University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

Application centric load balancing for distributed systems using
genetic algorithm scheduling

Sheng Bai
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Bai, Sheng, "Application centric load balancing for distributed systems using genetic algorithm
scheduling" (2008). Electronic Theses and Dissertations. 1192.
https://scholar.uwindsor.ca/etd/1192

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1192?utm_source=scholar.uwindsor.ca%2Fetd%2F1192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Application Centric Load Balancing
for Distributed Systems

Using Genetic Algorithm Scheduling

By

Sheng Bai

A Thesis
Submitted to the Faculty of Graduate Studies
through the School of Computer Science
in Partial Fulfillment of the Requirements for
The Degree of Master of Science at the
Untversity of Windsor

Windsor, Ontario, Canada
2008

© 2008 Sheng Bai

Bibliothéque et
Archives Canada

I*. Library and
Archives Canada

Direction du

Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-42253-3
Qur file Notre référence
ISBN: 978-0-494-42253-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

This thesis proposes a GA based scheduling algorithm for a heterogeneous distributed
computing environment. It uses the application centric load balancing system. The
proposed system removes all those network delay assumptions and considers the
allocation problem for both computing resources and network resources. It addresses the
generalized workload i.e. direct acyclic graph (DAG) kind of workload that is composed

of sub jobs with internal dependencies.

Rather than allocate applications simply according to their arrival time, we introduce GA
scheduling strategy into our load balancing system to find the proper applications
allocating schedule, which uses the available resources more efficiently. With
introduction of GA scheduling into both application level and process level, certain

improvements on the practicability, accuracy and performance are expected.

Instead of using constant GA parameters, our proposed algorithm dynamically adjusts the
key parameters, such as crossover rate and mutation rate, adapting them to the quality of
generations. Later, we will implement more new ideas, such as gender assignment,

fertility rate and ageing into our GA algorithm to achieve better performance.

Keywords:

Load balancing, network delay, workload simulator, Adaptive Genetic Algorithm

scheduling etc.

i1

Dedication

To

My grandma

v

Acknowledgements

I wish to express my deep sense of gratitude to Dr. Akshai Aggarwal, my advisor, for his
inspiring ideas, persistent guidance, and valuable assistance through the course of this
thesis. His encouragement has assured the quality of the work.

I would like to express my appreciation to Dr. Fritz Rieger, Dr. Robert Kent, and Dr.
Jessica Chen for being on my committee and offering me valuable advice and comments
concerning this thesis.

I am also grateful to all the people who have given me useful suggestions and unrelenting

or continual support during the research.

Table of Content

ADBSITACT ...ttt ettt ettt et ettt e et e e e s s e e e st e ehet e aeeeeeeanteeeeeenbaaseeanteanseeetasaneenbeaneanreans i
DdICAtIONeieiiiee et et sttt n e v
ACKNOWIEAZEIMENTS. ...ttt ettt v
LSt OF TABLES .eneeeeee ettt ettt viil
LSt OF FLUIES ..ttt ettt ettt et e e nan e et emeseneens X
L. INEEOAUCTION. ¢e ettt ettt e e e et e et e st e et e e st e s sn e e b e enneresneees 1
2. LIterature REVIEWc..cooiiiuiiiiiei ettt sttt e 4
2.1 Application centric load balancingc.ccocciioiiiiiiiiniesie e 4

2.1.1 NOIMAHZATION ...ttt sttt st 6

2.1.2 Critical Branch HeuriStiCs.oovivrveeeriiienieinicceiee ettt 6

2.1.3 Queue AlOTTtRIooviiiiiiieee e 8

2.1.4 Queue Shuffling AIGOTIthImcccooiiiieiiiieieeeeee e 9

2.1.5 Class Allocation AIGOTTthImcoceeriiiriiinieice e 9

2.1.6 Branch Delay algorithm........cccccoeieiiiniiiniiicieceeee e e 12

2.1.7 Process Completion Predictor Algorithm............ccccoooiiininiiiiniiicne, 12

2.1.8 Application Completion Predictor Algorithmcc.cocvviiiiiiiniiniiiie, 12

2.1.9 Priority Management Algorithm.............cooooiii, 12

2.2 Network load balancing..........cccevereieririirierioieiiceeetee e 15

3. Motivation and Model Formalization.........ccoccoeeieiiiiiiiiiiicieeeeee e 23
3.1 IMOTIVALION. 1.ttt ettt ee sttt e et seaeebe s be s ean e smne b e e besanentens 23

32 Model FOrmaliZationc.cccoceevieeiveiennicnieneine et 23

3.2.1 ComPULE NOES ..veiiiieiieeieiieieieeeecte sttt st s eaees 24

3.2.2 Distributed Networks: TOpologyc.ccoieererieriiiiirerereceeeeercree e 24

3.2.3 WOrK Load ...cociiiiieiee ettt 24

4. Proposed AlZOTItRIMttt et 25
4.1 MaIN SHEALEZYeevieeieeeieieie et ettt sttt et st 26

42 Generate initial POPUIALIONovureriiriiriiiiiecciieiee e 29

43 Calculation of the Session Completion Timeccceeveirveiinceinecniceeee 31

4.3.1 Allocation of APPLCAtIONS......cevveueeereieieeie ettt 33

4.3.2 Allocation 0 @ PTOCESSccververiirinriiietee et 35

4.3.3 Calculation of Network Delayccccocoiiiiiiiiiiiicccnccecne 37

4.3.4 Optimization of Network Delays.........ccocerireiviiieniinieiiieienieneceene e 39

4.4 Fitness Function and Standard Deviationcccooceveerieriencncnninceiieecreieeeene 41

4.5 Generation of New Populationccooeevieiriieciieeeee et 42

4.5.1 Selection Methodoo.ooiiiii et 43

4.5.2 CrOSSOVET ..eeeiniiieiieesitteette et e ettt et e et e ettt sane e st st e s et e saae s e eseeenanene 47

B TRC TV A5 - 14 1o) o F U ST SPUSPR R 50

B.5.4 EIEISIM ..ottt et ete e e ae et eatesaeete e s e em e st st eneeenteseeeneseeeaberaenas 52

4.6 Further IMpProvemMentccuveiuieeiiriiieeie ettt et ete ettt e 52

4.6.1 Gender aSSIZNIMENT......ccc.iiitiiiiieiiieeteee ettt e st e st e ettt e st sbe e ee e s eanenaneas 52

4.6.2 AQE aSSIZNIMENT...c.iiiiiiiiiiiiieiie ettt et mee e eaneas 53

4.6.3 Fertllity TaE ...cooiiiiiieiieee ettt ettt et e st 54

4.6.4 The updated algoTithmcocuieiiiiiieeiieee e 54

vi

5. Experiment and Expected Result ... 56

5.1 Same Load, various enviroNmMENTS..........covvuvuerersiererrereeeeeeeeeeetreeeeeeeeeesesrreeeeseesensnens 56
5.2 Same environment, Various l0adS...........coocviiiiieiiiieciiieee e e e e e 59
5.3 Implementing Gender and Age assignmentscocovvveeeeeiceenniiicieincicinneene 63
6. Conclustions and fUtUre WOTKcooovieviiiiii it e e erre e e e e s aarene e 69
BIbHOGIaphy ... 71
VIEA AUCEOTIS ..veeiietiiieee ettt e ee et eeie e e e ettt ee e eetaeeeeetbeeeeeteteeeesnaeeeeansaaeaaassaeeeenssaeesanssaeaesssseeannnres 74

Vit

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

List of Tables

Sample output of Critical branch heuristic, [11-Page9]cccoevieveniinnnnne 15
Experiment result of 10 applications on various numbers of nodes.................... 57
Comparison Result of 10 Applications on various number of Nodes................. 58
Experiment result of various num applications on same numbers of nodes 60
Comparison Result of various num of apps on constant num of Nodes 61
Experiment result of various num applications on 25 nodes.........cccoeeveieuvennnnnn. 63
Comparison Result between PA with Gender and PA without Gender 65
Percent Improvement after implementing Gender and Age assignments 67

viii

List of Figures

Figure 1: Interdependency graph of Application, [11-Page9]........ccooeveveririneeeiee 13
Figure 2: Interdependency graph of Application 2, [11-Page9] ... 14
Figure 3: Load Balancing Model, [7-Page2]cccooiroirericriciciiriccicrr e 16
Figure 4: Node allocation graph, [7-Page7]cccooiiirmiriiriiiinieee et 18
Figure 5: Network Allocation Graph, [7-Paged] ..ot 20
Figure 6: Normalized network utilization nodes, [7-PageS]ccccovvvveevnieniincnicccneenn 22
Figure 7: Main Flow of Proposed Algorithmc.ccoeriiiiiiiiiieeeceeee e 27
Figure 8: Sub Flow — Generate Initial Population.........cccccoceeienmnrnniiieneenoneenceenene 30
Figure 9 Sub Flow — Calculate Session Completion Time...........ccoocooiiiiiiiiiiiiiinnn 32
Figure 10: Sub Flow - Allocate AppliCation........ccoeoivuieiiiiiieiieic e 34
Figure 11: Sub Flow — AllOCate PrOCESS. ...c.vieuiieiieiieeie ettt 36
Figure 12: Sub Flow — Calculate Network Delay Sub ..o 38
Figure 13: Calculate Network Delayoooiiiiiiiniiiiniicieee e 40
Figure 14 Sub Flow — Generate New Populationccccovvevevieniicinnen et 43
Figure 15: Sub Flow — Selection Methodccooiiiiiiiieiieeee e 45
Figure 16: Crossover Process, [8-Paged].........oovieiiiiiiiiiiccieiic e 48
Figure 17: Sub FIOW = CrOSSOVETccuii ittt 49
Figure 18: Sub FIoW - MULationccooeiiiiiiiiiiiiieiceccee et 51
Figure 19: Generalized SCT of 10 Applications based on LB [7] .cccecvieniiriieienceenne 59
Figure 20: Generalized SCT on 15 Nodes based on GA [8] .ccveevveeriecienicneiicneeeicene 62
Figure 21: Generalized SCT on 25 Nodes based on LB [7]...ccccoociiiniiniinccieienieee 65
Figure 22: Generalized SCT on 25 nodes based on GA [8] ...c.ccocverrveeninveeccecnenieecne, 66
Figure 23: Generalized SCT on 25 nodes based on PA without Gender and Age............. 68

1X

1. Introduction

Since Grid Computing came into computer world’s view, the resource allocation and
scheduling algorithms, which are used to allocate available resources for processing
applications, have become an important area of research. A grid [9, 10] seamlessly
integrates geographically spread out compute and data resources and sensors. It provides
resources on demand to users. In order to satisfy the QoS requirements of applications on
the grid, scheduling algorithms are introduced to ensure optimum utilization of available

resources and to provide the required service to users.

The general motivation of a scheduling algorithm is to allocate the workload to each
compute node according to its processing capacity. From the application perspective, it
minimizes the processing time for a single job or for a set of jobs. From the resource
perspective, it will try to keep all the nodes busy during a given session. In the optimum

circumstance, the allocated jobs on each node should be done almost at the same time.

Most of the existing scheduling algorithms build on certain assumptions either related to
workload or the distributed computing environment. Some load balancing algorithms
consider all the compute-nodes in the distributed environment as homogeneous with the
same processing capacity. In other algorithms, the distributed environment is idealized as
a network composed of network segments with the same data transfer rate. There are
certain algorithms which do consider the diversity of both the communication network
segments and the compute-nodes. But these algorithms can only process divisible

workload, which can be split into several child jobs, without considering any dependency.

In this thesis, we focus our research on a scheduling algorithm that deals with generalized
workload i.e. direct acyclic graph (DAG) kind of workload composed of child jobs with
dependencies. Following the rule in [7], we denote a job as an application and child jobs

as processes of the application. A typical DAG type of application is shown in Figurel

[11-page9].

From the network respective, we are considering the workload allocation problem of
compute-nodes, spread over a wide area network, with bus topology. Even though, the
Internet has acquired a very complex topology, the research grids of today seems to
follow a bus structure. We remove the constant data rate assumption, and consider the

network as heterogeneous.

Rather than allocate applications simply according to their arrival time, we introduce GA
scheduling strategy into our load balancing system to find the proper applications
allocating schedule, which uses the available resources more efficiently. Instead of using
constant GA parameters, our proposed algorithm dynamically adjusts the key parameters,
such as crossover rate and mutation rate, adapting them to the quality of generations.
Later, we will implement more new ideas, such as gender assignment, fertility rate and

ageing into our GA algorithm to achieve better performance.

The objective of this thesis is to propose a general scheduling algorithm using the

application centric load balancer that works on workload with dependencies. It will

consider the allocation problem both on the compute resource and network. The final aim

is to improve the system throughput in a given session.

The rest of the thesis is organized as follows. In chapter 2, we describe the existing grid
scheduling algorithms. Chapter 3 explains our adaptive algorithm based on GA. In
Chapter 4, we present the experiments and validations. The last chapter presents the

conclusions from our study and some ideas for future work

2. Literature Review

Many of the grids scheduling algorithms are based on the large body of research in the
area of load balancing for clusters of computers. The load balancing problems in a
distributed system can be broadly divided into two areas: Application centric load
balancing and communication network load balancing. Application centric load balancing
focuses on allocating the workload to the compute resources in the system, while
communication load balancing works on reducing network delays introduced by data
transfers from the parent processes to the child processes. For getting near-optimum

performances of a grid scheduler, we have to consider both the load balancing systems.

2.1 Application centric load balancing

The objective of an application centric load balancer is to run as many applications in a
given session as possible. Generally, research in this area can be classified in several
ways. The common strategies include mathematical programming [23, 18], and heuristic
methods [24, 21]. There are also some researches focusing on artificial intelligence [19]

or fuzzy logic [12, 13].

The advantage of using mathematical or dynamic programming methods for load
balancing strategies is that the process is fast and it may lead to a truly optimum solution.
However, in a heterogeneous distributed environment, it is not possible for these
algorithms to provide a closed form solution [14]. In order to solve these problems, many

heuristic based algorithms have been developed. But most of them have been design for

divisible workload systems without considering any dependencies. Thus Beaumont et.al
[3] considers each application to be composed of a set of independent, same-size tasks.
Similarly while Tian and Chandy [4] introduce the competitive market concept from
microeconomics into load balancing, the work assumes, “each application consists of a
single processing unit instead of a graph of interacting processing units” [4-page3]. Such
simplifying assumptions reduce the complexity of calculations. But applications, with

dependencies, cannot be managed by such schedulers.

In [11], DAG-type jobs have been considered. The proposed algorithm keeps a “node
allocation graph in the future domain” [11-page 3]. Once an application is ready to
allocate, the algorithm will reference the node allocation graph, get resource availability
prediction for each node, and then assign each process of the application to a proper node.

The accuracy of this prediction will directly affect the entire session throughput.

In [11], three normally classified workloads: compute bound; I/O bound and hybrid, [22]

have been considered. The main algorithm in [11] is as follows:

1. It applies the normalization for each node and every new application.

2. It implements the critical branch heuristics when the application is received.

3. It carries out the queuing algorithm when the application is initiated for execution.
4. It applies the class allocation algorithm, branch delay algorithm and prediction

algorithm when application arrives in Ready-to-run queue.

5. Queue shuffling and prioritization algorithms are implemented as well when
required.
6. Eager scheduling is applied when the session approaches the end.

2.1.1 Normalization
Based on the algorithm in reference [16], nodes are sorted into different “classes” [16],
according to their resources, such as CPU power, /O power, memory size, etc. All the

classes are based on a comparison with a standard machine. This classification helps

create “Normalized Lookup Tables (NLT)” [16].

The users supply the estimated executing time for each process of their applications on
the node in standard class. A learming system is implemented to adjust that information
synchronously. The executing time in the other classes will be calculated by way of

referencing the information in NLT.

2.1.2 Critical Branch Heuristics

A DAG kind of application is composed of various processes with interdependencies. In
figure 1 & 2 [11-page9], you can see that an application can be divided into several
branches starting from the first process to the last one. When an application arrives, it
applies the “Critical Branch Heuristics” [11-page3] as below for the preferred class. Once
the critical branch is found, we can calculate the allowable process delay, “Tapq” [11-
page3], for each process. According to T,pg, We can delay certain process, which is not in
the critical branch, to release the node for another process if required, without delaying

the execution time of the whole application.

1. Identify all the branches starting from the first process to the last process.
2. Calculate the total time of each branch, ib, as

Number of processes in the branch ib
Toranch(ib) = 3 Tpd (j,ib)

j=1
where Tpd = Duration of process in preferred class.

3. Calculate the critical branch time
Tc = Max [Tbranch(ib), ib equals 1 to Number of branches]

Tc 1s the lower bound on the time required by the application in the
optimized condition. Processes of other independent branches or part of it
can be delayed until Tc without any problem.

4. Calculate the probable process start time Ts and allowable process delay Tapd for
each process | of the application as

Ts(j) =Max [Y Tpd (k,ib))]
k = number of previous processes in branch ib

Tapd(j) = [Min (Tc - 3 Tpd(k,ib)) - Ts(j)]
k = number of subsequent processes in branch ib

where ib denotes branches having the process as a leaf.

From Algorithml of [11-page3]

Recent research, [2], has introduced a more sophisticated way to generate the allocation
schedule of the processes.

1. First, it decomposes the application into many simpler connected “bipartite dags”
[2-page7]. Each bipartite dag is simply composed of “sources” and “sinks” [2-
page$]

2. Secondly, it tries to find the optimal schedule for each sub-block, and make sure

such schedules can always execute all sources of the graph before any sink.

3. Then it arranges the “priorities” [2-page9] among the sub-blocks. As an example,
assume “building block B; “has priority over” building block B; if the schedule
that executes all sources of B; before any of B; renders sinks eligible at least as
fast as does any schedule for executing both building blocks.” [2-page9]

4. Finally, the algorithm generates the allocation schedule according to those

priorities.

Such an allocation schedule is called “Internet-Computing optimal (IC optimal, for
short)” [2-page5]. The objective is to make every step of the computation as efficient as

possible.

2.1.3 Queue Algorithm

Basically, the program keeps two queues, “Wait queue” and “Ready-to-run” queue [11-
page4]. When a new application arrives, it is placed in the wait queue. A concept of
sliding window is introduced for Ready-to-run queue to dynamically manage the session
and available resource. This algorithm ensures the system quickly responds to any
changes of resources during run time. At the end time of every process, referred to as
“sync point” [11-page4], it applies the Queue Algorithm. The pseudo code is as below:
If (work load in Ready-to-run queue, W, <= 80 % of its capacity){
Apply Queue-shuffling algorithm on wait queue;
If (certain application qualifies the select condition){

Invoke Class Allocation Algorithm,

Algorithm from [11-paged]

2.1.4 Queue Shuffling Algorithm
This algorithm will check each application in the wait queue, and put it into Ready-to-run
queue if its priority equals mid, which will be explained in section 2.1.9, or if it qualifies
for the conditions as below:

1. Tm—-Tec>=0;

2. Tf-Tp>=0;

Where “Tm is the maximum free duration in any node till the end of Wn, Tp is total
processing time required by the application and Tf is collective free duration in all the

nodes within Wn” [11-page4].

For those non qualified applications, it will calculate their time delay: Td = Td + (Tns-T),
where “Tns is time of next sync point and 1 is time of current sync point” [11-page4]. If
Td > a predefined allowable delay, it will change the priority of this application to mid to

ensure it would be put into “Ready-to-run’ queue at next sync point.
p y q yne p

2.1.5 Class Allocation Algorithm
This algorithm is used to allocate an application to the resource. First, it will obtain Ts
and Tapd for all processes of the application, and arrange the process in ascending order

of Ts. Where Ts is the start time of a certain process, and Tapd is the allowable process

duration. Then, it will arrange the processes with the same Ts in descending order of
Tapd-Tpd, where Tpd is process duration. In the case of multiple processes having the
same Tapd-Tpd it will sort in descending order starting from the one with the shortest
processing time. Finally it will search the resource to find the free duration on the Node
Allocation Graph to allocate all the processes one by one. Please see the sample data in

Table 1.

If the required free resource can not be found, it will invoke “Branch Delay algorithm”
[11-page6] attempting to release required resource to carry on the current process; if
there is still not enough resource, it will invoke “Process Completion Predictor” or even
“Application Completion Predictor” [11-page7] trying to allocate the current process.

Please reference the pseudo code as below:

10

Find out the preferred class of each process of the new application
Obtain the processes Ts and Tapd using Critical Branch heuristics
Repeat step d to h for each Ts, where Ts[] represents the start times of the processes of that application only.
Arrange all the processes in the descending order of their Tapd -Tpd at the Ts
If two of more processes have same Tapd -Tpd then schedule the smaller process first.
Repeat step g and h for P[], j = 1 to n, n = number of processes to be allocated at the Ts from the sorted list.
Find the number of free nodes in the class (nfc) for required duration using the node allocation graph.
If (nfc >= 1)}
Allocate the node, who's T ~ Tpd, to the process, where Tfn is free time of the node.

Update the Node Allocation Graph.

else {
Apply the Branch Delay Algorithm to free the required node in the preferred class
If (succeed){
Allocate the node to the process.
Update the Node Aliocation Graph.
Break from loop.
}
else {
Apply Process Completion Predictor algorithm.
If (succeed) break from loop;
}
}
else {
Apply Application Completion Predictor algorithm
If (succeed){
Allocate the node to the process.
Update the Node Allocation Graph.
}
}
else {
Allocate the process to the earliest free node within Wn in the preferred class.
Reapply Critical branch heuristic accordingly.
Update the Node Allocation Graph.
)

From Algorithm 4 of [11-page6]

11

2.1.6 Branch Delay algorithm

Basically, the “Branch Delay” algorithm tries to release a node for the required duration;
Td, for the current process by delaying processes, which have already been allocated on
the node allocation graph, but which have not yet run. Since it would be futile to
introduce any delay to other applications to allocate the current process, these delayed

processes should not be in the critical branches of the other applications.

2.1.7 Process Completion Predictor Algorithm
When the required resource is not found in the preferred class, it will apply Process
Completion Predictor algorithm to allocate the current process to the next preferred class

available.

2.1.8 Application Completion Predictor Algorithm

If the required resource is still not found after implementing all the algorithms above, the
Application Completion Predictor Algorithm will be invoked to try to release the required
resource via delaying some allocated processes which are in the critical branches of
certain applications. Since it will introduce delay to other applications, one must consider
the overall benefit of applying the system, the advantages achieved must be seriously

considered

2.1.9 Priority Management Algorithm

The system manages the priority at three levels: normal, mid and top. All system level

applications have the top priority. Those applications with mid level priority will be

12

allocated without further delay unless any top level application interrupts them. All the

applications are assigned with normal level priority when they arrive. They will be

upgraded to mid level once an application is delayed beyond a certain allowable delay.

50 MB ' 60 MB
A0MB 1SMB 20MB
/ OMB_
P2 |20| c| 3 |30u 4 |50[c[tp5 130[C| s |30| 1] 7 ;60| 1]
10MB /wMB SMB SMB 3B

E’
\ /N b
SMB SMB

SMB

P1, P2. efc are process names

Middle valve indicates the required
time

(stands for compute bound process

I stands for 10 bound process

CI for the hybrid process

Arrow is used for process
wnferdependency. Means a dependent
process cannot start until parent process
15 not successtully completed.

The volume of data transfer between
two processes is attached to the arrows

Figure 1: Interdependency graph of Application, [11-Page9]

13

p1 [io] C
50 MB

40 MB 75MB
5po | C 4 B0} C

150 MB ~
100 MB 100 MEB
T Pz RBol C [P_'?:m C
[70 MB
70 MB @VSU C
i
70 MB 40 MB
|ﬁo 20 ¢
20 MB
P
é,/
P11} 30 | C

Figure 2: Interdependency graph of Application 2, [11-Page9]

App No | Number Tc Ts Tapd
of
branches
Appl 8 145 Ts(9) = Max Tapd(9)=Min(40,50,40,50)=40
(60,60,40,40) = 60
App2 3 230 Ts(4)=Max(30)=30 | Tapd(4)=Min(90,50)=50

Table 1: Sample output of Critical branch heuristic, [11-Page9]

2.2 Network load balancing

Researchers in the area of application centric load balancing did not consider the network
delays, since the work was for optimum utilization of clusters of computers. When the
network delay was considered by a few researchers, they made simplifying assumptions
such as “a constant latency, based on past network data traffic history and high data rate
availability” [7-pagel]. In [7], a network load balancing model is introduced into the
application centric load balancer [11] working on a workload with dependencies. This
network model addresses the allocation problem of the network resources, and the target

of the algorithm is to increase the session throughput.

Actually, it is very important to consider the network delay in load balancing for DAG
kind of workload with inter-dependencies. First, the network links, which are required to
receive the data from parents, may be busy in carrying other data, when all the parent

processes are finished. This will directly introduce extra delay on the start time of a

15

process. Such delays, due to the non-availability of a network link, have not been
considered by most of the researchers. This may influence the utilization of the
processing resources, and will eventually affect the session completion time. These delays
may be introduced by the amount of data, required to be transferred from the parent

processes to the child process and the different data rates of the links

The structure of the load balancing system is shown in Figure 3 [7-page2] as below.

Application centric
load balancer
WorkLoad Node scheduler To System
Simulator Resource
g X_Y(STP,DVP, SN DN} > Allocator
Delay
Network scheduler
X.Y(ST,DV,SN,DN)

X = Application Number, Y = Process Number
STP = Tentative start time (i.e. End time of a parent)
DVP = Data Volume to be transferred from a parent,

SN = Source Node of a parent,
DN = Destination Node of a parent,

Figure 3: Load Balancing Model, [7-Page2]

Basically, the system is composed of two parts, the node scheduler and the network

scheduler. The node scheduler keeps a node allocation graph as the sample shown in

16

Figure 4 [7-page7]. When a process arrives, the node scheduler will pass the information
of the process to the network scheduler, and receive delay estimations from the network
scheduler. This information includes “the End Time of Parent processes (ETP) and the

size of Data Volume to be transferred from a parent process (DVP) to the child process”

[7-page3].

The network scheduler keeps the link allocation graph. Based on ETP and DVP passed
from the node scheduler, it allocates the data transportation on the link allocation graph,
acquires the delay estimations and returns it to the node scheduler. Finally, the node
scheduler allocates the process on the node allocation graph, taking into account the delay
estimations. With this two-step mapping, the load balancer will make the final allocation
decision. This procedure will work on all of the processes of all applications that need to
be allocated. Once it 1s done, the load balancer will forward the allocation result to the
System Resource Allocator. The System Resource Allocator will do the real job to assign

applications on the resources. A typical Network allocation graph is given in Figure 5 [7-

page4d].

1.1 = Application number. Process number
{Pr, xMB) = (Parent number, Data volune to be transferred to a child in MB)
ET = End Time of Data transfer

l 1.5 (Child1, BMB) i

Suitable claster for

allocation
1.1 {Prlof 1.5, 10MB) L1
P, / 11
b, B
P ’ 12 (P2, 50MB) / /
3

/ ET3
Pe /(1.3 (Pr3, 1MB)\\ - 51 (6%)

[Ta (e, ™MB) L//] £14
Ps

Time =

Figure 4: Node allocation graph, [7-Page7]

Communication Net Scheduling Algorithm
The pseudo code for communication net scheduling algorithm is cited from [7-page3] as
below:

1. Get parameters (ET, DV, SN, DN)

2. Set STL = ET, DVtba = DV,

3. Consider each Link Vector i between Source Node and Destination Node

4. Find STL (i)

5. Find ETL (i)

6. Find the Data Communication Rate for Links: DRL (i) = DRmax — DRused

7. Repeat 3 to 6 till i = N, for N = the number of links involved

8. Calculate STL = max {STL (i)}, fori=1to N

18

9. Calculate ETL = min {ET (i)}, fori=1to N

10. Calculate DRL = Min {DRL (i)}, fori=1to N
11. Set DVtba = [DVtba — {DRL * (ETL — STL)}]
12. Set STL = ETL

13. Repeat step 3 to 12 till DVtba = 0,

14. Return Delay = (ET - ETL)

The objective of this algorithm is to find out the time delay for transferring the result data
from parents to the child process. In order to do so, we need the data volume transferring
from parents (DVP), and the “data communication rate for the links (DRL)” [7-page3]
involved. Since DVPs are parameters passed from node scheduler, the only thing we need
to calculate is the DRL for each network link involved in the communication. The
algorithm picks the minimum DRL from all the links as the common communication rate
for that certain amount of time, and calculates how much data can be transferred in that
duration. This cycle will keep working until all the data from parents has been transferred

to the child process.

In the step of finding the DRL for each link involved, it needs to search all the links one
by one. It is worthless to continue calculating the DRLs in their entirety if the DRL of a
particular link is zero. The futility increases when the DRL turns out a zero in the last few
links. In order to accommodate this problem, the algorithm implements the binary
searching method to find the DRLs. This will improve the search efficiency and save a lot
of time in cases when there is a link with zero DRL in the last few links. An example of

Network allocation graph is shown in Figure 5:

19

— AppNa.PreNo (ST,DV,SN,DN)
| 1.1(10.750,16,7) - ET 30 — ST = StartTime, DV=DataVolums (MB)
[1.2(10,750,1,3,T)-ET 30 SN—SorceNode, IN-DastinationNode
| 1.3(10,750,1,4,T)—ET 50

Pir— ythnode of sth cluster
[14(20,75048 T)—FT 35

Optimization (ST Vs DV)

10Mbps

L1
M§n [5, 15} for 1.2 (Pni -> Pmj)
L2
L3 [— s ---5Mbps
.} __——"CUMULATION
L4 |
L5 5
10 303 | Time 5

Figure 5: Network Allocation Graph, [7-Page4]

The network allocation graph of Figure 5 refers to a network of five links connecting 6
compute-nodes. Link L1 connects Node 1 and Node2, L2 connects Node2 and Node3,
and so on. The x axis represents the time, and the y axis represents the communication
rate for each link. The meta data of four processes, 1.1, 1.2, 1.3 and 1.4, which need to be
assigned on the network, is shown in the Figure. According to the information above, the
result data of process 1.1 will be transferred from Node 1 to Node 6. It starts from time
t=10, with a data volume of 750 MB. Since the data passes all the five links, it can only
transfer under the minimum common rate, which is SMbps of L3. It will take a total of 20
minutes to transfer the data. Similarly process 1.4, which will pass 750 MB data through
L4 and L5, can begin transfer of data at time t=20. Since both L4 and L5 are being used
by process 1.1 for transfer of data at a data rate of 5 Mbps from t=10 to t=30, L4 and L5

can make available to process 1.4 a data rate of 10 and 5 Mbps respectively. Therefore,

20

data transfer for process 4 can only work at 5 Mbps from t=20 to t=30. After t=30, data
can be transferred by process 1.4 through L4 and L5 at 10 Mbps. In total, it takes 15

minutes to finish the transportation.

The advantage of this algorithm is that once a process is ready for allocation; it does not
need to care about any other processes allocated on the links involved. The only thing that
needs to be considered 1s the available data transfer rate, after the cumulative effect of all
the previous allocations 1s taken into account. This localization makes the calculation

very simple and fast.

Optimization Algorithm

In order to improve the performance, four possible optimizations are introduced into the
original network scheduling algorithm. The basic idea is to calculate the network delays
for different data transfer sequence schedules from all parents, and pick the one with
minimum duration as the final network allocation recommendation. There are two main
parameters for a process to make the transfer decision, a list of “End Time of all the
parents (ETPs)” and a list of “Data Volume to be transferred from all parents (DVPs)” [7-
page3]. The first and second optimizations schedule the transfer sequence in ascending
and descending order of ETPs respectively, and calculate the delay expectation.
Whereas, the third and fourth optimizations arrange the data transfer order in ascending
and descending order of DVPs respectively. Finally, the network allocation with
minimum delay duration will be returned to the node scheduler as the network delay

recommendation.

21

The experimental results are shown in Figure 6 [7-page5]. The x axis represents the
number of compute nodes in each case; and the y axis shows the normalized network
utilization. The blue curve and pink cure represents the network utilization with and
without optimization respectively. From the chart, we can see that the optimization
algorithm leads to an improvement in network utilization for every case of compute-

nodes varying from 2 to 45.

1 A

094 °*
’ E | - Net Ut (Without Optimization)
\Jﬁ"w'&&

0.8
0.7 A
06 -
0.5 1
0.4
0.3 A
0.2
0.1
0 ! ; ; ; T ; . T)

0 5 10 18 20 25 30 35 40 45

Number of Nodes

~ Net_Uti (With Optimization)

Normalized Network Utilization

Figure 6: Normalized network utilization nodes, [7-Page5]

22

3. Motivation and Model Formalization

3.1 Motivation

In the application centric load balancer [11] for distributed system, an application was put
in the waiting queue when it arrived. At every sync point, the program will call Queue
Shuffling Algorithm, and put all qualified applications into ready-to-run queue, and then
allocate the applications in the ready-to-run queue according to the Class Allocation

algorithm.

In this process, the applications are allocated on the resources simply based on its arrival
sequence. Similarly in [1], the jobs in the global job-waiting queue are processed in
“First-Come-First-Serve” order. Since nothing else is considered, this sequence may not
give optimum utilization of the resources, especially in the heavy load scenario. If we can
implement some scheduling algorithm to rearrange the schedule of the application
allocation, it may produce more effective utilization of the resources. Therefore, we
started studying the case of Genetic Algorithm to schedule the sequence of the allocation.

The objective is to find the shortest session completion time.

3.2 Model Formalization

In our study, we focused on scheduling the application allocation on heterogeneous

compute nodes connected by a distributed network.

3.2.1 Compute Nodes

In this thesis, we remove the homogeneous simplification of the compute nodes, and we
considering that every node may have a different compute capacity. As mentioned before,
we implement the normalization process [11] for each node, and finally build up a
Normalized Lookup Table. It is used to calculate the completion time on any specific
node. Generally, if a node has twice the compute capacity as the other one in NLT, it will

take half the time to finish the same process on the first one than the second.

3.2.2 Distributed Networks: Topology
A network with bus topology has been assumed in this study. The network links may
have its own data transfer rate, and it introduces network delay, depending upon the

amount of data to be transferred from a parent process to the child process.

3.2.3 Work Load

In this thesis, we focus our research on scheduling generalized workloads composed of
sub jobs with internal dependencies. For our experiments, we use the workload simulator,
[7], to generate the work load for our proposed algorithm. This simulator has a detailed

parameter system, which allows generation of the workload for testing the scheduler.

24

4. Proposed Algorithm

The solution space [8-page2] for allocating applications to a distributed system is very
large. The grid scheduling problem has been proven to be a NP-complete problem.
However, based on the objectives supplied, a Genetic Algorithm (GA) based scheduler
can find a solution near to the optimum value within an affordable amount of computing

effort. This algorithm works well even if the solution space is very large.

Instead of going through the whole solution space to find the optimum value, the first step
in a GA-based scheduler is to first select a very small portion from the solution space,
which is called a generation. Secondly for each schedule, in the generation, a quality
benchmark, usually called the fitness value is calculated. As a third step, for all the
schedules in the generation the standard deviation in the fitness values is calculated.. As a
fourth step, another portion of the solution space, called the second generation, is
calculated from the first generation in such a way that the schedules in the second
generation may be closer to the optimum value. Then the second, the third and the fourth
steps are repeated on the second generation to generate the third generation. The GA-
based scheduler continues to generate new generations until the value of standard
deviation reaches a specified low range. This is when the schedule with the best fitness

value in the last generation provides a near-optimum scheduling solution.

Figure [8] is typical implementation of GA. First, it generates an initial generation Figure
[8] is a typical implementation of the Genetic Algorithm. First, it generates an initial
generation randomly. Then it calculates the fitness value for each schedule, and also gets

the mean fitness value and standard deviation from the mean for the whole generation.

25

After that, it implements roulette wheel selection method to pick up schedules from
existing generation as the parents, and applies three methods, crossover method, mutation
method, and elitism, to generate a new population. This loop will keep running until the

SD reaches the expected threshold or the number of generations reaches the limit.

In GA terminology, a Chromosome denotes a schedule of independent applications which
need to be allocated to the distributed system of processors. In general, each application is
a DAG type of job, which has many processes with multi-level inter dependencies. A new

chromosome is created by modifying the sequence schedule of an existing chromosome

[8].

4.1 Main Strategy

Based on this structure, we propose an adaptive GA for task scheduling in distributed
system by using the ideas of adaptation of GA parameters proposed in [5]. The main flow

of the proposed algorithm is given in Figure 7:

The model, given in section 3.2 is assumed. It is assumed that a number of applications,
which are to be scheduled have been received. For testing the algorithm, the applications
would be generated by using the fuzzy generator [7]. In a real world scenario, the
applications would be submitted by various users of the distributed system to a broker.
The broker would use the proposed GA-based scheduler to allocate the applications such
that the compute-nodes and the network resources are optimally utilized and a near-

optimum value of the session completion time is obtained.

26

Main Flow Legned:

ga.Utilities. NUM_JOBS;
ga.GeneticAlgorithm NUM_CHROMOSOMES;
ga.GeneticAlgorithm.populatiionArray[][];

NUK_JOBS: number of spplicstions need to be allocated ga.GeneticAlgorithm fitnessAfl[];
HUM_CHROMOSOMES: number of chromosomes ineach generstion ga.GeneticAlgorithmstd_dev, eps;

ga.GeneticAlgerithmnumRuns, generate;
ga.GeneticAlgorithm.corssoverpopulationArray,
mutationpopulationArray, elitis mp opulation Arr ay;

Generaie
Initial
Genetstion

populationAmray{HUM_CHROMOSOME 5] [HUM_JOBS]: the array to store all the chromosomes

o

3
For sach schedule populaionAmayIi UM CHROMOSOMES]
in.the popufstion
populationAsrayfi}

4 L
Caleuiste B
Session Calulste Fitness. .

Completion el "o
Time . Generste -
! Mewy
fitnessAllf]_ 1 Gendrateion |
corssoverpopulationAmay;
mutationpopulationAmay;
elitismpopualationArray
fitnegshll: the array to gtore fitness values forall ciromosomes

; 1D
ot Selection.
Calculate Method
Standard i
Devistion T

Njo

g . .
i It reaches the
he SO reaches. th ¢
L epacts ciffvfali.!ﬁ. b [y — number of wInning >

dev <=

Yes

12 -
Returnthe best |

H
i
H
i
i
i
H
£

Yes

schetils ;

&=

Figure 7: Main Flow of Proposed Algorithm

The flow chart in Figure 7, illustrates an overview of how the algorithm works.

27

Basically, the system requires that two main parameters be set by the user to begin the
evolution process: the number of applications, NUM_JOBS, tells the system how many
applications need to be allocated in each chromosome; and the number of chromosomes,
NUM_CHROMOSOMES, decides the number of chromosomes in each generation. The
steps in the algorithm are as follows:

1. Once the system gets these two parameters, it runs the 'Generate initial
population' model to get the initial population of NUM_CHROMOSOMES
chromosomes with NUM_JOBS applications in each of them..

2. Then the program goes through the initial population, runs the 'Calculate
Session Completion Time' to calculate the session, and then calculates the
fitness value for each of the chromosomes and finally calculates the Standard
Deviation for this generation.

3. The system generates crossover rate, mutation rate and elitism rate.

4. According to the rates in step 3, it calls the 'Selection Method' model to pick
up a certain amount of chromosomes from the current generation as the
parents.

5. It calls the 'Generate New Generation' model to initiate a new generation from
the parents above.

6. It increments the number of runs, numRuns++.

The algorithm repeats step 2 to step 6 until the SD reaches an expected low threshold,

eps, or the times counter, numRuns, reaches the expected high threshold. Then it picks up

the chromosome with the best fitness value as the final near-optimum solution.

28

4.2 Generate initial population

Since all the calculations are based on the initial population, it plays a very important role
in GA. In [8], the initial population is simply generated via randomly picking up a small
portion of chromosomes from the solution space, without any consideration of the quality
of the chromosome. This algorithm has severe drawbacks. First, because of its inherent
uncertainty, it is not likely to generate proper chromosomes to start with. Moreover, in
some circumstances, certain parts of the solution space will not be reachable with this

initial population.

For generating the initial population, the proposed algorithm introduces a strategy so that
the search covers as large a portion of the solution space as possible. As an example,
assume that there are 10 applications that need to be allocated, and the number of
chromosomes in the initial generation is 100. Instead of generating 100 chromosomes
randomly, it will go through the 10 applications one by one, and generate 10=100/10
chromosomes, starting with each application respectively. This will ensure the
chromosomes contained in the initial generation, come from all directions of the solution
space. Implementing with recursive calculation, this algorithm will yield a superior result.

Figure 8 shows this process of generation of the initial population.

Generate Initial Generation

Legend:

ga.GeneticAlgorithm.generateRandomPopulation);
ga.GeneticAlgorithm.populationArray[J[];
NUM_JOBS
HUM_CHROMOSOMES
appList: the iist of applicaions need 1o be aliocated

“Caleulste number of chromosomes in st proup [j

HUM SUB = HUM CHROMOSOMESHUM JOBS I"’

applicaidn in
. mbplig -
applist.oetf)

HNUM_SUB ==

SUB_HUM_JOBS
HUM_SUB;

Yes subApplist;

oo Grede
g : , T T subApplist wih
o Loop 2 forlink E0EMUM CHROMOSOMES i ++). all the applicetions
applist.oetl)
Randomly -
generste s :
chronmosome of. .
soplications i SUB_NUM_JOBS
. applist = NUM_JOBS -1
T i
End of for laol 2.

! o ooBdd curent .applicaﬁon g
hromosomesfHUM_SUB Y-l -applist get(i) st the beniniing.

- ‘ofeath chromosomes

3

End of foroop 1

Chromosomes{NUM_ CHROMO SOMES]

4

Retumto
Main

Figure 8: Sub Flow — Generate Initial Population

30

4.3 Calculation of the Session Completion Time

Each chromosome of the generation provides a sequence of all the applications, which
need to be scheduled. The objective of this module of the algorithm is to allocate all the
applications and calculate the total session completion time, Ts, and find the maximum

Critical Branch time, Tc, from all the applications.

The strategy is quite simple. It goes through each of the applications one by one in the
scheduled order, calls on the 'Allocate Application’ model to allocate it on the
environment and finally get its Critical Branch time, Tci, and the session completion time
Tsi. Then the system compares Tci, Tsi with Tc and Ts, and set Tc = Tci if Te<Teci. It
does the same to Ts. Once the whole process ends, it will get the right values for Tc and
Ts, which are going to be used in the fitness value calculation. The flow chart in Figure 9

shows the detailed procedure, step-by-step.

31

Calculate Session
Completion Time

Erom mainy
StanlBimai

1o

populationseray il

Te
Te=1

a

Legend:

lo adB alancer.StartL B.main();
lo adBalancer.Simconstants Schedule;
loadB alancer.allocateApplications();

=3

Al

(For each spplicatio

r of this schedul

¥

allocateApplic
o

AT Tes cunert Crtica)
. Brerich Time:

Tt = cureent Critical Branch Time

=

= Tiren
Qammiw ,,
Lfnish time,

dss= #ufrent firish time

v"Erd offor loop

T8 Session Compldion Time
Te: Max(Critical Branch Time)
i /

Return to Main

Figure 9 Sub Flow — Calculate Session Completion Time

32

4.3.1 Allocation of Applications

The algorithm maintains a process pool for all the processes which are ready to run. It
goes through the process pool, and allocates one process per time until all the processes in
the pool are allocated. There are two critical parts in this process. First is how the
algorithm maintains the process pool; second is how to pick up the process from the pool

in each allocation.

Basically, the pool maintenance is based on the internal process dependency structure of
the work load. Once this model gets an application composed of a couple of processes
with internal dependencies, it puts the initial process into the pool and then allocates it.
After the first process has been allocated, it checks the dependency and releases all its
dependent processes into the pool for allocation. This process is repeated until all the
processes of this application are allocated. Every time, when a process has been allocated,
the system checks all its dependents and allocates those children, whose parents have

been already allocated.

If there is more than one process in the pool for allocation, the algorithm calculates Tapd
— Tpd for each process, and picks the process with the minimum value. Tapd is the
allowable process duration and Tpd is process duration. This process is then allocated.

Figure 10 shows the detailed flow of this process.

33

Allocate Application

Legenid:

From

Celonelo as loadB alancer.l o adB alancerClass.handleNewRequest();
sionCotmpleti.

ontime loadB alancer.L oadBalancerClass.nodeAssignment);

Pitthie frst process in Vetor
. vayntP oints:

¥

Picfkthé’ﬁfst process from:
S usyRcPoints

¥

For each child -

Yes
¥

- Pulttino
- vEyncPonts

7

%
‘ Erd of for loop '

Returri to
CaloulsteSes
sionCompieti
<oRTime

Figure 10: Sub Flow - Allocate Application

34

file:///SyncPoints

4.3.2 Allocation of a Process
The basic strategy here is to check all the compute nodes in the network for the first free
time with enough duration to allocate the current process and choose the one with

minimum start time as the target to allocate the process.

In the above process, once a node is picked, we first need to calculate the potential start
time for the process. It is the sum of the last parent finish time plus the network delay
introduced by transferring all the parents’ data to the current node. This delay is calculated
by the 'calculate Network Delay' mode. Then the algorithm starts searching for the first

“enough time duration” on the node after the potential start time.

After the algorithm checked all the nodes, it picks the node with the earliest start time of

the time durations, allocates the process on this node and finally updates the node

allocation graph. Figure 11 shows the details of this flow.

35

Allocate Process

Legend:

Fiom illacate Io adB alancer.Class Implementatioh.nodeAssighm
~Boplicstion: ent();

%

Stenlime =0
NodeNum =:-1

Foresthoe

lemh;A

Process

No

: ' Discardthis node,
Jaicuigtehichy oo tonext node

okDelay

Yes
+

R

TempStartTime = Finish Time of Last Parert
Netwok Delay

TempStartTime = First free durstion
for this process atter TempStarTime

\ ’/\
/ it the first T, AempSiatiimes o TempStiatliim

noge L Start fime == StartTime

Y¥es
Yes

+

 Start Time = TempStantTime L oo /@;mem
Modehlun = NndéNumCur_J

|

on this node

:
l‘ End atforloop l

4
Allocete this
process.on
RodeNum node
wittp Sarttime &3

Stat Time

|

Figure 11: Sub Flow — Allocate Process

Refum it
Applicati Applic
ation

36

4.3.3 Calculation of Network Delay

At this point, we have selected the node to allocate the process. The algorithm goes
through all the parents one by one. For each of them, it first finds the node where this
parent is located, and builds the route to transfer the data from the parent node to the child
node. Then it checks all the links in the route and finds the common time duration and
common minimum transfer rate. Using the common minimum transfer rate, it calculates
the amount of data, which can be transferred in this time duration. This process is
repeated until the entire data from the parent's node can be transferred to the node where

the child is located. This finally gives the time delay for this transfer of data.

Once the above process has been completed for all the parents, the algorithm will get the

final time delay, which is the difference between the earliest start time and the latest end

time of all the transfers. Figure 12 shows the detailed flow for this calculation.

37

Calculate Network Delay Sub

Legend:

- From
Caculstenet | loadB alancer.Classimplementation.calculateN etwork D elay({);
swairkD elay

7

Fof each parent in
sParertP rocess

¥

_Findthe node where dhe
parent's allocated

Calculatethe finish time of this

‘parert IPIFinishTimeOnllode

H
H

¥

Calevlate the data transiertime Fom perent’s
node to currert nods jHetworkTrll elay

¥
 iPrFinishTimeOnHode = il etworkTrD elay+

iPrFinishTimeo niode

o imarkinshTimeParent <
< IPrEinishTimeoOnNode

iMaFinishTimeParent = iPrinishTimeOnHode

ki

[End ofFor loop l

S e e

Figure 12: Sub Flow — Calculate Network Delay Sub

38

4.3.4 Optimization of Network Delays

Since all the data transfers share the same network, there would be some overlaps on
certain links. These overlaps will affect the data transfer rate of those links in certain time
durations and finally affect the total network delay. This means the transfer sequence does
affect the total network delay. An optimum strategy is introduced to reduce the network

delay by rearranging the transfer sequence of the processes.

There are two main attributes for each parent: the end time of the parent process, and the
data volume, that needs to be transferred from the parent node to the child node. The
algorithm gets the list of end times, ETP [7}], and the list of data volumes, DVP [7], of all
the parents. Then it arranges the transfer in four different sequences, and finally picks the
one with the shortest value as the network delay recommendation. The list of the four
sequences is as follows:

1. Arranging the transfer in the ascending order of ETP{];

2. Arranging the transfer in the descending order of ETP[];

3. Arranging the transfer in the ascending order of DVP[}];

4. Arranging the transfer in the descending order of DVP[];

Figure 13 shows the process in greater details.

39

Calculate Network Delay

Legend:

Frﬁoﬂ?e loadBalancer.Classlmplementation.calculateN etworkDelay();
¥ k4 4
"Arrange‘parertts Arrange parents l Arrange-pancrts Arrange parerts
sequence in: SBquence in. SEeguERoE iR SeguEncs in
aacending ordet of descending: order ascending orcler of ‘descending ortler
ETPL pteETR - DyP(] ot DVP{]

~Celwtsderilet
S PworkDelaySu L
: h

Pick the schedluls
with minimum
| delay

Retun
iMaxFinishTi
P arert.

Figure 13: Calculate Network Delay

40

4.4 Fitness Function and Standard Deviation

First, we need a benchmark to measure the quality of a schedule. Based on the
optimization objectives, fitness function is introduced as a measure of the quality of the
schedule. Generally, a fitness function is created with several objectives. The system user
may want to reduce turn-around time of the application submitted by the user; while a
resource provider may want to shorten the session completion time, and enhance the
utilization of the compute resources. Therefore, weight coefficient is applied to each part
of the function representing different objectives. This allows the fitness function to

accommodate its focus on certain objectives dynamically [8].

In this thesis, the only goal of our schedule is minimizing the session completion time.
Therefore the weight for it is 1. Let t. (i) be the critical time of the i-th job, Tc is the Max
(t: (1)) over all the jobs being scheduled and ty is the end time of the last task for a given
schedule. Then, denoting w as the makespan for the session,

w=1-(T/tyx) 1)
The fitness function F;

F=1-w)

After the fitness function for each of the chromosomes of a generation, which is the small
portion picked from the whole solution space, has been calculated, the average value of

the fitness functions and the standard deviation are computed. Standard Deviation (SD),

41

which is a very popular benchmark used to measure the spread of values in a population,
is defined as the square root of the average of the square of the difference between fitness

values and the mean. Equation (3) gives the standard deviation:

o= J%(Z (-7 3)

Where N is the number of chromosomes in each generation; f; is the fitness value of each

chromosome; and ? is the mean of all fitness values in existing population.

f==Xr @

1
N i=1

The genetic algorithm will converge once the SD reaches an expected low value. The best

solution achieved so far would be the near optimum result we are looking for.

4.5 Generation of New Population

There are two main steps to generate the new population. First, we need to use some
selection method to pick up a proportion of existing generation as the parents to generate
a new generation. Then certain kinds of strategy are used to generate the new generation.
These methods include crossover, mutation and elitism. Figure 14 shows the main flow of

this process.

42

Generate New Population

Legend:

From Main

ga.GeneticAlgorithm.generateN ewPopulation();
ga.GeneticAlyorithm.cressovert {J;
ga.geneticAlgorithm.cross over2i);
ga.geneticAlgorithm.Mutation();

i
crossoverpopulationdrray

Generate 1 portion of
new Generation using
crogssover

mutationpopulatin®ray

. Generate 2™ portion of.
I newGenerstion
usirg mutstion

elitismpoplation.&rray

Addt the chromosom E‘é}ﬁ’ -
eltismpopulstiondiray into new

o generstion.

populationdrray

Figure 14 Sub Flow — Generate New Population

4.5.1 Selection method
In the selection method, proper parents are selected based on their fitness values.
Typically, it ensures that the candidates with higher fitness values will be more likely to

be picked. Some selection methods select solutions with best fitness values. Other

43

methods prefer to select the best solution from a randomly picked portion of the existing
generation each time. This process dramatically reduces the computation time over the
previous one. In [8], a roulette wheel selection method is used to pick up the candidates to
generate a new generation. The pseudo code and its complexity calculation are as follows:

generates a sorted array for existing generation according to their probabilities

for (int i=0; i<cl*n; i++ { cl*n
generate random probability radom 1,
cl*n
Jor (int j=0;j<n;j++){ 2.7
=
if (probability[j]<=randoml<probability[j]){
select this parent;
break,
/
/
/

0 (n) = cl*n+c2*n+c3* Zj =cl*ntc2*n+c3*n ()2 = n:
=
Instead of using the roulette wheel selection method, in our proposed algorithm, we chose
to use the tournament selection method, which is another popular method of selection. It

is simpler to implement and will provide faster comutation. The pseudo code and its

complexity are as below:

For (int i=0, i<cl*n; i++){ cl*n
Randomly pick up two parents a, b; c2*n
Choose the one with higher probability c3*n

/

Om) = cl*n+c2*n+c3*n =n,

Figure 15 shows the main flow of selection method.

44

Selection Method

l

Legend:

ga.GeneticAlyorithm.CalculateFitness [);

From Main

Calbulste crosover
rate Re

MUM_CHROMOSOMES * Rc
popul ationAl

 Toumemert Method
crossoverpopalationAmay

Calrulste mutation

rateRM

MUM_ CHROMOSOMES *Rm
populstionl
i

T oumament Method
mustationpopulationray

]
NUM _CHROMOSOMES * (1R e-Rm)
populationall
¥

Eltism method
 elitismpopulationArmay

corszoverpopalationAray;
mudationpopulationArmay;
elitismpopulationArmay

“Retumto

Main

Figure 15: Sub Flow — Selection Method

45

The crossover rate r; and mutation rate ry, are the proportions of how many chromosomes
are picked from existing generation as the parents to generate the new generation. These
values are very important in GA, since these values play critical roles in its convergence.
Like most of the GAs in the literature, [8] chooses to use values, obtained through
experiments. Picking a value of these parameters improperly will make the whole GA
calculation end up with premature convergence or convergence stagnation. Instead of
using constants, we introduce the idea of SAGA [5], and choose to change these values
on the fly while generating the new generation. The change is based on the quality of the
generation. The key idea of this algorithm is to dynamically balance the local and global
searching in the process and thereby to improve the optimization. Below are the equations

in our algorithm to calculate r, and ryy,:

1 & Te
re=1- —Y £ 5
‘ N < Ti ®)
1 & Te
rpg=(—> —)/10 6
-3k ©

where Tc 1s the maximum Critical Branch Time and Ti is the session end time for the ith

chromosome.

Crossover is the process to bring the results approaching to local optimum, while
mutation tries to break this phase to prevent the premature convergence. In our algorithm,

the r, and r,,, are selected such that r, will go down and r,, will rise through the evolution.

This strategy ensures that the GA process will not reach premature convergence by

bringing more diversity through high mutation rate.

46

4.5.2 Crossover

The idea of crossover method is to generate a child chromosome inheriting the most
important sequence characters from the parent. Generally, a chromosome with duplicate
application can be generated in the crossover process. To solve this problem, as in [8], we
use the uniform permutation crossover [25] to generate two child chromosomes from two
parents. First, we randomly generate a binary number of the same length as each
chromosome. This number, which is composed of only Os and 1s, is used as a mask, M, in
the crossover process. Then we pick up two chromosomes from the candidates pool for
crossover, as P1 and P2. As shown in Figure 7 [8-page4], there are two steps in the
crossover process. First, we will copy the values in P1 to C1 at the ith positions where the
M|i] = 1; then we'll try to fill out the rest of the parts of C1 by picking values from P2,
which are not in C1 yet. This process will go from left to right in Both P2 and C1 to keep
the same sequence in P2. The same process will be applied for C2, P1 and P2 except we
will copy the values from P2 at the positions where the values equal to 0 in the mask M.

[15]. Figure 16 shows the process diagrammatically.

47

Figure 16: Crossover Process, [8-Paged]

The flow chart in Figure 17 describes the implementation of this process.

48

Crossover

Legend:

ga.GeneticAlgorithm.gen erateN ewPopulation
ga.geneticAlgorithm.crossoverl);
ga.GeneticAlgorithm.crossover2();

i
crossoverpopulationAtray

. Foresch psit Dfthe giarerrt _
P1= crossoverpopulationdetavii]
P2 = cmssoverpopulationAreyi+1]

k2

Generete the bit mask crossMask
withthe lergth of HUM JOBS

. o CreestechildCl, o ‘
_copy PAilo C1L], where crosshiaskfil =1 l

Fill up the rest 6t C1 with walues
o P2, whch arenot in €1 yet

9Py P2Ai}H0 C1E, vhete crossMaskdi] =0

. Cestechilicz _J—]

Fill up the rest ot €2 with values
from P1, whch arenot inC2 yet

%

Put C1 and C2in new
Generation populstionsriy

” Erdof lom
R

Re.%u,m to
GenerasteMew)
%raﬁxjn“

Figure 17: Sub Flow - Crossover

49

4.5.3 Mutation

The goal of mutation is to bring diversity into the new generation to prevent the genetic
algorithm from reaching local optimum too early. Here, we are using the same algorithm
as in [8]. The process of mutation generates a random integer j for each position i in a
parent, and switches the values between ith and jth positions to create a new child. By
mutating the schedule of a parent, it generates a child with more differences. This ensures
that the solutions generated by the GA process do not converge to a local optimum value.
Since a high mutation rate may also prevent the algorithm from final convergence, a
mutation rate rp, is picked very carefully and usually much less than the crossover rate r.

Figure 18 gives the flow chart of the implementation of this process.

50

Mutation

Legend:
“From .
Genergteleyy ga.GeneticAlgorithm.gen erateNewPopulation
 Genietation ga.geneticAlgorithm Mutation();

mutationpopul ationdray

For each chromosomes, P in
miutatiohpopulationfnay

*
(Generate two random numbet, indext and index2, |
where D<= nidet], in NUM._JOBS k

Put newp i e Generation
populationderay.

Figure 18: Sub Flow - Mutation

51

4.5.4 Elitism

The crossover process and mutation process will generate the same number of children as
the parents. Since the process of obtaining a new generation implements a selection
method to pick up chromosomes with better fitness value to generate children, the number
of new generated chromosomes is usually less than the existing generation. In order to
have a new generation with the same size, we implement the elitism method to make up
the difference. It will pick up the remaining required chromosomes from the best existing
ones, and put them into the new generation without any changes. This strategy makes sure

the best chromosomes will be carried over in the whole process.

4.6 Further improvement

Tahera et. Al. [6-page2] have incorporated strategies, such as gender assignment; age
assignment; and fertility rate in GA, while generating a new generation and got promising
results in a mechanical design problem. Since GA derives its processes from natural
selection and genetic production, which have been proved in human generation, there is a
good reason to believe that introducing more features from the natural selection process
will improve the proposed algorithm. Therefore we implement similar strategies of

gender assignment; age assignment; and fertility rate based on [6].

4.6.1 Gender assignment
Unlike in general genetic algorithms, once a chromosome is created, it is endued with a
gender of either male or female. As a result, this divides each generation into two groups.

Just like in biological world, the mating, to reproduce children, can only occur between

52

two chromosomes with different gender. The number of children generated by each

parents is determined by the fertility rate, which is discussed in section 4.6.3.

The proposed algorithm uses genderProbabilityFactor to manage the proportion of males
and females in each generation. Its values fall in the range between 0 and 1. When its
value is 0, all chromosomes in this generation are male. Vice versa, each chromosome is
endued with a female gender when its value is 1. In both conditions, our algorithm works
just like a general genetic algorithm without consideration of gender.

In the proposed algorithm, the value of genderProbabilityFactor is set to 0.5. This means

the proportion of males and females in each generation is exactly 50%.

4.6.2 Age assignment
Besides gender, a chromosome is assigned another attribute of age. In most of the
previous works on GA, parents are discarded after they generate their children, and may

not be carried into the new generation.

On the other hand, with continuous aged idea, parents may be carried into the new
generation if they satisfy the fitness value condition, which means both the parents and
children can exist in the same generation. In the proposed algorithm, each chromosome is
initially assigned an age of 0 when it is born. Its age increases by 1, every time when it is
carried into a new generation. Finally, once it reaches its death age, the chromosome dies,

and will be discarded.

53

In the proposed algorithm, we define the death age = 3. Once a chromosome reaches 3, it

will be discarded.

4.6.3 Fertility rate

We also introduce the fertility rate feature into each chromosome. It represents the ability
of parents to generate children. Usually, the fertility rate is affected by the age of the
chromosome. Like in the biological world, when parents are young, the fertility rate is
high; parents are likely to generate more children. The fecundity of parents decreases as
while the parents' age increases. Once it reaches a certain low threshold, fewer children

are produced.

In the proposed algorithm, we define the fertility rate of a chromosome as a function of its
age. When the age sum of parents is less than 4, they can generate 2 children as usual.
Once the age sum reaches 4, the parents can only generate 1 child. Moreover, the
generated children will inherit more features from the parent whose age 1s less than the

others.

According to the experiment's results, it looks like these strategies do help our algorithm
to change the genetic operators dynamically, and improve the performance on finding the

near-optimum solution in an adaptive environment.

4.6.4 The updated algorithm

The pseudo code for the updated algorithm is as follows:

54

1. Generate initial generation of N chromosomes, endue a gender attribute to each
chromosome according to genderProbabilityFactor, set its initial age of 0;

2. Calculate fitness value for each chromosome, calculate SD for this generation;

3. Generate first portion of Children by crossover method,

4. Generate second portion of Children by mutation method,

5. Generate third portion of Children by elitism method;

6. Calculate fitness value for each child;

7. Sort children and parents by their fitness values, increase a chromosome's age by 1
if it is parent,

8. Pick up the first N chromosomes whose age less than death age as new generation;
9. Repeat step 2 to 8 till SD reaches the predefined low threshold or the number of
times reaches the limit.

10. Return the best chromosome as the near-optimum result.

5. Experiment and Expected Result

In order to achieve a good result, there are several parameters that must be chosen very
carefully. In the experiment, we use the rules in [8], which did a lot of experiments to find
the right parameters. Suppose there are n applications to be allocated, if n*(n-1) < 100,
then the number of schedule in each generation is n*(n-1), otherwise it has been set to a

constant value of 100.

5.1 Same Load, various environments

Basically, there are two main parameters that can be changed, the number of nodes; and
the number of applications that need to be allocated. First, we test for the same number of
applications, allocated on a distributed environment with various number of computes
nodes. We have tested 10 applications on environment with nodes number 5, 10, 15, and
20. In order to ensure the data accuracy, we performed the same experiment three times.

The experiment results are shown in Table 2:

Table 2: Experiment result of 10 applications on various numbers of nodes

g T

LB [7] 2928 0.00

1 2808 4.10

2 2807 4.13

GA [8] 3 2810 4.03

1 2800 4.37

2 2800 4.37

5Node PA 3 2800 4.37
LB [7] 1649 0.00

1 1465 11.16

2 1468 10.98

GA[8] 3 1464 11.22

1 1452 11.95

2 1447 12.25

10Node PA 3 1447 12.25
LB [7] 1193 0.00

1 1007 15.59

2 1009 15.42

GA [8] 3 1009 15.42

1 1005 15.76

2 1005 15.76

15Node PA 3 1005 15.76
LB [7] 959 0.00

1 797 16.89

2 791 17.52

GA[8] 3 796 17.00

1 791 17.52

2 791 17.52

20Node PA 3 791 17.52

In the experiments, we have tested three algorithms: LB [7] represents the original LB
algorithm without any scheduling strategy in [7]; GA [8] represents the standard genetic
algorithm used in [8]; and PA is our proposed algorithm with adaptive features. Column
'EndTime' records the session completion time of each experiment. And the final

Tmprovement' column records the percentage improvements achieved by both GA [8] and

57

our proposed algorithm to the original algorithm without scheduling. The comparison

results are shown in Table 3.

Table 3: Comparison Result of 10 Applications on various number of Nodes

GA [8] 4.03
SNode
PA 437 0.34
1oNode GA [8] 10.98
PA 12.25 1.27
GA [8] 15.42
15Nod
oce PA 15.76 0.34
GA[8] 16.89
N
20Node PA 17.52 0.63

In Table 3, there are two improvement columns: Improvementl represents the

improvement of both standard GA in [8] and our proposed algorithm from the original

algorithm; and Improvement 2 records the improvement of our proposed algorithm from
the standard GA. Both improvements are percentage perspective. From the data above,
we can reach three conclusions:

1. In each scenario, both our proposed algorithm and the original GA algorithm in [8]
scheduling did reduce the session completion time, and improves the resource
utilization.

2. As the available resources rise, the scheduling algorithms will give better results. A
range from 4.03% to 17.52% percentage improvement has been achieved.

3. The proposed algorithm consistently performs better than the standard GA. Figure 19

shows the results:

58

Q

£ 105

|_

~ 100 -

o

B 95 —~—GA[8]
g 90 - —=-PA
S s LB[7]
5

(72}

o 75 , . !

S 10 15 20

Number of nodes

Figure 19: Generalized SCT of 10 Applications based on LB [7]

5.2 Same environment, various loads

Secondly, we tested our algorithm on the same distributed environment with different
number of applications. In the experiments, we chose 15 as the number of nodes, and the

numbers of applications are 10, 15, 20, and 25. Table 4 shows the results of the

experiments:

59

Table 4: Experiment result of various num applications on same numbers of nodes

15Node

15Node

15Node

15Node

1 1007 15.59
2 1009 15.42
GA[8] 3 1009 15.42
1 1005 15.76
2 1005 15.76
PA 3 1005 15.76
LB [7] 1517 0.00
1 1453 4.22
2 1455 4.09
GA[8] 3 1454 4.15
1 1427 5.93
2 1428 5.87
PA 3 1427 5.93
LB [7] 2210 0.00
1 1947 11.90
2 1946 11.95
GA[8] 3 1949 11.81
1 1908 13.67
2 1900 14.03
PA 3 1890 14.48
LB [7] 2574 0.00
GA[8] 2453 4.70
2 2452 4.74

60

3 2450 4.82

1 2331 9.44
2331 9.44
PA 3 2332 9.40

15Node | GA [8] 3376 2.93
PA 3186 8.40
LB [7] 4332 0.00
15Node | GA [8] 4273 1.36
PA 4022 7.16

Table 5 shows the relative improvements obtained from GA[8] and the proposed

algorithm in all these experiments.:

Table S: Comparison Result of various num of apps on constant num of Nodes

1

10 | PA 15.76 0.34
GA[8] 4.09

15 | PA 5.93 1.85
GA [8] 11.81

20 | PA 14.48 2.53
GA [8] 4.70

25 | PA 9.44 4.74
15 | CA 2.93

PA 8.40 5.46

61

GA[8] 1.36
PA 7.16 5.79

45

As in Table 3, the first improvement column in Table 5 shows the percentage
improvement of both standard GA in [8] and the proposed algorithm wrt the LB
algorithm without any scheduling. The second improvement column records the
improvement of the proposed algorithm wrt the standard GA. First, the proposed
algorithm consistently performs better than the standard GA. In a distributed environment,
as the workload increases, this improvement becomes greater.. There is no improvement
in the scenario when the load is fixed and the available resources increase. Figure 20

shows the trend lines:

101
100 -
99 -
98 -
97 A
96 -
95 -
94 -
93 -
92

91 T | 1 I 1
10 15 20 25 35 45

Number of Applications

——GA [8]
—=—PA

Session Completion Time

Figure 20: Generalized SCT on 15 Nodes based on GA {8}

62

5.3 Implementing Gender and Age assignments

Since the proposed algorithm is able to take care of distributed systems, with a heavy
computational load, a new generated work load pool of 200 applications was created for
testing. We test our algorithm on a fixed distributed environment of 25 nodes. In each
experiment, we vary the numbers of applications from 10, 15, 20 to 25 30 35 and 40.

Please see the data of the experiment results in Table 6:

Table 6: Experiment result of various num applications on 25 nodes

63

1 1697 8.96

2 1686 9.55

3 1693 9.17 1.74
1686 9.55 237 0.64
2367 0.00

1 2252 4.86

2 2243 524

3 2236 5.53

1 2225 6.00

2 2223 6.08

3 2223 6.08 1.20
2204 6.89 2.13 0.93

The format of the result data is almost the same as in the previous experiments. We tested
different algorithms on the same scenario, and compared the session completion time.
The extra row with algorithms PA with G is used to record the experiment result of the
proposed algorithm with the implementation of Gender and Age assignment. The last
column Impv3 records the percentage improvement of PA with G over the previous

proposed algorithm PA. The trend lines of the improvement are shown in Figure 21:

64

o 105

£

i= 100 -

S 95 -

= ——GA [8]
s 90 ~=-PA

§ 85 LB [7]
2 154 ¢

(D 70 ¥ I I)

10 15 20 30 40

Number of Applications

Figure 21: Generalized SCT on 25 Nodes based on LB [7]

As mentioned before , Table 6 introduced an extra row in each scenario storing the
experiment result data produced by the proposed algorithm implemented with Gender and
Age assignments. Table 7 shows the analysis to understand the effect of introduction of

the gender and age assignments:

Table 7: Comparison Result between PA with Gender and PA without Gender

65

4.96 0.57
1.74
2.37 0.64
1.20
2.13 0.93

In Table 7, the column Impv2 is the percentage improvement of the proposed algorithm
with gender and age assignments over the previous version. The implementation of the
gender and age assignment leads to a consistent improvement in performance. Figure 22

shows the trend lines of the improvement.

()]

g 101

l—.

S 96 -

© ——GA [8]
g 91 - = PA

S - PA with G
5 86 -

»

3

(7)) 81 T T T T

10 15 20 30 40

Number of Applications

Figure 22: Generalized SCT on 25 nodes based on GA [8]

In order to find the improvement range, we tested the two algorithms with more

workloads. Table 8 shows the results of the experiments:

66

Table 8: Percent Improvement after implementing Gender and Age assignments

10 670 669 0.15
20 1177 1170 0.57
30 1697 1686 0.64
40 2225 2204 0.93
50 3643 3582 1.67
60 4348 4260 2.02
70 5161 5052 2.1
80 5960 5796 2.75
90 6750 6533 3.21
100 7501 7243 3.44
110 8276 7981 3.56
120 8977 8654 3.60

The trend lines are shown in Figure 23 as below:

67

a5 | —< PAwith G

Session Completion Time
o
(o]

91 } T I I] T I I I T T I I
10 30 50 70 90 110

Number of Applications

Figure 23: Generalized SCT on 25 nodes based on PA without Gender and Age

From the figure23, we can derive the following conclusions:

1. Implementing Gender assignment improves the performance of the proposed
algorithm;

2. This improvement keeps rising as the work load increases and the improving trend

reduces towards zero, once the work load reaches a threshold.

68

6. Conclusions and future work

In this thesis, we have proposed a genetic algorithm based scheduling system for the

application centric loading balancing in a distributed heterogeneous environment.

In our research, we have considered the generalized distributed system with
heterogeneous compute-nodes. We also take the network delays into consideration, and
deal with the allocation problem on a distributed heterogeneous network. From the work
load perspective, the proposed algorithm deals with the allocation of direct acyclic graph
(DAG) kind of generalized workload, which is composed of sub procesées with internal
dependencies. All of these ensure that the proposed algorithm attempts to solve problems

of the real world.

In the genetic algorithm, we have introduced certain adaptive features. By dynamically
changing the genetic parameters through the whole evolution process, it balances the
local and global searching in the process on the run. By doing this, the algorithm prevents
premature convergence or convergence stagnation, and directs the process towards

optimal convergence more efficiently.

Since GA is originally developed from natural selection and genetic production, we have
introduced more features from the biological world into the proposed algorithm. Using
the ideas used for a mechanical design problem [6], we implemented gender and aging
strategies in the proposed algorithm, and managed the child generation according to the

parents' fertility rate.

69

We have designed the system, based on object oriented concept. So with moderate efforts,

experiments with more features and new strategies for optimization can be performed.

Due to 1ts inherited nature, genetic algorithm is more time consuming than other heuristic

algorithms. Hence if the proposed algorithm is implemented into a distributed system of

compute-nodes, the scheduling process can become faster.

70

Bibliography

[1]. Kai Lu and Albert Y. Zomaya, A Hybrid Policy for Job Scheduling and Load
Balancing in Heterogeneous Computational Grids, Sixth International Symposium on
Parallel and Distributed Computing, IEEE 2007

[2]. Grzegorz Malewicz, Ian Foster, Arnold L. Rosenberg, Michael Wilde, A Tool for
Prioritizing DAGMan Jobs and Its Evaluation, 2006

[3]. Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud legrand, Loris Marchal
and Yves Robert, Centralized versus distributed schedulers for multiple bag-of-task
applications, /IEFE proceedings-E, vol. 138, no. 5, 2006, Page(s): 313-318

[4]. Lu Tian and K. Mani Chandy, Resource Allocation in Streaming Environmnets,
Grid Computing Conference, 2006

[5]- Lan Zhou, Sun Shi-Xin,A Self-Adaptive Genetic Algorithm for Tasks Scheduling
in Multiprocessor System, /[EEE proceedings, 2006

[6]. Khadiza Tahera, Raafat N. Ibrahim, Paul B. Lochert Adopting dynamic operators
in a Genetic Algorithm , Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM 2007, Page(s): 1533-1540

[7]. A. K. Aggarwal, Brajendra K. Singh and Kemal Tepe, Communication net Load
Balancing for Distributed Bus networks, 2005

[8]. Mona Aggarwal, Robert D. Kent and Alioune Ngom, Genetic Algorithm Based
Scheduler for Computational Grids, Proceedings of the 1 9" Conference, 2005

[9]. Foster, 1. and Kesselman, C. (eds.), The Grid: Blueprint for a New Computing
Infrastructure, 2003.

[10]. Tan Foster, Carl Kesselman, Steven Tuecke, The Anatomy of The grid: Enabling
Scalable Virtual Organizations, International Journal of Supercomputer Applications,
2001.

[11]. H. S. Bhatt, B. K. Singh, A. K. Aggarwal, “Application centric load balancing
strategy based on hybrid model”, IXth International Conference on Advanced
Computing & Communication, ADCOM-2001, organised by IEEE and ACS India,
2001, Page(s): 231-238.

[12]. Shaout A., McAuliffe P., Job scheduling using fuzzy load balancing in distributed
system, Electronics Letters, vol. 34, 1998, Page(s): 1983-1985

71

[13]. Chulhye Park, Kuhl J.G., A fuzzy-based distributed load balancing algorithm for
large distributed systems, Autonomous Decentralized Systems, Proceedings. ISADS
95, Second International Symposium, 1995, Page(s): 266-273

[14]. Baumgartner K.M., Wah B.W., A global load balancing strategy for a distributed
computer system, Distributed Computing Systems in the 1990s, 1988. Proceedings.,
Workshop on the Future Trends of , 1988, Page(s): 93-102

[15]. A. Ngom, 1997, Genetic algorithms for the jump number scheduling problem,
Order - 4 Journal on the Theory of Ordered Sets and its Applications, 1998, Page(s):
59-73.

[16]. Gopal, S., Vajapeyam, U., Load balancing in a heterogeneous computing
environment, System Sciences, Proceedings of the Thirty-First Hawaii International
Conference on, vol. 7, 1998, Page(s): 796 -804

[17]. Andersen P.H., Antonio J.K., Implementation and utilization of a heterogeneous
multicomputer cluster for the study of load balancing strategies, High Performance
Distributed Computing, 1998. Proceedings. The Seventh International Symposium on ,
1998, Page(s): 362-363

[18]. Zhang Y., Kameda H., Hung S.L., Comparison of dynamic and static load-
balancing strategies in heterogeneous distributed systems, Computers and Digital
Techniques, IEE Proceedings, vol. 144, 1997, Page(s): 100-106

[19]. Kun-Ming Yu, Wu, S.J.-W., Tzung-Pei Hong, A load balancing algorithm using
prediction, Parallel Algorithms/ Architecture Synthesis, Proceedings, Second Aizu
International Symposium, 1997, Page(s): 159-165

[20]. M. Coli, P. Palazzari, "Load Balancing with Internode Precedence Relations: A
New Method for Static Allocation of DAGs into Parallel Systems", Proceedings of
the 4th Euromicro Workshop on Parallel and Distributed Processing, PDP 1996, pp
252-257 16. Malloy

[21]. Borzemski L., Load balancing in parallel and distributed processing of tree-based

multiple-task jobs, Parallel and Distributed Processing, Proceedings. Euromicro

Workshop on, 1995, Page(s): 98-105

72

[22]. Haresh Bhatt, Mritunjay, M.K. Shah, N.P. Darji, and CVS Prakash, Optimization
of image processing software on VAX/VMS system configuration, Proceedings of
Seminar on Supercomputing for Scientific Visualization, 1994

[23]. Yongbing Zhang, Kameda H., Shimizu K., A Comparison Of Adaptive And Static
Load Balancing Strategies By Using Simulation Methods, intelligent Control and
Instrumentation, Proceedings., Singapore International, Conference on , vol. 2, 1992,
Page(s): 1162 -1167

[24]. Sarje A.K., Sagar G., Heuristic model for task allocation in distributed computer
systems, /EEE proceedings-E, vol. 138, no. 5, 1991, Page(s): 313-318

[25]. Goldberg D.E, Genetic Algorithm in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, 1989.

73

Vita Auctoris

Name: Sheng Bai
PLACE OF BIRTH: Beijing, China
YEAR OF BIRTH: 1974
EDUCTION: Beijing University of Technology, Beijing, China
1993-1998 BEng
University of Windsor, Windsor, Ontario, Canada
2003-2008 M.Sc.

74

	Application centric load balancing for distributed systems using genetic algorithm scheduling
	Recommended Citation

	ProQuest Dissertations

