
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2003

Constructing a reproducible testing environment for distributed Constructing a reproducible testing environment for distributed

Java applications. Java applications.

Kun Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Kun, "Constructing a reproducible testing environment for distributed Java applications." (2003).
Electronic Theses and Dissertations. 1548.
https://scholar.uwindsor.ca/etd/1548

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1548?utm_source=scholar.uwindsor.ca%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

In compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructing a Reproducible Testing Environment for

Distributed Java Applications

by

Kun Wang

A Thesis Submitted

to the Faculty of Graduate Studies and Research

through the School of Computer Science

in Partial Fulfillment of the Requirements for the

Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada

October 2003

© 2003, Kun Wang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-86705-6
Our file Notre reference
ISBN: 0-612-86705-6

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The emergence of the global Internet, wireless data communications, and the availability

of powerful computers is enabling a new generation of distributed and concurrent

systems. However, the inherent complexity of such systems introduces many new

challenges in system testing and maintenance. One of the major problems in testing such

systems is that executions with internal non-deterministic choices make the testing

procedure non-repeatable. A natural solution is to artificially force the execution of a

program to take desired paths so that a test can be reproduced. However, with

geographically distributed processes and heterogeneous platform architectures, distributed

systems have imposed new challenges in developing effective techniques for

reproducible testing.

The goal of this research is to build an environment to automate testing for distributed

and concurrent Java applications. We will focus on controlling the order of occurrences of

input and remote call events according to a user-specified test scenario, which is

composed of input data, a constraint expressed as a partial order over the input and

remote call events, and expected output. The testing environment is by itself distributed

and does not require source code intrusion into the application under test. With minor

changes, the testing components can also be reused in CORBA-based applications

implemented in Java.

Keywords: Distributed Systems, Nondeterminism, RMI, Specification-Based Testing,

Reproducible Testing, CORBA, Portable Interceptor, Middleware, Concurrent Program,

Dynamic Proxy, Reflection.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

This work would not have been possible without the help of many people.

First and formost, I would like to express my sincere gratitude to my research supervisor,

Dr. Jessica Chen for giving me the opportunity to conduct research in this area and for her

constant guidance throughout its duration. I am very thankful for her vision, advice,

patience and serious attitude that has been an invaluable source of support throughout my

graduate program.

I would also like to thank my committee members, Dr. Christie Ezeife, Dr. Xiang Chen

and Dr. Ngom Alioune for spending their precious time in reading my thesis and putting

on their comments and constructive advice on this work.

My special thanks go to the graduate secretary of the School of Computer Science, Ms.

Mary Mardegan for her consistent help. Thanks also go to my peers, Songtao Chen and

Yongdong Tan for their valuable advice and interesting discussions.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract ...iii

Acknowledgement iv

List of Tables.................... vii

List of Figures.................. viii

1. Introduction... 1
1.1 Motivation 1

1.2 Overview of Possible Solutions to the Nondeterminism Problem..................... 2

1.3 Objective and Contributions............... 5

1.4 Thesis Structure................................... 7

2. Related Work.. 9
2.1 Built-in-test Techniques 9

2.2 Control of Nondeterminism in Concurrent and Distributed Systems 11

2.2.1 Control of Communication Events.. 12

2.2.2 Control of Synchronization Events 12

3. Proposed Approach... 14
3.1 Advantages of the Proposed Approach............... 14

3.2 Test Scenario and a motivating example 16

4. Java RMI with Interception 22
4.1 Interception Service in Java RMI using Dynamic Proxy........................ 23

4.2 Java RMI Interception Service in the RRL 24

5. Testing Architecture..38
5.2 Control of Input Events - Test Drivers 45

5.3 Control Algorithm.. 45

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Overview of CORBA.. 54
6.1 A Brief Overview of Common Object Request Broker Architecture54

6.1.1 OMG IDL 56

6.1.2 Java IDL 56

6.2 CORBA Portable Interceptors................ 56

7. Reusing the Testing Components in CORBA 59
7.1 ClientRequestlnfo/ServerRequestlnfo in Java RMI and CORBA 64

7.2 Comparisons of the Design Principles between Java RMI Interception

Services and CORBA Portable Interceptors 67

7.2.1 Interception using Dynamic Proxy technique 68

7.2.2 Interception in SSL (Stub and Skeleton Layer)................ 68

7.3.3 Interception in RRL (Remote Reference Layer) 69

8. Empirical Evaluation 70
8.1 Running Online Conference example 70

8.1.1 Running the Online Conference without Adopting the Control Algorithm... 70

8.1.2 Running the Online Conference by Applying the Control Algorithm 74

8.1.3 Comparing time cost when running a test using control............. 78

8.2 Performance Evaluation...................................... 78

9. Conclusions and Future Work 84

Bibliography................... 87

Vita Auctoris 92

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 7.1: Comparisons between CORBA and Java RMI for implementing and

registering interception services.. 59

Table 7.2: Major Changes of Testing Components from Java RMI to CORBA63

Table 7.3: Available Information from the Requestlnfo objects in different environments

65

Table 7.4: Comparisons of the design principles between Java RMI Interception Services

and CORBA Portable Interceptors 67

Table 8.1: Time cost by adopting control algorithm 78

Table 8.2: Performance Comparison between Distributed and Centralized Testing

Architecture 81

Table 8.3: Time cost for running the AUT with different processes and events............... 83

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1: An Object with built-in tests 10

Figure 3.1 The RMI remote interface definition for the on-line conference example...... 18

Figure 3.2: A test scenario in the on-line conference example 20

Figure 4.1: Java RMI Architecture Layers 22

Figure 4.2: Layered architecture in RMI with interception service.................. 25

Figure 4.3: High level structure of the modified Java SDK 26

Figure 4.4: The stub class and the UnicastServerRef class in Java core A PI................. 27

Figure 4.5: Pseudo-code of the Modified UnicastServerRef class...................... 29

Figure 4.6: Pseudo-code of the Modified UnicastRef class 33

Figure 4.7: Static Relationship for the Interception Service Implementation 35

Figure 5.1: The distributed testing environment with automated control 40

Figure 5.2: Class diagram of the TestController 42

Figure 5.3: Code for an example of client side interceptor 44

Figure 5.4: The algorithm for a test controller................ 47

Figure 5.5: The DTD definition for the Configuration.xml file........................ 50

Figure 5.6: A sample Configuration.xml file................ 52

Figure 5.7: An example of generated batch file for TestOracle.............................. 53

Figure 6.1: Main components of the ORB architecture and their interconnections...........55

Figure 6.2: Simplified ORB architecture with Portable Interceptors 57

Figure 8.1: Result of Running Peer-0 without Adopting Control Algorithm 71

Figure 8.2: Result of Running Peer-1 without Adopting Control Algorithm................... 72

Figure 8.3: Event Sequence when running Peer-0 and Peer-1 without Control 73

Figure 8.4: Result of Running Peer-0 with Control Algorithm......................... 75

Figure 8.5: Result of Running Peer-1 with Control Algorithm 76

Figure 8.6: Event Sequence when running Peer-0 and Peer-1 with the Control Algorithm

 77

Figure 8.7: The centralized testing environment with automated control.................... 80

Figure 8.8: A Test Scenario with three processes and 18 events 82

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

1.1 Motivation

With advances in networking and middleware technologies and web support, distributed

systems are gaining increasing popularity in their use, ranging from various industrial

communication systems to our daily social assistance and control systems such as

education systems, healthcare systems and transportation systems. However, the inherent

complexity of distributed and concurrent systems has imposed various difficulties to both

software development and software maintenance. Heterogeneity in terms of the adopted

hardware, platforms and implementation languages, and nondeterminism existing during

the executions are typical sources of such difficulties. Heterogeneity in distributed

systems poses many difficulties in system communications and interactions. Due to

nondeterminism, the behavior of a distributed program is no more predictable: running a

program several times with the same input may not guarantee the same result. This is

because a distributed and concurrent system usually has many different execution paths

due to the fact that different processes are running at different speeds, with various kinds

of process cooperation, which leads to different interleavings of the execution paths

because of the interactions among different processes. As a consequence, testing turns out

to be non-repeatable.

When testing a sequential program, if we observe a certain erroneous phenomenon during

a testing procedure, we usually execute the program again with the same test input to

repreat the erroneous execution or to collect debugging information. This is called test

replay. After we have modified the program, we can run it again with new test input as

well as with previously tested input to verify that the detected errors are removed and that

no new errors are introduced. This last testing step, called regression testing, is especially

needed for software maintenance. When testing concurrent programs, since a test may not

be repeatable (meaning that it is not guaranteed that we can obtain the same output when

running such a program several times with the same input), we may not be able to see the

error again or to locate the buggy code, if we observe an error during or after a program

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execution. In particular, during regression testing, we may not be able to check whether

the errors are corrected, neither can we ensure that no new errors are introduced after this

program is updated.

1.2 Overview of Possible Solutions to the Nondeterminism Problem

A natural way to tackle the above problem is to direct the program execution so that with

a given input, we can artificially enforce some of the internal execution choices [2, 6, 7]

on a concurrent program. If well-controlled, the execution of a concurrent program can be

directed and thus, the observations can be reproduced. In fact, people have developed

various techniques to control the program executions for both debugging and testing

purposes. For reproducible testing, we assume that we are given a set of test scenarios,

which consist of not only test cases but also some path constraints. The test case, as usual,

describes the external input, i.e. a sequence of input data to each process, and the

expected observations (outputs). The additional path constraints describe some further

constraints on the execution paths with the given test input. Such path constraints can be

expressed as a partial or total order among external input events in the test cases and some

internal events such as certain statements in the program. Obviously, the path constraints

are often designed to denote the typical or representative scenarios in which possible

errors or bugs may reside.

Unlike in a debugging approach where we define the checkpoints individually, in an

automated reproducible testing, we can predefine in general the events we are interested

in controlling their order of occurrences. Typically, we consider three types of events:

^ The synchronization events [1-3, 6, 7, 19]

This is based on the observation that different output of multiple executions of a

distributed and concurrent program with same inputs are often caused by the different

orders of accessing shared objects (synchronization events) by various processes.

■f The input events

In a distributed system, the orders of the input events may also be a source of different

observable behaviors. Of course, we cannot define orders among input events in the same

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process, since the order of input events within an individual process is deterministic. The

constraints we will add here are over the orders of input events among different

processes.

•S The inter-process communication events [2, 3, 6, 7]

An inter-process communication event can be viewed as an external input to the target

process of the event (also called remote events). As a result, the orders of such events also

contribute to the different behaviors of the overall distributed system.

There are two main issues in automating software testing. One is to automate the

generation or partially automate the generation of the test cases and path constraints; and

the other is to realize the control of executions of an Application Under Test (AUT), i.e.,

force the program execution according to the specified paths with given input. In this

work, we only consider the latter issue, i.e.: we will only consider implementing

automated control over input events and inter-process communication events in realizing

a reproducible testing, and assume that both test case and path constraints are given.

Automated testing naturally requires some software instrumentation techniques, which

monitor, analyze and manage the executions of processes or the interactions among

different processes and their running environment in a software system. The

instrumentation can be realized via two approaches: 1) via intrusion into the source code

of an AUT, and 2) via the interception service in the underlying runtime system. Much of

previous work on software instrumentation focuses on the source code intrusion

technique and can be broadly divided into two groups. One is to integrate source code and

test code. This is the so-called built-in test method [9,14], by which we have the program

source code and testing code in an integrated form to enhance software maintainability

and traceability. The other approach is to extend source code with additional process

communications. Along this line of research, the source code of the AUT is augmented by

some communication constructs between the AUT and the automated test control system

[1-3, 6, 7, and 19]. This is of particular interest when we intend to gain some control over

the internal non-deterministic choices in the AUT.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although traditional approaches provide effective techniques to software instrumentation

for automated testing, they also have some major disadvantages. For example, in the

built-in test technique, tests are constantly occupying space while most tests will only be

used once when the component is deployed. In addition, with much test code integrated

with the program source code, the readability of such a program is seriously affected.

Extending source code with additional process communications assumes the availability

of source code of an AUT, which is usually impossible for today’s commercial off-the-

shelf (COTS) software components. In addition, the behavior of the extended code may

deviate from the original AUT, which raises consistency problem. In this research, we

will solve the above-mentioned problems (e.g.: poor readability and unavailability of

source code) by building software instrumentation into the application’s run-time

environment so that an application itself does not have to contain any testing code at

development and deployment stages and the application source code can remain

untouched during system testing or maintenance.

Recently, middleware technologies have been widely adopted to develop large-scale and

complex distributed applications. Middleware technologies such as CORBA, Java RMI

and DCOM provide us with core software infrastructures that make it relatively easy to

build distributed applications that are of high-performance and are scalable. They also

offer a set of services that support component interoperability in a heterogeneous

environment, while hiding the details of its network management and communications.

The advances of middleware technologies provide us with new opportunities to explore

the second approach to software instrumentation for distributed applications, especially

for process communications across machine boundaries — integrate the instrumentation

into middleware layer. Software instrumentation into middleware level is a novel

approach that we will adopt in our research. It is superior to the code intrusion technique

in that it requires neither the availability of the source code nor test user’s knowledge

about the AUT. It is built independent of the implementation of an AUT, thus the AUT

can remain completely as a black box. Now a question arises up: how can we implement

this instrumentation into the middleware, in order to monitor, and further control the

executions and interactions of processes in an AUT?

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In CORBA, this can be accomplished by way of CORBA portable interceptors, which

are actually some hooks into the CORBA ORB. They allow users to insert their own code

into the ORB and intercept the normal flow of program execution without changing either

the applications or the ORB implementation. This user-provided code is invoked at

certain interception points during remote request/reply processing, and thus can be used

for inspecting and manipulating the remote requests and responses.

1.3 Objective and Contributions

In this thesis work, we consider using distributed Java applications communicating via

Remote Method Invocation (RMI) as the AUT. We have chosen distributed Java

applications based on a number of reasons. First, Java is becoming increasingly popular

in developing network based, distributed and concurrent software systems because of its

portable, easy-to-use, and security features. Second, most distributed and concurrent

applications involve a set of processes executing in parallel, with each process having

multiple threads running concurrently. This characteristic of distributed and concurrent

programs leads to two requirements in this work: 1) developing a typical AUT, which can

closely model the behavior of a distributed and concurrent program (which has distributed

processes and multiple threads within each process), and 2) constructing a testing control

environment that is able to handle multithreading issues. We use Java because Java

language provides a built-in facility to support multithreading. This support is a nice

feature in that you do not have to think about the low level mechanism for partitioning

system resources (such as CPU time) for multiple threads, since this is done by Java,

which makes programming with multiple threads a much easier task. We have chosen

RMI as the underlying communication mechanism since RMI is a distributed object

model that allows programmers to develop distributed Java programs with the same

syntax and semantics as those that are used for non-distributed programs. It offers a

middleware (similar to CORBA ORB) by which distributed processes can communicate

with each other and pass information back and forth.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Unlike CORBA portable interceptors, however, the major limitation in Java for software

instrumentation is that it does not contain such an interception mechanism. So, in this

thesis work, we first provide a solution to injecting an interception service into the

underlying RMI middleware. This service is similar to the portable interceptors in

CORBA, which is to “peek” the executions and communications among processes of a

distributed Java program and intercepts Java remote method requests and responses for

the control of remote calls. This interception service is achieved by making use of Java

Reflection to modify and extend existing Java libraries.

The testing environment constructed in this research is by itself distributed, with some of

its testing components residing within the same host as each process in the AUT (thus

called local testing components). These local testing components include a single path

controller and a local test driver for each process on each machine. To distribute the test

controllers and test drivers to be local is for efficiency reason. Whenever a thread in a

process needs to interact with threads in other processes (i.e., a remote event), this event

will be intercepted by the middleware, which will send a request to its local controller on

behalf of this thread. This controller is responsible for deciding whether this thread should

proceed, wait for other threads, or resume from a waiting state. In general, a test driver is

a program that performs test setup, makes a sequence of calls to the software component

under test using a different range of test data for each call. The driver will normally

record output data to a file for use in examining the results of each test run [29], and then

do necessary clean-up tasks. A test driver in the context of this work is specific to a single

process and is responsible for starting a process under test, feeding inputs to it, recording

its result and then sending this result to the centralized test oracle (a program for checking

test results against expected results. See Chapter 4 for detailed definition) for verification.

Whether a driver could proceed to feed an input to its process also depends on the

permission from its test controller, which makes this decision according to the path

constraints and the current overall status of the AUT. Deploying these components in a

single host will definitely reduce network delay caused by a lot of communications

among these components. A centralized communicator is also used to coordinate among

test controllers. This communicator is simply a “broadcaster”, which accepts updates of

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each process’s running states from each path controller and broadcasts them to all other

controllers. For the communications between testing components, we have also adopted

Java RMI.

By means of the interception services, we can hook up the above testing environment into

the Java RMI implementation, and further control the order of occurrences over the local

input events and remote method invocation events of the AUT.

1.4 Thesis Structure

This thesis work is organized as follows: Chapter 2 reviews some previous work in

automated reproducible testing, and discusses their disadvantages. In Chapter 3, we

propose our approach to automated reproducible testing for distributed Java applications.

We also define the format of a test scenario, including the formats for events, test

constraint, and test oracle, and show a motivating example - Online Conference, which

will be used as the AUT in later chapters. In Chapter 4, we briefly review the concept and

architecture of Java RMI, and discuss in detail how the interception service is injected

into the RMI implementation in order to provide a mechanism to hook up the testing

control transparently to user applications. Chapter 5 shows the architecture of our

proposed testing environment and discusses the functions of each testing component. We

describe how this testing environment works with the Online Conference as the

application under test. This chapter also introduces the control algorithm and the

automation of the testing environment setup. In, Chapter 6, we overview the CORBA

application architecture, CORBA middleware - ORB, OMG IDL and Java IDL, which

are some prerequisites to develop distributed applications based on CORBA architectures.

This chapter also introduces the CORBA Portable Interceptors, an essential technique to

realize interception service in CORBA applications. Chapter 7 describes in detail how to

reuse the testing components for distributed Java applications in a CORBA environment,

and compare the similarities and differences between these two testing environments in a

variety of aspects. In Chapter 8, we run several experiments to evaluate the functionality

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and performance of our testing environment. Chapter 9 concludes this thesis work and

indicates possible future work in related areas.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Related Work

Previous work on automated reproducible testing usually involves three major issues: 1)

how to define the format of a synchronization event, which should contain sufficient

information to determine an event and direct the execution of a program according to a

given test scenario, 2) how to collect the test constraints and test cases. The set of test

scenarios must be small enough to be exercised in a relatively short period of time, yet be

adequate enough to uncover all potential program errors, and 3) how to develop a tool to

repeat the previous execution of a concurrent (and possibly distributed) program based on

a given test scenario (reproducible testing). This issue usually requires the introduction of

some control mechanism with the help of software instrumentation techniques. Our future

research will focus on the first and third issues. We assume that the test constraints and

test data are available during a testing process.

During the past years, a lot of research has been done on above three issues. Especially,

many quite efficient techniques have been developed to automatically generate test data

and test constraints [7, 20-25]. However, as mentioned before, much of previous work on

software execution control and instrumentation still relies on the source code intrusion

technique. This work can be broadly divided into two groups: integrating source code and

test code (built-in-test method), and extending source code with additional process

communications.

2.1 Built-in-test Techniques

In the first approach, the testing code is integrated into the program at design and

implementation stages as member functions, class clusters or sub-systems to improve

software testability. Such an augmented program can run either in normal mode as a

conventional program or in testing mode for testing and maintenance purposes. This

method draws attention to build testability into objects and frameworks, so that the

software testing and maintenance can be self-contained. The most interesting feature of

the built-in-test techniques is that tests can be inherited and reused in the same way as that

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of code in conventional object-oriented frameworks [9]. A prototype of a built-in-test

object in C++ code is given below:

Class class-name {
// Interface
Data declaration;
Constructor declaration;
Destructor declaration;
Function declarations;
Tests declaration; // Built-in test declarations

// Implementation
Constructor;
Destructor;
Functions;
TestCases; // Built-in test cases as

// new member functions (methods)
} TestableObject;

Figure 2.1: An Object with built-in tests [9]

In this prototype, the test declarations in the interface and the test cases in the

implementation have been embedded into a standard object structure. In this way, the

built-in tests may be inherited and reused in the same way as that of standard and

application specific member functions within the object. The built-in-test object

component has the same behavior as that of the conventional objects when normal

functions are called. But if the built-in tests are called as member functions in the object,

e.g.:

TestableObject:: TestCasel;

TestableObject:: TestCaseN;

the built-in-test object can be automatically tested and corresponding results are reported.

The same built-in-test method can be extended to the class cluster or object-oriented

framework levels. Built-in tests in the class cluster level are a set of class files acting as

test files in an 0 0 sub-system, while built-in tests in the object-oriented framework level

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are a set of tests playing as a sub-system in the whole OO framework. In this way, tests

can be built in all components of software in the scopes of objects and systems. The

maintainability of software can be increased by the possession of the features of self

containment of code and tests. Further details of built-in tests in class cluster and

framework levels can be found in [9, 14].

2.2 Control of Nondeterminism in Concurrent and Distributed Systems

Previous research in the second approach in support of control of non-deterministic

behaviors of concurrent and distributed systems has also been extensively conducted.

This approach centers on augmenting the source code of an AUT with some

communication constructs between the AUT and the automated test control system. This

is of particular interest when we intend to gain some control over the internal non-

deterministic choices in the AUT and force the system to take particular execution paths

[1-3, 6, 7, and 19]. The idea of deterministic testing of concurrent programs was first

introduced by Kuo-Chung Tai and Richard H. Carver in [1, 19], where the non-

deterministic behaviors of concurrent programs are considered as the results of the

unpredictable progress of concurrent processes accessing synchronization constructs (thus

so called synchronization events). They presented a language-based approach, where

programming language supported synchronization constructs such as semaphores and

monitors are used to deterministically test and debug concurrent Ada programs. Again,

based on the assumption that the test data and constraints are given during testing, we can

summarize this approach as three steps: 1) defining the format for synchronization

sequences, which provide sufficient information for test control and deterministic

execution, 2) transforming a concurrent program into a slightly different program in the

same language, which is equivalent to the original one except that some statements are

inserted (using a tool like a parser) right before and after synchronization events, and 3)

developing a synchronization sequence replay tool to control the execution of the

transformed program so that an execution of this program deterministically exercises a

given synchronization sequence. Although they implemented the reproducible testing in

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ada, the idea works well for other languages supporting synchronization constructs, and

the transforming tool and replay tool are relatively easy to develop.

2.2.1 Control of Communication Events

Along this line of research, D. Kung et al. [2, 7, and 28] proposed a state-based

reproducible testing technique in a distributed environment by adopting CORBA. They

not only defined a replay control mechanism (mentioned in the Introduction), but also

described an algorithm to automatically generate test sequences. This test sequence

generation technique is realized by constructing atomic state machines (ASMs) for

interesting single shared variables, and composite state machines (CSMs) when more than

one shared variables are used to describe the state behaviors of a program, and then

building a test tree based on these ASMs and CSMs to generate all possible test

sequences. In their approach, the generated test sequences by their state-based algorithm

are total orders of remote call events, whose number is very large even for a relatively

small program.

However, we do not have to specify totally ordered event sequences as path constraints,

because the orders of some events that are in an individual process are pre-defined and

can be identified in a formal design specification. So in our research, we will only

consider the partial orders among input and remote call events as our test constraints.

2.2.2 Control of Synchronization Events

Based on the fact that non-deterministic behaviors in a concurrent program usually arise

from concurrency-related statements, many researchers have proposed approaches to

controlling the orders of synchronization events when testing a concurrent program. In

[3], X. Cai and J. Chen presented the framework of an automated test control toolkit,

which can artificially control the partial order of synchronization events in a distributed

multithreaded programs. This framework adopts CORBA infrastructure as its underlying

middleware for communications among processes, and the implementing language of this

framework is Java. In Java language, each object with synchronized method or

synchronized block is associated with a monitor, and an operation (method invocation) on

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a monitor is defined as a synchronization event. By introducing constraints on the orders

of such events, and extending the source code of a program with additional

communication constructs, this work realized control of some important synchronization

events.

Although traditional approaches provide some effective techniques to software

instrumentation for automated testing, they do have some major disadvantages. For

example, in the built-in test technique, tests constantly occupy space while most tests will

only be used once when the component is deployed. Moreover, because tests are built into

an application at design and implementation phases, this kind of test also burdens

application developers with the test design and implementation issues. The methods

proposed in [1-3, 6, 7, and 19] isolate testing from the software component development

stages, and will leave component developers free of the concerns about the testing during

design and implementation phases. However, they all assume the availability of source

code of an AUT, which is usually impossible for today’s commercial off-the-shelf

software components. When software components are issued to the markets, they are

often in binary forms, and application developers (and testers) who will use (and test)

these components do not have access to the source code of those components due to

copyright issues. Even if they have the source code and can transform them with some

tools, the behaviors of the extended code may deviate from the original AUT, which

raises consistency problem. Furthermore, with additional language constructs integrated

with the program source code, the readability of such a program could be seriously

affected.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Proposed Approach

3.1 Advantages of the Proposed Approach

With the above-mentioned testing problems and disadvantages of previous work, the

objective of this research is to present an environment that can realize the automated

control in reproducible testing where the AUTs are distributed Java applications

communicating via RMI, and the path constraints are defined as partial orders over the

input events and remote method call events. Unlike the software instrumentation

techniques proposed in the previous research [1-3, 6, 7, 19], the test control is based on

constraints on local i/o events and remote method invocation events, and the

instrumentation in our testing environment does not require any source code intrusion and

is completely transparent to both client and server programs.

To force an AUT to satisfy a certain path constraint, we need to introduce some control

mechanism into the system during the execution. The execution of the AUT is augmented

by additional communications between the control mechanism and all the processes in the

AUT. In this thesis work, we will build this communication mechanism into the

underlying Java Run-time environment. How to alter the execution of the underlying

environment depends on the type of events we are interested in controlling their timing of

occurrences. For input events, we employ the test driver, which is in charge of starting the

AUT and providing input to a process, and to actually carry on its task on a real-time

basis (see Section 5.2 for details of how the test driver control the order of input events).

For the remote method call events, on the other hand, we can specifically inject this

communication mechanism into the middleware layer of the RMI implementation, and

further hook up a control meachanism by means of this injected communication.

Compared with previous software instrumentation techniques, our approach provides the

following benefits:

■ Intrusion into the underlying system requires neither the availability of the source

code nor test user’s knowledge about the AUT. Thus, the AUT can remain

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

completely as a black box. By providing an interception service, application testers

are allowed to plug in their testing code into the RMI middleware layer in a

“standard” and “systematic” way, in the sense that users can inject their own code

into the RMI middleware by implementing and extending a set of CORBA-like

classes, and starting this interception service in a way very similar to that of

CORBA.

■ Our test control environment is distributed and scalable. We do not limit the size of

an AUT in terms of the number of its processes. In fact, the AUT could consist of

any number of processes, which may run in different hosts and operating systems

during each test. By distributed testing environment, we mean that a test controller,

a test driver together with an interceptor server (see definition in page 28) are

deployed locally with each process on a single machine in a multi-process (and thus

multiple machines) application, and a central test oracle and communicator can be

installed on other machines.

■ A program can be run either in normal mode or in testing mode. As per the first

advantage, the software instrumentation and testing components are independent of

specific application and its implementation. So, the underlying instrumentation will

not affect the normal execution of an AUT if it is not turned on. Users are also given

the flexibility to choose to turn on either the client or the server side (or both)

instrumentation, or to dynamically turn the interception service on or off during a

testing procedure, by implementing and extending some standard classes, then

starting the supporting services or executing some pieces of code to register/un

register their interceptors.

■ The testing components, i.e., test controllers, drivers, RMI interceptor servers, test

oracle and communicator can be reused in CORBA architecture with only minor

changes.

Other than software testing, intrusion into the underlying run-time system can also be

used in software instrumentation technique in support of software debugging, monitoring

and resource management etc. For example, Friedman and Hadad in [33] have discussed

the instrumentation in existing CORBA ORB implementation for caching, load balancing,

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and redundancy in assuring the reliability of real-time software systems. In [8], Denis

Reilly and A. Taleb-Bendiab use the Java Dynamic Proxy technique to build some kind

of interception services into the underlying Jini implementation, and further proposed a

service-oriented, dynamic instrumentation framework that provides support to monitor

and manage Jini applications. Similar to this work, our instrumentation provides a

monitoring framework for dynamic analysis of distributed Java applications, enabling

tracing of flows of control transparent to application developers, and further managing

individual components, their running environment and their interactions.

3.2 Test Scenario and a motivating example

As mentioned in the introduction, we consider the automated control over the timing of

two types of events: the input events and the remote call events. This is reflected in the

definition of our test scenarios. Let Fbe a set of input/output values, I be a set of remote

interface names and M a set of remote method names. A test scenario is defined as an

element of TS = { E l \J E2, C, O) where

■ El - (N, V, N, {“f \ “o”}) (N is the set of natural numbers) is the set of i/o events. (/',

v, k, s) e El denotes input value v to process j for the Mi time (when s = “i”) or

receive an output value v from process j for the Mi time (when s = “o”).

■ E2 = (N, I, M, N, { “qc”, “qs ”, “ps ”, “pc ”}) (N is the set of natural numbers) is the

set of remote call events, (j, i, m, k, s) e E2 denotes an event of calling method m on

the interface i from process j for the Mi times, at the time of s where:

- s - uqc”: when the call request is at the caller’s side;

- s = “qs'”: when the call request arrived at the callee’s side;

- s = “ps”: when the call response is at the callee’s side;

- s = “pc”: when the call response arrived at the caller’s side.

B C c (El U E2) x (£J U E2) is a binary, transitive relation between events to denote

the ordering constraint among them, (el, e2)E C means that we require el to happen

before e2.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ O is a boolean expression that we expect to be true (test oracle). It may contain pairs

from El x El that shows the happen-before relationship between two i/o events.

Let us consider an application of on-line conference control. With the use of Internet and

multimedia, it is possible to host an on-line conference. Now let us consider using the

distributed bakery algorithm introduced in [4] to guarantee that only one person can speak

(enter his critical section) at a time. Distributed systems involving multiple processes

usually compete to use shared data. A critical section is a code segment in each process,

in which shared data may be accessed. Each process executing its critical section must

gain exclusive access of the shared data and ensure that only one process is allowed in its

critical section at any time.

The distributed bakery algorithm goes in this way: n processes (representing n people)

communicate with each other in a peer-to-peer manner in order to enter a critical section

(to speak). Whoever wishes to enter the critical section should pick up a ticket number,

broadcasts this number together with its process id to all other processes, and wait until it

has received responses from each other process that the chosen number becomes the

lowest. To realize this, each process maintains a local number (e.g., High_Number) that is

what it knows so far the biggest one among all the numbers maintained by various

processes. Initially, this High_Number is set to the same value (e.g., 0) in each process.

When receiving an input signal of willing to speak, the process locally picks up a number

that is 1 greater than the High_Number (i.e. High_Number +1) and sends a request with

this number to all other processes. Each process which receives a request together with a

ticket number smaller than its own local chosen number will reply immediately, meaning

it allows the sender to enter the critical section. On the contrary, if a process who receives

a request together with a ticket number (ReceivedJSfumber) is greater than its own local

chosen number, it will suspend its reply until it has exited its critical section. In either

case, the High_Number of this process will be reset to value of the the original

High_Number or the value of the Received_Number, whichever is greater. The request

sender will enter the critical section only after it has received replies from all other

processes.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« in te rfa c e »
Java.RMI.Remote

PermissionRequest(processeid: String, receivednumber: int)
PermissionResponseQ
acceptMessage(message: String)

OnlineConference

Figure 3.1 The RMI remote interface definition for the on-line conference example

Figure 3.1 shows the definition of the remote interface OnlineConference in terms of

UML class diagram. When receiving an input indicating a willing to speak from the test

driver, a process locally picks up a number and makes a series of remote calls

(permissionRequest) of all other processes with its own process identifier and its own

number, in order to get permission from those processes to enter its critical section.

Correspondingly, whenever allowed, a process remotely calls permissionResponse of the

requesting process to grant it such permission. After obtaining permission from all other

processes, the requesting process remotely invokes the acceptMessage of other processes

to broadcast its messages. One of the typical scenarios that we are interested in testing

here is when two participants wish to speak at the same time. More precisely, we want to

test whether the program works correctly when two individual processes locally pick up

the same number. Apparently, two individual processes locally picking up the same

number is an important case when potential concurrency-related design or

implementation errors may show up. However, this is impossible with a traditional testing

technique where we consider only the input to the program and the corresponding output

from its execution, because here we need to gain the control over the execution of the two

processes. With the present testing technique, the desired scenario can be realized by

controlling the timing of occurrences of the user’s input {willing to speak) and some

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remote method calls during the execution. Let us consider a test scenario where there are

two processes (representing two users): each user requires speaking only once, and both

users pick up the same number. We can define the test scenario in the following way:

■ V = {0, I}: There are two kinds of input events in this example. One is to signal the

request to speak (input value 0), and the other is the signal of the end of speaking

(input value 1). There are also two kinds of output events. One is to denote the

starting point of speaking (input value 0), and the other is the actual end of speaking

(input value 1).

■ I = {“OnlineConference ”}: In this example, there is only one remote interface

OnlineConference, for which a remote object will provide implementation.

■ M = {“permissionRequest ”, “permissionResponse ”}: There are two remote methods

defined in the remote interface OnlineConference.

Recall that the set of i/o events and the set of remote method invocation events can be

respectively represented as (Processld, Value, Number, S) (where S can be either “i ” or

“o ”) and (Processld, InterfaceName, MethodName, Number, S) (where S can be one of

the four constants: “q c ”, “qs”, “p s ”, and “p c ”), the test scenario can be further

elaborated as follows:

■ ie 1 = (1, 0, 1, event ie 1 is the first input of value 0 to process 1.

■ ie2 = (1, 1, 1, “f ’): event ie2 is the first input of value 1 to process 1.

“ ie3 = (2, 0, 1, “/”): event ie3 is the first input of value 0 to process 2.

■ ie4 = (2, 1, I, “?'”): event ieA is the first input of value 1 to process 2.

■ rel = (1, “OnlineConference”, “permissionRequest”, 1, “qc”): event rel is the first

remote call o f method permissionRequeset on the interface OnlineConference from

process 1 when the call request is still on the caller’s side (i.e. process \).

" oel = (I, 0, 1, “o ”): event oel is the first output of value 0 from process 1.

■ oe2 = (1, 1, 1, “o ”): event oel is the first output of value 1 from process 1.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ oe3 = (2, 0, 1, "o ”): event oe3 is the first output of value 0 from process 2.

■ oe4 = (2, 1, 1, “o ”): event oe4 is the first output of value 1 from process 2.

■ C — {{oel, iel), (oe1, ie4), (ieI, ie3), (ie1, rel)}

* O = (((oel, oe3) A(oe3, oe2)) v ((bei, oeij a (oei, o e ^)

iel

rel

oel O O oe3

ie2

oe2 O O oe4

-------------- ► happen before

Figure 3.2: A test scenario in the on-line conference example

Figure 3.2 illustrates the graphical representation of the i/o events, remote call events, and

the intended control over the timing of their occurrences as described in path constraint C.

Here, (oel, ie2) and (oe3, ie4) c C expresses the local i/o sequence for process 1 and

process 2 respectively. In the test scenario, we require that the first output of value 0 (oel)

must happen before the first input of value 1 (iel) in process 1; and correspondingly, the

first output of value 0 (oe3) must happen before the first input of value 1 (ie4) in process

2. Actually, we also have constraints (iel, oel), (iel, oel), (iel, oel), (ie4, oe4). These

constraints are naturally satisfied by the application implementation itself during

execution, so we do not need to explicitly express them as part of the constraint, (iel,

iel), (iel, rel) c C expresses the ordering of the execution across the process boundary:

the client of process 1 will send out the signal of willing to speak before the client of

process 2 does so, but process 1 will not be able to send its ticket number to process 2 (so

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the local number of process 2 remains unchanged) until process 2 also picks up its

number. As initially the local numbers are all the same, this guarantees that process 1 and

2 will pick up the same number. Finally, the test oracle expressed in O essentially says

that process 1 and 2 should not be in the critical section simultaneously, i.e. two processes

cannot speak at the same time.

The control algorithm adopted in our approach maintains the same level of fairness as the

original algorithm implemented in an AUT (e.g., the Distributed Bakery Algorithm in our

research). In fact, our testing environment may be used to detect both the fairness and

faults of an AUT by analyzing the test scenarios and test results. For instance, if the given

test scenario (a test scenario is said to be valid for a program P if it is consistent with the

specification of this program) is valid but unfair, and the AUT can terminate normally

after execute this test scenario, it indicates that there exists unfairness in this AUT. On the

other hand, if a given test scenario is feasible to the AUT (meaning that it can be executed

by the implementation of the program P without causing deadlock or abnormal

termination), but this AUT returns an incorrect output, it denotes that we detect a fault in

the AUT. In the following, we present the testing environment realizing the above-

mentioned control over the execution.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Java RMI with Interception

Distributed systems require that processes running in different address spaces, potentially

on different hosts, be able to communicate with each other [17]. RMI is a distributed

object model for the Java programming language that makes distributed processes easy to

communicate by means of remote method invocations on distributed objects. RMI allows

programmers to develop distributed Java programs with the same syntax and semantics as

those that are used for non-distributed programs. It offers a middleware (similar to the

CORBA ORB) by which distributed processes can communicate and pass information

back and forth.

As mentioned in the introduction, we realize the control of the execution of AUT by

modifying the underlying Java middleware layer rather than the AUT implementation. As

Java RMI does not provide the interception mechanism, we first insert such a mechanism

into the RMI implementation. The RMI implementation is originally built from three

abstract layers, i.e., Stub & Skeleton Layer (SSL, for simplicity), Remote Reference

Layer (RRL, for simplicity) and Transport Layer [11,17], as shown in figure 3.1.

Stubs & Skeletons Stubs & Skeletons

Remote Reference
Layer

Remote Reference
LayerRMI

System
Transport Layer

Server ProgramClient Program

Figure 4.1: Java RMI Architecture Layers [11]

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Stubs and Skeletons layer lies just beneath the view of the developer. This layer

intercepts method calls made by the client to the remote interface and redirects these calls

to a remote service object. The Remote Reference layer understands how to interpret and

manage references made from clients to the remote service objects. In JDK 1.1, this layer

connects clients to remote service objects that are running and exported on a server. The

transport layer is based on TCP/IP connections between machines in a network. It

provides basic connectivity, as well as some firewall penetration strategies [11].

Theoretically, the interception service can be implemented in four different levels: 1)

inserting the interception between the application and SSL by modifying the Java Naming

Service and using Java Dynamic Proxy technique [12, 13], 2) building the interception

into the SSL by altering the way that stubs and skeletons are generated, 3) inserting the

interception into the RRL by modifying and extending current Java Runtime API, which

are class libraries for the Java Runtime environment, and 4) implementing the

interception services into the Transport Layer by modifying the existing communication

protocols defined by RMI.

4.1 Interception Service in Java RMI using Dynamic Proxy

In Java 1.3 software, Sun introduced the Dynamic Proxy class, which is a class that

implements a list of interfaces specified at runtime such that a method invocation through

one of the interfaces on a proxy instance (an object of the dynamic proxy class) will be

encoded and dispatched to another object through a uniform interface. A proxy forces

object method calls to occur indirectly through the proxy object, which acts as a delegate

for the underlying object being delegated. Proxy objects are usually declared so that the

client objects have no indication that they have a proxy object instance. Each proxy

instance has an associated invocation handler. When a method is invoked on a proxy

instance, the method invocation is encoded and dispatched to the invoke method of its

invocation handler.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Dynamic Proxy technique can be viewed as a hook-up mechanism and can be used as

a means of the interception service together with some additional interceptor interfaces

(please see figure 3.7 for the definitions of interceptors). The

Java. lang. reflect.lnvocationHandler is an interface that should be implemented by an

interception service to hook users’ additional code during a normal execution of a

request/reply. However, interception services implemented using dynamic proxy

technique can only be used in the client side. This is because the current Java language

specification does not have stub class definition for a class implementing

Java. lang. reflect.lnvocationHandler, which means that a proxy instance with which this

invocation handler associated cannot be a remote object, and thus cannot be transmitted to

a remote process or host. This limitation does not allow a client to forward a request to a

dynamic proxy object whose implementation is located at the server side. In addition, the

dynamic proxy technique for interception services can only be used for the looked-up

objects, because we modified the way that Java Naming service works to achieve

interception transparency. Client side proxy instances are automatically downloaded to

the client process when the client calls the Java. rmi.Naming, lookup method to retrieve

remote objects.

4.2 Java RMI Interception Service in the RRL

In the future research, we will adopt the third method to insert interception services into

the RRL. We choose not to implement the interception services into the SSL because in

the Java 2 SDK, an additional stub protocol was introduced that eliminates the need for

skeletons in Java 2 platform-only (and JDK 1.1 compatible) environments. Moreover,

injecting interception services into RRL has many advantages over others: 1) it is easier

to implement than injecting interceptions in SSL. This is because we will modify some

undocumented (also unpublished) Java source files in the Java Runtime libraries (which

can be downloaded from Sun’s website free of charge). The lack of documents poses

many difficulties in understanding the ' ehaviour, workflows, and relationships among

the classes in the underlying Java Run-time; 2) inserting interception services into the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RRL gives users the flexibility to introduce or cancel the interception mechanism easily

without affecting original Java Run-time API, and 3) with the interception services in

Remote Reference Layer, any remote invocations mediated by the RMI middleware can

be intercepted. Figure 3.2 illustrates the resulting RMI architecture.

Stubs! & Skeletons Stubs & Skeletons

Remdte Reference
I Layer j

Cliefrt Interceptor

Reifiote Reference
! Layer;

Server Interceptor

Transport Layer

Server ProgramClient Program

Figure 4.2: Layered architecture in RMI with interception service

We provide interception services at both client and server sides, together with some

interception interfaces that allow users to hook up the testing control mechanisms into the

middleware. In figure 3.2, two interception points are defined within each interceptor

(send_request and receivejreply in the RMIClientlnterceptor, and receive_request and

send_reply in the RMIServerlnterceptor), which are called respectively according to the

following order during a request/response processing:

1. The client sends a request, which is caught at the send_request (point 1) at the

client side;

2. The request is forwarded to the server side and is intercepted at the

receive_request (point 2);

3. This request is forwarded to the server object for some processing and the

response is intercepted at send_reply (point 3) before it is sent back to the client.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. After arriving at the client side, the response from server is first caught by the

receivejreply (point 4), after which the response is forwarded to the caller.

Modified
Java Core API

Extended API

Java Runtime Environment
API

Figure 4.3: High level structure of the modified Java SDK

In order to add this interception service into the RRL, we need to modify the existing Java

core API. Figure 4.3 shows a high level structure of the modified Java SDK. In this

figure, the modified files of the Java core API are the UnicastRef.java and

UnicastServerRef.java. The UnicastRef represents the handler for a remote object and

will be passed to the client program together with a stub file. A stub uses the UnicastRef

to carry out a remote method invocation to a remote object. The UnicastServerRef

represents a server side handler for a remote object and implements the remote reference

layer server-side behaviors for remote objects. Both of these files will make use of the

Extended API and the Java Runtime Environment API. The Extended API (see figure 4.7

for details) here consists of packages of class files that will be packaged into the JDK

class library: the API for RMI interceptors and the interfaces for the testing components.

The UML class diagram for the UnicastRef and UnicastServerRef is illustrated in figure

4.4.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« u s e s »

« u s e s »

Generated Stub

javaio.
Serializable

java.rmi.
Remote

java.rmi.server.
ServerRef

java.rmi.server.
UnicastRemoteObj ect

« in te rfa c e »
sun.rmi.server.

Dispatcher

« in terface»
j ava.rmLserver.RemoteRef

dispatch(obj: Remote,
call: RemoteCall)

sun.rmi.server.
UnicastServerRef

Object invoke(obj: Remote,
method: Method, params:
Objectj], opnum: long)

sun.rmiserver.
UnicastRef

Figure 4.4: The stub class and the UnicastServerRef class in Java core API

As shown in figure 4.2, we basically provide two types of RMI interceptors:

RMIClientlnterceptor and RMIServerlnterceptor. Instances of the RMIClientlnterceptor

will be downloaded into the client side RRL (instance of the UnicastRef) while instances

of the RMIServerlnterceptor will be downloaded into the server side RRL (instance of the

UnicastServerRef). The code insertion into the RRL (adding code into the UnicastRef and

UnicastServerRef) is done before compiling a program. This code injection is done only

once for all application under tests and will be packaged into the Java class library.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the class UnicastServerRef, we are particularly interested in the method dispatch,

because this is the place where remote method invocation is forwarded to the remote

object implementation at the server side. So, in the dispatch, we add two statements:

interceptor. receive_request and interceptor. send_reply right before and after the real

method invocation on the remote object. Thus, the flow of execution of a remote call will

be captured at the receive_request and send_reply interception points (at the callee’s

side), which will in turn exercise the code implemented at these two points. The pseudo

code for the modified class is given below:

import ca.uwindsor.kunwang.rmuinterceptor. *;
II import other packages;

public class UnicastServerRef extends UnicastRef implements ServerRef, Dispatcher {
private RMIServerlnterceptor!] interceptors;
private RMIInterceptorServer iserver;
private ServerRequestlnfo re = new ServerRequestlnfo ();

...II Other variable definitions of this class
public UnicastServerRef() {

try{
i f (iserver = = null)

iserver = (RMIInterceptorServer) Java. rmLNaming. lookup
(“rmi:/Aocalhost/InterceptorServer”);

} catch (Exception e) {
System.err.println(“Obtaining Iserver exception: “

+ e.getMessage());
e.printStackTrace();

}
}
... II Other constructors and methods of this class

public void dispatch(Remote obj, RemoteCall call) throws IOException {
... 11 Other part of this method
Class]/ interfaces = oh].getClass().getInterfaces();
String interfacename = interfaces[0].getName();
i f (! interfacename. equals(“ca. uwindsor. kun wang. rmiinterceptor.

RMIInterceptorServer”)) {
i f (iserver != null && interceptors — null)

interceptors = iserver.getServerlnterceptorsQ;
re.setlname(interfacename);
re.setMname(methodgetName());

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

try {

re.setClientRef(getClientRef());
re. setClientHost(getClien tHostQ);

i f (interceptors ! - null) {
fo r (int i - 0; i < interceptors, length; i++)

interceptors[i].receive_request(re);
}

result = method.invoke(obj, params); // Real Method Invocation

i f (interceptors 1= null) {
fo r (int i - 0; i < interceptors, length; i++)

interceptors[i].send_reply(re);
}

} catch (InvocationTargetException e) {
throw e. getT argetException();

}
... 11 Other part of this method

}
...II Other methods of this class

Figure 4.5: Pseudo-code of the Modified UnicastServerRef class

Before we give details of the above modified Un icastServerRef and the UnicastRef that

will be introduced soon, let us briefly explain the Java Reflection API because it plays a

very important role in providing run-time information of Java objects, their running

environment and their interactions.

The Java Reflection is a built-in API in Java language, which represents, or reflects, the

classes, interfaces, and objects in the current Java Virtual Machine. This reflection API is

often used when writing development tools such as debuggers, class browsers, and GUI

builders. With the reflection API you can do things such as [27]:

• Dynamically determine the class of an object

• Get information about a class’s modifiers, fields, methods, constructors, and super

classes or implemented interfaces

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Find out what constants and method declarations belong to an interface

• Create an instance of a class whose name is not known until runtime

• Invoke a method on an object, even if the method is not known until runtime

Now, let us look at the above code in more detail (the newly added code is in italic and

bold font). In the current implementation of Java RMI, an instance of the

UnicastServerRef is created whenever a remote object is exported either implicitly (by

extending UnicastRemoteObject) or explicitly through the exportObject method of the

UnicastRemoteObject class. A remote object is not ready to receive requests until it is

exported. For each instance of the UnicastServerRef, instances of the

RMIServerlnterceptor are downloaded to the process where the remote object is defined.

This is possible because the user-defined interceptors are implementations of

Java. io. Serializable.

In the classes UnicastServerRef and the modified UnicastRef that we will introduce

below, the interceptors are looked up on a per-request basis. This means that request at

both client and server sides will check if interceptors have been registered into the

Interceptor Server, whose reference can be retrieved from the RMI Naming service

(rmiregistry) on local host. The Interceptor Server, denoted as iserver is a remote object

providing interceptor registration and lookup services in each host and is registered in a

host using a reserved name “rmi://localhost/InterceptorServer”, when the testing

environment is started up. For simplicity, we assume that there is only one process

running on each host with one interceptor server for each process, in this testing

environment. The reason we make this assumption here is that the code for looking up the

Interceptor Server (i.e.: iserver = (RMIInterceptorServer)

Java.rmi.Naming.lookup(“rmi://localhost/InterceptorServer ”);) is generic to the Java

Runtime Environment in a machine and assumes only one Interceptor Server (through the

name localhost/InterceptorServer) on this machine. Therefore, such a solution to the

interception service in the middleware is not able to handle situations when multiple

processes are running on the same host.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, because the interceptors are looked up on a per-requests basis, we get one or more

interceptors for each remote object on the server side. Whenever a method invocation is

made remotely, this invocation will be directed to the dispatch method at the server side,

which in turn forwards this invocation to the object implementation via the statement

method.invoke. The additional code (user implemented) is executed before and after this

statement by making a series of calls to the registered interceptors. The method is an

instance of the class Method in the Java Reflection, which provides information about,

and access to, a single method on a class or interface. The statement method. invoke(obj,

params) takes an object (obj) and an array of objects (params) as parameters and invokes

the underlying method represented by this Method object, on the specified object (obj)

with the specified parameters (params).

As far as the testing control concerns, the information we are interested in within the

dispatch method are the interface name and the method name of a remote object that are

invoked remotely. Here, we assume that the remote object being called only implements

one remote interface, and this information can also be obtained via Java Reflection:

obj.getClassQ.getlnterfacesQ. In fact, a remote object may implement more than one

remote interface in a real application. In such a case, the interface name cannot be

obtained simply by calling interfaces[Oj.getNameQ because the invoked method may be

defined in some other interfaces (e.g.: interfaces[1]), and this information cannot be

known until run-time. Again, this problem can be solved by the Java Reflection. By using

Java Reflection, we can compare at run-time, the name and parameters of the invoked

method with those of the public methods defined in all implemented remote interfaces. If

there is one method matching that of the invoked method, then the interface that defines

that specific method is the one that we are looking for. However, this solution is based on

another assumption: there cannot be identical public method definitions in those

implemented interfaces. In our research, we just choose the first assumption for

simplicity.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the interface and method names are acquired, they are encapsulated into a

ServerRequestlnfo object (see class definition in figure 4.7), which is then passed as a

parameter into the receive_request and send_reply methods. The ServerRequestlnfo

object is also part of the extended API and provides some information about this remote

event (just like that of the ServerRequestlnfo in the CORBA core specification [16]). This

information will be used for test control purposes. We will explain how the testing

components use this information in Chapter 5.

Very similarly, we add two interception points (send_request and receive_reply) in the

UnicastRef, right before and after this object carries out a remote method invocation. The

modified class looks like this:

import ca, uwindsor. kunwang. rm i interceptor. *;
II import other packages;
public class UnicastRef implements RemoteRef {

private RMIClientlnterceptorf) interceptors;
private RMIInterceptorServer iserver;
private ClientRequestlnfo re - new ClientRequestlnfoQ;

...II Other part of this class

public Object invoke(Remote obj, java.lang.reflect.Method method,
Objectf] params, long opnum) throws Exception {

ClassfJ interfaces = obj.getClass().getInterfaces();
String interfacename - interfaces[OJ.getNameQ;

i f (!interfacename.equals(“ca.uwindsor.kunwang.rmUnterceptor.
RMIInterceptorServer”)) {

try{
i f (iserver — null)

iserver = (RMIInterceptorServer)java. rmlNaming. lookup
(“rmi://localhostZInterceptorServer”);

} catch (Exception e) {
}
re. setlnamefinterfacename);
re.setMname(method.getName());
re. setTarget(obj);

i f (iserver != null && interceptors — null)
interceptors = iserver.getClientlnterceptorsQ;

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

i f (interceptors != null) {
fo r (int i = 0; i < interceptors, length; i++)

interceptors[iJ.send_request(re);
}

II Real Method Invocation
call.executeCallO;

i f (interceptors != null) {
fo r (int i = 0; i < interceptors, length; i++)

interceptors[i].receive_reply(re);
}

... 11 other part of this method
}

...II other part of this class
}

Figure 4.6: Pseudo-code of the Modified UnicastRef class

As mentioned previously, the code in italic and bold font is injected into the UnicastRef

before compiling a program. The UnicastRef is an instance of the RemoteRef which

represents the handler of a remote object. A RemoteStub (e.g., a stub class) uses an

instance of the UnicastRef to carry out a remote method invocation to a remote object.

This invoke method takes as parameters the remote object reference being called upon,

the method to be invoked, the parameter list and a hash that may be used to represent the

method, and returns the result of the remote method invocation. In the invoke method, the

real method invocation is carried out by the statement: call.executeCall. The interceptor

downloading mechanism in UnicastRef is the same as that of UnicastServerRef, so we

also get one or more instances of the RMIClientlnterceptor for each instance of

UnicastRef at the client side.

In figure 4.3, we also showed that the modified Java core API utilizes our Extended API,

which basically contains ten class files, namely RMIClientlnterceptor,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMIServerlnterceptor, RMIInterceptorServer, Requestlnfo, Requestlnfolmpl,

ClientRequestlnfo, ServerRequestlnfo, ClientRequestlnfoImpl, ServerRequestInfoIm.pl and

the Interceptorlnitializer. All user-defined interceptors must extend the

RMIClientlnterceptor and/or RMIServerlnterceptor either directly or indirectly. In order

to become part of the RMI implementation, user-defined interceptor instances must be

registered into the RMIInterceptorServer in either of the following two ways:

1) By registering an associated RMI interceptor initializer, which implements the

Interceptorlnitializer interface.

2) By writing a program, in which the reference to the InterceptorServer must be

obtained and the methods addClientlnterceptor and/or addServerlnterceptor must

be called explicitly.

The ten classes described above provide users a “standard” method to create their own

interceptors, to register them into the middleware and to obtain information about a

remote event. We say this method is “standard” because it allows users to inject their own

code into the RMI middleware by implementing and extending a set of CORBA-like

classes, and starting this interception service in a way very similar to that of CORBA. The

static relationships among these interception interfaces is given in figure 4.7:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Requestlnfo

sctlname(iname: String)
setMname(mname: String)
setParams(params: Objectjj)
setResult(result: Object)
getlnameQ: String
getMnameQ: String
getParamsQ: Objectjj
getResultQ: Object

ki-

o

Requestlnfolmpl

iname: String
mname: String
params: Objectj]
result: Object

ClientRequestlnfo

V
setTargetjtarget:
Object)
getTargetQ: Object

« interface»
java.io.Serializable

t v

ServerRequestlnfo

getClientHostQ: String
setClientHostQiost: String)
getClientRefQ: RemoteRef
setClientRefjclientref:
Rem oteRef

TV
ClientRequestlnfoImpl

target: Object

TV

RMIClientlnterceptor RMIServerlnterceptor

pid: String pid: String

RMIClientlnterceptor RMIServerlnterceptor
(pid: String) (pid: String)
send_request(re: receive_request(re:
ClientRequestlnfo) ServerRequestlnfo)
receive_reply(re: send_reply(re:
ClientRequestlnfo) ServerRequestlnfo)
setTestControllerQiost: setTestControllerQiost:
String) String)
setProcessId(pid: String) setProcessId(pid: String)

ZV

ServerRequestlnfoImpl

clienthost: String
clientref: String

« interface»
java.rmi.Remote

TV
j ava.rmi.server.Uni
castRemoteObject

TV

Clientlnterceptor Serverlnterceptor

« u s e s»

User-defined
classes

RMIInterceptorServer

addClientInterceptors(interceptosr:
RMIClientlnterceptor[])
addServerlnterceptorsfinterceptors:
RMIServerlnterceptor[])
getClientlnterceptorsQ: RMIClientlnterceptor
a
getServerInterceptors():RMIServerIntercepto
r[J

Interceptorlnitializer

initjiserver: RMIInterceptorServer,
controller: String, pid: String)

« u se s»

UnicastRef UnicastServerRef

Figure 4.7: Static Relationship for the Interception Service Implementation

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

More precisely, a user who wants to build interceptors into the RMI middleware by

means of the first method should follow the three steps:

1. Write his own interceptor implementation by extending RMIClientlnterceptor and/or

RMIServerlnterceptor

2. Implement the Interceptorlnitializer interface and registers the above interceptors by

calling the addClientlnterceptors and/or addServerlnterceptors on the

RMIInterceptorServer, whose reference is passed into the Interceptorlnitializer as a

parameter when it starts up. The location of the user-implemented

Interceptorlnitializer class is specified in a batch file, which is a command file used to

start the RMIInterceptorServer.

3. Start up the RMIInterceptorServer provided by our interception service.

This is a simple way to register user-defined interceptors when the testing environment

starts up. In the case that a user would register interceptors by means of the second

method (dynamically register interceptors), one must start up the RMIInterceptorServer

before running the program containing the code of registering interceptors. This is a more

complex yet flexible way to register user-defined interceptors, which gives users the

flexibility to decide when to register or unregister the interceptors on the fly. A sample

code for this approach is given below:

Create an array o f RMIClientlnterceptor cinterceptors;
Create an array o f RMIServerlnterceptor sinterceptors;
try {

i f (iserver = = null)
iserver - (RMIInterceptorServer)java. rmi.Naming, lookup

(“ rmi ://localhost/InterceptorServer ”);
else {

H Add client interceptors
iserver. addClientlnterceptors (cinterceptors);
// Add server interceptors
iserver.addServer!nterceptors(sinterceptors);

}

} catch (Exception e) {
System, err.println(“Obtaining Iserver exception: “

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ e.getMessageQ);
e.printStackTraceO;

}

Fig. 4.8: Sample code for manually register interceptors

No matter which way to use, the UnicastRef and UnicastServerRef will download those

interceptors (via getClientlnterceptors and getServerlnterceptors) as local objects

whenever allowed.

In our testing architecture, the interceptor implementation will make a series of calls to

the local test controller in order to hook up the testing control mechanism. However, the

built-in interception service itself is independent of any testing tool.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Testing Architecture

Now with the help of the interception service in the middleware layer, we are able to

incorporate a testing environment to control the remote calls without modification of the

AUT. Our testing environment uses this facility to realize the automated control over the

input and the remote call events. Figure 5.1 illustrates its architecture when the AUT (i.e.,

online conference) consists of two processes running on two hosts and communicating

with each other via Java RMI. In this figure, we only show method calls in one direction

(from process 1 to process 2); the control flow of method calls from the other direction is

analogous. We also omit the Stubs & Skeletons Layer and the Transport Layer since the

only layer we are interested in here is the RRL, in which we can illustrate how the testing

components work together to control the testing process. In this architecture, process 1

holds a remote object objl defined in process 2 and process 2 holds a remote object obj 1

defined in process 1. With this setting, whenever a remote call is made on an object obj, it

is caught both at the send_request at the caller’s side and at the receive_request at the

callee’s side. Analogously, when this call is returned, it is caught both at the send_reply at

the callee’s side and at the receive_reply at the caller’s side. These four control points

correspond to the four types (i.e. qc, qs, ps, pc) of remote call events defined in the test

scenario. Because the AUT processes communicate with each other in a peer-to-peer

manner, we register both the RMIClientlnterceptor and the RMIServerlnterceptor in each

Java Virtual Machine to capture method invocations on both remote objects.

The testing environment is distributed: each process under test (PUT) has a local path

controller. During the lifecycle of a request/reply, the client and server interceptors

inform the local path controllers of the request or response that they catch and will let the

execution of AUT continue only with the permission from the path controllers. These

path controllers contain the same path constraint information contained in the test

scenario, and the current global states of the running AUT (i.e. which events have already

happened). Each PUT also has a local test driver, which reads the test case file and is in

charge of providing local input to it at an appropriate time. The local test drivers make

their decision on when to provide input to the process based on the permission from local

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path controllers. After an i/o event or remote event happens, both the test driver and

interceptors will notify the local path controller to update the global states of the running

AUT. This controller then informs the update to the communicator, which in turn

broadcasts this information to all other path controllers.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Central
Communicator

Intercept
or(s)

Intercept
°r(s)

Interceptor Interceptor
St>rvpr

Test
Controller

Test
Controller

PermissionRequest &> PermissionRequest &
! perrfiissionResponse

RRL ; RRL i
i i
| Clientlnterceptor ■! ServerlnterceptorI ___

[ServerlnterceptorfClientlnterceptor

Processl Process2

Obj2 O bi

Local Test
Driver

Local Test
Driver

Report Report
Central

Test Oracle

Data Flow Control Flow

Figure 5.1: The distributed testing environment with automated control

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The condition O to be checked on the output is kept in a centralized test oracle. In a

general sense, a test oracle is means of checking test results against expected results. The

central test oracle in our work is a program that will receive an output (test results) from

each local test driver, determine if a test passes or fails with respect to the given test

oracle (expected results) derived from the requirement specification, and reports the

errors whenever encountered.

In the above on-line conference example, there is one remote object in each process. The

path constraint (C = {(oel, iel), (oe 3, ieA), (iel, ie 3), (ie 3, re I)}), all i/o events and

remote events are initially given to the two path controllers. A copy of the i/o events are

also given to the two local test drivers. The test driver of process 2 initially asks for

permission from its controller, and is blocked because of condition (iel, ie3). The test

driver of process 1 is granted the permission to give input iel to process 1 and update the

controller’s status. The controller will broadcast this update to all other controllers via the

central communicator and wake up those processes blocked on it. In particular, when the

test controller of process 2 receives this message, it enables the test driver to feed input of

ie 3. However, if process 1 proceeds to make a remote call permissionRequest (re I) before

ie3 happens, this call is first caught by an instance of the RMIClientlnterceptor, which

informs the path controller of process 1. Since (ie3, rel) E C, the test controller will not

allow rel to happen until input ie3 is given to process 2. By this control, we guarantee

that both processes locally pick up the same number.

During a testing procedure described above, the test controller plays a key role in

deciding whether or not to allow an event to happen. Like the RMI Interceptors, all test

controllers must either implement the TestController interface or extend a subclass of

type TestController, which is also part of the Extended API. The class diagram of the

TestController is shown in figure 5.2:

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« in terfa ce»
j ava.rmi.Remote

~ ~ E

T estControllerlmpI java.rmi.server.
UnicastRemoteObject

permissionRequestfpid: String, came: String, mname: String, num: in t, interceptpoint: String)
permissionRequest(pid: String, value: String, num: int, type: String)
permissionResponseQ
permissionResponse(pid: String, value: String, num: int, type: String)
acceptUpdate(autstatus: Vector)
getProcessIdQ: String

« in terfa ce»
TestController

Figure 5.2: Class diagram of the TestController

In the interface TestController, we define two permissionRequest methods, one for the

remote events and the other for the input events. The signatures of these methods are

based on the definitions in section 2.3, where input events and remote events have

different formats, which will be used to identify a specific event by the controller. We

also define two permissionResponse methods. The first permissionResponse is called by a

test driver or an interceptor, after an input or remote event successfully completes.

Because we do not place any constraint over the orders of output events, but still need to

notify other controllers that a specific output event has happened, we call the second

permissionResponse method after an output event has happened.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Control of Remote Events - Implementing Interceptors

For the control of the orders of remote events, we must be able to call the

permissionRequest method on the TestController at certain interception points (i.e., “qc”,

“gs”, “pc”, and “ps”) to get permission before a process is allowed to proceed, and then to

call the permissionResponse method after this event happens. This can be implemented in

the user-defined interceptors. The code of a client side interceptor example,

Ciientlnterceptor is given bellow:

import ca.uwindsor.kunwang.rmi .interceptor. *;
public class Ciientlnterceptor extends RMIClientlnterceptor {

private TestController tc;
private String controllerhost;
private String pid;
private int qcnum = 0; // number of invocation
private int lastdot;
private String iname; // Name of the called interface without package name
private Class calledClass; // Class object of the called class
private Class tclnterface; // Class object of the test controller

...// Other variable definitions

public ClientInterceptor(String pid) {
super(pid);

}

public void send_request(RemoteEvent re) {
try

/* check if the called class is an instance of the TestController, and
if it is, the test controller will not be retrieved.
*/

calledClass = Class.forName(re.getIname());
tclnterface = Class.forName

("ca.uwindsor.kunwang.rmi.testing.TestController");
lastdot = re.getlname().lastlndex0f('.');
iname = re.getIname().substring(lastdot +1);

if (tc = = null && !tcInterface.isAssignableFrom(calledClass)) {
tc = (T estController)j ava.rmi.Naming.lookup

("rmi ://localhost/TestController");

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

if (! iname.equals("TestController") && re.getMname(). equals
("permissionRequest")) {

qcnum ++;
tc.permissionRequest(pid, iname, re.getMname(), qcnum,

"qc”);
tc.permissionResponse();

}
} catch (Exception e) {

System.err.println("Obtaining IServer exception:"
+ e.getMessage());

e.printStackTrace();

}
}

public void receive_reply(String iname, String mname) {
// We do not need to implement this interception point according to the
/ / test scenario specification. We only need to implement control at one
/ / interception point: "qc

}

public void setTestController(String controllerhost) {
this. controllerhost = controllerhost;

}

public void setProcessId(String processid) {
pid = processid;

}
}

Figure 5.3: Code for an example of client side interceptor

The class Ciientlnterceptor has a constructor taking the p id as its parameter. This

parameter represents the id for the process to which this Ciientlnterceptor will delegate

requests, and is passed into the constructor by the interceptor server when the server is

started. In the method send_request, we first determine if the called class is an instance of

the interface TestController. If it is an instance of the TestController, or the current test

controller (tc) is not null, we do not need to make a remote call to retrieve the test

controller.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In an interceptor’s implementation, if an interceptor itself makes a remote invocation, it

shall have some means of breaking infinite recursion. For example: the client calls the

method X on a remote object; this call is captured at the client-side stub and the

send_request is called, which makes remote invocation permissionRequest or

permissionResponse on the test controller; so send_request is called, which again calls

method permissionRequest or permissionResponse', and so on unless the implementation

of send_request breaks the recursion. In the Ciientlnterceptor, the second if statement: if

(iname.equals(“OnlineConference ”) && re.getMnameQ. equals (“permissionRequest ”))

is very important because it avoids the remote call recursion and unnecessary remote calls

to the test controller.

5.2 Control of Input Events - Test Drivers

Apart from enforcing some constraints over the orders of remote events in the RMI

Interceptors, we also enforce constraints over the orders of input events. This is realized

in the test drivers. The control of input events is quite straight forward: we only need to

request permission from the Test Controller by calling the permissionRequest method

before the driver feeds input to its process (input event) and then send a response to the

Test Controller by calling the permissionResponse method after this input event happens.

We will not discuss the code of a test driver in detail since the syntax for making these

requests and responses in a test driver is very similar to those in a RMI interceptor and

they are different only in parameter formats.

53 Control Algorithm

In previous parts of this chapter, we have discussed how the testing components work

together to realize the control over the orders of occurrences of input events and remote

events. We also talked about in detail how this control is performed in RMI interceptors

and test drivers respectively. Now, we will discuss how this control is implemented in the

Test Controller. The algorithm for a test controller, TestController is given bellow:

public class TestControllerlmpl extends UnicastRemoteObject

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implements TestController {

Definitions o f instance variables: pointers, tests, constraints and communicator;

public synchronized void acceptUpdate(Vector autstatus) throws RemoteException {
pointers = autstatus;
this.notifyAllQ;

}

public synchronized voidpermissionRequest(String processid, String classname, String mname, int
num, String interceptpoint) {

permissionRequest(processid, classname, mname, num, interceptpoint, constraints);

}

private void permissionRequest(String processid, String classname, String mname, int num,
String interceptpoint, LinkedList constraints) {

boolean flag = false; II Signal whether a specific event has happened.

// Record the updated states after a certain event happens.
updatedstates = new HashtableQ;
tr y {

Decide whether this reqEvent is one specified in the test scenario;

if (reqEvent != null) {
while (true) {

II To check if a certain event is contained in the test constraint.
boolean inConstraint = false;
fo r (int i = 0; i < constraints. sizeQ; i++) {

Vector aconstraint = (Vector)constraints.get(i);
fo r (int j = 0 ; j < aconstraint. sizeQ; j+ +) {

i f reqEvent matches a specific event in the
element {

pos = pointers.get(i);
i f (j> p o s)
System. out.println(eventname + " is

blocked here!”);
w aif);

} else {
updatedconstraints.pufinew
Integer(i), new Integerfj + i));
flag = true;

}
break;

}
}

H A certain event is not contained in the test constraint.

if (UnConstraint && i == constraints.sizeQ -1) {
i f (happentime == 0) {

rightNow = new DateQ;
happentime = rightNow.getTimeQ;

}

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flag = true;
}

}

// I f the reqEvent has happened, break from the loop; otherwise,
/ / try to get permission again,
i f (flag)

break;
}

System.out.println(eventname + " has happened!");
}

} catch (Exception e) {
e.printStackTraceQ;

}
}

public voidpermissionResponseQ {
try {

communicator.updateStatus(updatedconstates);
} catch (Exception e) {

e.printStackTraceQ;
}

public static void main(String[] args) {
try {

Initialize the pointers, tests and constraints;
Retrieve the reference to the communicator;

} catch (Exception e) {
System, err.println("Test Controller exception: " + e.getMessageQ);
e.printStackTraceQ;

}
}

}

Figure 5.4: The algorithm for a test controller

To control the execution orders, this algorithm uses some important data structures to

store the test constraint and test cases derived from the test specification file, and record

the current status of the running processes. These data structures include:

• constraints, which is a Java LinkedList to store the test constraint derived from the test

specification. The constraint given in our test scenario is C = {(oe 1, iel), {pe3, ie4),

(iel, iel), (ie3, rel)}, containing four elements separated by commas. Each element

can be assigned a number (0, 1, ..., n), and within each element ((oe 1, iel) for

example), the position of an event in this element denotes the specified order of

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

occurrence of this event. In this example, the positions of oe 1 and iel are 0 and 1

respectively, so oel should happen before iel.

• pointers, which is a Java Vector to record the positions of events that should happen

next in all elements of the test constraint. The size of the variable pointers is the

number of elements contained in the test constraint, and the values in the pointers are

the current positions for each element in the test constraint. A value in pointers will

increase by one if a specific event happens.

• tests, which is a Java Hashtable to store the test cases obtained from the test

specification. This variable stores the format of each event specified in the test

scenario and allows a requesting event to be compared with these events.

Now, whenever a process calls the permissionRequest of the TestController with

parameters, the TestController will decide whether this requesting event (reqEvent) is

specified in the tests. If it is the one that is specified in the test scenario, then for each

element in the test constraint, the algorithm retrieves from pointers, the position (pos) of

the event that is the next event to be executed in this element. This algorithm checks if the

position (/) of reqEvent is greater than pos. If yes, it shows that certain events that should

happen before reqEvent have not happened yet. So, this process should be blocked.

Otherwise, this process is granted the permission to proceed, and the system states should

be updated.

After this event happens, a process calls the permissionResponse of the TestController to

notify the communicator of the update of the system status. The communicator in turn

calls the acceptUpdate of every other TestController to notify them of this update. This

method resets the values of pointers to the new values in autstatus and wake up all the

processes that are waiting on the TestController.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Automating Testing Environment Setup

As mentioned in Chapter 3, the testing components in the testing environment are

distributed, which allows us to design a scalable testing architecture. The central

communicator and the central test oracle can be installed on any dedicated host(s). For

performance, this architecture requires that a test driver, a test controller and an RMI

interceptor server to be installed on the same host with a process. Although the test

controllers are running in the same hosts as their processes, they have to be Java remote

objects that work both as clients and servers, and communicate with test drivers and the

communicator via Java RMI. Our testing environment is scalable in the sense that the size

of an AUT can be larger or smaller. In the example showed in figure 5.1, the AUT only

consists of two processes running on two machines; however this testing architecture

allows users to handle an AUT consisting of any number of processes and hosts, as long

as they comply with those specifications defined in our testing architecture. This

scalability is facilitated by allowing users to configure an XML file, i.e.,

configuration.xml in which they can configure the global settings of the testing

environment. This XML file must conform to the Document Type Definition (DTD)

defined in the testing environment, in order to be validated and interchanged by

independent groups of developers. The DTD file (Configuration.dtd) defined in our

testing infrastructure is given below:

<?xml version-1.O' encoding='utf-8'?>

< ! —

DTD for the Configuration.xml.
— >

<!ELEMENT TestConfig (Communicator, TestOracle, (InterceptorServer, Controller,
Driver)+)>
<!ELEMENT Communicator (IP, TotalProcess, Source, Policy)>
<! ELEMENT TestOracle (IP, TestCase, Source, Policy)>
<! ELEMENT InterceptorServer (Name, Source, Policy, InterceptorlnitializerClass,

ProcessID)>
<! ELEMENT Controller (Name, IP, Source, Policy)>
<! ELEMENT Driver (Name, AUTCommand)>
<! ELEMENT IP (#PCDATA)>

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<! ELEMENT TotalProcess (#PCDATA)>
<! ELEMENT Source (#PCDATA)>
<! ELEMENT Policy (#PCDATA)>
<! ELEMENT TestCase (#PCDATA)>
<! ELEMENT Name (#PCDATA)>
<! ELEMENT InterceptorlnitializerClass (#PCDATA)>
<! ELEMENT ProcessID (#PCDATA)>
<! ELEMENT AUTCommand (#PCDATA)>

Figure 5.5: The DTD definition for the Configuration.xml file

Now, let us look at some details of the above DTD. The testing environment denoted as

the root element TestConfig defines a single Communicator and a single TestOracle. For

each process in an AUT, an InterceptorServer element, a Controller element and a Driver

element are required.

The Communicator is an ordinary RMI remote object; hence its sub elements should

contain IP, Source, and Policy, which are all required system properties when the

Communicator is started. These three elements represent the IP address of the host that

the communicator will be running on, the location of the source files of the Serializable

classes that may be downloaded, and the location of the policy file (which specifies the

security policy for the Communicator host machine) respectively. The TotalProcess

element in the Communicator represents the number of processes under test. We use it

here because when we start the processes one by one, we need to block the progress of a

test driver (thus block the progress of its process) until all processes successfully start up

and ready to communicate with each other. This number is also used in the TestOracle to

determine if all processes have terminated successfully.

The TestOracle maintains a single copy of the test case file, which is represented by the

TestCase element. The Name element in each parent element is used as the name of the

generated batch file. The InterceptorlnitializerClass element denotes the fully qualified

name of the user-implemented Interceptorlnitializer class, and will be used as a run-time

argument to the Interceptor Server. The ProcessID in the InterceptorServer will be

obtained by interceptors as part of information to make permission requests from the test

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

controller. The AUTCommand element tells the test driver where to find the PUT to be

started.

A utility is provided to read the testing configuration and generate all the necessary batch

files to start the testing components, interception services, and processes. An sample

configuration of the Configuration.xml file for the OnlineConference application looks

like this:

<?xml version-1.0' encoding='utf-8'?>
<!DOCTYPE TestConfig SYSTEM "Configuration.dtd">

<TestConfig>

<Communicator>
<IP>137.207.16.49</IP>
<T otalProcess>2</T otalProcess>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>

</Communicator>

<TestOracle>
<IP>137.207.16.49</IP>
<TestCase>D:\Thesis\implementation\testcase.txt</TestCase>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>

</TestOracle>

<InterceptorServer>
<Name>iserverO</Name>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>
<InterceptorInitializerClass>test.MyInterceptorInitializer
</InterceptorInitializerClass>
<ProcessID>Peer-0</ProcessID>

</InterceptorS erver>

<InterceptorServer>
<Name>iserverl </Name>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>
<InterceptorInitializerClass>test.MyInterceptorInitializer
</InterceptorInitializerClass>
<ProcessID>Peer-1 </ProcessID>

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</InterceptorServer>

<Controller>
<N ame>controllerO</N ame>
<IP>137.207.16.49</IP>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>

</Controller>

<Controller>
<N ame>controller 1 </N ame>
<IP>137.207.234.189</IP>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>

</Controller>

<Driver>
<Name>driverO</Name>
<AUT>D:/Thesis/implementation/PeerO,bat</AUT>

</Driver>

<Driver>
<Name>dri ver 1 </N ame>
<AUT>D:/Thesis/implementation/Peerl.bat</AUT>

</Driver>

</TestConfig>

Figure 5.6: A sample Configuration.xml file

By configuring the above file and running the utility, ConfigGenrator, we automatically

generate a single copy of batch file for the Communicator and for the TestOracle

respectively and a set of batch files for the Interception Server, Test Controller and Test

Driver for the AUT. The former two batch files are to be copied to other machine(s) and

the latter three batch files together with the process are to be delivered to each individual

machine. We also maintain a single copy of the testcase.txt file because it is frequently

updated for different test scenarios. Currently, we install the testcase.txt file in the same

machine with the TestOracle, through which the test drivers and test controllers will read

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this file into its local drive each time they start. Here is an example of the generated batch

file for TestOracle (testoracle.bat), based on the information in Configuration.xml:

java -Djava.rmi.server.codebase=file:/D:\thesis\implementation\

-Djava.rmi.server.hostname=l 37.207.16.49 -Djava.security.policy=policy.txt

TestOraclelmpl

namingserver=rmi://l 37.207.16.49/

totalprocess=2

Figure 5.7: An example of generated batch file for TestOracle

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Overview of CORBA

6.1 A Brief Overview of Common Object Request Broker Architecture

This section reviews some fundamental concepts in the “Common Object Request Broker

Architecture: Core Specification”. It is by no means an introduction to CORBA, but

contains some important information that helps understand how CORBA interception

service works and compare the CORBA interception service and the RMI interception

service introduced in this work.

CORBA is an open standard for distributed object development defined by the Object

Management Group (OMG). “CORBA manages details o f component interoperability,

and allows components to communicate with one another despite different locations,

platforms and implementing languages ” [16, 31], The interface, which is defined by IDL

(CORBA Interface Definition Language), is the only way that components communicate

with each other.

“The most important part in CORBA architecture is the Object Request Broker (ORB).

The ORB is the middleware that establishes the client-server relationships between

components. Using an ORB, a client can request services from a server object, whose

location and implementation are completely transparent” [16]. “The ORB is responsible

fo r all o f the mechanisms required to find the object implementation for the request, to

prepare the object implementation to receive the request, and to communicate the data

making up the request. The interface the client sees is completely independent o f where

the object is located, what programming language it is implemented in, or any other

aspect that is not reflected in the object’s interface ” [16]. In this way, the ORB provides

interoperability among applications on distributed machines in heterogeneous

environments and seamlessly interconnects multiple components [16, 31], Figure 6.1

shows the components of ORB architecture in CORBA applications:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clienl

Dynamic
invocation

T
I I

IDL
Stubs

Object Implementation

Dynamic
Skeleton

ORB
Interface

Static IDL
Skeleton

Object
Adapter

ORB Core

vwww Interface identical for all ORB implementations ^ up-call Interface
There may be multiple object adapters
There are stubs and a skeleton for each object type ^ Normal call Interface

3 ORB-dependent Interface

Figure 6.1: Main components of the ORB architecture and their interconnections [16]

In this architecture, a Client can send a request to the server object either by using the

Dynamic Invocation interface or an IDL stub. The Client can also directly communicate

with the ORB interface for some services. The Object Implementation receives a request

as an up-call either through the IDL generated skeleton or through a dynamic skeleton.

The Object Implementation may call the Object Adapter and the ORB for services. The

client performs a request by having access to an Object Reference to an object

implementation, initiates the request by calling IDL stubs or by constructing the request

dynamically. The receiver of the message cannot tell how the request is invoked because

the dynamic and stub interface for invoking a request have the same signature. The ORB

intercepts the request, locates the appropriate implementation, transmits parameters, and

passes control to the Object Implementation through an IDL skeleton or a dynamic

skeleton. While performing the request, the object implementation may obtain some

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

243259

services from the ORB through the Object Adapter. When the request is complete, control

and output values are returned to the client [16],

6.1.1 OM GIDL

“The OMG Interface Definition Language (IDL) is the language used to describe the

interfaces that client objects call and object implementations provide. An interface

definition written in OMG IDL completely defines the interface and fully specifies each

operation’s parameters. An OMG IDL interface provides the information needed to

develop clients that use the interface’s operations ” [16].

6.1.2 Java IDL

Java IDL is the binding of the OMG IDL concepts to Java programming language. “Java

IDL adds CORBA (Common Object Request Broker Architecture) capability to the Java

platform, providing standards-based interoperability and connectivity. Java IDL enables

distributed Web-enabled Java applications to transparently invoke operations on remote

network services using the industry standard OMG IDL (Object Management Group

Interface Definition Language) and HOP (Internet Inter-ORB Protocol) defined by the

Object Management Group. Runtime components include an Object Request Broker

(ORB) for distributed computing using HOP communication ” [32].

Detailed explanations of the Dynamic Invocation, IDL Stubs, ORB interface, Static IDL

Skeleton, Dynamic Skeleton and Object Adapter are beyond the scope of this research;

interested users could refer to [16] for more information.

6.2 CORBA Portable Interceptors

As introduced at the beginning of this thesis, our testing components can be reused in

CORBA applications with only minor changes. The recent CORBA specification

supports portable interceptors, through which one can easily write and attach portable

ORB hooks that will intercept any ORB-mediated invocation. The following part is not

intended to present an overview of CORBA portable interceptors', it rather focuses on

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some of their features, which are necessary to understand how our testing components can

be reused in a CORBA environment.

The CORBA Object Request Broker (ORB) provides hooks — Portable Interceptors,

through which ORB services can intercept the normal flow of execution of the ORB.

These portable interceptors provide a mechanism for plugging in additional ORB

behavior, or, by modifying the communications between client and server, for modifying

the behavior of the ORB [18]. CORBA currently defines three types of interceptors, i.e.,

lORInterceptor, ClientRequestlnterceptor, and ServerRequestlnterceptor [16, 18]. In the

testing architecture that we will implement in CORBA, we will use the latter two, which

are called request interceptors in general.

“A request Interceptor is designed to intercept the flow o f a request/reply sequence

through the ORB at specific points so that services can query the request information and

manipulate the service contexts which are propagated between clients and servers" [16,

18]. Figure 6.2 illustrates the simplified ORB architecture with Portable Interceptors:

Client Program

C ient 01

ClientR squestlntei ceptor

Request/Response

Server Program

Server ORB

ServerR jquestlntei ceptor

Networks

Figure 6.2: Simplified ORB architecture with Portable Interceptors

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ClientRequestlnterceptor intercepts the flow of a request/reply sequence through the

ORB on the client side, while a ServerRequestlnterceptor intercepts the flow of a

request/reply sequence through the ORB on the server side. During a request/reply

lifecycle, each request Interceptor is called at a number of interception points, among

which we are only interested in the send_request and reeeive_reply in the

ClientRequestlnterceptor, and the receive_request and send_reply in the

ServerRequestlnterceptor. The flow of control for exercising these interception points is

very similar to those we have described in Java RMI interception services. In fact, the

interception services we build in Java RMI follow the working mechanism of CORBA

portable interceptors.

A user-defined interceptor must implement, either directly or indirectly the

ClientRequestlnterceptor and/or ServerRequestlnterceptor, in order to be a means by

which ORB services gain access to ORB processing and be effectively becoming part of

the ORB. Request interceptors must be registered with an associated ORBInitializer

object, which implements the ORBInitializer interface. When an ORB is being initialized,

it shall call each registered ORBInitializer, passing it an ORBInitlnfo object, which is

used to register its interceptor(s).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Reusing the Testing Components in CORBA

In section 2.2, we have mentioned that we provided an interception service, which allows

application testers to plug in their testing code into the RMI middleware layer, by

implementing and extending a set of CORBA-like classes, and starting this interception

service in a way very similar to that of CORBA. In the following, we summarize the

similarities between CORBA interception service and the interception service we have

provided in Java RMI:

CORBA Interception Service Java RMI Interception Service

Implementing User-

defined

Interceptors

By implementing the

ClientRequestlnterceptor and/or

ServerRequestlnterceptor interfaces

By extending the

RMIClientlnterceptor and/or

RMIServerlnterceptor classes

Interception Points

and Flow of Control

1. send_request,

2. receive_request,

3. send_reply,

4. receive_reply

1. send_request,

2. receive_request,

3. send_reply,

4. receive_reply

Accessing

Request/Reply

Information

By calling methods on

the ClientRequestlnfo/

ServerRequestlnfo interfaces

By calling methods on the

ClientRequestlnfo/

ServerRequestlnfo interfaces

The Way to

Register

Interceptors

By implementing the

ORBInitializer interface and

add interceptors using an

ORBInitlnfo object

By implementing the

Interceptorlnitializer interface and

add interceptors using an

RMIInterceptorServer object

Multiple

Interceptors
Support Support

Start the

Interception Service

By specifying the System property:

org. omg.Portablelnterceptor. ORBIni

tializerClass in the command line

when running a Java program

By starting the interceptor server with

the argument:

ca. uwindsor. kunwang. rmi. interceptor. Int

erceptorlnitializerClass

in the command line

Table 7.1: Comparisons between CORBA and Java RMI for implementing and

registering interception services

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When implementing user-defined interceptors in Java RMI, we just use different class

names from those in CORBA for client and server interceptors. The reason that we define

these “root” interceptors as classes rather than interfaces is that we must include the

instance variable pid (process id) in user-defined interceptors for testing purposes. These

two “root” interceptors define a unique constructor that takes a pid as parameter, and this

forces users to initialize the process id when an interceptor is created. In this way, we can

assure the process id is an integral part of the interceptors. The interception points and the

flow of control of a request/response are exactly the same as those in CORBA. When

accessing request or reply information in Java RMI, we also adopt the same names for the

Requestlnfo objects as those in CORBA. When registering user-defined interceptors in

Java RMI, we choose different names for the interceptor initializer interface and the

object used for adding interceptors. In the ORBInitializer interface, users must implement

the pre_init and/or the post_in.it methods, while in the Interceptorlnitializer, users only

need to implement the init method. For the ORBInitlnfo and the RMIInterceptorServer

objects, the methods for adding client or server interceptors are different only in names.

Finally, there are certain differences between the Java RMI and CORBA when starting

the interception service. In Java IDL, there is a pre-defined system property:

org. omg.Portablelnterceptor. ORB Initializer Class for specifying the fully qualified class

name of the user-implemented ORBInitializer. However, we do not have such a pre

defined system property, so we provide a similar property:

ca. uwindsor. kunwang. rmi. inter ceptor.Inter ceptor Initializer Class, which is specified in

the batch file for starting the Interceptor Server. The user implemented fully qualified

name of the Interceptorlnitializer must be specified in the configuration.xml file.

Now, with the help of CORBA portable interceptors, one can easily incorporate our

testing components into the CORBA architecture. When adopting CORBA architecture,

we consider using the Java ORB as our underlying CORBA ORB implementation. The

reason that we have chosen the Java ORB at this time is that it is free software shipped

with J2SE 1.4.1. The Java ORB in the J2SE 1.4.1 platform complies with the CORBA

2.3.1 specification and supports the IDL to Java language mapping specification, the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interoperable Naming Service specification and the Portable Interceptor specification.

Apparently, CORBA-based applications written only in Java language are also platform-

independent because of the portable feature of Java language and also because the Java

ORB is shipped with J2SE 1.4.1 and can be installed on almost any operating system. The

Sun Java ORB is a good and free ORB implementation; however, there are many

advanced features of CORBA that are missing. For example, there are no Transaction

Service or Event Service in Sun Java ORB, neither does it support IDL to C++ language

mapping, i.e., it cannot translate IDL to C++ code, which means that CORBA

applications using Java ORB as the middleware cannot incorporate systems written in

other languages.

Of course, we may use different ORB implementations as long as they support CORBA

Core Specifications such as Naming Service, Portable Interceptor and the IDL to Java

language mapping, etc. Many good ORB products are available in the market, in which

VisiBroker from Inprise Corp., Orbix from IONA Technologies and ORBacus from

Object-Oriented Concepts, Inc. are leading ones. For example, ORBacus is a fully

CORBA-compliant ORB that is distributed as source code and is free for non-commercial

use. It supports more CORBA specifications than Java ORB, such as Event Service and

IDL to C++ translation. ORBacus also has different versions for different platforms, so it

provides users the ability to develop real distributed and heterogeneous applications.

However, no matter which ORB is chosen, Java IDL (which is a technology for CORBA

programmers who want to program in the Java programming language based on

interfaces defined in CORBA Interface Definition Language) is structured with a

“pluggable ORB” architecture, which allows us to instantiate ORBs from other vendors

from within the Java Virtual Machine. This is a very nice property of Java IDL; it means

that a CORBA application written in Java only has to change very few pieces of code (or

none at all) in order to be moved from one ORB to another ORB implementation. This is

accomplished through setting environment variables, or system properties, or at run time

through the use of a Properties or StringQ object.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, we discuss how to move the testing components from Java RMI to CORBA. To

insert interceptors into ORBs, we simply make the interceptor in each ORB implement

both the ClientRequestlnterceptor and the ServerRequestlnterceptor (these two classes are

available in Java API), since processes will communicate in a peer-to-peer manner and

we need to intercept both incoming and outgoing calls at the same time. In order to reuse

the testing components in the new environment, the only major job we need to do is to

modify the Java RMI remote objects to CORBA objects, and change the way that objects

are registered and located. Since the control logic of those remote objects and non-remote

objects are the same as that of Java RMI, most part of these components can be reused

without any change. This can be achieved by defining IDLs, generating the stubs and

skeletons and making the testing component implementation extend those skeletons. We

also need to do some extra work to deal with the difficulties caused by CORBA’s

inability to support most data types in Java API. For example, to map a Java Vector in

CORBA, we have to define a new data type using struct (similar to that in C language)

and sequence. These mappings and changes can be done in several ways. One possible

solution is to modify the object implementations directly and recompile. With these

modifications, we can easily plug in the test control mechanism into the CORBA ORB

and move the testing components to a CORBA environment.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Things to be Changed in Java RMI

Interception Service

Resulting Changes in CORBA

Interception Service

Remote Service

Definition

Writing a Remote Interface definition for

each type o f remote objects

Defining all services of different

types of remote objects in a

single CORBA IDL file

Registering and

Locating Remote

Objects

Using the Java Naming Service: starting a

built-in Java naming server (RMIRegistry),

and use API in the Java RMI packages

Using the CORBA Naming

Service: starting a built-in

CORBA server (ORBD), which

provides bootstrap services, and

use API in the Java IDL

packages

Registering Objects

on other Machine

Does not allow remote objects to be

registered on a machine(s) other than the

one that their implementations reside

Allow remote objects to be

registered on a machine(s) other

than the one that their

implementations reside

Data Type

Mappings
Vector, Hashtable, and File...

sequence, struct sequence, and

array o f strings

Method

Overloading
Allowed in Java language

Change the same method names

into different names in IDL

Obtaining

Information (e.g

pid, iname, mname)

For Testing

Can get iname and mname by calling

methods on the ClientRequestlnfo/

ServerRequestlnfo interfaces; pid is

obtained as an inherited instance variable

from the RMIClientlnterceptor and/or

RMIServerlnterceptor

Can obtain pid by calling

getProcessIdQ on

TestController; can obtain

mname by calling getMnameQ

on the Requestlnfo object;

cannot get iname

Heterogeneity in

Running

Environment

Does not support a heterogeneous running

environment. Applications Under Test and

Test Components must be implemented in

Java Language

Support a heterogeneous running

environment. Both Applications

Under Test and Test

Components can be

implemented in different

programming languages

Table 7.2: Major Changes of Testing Components from Java RMI to CORBA

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In table 7.2, we only listed some major changes in order to migrate these testing

components into a CORBA environment. Specifically, one of the major problems in

moving the testing environment from Java RMI to CORBA is to obtain the iname

(invoked remote interface name). In Java RMI, we can easily get the iname and mname

(invoked method name) by calling the methods defined in the Requestlnfo interface. We

can also obtain the pid (process id) by using the initialized instance variable pid. In

CORBA, the only way to get access to the request/response information is through the

ClientRequestlnfo and ServerRequestlnfo interfaces, but unfortunately, these interfaces do

not provide a way to obtain the invoked remote interface name. So, in the case that there

are more than one remote interface that might be invoked in an AUT, we have to use

“hard code” method in the portable interceptors to obtain the remote interface name,

which will be used as a parameter in the call to the permissionRequest of the

TestController. We can obtain this interface name by comparing the invoked method

name; however, like what we have done for the Requestlnfo in Java RMI, this method is

also based on the assumption that there cannot be identical public method definitions in

those implemented interfaces.

7.1 ClientRequestlnfo/ServerRequestlnfo in Java RMI and CORBA

Both in Java RMI and in CORBA, each interception point is given an object through

which the Interceptor can access request information. Client-side and server-side

interception points are concerned with different information, so there are two information

objects: ClientRequestlnfo is passed to the client-side interception points and

ServerRequestlnfo is passed to the server-side interception points. But there is

information that is common to both, so they both inherit from a common interface:

Requestlnfo. In this section, we will compare the information that can be obtained via

Requestlnfo objects in Java RMI with the information that can be obtained via

Requestlnfo objects in CORBA. One thing should be noted here is that we do not intend

to compare all the information that can be obtained from these objects, and we only list

those properties that are relevant to software testing.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^•^.Environment CORBA
Available
Information N ,

Java R M I
Core Specification Java IDL

target yes yes yes
iname yes no no
operation yes yes no
params yes yes no
result yes yes no
clientHost yes no no
contexts no Xes _ _ j no

Table 7.3: Available Information from the Requestlnfo objects in different environments

In table 7.3, we list some useful properties that can be obtained from the Requestlnfo

objects in different computing environments. The column “CORBA” is divided into two

groups: core specification and Java IDL. This is because the OMG IDL has different

mappings for different implementation languages, and the Java IDL is the binding of the

OMG IDL concepts to Java programming language, and thus a Java implementation of

the CORBA core specification. The attributes (such as target, operation, and contexts,

etc.) which are defined in the CORBA core specification are not accessible in the current

Java environment. In this environment, when these attributes are accessed,

NO_RESOURCES exception will be raised with a standard minor code of 1 [16], Now,

we explain this available information in detail.

Target represents the server object which the client called to perform an operation. In

Java RMI, this target is a remote server object that implements the interface

java.rmi.Remote, while in CORBA, this target is an implementation of type

org. omg. CORBA. Object. The iname is only defined in the interception service in Java

RMI, which represents the remote interface name that is being invoked by the client. The

operation, params, and result can be obtained in both Java RMI and CORBA

infrastructure, which respectively represent the operation (method) that is being invoked,

the parameters that are passed into this operation and the result of this operation

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

invocation. The operation in both Java RMI and CORBA are method names of type

String. The params in Java RMI is an array of Java Objects, while the params in CORBA

is a ParameterList object, containing the arguments on the operation being invoked. The

result is a Java.lang. Object in Java, but is an object of type org.omg. CORBA.Any in

CORBA. The clientHost can only be obtained from the interception service of Java RMI

and denotes the IP address of the client host making requests. The contexts is only

available in CORBA and is a ContextList object describing the contexts that may be

passed on this operation invocation.

Here, we did not talk about the object id, a crucial property that is useful not only for

software testing, but also for dynamic monitoring and analysis of an object-oriented

distributed program. For example, when there are multiple objects implementing the same

interface in our test scenarios, we can specify different objects by using object ids in the

test scenario document, and further determine requests/responses from individual objects

on the fly. The object id can be obtained in both computing environments. In Java RMI,

the object id is represented in the form of a Java, rmi.server. ObjID, while in CORBA, it is

an array of bytes describing the target of the operation invocation. But unfortunately,

neither of these object ids are human readable, and thus cannot be used in the test

scenario specification.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Comparisons of the Design Principles between Java RMI

Interception Services and CORBA Portable Interceptors

RMI Interception Services
CORBA Portable

InterceptorsDynamic
Proxy * SSL RRL

Redirect a call Yes No Yes Yes
Alter arguments Yes Yes Yes No
Make object
invocations Yes Yes Yes Yes

Delay a
request/reply Yes Yes Yes Yes

Generate own
reply Yes Yes Yes No

Piggyback
Additional Info. No No No Yes

Table 7.4: Comparisons of the design principles between Java RMI Interception Services

and CORBA Portable Interceptors

• RMI Interception Services using dynamic proxy techniques can only be used at client

side and only for those remote objects that are looked up through a Naming Service.

The above table compares some design principles of Java RMI interception services with

those of the CORBA Portable Interceptors. The CORBA Portable Interceptor architecture

is designed to:

• Redirect a request to another target by raising a ForwardRequest exception

• Affect the outcome of a request by raising a system exception or redirect a reply to

another target by raising a ForwardRequest exception

• Make object invocations itself before allowing the current request to execute, and thus

can be used to delay a request or a reply.

• Piggyback Service-specific information to be passed implicitly with requests and

replies

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In some circumstances, Portable Interceptors are not sufficient to meet some specific

requirements in different applications. In particular, the limitations of Portable

Interceptors can be summarized as follows [34]:

• Cannot generate own replies to intercepted requests.

• Cannot affect a request by changing a parameter specified by the client.

• Can redirect a request or a reply only by raising an exception.

We will explain how the interception services in Java RMI can overcome the above three

limitations, and of course, the Java RMI interception service also has its own limitations.

In the following, we will discuss these issues in three different layers of the Java Run

time system, into which an interception service may be injected.

7.2.1 Interception using Dynamic Proxy technique

As we have discussed in section 4.1, the Dynamic Proxy technique can be viewed as a

hook-up mechanism and can be used as a type of interception service together with some

additional interceptor interfaces (such as RMIClientlnterceptors and

RMIServerInterceptors). However, the limitation of this technique is that interception

services implemented using dynamic proxy technique can only be used in the client side

and only for looked-up objects. As a result, interception service using dynamic proxy

technique cannot be used to transmit additional information from client side to server side

(because there no corresponding proxy objects on the server side).

By using dynamic proxy, a remote method invocation will be encoded and dispatched to

the Java. lang. reflect.InvocationHandler, and further directed to the interception points.

Thus, redirecting a request, modifying arguments and generating a response can be

realized relatively easily by using Java Reflection in these interception points. In the

implementation of an interceptor, any kind of object invocations can be made and thus a

request/reply can be delayed or blocked for arbitrary time (e.g., by calling Thread.sleep).

7.2.2 Interception in SSL (Stub and Skeleton Layer)

In this layer, we can build the interception services into the stubs and skeletons. At the

point where a request or reply is intercepted, the control flow has actually entered the stub

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or skeleton of the target object and the method has been invoked. So, interception service

in this layer cannot be used to redirect this call to another object. The classes that allow

users to plug in their own code in SSL are RMIClientlnterceptors and

RMIServerlnterceptors. The arguments, target object and return values of a request can be

accessed (both read and write) by using the Requestlnfo object. Thus, we may alter the

arguments or return value by modifying the way that stubs and skeletons are generated.

At any interception point in the SSL layer, any kind of object invocations can be made

and thus a request/reply can be delayed or blocked for arbitrary time.

7.3.3 Interception in RRL (Remote Reference Layer)

The interfaces that allow users to alter request information in RRL are exactly the same as

those of SSL, except that we modified the UnicastRef and UnicastServerRef classes to

introduce an interception mechanism. The parameters and return value can be altered by

using Java Reflection. At any interception point in the RRL layer, any kind of object

invocations can be made and thus a request/reply can be delayed or blocked for arbitrary

time.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. Empirical Evaluation

In this chapter, we analyze some experimental results to evaluate the functionality and

performance of our reproducible testing environment. In section 1, we run this testing

environment using the previous Online Conference example as the application under test.

We demonstrate how this testing environment forces the AUT to execute desired paths by

comparing the experimental results before and after adopting our control algorithm. In

section 2, we run this Online Conference example on both the distributed testing

environment and the centralized testing environment, which have the same functionality

but with different system infrastructures. This experiment is to compare the performance

of these two architectures and to show users how to choose one architecture instead of the

other in different situations.

As introduced in Section 3.2, the AUT, Online Conference example that we will use in

the following experiments is an implementation of the distributed bakery algorithm, and

involves two processes (namely Peer-0 and Peer-1) competing to talk (entering its critical

section). In both experiments, these two processes together with their own local test

components run on two separate machines and communicate with each other in a peer to

peer manner. Both machines have the same operating systems (Microsoft Windows 2000,

Profession Edition) and the Java Platforms (Java Development Kit 1.4.1_01). The central

test components, i.e. the Central Test Oracle and the Central Communicator are two

separate processes that can be deployed on any other machine(s). But in our experiments,

these two components are running on the same host as Peer-0 because Peer-0’s host has a

better hardware configuration (larger memory).

8.1 Running Online Conference example

8.1.1 Running the Online Conference without Adopting the Control Algorithm

In this experiment, we run the Online Conference example based on the testing

environment described in Chapter 5. However, we do not use any control algorithm in the

test controller. That is, whenever the test controller receives a request from an input event

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or remote event (through a test driver or an interceptor), it only analyzes the request and

records the time at which this event occurs, without checking the test constraint for

permission. More precisely, the testing environment we described in Chapter 5 is only

used as a software instrumentation framework, which dynamically monitors and logs the

program execution without touching any implementation of this program.

Without artificial control, Peer-0 and Peer-1 run at their own speeds independently, and

the execution paths can be arbitrary. Figure 8.1 and figure 8.2 show the snap shots of

running Peer-0 and Peer-1 without adopting our control algorithm.

Peer-0:

l : WI"«M S y s l i - i i i ' i . ' > i inl . t-KC dn ? x ; |

>:\ i h es i s > java -D jaw a. m i . s .e r v e r , code base =* x l s : /B : % th e s is \
fcnarae =137 . 2 0 7 . lb .49 ' - D j a u a .s e c u r i t y . p o l i c y = p o l ie s ' , t x t . in p lera en ta tip n .T e s t
i e v I pip 1 pro c e s s id =Pe e * '-0 n aw ip g s e vv e r = m I - / / L 3 ? . 2 8 7 1 6 .4 9 / t e s t o r a c le = m i
2 0 7 .1 6 4 9 / c o n n u n ica to r = r n i: / / 1 3 7 .2 0 ? . 16 .4 9 /

 T e st C o n tr o l le r has been bound s u c c e s s f u l ly ! -----

i e i h as happened a t : 1060031838398

lie2 Isas happened a t : 1068031874046

i*el h as happened a t : 1068031876468

p e l . h a s happened a t : 1060031877875

Figure 8.1: Result of Running Peer-0 without Adopting Control Algorithm

Peer-1:

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c C :\W W ! s / hI. i ,,;!?

$ tM fe e s is >Java - D j a v a i - s e ^ u e i * ; c® d efease= Jfile:/D V /t-h esisS .■ -D aaw a-w ii.-s
tn a m e= 1 3 7 .2 0 ? .2 3 4 .1 8 9 -B j a w a .s e c u r i t y .p o l i e t f = p o l ic y . t x t droplenentat io n .
s H e r ! n p l p r o c e s s id = P e e r - l na»ir<gsei'uet‘= i 'n i : / /1 3 7 .2 0 7 .2 3 4 .1 8 9 / t e s t o r a e

. 4 9 / cotw»un i c a to r = r is i: / / 1 3 7 .2 0 7 .1 6 .4 9 /

* T e s t C o n t r o l l e r h a s been bound s u c c e s s f u l ly ? -----

ie 3 has happened a t : 1068831836234

ie 4 h a s h ap p e n ed a t : 1060031836515

jB.lEi.xjj

R

e'J lias h ap p en ed a t : 1860031841174

W m
-TJ

Figure 8.2: Result of Running Peer-1 without Adopting Control Algorithm

The last columns of these two snap shots show the time that a specific event happens,

represented by the number of milliseconds since January 1, 1970, 00:00:00 GMT. One

thing that should be taken into account is that the time for each event is the local CPU

time of each host. We compare the orders of events based on the assumption that both

CPUs’ time is exactly the same. By comparing the time at which each event occurs, we

can draw the event sequence diagram for these two running processes:

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Peer-0 :
OnlineConference

Peer-1.
OnlineConference

i: sfignalln()

61 s i g n a I O u t ()

< -

t] signalln()

2 [s ignaiO ut()

< -

'4: enter()

3< r

5: e x i t ()

< -

7: permissionRequest(String, int)

18 : e n t e r ()

1

9: e x i t ()

u

< -

Figure 8.3: Event Sequence when running Peer-0 and Peer-1 without Control

In the above figure, the numbers on the event names denote the orders of occurrences of

the events. The event names: signalln, singalOut, permissionRequest, enter, and exit

correspond to the following kinds of events:

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• input events signaling the willing to speak

• input events signaling the willing to finish speaking

• remote events requesting permission from other processes

• output events denoting the start of speaking and

• output events denoting the end of speaking.

According to the test scenario we defined in section 3.2, the nine numbered events in the

above figure respectively represent ie3, ie4, iel, oe3, oe4, ie2, rel, oel, and oe2. From

this event sequence diagram, we can easily see that the order of events does not satisfy

the test constraint we specified in figure 3.2 (e.g., iel should happen before ie3). If we run

this program several times, it may display different event sequences, but we cannot

guarantee that these event sequences satisfy the test constraint. This nondeterminism is a

typical characteristic of a concurrent distributed program.

8.1.2 Running the Online Conference by Applying the Control Algorithm

In the following, we will demonstrate how these two processes are forced to execute

according to the desired paths by applying the control algorithm introduced in 5.3. Figure

8.4 and figure 8.5 show the snap shots of running Peer-0 and Peer-1 with the control

algorithm.

Peer-0:

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.4: Result of Running Peer-0 with Control Algorithm

Peer-1:

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ ,!□ ! X ii

Si- \TJies i s >j«u a -D j» o »■. fw i . s s t o c t . cod «b ase - f i l« -■- / B : lie s i s \ Dj-aua. r m i , s ew ei--. bo*
tn a ir a e '-i3 7 .2 i7 .2 3 4 .1 8 9 ~ B ja w a ,s e c « r ity .p o lic i(= p o l i c j i . t x t iwplenentafcion„T i. ■. .
8;ile :.r l m pl p r o c e s s i.d ~ P eer -i n a n in g se p v e r ^ r m i: //1 3 ? .20?„ 2 3 4 -1 8 9 / te s to i* a c le = w - . ■ ■
1 3 7 .2 8 7 .1 6 .4 9 / coiiiwunicatoi"“it» i!» i://137 .207 .16 .4 9 /

T e s t C o n tr o l le r h a s been bound s u c c e s s f u l l y !

ie 3 i s b lo ck ed h e r e !

ie 3 h as happened a t : 1060850224078

b lo c k e d hews?

bloc.ken Isei

Ae4. ' i s b lock ed h ere !

'ie 4 i s b lo c k e d h e r e !

i e 4 i s b lo c k e d h e r e !

i e 4 i s b lo c k e d h e r e !

ce3 lias happened a t : 1060051227906

f ie 4 h a s hap p en ed a t : 1060050228250

on 4 ha h a p p e n e d t;0b80bB22tit>40

Figure 8.5: Result of Running Peer-1 with Control Algorithm

From figure 8.4 and figure 8.5, we observe that certain events are blocked before they are

allowed to happen. This is because the events we are interested in controling must happen

according to the orders we specified in the test constraint, which is read into the test

controller from the central test oracle. On one hand, all involved test controllers will

update current state of this running program whenever a certain event specified in the test

constraint happens. On the other hand, a certain event keeps trying to check if it is

allowed to happen each time after the program state is updated. If it is not granted the

permission, this event will be blocked again until it is allowed to happen. Again, by

comparing the time of occurrence of each event, we can draw the event sequence diagram

for these two running processes with the control algorithm:

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Peer-0:
OnlineConference

Peer-1 :
OnlineConference

■j: s i g n a l l n ()

3: permissionRequest(String, int)

J4: enter()

^ z z z :

5 [s ig n a lO u t()

| ^Z Z Z i

i 6: exit()

7

2: s ig n a l ln ()

< -

17: enter()

<

8; s ig n a lO u t()

n ^ =]

9: ex it()

Figure 8.6: Event Sequence when running Peer-0 and Peer-1 with the Control Algorithm

Similar to the previous event sequence diagram, the nine numbered events in figure 8.6

respectively represent iel, ie3, rel, oel, ie2, oe2, oe3, ie4, and oe4. These nine events

happen exactly as this sequence. Apparently, this specific event sequence satisfies the

event order we have specified in the test constraint (i.e., iel happen before ie3 and ie3

happen before rel).

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.13 Comparing time cost when running a test using control

In this experiment, we evaluate the time cost caused by applying the control mechanism

to the testing architecture. Again, without control actually means that we do not use the

control algorithm introduced in section 5.3, but we still use the testing components for

software instrumentation — monitoring and logging purposes. In such a case, there is

additional time cost caused by the software instrumentation. Since this time cost is

negligible compared with that of the control algorithm, we simply omit it. The following

table contains time cost (in millisecond) that we choose from independently running the

Online Conference sample application by each approach three times. The experiment

settings are exactly the same as those we described in the introduction of this chapter. In

this experiment under these settings, the AUT (Online Conference) consists of two

processes and the test scenario contains nine events and one constraint, which have been

defined in Section 3.2. For each run, we calculate the time spent from starting the whole

application (after both processes on both machines start) to the receipt of the final output

(succeeds or fails) at the central test oracle. From these data, we observe that running a

program with adopting control always has some additional time cost, and the average cost

for the Online Conference example is 1313 milliseconds.

With Control Without Control

First Run 4297 ms 1750 ms

Second Run 3172 ms 2969 ms

Third Run 4360 ms 3172 ms

Table 8.1: Time cost by adopting control algorithm

8.2 Performance Evaluation

In this section, we compare the performance of a distributed testing architecture with that

of a centralized one. We will also discuss how to choose one architecture instead of the

other in different situations. To compare the performance of both architectures, we need

to modify the existing distributed testing architecture into a centralized one, i.e., using a

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

central test controller instead of a local controller. Because there is only one central test

controller, which contains both the test constraint and the current running state of the

program, we do not need the communicator to broadcast updates of states. This

modification involves three major changes to the implementation of the existing testing

environment: 1) the way that test drivers and interceptors look up the test controller, 2)

the way that the central controller updates the program running state and 3) the way that

test drivers obtain information such as the number of processes under test. We will not

further discuss the details of these changes. Figure 8.7 shows the resulting centralized

testing environment:

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Central
Test

Controller
Intercept

or(s)
Intercept

or(s)

Interceptor

Server

Interceptor

Server

RRL RRL

Serverlnterceptor! ! Clientlnterceptor j
> !

t
[ServerlnterceptorClientlnterceptor

Process 1 Processl

Obfl Ohi 1

Local Test
Driver

Local Test
Driver

Report
Central

Test Oracle

Data Flow -*• Control Flow

Figure 8.7: The centralized testing environment with automated control

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The testing components in the centralized testing architecture work almost the same way

as those we have described in the distributed architecture, except that a central test

controller receives requests from all the test drivers and interceptors, and will update the

program state after an event happens.

Table 8.2 shows three independent runs for each testing architecture. These experiments

are conducted under the testing settings described in the introduction of this chapter, with

the Online Conference as the application under test containing nine controlled events.

Distributed Centralized

First Run 3281 ms 2156 ms

Second Run 2938 ms 2094 ms

Third Run 3531 ms 2438 ms

Table 8.2: Performance Comparison between Distributed and Centralized Testing

Architecture

These experiments show that with an AUT containing only two processes and nine

controlled events, the centralized testing architecture always has a better performance

than the distributed one. This is because with only few processes and test data (controlled

events specified in the test scenario), the network delay of a distributed environment will

dominate the overall time cost of test control. However, the distributed testing

environment will have a better performance than the centralized one when involved

processes and the volume of test data increase. This is because the time cost of testing an

AUT is essentially decided by the input size (number of controlled events specified in the

test scenario) of this AUT. The network communications will increase when the volume

of test data increase, and at a certain point, the central test controller will become a

bottleneck in these communications.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, let us consider another test scenario with the same experiment settings as those we

described in the introduction of this chapter. This time, however, we increase the number

of processes in the AUT to three running on three machines, with eighteen events

involved in communications. The test scenario is given below:

iel = (1,0, 1, “i”),

ie2 = { 1, 1, 1, “i”),

ie3 = (2, 0 ,1, “i”),

ie4 - (2, 1, 1, “i”),

ie5 = (3, 0, 1, “i”),

ie6 = (3, 1,1, “i”),

oel = (1,0, l , “o”),

oe2 = (1, 1, 1, “o”),

oe3 = (2, 0,1, “o”),

oe4 - (2 , 1, 1, “o”),

oeS — (3, 0, 1, “o”),

oe6 — (3, 1,1, “o”),

rel = (1, “OnlineConference ”,

rel = (1, “OnlineConference ”,

re3 = (2, “OnlineConference ”,

re4 = (2, “OnlineConference ”,

re5 - (3, “OnlineConference ”,

re6 = (3, “OnlineConference ”,

C-{(iel,ie3,ie5),(re2,re3),(re4,re5),(oel,ie2),(oe3,ie4)J

O = oei) a

‘permissionRequest ’,1 , “q c’%

‘permissionRequest 2, “qc”),

‘permissionRequest ; i , “qc

‘permissionRequest 2, “qc”),

‘permissionRequest “qc”),

‘permissionRequest ’,2 , “qc”)

Figure 8.8: A Test Scenario with three processes and 18 events

In this test scenario, we require that these three processes must speak in the order: Peer-0

—> Peer-2 -» Peer-3 (—» denotes the relation “happen before”), which is specified in the

test constraint C. Like in section 8.1.3, where we independently run the Online

Conference three times, and obtain the average time cost of 3943 ms, we also run this

AUT three times independently with the new test scenario, and thus obtain the time cost

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each run: 5863 ms, 5938 ms and 5972 ms respectively. So, the average time cost for

the Online Conference consisting of three processes and eighteen controlled events is:

5656 ms. Similarly, we perform an experiment with the AUT containing four processes

running on four machines with twenty four controlled events involved in

communications; and we require that these four processes must speak in the order: Peer-0

—» Peer-2 —» Peer-3 —» Peer-4. Again, by independently running this AUT three times,

we obtain the time cost for each run: 12085 ms, 10153 ms, and 11296 ms respectively. So

the average time cost for the Online Conference consisting of four processes and twenty

four controlled events is: 11178 ms. Table 8.3 lists the average time cost for each

experiment.

2 processes

9 events

3 processes

18 events

4 processes

24 events

Average Time 3943 ms 5924 ms 11178 ms

Table 8.3: Time cost for running the AUT with different processes and events

By comparing the time cost for each experiment, we observe that the time cost is

approximately proportional to the number of controlled events.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. Conclusions and Future Work

In this thesis work, we have presented an approach to automated reproducible testing for

distributed Java applications, via additional interception services into the Java RMI

middleware. With the availability of the interception service, we can easily incorporate

any testing environment to intercept the remote calls without modifying the AUT. Here

we have outlined a code-intrusion-free testing environment with which one can gain some

control over the nondeterministic choices through the predefined order among input

events and remote call events. This provides support to reproduce or replay a test in

concurrent and distributed systems.

We defined the format of test scenarios, discussed in detail how the interception service is

injected into the RMI middleware in order to provide a mechanism to hook up testing

components transparent to user applications. We also explored the use of CORBA

Portable Interceptors, a similar interception technique to Java RMI interception services,

and further described how to utilize this Portable Interceptors to incorporate the existing

testing components, i.e., how to reuse the testing components in CORBA-based

applications implemented in Java. We compared the similarities and differences between

these two testing environments in a variety of aspects. We also did several experiments

based on the Online Conference example to illustrate the overall testing architecture

works well, and showed performance of this testing architecture based on the analysis of

experimental results.

As a final remark, we would like to mention that although we tried to handle the

nondeterminism, it is apparently not necessary to deterministically control every internal

nondeterministic choice of the execution of an AUT. Here we have adopted the term

reproducible testing in a general sense that we can control the execution over some

important internal choices. Normally these important internal choices include the order of

accessing shared objects and the order of remote calls. Here we have focused on the

latter.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, we list some limitations in the current work and possible lines of future research

work:

• When a program output is passed to the central test oracle, it is passed together with

the time stamp of the receipt of the output, so that the real-time related conditions can

be checked. The lack of global clock in distributed systems may cause problems on

the preciseness of the validation of real-time test oracles. Further investigation in this

issue is on demand.

• One issue needed to be addressed in automated testing is the generation of test

scenarios. In our approach, we have assumed that a set of test scenarios are given in

the sense that it is feasible (see below for the meaning of test scenario feasibility). In

order to automate test generation, it is necessary to analyze some formal objects, such

as source code or formal specifications. Apparently, our testing approach is

specification-based, so a related work is to systematically and automatically obtain

test scenarios. Precisely, given formal system specifications, how do we identify and

automatically generate the significant test scenarios? I am interested in searching for

suitable solutions to it.

• Another challenge involved in automatic test scenario generation is the feasibility

check. The feasibility check is to verify the conformance between test scenarios and a

program’s implementation. Thus, a test scenario that is feasible cannot cause the

program to terminate abnormally lead to a deadlock/starvation state. For certain

testing criteria, a significant proportion of test scenarios are infeasible in terms of the

semantics of the program [37]. In the case that a given test scenario is infeasible,

controlling the execution according to it may lead to concurrency related problems

such as deadlock or starvation. The investigation in the feasibility of the test scenarios

remains part o f my future work along this line of research.

• To assure the quality of selected set of tests, we also need some test adequacy criteria,

which are used to determine whether a test suite provides an adequate amount of

testing for a program under test [36]. Testing adequacy analysis involves finding areas

of a program not exercised by a set of tests and creating additional tests to increase

testing coverage. In our approach, we assume that the given test scenario is an

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

important one, which could be used to uncover some concurrency related problems.

In a real application, however, we need to develop some techniques to systematically

and automatically identify the set of important test scenarios which is small enough to

be exercised in a relatively short period of time and is sufficient enough to discover

all or most of the potential faults in a program.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Richard H. Carver and Kuo-Chung Tai, “Replay and Testing for Concurrent

Programs”, volume 8, Mar. 1991. IEEE Software.

[2] H. Sohn, D. Rung, P. Hsia, Y. Toyoshima and C. Chen “Reproducible Testing for

Distributed Programs”, Mar. 1996. 4th International Conference on

Telecommunication Systems, Modeling and Analysis, Nashville, TN.

[3] X. Cai and J. Chen, “Control of Nondeterminism in Testing Distributed Multi-

Threaded Programs”, 2000. Proc. of the First Asia-Pacific Conference on Quality

Software (APAQS 2000).

[4] M. Ben-Ari. “Principles of Concurrent and Distributed Programming”, Prentice Hall

International Series in Computer Science, 1990.

[5] Peer Hasselmeyer and Marco VoB., “Monitoring component interaction in Jini

federations”

<URL: http://www.ito.tu-darmstadt.de/publs/papers/itcomO 1 .pdf >

[6] D.C. Rung Hwan Wook Sohn and Pei Hsia. “Corba components testing with

perception-based state behavior”, in COMP SAC’99, the 23rd Annual International

Computer Software and Applications Conference, pages 116-121, 1999.

[7] Hwan Wook Sohn, David C. Rung, Pei Hsia, “State-based Reproducible Testing for

CORBA Applications”, International Symposium on Software Engineering for

Parallel and Distributed Systems May 17 -18,1999

[8] Denis Reilly and A. Taleb-Bendiab, “Dynamic Instrumentation for Jini Applications”,

3rd International Workshop on Software Engineering and Middleware, 2002

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ito.tu-darmstadt.de/publs/papers/itcomO

[9] Yingxu Wang, Grahap King, Mohamed Fayad, Dilip Patel, Lan Court, Geoff Staples,

and Margaret Ross “On Built-in Test Reuse in Object-Oriented Framework Design”,

ACMCS115

[10] Ann Wollrath and Jim Waldo, “The Java Tutorial: RMI”

<URL: http://java.sun.com/docs/books/tutorial/rmi/index.html>

[11] Jguru, “Fundamentals of RMI: Short Course”, Feb., 2002

<URL: http ‘.//developer .j ava. sun. com/developer/onlineTraining/rmi/RMI.html>

[12] Jeremy Blosser, “Explore the Dynamic Proxy API”, Nov., 2000

<URL:

http://developer.j ava. sun. com/ developer/technical Articles/DataT ypes/proxy/>

[13] Sun Microsystems, Inc., “Dynamic Proxy Classes”

<URL: http://java.sun.eom/j2se/l.3/does/guide/reflection/proxy.html>

[14] Yingxu Wang; G. King and H. Wickburg, “A Method for Built-in Tests in

Component-based Software Maintenance”, 1999, 186-189, Software Maintenance

and Reengineering

[15] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, “Design Patterns”,

1995 Addison-Wesley

[16] OMG, “Common Object Request Broker Architecture: Core Specification”, 2000

<URL: http://cgi.omg.org/docs/formal/02-11-01 .pdf>

[17] Sun Microsystems, Inc., “Java™ Remote Method Invocation Specification”, vl.4,

2002

<URL: ftp://ftp.java.sun.com/docs/j2sel ,4/rmi-spec-l .4.pdf>

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/docs/books/tutorial/rmi/index.html
http://developer.j
http://java.sun.eom/j2se/l.3/does/guide/reflection/proxy.html
http://cgi.omg.org/docs/formal/02-11-01
ftp://ftp.java.sun.com/docs/j2sel

[18] Sun Microsystems, Inc., “Java IDL and Java RMI-HOP Technologies:

Using Portable Interceptors (PI)”

<URL: http://java.sun.eom/j2se/l .4.1 /docs/guide/idl/PI.html>

[19] Kuo-Chung Tai, Richard H. Carver, and Evelyn E. Obaid, “Debugging Concurrent

Ada Programs by Deterministic Execution”, Software Engineering, IEEE

Transactions on, Volume: 17 Issue: 1, Jan 1991, Page(s): 45 -63

[20] Chow, T. S., “Testing Software Design Modeled by Finite-State Machines”, IEEE

Trans. On Software Engineering, SE-4 (3), pp. 178-187

[21] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, “Test

Selection Based on Finite State Models”, IEEE Transactions on Software

Engineering, 1991, pp. 591-603

[22] Bengi Karacali, Kuo-Chung Tai, “Automated Test Sequence Generation Using

Constraints for Concurrent Programs”, International Symposium on Software

Engineering for Parallel and Distributed Systems, May 17 -18, 1999

[23] Richard H. Carver, Kuo-Chung Tai, “Static Analysis of Concurrent Software For

Deriving Synchronization Constraints”, Proc. IEEE Int’l Conf. Distributed

Computing Systems, pp.544-551, May 1991

[24] Richard H. Carver and K. C. Tai, “Test Sequence Generation From Formal

Specifications of Distributed Programs”, ICDCS 1995: 360-367

[25] Richard H. Carver and Kuo-Chung Tai, “Use of Sequencing Constraints for

Specification-Based Testing of Concurrent Programs”, IEEE Transactions on

Software Engineering, June 1998 (Vol. 24, No. 6), pp. 471-490

[26] Sun Microsystems, Inc., “Creating a GUI with JFC/Swing”

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.eom/j2se/l

<URL: http://java.sun.com/docs/books/tutorial/uiswing/index.html>

[27] Sun Microsystems, Inc., “The Reflection API”

<URL: http://j ava.sun.com/docs/books/tutorial/reflect/index.html>

[28] D.C. Kung, N. Suchak, J. Gao, P. Hsia, “On Object State Testing”, Proceedings of

the 18th Annual International Computer Software & Applications Conference, IEEE

Computer Society Press, pp. 222-227

[29] Vector Software, “Offers Automated Test Tools for Unit Level Testing for Ada, C,

and C++ with VectorCAST”

<URL: http://www.vectors.com/whitepapers.htm>

[30] Dennis Peters and David L. Pamas, “Generating a Test Oracle From Program

Documentation”, Proceedings of the 1994 International Symposium on Software

Testing and Analysis (ISSTA)

<URL: http://www.engr.mun.ca/~dpeters/papers/issta.pdf>

[31] Xia Cai, Lyu, M.R., Kam-Fai Wong, Roy Ko, “Component-Based Software

Engineering: Technologies, Development Frameworks, and Quality Insurance

Schemes”, Software Engineering Conference, 2000. APSEC 2000. Proceedings.

Seventh Asia-Pacific, 2000

[32] Sun Microsystems, Inc., “Java IDL Technology Documentation”

<URL: http://java.sun.com/j2se/1.4.2/docs/guide/idl/index.html>

[33] Roy Friedman, Erez Hadad, Inc., “Client-side Enhancements using Portable

Interceptors” Sixth International Workshop on Object-Oriented Real-Time

Dependable Systems (WORDS'Ol), January 08 - 10, 2001 Rome, Italy

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://j
http://www.vectors.com/whitepapers.htm
http://www.engr.mun.ca/~dpeters/papers/issta.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/idl/index.html

[34] R. Baldoni, C. Marchetti and L. Verde Dipartimento, “CORBA request portable

interceptors: analysis and applications”

<URL: http://www.dis.uniromal .it/~irl/pubs/concurrency02.pdf>

[35] Berard, E.V., “Issues in the testing of object-oriented software”, Electro/94

International. Conference Proceedings. Combined Volumes. , 1994, Page(s): 211-

219

[36] David S. Rosenblum, “Adequate Testing of Component-Based Software”, Technical

Report 97-34 Department of Information and Computer Science, University of

California, Irvine, August 1997

<URL: http://wwwl.ics.uci.edu/~dsr/old-home-page/ics9734.pdf>

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dis.uniromal
http://wwwl.ics.uci.edu/~dsr/old-home-page/ics9734.pdf

Vita Auctoris

Run Wang was bom in 1975 in Taiyuan, China. He graduated from Harbin Institute of

Technology, Harbin, China in 1998, where he received a Bachelor’s degree in Computer

Science and Engineering. He is currently a Master’s candidate in the School of Computer

Science at the University of Windsor and expects to graduate in fall 2003.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Constructing a reproducible testing environment for distributed Java applications.
	Recommended Citation

	tmp.1614705492.pdf.CeHkQ

