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Abstract

The emergence of the global Internet, wireless data communications, and the availability 

of powerful computers is enabling a new generation of distributed and concurrent 

systems. However, the inherent complexity of such systems introduces many new 

challenges in system testing and maintenance. One of the major problems in testing such 

systems is that executions with internal non-deterministic choices make the testing 

procedure non-repeatable. A natural solution is to artificially force the execution of a 

program to take desired paths so that a test can be reproduced. However, with 

geographically distributed processes and heterogeneous platform architectures, distributed 

systems have imposed new challenges in developing effective techniques for 

reproducible testing.

The goal of this research is to build an environment to automate testing for distributed 

and concurrent Java applications. We will focus on controlling the order of occurrences of 

input and remote call events according to a user-specified test scenario, which is 

composed of input data, a constraint expressed as a partial order over the input and 

remote call events, and expected output. The testing environment is by itself distributed 

and does not require source code intrusion into the application under test. With minor 

changes, the testing components can also be reused in CORBA-based applications 

implemented in Java.

Keywords: Distributed Systems, Nondeterminism, RMI, Specification-Based Testing, 

Reproducible Testing, CORBA, Portable Interceptor, Middleware, Concurrent Program, 

Dynamic Proxy, Reflection.
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1. Introduction

1.1 Motivation

With advances in networking and middleware technologies and web support, distributed 

systems are gaining increasing popularity in their use, ranging from various industrial 

communication systems to our daily social assistance and control systems such as 

education systems, healthcare systems and transportation systems. However, the inherent 

complexity of distributed and concurrent systems has imposed various difficulties to both 

software development and software maintenance. Heterogeneity in terms of the adopted 

hardware, platforms and implementation languages, and nondeterminism existing during 

the executions are typical sources of such difficulties. Heterogeneity in distributed 

systems poses many difficulties in system communications and interactions. Due to 

nondeterminism, the behavior of a distributed program is no more predictable: running a 

program several times with the same input may not guarantee the same result. This is 

because a distributed and concurrent system usually has many different execution paths 

due to the fact that different processes are running at different speeds, with various kinds 

of process cooperation, which leads to different interleavings of the execution paths 

because of the interactions among different processes. As a consequence, testing turns out 

to be non-repeatable.

When testing a sequential program, if we observe a certain erroneous phenomenon during 

a testing procedure, we usually execute the program again with the same test input to 

repreat the erroneous execution or to collect debugging information. This is called test 

replay. After we have modified the program, we can run it again with new test input as 

well as with previously tested input to verify that the detected errors are removed and that 

no new errors are introduced. This last testing step, called regression testing, is especially 

needed for software maintenance. When testing concurrent programs, since a test may not 

be repeatable (meaning that it is not guaranteed that we can obtain the same output when 

running such a program several times with the same input), we may not be able to see the 

error again or to locate the buggy code, if we observe an error during or after a program

1
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execution. In particular, during regression testing, we may not be able to check whether 

the errors are corrected, neither can we ensure that no new errors are introduced after this 

program is updated.

1.2 Overview of Possible Solutions to the Nondeterminism Problem

A natural way to tackle the above problem is to direct the program execution so that with 

a given input, we can artificially enforce some of the internal execution choices [2, 6, 7] 

on a concurrent program. If well-controlled, the execution of a concurrent program can be 

directed and thus, the observations can be reproduced. In fact, people have developed 

various techniques to control the program executions for both debugging and testing 

purposes. For reproducible testing, we assume that we are given a set of test scenarios, 

which consist of not only test cases but also some path constraints. The test case, as usual, 

describes the external input, i.e. a sequence of input data to each process, and the 

expected observations (outputs). The additional path constraints describe some further 

constraints on the execution paths with the given test input. Such path constraints can be 

expressed as a partial or total order among external input events in the test cases and some 

internal events such as certain statements in the program. Obviously, the path constraints 

are often designed to denote the typical or representative scenarios in which possible 

errors or bugs may reside.

Unlike in a debugging approach where we define the checkpoints individually, in an 

automated reproducible testing, we can predefine in general the events we are interested 

in controlling their order of occurrences. Typically, we consider three types of events:

^  The synchronization events [1-3, 6, 7, 19]

This is based on the observation that different output of multiple executions of a 

distributed and concurrent program with same inputs are often caused by the different 

orders of accessing shared objects (synchronization events) by various processes.

■f The input events

In a distributed system, the orders of the input events may also be a source of different 

observable behaviors. Of course, we cannot define orders among input events in the same

2
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process, since the order of input events within an individual process is deterministic. The 

constraints we will add here are over the orders of input events among different 

processes.

•S The inter-process communication events [2, 3, 6, 7]

An inter-process communication event can be viewed as an external input to the target 

process of the event (also called remote events). As a result, the orders of such events also 

contribute to the different behaviors of the overall distributed system.

There are two main issues in automating software testing. One is to automate the 

generation or partially automate the generation of the test cases and path constraints; and 

the other is to realize the control of executions of an Application Under Test (AUT), i.e., 

force the program execution according to the specified paths with given input. In this 

work, we only consider the latter issue, i.e.: we will only consider implementing 

automated control over input events and inter-process communication events in realizing 

a reproducible testing, and assume that both test case and path constraints are given.

Automated testing naturally requires some software instrumentation techniques, which 

monitor, analyze and manage the executions of processes or the interactions among 

different processes and their running environment in a software system. The 

instrumentation can be realized via two approaches: 1) via intrusion into the source code 

of an AUT, and 2) via the interception service in the underlying runtime system. Much of 

previous work on software instrumentation focuses on the source code intrusion 

technique and can be broadly divided into two groups. One is to integrate source code and 

test code. This is the so-called built-in test method [9,14], by which we have the program 

source code and testing code in an integrated form to enhance software maintainability 

and traceability. The other approach is to extend source code with additional process 

communications. Along this line of research, the source code of the AUT is augmented by 

some communication constructs between the AUT and the automated test control system 

[1-3, 6, 7, and 19]. This is of particular interest when we intend to gain some control over 

the internal non-deterministic choices in the AUT.

3
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Although traditional approaches provide effective techniques to software instrumentation 

for automated testing, they also have some major disadvantages. For example, in the 

built-in test technique, tests are constantly occupying space while most tests will only be 

used once when the component is deployed. In addition, with much test code integrated 

with the program source code, the readability of such a program is seriously affected. 

Extending source code with additional process communications assumes the availability 

of source code of an AUT, which is usually impossible for today’s commercial off-the- 

shelf (COTS) software components. In addition, the behavior of the extended code may 

deviate from the original AUT, which raises consistency problem. In this research, we 

will solve the above-mentioned problems (e.g.: poor readability and unavailability of 

source code) by building software instrumentation into the application’s run-time 

environment so that an application itself does not have to contain any testing code at 

development and deployment stages and the application source code can remain 

untouched during system testing or maintenance.

Recently, middleware technologies have been widely adopted to develop large-scale and 

complex distributed applications. Middleware technologies such as CORBA, Java RMI 

and DCOM provide us with core software infrastructures that make it relatively easy to 

build distributed applications that are of high-performance and are scalable. They also 

offer a set of services that support component interoperability in a heterogeneous 

environment, while hiding the details of its network management and communications. 

The advances of middleware technologies provide us with new opportunities to explore 

the second approach to software instrumentation for distributed applications, especially 

for process communications across machine boundaries — integrate the instrumentation 

into middleware layer. Software instrumentation into middleware level is a novel 

approach that we will adopt in our research. It is superior to the code intrusion technique 

in that it requires neither the availability of the source code nor test user’s knowledge 

about the AUT. It is built independent of the implementation of an AUT, thus the AUT 

can remain completely as a black box. Now a question arises up: how can we implement 

this instrumentation into the middleware, in order to monitor, and further control the 

executions and interactions of processes in an AUT?

4
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In CORBA, this can be accomplished by way of CORBA portable interceptors, which 

are actually some hooks into the CORBA ORB. They allow users to insert their own code 

into the ORB and intercept the normal flow of program execution without changing either 

the applications or the ORB implementation. This user-provided code is invoked at 

certain interception points during remote request/reply processing, and thus can be used 

for inspecting and manipulating the remote requests and responses.

1.3 Objective and Contributions

In this thesis work, we consider using distributed Java applications communicating via 

Remote Method Invocation (RMI) as the AUT. We have chosen distributed Java 

applications based on a number of reasons. First, Java is becoming increasingly popular 

in developing network based, distributed and concurrent software systems because of its 

portable, easy-to-use, and security features. Second, most distributed and concurrent 

applications involve a set of processes executing in parallel, with each process having 

multiple threads running concurrently. This characteristic of distributed and concurrent 

programs leads to two requirements in this work: 1) developing a typical AUT, which can 

closely model the behavior of a distributed and concurrent program (which has distributed 

processes and multiple threads within each process), and 2) constructing a testing control 

environment that is able to handle multithreading issues. We use Java because Java 

language provides a built-in facility to support multithreading. This support is a nice 

feature in that you do not have to think about the low level mechanism for partitioning 

system resources (such as CPU time) for multiple threads, since this is done by Java, 

which makes programming with multiple threads a much easier task. We have chosen 

RMI as the underlying communication mechanism since RMI is a distributed object 

model that allows programmers to develop distributed Java programs with the same 

syntax and semantics as those that are used for non-distributed programs. It offers a 

middleware (similar to CORBA ORB) by which distributed processes can communicate 

with each other and pass information back and forth.

5
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Unlike CORBA portable interceptors, however, the major limitation in Java for software 

instrumentation is that it does not contain such an interception mechanism. So, in this 

thesis work, we first provide a solution to injecting an interception service into the 

underlying RMI middleware. This service is similar to the portable interceptors in 

CORBA, which is to “peek” the executions and communications among processes of a 

distributed Java program and intercepts Java remote method requests and responses for 

the control of remote calls. This interception service is achieved by making use of Java 

Reflection to modify and extend existing Java libraries.

The testing environment constructed in this research is by itself distributed, with some of 

its testing components residing within the same host as each process in the AUT (thus 

called local testing components). These local testing components include a single path 

controller and a local test driver for each process on each machine. To distribute the test 

controllers and test drivers to be local is for efficiency reason. Whenever a thread in a 

process needs to interact with threads in other processes (i.e., a remote event), this event 

will be intercepted by the middleware, which will send a request to its local controller on 

behalf of this thread. This controller is responsible for deciding whether this thread should 

proceed, wait for other threads, or resume from a waiting state. In general, a test driver is 

a program that performs test setup, makes a sequence of calls to the software component 

under test using a different range of test data for each call. The driver will normally 

record output data to a file for use in examining the results of each test run [29], and then 

do necessary clean-up tasks. A test driver in the context of this work is specific to a single 

process and is responsible for starting a process under test, feeding inputs to it, recording 

its result and then sending this result to the centralized test oracle (a program for checking 

test results against expected results. See Chapter 4 for detailed definition) for verification. 

Whether a driver could proceed to feed an input to its process also depends on the 

permission from its test controller, which makes this decision according to the path 

constraints and the current overall status of the AUT. Deploying these components in a 

single host will definitely reduce network delay caused by a lot of communications 

among these components. A centralized communicator is also used to coordinate among 

test controllers. This communicator is simply a “broadcaster”, which accepts updates of

6
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each process’s running states from each path controller and broadcasts them to all other 

controllers. For the communications between testing components, we have also adopted 

Java RMI.

By means of the interception services, we can hook up the above testing environment into 

the Java RMI implementation, and further control the order of occurrences over the local 

input events and remote method invocation events of the AUT.

1.4 Thesis Structure

This thesis work is organized as follows: Chapter 2 reviews some previous work in 

automated reproducible testing, and discusses their disadvantages. In Chapter 3, we 

propose our approach to automated reproducible testing for distributed Java applications. 

We also define the format of a test scenario, including the formats for events, test 

constraint, and test oracle, and show a motivating example -  Online Conference, which 

will be used as the AUT in later chapters. In Chapter 4, we briefly review the concept and 

architecture of Java RMI, and discuss in detail how the interception service is injected 

into the RMI implementation in order to provide a mechanism to hook up the testing 

control transparently to user applications. Chapter 5 shows the architecture of our 

proposed testing environment and discusses the functions of each testing component. We 

describe how this testing environment works with the Online Conference as the 

application under test. This chapter also introduces the control algorithm and the 

automation of the testing environment setup. In, Chapter 6, we overview the CORBA 

application architecture, CORBA middleware - ORB, OMG IDL and Java IDL, which 

are some prerequisites to develop distributed applications based on CORBA architectures. 

This chapter also introduces the CORBA Portable Interceptors, an essential technique to 

realize interception service in CORBA applications. Chapter 7 describes in detail how to 

reuse the testing components for distributed Java applications in a CORBA environment, 

and compare the similarities and differences between these two testing environments in a 

variety of aspects. In Chapter 8, we run several experiments to evaluate the functionality

7
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and performance of our testing environment. Chapter 9 concludes this thesis work and 

indicates possible future work in related areas.

8
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2. Related Work

Previous work on automated reproducible testing usually involves three major issues: 1) 

how to define the format of a synchronization event, which should contain sufficient 

information to determine an event and direct the execution of a program according to a 

given test scenario, 2) how to collect the test constraints and test cases. The set of test 

scenarios must be small enough to be exercised in a relatively short period of time, yet be 

adequate enough to uncover all potential program errors, and 3) how to develop a tool to 

repeat the previous execution of a concurrent (and possibly distributed) program based on 

a given test scenario (reproducible testing). This issue usually requires the introduction of 

some control mechanism with the help of software instrumentation techniques. Our future 

research will focus on the first and third issues. We assume that the test constraints and 

test data are available during a testing process.

During the past years, a lot of research has been done on above three issues. Especially, 

many quite efficient techniques have been developed to automatically generate test data 

and test constraints [7, 20-25]. However, as mentioned before, much of previous work on 

software execution control and instrumentation still relies on the source code intrusion 

technique. This work can be broadly divided into two groups: integrating source code and 

test code (built-in-test method), and extending source code with additional process 

communications.

2.1 Built-in-test Techniques

In the first approach, the testing code is integrated into the program at design and 

implementation stages as member functions, class clusters or sub-systems to improve 

software testability. Such an augmented program can run either in normal mode as a 

conventional program or in testing mode for testing and maintenance purposes. This 

method draws attention to build testability into objects and frameworks, so that the 

software testing and maintenance can be self-contained. The most interesting feature of 

the built-in-test techniques is that tests can be inherited and reused in the same way as that

9
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of code in conventional object-oriented frameworks [9]. A prototype of a built-in-test 

object in C++ code is given below:

Class class-name {
// Interface 
Data declaration;
Constructor declaration;
Destructor declaration;
Function declarations;
Tests declaration; // Built-in test declarations

// Implementation 
Constructor;
Destructor;
Functions;
TestCases; // Built-in test cases as

// new member functions (methods)
} TestableObject;

Figure 2.1: An Object with built-in tests [9]

In this prototype, the test declarations in the interface and the test cases in the 

implementation have been embedded into a standard object structure. In this way, the 

built-in tests may be inherited and reused in the same way as that of standard and 

application specific member functions within the object. The built-in-test object 

component has the same behavior as that of the conventional objects when normal 

functions are called. But if  the built-in tests are called as member functions in the object, 

e.g.:

TestableObject:: TestCasel;

TestableObject:: TestCaseN;

the built-in-test object can be automatically tested and corresponding results are reported. 

The same built-in-test method can be extended to the class cluster or object-oriented 

framework levels. Built-in tests in the class cluster level are a set of class files acting as 

test files in an 0 0  sub-system, while built-in tests in the object-oriented framework level

10
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are a set of tests playing as a sub-system in the whole OO framework. In this way, tests 

can be built in all components of software in the scopes of objects and systems. The 

maintainability of software can be increased by the possession of the features of self

containment of code and tests. Further details of built-in tests in class cluster and 

framework levels can be found in [9, 14].

2.2 Control of Nondeterminism in Concurrent and Distributed Systems

Previous research in the second approach in support of control of non-deterministic 

behaviors of concurrent and distributed systems has also been extensively conducted. 

This approach centers on augmenting the source code of an AUT with some 

communication constructs between the AUT and the automated test control system. This 

is of particular interest when we intend to gain some control over the internal non- 

deterministic choices in the AUT and force the system to take particular execution paths 

[1-3, 6, 7, and 19]. The idea of deterministic testing of concurrent programs was first 

introduced by Kuo-Chung Tai and Richard H. Carver in [1, 19], where the non- 

deterministic behaviors of concurrent programs are considered as the results of the 

unpredictable progress of concurrent processes accessing synchronization constructs (thus 

so called synchronization events). They presented a language-based approach, where 

programming language supported synchronization constructs such as semaphores and 

monitors are used to deterministically test and debug concurrent Ada programs. Again, 

based on the assumption that the test data and constraints are given during testing, we can 

summarize this approach as three steps: 1) defining the format for synchronization 

sequences, which provide sufficient information for test control and deterministic 

execution, 2) transforming a concurrent program into a slightly different program in the 

same language, which is equivalent to the original one except that some statements are 

inserted (using a tool like a parser) right before and after synchronization events, and 3) 

developing a synchronization sequence replay tool to control the execution of the 

transformed program so that an execution of this program deterministically exercises a 

given synchronization sequence. Although they implemented the reproducible testing in
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Ada, the idea works well for other languages supporting synchronization constructs, and 

the transforming tool and replay tool are relatively easy to develop.

2.2.1 Control of Communication Events

Along this line of research, D. Kung et al. [2, 7, and 28] proposed a state-based 

reproducible testing technique in a distributed environment by adopting CORBA. They 

not only defined a replay control mechanism (mentioned in the Introduction), but also 

described an algorithm to automatically generate test sequences. This test sequence 

generation technique is realized by constructing atomic state machines (ASMs) for 

interesting single shared variables, and composite state machines (CSMs) when more than 

one shared variables are used to describe the state behaviors of a program, and then 

building a test tree based on these ASMs and CSMs to generate all possible test 

sequences. In their approach, the generated test sequences by their state-based algorithm 

are total orders of remote call events, whose number is very large even for a relatively 

small program.

However, we do not have to specify totally ordered event sequences as path constraints, 

because the orders of some events that are in an individual process are pre-defined and 

can be identified in a formal design specification. So in our research, we will only 

consider the partial orders among input and remote call events as our test constraints.

2.2.2 Control of Synchronization Events

Based on the fact that non-deterministic behaviors in a concurrent program usually arise 

from concurrency-related statements, many researchers have proposed approaches to 

controlling the orders of synchronization events when testing a concurrent program. In 

[3], X. Cai and J. Chen presented the framework of an automated test control toolkit, 

which can artificially control the partial order of synchronization events in a distributed 

multithreaded programs. This framework adopts CORBA infrastructure as its underlying 

middleware for communications among processes, and the implementing language of this 

framework is Java. In Java language, each object with synchronized method or 

synchronized block is associated with a monitor, and an operation (method invocation) on
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a monitor is defined as a synchronization event. By introducing constraints on the orders 

of such events, and extending the source code of a program with additional 

communication constructs, this work realized control of some important synchronization 

events.

Although traditional approaches provide some effective techniques to software 

instrumentation for automated testing, they do have some major disadvantages. For 

example, in the built-in test technique, tests constantly occupy space while most tests will 

only be used once when the component is deployed. Moreover, because tests are built into 

an application at design and implementation phases, this kind of test also burdens 

application developers with the test design and implementation issues. The methods 

proposed in [1-3, 6, 7, and 19] isolate testing from the software component development 

stages, and will leave component developers free of the concerns about the testing during 

design and implementation phases. However, they all assume the availability of source 

code of an AUT, which is usually impossible for today’s commercial off-the-shelf 

software components. When software components are issued to the markets, they are 

often in binary forms, and application developers (and testers) who will use (and test) 

these components do not have access to the source code of those components due to 

copyright issues. Even if they have the source code and can transform them with some 

tools, the behaviors of the extended code may deviate from the original AUT, which 

raises consistency problem. Furthermore, with additional language constructs integrated 

with the program source code, the readability of such a program could be seriously 

affected.
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3. Proposed Approach

3.1 Advantages of the Proposed Approach

With the above-mentioned testing problems and disadvantages of previous work, the 

objective of this research is to present an environment that can realize the automated 

control in reproducible testing where the AUTs are distributed Java applications 

communicating via RMI, and the path constraints are defined as partial orders over the 

input events and remote method call events. Unlike the software instrumentation 

techniques proposed in the previous research [1-3, 6, 7, 19], the test control is based on 

constraints on local i/o events and remote method invocation events, and the 

instrumentation in our testing environment does not require any source code intrusion and 

is completely transparent to both client and server programs.

To force an AUT to satisfy a certain path constraint, we need to introduce some control 

mechanism into the system during the execution. The execution of the AUT is augmented 

by additional communications between the control mechanism and all the processes in the 

AUT. In this thesis work, we will build this communication mechanism into the 

underlying Java Run-time environment. How to alter the execution of the underlying 

environment depends on the type of events we are interested in controlling their timing of 

occurrences. For input events, we employ the test driver, which is in charge of starting the 

AUT and providing input to a process, and to actually carry on its task on a real-time 

basis (see Section 5.2 for details of how the test driver control the order of input events). 

For the remote method call events, on the other hand, we can specifically inject this 

communication mechanism into the middleware layer of the RMI implementation, and 

further hook up a control meachanism by means of this injected communication.

Compared with previous software instrumentation techniques, our approach provides the 

following benefits:

■ Intrusion into the underlying system requires neither the availability of the source 

code nor test user’s knowledge about the AUT. Thus, the AUT can remain
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completely as a black box. By providing an interception service, application testers 

are allowed to plug in their testing code into the RMI middleware layer in a 

“standard” and “systematic” way, in the sense that users can inject their own code 

into the RMI middleware by implementing and extending a set of CORBA-like 

classes, and starting this interception service in a way very similar to that of 

CORBA.

■ Our test control environment is distributed and scalable. We do not limit the size of 

an AUT in terms of the number of its processes. In fact, the AUT could consist of 

any number of processes, which may run in different hosts and operating systems 

during each test. By distributed testing environment, we mean that a test controller, 

a test driver together with an interceptor server (see definition in page 28) are 

deployed locally with each process on a single machine in a multi-process (and thus 

multiple machines) application, and a central test oracle and communicator can be 

installed on other machines.

■ A program can be run either in normal mode or in testing mode. As per the first 

advantage, the software instrumentation and testing components are independent of 

specific application and its implementation. So, the underlying instrumentation will 

not affect the normal execution of an AUT if it is not turned on. Users are also given 

the flexibility to choose to turn on either the client or the server side (or both) 

instrumentation, or to dynamically turn the interception service on or off during a 

testing procedure, by implementing and extending some standard classes, then 

starting the supporting services or executing some pieces of code to register/un

register their interceptors.

■ The testing components, i.e., test controllers, drivers, RMI interceptor servers, test 

oracle and communicator can be reused in CORBA architecture with only minor 

changes.

Other than software testing, intrusion into the underlying run-time system can also be 

used in software instrumentation technique in support of software debugging, monitoring 

and resource management etc. For example, Friedman and Hadad in [33] have discussed 

the instrumentation in existing CORBA ORB implementation for caching, load balancing,
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and redundancy in assuring the reliability of real-time software systems. In [8], Denis 

Reilly and A. Taleb-Bendiab use the Java Dynamic Proxy technique to build some kind 

of interception services into the underlying Jini implementation, and further proposed a 

service-oriented, dynamic instrumentation framework that provides support to monitor 

and manage Jini applications. Similar to this work, our instrumentation provides a 

monitoring framework for dynamic analysis of distributed Java applications, enabling 

tracing of flows of control transparent to application developers, and further managing 

individual components, their running environment and their interactions.

3.2 Test Scenario and a motivating example

As mentioned in the introduction, we consider the automated control over the timing of 

two types of events: the input events and the remote call events. This is reflected in the 

definition of our test scenarios. Let Fbe a set of input/output values, I  be a set of remote 

interface names and M  a set of remote method names. A test scenario is defined as an 

element of TS = { E l \J  E2, C, O ) where

■ El -  (N, V, N, {“f \  “o”} ) (N  is the set of natural numbers) is the set of i/o events. (/', 

v, k, s) e  El denotes input value v to process j  for the Mi time (when s = “i”) or 

receive an output value v from process j  for the Mi time (when s = “o”).

■ E2 = (N, I, M, N, { “qc”, “qs ”, “ps ”, “pc ”} ) (N is the set of natural numbers) is the 

set of remote call events, (j, i, m, k, s) e E2 denotes an event of calling method m on 

the interface i from process j  for the Mi times, at the time of s where:

- s -  uqc”: when the call request is at the caller’s side;

- s  = “qs'”: when the call request arrived at the callee’s side;

-  s = “ps”: when the call response is at the callee’s side;

- s  = “pc”: when the call response arrived at the caller’s side.

B C c  (El U E2) x (£J U E2) is a binary, transitive relation between events to denote 

the ordering constraint among them, (el, e2)E C means that we require el to happen 

before e2.
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■ O is a boolean expression that we expect to be true (test oracle). It may contain pairs 

from El x El that shows the happen-before relationship between two i/o events.

Let us consider an application of on-line conference control. With the use of Internet and 

multimedia, it is possible to host an on-line conference. Now let us consider using the 

distributed bakery algorithm introduced in [4] to guarantee that only one person can speak 

(enter his critical section) at a time. Distributed systems involving multiple processes 

usually compete to use shared data. A critical section is a code segment in each process, 

in which shared data may be accessed. Each process executing its critical section must 

gain exclusive access of the shared data and ensure that only one process is allowed in its 

critical section at any time.

The distributed bakery algorithm goes in this way: n processes (representing n people) 

communicate with each other in a peer-to-peer manner in order to enter a critical section 

(to speak). Whoever wishes to enter the critical section should pick up a ticket number, 

broadcasts this number together with its process id to all other processes, and wait until it 

has received responses from each other process that the chosen number becomes the 

lowest. To realize this, each process maintains a local number (e.g., High_Number) that is 

what it knows so far the biggest one among all the numbers maintained by various 

processes. Initially, this High_Number is set to the same value (e.g., 0) in each process. 

When receiving an input signal of willing to speak, the process locally picks up a number 

that is 1 greater than the High_Number (i.e. High_Number +1)  and sends a request with 

this number to all other processes. Each process which receives a request together with a 

ticket number smaller than its own local chosen number will reply immediately, meaning 

it allows the sender to enter the critical section. On the contrary, if a process who receives 

a request together with a ticket number (ReceivedJSfumber) is greater than its own local 

chosen number, it will suspend its reply until it has exited its critical section. In either 

case, the High_Number of this process will be reset to value of the the original 

High_Number or the value of the Received_Number, whichever is greater. The request 

sender will enter the critical section only after it has received replies from all other 

processes.
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« in te rfa c e »
Java.RMI.Remote

PermissionRequest(processeid: String, receivednumber: int)
PermissionResponseQ
acceptMessage(message: String)

OnlineConference

Figure 3.1 The RMI remote interface definition for the on-line conference example

Figure 3.1 shows the definition of the remote interface OnlineConference in terms of 

UML class diagram. When receiving an input indicating a willing to speak from the test 

driver, a process locally picks up a number and makes a series of remote calls 

(permissionRequest) of all other processes with its own process identifier and its own 

number, in order to get permission from those processes to enter its critical section. 

Correspondingly, whenever allowed, a process remotely calls permissionResponse of the 

requesting process to grant it such permission. After obtaining permission from all other 

processes, the requesting process remotely invokes the acceptMessage of other processes 

to broadcast its messages. One of the typical scenarios that we are interested in testing 

here is when two participants wish to speak at the same time. More precisely, we want to 

test whether the program works correctly when two individual processes locally pick up 

the same number. Apparently, two individual processes locally picking up the same 

number is an important case when potential concurrency-related design or 

implementation errors may show up. However, this is impossible with a traditional testing 

technique where we consider only the input to the program and the corresponding output 

from its execution, because here we need to gain the control over the execution of the two 

processes. With the present testing technique, the desired scenario can be realized by 

controlling the timing of occurrences of the user’s input {willing to speak) and some
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remote method calls during the execution. Let us consider a test scenario where there are 

two processes (representing two users): each user requires speaking only once, and both 

users pick up the same number. We can define the test scenario in the following way:

■ V = {0, I}: There are two kinds of input events in this example. One is to signal the 

request to speak (input value 0), and the other is the signal of the end of speaking 

(input value 1). There are also two kinds of output events. One is to denote the 

starting point of speaking (input value 0), and the other is the actual end of speaking 

(input value 1).

■ I  = {“OnlineConference ”}: In this example, there is only one remote interface 

OnlineConference, for which a remote object will provide implementation.

■ M  = {“permissionRequest ”, “permissionResponse ”}: There are two remote methods 

defined in the remote interface OnlineConference.

Recall that the set of i/o events and the set of remote method invocation events can be 

respectively represented as (Processld, Value, Number, S) (where S can be either “i ” or 

“o ”) and (Processld, InterfaceName, MethodName, Number, S) (where S can be one of 

the four constants: “q c ”, “qs”, “p s ”, and “p c ”), the test scenario can be further 

elaborated as follows:

■ ie 1 = (1, 0, 1, event ie 1 is the first input of value 0 to process 1.

■ ie2 = (1, 1, 1, “f ’): event ie2 is the first input of value 1 to process 1.

“ ie3 = (2, 0, 1, “/”): event ie3 is the first input of value 0 to process 2.

■ ie4 = (2, 1, I, “?'”): event ieA is the first input of value 1 to process 2.

■ rel = (1, “OnlineConference”, “permissionRequest”, 1, “qc”): event rel is the first 

remote call o f  method permissionRequeset on the interface OnlineConference from  

process 1 when the call request is still on the caller’s side (i.e. process \).

" oel = (I, 0, 1, “o ”): event oel is the first output of value 0 from process 1.

■ oe2 = (1, 1, 1, “o ”): event oel is the first output of value 1 from process 1.
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■ oe3 = (2, 0, 1, "o ”): event oe3 is the first output of value 0 from process 2.

■ oe4 = (2, 1, 1, “o ”): event oe4 is the first output of value 1 from process 2.

■ C — {{oel, iel), (oe1, ie4), (ieI, ie3), (ie1, rel)}

* O = (((oel, oe3) A(oe3, oe2)) v ((bei, oeij a  (oei, o e ^ )

iel

rel

oel O O  oe3

ie2

oe2 O O oe4

-------------- ► happen before

Figure 3.2: A test scenario in the on-line conference example

Figure 3.2 illustrates the graphical representation of the i/o events, remote call events, and 

the intended control over the timing of their occurrences as described in path constraint C. 

Here, (oel, ie2) and (oe3, ie4) c  C expresses the local i/o sequence for process 1 and 

process 2 respectively. In the test scenario, we require that the first output of value 0 (oel) 

must happen before the first input of value 1 (iel) in process 1; and correspondingly, the 

first output of value 0 (oe3) must happen before the first input of value 1 (ie4) in process

2. Actually, we also have constraints (iel, oel), (iel, oel), (iel, oel), (ie4, oe4). These 

constraints are naturally satisfied by the application implementation itself during 

execution, so we do not need to explicitly express them as part of the constraint, (iel, 

iel), (iel, rel)  c  C expresses the ordering of the execution across the process boundary: 

the client of process 1 will send out the signal of willing to speak before the client of 

process 2 does so, but process 1 will not be able to send its ticket number to process 2 (so
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that the local number of process 2 remains unchanged) until process 2 also picks up its 

number. As initially the local numbers are all the same, this guarantees that process 1 and 

2 will pick up the same number. Finally, the test oracle expressed in O essentially says 

that process 1 and 2 should not be in the critical section simultaneously, i.e. two processes 

cannot speak at the same time.

The control algorithm adopted in our approach maintains the same level of fairness as the 

original algorithm implemented in an AUT (e.g., the Distributed Bakery Algorithm in our 

research). In fact, our testing environment may be used to detect both the fairness and 

faults of an AUT by analyzing the test scenarios and test results. For instance, if the given 

test scenario (a test scenario is said to be valid for a program P  if it is consistent with the 

specification of this program) is valid but unfair, and the AUT can terminate normally 

after execute this test scenario, it indicates that there exists unfairness in this AUT. On the 

other hand, if a given test scenario is feasible to the AUT (meaning that it can be executed 

by the implementation of the program P without causing deadlock or abnormal 

termination), but this AUT returns an incorrect output, it denotes that we detect a fault in 

the AUT. In the following, we present the testing environment realizing the above- 

mentioned control over the execution.
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4. Java RMI with Interception

Distributed systems require that processes running in different address spaces, potentially 

on different hosts, be able to communicate with each other [17]. RMI is a distributed 

object model for the Java programming language that makes distributed processes easy to 

communicate by means of remote method invocations on distributed objects. RMI allows 

programmers to develop distributed Java programs with the same syntax and semantics as 

those that are used for non-distributed programs. It offers a middleware (similar to the 

CORBA ORB) by which distributed processes can communicate and pass information 

back and forth.

As mentioned in the introduction, we realize the control of the execution of AUT by 

modifying the underlying Java middleware layer rather than the AUT implementation. As 

Java RMI does not provide the interception mechanism, we first insert such a mechanism 

into the RMI implementation. The RMI implementation is originally built from three 

abstract layers, i.e., Stub & Skeleton Layer (SSL, for simplicity), Remote Reference 

Layer (RRL, for simplicity) and Transport Layer [11,17], as shown in figure 3.1.

Stubs & Skeletons Stubs & Skeletons

Remote Reference
Layer

Remote Reference
LayerRMI

System
Transport Layer

Server ProgramClient Program

Figure 4.1: Java RMI Architecture Layers [11]
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The Stubs and Skeletons layer lies just beneath the view of the developer. This layer 

intercepts method calls made by the client to the remote interface and redirects these calls 

to a remote service object. The Remote Reference layer understands how to interpret and 

manage references made from clients to the remote service objects. In JDK 1.1, this layer 

connects clients to remote service objects that are running and exported on a server. The 

transport layer is based on TCP/IP connections between machines in a network. It 

provides basic connectivity, as well as some firewall penetration strategies [11].

Theoretically, the interception service can be implemented in four different levels: 1) 

inserting the interception between the application and SSL by modifying the Java Naming 

Service and using Java Dynamic Proxy technique [12, 13], 2) building the interception 

into the SSL by altering the way that stubs and skeletons are generated, 3) inserting the 

interception into the RRL by modifying and extending current Java Runtime API, which 

are class libraries for the Java Runtime environment, and 4) implementing the 

interception services into the Transport Layer by modifying the existing communication 

protocols defined by RMI.

4.1 Interception Service in Java RMI using Dynamic Proxy

In Java 1.3 software, Sun introduced the Dynamic Proxy class, which is a class that 

implements a list of interfaces specified at runtime such that a method invocation through 

one of the interfaces on a proxy instance (an object of the dynamic proxy class) will be 

encoded and dispatched to another object through a uniform interface. A proxy forces 

object method calls to occur indirectly through the proxy object, which acts as a delegate 

for the underlying object being delegated. Proxy objects are usually declared so that the 

client objects have no indication that they have a proxy object instance. Each proxy 

instance has an associated invocation handler. When a method is invoked on a proxy 

instance, the method invocation is encoded and dispatched to the invoke method of its 

invocation handler.
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The Dynamic Proxy technique can be viewed as a hook-up mechanism and can be used as 

a means of the interception service together with some additional interceptor interfaces 

(please see figure 3.7 for the definitions of interceptors). The

Java. lang. reflect.lnvocationHandler is an interface that should be implemented by an

interception service to hook users’ additional code during a normal execution of a 

request/reply. However, interception services implemented using dynamic proxy

technique can only be used in the client side. This is because the current Java language 

specification does not have stub class definition for a class implementing

Java. lang. reflect.lnvocationHandler, which means that a proxy instance with which this 

invocation handler associated cannot be a remote object, and thus cannot be transmitted to 

a remote process or host. This limitation does not allow a client to forward a request to a 

dynamic proxy object whose implementation is located at the server side. In addition, the 

dynamic proxy technique for interception services can only be used for the looked-up 

objects, because we modified the way that Java Naming service works to achieve 

interception transparency. Client side proxy instances are automatically downloaded to 

the client process when the client calls the Java. rmi.Naming, lookup method to retrieve 

remote objects.

4.2 Java RMI Interception Service in the RRL

In the future research, we will adopt the third method to insert interception services into 

the RRL. We choose not to implement the interception services into the SSL because in 

the Java 2 SDK, an additional stub protocol was introduced that eliminates the need for 

skeletons in Java 2 platform-only (and JDK 1.1 compatible) environments. Moreover, 

injecting interception services into RRL has many advantages over others: 1) it is easier 

to implement than injecting interceptions in SSL. This is because we will modify some 

undocumented (also unpublished) Java source files in the Java Runtime libraries (which 

can be downloaded from Sun’s website free of charge). The lack of documents poses 

many difficulties in understanding the ' ehaviour, workflows, and relationships among 

the classes in the underlying Java Run-time; 2) inserting interception services into the
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RRL gives users the flexibility to introduce or cancel the interception mechanism easily 

without affecting original Java Run-time API, and 3) with the interception services in 

Remote Reference Layer, any remote invocations mediated by the RMI middleware can 

be intercepted. Figure 3.2 illustrates the resulting RMI architecture.

Stubs! & Skeletons Stubs & Skeletons

Remdte Reference
I Layer j

Cliefrt Interceptor

Reifiote Reference
! Layer;

Server Interceptor

Transport Layer

Server ProgramClient Program

Figure 4.2: Layered architecture in RMI with interception service

We provide interception services at both client and server sides, together with some 

interception interfaces that allow users to hook up the testing control mechanisms into the 

middleware. In figure 3.2, two interception points are defined within each interceptor 

(send_request and receivejreply in the RMIClientlnterceptor, and receive_request and 

send_reply in the RMIServerlnterceptor), which are called respectively according to the 

following order during a request/response processing:

1. The client sends a request, which is caught at the send_request (point 1) at the 

client side;

2. The request is forwarded to the server side and is intercepted at the 

receive_request (point 2);

3. This request is forwarded to the server object for some processing and the 

response is intercepted at send_reply (point 3) before it is sent back to the client.
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4. After arriving at the client side, the response from server is first caught by the 

receivejreply (point 4), after which the response is forwarded to the caller.

Modified 
Java Core API

Extended API

Java Runtime Environment 
API

Figure 4.3: High level structure of the modified Java SDK

In order to add this interception service into the RRL, we need to modify the existing Java 

core API. Figure 4.3 shows a high level structure of the modified Java SDK. In this 

figure, the modified files of the Java core API are the UnicastRef.java and 

UnicastServerRef.java. The UnicastRef represents the handler for a remote object and 

will be passed to the client program together with a stub file. A stub uses the UnicastRef 

to carry out a remote method invocation to a remote object. The UnicastServerRef 

represents a server side handler for a remote object and implements the remote reference 

layer server-side behaviors for remote objects. Both of these files will make use of the 

Extended API and the Java Runtime Environment API. The Extended API (see figure 4.7 

for details) here consists of packages of class files that will be packaged into the JDK 

class library: the API for RMI interceptors and the interfaces for the testing components. 

The UML class diagram for the UnicastRef and UnicastServerRef is illustrated in figure 

4.4.
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«  u s e s »

«  u s e s »

Generated Stub

javaio.
Serializable

java.rmi.
Remote

java.rmi.server.
ServerRef

java.rmi.server. 
UnicastRemoteObj ect

« in te rfa c e »  
sun.rmi.server. 

Dispatcher

« in terface»  
j ava.rmLserver.RemoteRef

dispatch(obj: Remote, 
call: RemoteCall)

sun.rmi.server.
UnicastServerRef

Object invoke(obj: Remote, 
method: Method, params: 
Objectj], opnum: long)

sun.rmiserver.
UnicastRef

Figure 4.4: The stub class and the UnicastServerRef class in Java core API

As shown in figure 4.2, we basically provide two types of RMI interceptors: 

RMIClientlnterceptor and RMIServerlnterceptor. Instances of the RMIClientlnterceptor 

will be downloaded into the client side RRL (instance of the UnicastRef) while instances 

of the RMIServerlnterceptor will be downloaded into the server side RRL (instance of the 

UnicastServerRef). The code insertion into the RRL (adding code into the UnicastRef and 

UnicastServerRef) is done before compiling a program. This code injection is done only 

once for all application under tests and will be packaged into the Java class library.
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In the class UnicastServerRef, we are particularly interested in the method dispatch, 

because this is the place where remote method invocation is forwarded to the remote 

object implementation at the server side. So, in the dispatch, we add two statements: 

interceptor. receive_request and interceptor. send_reply right before and after the real 

method invocation on the remote object. Thus, the flow of execution of a remote call will 

be captured at the receive_request and send_reply interception points (at the callee’s 

side), which will in turn exercise the code implemented at these two points. The pseudo 

code for the modified class is given below:

import ca.uwindsor.kunwang.rmuinterceptor. *;
II import other packages;

public class UnicastServerRef extends UnicastRef implements ServerRef, Dispatcher { 
private RMIServerlnterceptor!] interceptors; 
private RMIInterceptorServer iserver; 
private ServerRequestlnfo re = new ServerRequestlnfo ();

...II  Other variable definitions of this class 
public UnicastServerRef() { 

try{
i f  (iserver = = null)

iserver = (RMIInterceptorServer) Java. rmLNaming. lookup 
(“rmi:/Aocalhost/InterceptorServer”);

} catch (Exception e) {
System.err.println(“Obtaining Iserver exception: “

+ e.getMessage());
e.printStackTrace();

}
}
... II Other constructors and methods of this class

public void dispatch(Remote obj, RemoteCall call) throws IOException {
... 11 Other part of this method
Class]/ interfaces = oh].getClass().getInterfaces();
String interfacename = interfaces[0].getName();
i f  (! interfacename. equals(“ca. uwindsor. kun wang. rmiinterceptor.

RMIInterceptorServer”)) { 
i f  (iserver != null && interceptors —  null)

interceptors = iserver.getServerlnterceptorsQ; 
re.setlname(interfacename); 
re.setMname(methodgetName());
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}

try {

re.setClientRef(getClientRef()); 
re. setClientHost(getClien tHostQ);

i f  (interceptors ! -  null) {
fo r  (int i -  0; i < interceptors, length; i++) 

interceptors[i].receive_request(re);
}

result = method.invoke(obj, params); // Real Method Invocation

i f  (interceptors 1= null) {
fo r  (int i -  0; i < interceptors, length; i++) 

interceptors[i].send_reply(re);
}

} catch (InvocationTargetException e) {
throw e. getT argetException();

}
... 11 Other part of this method

}
...II  Other methods of this class

Figure 4.5: Pseudo-code of the Modified UnicastServerRef class

Before we give details of the above modified Un icastServerRef and the UnicastRef that 

will be introduced soon, let us briefly explain the Java Reflection API because it plays a 

very important role in providing run-time information of Java objects, their running 

environment and their interactions.

The Java Reflection is a built-in API in Java language, which represents, or reflects, the 

classes, interfaces, and objects in the current Java Virtual Machine. This reflection API is 

often used when writing development tools such as debuggers, class browsers, and GUI 

builders. With the reflection API you can do things such as [27]:

• Dynamically determine the class of an object

• Get information about a class’s modifiers, fields, methods, constructors, and super 

classes or implemented interfaces
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• Find out what constants and method declarations belong to an interface

• Create an instance of a class whose name is not known until runtime

• Invoke a method on an object, even if the method is not known until runtime

Now, let us look at the above code in more detail (the newly added code is in italic and 

bold font). In the current implementation of Java RMI, an instance of the 

UnicastServerRef is created whenever a remote object is exported either implicitly (by 

extending UnicastRemoteObject) or explicitly through the exportObject method of the 

UnicastRemoteObject class. A remote object is not ready to receive requests until it is 

exported. For each instance of the UnicastServerRef, instances of the 

RMIServerlnterceptor are downloaded to the process where the remote object is defined. 

This is possible because the user-defined interceptors are implementations of 

Java. io. Serializable.

In the classes UnicastServerRef and the modified UnicastRef that we will introduce 

below, the interceptors are looked up on a per-request basis. This means that request at 

both client and server sides will check if interceptors have been registered into the 

Interceptor Server, whose reference can be retrieved from the RMI Naming service 

(rmiregistry) on local host. The Interceptor Server, denoted as iserver is a remote object 

providing interceptor registration and lookup services in each host and is registered in a 

host using a reserved name “rmi://localhost/InterceptorServer”, when the testing 

environment is started up. For simplicity, we assume that there is only one process 

running on each host with one interceptor server for each process, in this testing 

environment. The reason we make this assumption here is that the code for looking up the 

Interceptor Server (i.e.: iserver = (RMIInterceptorServer)

Java.rmi.Naming.lookup(“rmi://localhost/InterceptorServer ”);) is generic to the Java 

Runtime Environment in a machine and assumes only one Interceptor Server (through the 

name localhost/InterceptorServer) on this machine. Therefore, such a solution to the 

interception service in the middleware is not able to handle situations when multiple 

processes are running on the same host.
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Now, because the interceptors are looked up on a per-requests basis, we get one or more 

interceptors for each remote object on the server side. Whenever a method invocation is 

made remotely, this invocation will be directed to the dispatch method at the server side, 

which in turn forwards this invocation to the object implementation via the statement 

method.invoke. The additional code (user implemented) is executed before and after this 

statement by making a series of calls to the registered interceptors. The method is an 

instance of the class Method in the Java Reflection, which provides information about, 

and access to, a single method on a class or interface. The statement method. invoke(obj, 

params) takes an object (obj) and an array of objects (params) as parameters and invokes 

the underlying method represented by this Method object, on the specified object (obj) 

with the specified parameters (params).

As far as the testing control concerns, the information we are interested in within the 

dispatch method are the interface name and the method name of a remote object that are 

invoked remotely. Here, we assume that the remote object being called only implements 

one remote interface, and this information can also be obtained via Java Reflection: 

obj.getClassQ.getlnterfacesQ. In fact, a remote object may implement more than one 

remote interface in a real application. In such a case, the interface name cannot be 

obtained simply by calling interfaces[ Oj.getNameQ because the invoked method may be 

defined in some other interfaces (e.g.: interfaces[1]), and this information cannot be 

known until run-time. Again, this problem can be solved by the Java Reflection. By using 

Java Reflection, we can compare at run-time, the name and parameters of the invoked 

method with those of the public methods defined in all implemented remote interfaces. If 

there is one method matching that of the invoked method, then the interface that defines 

that specific method is the one that we are looking for. However, this solution is based on 

another assumption: there cannot be identical public method definitions in those 

implemented interfaces. In our research, we just choose the first assumption for 

simplicity.
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After the interface and method names are acquired, they are encapsulated into a 

ServerRequestlnfo object (see class definition in figure 4.7), which is then passed as a 

parameter into the receive_request and send_reply methods. The ServerRequestlnfo 

object is also part of the extended API and provides some information about this remote 

event (just like that of the ServerRequestlnfo in the CORBA core specification [16]). This 

information will be used for test control purposes. We will explain how the testing 

components use this information in Chapter 5.

Very similarly, we add two interception points (send_request and receive_reply) in the 

UnicastRef, right before and after this object carries out a remote method invocation. The 

modified class looks like this:

import ca, uwindsor. kunwang. rm i interceptor. *;
II import other packages;
public class UnicastRef implements RemoteRef {

private RMIClientlnterceptorf) interceptors;
private RMIInterceptorServer iserver;
private ClientRequestlnfo re -  new ClientRequestlnfoQ;

...II  Other part of this class

public Object invoke(Remote obj, java.lang.reflect.Method method,
Objectf] params, long opnum) throws Exception {

ClassfJ interfaces = obj.getClass().getInterfaces();
String interfacename -  interfaces[OJ.getNameQ;

i f  (!interfacename.equals(“ca.uwindsor.kunwang.rmUnterceptor.
RMIInterceptorServer”)) {

try{
i f  (iserver —  null)

iserver = (RMIInterceptorServer)java. rmlNaming. lookup 
(“rmi://localhostZInterceptorServer”);

} catch (Exception e) {
}
re. setlnamefinterfacename);
re.setMname(method.getName()); 
re. setTarget(obj);

i f  (iserver != null && interceptors —  null)
interceptors = iserver.getClientlnterceptorsQ;
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}

i f  (interceptors != null) {
fo r  (int i = 0; i < interceptors, length; i++) 

interceptors[iJ.send_request(re);
}

II Real Method Invocation 
call.executeCallO;

i f  (interceptors != null) {
fo r  (int i = 0; i < interceptors, length; i++) 

interceptors[i].receive_reply(re);
}

... 11 other part of this method
}

...II  other part of this class
}

Figure 4.6: Pseudo-code of the Modified UnicastRef class

As mentioned previously, the code in italic and bold font is injected into the UnicastRef 

before compiling a program. The UnicastRef is an instance of the RemoteRef which 

represents the handler of a remote object. A RemoteStub (e.g., a stub class) uses an 

instance of the UnicastRef to carry out a remote method invocation to a remote object. 

This invoke method takes as parameters the remote object reference being called upon, 

the method to be invoked, the parameter list and a hash that may be used to represent the 

method, and returns the result of the remote method invocation. In the invoke method, the 

real method invocation is carried out by the statement: call.executeCall. The interceptor 

downloading mechanism in UnicastRef is the same as that of UnicastServerRef, so we 

also get one or more instances of the RMIClientlnterceptor for each instance of 

UnicastRef at the client side.

In figure 4.3, we also showed that the modified Java core API utilizes our Extended API, 

which basically contains ten class files, namely RMIClientlnterceptor,
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RMIServerlnterceptor, RMIInterceptorServer, Requestlnfo, Requestlnfolmpl, 

ClientRequestlnfo, ServerRequestlnfo, ClientRequestlnfoImpl, ServerRequestInfoIm.pl and 

the Interceptorlnitializer. All user-defined interceptors must extend the 

RMIClientlnterceptor and/or RMIServerlnterceptor either directly or indirectly. In order 

to become part of the RMI implementation, user-defined interceptor instances must be 

registered into the RMIInterceptorServer in either of the following two ways:

1) By registering an associated RMI interceptor initializer, which implements the 

Interceptorlnitializer interface.

2) By writing a program, in which the reference to the InterceptorServer must be 

obtained and the methods addClientlnterceptor and/or addServerlnterceptor must 

be called explicitly.

The ten classes described above provide users a “standard” method to create their own 

interceptors, to register them into the middleware and to obtain information about a 

remote event. We say this method is “standard” because it allows users to inject their own 

code into the RMI middleware by implementing and extending a set of CORBA-like 

classes, and starting this interception service in a way very similar to that of CORBA. The 

static relationships among these interception interfaces is given in figure 4.7:
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Figure 4.7: Static Relationship for the Interception Service Implementation
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More precisely, a user who wants to build interceptors into the RMI middleware by 

means of the first method should follow the three steps:

1. Write his own interceptor implementation by extending RMIClientlnterceptor and/or 

RMIServerlnterceptor

2. Implement the Interceptorlnitializer interface and registers the above interceptors by 

calling the addClientlnterceptors and/or addServerlnterceptors on the 

RMIInterceptorServer, whose reference is passed into the Interceptorlnitializer as a 

parameter when it starts up. The location of the user-implemented 

Interceptorlnitializer class is specified in a batch file, which is a command file used to 

start the RMIInterceptorServer.

3. Start up the RMIInterceptorServer provided by our interception service.

This is a simple way to register user-defined interceptors when the testing environment 

starts up. In the case that a user would register interceptors by means of the second 

method (dynamically register interceptors), one must start up the RMIInterceptorServer 

before running the program containing the code of registering interceptors. This is a more 

complex yet flexible way to register user-defined interceptors, which gives users the 

flexibility to decide when to register or unregister the interceptors on the fly. A sample 

code for this approach is given below:

Create an array o f RMIClientlnterceptor cinterceptors;
Create an array o f RMIServerlnterceptor sinterceptors;
try {

i f  (iserver = = null)
iserver -  (RMIInterceptorServer)java. rmi.Naming, lookup

(“ rmi ://localhost/InterceptorServer ”);
else {

H Add client interceptors
iserver. addClientlnterceptors (cinterceptors);
// Add server interceptors
iserver.addServer!nterceptors(sinterceptors);

}

} catch (Exception e) {
System, err.println(“Obtaining Iserver exception: “
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+ e.getMessageQ);
e.printStackTraceO;

}

Fig. 4.8: Sample code for manually register interceptors

No matter which way to use, the UnicastRef and UnicastServerRef will download those 

interceptors (via getClientlnterceptors and getServerlnterceptors) as local objects 

whenever allowed.

In our testing architecture, the interceptor implementation will make a series of calls to 

the local test controller in order to hook up the testing control mechanism. However, the 

built-in interception service itself is independent of any testing tool.
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5. Testing Architecture

Now with the help of the interception service in the middleware layer, we are able to 

incorporate a testing environment to control the remote calls without modification of the 

AUT. Our testing environment uses this facility to realize the automated control over the 

input and the remote call events. Figure 5.1 illustrates its architecture when the AUT (i.e., 

online conference) consists of two processes running on two hosts and communicating 

with each other via Java RMI. In this figure, we only show method calls in one direction 

(from process 1 to process 2); the control flow of method calls from the other direction is 

analogous. We also omit the Stubs & Skeletons Layer and the Transport Layer since the 

only layer we are interested in here is the RRL, in which we can illustrate how the testing 

components work together to control the testing process. In this architecture, process 1 

holds a remote object objl defined in process 2 and process 2 holds a remote object obj 1 

defined in process 1. With this setting, whenever a remote call is made on an object obj, it 

is caught both at the send_request at the caller’s side and at the receive_request at the 

callee’s side. Analogously, when this call is returned, it is caught both at the send_reply at 

the callee’s side and at the receive_reply at the caller’s side. These four control points 

correspond to the four types (i.e. qc, qs, ps, pc) of remote call events defined in the test 

scenario. Because the AUT processes communicate with each other in a peer-to-peer 

manner, we register both the RMIClientlnterceptor and the RMIServerlnterceptor in each 

Java Virtual Machine to capture method invocations on both remote objects.

The testing environment is distributed: each process under test (PUT) has a local path 

controller. During the lifecycle of a request/reply, the client and server interceptors 

inform the local path controllers of the request or response that they catch and will let the 

execution of AUT continue only with the permission from the path controllers. These 

path controllers contain the same path constraint information contained in the test 

scenario, and the current global states of the running AUT (i.e. which events have already 

happened). Each PUT also has a local test driver, which reads the test case file and is in 

charge of providing local input to it at an appropriate time. The local test drivers make 

their decision on when to provide input to the process based on the permission from local
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path controllers. After an i/o event or remote event happens, both the test driver and 

interceptors will notify the local path controller to update the global states of the running 

AUT. This controller then informs the update to the communicator, which in turn 

broadcasts this information to all other path controllers.
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Figure 5.1: The distributed testing environment with automated control
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The condition O to be checked on the output is kept in a centralized test oracle. In a 

general sense, a test oracle is means of checking test results against expected results. The 

central test oracle in our work is a program that will receive an output (test results) from 

each local test driver, determine if a test passes or fails with respect to the given test 

oracle (expected results) derived from the requirement specification, and reports the 

errors whenever encountered.

In the above on-line conference example, there is one remote object in each process. The 

path constraint (C = {(oel, iel), (oe 3, ieA), (iel, ie 3), (ie 3, re I)}), all i/o events and 

remote events are initially given to the two path controllers. A copy of the i/o events are 

also given to the two local test drivers. The test driver of process 2 initially asks for 

permission from its controller, and is blocked because of condition (iel, ie3). The test 

driver of process 1 is granted the permission to give input iel to process 1 and update the 

controller’s status. The controller will broadcast this update to all other controllers via the 

central communicator and wake up those processes blocked on it. In particular, when the 

test controller of process 2 receives this message, it enables the test driver to feed input of 

ie 3. However, if  process 1 proceeds to make a remote call permissionRequest (re I) before 

ie3 happens, this call is first caught by an instance of the RMIClientlnterceptor, which 

informs the path controller of process 1. Since (ie3, rel) E C, the test controller will not 

allow rel to happen until input ie3 is given to process 2. By this control, we guarantee 

that both processes locally pick up the same number.

During a testing procedure described above, the test controller plays a key role in 

deciding whether or not to allow an event to happen. Like the RMI Interceptors, all test 

controllers must either implement the TestController interface or extend a subclass of 

type TestController, which is also part of the Extended API. The class diagram of the 

TestController is shown in figure 5.2:
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permissionRequestfpid: String, came: String, mname: String, num: in t, interceptpoint: String) 
permissionRequest(pid: String, value: String, num: int, type: String) 
permissionResponseQ
permissionResponse(pid: String, value: String, num: int, type: String) 
acceptUpdate(autstatus: Vector) 
getProcessIdQ: String

« in terfa ce»
TestController

Figure 5.2: Class diagram of the TestController

In the interface TestController, we define two permissionRequest methods, one for the 

remote events and the other for the input events. The signatures of these methods are 

based on the definitions in section 2.3, where input events and remote events have 

different formats, which will be used to identify a specific event by the controller. We 

also define two permissionResponse methods. The first permissionResponse is called by a 

test driver or an interceptor, after an input or remote event successfully completes. 

Because we do not place any constraint over the orders of output events, but still need to 

notify other controllers that a specific output event has happened, we call the second 

permissionResponse method after an output event has happened.
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5.1 Control of Remote Events -  Implementing Interceptors

For the control of the orders of remote events, we must be able to call the 

permissionRequest method on the TestController at certain interception points (i.e., “qc”, 

“gs”, “pc”, and “ps”) to get permission before a process is allowed to proceed, and then to 

call the permissionResponse method after this event happens. This can be implemented in 

the user-defined interceptors. The code of a client side interceptor example, 

Ciientlnterceptor is given bellow:

import ca.uwindsor.kunwang.rmi .interceptor. *;
public class Ciientlnterceptor extends RMIClientlnterceptor {

private TestController tc; 
private String controllerhost; 
private String pid;
private int qcnum = 0; // number of invocation 
private int lastdot;
private String iname; // Name of the called interface without package name 
private Class calledClass; // Class object of the called class 
private Class tclnterface; // Class object of the test controller

...// Other variable definitions

public ClientInterceptor(String pid) {
super(pid);

}

public void send_request(RemoteEvent re) {
try

/* check if the called class is an instance of the TestController, and 
if it is, the test controller will not be retrieved.
*/

calledClass = Class.forName(re.getIname()); 
tclnterface = Class.forName

("ca.uwindsor.kunwang.rmi.testing.TestController"); 
lastdot = re.getlname().lastlndex0f('.'); 
iname = re.getIname().substring(lastdot +1);

if  (tc = = null && !tcInterface.isAssignableFrom(calledClass)) { 
tc = (T estController)j ava.rmi.Naming.lookup

("rmi ://localhost/TestController");
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}

if (! iname.equals("TestController") && re.getMname(). equals
("permissionRequest")) {

qcnum ++;
tc.permissionRequest(pid, iname, re.getMname(), qcnum,

"qc”);
tc.permissionResponse();

}
} catch (Exception e) {

System.err.println("Obtaining IServer exception:"
+ e.getMessage()); 

e.printStackTrace();

}
}

public void receive_reply(String iname, String mname) {
//  We do not need to implement this interception point according to the 
/ /  test scenario specification. We only need to implement control at one 
/ /  interception point: "qc

}

public void setTestController(String controllerhost) { 
this. controllerhost = controllerhost;

}

public void setProcessId(String processid) { 
pid = processid;

}
}

Figure 5.3: Code for an example of client side interceptor

The class Ciientlnterceptor has a constructor taking the p id  as its parameter. This 

parameter represents the id for the process to which this Ciientlnterceptor will delegate 

requests, and is passed into the constructor by the interceptor server when the server is 

started. In the method send_request, we first determine if the called class is an instance of 

the interface TestController. If it is an instance of the TestController, or the current test 

controller (tc) is not null, we do not need to make a remote call to retrieve the test 

controller.
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In an interceptor’s implementation, if  an interceptor itself makes a remote invocation, it 

shall have some means of breaking infinite recursion. For example: the client calls the 

method X  on a remote object; this call is captured at the client-side stub and the 

send_request is called, which makes remote invocation permissionRequest or 

permissionResponse on the test controller; so send_request is called, which again calls 

method permissionRequest or permissionResponse', and so on unless the implementation 

of send_request breaks the recursion. In the Ciientlnterceptor, the second if  statement: if  

(iname.equals(“OnlineConference ”) && re.getMnameQ. equals ( “permissionRequest ”)) 

is very important because it avoids the remote call recursion and unnecessary remote calls 

to the test controller.

5.2 Control of Input Events -  Test Drivers

Apart from enforcing some constraints over the orders of remote events in the RMI 

Interceptors, we also enforce constraints over the orders of input events. This is realized 

in the test drivers. The control of input events is quite straight forward: we only need to 

request permission from the Test Controller by calling the permissionRequest method 

before the driver feeds input to its process (input event) and then send a response to the 

Test Controller by calling the permissionResponse method after this input event happens. 

We will not discuss the code of a test driver in detail since the syntax for making these 

requests and responses in a test driver is very similar to those in a RMI interceptor and 

they are different only in parameter formats.

53  Control Algorithm

In previous parts of this chapter, we have discussed how the testing components work 

together to realize the control over the orders of occurrences of input events and remote 

events. We also talked about in detail how this control is performed in RMI interceptors 

and test drivers respectively. Now, we will discuss how this control is implemented in the 

Test Controller. The algorithm for a test controller, TestController is given bellow:

public class TestControllerlmpl extends UnicastRemoteObject
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implements TestController {

Definitions o f  instance variables: pointers, tests, constraints and communicator;

public synchronized void acceptUpdate(Vector autstatus) throws RemoteException { 
pointers = autstatus; 
this.notifyAllQ;

}

public synchronized voidpermissionRequest(String processid, String classname, String mname, int
num, String interceptpoint) {  

permissionRequest(processid, classname, mname, num, interceptpoint, constraints);

}

private void permissionRequest(String processid, String classname, String mname, int num, 
String interceptpoint, LinkedList constraints) {

boolean flag  = false; II Signal whether a specific event has happened.

// Record the updated states after a certain event happens. 
updatedstates = new HashtableQ;
tr y {

Decide whether this reqEvent is one specified in the test scenario;

if  (reqEvent != null) {  
while (true) {

II To check if a certain event is contained in the test constraint.
boolean inConstraint = false;
fo r  (int i = 0; i < constraints. sizeQ; i++) {

Vector aconstraint = (Vector)constraints.get(i); 
fo r  (int j  = 0 ; j < aconstraint. sizeQ; j+ + ) {

i f  reqEvent matches a specific event in the 
element {

pos  = pointers.get(i); 
i f  (j> p o s)
System. out.println(eventname + " is 

blocked here!”);
w aif);

} else {
updatedconstraints.pufinew 
Integer(i), new Integerfj + i)); 
flag  = true;

}
break;

}
}

H  A certain event is not contained in the test constraint.

if  (UnConstraint && i == constraints.sizeQ -1 )  {  
i f  (happentime ==  0) {

rightNow = new DateQ; 
happentime = rightNow.getTimeQ;

}
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flag  =  true;
}

}

// I f  the reqEvent has happened, break from the loop; otherwise,
/ /  try to get permission again, 
i f  (flag)

break;
}

System.out.println(eventname + " has happened!");
}

}  catch (Exception e) {
e.printStackTraceQ;

}
}

public voidpermissionResponseQ {
try {

communicator.updateStatus(updatedconstates);
}  catch (Exception e) {

e.printStackTraceQ;
}

public static void main(String[] args) { 
try {

Initialize the pointers, tests and constraints;
Retrieve the reference to the communicator;

}  catch (Exception e) {
System, err.println("Test Controller exception: " + e.getMessageQ); 
e.printStackTraceQ;

}
}

}

Figure 5.4: The algorithm for a test controller

To control the execution orders, this algorithm uses some important data structures to 

store the test constraint and test cases derived from the test specification file, and record 

the current status of the running processes. These data structures include:

• constraints, which is a Java LinkedList to store the test constraint derived from the test 

specification. The constraint given in our test scenario is C = {(oe 1, iel), {pe3, ie4), 

(iel, iel), (ie3, rel)}, containing four elements separated by commas. Each element 

can be assigned a number (0, 1, ..., n), and within each element ((oe 1, iel) for 

example), the position of an event in this element denotes the specified order of
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occurrence of this event. In this example, the positions of oe 1 and iel are 0 and 1 

respectively, so oel should happen before iel.

• pointers, which is a Java Vector to record the positions of events that should happen 

next in all elements of the test constraint. The size of the variable pointers is the 

number of elements contained in the test constraint, and the values in the pointers are 

the current positions for each element in the test constraint. A value in pointers will 

increase by one if a specific event happens.

• tests, which is a Java Hashtable to store the test cases obtained from the test 

specification. This variable stores the format of each event specified in the test 

scenario and allows a requesting event to be compared with these events.

Now, whenever a process calls the permissionRequest of the TestController with 

parameters, the TestController will decide whether this requesting event (reqEvent) is 

specified in the tests. If it is the one that is specified in the test scenario, then for each 

element in the test constraint, the algorithm retrieves from pointers, the position (pos) of 

the event that is the next event to be executed in this element. This algorithm checks if the 

position (/) of reqEvent is greater than pos. If yes, it shows that certain events that should 

happen before reqEvent have not happened yet. So, this process should be blocked. 

Otherwise, this process is granted the permission to proceed, and the system states should 

be updated.

After this event happens, a process calls the permissionResponse of the TestController to 

notify the communicator of the update of the system status. The communicator in turn 

calls the acceptUpdate of every other TestController to notify them of this update. This 

method resets the values of pointers to the new values in autstatus and wake up all the 

processes that are waiting on the TestController.
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5.3 Automating Testing Environment Setup

As mentioned in Chapter 3, the testing components in the testing environment are 

distributed, which allows us to design a scalable testing architecture. The central 

communicator and the central test oracle can be installed on any dedicated host(s). For 

performance, this architecture requires that a test driver, a test controller and an RMI 

interceptor server to be installed on the same host with a process. Although the test 

controllers are running in the same hosts as their processes, they have to be Java remote 

objects that work both as clients and servers, and communicate with test drivers and the 

communicator via Java RMI. Our testing environment is scalable in the sense that the size 

of an AUT can be larger or smaller. In the example showed in figure 5.1, the AUT only 

consists of two processes running on two machines; however this testing architecture 

allows users to handle an AUT consisting of any number of processes and hosts, as long 

as they comply with those specifications defined in our testing architecture. This 

scalability is facilitated by allowing users to configure an XML file, i.e., 

configuration.xml in which they can configure the global settings of the testing 

environment. This XML file must conform to the Document Type Definition (DTD) 

defined in the testing environment, in order to be validated and interchanged by 

independent groups of developers. The DTD file (Configuration.dtd) defined in our 

testing infrastructure is given below:

<?xml version-1.O' encoding='utf-8'?>

< ! —

DTD for the Configuration.xml.
— >

<!ELEMENT TestConfig (Communicator, TestOracle, (InterceptorServer, Controller, 
Driver)+)>
<!ELEMENT Communicator (IP, TotalProcess, Source, Policy)>
<! ELEMENT TestOracle (IP, TestCase, Source, Policy)>
<! ELEMENT InterceptorServer (Name, Source, Policy, InterceptorlnitializerClass,

ProcessID)>
<! ELEMENT Controller (Name, IP, Source, Policy)>
<! ELEMENT Driver (Name, AUTCommand)>
<! ELEMENT IP (#PCDATA)>
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<! ELEMENT TotalProcess (#PCDATA)>
<! ELEMENT Source (#PCDATA)>
<! ELEMENT Policy (#PCDATA)>
<! ELEMENT TestCase (#PCDATA)>
<! ELEMENT Name (#PCDATA)>
<! ELEMENT InterceptorlnitializerClass (#PCDATA)>
<! ELEMENT ProcessID (#PCDATA)>
<! ELEMENT AUTCommand (#PCDATA)>

Figure 5.5: The DTD definition for the Configuration.xml file

Now, let us look at some details of the above DTD. The testing environment denoted as 

the root element TestConfig defines a single Communicator and a single TestOracle. For 

each process in an AUT, an InterceptorServer element, a Controller element and a Driver 

element are required.

The Communicator is an ordinary RMI remote object; hence its sub elements should 

contain IP, Source, and Policy, which are all required system properties when the 

Communicator is started. These three elements represent the IP address of the host that 

the communicator will be running on, the location of the source files of the Serializable 

classes that may be downloaded, and the location of the policy file (which specifies the 

security policy for the Communicator host machine) respectively. The TotalProcess 

element in the Communicator represents the number of processes under test. We use it 

here because when we start the processes one by one, we need to block the progress of a 

test driver (thus block the progress of its process) until all processes successfully start up 

and ready to communicate with each other. This number is also used in the TestOracle to 

determine if  all processes have terminated successfully.

The TestOracle maintains a single copy of the test case file, which is represented by the 

TestCase element. The Name element in each parent element is used as the name of the 

generated batch file. The InterceptorlnitializerClass element denotes the fully qualified 

name of the user-implemented Interceptorlnitializer class, and will be used as a run-time 

argument to the Interceptor Server. The ProcessID in the InterceptorServer will be 

obtained by interceptors as part of information to make permission requests from the test
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controller. The AUTCommand element tells the test driver where to find the PUT to be 

started.

A utility is provided to read the testing configuration and generate all the necessary batch 

files to start the testing components, interception services, and processes. An sample 

configuration of the Configuration.xml file for the OnlineConference application looks 

like this:

<?xml version-1.0' encoding='utf-8'?>
<!DOCTYPE TestConfig SYSTEM "Configuration.dtd">

<TestConfig>

<Communicator>
<IP>137.207.16.49</IP>
<T otalProcess>2</T otalProcess> 
<Source>D:\thesis\implementation\</Source> 
<Policy>D:\thesis\implementation\policy.txt</Policy> 

</Communicator>

<TestOracle>
<IP>137.207.16.49</IP>
<TestCase>D:\Thesis\implementation\testcase.txt</TestCase>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>

</TestOracle>

<InterceptorServer>
<Name>iserverO</Name>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>
<InterceptorInitializerClass>test.MyInterceptorInitializer
</InterceptorInitializerClass>
<ProcessID>Peer-0</ProcessID>

</InterceptorS erver>

<InterceptorServer>
<Name>iserverl </Name>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>
<InterceptorInitializerClass>test.MyInterceptorInitializer
</InterceptorInitializerClass>
<ProcessID>Peer-1 </ProcessID>
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</InterceptorServer>

<Controller>
<N ame>controllerO</N ame>
<IP>137.207.16.49</IP> 
<Source>D:\thesis\implementation\</Source> 
<Policy>D:\thesis\implementation\policy.txt</Policy> 

</Controller>

<Controller>
<N ame>controller 1 </N ame>
<IP>137.207.234.189</IP>
<Source>D:\thesis\implementation\</Source>
<Policy>D:\thesis\implementation\policy.txt</Policy>

</Controller>

<Driver>
<Name>driverO</Name>
<AUT>D:/Thesis/implementation/PeerO,bat</AUT>

</Driver>

<Driver>
<Name>dri ver 1 </N ame>
<AUT>D:/Thesis/implementation/Peerl.bat</AUT>

</Driver>

</TestConfig>

Figure 5.6: A sample Configuration.xml file

By configuring the above file and running the utility, ConfigGenrator, we automatically 

generate a single copy of batch file for the Communicator and for the TestOracle 

respectively and a set of batch files for the Interception Server, Test Controller and Test 

Driver for the AUT. The former two batch files are to be copied to other machine(s) and 

the latter three batch files together with the process are to be delivered to each individual 

machine. We also maintain a single copy of the testcase.txt file because it is frequently 

updated for different test scenarios. Currently, we install the testcase.txt file in the same 

machine with the TestOracle, through which the test drivers and test controllers will read
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this file into its local drive each time they start. Here is an example of the generated batch 

file for TestOracle (testoracle.bat), based on the information in Configuration.xml:

java -Djava.rmi.server.codebase=file:/D:\thesis\implementation\

-Djava.rmi.server.hostname=l 37.207.16.49 -Djava.security.policy=policy.txt 

TestOraclelmpl

namingserver=rmi://l 37.207.16.49/ 

totalprocess=2

Figure 5.7: An example of generated batch file for TestOracle
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6. Overview of CORBA

6.1 A Brief Overview of Common Object Request Broker Architecture

This section reviews some fundamental concepts in the “Common Object Request Broker 

Architecture: Core Specification”. It is by no means an introduction to CORBA, but 

contains some important information that helps understand how CORBA interception 

service works and compare the CORBA interception service and the RMI interception 

service introduced in this work.

CORBA is an open standard for distributed object development defined by the Object 

Management Group (OMG). “CORBA manages details o f component interoperability, 

and allows components to communicate with one another despite different locations, 

platforms and implementing languages ” [16, 31], The interface, which is defined by IDL 

(CORBA Interface Definition Language), is the only way that components communicate 

with each other.

“The most important part in CORBA architecture is the Object Request Broker (ORB). 

The ORB is the middleware that establishes the client-server relationships between 

components. Using an ORB, a client can request services from a server object, whose 

location and implementation are completely transparent” [16]. “The ORB is responsible 

fo r all o f the mechanisms required to find the object implementation for the request, to 

prepare the object implementation to receive the request, and to communicate the data 

making up the request. The interface the client sees is completely independent o f where 

the object is located, what programming language it is implemented in, or any other 

aspect that is not reflected in the object’s interface ” [16]. In this way, the ORB provides 

interoperability among applications on distributed machines in heterogeneous 

environments and seamlessly interconnects multiple components [16, 31], Figure 6.1 

shows the components of ORB architecture in CORBA applications:
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Figure 6.1: Main components of the ORB architecture and their interconnections [16]

In this architecture, a Client can send a request to the server object either by using the 

Dynamic Invocation interface or an IDL stub. The Client can also directly communicate 

with the ORB interface for some services. The Object Implementation receives a request 

as an up-call either through the IDL generated skeleton or through a dynamic skeleton.

The Object Implementation may call the Object Adapter and the ORB for services. The 

client performs a request by having access to an Object Reference to an object 

implementation, initiates the request by calling IDL stubs or by constructing the request 

dynamically. The receiver of the message cannot tell how the request is invoked because 

the dynamic and stub interface for invoking a request have the same signature. The ORB 

intercepts the request, locates the appropriate implementation, transmits parameters, and 

passes control to the Object Implementation through an IDL skeleton or a dynamic 

skeleton. While performing the request, the object implementation may obtain some
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services from the ORB through the Object Adapter. When the request is complete, control 

and output values are returned to the client [16],

6.1.1 OM GIDL

“The OMG Interface Definition Language (IDL) is the language used to describe the 

interfaces that client objects call and object implementations provide. An interface 

definition written in OMG IDL completely defines the interface and fully specifies each 

operation’s parameters. An OMG IDL interface provides the information needed to 

develop clients that use the interface’s operations ” [16].

6.1.2 Java IDL

Java IDL is the binding of the OMG IDL concepts to Java programming language. “Java 

IDL adds CORBA (Common Object Request Broker Architecture) capability to the Java 

platform, providing standards-based interoperability and connectivity. Java IDL enables 

distributed Web-enabled Java applications to transparently invoke operations on remote 

network services using the industry standard OMG IDL (Object Management Group 

Interface Definition Language) and HOP (Internet Inter-ORB Protocol) defined by the 

Object Management Group. Runtime components include an Object Request Broker 

(ORB) for distributed computing using HOP communication ” [32].

Detailed explanations of the Dynamic Invocation, IDL Stubs, ORB interface, Static IDL 

Skeleton, Dynamic Skeleton and Object Adapter are beyond the scope of this research; 

interested users could refer to [16] for more information.

6.2 CORBA Portable Interceptors

As introduced at the beginning of this thesis, our testing components can be reused in 

CORBA applications with only minor changes. The recent CORBA specification 

supports portable interceptors, through which one can easily write and attach portable 

ORB hooks that will intercept any ORB-mediated invocation. The following part is not 

intended to present an overview of CORBA portable interceptors', it rather focuses on
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some of their features, which are necessary to understand how our testing components can 

be reused in a CORBA environment.

The CORBA Object Request Broker (ORB) provides hooks — Portable Interceptors, 

through which ORB services can intercept the normal flow of execution of the ORB. 

These portable interceptors provide a mechanism for plugging in additional ORB 

behavior, or, by modifying the communications between client and server, for modifying 

the behavior of the ORB [18]. CORBA currently defines three types of interceptors, i.e., 

lORInterceptor, ClientRequestlnterceptor, and ServerRequestlnterceptor [16, 18]. In the 

testing architecture that we will implement in CORBA, we will use the latter two, which 

are called request interceptors in general.

“A request Interceptor is designed to intercept the flow o f a request/reply sequence 

through the ORB at specific points so that services can query the request information and 

manipulate the service contexts which are propagated between clients and servers" [16, 

18]. Figure 6.2 illustrates the simplified ORB architecture with Portable Interceptors:

Client Program

C ient 01

ClientR squestlntei ceptor

Request/Response

Server Program

Server ORB

ServerR jquestlntei ceptor

Networks

Figure 6.2: Simplified ORB architecture with Portable Interceptors
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A ClientRequestlnterceptor intercepts the flow of a request/reply sequence through the 

ORB on the client side, while a ServerRequestlnterceptor intercepts the flow of a 

request/reply sequence through the ORB on the server side. During a request/reply 

lifecycle, each request Interceptor is called at a number of interception points, among 

which we are only interested in the send_request and reeeive_reply in the 

ClientRequestlnterceptor, and the receive_request and send_reply in the 

ServerRequestlnterceptor. The flow of control for exercising these interception points is 

very similar to those we have described in Java RMI interception services. In fact, the 

interception services we build in Java RMI follow the working mechanism of CORBA 

portable interceptors.

A user-defined interceptor must implement, either directly or indirectly the 

ClientRequestlnterceptor and/or ServerRequestlnterceptor, in order to be a means by 

which ORB services gain access to ORB processing and be effectively becoming part of 

the ORB. Request interceptors must be registered with an associated ORBInitializer 

object, which implements the ORBInitializer interface. When an ORB is being initialized, 

it shall call each registered ORBInitializer, passing it an ORBInitlnfo object, which is 

used to register its interceptor(s).
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7. Reusing the Testing Components in CORBA

In section 2.2, we have mentioned that we provided an interception service, which allows 

application testers to plug in their testing code into the RMI middleware layer, by 

implementing and extending a set of CORBA-like classes, and starting this interception 

service in a way very similar to that of CORBA. In the following, we summarize the 

similarities between CORBA interception service and the interception service we have 

provided in Java RMI:

CORBA Interception Service Java RMI Interception Service

Implementing User-

defined

Interceptors

By implementing the 

ClientRequestlnterceptor and/or 

ServerRequestlnterceptor interfaces

By extending the 

RMIClientlnterceptor and/or 

RMIServerlnterceptor classes

Interception Points

and Flow of Control

1. send_request,

2. receive_request,

3. send_reply,

4. receive_reply

1. send_request,

2. receive_request,

3. send_reply,

4. receive_reply

Accessing

Request/Reply

Information

By calling methods on 

the ClientRequestlnfo/ 

ServerRequestlnfo interfaces

By calling methods on the 

ClientRequestlnfo/ 

ServerRequestlnfo interfaces

The Way to

Register

Interceptors

By implementing the 

ORBInitializer interface and 

add interceptors using an 

ORBInitlnfo object

By implementing the 

Interceptorlnitializer interface and 

add interceptors using an 

RMIInterceptorServer object

Multiple

Interceptors
Support Support

Start the

Interception Service

By specifying the System property: 

org. omg.Portablelnterceptor. ORBIni 

tializerClass in the command line 

when running a Java program

By starting the interceptor server with 

the argument:

ca. uwindsor. kunwang. rmi. interceptor. Int

erceptorlnitializerClass

in the command line

Table 7.1: Comparisons between CORBA and Java RMI for implementing and

registering interception services
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When implementing user-defined interceptors in Java RMI, we just use different class 

names from those in CORBA for client and server interceptors. The reason that we define 

these “root” interceptors as classes rather than interfaces is that we must include the 

instance variable pid  (process id) in user-defined interceptors for testing purposes. These 

two “root” interceptors define a unique constructor that takes a pid  as parameter, and this 

forces users to initialize the process id when an interceptor is created. In this way, we can 

assure the process id is an integral part of the interceptors. The interception points and the 

flow of control of a request/response are exactly the same as those in CORBA. When 

accessing request or reply information in Java RMI, we also adopt the same names for the 

Requestlnfo objects as those in CORBA. When registering user-defined interceptors in 

Java RMI, we choose different names for the interceptor initializer interface and the 

object used for adding interceptors. In the ORBInitializer interface, users must implement 

the pre_init and/or the post_in.it methods, while in the Interceptorlnitializer, users only 

need to implement the init method. For the ORBInitlnfo and the RMIInterceptorServer 

objects, the methods for adding client or server interceptors are different only in names. 

Finally, there are certain differences between the Java RMI and CORBA when starting 

the interception service. In Java IDL, there is a pre-defined system property: 

org. omg.Portablelnterceptor. ORB Initializer Class for specifying the fully qualified class 

name of the user-implemented ORBInitializer. However, we do not have such a pre

defined system property, so we provide a similar property: 

ca. uwindsor. kunwang. rmi. inter ceptor.Inter ceptor Initializer Class, which is specified in 

the batch file for starting the Interceptor Server. The user implemented fully qualified 

name of the Interceptorlnitializer must be specified in the configuration.xml file.

Now, with the help of CORBA portable interceptors, one can easily incorporate our 

testing components into the CORBA architecture. When adopting CORBA architecture, 

we consider using the Java ORB as our underlying CORBA ORB implementation. The 

reason that we have chosen the Java ORB at this time is that it is free software shipped 

with J2SE 1.4.1. The Java ORB in the J2SE 1.4.1 platform complies with the CORBA

2.3.1 specification and supports the IDL to Java language mapping specification, the
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Interoperable Naming Service specification and the Portable Interceptor specification. 

Apparently, CORBA-based applications written only in Java language are also platform- 

independent because of the portable feature of Java language and also because the Java 

ORB is shipped with J2SE 1.4.1 and can be installed on almost any operating system. The 

Sun Java ORB is a good and free ORB implementation; however, there are many 

advanced features of CORBA that are missing. For example, there are no Transaction 

Service or Event Service in Sun Java ORB, neither does it support IDL to C++ language 

mapping, i.e., it cannot translate IDL to C++ code, which means that CORBA 

applications using Java ORB as the middleware cannot incorporate systems written in 

other languages.

Of course, we may use different ORB implementations as long as they support CORBA 

Core Specifications such as Naming Service, Portable Interceptor and the IDL to Java 

language mapping, etc. Many good ORB products are available in the market, in which 

VisiBroker from Inprise Corp., Orbix from IONA Technologies and ORBacus from 

Object-Oriented Concepts, Inc. are leading ones. For example, ORBacus is a fully 

CORBA-compliant ORB that is distributed as source code and is free for non-commercial 

use. It supports more CORBA specifications than Java ORB, such as Event Service and 

IDL to C++ translation. ORBacus also has different versions for different platforms, so it 

provides users the ability to develop real distributed and heterogeneous applications.

However, no matter which ORB is chosen, Java IDL (which is a technology for CORBA 

programmers who want to program in the Java programming language based on 

interfaces defined in CORBA Interface Definition Language) is structured with a 

“pluggable ORB” architecture, which allows us to instantiate ORBs from other vendors 

from within the Java Virtual Machine. This is a very nice property of Java IDL; it means 

that a CORBA application written in Java only has to change very few pieces of code (or 

none at all) in order to be moved from one ORB to another ORB implementation. This is 

accomplished through setting environment variables, or system properties, or at run time 

through the use of a Properties or StringQ object.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, we discuss how to move the testing components from Java RMI to CORBA. To 

insert interceptors into ORBs, we simply make the interceptor in each ORB implement 

both the ClientRequestlnterceptor and the ServerRequestlnterceptor (these two classes are 

available in Java API), since processes will communicate in a peer-to-peer manner and 

we need to intercept both incoming and outgoing calls at the same time. In order to reuse 

the testing components in the new environment, the only major job we need to do is to 

modify the Java RMI remote objects to CORBA objects, and change the way that objects 

are registered and located. Since the control logic of those remote objects and non-remote 

objects are the same as that of Java RMI, most part of these components can be reused 

without any change. This can be achieved by defining IDLs, generating the stubs and 

skeletons and making the testing component implementation extend those skeletons. We 

also need to do some extra work to deal with the difficulties caused by CORBA’s 

inability to support most data types in Java API. For example, to map a Java Vector in 

CORBA, we have to define a new data type using struct (similar to that in C language) 

and sequence. These mappings and changes can be done in several ways. One possible 

solution is to modify the object implementations directly and recompile. With these 

modifications, we can easily plug in the test control mechanism into the CORBA ORB 

and move the testing components to a CORBA environment.
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Things to be Changed in Java RMI 

Interception Service

Resulting Changes in CORBA 

Interception Service

Remote Service

Definition

Writing a Remote Interface definition for 

each type o f remote objects

Defining all services of different 

types of remote objects in a 

single CORBA IDL file

Registering and 

Locating Remote 

Objects

Using the Java Naming Service: starting a 

built-in Java naming server (RMIRegistry), 

and use API in the Java RMI packages

Using the CORBA Naming 

Service: starting a built-in 

CORBA server (ORBD), which 

provides bootstrap services, and 

use API in the Java IDL 

packages

Registering Objects 

on other Machine

Does not allow remote objects to be 

registered on a machine(s) other than the 

one that their implementations reside

Allow remote objects to be 

registered on a machine(s) other 

than the one that their 

implementations reside

Data Type 

Mappings
Vector, Hashtable, and File...

sequence, struct sequence, and 

array o f strings

Method

Overloading
Allowed in Java language

Change the same method names 

into different names in IDL

Obtaining 

Information (e.g 

pid, iname, mname) 

For Testing

Can get iname and mname by calling 

methods on the ClientRequestlnfo/ 

ServerRequestlnfo interfaces; pid is 

obtained as an inherited instance variable 

from the RMIClientlnterceptor and/or 

RMIServerlnterceptor

Can obtain pid by calling 

getProcessIdQ on 

TestController; can obtain 

mname by calling getMnameQ 

on the Requestlnfo object; 

cannot get iname

Heterogeneity in

Running

Environment

Does not support a heterogeneous running 

environment. Applications Under Test and 

Test Components must be implemented in 

Java Language

Support a heterogeneous running 

environment. Both Applications 

Under Test and Test 

Components can be 

implemented in different 

programming languages

Table 7.2: Major Changes of Testing Components from Java RMI to CORBA
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In table 7.2, we only listed some major changes in order to migrate these testing 

components into a CORBA environment. Specifically, one of the major problems in 

moving the testing environment from Java RMI to CORBA is to obtain the iname 

(invoked remote interface name). In Java RMI, we can easily get the iname and mname 

(invoked method name) by calling the methods defined in the Requestlnfo interface. We 

can also obtain the pid  (process id) by using the initialized instance variable pid. In 

CORBA, the only way to get access to the request/response information is through the 

ClientRequestlnfo and ServerRequestlnfo interfaces, but unfortunately, these interfaces do 

not provide a way to obtain the invoked remote interface name. So, in the case that there 

are more than one remote interface that might be invoked in an AUT, we have to use 

“hard code” method in the portable interceptors to obtain the remote interface name, 

which will be used as a parameter in the call to the permissionRequest of the 

TestController. We can obtain this interface name by comparing the invoked method 

name; however, like what we have done for the Requestlnfo in Java RMI, this method is 

also based on the assumption that there cannot be identical public method definitions in 

those implemented interfaces.

7.1 ClientRequestlnfo/ServerRequestlnfo in Java RMI and CORBA

Both in Java RMI and in CORBA, each interception point is given an object through 

which the Interceptor can access request information. Client-side and server-side 

interception points are concerned with different information, so there are two information 

objects: ClientRequestlnfo is passed to the client-side interception points and 

ServerRequestlnfo is passed to the server-side interception points. But there is 

information that is common to both, so they both inherit from a common interface: 

Requestlnfo. In this section, we will compare the information that can be obtained via 

Requestlnfo objects in Java RMI with the information that can be obtained via 

Requestlnfo objects in CORBA. One thing should be noted here is that we do not intend 

to compare all the information that can be obtained from these objects, and we only list 

those properties that are relevant to software testing.
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^•^.Environment CORBA
Available
Information N ,

Java R M I
Core Specification Java IDL

target yes yes yes
iname yes no no
operation yes yes no
params yes yes no
result yes yes no
clientHost yes no no
contexts no Xes ...... .... ..... _ _ j no

Table 7.3: Available Information from the Requestlnfo objects in different environments

In table 7.3, we list some useful properties that can be obtained from the Requestlnfo 

objects in different computing environments. The column “CORBA” is divided into two 

groups: core specification and Java IDL. This is because the OMG IDL has different 

mappings for different implementation languages, and the Java IDL is the binding of the 

OMG IDL concepts to Java programming language, and thus a Java implementation of 

the CORBA core specification. The attributes (such as target, operation, and contexts, 

etc.) which are defined in the CORBA core specification are not accessible in the current 

Java environment. In this environment, when these attributes are accessed, 

NO_RESOURCES exception will be raised with a standard minor code of 1 [16], Now, 

we explain this available information in detail.

Target represents the server object which the client called to perform an operation. In 

Java RMI, this target is a remote server object that implements the interface 

java.rmi.Remote, while in CORBA, this target is an implementation of type 

org. omg. CORBA. Object. The iname is only defined in the interception service in Java 

RMI, which represents the remote interface name that is being invoked by the client. The 

operation, params, and result can be obtained in both Java RMI and CORBA 

infrastructure, which respectively represent the operation (method) that is being invoked, 

the parameters that are passed into this operation and the result of this operation
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invocation. The operation in both Java RMI and CORBA are method names of type 

String. The params in Java RMI is an array of Java Objects, while the params in CORBA 

is a ParameterList object, containing the arguments on the operation being invoked. The 

result is a Java.lang. Object in Java, but is an object of type org.omg. CORBA.Any in 

CORBA. The clientHost can only be obtained from the interception service of Java RMI 

and denotes the IP address of the client host making requests. The contexts is only 

available in CORBA and is a ContextList object describing the contexts that may be 

passed on this operation invocation.

Here, we did not talk about the object id, a crucial property that is useful not only for 

software testing, but also for dynamic monitoring and analysis of an object-oriented 

distributed program. For example, when there are multiple objects implementing the same 

interface in our test scenarios, we can specify different objects by using object ids in the 

test scenario document, and further determine requests/responses from individual objects 

on the fly. The object id can be obtained in both computing environments. In Java RMI, 

the object id is represented in the form of a Java, rmi.server. ObjID, while in CORBA, it is 

an array of bytes describing the target of the operation invocation. But unfortunately, 

neither of these object ids are human readable, and thus cannot be used in the test 

scenario specification.
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7.2 Comparisons of the Design Principles between Java RMI 

Interception Services and CORBA Portable Interceptors

RMI Interception Services
CORBA Portable 

InterceptorsDynamic 
Proxy * SSL RRL

Redirect a call Yes No Yes Yes
Alter arguments Yes Yes Yes No
Make object 
invocations Yes Yes Yes Yes

Delay a 
request/reply Yes Yes Yes Yes

Generate own 
reply Yes Yes Yes No

Piggyback 
Additional Info. No No No Yes

Table 7.4: Comparisons of the design principles between Java RMI Interception Services

and CORBA Portable Interceptors

•  RMI Interception Services using dynamic proxy techniques can only be used at client 

side and only for those remote objects that are looked up through a Naming Service.

The above table compares some design principles of Java RMI interception services with 

those of the CORBA Portable Interceptors. The CORBA Portable Interceptor architecture 

is designed to:

• Redirect a request to another target by raising a ForwardRequest exception

• Affect the outcome of a request by raising a system exception or redirect a reply to 

another target by raising a ForwardRequest exception

• Make object invocations itself before allowing the current request to execute, and thus 

can be used to delay a request or a reply.

• Piggyback Service-specific information to be passed implicitly with requests and 

replies
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In some circumstances, Portable Interceptors are not sufficient to meet some specific 

requirements in different applications. In particular, the limitations of Portable 

Interceptors can be summarized as follows [34]:

• Cannot generate own replies to intercepted requests.

• Cannot affect a request by changing a parameter specified by the client.

• Can redirect a request or a reply only by raising an exception.

We will explain how the interception services in Java RMI can overcome the above three 

limitations, and of course, the Java RMI interception service also has its own limitations. 

In the following, we will discuss these issues in three different layers of the Java Run

time system, into which an interception service may be injected.

7.2.1 Interception using Dynamic Proxy technique

As we have discussed in section 4.1, the Dynamic Proxy technique can be viewed as a 

hook-up mechanism and can be used as a type of interception service together with some 

additional interceptor interfaces (such as RMIClientlnterceptors and 

RMIServerInterceptors). However, the limitation of this technique is that interception 

services implemented using dynamic proxy technique can only be used in the client side 

and only for looked-up objects. As a result, interception service using dynamic proxy 

technique cannot be used to transmit additional information from client side to server side 

(because there no corresponding proxy objects on the server side).

By using dynamic proxy, a remote method invocation will be encoded and dispatched to 

the Java. lang. reflect.InvocationHandler, and further directed to the interception points. 

Thus, redirecting a request, modifying arguments and generating a response can be 

realized relatively easily by using Java Reflection in these interception points. In the 

implementation of an interceptor, any kind of object invocations can be made and thus a 

request/reply can be delayed or blocked for arbitrary time (e.g., by calling Thread.sleep).

7.2.2 Interception in SSL (Stub and Skeleton Layer)

In this layer, we can build the interception services into the stubs and skeletons. At the 

point where a request or reply is intercepted, the control flow has actually entered the stub
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or skeleton of the target object and the method has been invoked. So, interception service 

in this layer cannot be used to redirect this call to another object. The classes that allow 

users to plug in their own code in SSL are RMIClientlnterceptors and 

RMIServerlnterceptors. The arguments, target object and return values of a request can be 

accessed (both read and write) by using the Requestlnfo object. Thus, we may alter the 

arguments or return value by modifying the way that stubs and skeletons are generated. 

At any interception point in the SSL layer, any kind of object invocations can be made 

and thus a request/reply can be delayed or blocked for arbitrary time.

7.3.3 Interception in RRL (Remote Reference Layer)

The interfaces that allow users to alter request information in RRL are exactly the same as 

those of SSL, except that we modified the UnicastRef and UnicastServerRef classes to 

introduce an interception mechanism. The parameters and return value can be altered by 

using Java Reflection. At any interception point in the RRL layer, any kind of object 

invocations can be made and thus a request/reply can be delayed or blocked for arbitrary 

time.
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8. Empirical Evaluation

In this chapter, we analyze some experimental results to evaluate the functionality and 

performance of our reproducible testing environment. In section 1, we run this testing 

environment using the previous Online Conference example as the application under test. 

We demonstrate how this testing environment forces the AUT to execute desired paths by 

comparing the experimental results before and after adopting our control algorithm. In 

section 2, we run this Online Conference example on both the distributed testing 

environment and the centralized testing environment, which have the same functionality 

but with different system infrastructures. This experiment is to compare the performance 

of these two architectures and to show users how to choose one architecture instead of the 

other in different situations.

As introduced in Section 3.2, the AUT, Online Conference example that we will use in 

the following experiments is an implementation of the distributed bakery algorithm, and 

involves two processes (namely Peer-0 and Peer-1) competing to talk (entering its critical 

section). In both experiments, these two processes together with their own local test 

components run on two separate machines and communicate with each other in a peer to 

peer manner. Both machines have the same operating systems (Microsoft Windows 2000, 

Profession Edition) and the Java Platforms (Java Development Kit 1.4.1_01). The central 

test components, i.e. the Central Test Oracle and the Central Communicator are two 

separate processes that can be deployed on any other machine(s). But in our experiments, 

these two components are running on the same host as Peer-0 because Peer-0’s host has a 

better hardware configuration (larger memory).

8.1 Running Online Conference example

8.1.1 Running the Online Conference without Adopting the Control Algorithm

In this experiment, we run the Online Conference example based on the testing 

environment described in Chapter 5. However, we do not use any control algorithm in the 

test controller. That is, whenever the test controller receives a request from an input event
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or remote event (through a test driver or an interceptor), it only analyzes the request and 

records the time at which this event occurs, without checking the test constraint for 

permission. More precisely, the testing environment we described in Chapter 5 is only 

used as a software instrumentation framework, which dynamically monitors and logs the 

program execution without touching any implementation of this program.

Without artificial control, Peer-0 and Peer-1 run at their own speeds independently, and 

the execution paths can be arbitrary. Figure 8.1 and figure 8.2 show the snap shots of 

running Peer-0 and Peer-1 without adopting our control algorithm.

Peer-0:

l :  WI"«M S y s l i - i i i ' i . '  > i inl . t-KC dn ? x ; |

>:\ i  h es  i s  > java  -D jaw a. m i . s .e r v e r , code base =* x l s : /B : % th e s is \  
fcnarae =137 . 2 0 7 . lb  .49 ' - D j a u a .s e c u r i t y . p o l i c y = p o l ie s ' ,  t x t  . in p lera en ta tip n  .T e s t  
i e v  I pip 1 pro c e s s  id  =Pe e * '-0  n aw ip  g s  e vv  e r = m  I  - / / L  3 ? .  2 8 7 1 6 .4 9  /  t  e s  t  o r a c  le  = m  i  
2 0 7 .1 6  4 9 /  c o n n u n ica to r  = r n i: / / 1 3 7 .2 0 ? .  16 .4 9 /

  T e st  C o n tr o l le r  has been bound s u c c e s s f u l ly !  -----

i e i  h as  happened a t :  1060031838398

lie2 Isas happened a t :  1068031874046

i*el h as  happened a t :  1068031876468

p e l .  h a s  happened a t :  1060031877875

Figure 8.1: Result of Running Peer-0 without Adopting Control Algorithm

Peer-1:
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c C :\W W ! s / hI. i ,,;!?

$ tM fe e s is >Java - D j a v a i - s e ^ u e i * ;  c® d efease= Jfile:/D V /t-h esisS .■ -D aaw a-w ii.-s  
tn a m e= 1 3 7 .2 0 ? .2 3 4 .1 8 9  -B j a w a .s e c u r i t y .p o l i e t f = p o l ic y . t x t  droplenentat io n .  
s H e r ! n p l  p r o c e s s id = P e e r - l  na»ir<gsei'uet‘= i 'n i : / /1 3 7 .2 0 7 .2 3 4 .1 8 9 /  t e s t o r a e  

. 4 9 /  cotw»un i c  a to r  = r is i: / / 1 3 7 .2 0 7 .1 6  .4 9 /

*  T e s t C o n t r o l l e r  h a s  been bound s u c c e s s f u l ly ?  -----

ie 3  has happened  a t :  1068831836234 

ie 4  h a s  h ap p e n ed  a t : 1060031836515

jB.lEi.xjj

R

e'J lias h ap p en ed  a t :  1860031841174

W m
-TJ

Figure 8.2: Result of Running Peer-1 without Adopting Control Algorithm

The last columns of these two snap shots show the time that a specific event happens, 

represented by the number of milliseconds since January 1, 1970, 00:00:00 GMT. One 

thing that should be taken into account is that the time for each event is the local CPU 

time of each host. We compare the orders of events based on the assumption that both 

CPUs’ time is exactly the same. By comparing the time at which each event occurs, we 

can draw the event sequence diagram for these two running processes:
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Peer-0 :
OnlineConference

Peer-1.
OnlineConference

i: sfignalln()

61 s i g n a I O u t ( )

< -

t] signalln()

2 [s ignaiO ut()

< -

'4: enter()

3< r

5: e x i t ( )

< -

7: permissionRequest(String, int)

18 : e n t e r ( )

1

9: e x i t ( )

u

< -

Figure 8.3: Event Sequence when running Peer-0 and Peer-1 without Control

In the above figure, the numbers on the event names denote the orders of occurrences of 

the events. The event names: signalln, singalOut, permissionRequest, enter, and exit 

correspond to the following kinds of events:
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• input events signaling the willing to speak

• input events signaling the willing to finish speaking

• remote events requesting permission from other processes

• output events denoting the start of speaking and

• output events denoting the end of speaking.

According to the test scenario we defined in section 3.2, the nine numbered events in the 

above figure respectively represent ie3, ie4, iel, oe3, oe4, ie2, rel, oel, and oe2. From 

this event sequence diagram, we can easily see that the order of events does not satisfy 

the test constraint we specified in figure 3.2 (e.g., iel should happen before ie3). If we run 

this program several times, it may display different event sequences, but we cannot 

guarantee that these event sequences satisfy the test constraint. This nondeterminism is a 

typical characteristic of a concurrent distributed program.

8.1.2 Running the Online Conference by Applying the Control Algorithm

In the following, we will demonstrate how these two processes are forced to execute 

according to the desired paths by applying the control algorithm introduced in 5.3. Figure 

8.4 and figure 8.5 show the snap shots of running Peer-0 and Peer-1 with the control 

algorithm.

Peer-0:
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Figure 8.4: Result of Running Peer-0 with Control Algorithm

Peer-1:
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■ ,!□ ! X ii

Si- \TJies  i s  >j«u  a -D j» o »■. fw i . s  s t o c t  . cod «b ase - f  i l« -■- / B : lie s i s \   Dj-aua. r m i , s  ew ei--. bo*
tn a ir a e '-i3 7 .2 i7 .2 3 4 .1 8 9  ~ B ja w a ,s e c « r ity .p o lic i(= p o l i c j i . t x t  iwplenentafcion„T i. ■. .
8;ile :.r l m pl p r o c e s s i.d ~ P eer -i n a n in g se p v e r ^ r m i: //1 3 ? .20?„ 2 3 4 -1 8 9 / te s to i* a c le = w - . ■ ■ 
1 3 7 .2 8 7 .1 6  .4 9 /  coiiiwunicatoi"“it» i!» i://137 .207 .16 .4 9 /

T e s t  C o n tr o l le r  h a s  been bound s u c c e s s f u l l y !

ie 3  i s  b lo ck ed  h e r e !

ie 3  h as  happened a t :  1060850224078

b lo c k e d  hews?

bloc.ken  Isei

Ae4. ' i s  b lock ed  h ere !

'ie 4  i s  b lo c k e d  h e r e !

i e 4  i s  b lo c k e d  h e r e !

i e 4  i s  b lo c k e d  h e r e !

ce3  lias happened a t : 1060051227906

f ie 4  h a s  hap p en ed  a t : 1060050228250

on 4 ha h a p p e n e d t;0b80bB22tit>40

Figure 8.5: Result of Running Peer-1 with Control Algorithm

From figure 8.4 and figure 8.5, we observe that certain events are blocked before they are 

allowed to happen. This is because the events we are interested in controling must happen 

according to the orders we specified in the test constraint, which is read into the test 

controller from the central test oracle. On one hand, all involved test controllers will 

update current state of this running program whenever a certain event specified in the test 

constraint happens. On the other hand, a certain event keeps trying to check if it is 

allowed to happen each time after the program state is updated. If it is not granted the 

permission, this event will be blocked again until it is allowed to happen. Again, by 

comparing the time of occurrence of each event, we can draw the event sequence diagram 

for these two running processes with the control algorithm:
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Peer-0:
OnlineConference

Peer-1 : 
OnlineConference

■j: s i g n a l l n ( )

3: permissionRequest(String, int)

J4: enter()

^ z z z :

5 [ s ig n a lO u t( )

| ^Z Z Z i

i  6: exit()

7

2: s ig n a l ln ( )

< -

17: enter()

<

8; s ig n a lO u t( )

n ^ = ]

9: ex it()

Figure 8.6: Event Sequence when running Peer-0 and Peer-1 with the Control Algorithm

Similar to the previous event sequence diagram, the nine numbered events in figure 8.6 

respectively represent iel, ie3, rel, oel, ie2, oe2, oe3, ie4, and oe4. These nine events 

happen exactly as this sequence. Apparently, this specific event sequence satisfies the 

event order we have specified in the test constraint (i.e., iel happen before ie3 and ie3 

happen before rel).
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8.13 Comparing time cost when running a test using control

In this experiment, we evaluate the time cost caused by applying the control mechanism 

to the testing architecture. Again, without control actually means that we do not use the 

control algorithm introduced in section 5.3, but we still use the testing components for 

software instrumentation — monitoring and logging purposes. In such a case, there is 

additional time cost caused by the software instrumentation. Since this time cost is 

negligible compared with that of the control algorithm, we simply omit it. The following 

table contains time cost (in millisecond) that we choose from independently running the 

Online Conference sample application by each approach three times. The experiment 

settings are exactly the same as those we described in the introduction of this chapter. In 

this experiment under these settings, the AUT (Online Conference) consists of two 

processes and the test scenario contains nine events and one constraint, which have been 

defined in Section 3.2. For each run, we calculate the time spent from starting the whole 

application (after both processes on both machines start) to the receipt of the final output 

(succeeds or fails) at the central test oracle. From these data, we observe that running a 

program with adopting control always has some additional time cost, and the average cost 

for the Online Conference example is 1313 milliseconds.

With Control Without Control

First Run 4297 ms 1750 ms

Second Run 3172 ms 2969 ms

Third Run 4360 ms 3172 ms

Table 8.1: Time cost by adopting control algorithm 

8.2 Performance Evaluation

In this section, we compare the performance of a distributed testing architecture with that 

of a centralized one. We will also discuss how to choose one architecture instead of the 

other in different situations. To compare the performance of both architectures, we need 

to modify the existing distributed testing architecture into a centralized one, i.e., using a
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central test controller instead of a local controller. Because there is only one central test 

controller, which contains both the test constraint and the current running state of the 

program, we do not need the communicator to broadcast updates of states. This 

modification involves three major changes to the implementation of the existing testing 

environment: 1) the way that test drivers and interceptors look up the test controller, 2) 

the way that the central controller updates the program running state and 3) the way that 

test drivers obtain information such as the number of processes under test. We will not 

further discuss the details of these changes. Figure 8.7 shows the resulting centralized 

testing environment:
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Figure 8.7: The centralized testing environment with automated control
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The testing components in the centralized testing architecture work almost the same way 

as those we have described in the distributed architecture, except that a central test 

controller receives requests from all the test drivers and interceptors, and will update the 

program state after an event happens.

Table 8.2 shows three independent runs for each testing architecture. These experiments 

are conducted under the testing settings described in the introduction of this chapter, with 

the Online Conference as the application under test containing nine controlled events.

Distributed Centralized

First Run 3281 ms 2156 ms

Second Run 2938 ms 2094 ms

Third Run 3531 ms 2438 ms

Table 8.2: Performance Comparison between Distributed and Centralized Testing

Architecture

These experiments show that with an AUT containing only two processes and nine 

controlled events, the centralized testing architecture always has a better performance 

than the distributed one. This is because with only few processes and test data (controlled 

events specified in the test scenario), the network delay of a distributed environment will 

dominate the overall time cost of test control. However, the distributed testing 

environment will have a better performance than the centralized one when involved 

processes and the volume of test data increase. This is because the time cost of testing an 

AUT is essentially decided by the input size (number of controlled events specified in the 

test scenario) of this AUT. The network communications will increase when the volume 

of test data increase, and at a certain point, the central test controller will become a 

bottleneck in these communications.
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Now, let us consider another test scenario with the same experiment settings as those we 

described in the introduction of this chapter. This time, however, we increase the number 

of processes in the AUT to three running on three machines, with eighteen events 

involved in communications. The test scenario is given below: 

iel = (1,0, 1, “i”), 

ie2 = { 1, 1, 1, “i”), 

ie3 = (2, 0 ,1, “i”), 

ie4 -  (2, 1, 1, “i”), 

ie5 = (3, 0, 1, “i”), 

ie6 = (3, 1,1, “i”), 

oel = (1,0, l , “o”), 

oe2 = (1, 1, 1, “o”), 

oe3 = (2, 0,1, “o”), 

oe4 - ( 2 , 1, 1, “o”), 

oeS — (3, 0, 1, “o”), 

oe6 — (3, 1,1, “o”), 

rel = (1, “OnlineConference ”, 

rel = (1, “OnlineConference ”, 

re3 = (2, “OnlineConference ”, 

re4 = (2, “OnlineConference ”, 

re5 -  (3, “OnlineConference ”, 

re6 = (3, “OnlineConference ”,

C-{(iel,ie3,ie5),(re2,re3),(re4,re5),(oel,ie2),(oe3,ie4)J 

O = oei) a

‘permissionRequest ’,1 , “q c’%

‘permissionRequest 2, “qc”),

‘permissionRequest ; i , “qc

‘permissionRequest 2, “qc”),

‘permissionRequest “qc”),

‘permissionRequest ’,2 , “qc”)

Figure 8.8: A Test Scenario with three processes and 18 events

In this test scenario, we require that these three processes must speak in the order: Peer-0 

—> Peer-2 -» Peer-3 ( —» denotes the relation “happen before”), which is specified in the 

test constraint C. Like in section 8.1.3, where we independently run the Online 

Conference three times, and obtain the average time cost of 3943 ms, we also run this 

AUT three times independently with the new test scenario, and thus obtain the time cost
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for each run: 5863 ms, 5938 ms and 5972 ms respectively. So, the average time cost for 

the Online Conference consisting of three processes and eighteen controlled events is: 

5656 ms. Similarly, we perform an experiment with the AUT containing four processes 

running on four machines with twenty four controlled events involved in 

communications; and we require that these four processes must speak in the order: Peer-0 

—» Peer-2 —» Peer-3 —» Peer-4. Again, by independently running this AUT three times, 

we obtain the time cost for each run: 12085 ms, 10153 ms, and 11296 ms respectively. So 

the average time cost for the Online Conference consisting of four processes and twenty 

four controlled events is: 11178 ms. Table 8.3 lists the average time cost for each 

experiment.

2 processes 

9 events

3 processes 

18 events

4 processes 

24 events

Average Time 3943 ms 5924 ms 11178 ms

Table 8.3: Time cost for running the AUT with different processes and events

By comparing the time cost for each experiment, we observe that the time cost is 

approximately proportional to the number of controlled events.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9. Conclusions and Future Work

In this thesis work, we have presented an approach to automated reproducible testing for 

distributed Java applications, via additional interception services into the Java RMI 

middleware. With the availability of the interception service, we can easily incorporate 

any testing environment to intercept the remote calls without modifying the AUT. Here 

we have outlined a code-intrusion-free testing environment with which one can gain some 

control over the nondeterministic choices through the predefined order among input 

events and remote call events. This provides support to reproduce or replay a test in 

concurrent and distributed systems.

We defined the format of test scenarios, discussed in detail how the interception service is 

injected into the RMI middleware in order to provide a mechanism to hook up testing 

components transparent to user applications. We also explored the use of CORBA 

Portable Interceptors, a similar interception technique to Java RMI interception services, 

and further described how to utilize this Portable Interceptors to incorporate the existing 

testing components, i.e., how to reuse the testing components in CORBA-based 

applications implemented in Java. We compared the similarities and differences between 

these two testing environments in a variety of aspects. We also did several experiments 

based on the Online Conference example to illustrate the overall testing architecture 

works well, and showed performance of this testing architecture based on the analysis of 

experimental results.

As a final remark, we would like to mention that although we tried to handle the 

nondeterminism, it is apparently not necessary to deterministically control every internal 

nondeterministic choice of the execution of an AUT. Here we have adopted the term 

reproducible testing in a general sense that we can control the execution over some 

important internal choices. Normally these important internal choices include the order of 

accessing shared objects and the order of remote calls. Here we have focused on the 

latter.
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Finally, we list some limitations in the current work and possible lines of future research

work:

• When a program output is passed to the central test oracle, it is passed together with 

the time stamp of the receipt of the output, so that the real-time related conditions can 

be checked. The lack of global clock in distributed systems may cause problems on 

the preciseness of the validation of real-time test oracles. Further investigation in this 

issue is on demand.

• One issue needed to be addressed in automated testing is the generation of test 

scenarios. In our approach, we have assumed that a set of test scenarios are given in 

the sense that it is feasible (see below for the meaning of test scenario feasibility). In 

order to automate test generation, it is necessary to analyze some formal objects, such 

as source code or formal specifications. Apparently, our testing approach is 

specification-based, so a related work is to systematically and automatically obtain 

test scenarios. Precisely, given formal system specifications, how do we identify and 

automatically generate the significant test scenarios? I am interested in searching for 

suitable solutions to it.

• Another challenge involved in automatic test scenario generation is the feasibility 

check. The feasibility check is to verify the conformance between test scenarios and a 

program’s implementation. Thus, a test scenario that is feasible cannot cause the 

program to terminate abnormally lead to a deadlock/starvation state. For certain 

testing criteria, a significant proportion of test scenarios are infeasible in terms of the 

semantics of the program [37]. In the case that a given test scenario is infeasible, 

controlling the execution according to it may lead to concurrency related problems 

such as deadlock or starvation. The investigation in the feasibility of the test scenarios 

remains part o f my future work along this line of research.

• To assure the quality of selected set of tests, we also need some test adequacy criteria, 

which are used to determine whether a test suite provides an adequate amount of 

testing for a program under test [36]. Testing adequacy analysis involves finding areas 

of a program not exercised by a set of tests and creating additional tests to increase 

testing coverage. In our approach, we assume that the given test scenario is an
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important one, which could be used to uncover some concurrency related problems. 

In a real application, however, we need to develop some techniques to systematically 

and automatically identify the set of important test scenarios which is small enough to 

be exercised in a relatively short period of time and is sufficient enough to discover 

all or most of the potential faults in a program.
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