5]).bn,bp,scn[4),scp]4|.mi|5].bil5].sno{4],spoj4].
mi[4],bi{4],scnof4],scpol4]).

/! cell3(sdm,sn,sp,sbn,sbp,scn,scp.mi_1.bi_l.sno,spo,mi,bi,scno,scpo)

cell3 ¢3(sdm,sn[4],sp{4],bn,bp,scn[3].scp|3].mi4].bi[4],sn0[3],spol 3],
mif3],bi[3],scno[3},scpol3]);

// cellla((sdm,sn,sp,sbn,sbp,scn,scp,mi_1,bi_1,sno,spo,mi,bi,scno,scpo)

cellla c2(sdm,sn[3],sp(3],bn,bp,scn[2].scpl2],mil3],bi] 3],snof2],spol 2],
mif2],bi[2],scno[2],scpo]2}):

celll cl{sn[2],sp[2],bn,bp,scn[1],scpl1].mi{2].bi]2].sno[1],spo[1],
mi[1],bi[1],scnof 1],scpo[1]):
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// comb(nn,np,s0n,s0p,s1n,s1p,sbn,sbp.scn,scp.mi,bi,con,cop,scno,scpo)

comb comb1(nn,np,sn{0],sp{0).sn[ 11.spl1].bn.bp.scn[0],scp[0],mi[1].bi[1],
sno|0},spol0],scnol0}.scpolO]).

/1 mecell(mds,as.qn.qp,yn,yp.bn.bp,nn.np)

mcell mc(mds,as.gn.qp.yn,yp.bn.bp.nn.np);

/! select(aD,s0n,s0p.sin,c1p,s2n,s2p,seln.selp)

select sell(scn{0],sn0[0],spo[0].snof 1].spol 1].snof2].spo[2].qno,qpo):
endmodule

------- row5s Smmmmemmmmeemecccecmmmmessaenes
module rowS(sn,sp.scn,scp,mds.sdm.is.vn.vp.Qn.gp.sno.spo.scno,scpo,qno,qpo).

input [0:5] scn,scp;

input [0:5] sn,sp;

input mds,sdm,as,yn,yp,qn.qp:

output [0:5] scno.scpo,sno,spo:

output gno,gpo;

wire qno,qpo;

wire [0:5] sn.sp,scn.scp.scno,scpo.sno.spo:
wire [ 1:5] mi,bi;

wire bn,bp;

/1 celll(sn,sp,sbn,sbp.scn.scp.mi_l.bi_1.sno.spo.mi.bi,scno,scpo)

celll ¢5(1'b0,1'b0.bn,bp,scn[S].scp[5].1'b0.1'b0.sno[5].spo[3].
mi{5].bi[5].scno|5].scpol5])

/! cell3(sdm,sn,sp.sbn.sbp.scn.scp.mi_1.bi_1.sno.spo.mi,bi.scno,scpo)

cell3 c4(sdm,sn[5].sp[5].bn.bp.scn[4].scpf4].mi[5].bi[5],sno[4],spo[4],
mi[4],bi|4].scnof4].scpofd]):

I/ cellla(sdm,sn,sp,sbn.sbp.scn.scp.mi_l.bi_1.sno,spo,mi.bi,scno,scpo)

ceilla ¢3(sdm,sn[4],sp[4].bn.bp.scn|3].scpl 3].mi[4],bi[4].snol3].spo[3].
mi[3],bi[3],scnol3].scpol 31

celll c2(sn{3],sp[3].bn.bp.scn[2].scp{2].mif3].bi[3].sno[2],spo[2],
mi[2],bi[2],scno[2],scpol 2]).

cl(sn[2],sp[2].bn,bp.scn[1].scpl E].mi[2].bi[2],snof1).spo[1]),
mi[1],bi[1],scno[1].scpo| I ]):

/! comb(nn,np,sOn,s0p.s1n,s1p.sbn,sbp.scn.scp.mi,bi.con,cop,scno,scpo)

comb combl(nn,np.sn[0],sp]0}.sn[ 1].sp[1].bn.bp.scnf0].scp{0],mi[1],bi[1],
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sno{0,spo[0}.scno[0].scpo[0}):
/! mcell(mds,as,qn,qp,yn,yp.bn.bp.nn.np)
mcell me(mds,as,qn.gp.yn.yp.bn.bp,nn.np);
/f select(aD,sOn,s0p,s1n,s1p,s2n,s2p,sein.selp)
select seli(scn[0],sno[0],spo{0].sno|11.spof1].snol2].spo[2].qno.qpo):

endmodule

FOWE ~mmmmmmmmmmcesemoacmmmmcmomccmnm e e e e
module row6(sn,sp,scn,scp,mds,sdm.as.yn.yp.qn.qp.sno.spo.scno.scpo.gno.qpo);

input [0:5] scn,scp;

input [0:5] sn,sp;

input mds,sdm,as,yn,yp.qn.qp;

output [0:5] scno,scpo,sno.spo.

output qno,qpo;

wire gno,qpo;

wire [0:5] sn,sp,scn,scp,scno,sCpo.sno,spos
wire [1:5] mi,bi;

wire ba,bp;

I/ cell3(sdm,sn,sp,sbn,sbp,scn,scp,mi_1,bi_l,sno,spo.mi,bi,scno,scpo)

cell3 ¢5(sdm,1'60,1'b0,bn,bp,scn|Si.scpl5],1'b0,1'b0,sno[5],spol 3],
mi[5],bi[5],scno[5],scpolS51);

// cellla(sdm,sn,sp,sbn,sbp,scn,scp,mi_1,bi_1,sn0,spo,mi,bi,scno,scpo)

celllz c4(sdm,sn[5],sp[5],bn,bp.scn[4],scpl4].mi[5].bi[5],sno[4],spol4],
mi[4],bi[4],scno[4],scpo[4]);

// celll(sn,sp,sbn,sbp,scn,scp,mi_1,bi_1,sno,spo,mi,bi,scno,scpo)

celll ¢3(sn[4],sp[4],bn,bp,scn[3],scp[3],mif4},bi{4],5n0[31.spol3],
mi[3],bi[3],scno(3],scpol3]),

c2(sn[31,sp[3],bn,bp,scn[2],scp[2].mi[ 3],bif 3},sn0[2].spol 2],
mi{2],bi(2],scno[2],scpol2]),

cl(sn[2],sp[2],bn,bp,scn[1],scp[1].mi[2].bi[2],sn0[ 1],spof1],
mif1],bi{1],scno[1],scpo[1]);

// comb(nn,np,sOn,s0p,s1n,s1p,sbn,sbp,scn,scp,mi,bi,con,cop,scno.scpo)

comb comb]l(nn,np,sn[0],sp[0],sn{1],sp(1],bn,bp,scn[0],scp[0].mi[1],bif1],
sno[0],spo[Q],scno[0],scpo[0]):

/f mcell(mds,as,qn,qp,yn,yp,bn,bp,nn,np)
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mcell me(mds,as.qn.gp,yn,yp,bn.bp.nn.np);
/f select(aD,sOn,s0p,s1n,sip,s2n,s2p.seln,selp)
select sell(scn[0],sno[0],spo[0},sno{ 1 }.spol1].snof2],spof2],qno,qpo);

endmodule

TOW7 -----memm-ee-
module row7(sn,sp,scn,scp.mds.sdm.as,yn.yp.gn.qp.sno.spo,scno,scpo,qno,qpol;

input {0:5] scn,scp;

input [0:5] sn,sp;

input mds,sdm,as,yn.yp.qn.qp:

output [0:5] scno,scpo.sno,spo;

output gno,qpo;

wire Qno,qpo;

wire [(:5] sn,sp,scn,sCp.SCno.SCPO,SNO.SPOL

wire [1:5] mi,bi;

wire bn,bp;

/f celila(sdm,sn,sp,sbn,sbp.scn,scp.mi_1.bi_1,sn0,spo,mi,bi,scno,scpo)

cellla ¢5(sdm,1'b0,1'b0,bn,bp,scn[5].scp[5].1'b0.1'b0,sno[5],spo[5],
mi[5],bi|5],scno{5],scpol5]):

/f celll(sn,sp,sbn sbp,sen,scp.mi_1.bi_1.sno.spo.mi,bi,scno,scpo)

celll c4(sn[5],sp[5]).bn,bp,scn[4],scp[4],mi[5].bi[5].sno[4],spo[4],
mi[4],bi[4],scnol4],scpol4)).

¢3(sn[4],sp{4],ba,bp.scn[3).scp[3].mi[4].bi[4],sn0[3].spof3],
mi[3],bi[3],scnol3].scpo[3]).

c2(sn[3],sp[31.bn,bp,scn{2],scp[2].mi| 3].bi[3].sno{2],spo[2],
mi[2],bi[2].scno[2],scpof2]).

cl(sn[2],sp[2}),bn,bp,scn[1],scpl 1 ].nn| 21.bi[2],sno[ 1],spo1],
mi[1],bi[1],scno[1],scpofl1]):

// comb(nn,np,sOn,s0p.sin,slp,sbn,sbp,scn,scp,mi,bi,con,cop,scno,scpo)

comb combl(nn,np,sr[0],sp[0],sn{1].sp[1].bn,bp,scnf0],scp[0],mi[1],bi[1],
snof0],spo[0].scno|0].scpo(0]):

// meell(mds,as.qn,qp.yn.yp,bn,bp.nn.np)
meell me(mds,as.qn.gp,yn,yp.bn.bp.nn.np):

/I select(aD,sOn.s0p,sln.s1p,s2n.s2p.seln.selp)
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select sell(scn{0],sno[0],spo[0].snof 1].spof 1 1.sno[2].spof2].qno.qpo):
endmodule

AllPOW —~emmmmemmmmeecccea-oomcsamsam——-
module allrow(sn,sp,scn.scp,mds.sdnas,y¥n.yp.sno.spo.gno.qpo.clk):

input [0:5] sn,sp,scn,scp;

input [0:5] yn,yp:

input mds,sdm,as,clk;

output [0:5] sno,spo;

output [0:6] gqno,qpo;

wire [0:6] qno,qpo;

wire [0:5] sm,sp,snol,spol,sno2,spo2,sno3,spo3:
wire [0:5] sno4,5po4,5n05,5po3,sn06,5po6,sno7.spo7:
wire [0:5] scnol,scpol,scno2,scpo2.scnol,scpod:
wire [0:5] scnod,scpod.scnoS,scpos.senai,scpob.scno’ . scpo;
wire clk;

rowl rl(sn,sp,scn,scp,mds,sdm,as,yn[0].ypl0].
snol,spol,scnol,scpol.qnof0].qpol0]):

row?2 r2(snol,spol,scnol,s.pol,mds.sdm,as,yn[!}.ypl1].qnol0}.qpolOl.
sno2,spo2,scno2,scpo2,qnol1].qpol 11);

row3 r3(sno2,spo2,scno,scpo2,mds,sdm,as,yn| 21ypl2].qno[ 1].gpo[ 11,
sno3,spo3,scno3,scpo3,qnof2].qpol2]):

rowd 14(sno3,spo3,scno3,scpo3,mds,sdm,as,yn[31.ypl 3].qnol2].qpo[ 2],
snod,spod,scnod,scpod,qnoi3].qpof3]);

row5 r5(sno4,spo4,scnod,scpod,mds,sdm,as,yn|4],ypl4],qno[3].qpof 3],
snoS,spo5,scnos,scpos.qnof4l.qpol4]);

row6 r6(sno3,spo5,scnos,scpos,mds,sdm,as,yn[51,yp[5].qnol4],qgpo(4],
snob,spob,scnob,scpob.qnof5].qpol5]);

row7 r7(sno6,spo6,scnob,scpob,mds,sdm,as,1'b0,1'b0,gno[5].qpof5].
sno,spo,scno’,scpo7.qnol6],qpol6]);

comp_res cr(sn,sp,qno,qpo,scn,scp.yn.yp,sdm,mds,as,clk);

endmodule
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- SBNR-BINARY CONVEITEr —e-eememmmsacssamcne oo

medule comp_res(sn,sp,qno,qpo.scn.seo.yn. vp.sdm.mds.as.clk):

input [0:5] sn,sp,scn,scp;

input {0:6] gno,qpo;

input {0:5] yn,yp;

input sdm,mds,as,clk;

real itmp,ktmp ktmpc,tmpl,tmp2.tgp.ts.te.typ.org.result
integer i,k;

always @(posedge clk)
begin
tqp=0;
org=0;
ts=0;
typ=0;
result=0;
if (mds==1 && sdm==1 && as==()
begin
1mp=0;
ktmp=0;
end
if (mds==1 && sdm==0 && as==0)

itmp=0;
kmnp=1;
ktmpc=1;

if (mds==0 && sdm==1 && as==0)
begin

imp=1;

kmmp=1;

ktmpc=2;

for(i=0; i<=5; i=i+1)
begin
if(ypli}==1)
begin
tmpl=1.0;
for(k=itmp; k<=i+1; k=k+1)
tmpl=tmp1*(1.0/2.0);
if(yn[i]==1)
typ=typ-tmp1;
else



Appendix B

98

typ=typ+umpl;
end
end

for(i=itmp; i<=6; i=i+1)
begin
if(qpolil==1)
begin
tmpl=1.0;
for(k=itmp; k<=i; k=k+1)
tmpl=tmp1*(1.0/2.0);
if(qnoli]==1)
tgp=tqp-tmp1l;
else
tgp=tqp+tmp1l;
end
end

for(i=itmp; i<=5; i=i+1)

begin
if(splil==1)
begin
tmpl=1.0;

for(k=ktmp; k<=i; k=k+1)
mpl=tmp1*(1.0/2.0);
if(sn[i]==1)
ts=ts-tmpl;
clse
ts=ts+tmpl;
end
if(scplil==1)
begin
tmp2=1.0;
for(k=ktmpc; k<=i; k=k+1)
tmp2=tmp2*(1.0/2.0);
if (scnfi}==1)
tc=tc-tmp2;
else
c=tc+tmp2;
end
end

if(mds==1 && sdm==1 && as==0)

begin
org=ts/tc;
Sdisplay("*** Division (N/D) *¥*"),
3display("sn=%b sp=%b scn=%b scp=%b".sn.sp,scn,scp);
$display("gn=%b qp=%b",qno.qpo):
$display("N= %g\tD= %g" ts,1c):
$display("Result= %f\uOriginal= %f\n".1qp.org);

end

if(mds==1 && sdm==0 && as==0)

begin
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org=1gp;
Sdisplay("*** Square Root { S=Q*Q ) ***");
Sdisplay("sn=%b sp=%b",sn,sp);
Sdisplay("qn=%b qp=%b",qno.qpo);
$display("S= %g".ts);
Sdisplay("Result= %f\Original= %f\n".1qp*tqp.ts):

end

if(mds==0 && sdm==1 && as==0)

begin
org=ts+ic*typ;
$display("*** Muldplication-accumulate ( X*Y + A ) ¥%%");
$display("sn=%b sp=%b scn=%b scp=%b",sn,sp,scn,scp);
$display(“"qn=%b qp=%b yn=%b yp=%b".qno,qpo.yn,yp):
Sdisplay("X= %og\tY= %gtA= %g" IC,lyp.is);
$display("Result= %f\Oniginal= %f\n",1qp.org):

end

if(sdm==1 && as=1)

begin
Org=ts+Ic;
Sdisplay("*** Addition & Subtraction ( X + A or X - A) **¥"),
3display("mds=%b as=%b sn=%b sp=%b scn=%b scp=%b".mds.as.sn.sp.scn,scp);
$display("qn=%b qp=%b yn=%b yp=%b".qno.qpo.yn.yp):
$display("X= %g\tY= %g\A= %g" 1c.lyp.ts);
$display("Result= %f\tOriginal= %f\n".tqp.org):

end

end

endmodule
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- - Division -------s--m-emeesmemmamamane

Host command: femcl/verilogXL/sund_4.1_1.6.0.1/exc/verntiog-grx
Command arguments:

-p2e0d6d30

test-all.v

-y /homes/hchan/Veritools/Verilog/NCA

+libext+.v

VERILOG-XL 1.6.0.1 log file created Dec 20, 1992 05:53:30

* Copyright Cadence Design Systems, Inc. 1985, 1988. *

*  All Rights Reserved.  Licensed Software.  *

* Confidential and proprietary information which is the *

*  property of Cadence Design Systems, Inc. *
Compiling source file "test-all.v"
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA"
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA™
Highest level modules:
test

*x Division (N/D) ***
sn=000000 sp=000000 scn=000000 scp=000000
qn=0000000 qp=1000000

N=0 D=0
Result= 0.500000 Original= NaN
®xk Division (N/D) w**

sn=000010 sp=011111 scn=000000 scp=100111
qn=0001000 qp=1101001

N= 0.421875 D=0.609375

Result= 0.695312  Original=0.692308

*»x Division (N/D) Aok
sn=011000 sp=011111 scn=000000 scp=100110
qn=1000001 qp=1001001

N= -0.265625 D= 0.59375
Result= -0.445312  Original= -0.447368
w&* Division (N/D) ***

sn=000000 sp=011000 scn=000001 scp=100101
qn=0001000 qp=1101000

N=0.375 D= 0.546875

Result= 0.687500  Original=0.685714

*xk Djvision (N/D) ***

sn=000000 sp=011110 scn=000000 scp=100000
qn=0000000 qp=1111000

N= 0.46875 D=0.5

Result=0.937500  Original= 0.937500

*** Division (N/D) ***
sn=011100 sp=011110 scn=000000 scp=100010
qn=1100010 qp=1100010
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N=-0.40625 D=0.53125
Result=-0.765625  Original= -0.764706

*i* Division (N/D) ***

sn=000000 sp=011011 scn=000000 scp=100010
qn=0000010 qp=1101010

N= 0.421875 D=0.53125

Result= 0.796875  Original=0.794118

*x* Division (N/D) ***

sn=000100 sp=011100 scn=000000 scp=100101
qn=0000011 gp=1001011

N=0.3125 D=0.578125

Result=0.539062  Original=0.540541

*xk Division (N/D) **+*

sn=011000 sp=011101 scn=000000 scp=100011
qn=1000110 qp=1000110

N= -0.296875 D= 0.546875
Result=-0.546875  Original= -0.542857

¥k Dyvision (N/D) ek

sn=000110 sp=011111 scn=000000 scp=100000
qn=0000100 qp=1010100

N=0.296875 D=0.5

Result= 0.593750  Original= 0.593750

Aedkok Division (N/D) Ak

sn=000000 sp=011000 scn=000000 scp=100011
qn=0001000 qp=1101000

N=0.375 D= 0.546875

Result= 0.687500  Original=0.685714

w0k Division (N/D) ***

sn=000000 sp=011010 scn=000000 scp=100110
qn=0001000 qp=1101000

N=0.40625 D=0.59375

Result=0.687500  Original=0.634211

*#* Division (N/D) ***

sn=000001 sp=011101 scn=100100 scp=100100
qn=1100000 qp=1100000

N= 0.421875 D=-0.5625

Result=-0.750000  Original= -0.750000

*#% Division (N/D) ***

sn=000000 sp=011111 scn=100001 scp=100001
qn=1111000 gp=1111000

N= 0.484375 D=-0.515625
Result=-0.937500  Original=-0.9393%

Faese DiViSiOﬂ (N/D) Aol e
sn=000000 sp=011100 scn=100001 scp=100001
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qn=1110000 gp=1110100
N= 0.4375 D=-0.515625
Result= -0.843750  Original= -0.848485

=¥+ Dyjvision (N/D) #**

sn=000010 sp=011011 sen=000011 scp=100111
qn=0000000 qp=1011001

N= 0.359375 D=0.515625

Result= 0.695312  Original= 0.696570

*** Division (N/D) ***

sn=000100 sp=011100 scn=000001 scp=100111
qn=0000100 gp=1001101

N=0.3125 D=0.578125

Result=0.539062  Original= 0.540541

*&* Djvision (N/D) ***

sn=011001 sp=011101 scn=00000) scp=10000
qn=1010100 qp=1010100

N=-0.328125 D=0.5

Result= -0.656250  Original=-0.656230

*&* Division (N/D) ***
sn=011100 sp=011101 scn=100001 scp=100001
qn=0000000 qp=1101000

N=-0.421875 D= -0.515625
Result= 0.812500  Original=0.818182
%#k Division (N/D) ¥**

sn=000000 sp=011000 scn=100100 scp=100100
qn=1100000 qp=1101010

N=0.375 D= -0.5625

Result=-0.671875  Original= -0.666667

doee Division (N/D) ek

sn=000000 sp=011000 scn=000000 scp=100110
qn=0000000 qp=1010001

N=0.375 D= 0.59375

Result=0.632812  Original=0.631579

138 "test-all.v": $stop at simulation time 210

Type ? for help

C1 > $finish;

C1: $finish at simulation time 210

11117 simulation events

CPU time: 0 secs to compile + 0 secs to link -+ 4 secs in simulation
End of VERILOG-XL 1.6.0.1 Dec 20, 1992 05:53:51

Square Root

Host command: /cme1/verilogXL/sund_4.1_1.6.0.1/exe/verilog-grx
Command arguments:



Appendix B 103

-p2e0d6d30

test-all.v

-y /homes/hchan/Veritools/Verilog/NCA
+libext+.v

VERILOG-XL 1.6.0.1 log file created Dec 20, 1992 05:55:21

* Copyright Cadence Design Systems, Inc. 1985, 1983, *

* All Rights Reserved.  Licensed Software.  *

* Confidendal and proprietary informadon which is the *

*  property of Cadence Design Systems, Inc. *
Compiling source file “test-all.v"
Scanning library directory “/homes/hchan/Veritools/Verilog/NCA™
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA™
Highest level modules:
test

*%* Square Root { S=Q*Q ) **+*
sn=000000 sp=000000

qn=0101111 qp=1101111

S$=0

Result= 0.017639 Original= 0.000000

*** Square Root ( S=Q*Q ) ***
sn=000000 sp=011001

qn=0000001 qp=1110011

S=0.78125

Result=0.779358  Original=0.781250

**x Square Root ( S=Q*Q ) ***
sn=000000 sp=011001

gn=0000001 qp=1110011

S=0.78125

Result=0.779358  Original=0.781250

*** Square Root ( S=Q*Q ) ***
sn=000100 sp=011110

qn=0001010 qp=1111119)

S=0.6875

Result= 0.685791 Original= 0.687500

*¥¥ Square Root ( S=Q*Q ) ¥**
sn=000000 sp=011100
qn=0000000 qp-l 111000
S- 0.875
Result=0.878906  Original= 0.875000

*x* Square Root ( S=Q*Q ) ***
sn=000000 sp=011100

qn=0000000 qp=1111000

S=0.875

Result=0.878906  Original= 0.875000

*&* Square Root ( S=Q*Q ) ***
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sn=000100 sp=011101

qn=0001000 qp=1111000

S= 0.65625

Result= 0.660156  Original= 0.656250

w&x Square Root ( S=Q*Q ) ***
sn=000010 sp=011011

gqn=0000100 qp=1110101

$=0.71875

Result=0.725159  Original=0.718750

e ek -Q’luarc Rmt ( S=Q*Q ) 1.1

sn .J0O1 sp=011111

qr 00010gp=111111C

S.. 90625

Result= 0.908447  Original= 0.906250

*ax Square Root ( S=Q*Q ) ***
sn=000000 sp=011001
qn=0000001 qp=1110011

S$=0.78125
Result= 0.779358  Original=0.781250
%% Square Root ( S=Q*Q ) ***

sn=000000 sp=011011
qn=0000101 gp=1111111

S§=0.84375
Result= 0.835510  Original= 0.843750
ok Square Root ( S=Q*Q ) ***

sn=000000 sp=011001

qn=0000001 qp=1110011

S=0.78125

Result=0.779358  Original=0.781250

**% Square Root ( S=Q*Q ) ***
sn=000000 sp=011100

qn=0000000 qp=1111000

S=0.875

Result=0.878906  Original=0.875000

*%* Sauare Root ( S=Q*Q ) ***
sn=000100 sp=011100

qn=0000101 gp=1101111

S=0.625

Result= 0.622620  Original= 0.625000

**x Square Root ( S=Q*Q ) ***
sn=000010 sp=011010

qn=0001010 qp=1111110

S=0.6875

Result= 0.685791 Original= 0.687500
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ek Square Rmt ( SQ*Q ) %K %
sn=000011 sp=011011

qr:=0001000 gp=1111000

S= 0.65625

Result= 0.660156 QOriginal= 0.656250

*** Square Root ( S=Q*Q ) ***
sn=000000 sp=011000

qn=0000010 qp=1110011

S=0.75

Result=0.752014  Original= 0.750000

*** Square Root ( S=Q*Q ) ***
sn=000001 sp=011101

qn=0000101 qp=1111111
S=0.84375
Result=0.835510  Original= 0.843750

*kk Square Root ( S=Q*Q ) ¥k*
sn=000101 sp=011101
qn=0000010 qp=1100111

S=0.59375
Result= 0.598206 Original= 0.593750
*&* Square Root ( S=Q*Q ) ¥**

sn=000001 sp=011101

qn=0000101 gp=1111111

S= 0.84375

Result=0.835510  Original=0.843750

**% Square Root ( S=Q*Q ) ***
sn=000000 sp=011100

qn=0000000 qp=1111000

§=0.875

Result=0.878906  Original=0.875000

L38 "test-all.v": $stop at simulation time 210

Type ? for help

C1 > 3finish;

C1: $finish at simulation time 210

8480 simulation events

CPU time: 0 secs to compile + 0 secs to link + 2 secs in simulation
End of VERILOG-XL 1.6.0.1 Dec 20, 1992 05:55:32

Muluplication

Host command: /emcl/verilogXL/sun4_4.1_1.6.0.1/exe/verilog-grx
Command arguments:

-p2e0d6d30

test-ally

-y /homes/hchan/Veritools/Verilog/NCA

+libext+.v
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VERILOG-XL 1.6.0.1 log file created Dec 20, 1992 05:58:48

* Copyright Cadence Design Systems, Inc. 1985, 1988. *

» All Rights Reserved.  Licensed Software. *

* Confidential and proprietary information which is the *

*  property of Cadence Design Systems, Inc. *
Compiling source file "test-all.v”
Scanning Library directory "/homes/hchan/Veritools/Verilog/NCA"
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA™
Highest level modules:
test

**+* Multiplication-accumulate { X*Y + A ) ***
sn=000000 sp=000000 scn=000000 scp=000000
qn=0000000 qp=0000000 yn=000000 yp=000000
X=0 Y=0 A=0

Result= 0.000000  Original= 0.000000

*#* Multiplication-accumulate ( X*Y + A ) *#*
sn=001000 sp=001000 scn=000001 scp=000111
qn=0000100 qp=00001 10 yn=000000 yp=101101
X=03125 Y=0.703125 A=-0.25
Result=-0.031250  Original=-0.030273

**% Multplication-accurnulate ( X*Y + A ) ¥
sn=000000 sp=001000 scn=000000 scp=000110
qn=0000110 qp=0101111 yn=000101 yp=111101
X=0.375 Y=0.796875 A=0.25

Result= 0.546875  Original=0.548823

*x* Muliplication-accumulate ( X*Y + A ) ***
sn=000000 sp=001000 scn=000100 scp=000100
qn=0001100 qp=0011110 yn=001000 yp=111001
X=-0.25 Y=0.640625 A=0.25

Result= 0.093750  Original= 0.089844

*#* Multplication-accumulate ( X*Y + A ) ***
sn=000010 sp=001110 scn=000000 scp=000110
qn=0000011 qp=0100111 yn=001100 yp=111100
X=0.375 Y=05625 A=0.3125
Result=0.515625  Original=0.523438

*** Muldplication-accumulate ( X*Y + A ) ¥¥*
sn=000000 sp=001110 scn=000000 scp=000110
qn=0000000 qp=0110000 yn=000000 yp=110101
X= 0375 Y=0.828125 A=04375

Result= 0.750000  Original= 0.748047

wkx Multplication-accumulate ( X¥Y + A ) ¥¥%
sn=001001 sp=001001 scn=000001 scp=000111
qn=0010010 qp=0011110 yn=001100 yp=111110
X=03125 Y=0.59375 A=-0.28125
Result=-0.093750  Original= -0.095703
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*x* Multiplicadon-accumulate ( X*Y + A ) ***
sn=001010 sp=001011 scn=000110 scp=000111
qn=0100011 qp=0100111 yn=000000 yp=101000
X=-0.3125 Y=0.625 A=-0.28125
Result= -0.484375  Original=-0.476562

*x* Multiplication-accumutate { X*Y + A ) %**
sn=000000 sp=001111 scn=000110 scp=000111
qn=0010010 gp=0110111 yn=000000 yp=100100
X=-03125 Y=0.5625 A=046875
Result= 0.296875 Original= 0.292969

*%* Multiplication-accumulate ( X*Y + A ) ¥**
sn=001100 sp=001100 scn=000001 scp=000111
qn=0100010 qp=0110110 yn=000000 yp=100000
X=03125 Y=05 A=-0.375
Result=-0.218750  Original=-0.218750

*+k Multiplication-accumulate ( X*Y + A ) ¥**
sn=001100 sp=001100 scn=000100 scp=000100
qn=0101010 qp=0101111 yn=000000 yp=110101
X=-0.25 Y=10.828125 A=-0.375
Result=-0.578125  Original=-0.582031

*ik Mulrplication-accumulate ( X*¥Y + A ) ¥¥*
sn=001101 sp=001101 scn=000000 scp=000111
qn=0001001 gp=0001111 yn=000001 yp=110111
X= 04375 Y=0.828125 A=-0.40625
Result=-0.046875  Original= -0.043945

w4 Multiplication-accumulate { X*Y + A ) ¥k*
sn=000000 sp=001001 scn=000000 scp=000110
qn=0001000 qp=0111000 yn=000010 yp=111110
X=10.375 Y=0.90625 A=0.28125
Result=0.625000  Original=0.621094

4 Multiplication-accumulate ( X*Y + A ) ¥
sn=000000 sp=001001 scn=000000 scp=000101
qn=0001001 qp=0101111 yn=000000 yp=100011
X=0.3125 Y=0.546875 A=0.28125
Result=0.453125  Original=0.452148

%+ Multiplication-accumulate ( X*Y + A ) *¥*
sn=001000 sp=001000 scn=000101 scp=000101
qn=0100010 qp=0100011 yn=000100 yp=111110
=-0.3125 Y=0.84375 A=-0.25
Result=-0.515625  Original=-0.513672

*** Multiplication-accumulate ( X*Y + A ) ¥*
sn=001001 sp=001001 scn=000101 scp=000101
qn=0100000 qp=0100001 yn=001001 yp=111101
X=-0.3125 Y=0.671875 A=-0.28125



Appendix B

108

Result= -0.484375  Original= -0.491211

**# Multiplicadon-accumulate ( X*Y + A ) ***
sn=001010 sp=001011 scn=000000 scp=000100
qn=0010000 qp=0011000 yn=001001 yp=111011
X=0.25 Y=0.640625 A=-0.28125
Result=-0.125000  Original=-0.121054

*&¥ Multiplicaton-accumulate { X*Y + A ) ***
sn=000010 sp=001111 scn=000000 scp=000101
gn=0000100 qp=0101110 yn=000000 yp=110011
X=03125 Y=0.796875 A=0.34375
Result= 0.593750  Original= 0.592773

*** Multiplication-accumulate { X*Y + A ) ¥**
sn=000000 sp=001110 scn=000111 scp=000111
qn=0011010 gp=0111111 yn=000010 yp=101011
X=-04375 Y=0.609375 A=04375
Result=0.171875  Original=0.170898

**% Multplication-accumulate ( X*Y + A ) ¥**
sn=001010 sp=001011 scn=000001 scp=000111
gqn=0001000 qp=0001101 yn=000000 yp=101110
X=0.3125 Y=0.71875 A=-0.28125
Result=-0.046875  Original=-0.056641

w** Multiplication-accumulate ( X*Y 4 A ) ***
sn=000001 sp=001011 scn=000000 scp=000110
qn=0001101 qp=0111111 yn=000100 yp=111100
X=0.375 Y=0.8125 A=0.28125
Result=0.578125  Original= 0.585938

L58 "test-all.v": $stop at simulation time 210

Type ? for help

C1 > $finish;

C1: $finish at simulaton time 210

9753 simulation events

CPU time: 0 secs to compile + 0 secs to link + 3 secs in simulation
End of VERILOG-XL 1.6.0.1 Dec 20. 1992 05:59:02

Addition --

Host command: femcl/verilogXL/sund_4.1_1.6.0.1/exe/verilog-grx
Command arguments:

-ple387bf1

tmp.v

-y fhomes/hchan/Veritools/Verilog/NCA/Arch_behave

+libext+.v

-y /homes/hchan/Veritools/Verilog/NCA/Arch_behave/Rows

+libext+.v

VERILOG-XL 1.6.0.1 log file created Feb 24, 1993 07:09:22
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* Copyright Cadence Design Systems, Inc. 1985, 1988, *

* AllRights Reserved.  Licensed Software.  *

* Confidential angd proprietary informarion which is the *

*  property of Cadence Design Systems, Inc, *
Compiling source file "mmp.v"
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave”
Scanning library directory "/homes/hchan/Veriools/Verilog/NCA/Arch_behave/Rows"
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave”
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave/Rows”
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave”
Highest level modules:
test

¢ Addinon (A +X) %=

mds=0 as=1 sn=000000 sp=000000 scn=000000 scp=000000
qn=000000 qp=000000 yn=000000 yp=000000

X=0 Y=0 A=0

Result=0.000000  Original= 0.000000

ke Additdon (A +X) ***

mds=0 as=1 sn=001110 sp=001110 scn=000100 scp=000100
qn=010100 qp=010110 yn=100000 yp=100000

X=-0.125 Y=-0.25 A= -0.4375

Result=-0.562500  Original= -0.562500

**x Addition (A + X) ***

mds=0 as=1 sn=000100 sp=000111 scn=000110 scp=000110
qn=010001 qp=011011 yn=100000 yp=100000

X=-0.1875 Y=-025 A=-0.03125
Result=-0.218750  Original=-0.218750

wkk Additon (A + X) ¥k

mds=0 as=1 sn=000101 sp=001111 scn=001110 scp=001111
qn=010000 qp=011000 yn=100000 yp=100000
X=-0.40625 Y=-0.25 A=0.15625
Result=-0.250000  Original= -0.250000

k- Addition (A + X) ¥k

mds=0 as=1 sn=000001 sp=000101 scn=000000 scp=000100
qn=001010 qp=011011 yn=100000 yp=100000

X=0.125 Y=-0.25 A=0.09375

Result=0.218750  Original=0.218750

**k Addition (A +X) ***

mds=0 as=1 sn=000000 sp=001101 scn=001100 scp=001100
qn=000001 qp=000011 yn=100000 yp=100000

X=-0375 Y=-025 A=0.40625

Result=0.031250  Original=0.031250

¥ Additon (A +X) *¥*

mds=0 as=1 sn=000000 sp=000110 scn=000000 scp=001101
qn=000110 qp=011111 yn=100000 yp=100000

X=0.40625 Y=-025 A=0.1875
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Result= 0.593750  Original= 0.593750

wud Addition (A +X) ***

mds=0 as=1 sn=000001 sp=000101 scn=000000 scp=000101
qn=001000 qp=011000 yn=100000 yp=100000

X=0.15625 Y=-0.25 A= 0.09375

Result= 0.250000  Original= 0.250000

xak Addition (A + X) ***

mds=0 as=1 sn=000100 sp=001100 scn=000101 scp=000101
qn=000010 qp=000011 yn=100000 yp=100000
X=-0.15625 Y=-0.25 A=0.125

Result= -0.031250  Original= -0.031250

e Addition (A +X) ***

mds=0 as=1 sn=000000 sp=001101 scn=000000 scp=000100
qn=000001 gp=010011 yn=100000 yp=100000

X=0.125 Y=-0.25 A= 040625

Result=0.531250  Original=0.531230

wk Addition (A + X) ***

mds=0 as=1 sn=000000 sp=001111 scn=000101 scp=000101
qn=001010 qp=011110 yn=100000 yp=100000

X=-0.15625 Y=-0.25 A=0.46875

Result=0.312500  Original=0.312500

whk Addition (A + X) ***

mds=0 as=1 sn=000001 sp=001111 scn=000000 scp=000111
gn=000100 qp=011100 yn=100000 yp=100000

X=0.21875 Y=-0.25 A= 0.40625

Result= 0.625000  Original=0.625000

vk Addiion (A + X) *x*

mds=0 as=1 sn=001100 sp=001110 scn=001111 scp=001111
qn=011010 qp=011011 yn=100000 yp=100000

X=-046875 Y=-0.25 A=-0.3125

Result= -0.781250  Original=-0.781250

*kk Addition (A +X) ***

mds=0 as=1 sn=001101 sp=001101 scn=000000 scp=000101
qn=010000 qp=011000 yn=100000 yp=100000

X=0.15625 Y=-0.25 =-0.40625
Result=-0.250000  Original=-0.250000

wkk Addition (A + X) ¥k*

mds=0 as=1 sn=001100 sp=001101 scn=001100 scp=001100
qn=011001 qp=011011 yn=100000 yp=100000

X=-0375 Y=-025 A=-0.34375
Result=-0.718750  Original=-0.718750

*hk Additdon (A +X) ***
mds=0 as=1 sn=000100 sp=001111 scn=001110 scp=001110
gn=010001 qp=011011 yn=100000 yp=100000
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=-04375 Y=-025 A=0.21875
Result=-0.218750  Original=-0.218750

*kk Addidon (A +X) ***

mds=0 as=1 sn=000110 sp=000111 scn=000001 scp=000111
qn=000000 qp=000000 yn=100000 yp=100000

X=0.15625 Y=-0.25 A=-0.15625

Result= 0.000000  Original= 0.000000

*xkk Addition (A +X) ***

mds=0 as=1 sn=000100 sp=000101 scn=000000 scp=001110
qn=001010 gp=011111 yn=100000 yp=100000

X=0.4375 =.0.25 =-0.09375
Result=0.343750  Original=0.343750

*ik Addition (A +X) ***

mds=0 as=1 sn=000100 sp=001101 scn=000101 scp=000101
qn=000000 qp=000000 yn=100000 yp=100000
X=-0.15625 Y=-0.25 A= 0.15625

Result=0.000000  Original= 0.000000

ki Addition (A +X) ¥d*

mds=0 as=1 sn=000000 sp=000110 scn=000100 scp=001100
qn=001010 qp=011110 yn=100000 yp=100000

X=0.125 =-0.25 A= 0.1875

Result=0.312500  Original=0.312500

*ik Additon (A +X) *¥*

mds=0 as=1 sn=000101 sp=001111 scn=000000 scp=001110
qn=000110 qp=011111 yn=100000 yp=100000

X=04375 Y=-025 A= 0.15625

Result=0.593750  Original=0.593750

L58 "mnp.v": $stop at simulation time 210

Type ? for help

C1 > $finish;

C1: $finish at simulation time 210

6296 simulation events

CPU time: 0 secs to compile + 0 secs to link + 1 secs in simulation
End of VERILOG-XL 1.6.0.1 Feb 24, 1993 07:09:40

Subtracton -

Host command: /cmc/verilogXL/sund_4.1_1.6.0.1/exe/verilog-grx
Command arguments:

-ple387bfl

tmp.v

-y /homes/hchan/Veritools/Verilog/NCA/Arch_behave

+libext+.v

-y /homes/hchan/Veritools/Verilog/NCA/Arch_behave/Rows

+libext+.v
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VERILOG-XL 1.6.0.1 log file created Feb 24, 1993 07:13:08

* Copyright Cadence Design Systems, Inc. 1985, 1988. *

* AllRights Reserved.  Licensed Software.  *

* Confidential and proprietary information which is the *

*  property of Cadence Design Systems, inc. *
Compiling source file "tmp.v"
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave”
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave/Rows"”
Scanning library directory “/homes/hchan/Veritools/Verilog/NCA/Arch_behave”
Scanning library directory "/homes/hchan/Veritools/Verilog/NCA/Arch_behave/Rows”
Scanning library directory “/homes/hchan/Veritools/Verilog/NCA/Arch_behave”
Highest level modules:
test

*&& Subtraction (A -X) ***

mds=1 as=1 sn=000000 sp=000000 scn=000000 scp=000000
qn=000000 gp=000000 yn=000000 yp=000000

X=0 Y=0 A=0

Result= 0.000000  Original=0.000000

*** Subtraction (A - X) ***

mds=1 as=1 sn=001100 sp=001100 scn=000100 scp=000100
qn=010000 qp=011000 yn=000000 yp=100000

X=-0125 Y=0.25 A=-0.375

Result= -0.250000  Original= -0.250000

**& Subtraction (A - X) ***

mds=1 as=1 sn=000010 sp=000010 scn=000000 scp=000101
qn=010001 qp=011011 yn=000000 yp=100000

X=0.15625 Y=0.25 A= -0.0625

Result=-0.218750  Original=-0.218750

*** Subtraction (A - X) ***

mds=1 as=1 sn=000000 sp=001101 scn=000001 scp=000111
qn=001000 qp=011000 yn=000000 yp=100000

X=0.15625 Y=0.25 A= 0.40625

Result=0.250000  Original= 0.250000

*kk Subtraction (A - X) ¥¥*

mds=1 as=1 sn=000100 sp=001100 scn=000100 scp=000100
qn=001000 qp=011000 yn=000000 yp=100000

X=-0.125 Y=025 A=0.125

Result= 0.250000  Original=0.250000

*kk Subtraction (A - X) ***

mds=1 as=1 sn=000101 sp=000101 scn=000000 scp=000100
qn=010010 qp=011011 yn=000000 yp=100000

X=0.125 Y=025 A=-0.15625

Result= -0.281250  Original= -0.281250

**kx Qubtraction (A - X) ***
mds=1 as=1 sn=001110 sp=001110 scn=000000 scp=000100
qn=010100 qp=010110 yn=000000 yp=100000
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X=0.125 Y=0.25 A=-0.4375
Result=-0.562500  Original= -0.562500

*** Subtracdon (A - X) ***

mds=1 as=1 sn=001100 sp=001100 scn=001100 scp=001100
qn=000000 qp=00000C yn=000000 yp=100000

X=-0375 Y=025 A=-0.375

Result=0.000000  Onrginal= 0.000000

»xx Qubtraction (A - X) ***

mds=1 as=1 sn=001000 sp=001100 scn=000001 scp=000111
qn=010010 qp=011011 yn=000000 yp=100000

X=0.15625 Y=0.25 =-0.125

Result= -0.281250  Original=-0.281250

*¥k Subtracton (A - X) ***

mds=1 as=1 sn=000110 sp=000010 scn=001101 scp=001101
qn=001010 qp=011111 yn=000000 yp=100000

X=-0.40625 Y=025 A=-0.0625

Resuit= 0.343750  Original=0.343750

*** Subtraction (A - X) ***

mds=1 as=1 sn=000001 sp=000101 scn=000000 scp=000111
qn=001000 qp=001100 yn=000000 yp=100000

X=0.21875 Y=0.25 A=0.09375
Result=-0.125000  Original=-0.125000

¥k Subtraction (A - X) ***

mds=1 as=1 sn=000000 sp=000111 scn=000000 scp=001101
qn=001010 qp=001110 yn=000000 yp=100000

X=040625 Y=0.25 A= 0213875
Result=-0.187500  Original=-0.187500

*** Subtraction (A - X) ***

mds=1 as=1 sn=000000 sp=000011 scn=000000 scp=000101
qn=000100 qp=000110 yn=000000 yp=100000

X=0.15625 Y=0.25 A= 009375
Result=-0.062500  Original=-0.062500

*** Subtraction (A - X) ***

mds=1 as=1 sn=000000 sp=000010 scn=000100 scp=001100
qn=000100 qp=000110 yn=000000 yp=100000

X=0.125 Y=025 A=0.0625

Result=-0.062500  Original=-0.062500

*** Subtraction (A -X) ***

mds=1 as=1 sn=001100 sp=001100 scn=000100 scp=000100
qn=010000 qp=011000 yn=000000 yp=100000

X=-0.125 Y=0.25 A= -.375

Result=-0.250000  Original=-0.250000

**x Subtraction (A -X) ***
mds=1 as=1 sn=000000 sp=000101 scn=000000 scp=001100
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qn=010001 gp=011011 yn=000000 yp=100000
X=0.375 Y=0.25 A=0.15625
Result=-0.218750  Original=-0.218750

=% Subtraction (A - X) ***

mds=1 as=1 sn=001100 sp=001100 scn=000000 scp=000101
qn=010010 qp=010011 yn=000000 yp=100000

X=0.15625 Y=0.25 A= -0.375

Result=-0.531250  Original=-0.531250

wxd Subtraction (A - X) ¥**

mds=1 as=1 sn=000010 sp=000110 scn=000100 scp=001100
qn=000100 qp=0001 10 yn=000000 yp=100000

X=0.125 Y=0.25 A=0.0625

Result= -0.062500  Original= -0.062500

*x Subtraction (A - X) ***

mds=1 as=1 sn=000000 sp=001100 scn=000000 scp=001100
qn=000000 qp=000000 yn=000000 yp=100000

X=0.375 Y=0.25 A=0.375

Result=0.000000  Original= 0.000000

¥% Subtraction (A - X) ***

mds=1 as=1 sn=000110 sp=001110 scn=000001 scp=000111
qn=000101 qp=000111 yn=000000 yp=100000

X=0.15625 Y=0.25 A= 0.0625

Result=-0.093750  Original= -0.093750

®%* Subtraction (A - X) %**

mds=1 as=1 sn=000000 sp=001010 scn=000100 scp=000100
qn=000100 qp=010110 yn=000000 yp=100000

X=-0125 Y=025 A=03125

Result=0.437500  Original=0.437500

L58 "tmp.v": $stop at simulation time 210

Type ? for help

C1 > $finish;

C1: $finish at simulation time 210

5968 simulation events

CPU time: 0 secs 1o compile + 0 secs to link + 1 secs in simulation
End of VERILOG-XL 1.6.0.1 Feb 24,1993 07:13:17
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Figure C.11 Type 3 Cell of Original Architecture
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Figure D.1 Mask Layout of Improved Architecture
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// Verilog netlist of
/" mome/engn/homeS/hchan/batmos/Work/NCA/cells/cella”

// HDL models

// End HDL models

J/ module cella(bi, mi, sno, spo, bil, mil, sOn, sOp, sbn, sbp, scn, scp);
module cella(sOn,s0p,sbn,sbp,scn,scp,mil,bil,sno,spo,mi,bi);
output bi, mi, sno, spo;

input bil, mil, sOn, sOp, sbn, sbp, scn, scp:
supplyl vdd;

supplyC vss;

and I39(sno, bil, dib);

not I52(senb, scn);

not I50(sbnb, sbn);

not I48(bilb, bil);

not I47(milb, mil);

not 144(s0Opb, sOp);

not 143(scpb, scp);

not I142(sbpb, sbp);

not 141(sOnb, sOn);

not I37(dib, di);

nand I35(spo, hnl_0, hnl_1);

nand 134(hnl_0, bilb, di);

nand I33(hnl_1, bil, dib);

nand [22(hnl_2, scp, sbp);

nand 119¢hnl_3, milb, hnl_4);

nand I17¢hnl_S, sOpb, hnl_6);

nand 116(hnl_6, scp, sbp);

nand I5¢hnl_7, scpb, sOnb);

nand I4(hnl_8, sbpb, sOnb);

nand 132(di, hnl_9, hnl_10, hnl_11, hnl_12);
nand 131¢hnl_9, sOp, mil, scp, sbp);

nand I30¢hnl_10, sOpb, milb, scp, sbp);
nand I1(mi, hnl_7, hnl_8, hnl_13, hnl_14);
nand 125¢hnl_11, sOp, milb, hnl_2);

nand 123(hnl_12, hnl_2, sOpb, mil);

nand 120(bi, hni_3, hnl_5, hnl_15);

nand I18(hnl_4, scp, sbp, sdp);

nand I15(hnl_15, scp, sbp, sOn);

nand I3¢hnl_13, scn, sbp, sbnb);

nand I0(hnl_14, scp, scnb, sbn);
endmodule

— cellal —--
/I Verilog netlist of
//"/mome/engn/homeS/hchan/batmos/Work/NCA/cells/cellal”
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/f HDL models
// End HDL models

// module cellal(bi, mi, scno, scpo, sno, spo, bil, mil, sOn, sOp, sbn, sbp, sca, scp,
sdmy);

module cellal(sdm,sOn,s0p,sbn,sbp,scn,scp,mil,bil,sno,spo,mi,bi,scno,scpo);
output bi, mi, scno, scpo, sno, spo;

input bil, mil, sOn, sOp, sbn, sbp, scn, scp, sdm;
supplyl vdd;

supplyO vss;

and I39(sno, bil, dib);

not 162(sbpb, sbp);

not I60(scnb, scn);

not IS8(sdmb, sdm);

not [48(bilb, bil);

not I47(milb, mil);

not 144(s0pb, sOp);

not 143(scpb, scp);

not I142(sbnb, sbn);

not 141(sOnb, sOn);

not [37(dib, di);

nand I57(hni_0, sdmb, sbp);

nand 155(hnl_1, sdm, scp);

nand I54(scpo, hnl_0Q, hnl_1);

nand 152(scno, hnl_2, hnl_3);

nand I51(hnl_2, sdmb, sbn);

nand E50(hnl_3, sdm, scn);

nand I35(spo, hnl_4, hnl_3);

nand 134(hnl_4, bilb, di);

nand 133(hnl_5, bil, dib);

nand 122(hnl_6, scp, sbp);

nand 119(hnl_7, milb, hnl_8);

nand [17(hnl_9, sOpb, hnl_10);

nand I16(hnl_10, scp, sbp):

nand I5¢hnl_11, scpb, sOnb);

nand [4(hnl_12, sbpb, sOnb);

nand 132(di, hnl_13, hnl_14, hnl_15, hnl_16):
nand I131(hnl_13, sOp, mil, scp, sbp);

nand 130(hnl_14, sOpb, milb, scp, sbp);
nand I1(mi, hnl_11, hnl_12, hnl_17, hnl_18);
nand I25Chnl_15, sOp, milb, hnl_6):

nand 123(hnl_16, hnl_6, sOpb, mil):

nand 120(bt, hnl_7, hnl_9, hnl_19);

nand I118(hnl_8, scp, sbp. sOp);

nand I15(hnl_19, scp, sbp, sOn);

nand I3(hnl_17, scn, sbp, sbnb);

nand [0(hni_18, scp, scnb, sbn):

endmodule
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- cellag -——-
/! Verilog netlist of
/' mome/engn/homeS/hchan/batmos/Work/NCA/cells/cellas”

// HDL models
// End HDL models

// module cellas(bi, mi, sno, spo, bil, mil, sOn, sOp, sbn, sbp, scn, scp, sdm);
module cellas(sdm,sOn,s0p,sbn,sbp,scn,scp,mil,bil.sno,spo.mibi);

output bi, mi, sno, spo;

input bil, mil, sOn, sOp, sbn, sbp, scn. scp, sdm;
supply0 vss;

supplyl vdd;

and I15(bi, hnl_0, hnl_1, hnl_2);

and I32(sno, bil, dib);

and I25(bcs, hnl_3, hnl_4);

not I50(bilb, bil);

not I49(milb, mil);

not I47(sOpb, sOp);

not I45(sOnb, sOn);

not I41(sdmb, sdm);

not 139(scpb, scp);

not I36(senb, scn);

not 134(sbnb, sbn);

not 126(dib, di);

not I6(sbpb, sbp);

nand I53(besb, hnl_3, hnl_4);

nand I31(spo, hnl_35, hnl_6);

nand I30¢hnl_5, bilb, di);

nand I127(hnl_6, bil, dib);

nand I18(hnl_3, scp, sbp);

nand I17(hnl_4, sdmb, sbp);

nand I8(hnl_7, sbp, t1);

nand I7(tl, scpb, sdm);

nand I2(hnl_§, sbp», sOnb);

nand 123(hnl_9, besb, sOp, mil);
nand 122(hnl_10, besb, sOpb, milb);
nand I21(hnl_11, bes, s0p, milb);
nand 120(hnl_12, bes, sOpb, mil);
nand 114¢hnl_2, sOp, mil, hnl_7);
nand I1¢hnl_13, scpb, sOnb, sdm);
nand 124(di, hnl_9, hnl_10, hnl_11, hnl_12);
nand 112(hnl_0, sbp, sOp, sOnb, t1);
nand I10(hnl_1, sOpb, mil, sbp, t1);
nand I4(mi, hnl_8, hnl_13, hnl_14, hnl_15);
nand I3(hnl_15, scp, scnb, sbn, sdm):
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nand I0Chnl_14, scn, sbp, sbnb, sdm).
endmodule

------- cOmb -------
// Verilog netist of
/I"Mhome/engn/homeS/hchan/batmos/Work/NCA/cells/comb”

J HDL models
J/ End HDL models

J/ module comb(con, cop, bil, mil, nn, np, sOn, sOp, sln, s!v, sbp, scp);
module comb(nn,np.sOn,s0p.s1n,slp.sbp.scp.mil,bil,con,copj

output con, Cop;

input bil, mil, nn, np, sOn, sOp. sln. sip, sbp. scp:
supplyl vdd;

supply0 vss;

and 166(hni_0, t1, 14, 13, t2):

not 151(bilb, bil);

not [49(milb, mil);

not 146(s1pb, slp);

not 144(sinb, sln);

not 138(sOpb, sOp)

not I136{npb, np);

not I35(scpb, scp);

not 134(sbpb, sbp);

nand 132(cop, hnl_1, hnl_2, hnl_3, hnl_4):
nand 120¢hnl_S, 4, t3, 12, t1);

nand I14(¢hnl_6, hnl_0, hnl_7, hnl_8, hnl_9):
nand I7(t4, sln, sOpb, npb, hnl_10);
nand I3(hnl_7, scp, sbp. milb, hnl_11):
nand I1(hnl_S, slpb, milb, hnl_12):
nand 164(t1, sOn, npb, tib);

nand 163(t1b, slp, scp. sbp):

nand 159(17a, 162, t5a, tla);

nand I55(tla, slpb, scp, sbp);

nand 131¢hnl_1, bil, mil, 17a);

nand I30¢hnl_2, bilb, milb, t7a):

nand 129(hnl_3, bil, milb, 17);

nand 128(hnl_4, bilb, mil. t7):

nand 127(17, 6, t5, t1b);

nand 125(con, t03, 102, tol);

nand 124(103, sOn, npb, hnl_13):

nand 123(hnli_13, slnb, 16, 15);

nand 18(hni_g, sUn, milb, npo);

nand I5(t3, sin, sOp, np);

nand 167(t02, milb, hnl_5);

nand I165(hnl_12, sOp. npb):
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nand 161(tol, bil, hal_6);
nand I60(t5a, scpb, sip);
nand I58(t6a, sbpb, slp);
nand 22(6, sbpb, slpb);
nand 121(z5, scpb, slpb);
nand I6(hni_10, scp, sbp);
nand I9(hnl_11, slnb, sOp);
nand 14(t2, sOpb, nn);
endmodule

—— mcell]l ——n-e
/I Verilog netlist of
/" Mhome/engn/homeS/hchan/bamos/Work/NCA/cells/mceell”

// HDL models
/{ End HDL models

/f module mcelll(bn, bp, nn, np, as, mds, gn. gp. yn. yp):
module mcell1{(mds,as,qn,qp,yn,yp.bn.bp.nn.np):
output bn, bp, nn, np;

input as, mds, qn, qp, yn, yp:
supplyl vdd;

supplyO vss;

not 123(ynb, yn);

not 116(gnb, qn);

not 115(asb, as);

not 114(mdsb, mds);

and I10(nn, t1, qp, qnb);

and I9(np, t1, gp);

nand I2(hnl_0, gp, qn, asb, mds);
nand I11(tl, asb, mds);

nand IS(hni_1, qp, mds);

nand I4(hni_2, yp, mdsb);

nand I1(hal_3, as, mdsb);

nand I6(bp, asb, hnl_1, hnl_2);
nand 13(bn, hnl_3, hnl_0, hnl_4);
nand I0(hnl_4, yp, ynb, mdsb);
endmodule

— meell ——-
// Verilog netlist of
/"Mhomefengn/homeS/hchan/bammos/Work/NCA/cells/meell1”

// HDL models

// End HDL models
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// module mcell(ba, bp, nn, np, as, mds, gn, gp, yn. yp)
module mcell(mds,as,qn,qp,yn.vp,bn,bp,nn,np}:

output bn, bp, nn, np;

input as, mds, qn, gp, vn, yp;
supplyl vdd;

supplyQ vss;

not 123(ynb, yn);

not 116{qnb, qn);

not 115(asb, as);

not 114{mdsb, mds);

and 110(nn, t1, qp, qnb);

and 19(np, t1, gp);

nand [25(hn}_0, yp, ynb, mdsb, asb):
nand 12(hnl_1, gp, gn, asb, mds):
nand I11(t1, asb, mds);

nand I5(bp, hnl_2, hnl_3);

nand I1¢bn, hni_1, hnl_0);

nand [26(hnl_2, qp, asb, mds):
nand I6(hnl_3, yp, asb, mdsb);
endmodule

- select —----
// Verilog netlist of
/" home/engn/homeS/hchan/batmos/Work/NCA/cells/select”

// HDL models

J/f End HDL models

// module select(seln, selp, sOn, sOp. sln, slp, s2n, s2p, sgn);

module select(sgn,s0n,s0p,sin,slp.s2n.s2p.seln.selp)

output seln, selp;

input sOn, sOp, sln, slp, s2n, s2p, sgn:
supplyl vdd;

supplyO vss;

not 29(sgnb, sgn);

not [25(s2nb, s2n);

not 122(slnb, sln);

not 120(sOpb, sOp);

not 118(sOnb, sOn);

and I11(hnl_0, slp, slnb);

nand 116(seln, hnl_1, hal_2, hnl_3, hnl_4):
nand 114(hnl_2, sln, sOpb, sgnb, 12);
nand I13¢hnl_3, sOp, sOnb, sgn. t1);

nand 112(hnl_4, s2nb, sgn, sOpb, hnl_0):
nand 17(selp, hnl_5, hnl_6, hni_7. hnl_8):



Appendix E

nand I5(13, s2p, s2nb, slp, sinb);
nand I2(hnl_7, s2nb, slp, slnb, sOpb);
nand I15(hnl_1, sOn, sgnb, t3);

nand I4(hn!_6, sln, sOpb, t2);

nand I1¢hni_8, sOp, sOnb, t1);

nand 16(hnl_35, sOn, t3);

nand 13(22, s2p, s2nb);

nand I0(t1, s2n, sln);

endmodule
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