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ABSTRACT

In this dissertation, a new approach has been developed to caleulate the two di-
mensional steady transonic flow past airfoils usiug the Euler equations in a stream
function coordinate system. Due to the importance of the transomic flow phe-
nomenon in aeronautical practice, transonic flow computation has been an upsurg-
ing topic for the past two decades. Most existing transopic computation codes
require the use of a grid generator to determine a suitable distribution of grid
points. Although simple in concept, the grid generation takes a significant propor-
tion of the CPU time and storage requirements. However, this time-conswmning step
can be completely avoided by introducing the von Mises transformation and the
corresponding stream function coordinate system because this particular transfor-
mation combines the low physics and flow geometry and produces & formulation
in streamwise and body-fitting coordinates, without performing auny conventional
grid generation. In the present work, a set of the Euler equivalent equutions in
stream function coordinates is formulated. It consists of three equations with three
unknowns. One unknown is a geometric variable, the streamline ordinate y, and the
other two are physical quantities, density p and vorticity w. For irrotational fluid
flow, the Euler formulation is simplified to the full potential formulation in which
only two unknowns are solved — y and R, the generalized density. To solve these
equations, several numerical techniques are applied: type-dependent differencing,
shock point operator, marching from a non-characteristic boundary and successive
line overrelaxation, etc. Particular atteation has been paid %o the supercritical case
where a careful treatment of the shock is essential. It is shown that the shock
point operator is crucial to accurately capture shock waves. The computed results
for both analysis and design problems show good agreement with existing experi-
mental data. The limitations of the approach and further investigations have heen

discussed.
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Chapter 1. Introduction

1.1 Transonic Flow Computation

Transonic flow is a widely encountered phenomenon in aeronautics and astronau-
tics, occuring in flows past airfoils, wings, through nozzle throats, cascade blades
or around blunt bodies, etc. Transonic flows are not easy to handle because the
flow ficld is mixed supersonic/subsonic type with shock waves and, accordingly, its
governing equations are nonlinear and of mixed hyperbolic/elliptic type with discon-
tinuities. Therefore, transonic flow computation had little progress until Murman
and Cole (1971) developed a type-dependent difference scheme and successfully
solved the transonic small disturbance (TSD) equation twenty years ago. From
then on, the numerical simulation of transonic flows 1.as been one of the most up-
surging topics for computational fluid dynamicists working in applied mathematics
and aeronautical/uerospace engineering. The development of transonic computa-

tion may be divided into the following three stages:

1) ISD Stage: Following Murman and Cole’s landmark work, Murman (1974)
and Murman and Krupp (1974) analyzed the shock structure and jump conditions
and proposed the concept of shock point operator for shock capturing. Hafez and
Cheng (1977) proposed the shock fitting technique and utilized it to treat the dis-
continuities in the transonic fiow field. On the other hand, Chan et al. (1975)
developed a finite element method with Galerkin and least squares residuals to cal-
culate transonic flows around airfoils. The research work on the solution of the TSD
equation continued for about a decade (Ballhaus et al. 1978, Jones and Dickenson

1980, Engquist and Osher 1980, ... ).

2) F. P. Stage: Jameson (1974, 1976) extended Murman and Cole’s technique
by constructing the rotated difference scheme and solved the full potential (F.P.)
equation in the transonic range. In order to avoid the non-physical expansion
shock, Hafez, South and Murman (1979) proposed the artificial density concept and
solved the F. P. equation without upwind differencing. Holst and Ballhaus (1979)



also solved the F. P. equation using an implicit approximate factorization method.
Transonic full potential calculations have attracted many researchers’ attention and
now have become widespread, for instance, Steger and Lomax (1972), Habashi and
Hafez (1982a), Osher et al.(1985), Hafez et al. (1987), Dulikravich (1988), Hafez
and Lovell (1988), ete.

3) Euler Stage: The full potential calculation is not accurate enough in some
cases due to the neglect of entropy variation and vorticity production associated
with shock waves. In this case, the Euler equations should be applied. A variety
of numerical algorithms and computer codes to solve the Euler equations in the
transonic regime have been developed, for example, Steger’s (1978) application of
Beam and Warming’s (1976) implicit finite difference scheme to transonic flows, Pul-
liam and Chaussee’s (1981) implicit approximate factorization algorithm, Jameson,
Schmidt and Turkel’s (1981) finite volume method with the explicit Runge-IKutta
time stepping scheme, Steger and Warming’s (1981) flux vector splitting method,
Osher and Chakravarthy’s (1983) upwind shock capturing scheme, Harten's (1983)
total variation diminishing scheme, Ni’s (1982) multigrid scheme for Euler equa-
tions, Moretti's (1985) nonconservative A scheme, Jameson and Yoon's {(1987) LU
decomposition implicit scheme, Ecer and Akay’s (1983) finite element methods and
so forth. At an Euler solvers workshop in Monterey, CA, USA, researchers reported
and discussed the recent progress in Euler solver investigations (see, for example,

Pulliam 1987). The common features of most Euler schemes are:
i} The basic structure of the schemes is central differencing plus some form of
artificial dissipation/viscosity/density;

i} A favorable property of the Euler equations is that the nonlinear flux vectors
2re homogeneous functions of degree one of the primitive variable vector. This is a

basic property which is exploited in most Euler schemes;

iii) Most schemes fall in the category of the time-dependeut technique in which
the steady Euler equations are solved by seeking the time-asymptotic solution to

the unsteady Euler equations. Iterative relaxation algorithms are also considered

2



in this category.

Alternatively, quite a few researchers have attacked the transonic flow problem
from another side, using the stream function/vorticity formulation, e.g. Habashi and
Hafez (1982b), Hafez and Lovell (1982), Habashi et al.(1985), Atkins and Hassan
(1985), Wang (1985), Hafez and Ahraad (1988), Sherif and Hafez (1988), Hafez et
ul.(1989) and so on.

1.2 Stream Function Coordinate System (SFC)

In most CFD problems, grid generation is usually the first step of the computation
to provide a body-fitting mesh system. The degree to which a numerical method
can reduce the grid generation portion of CPU time is an important index of its
efficiency and applicability. However, this step can be completely avoided by intro-
ducing the von Mises transformation (Ames 1965) and the corresponding stream
function coordinate (SFC) system. The von Mises transformation is a streamline-
based coordinate transformation which produces a body-fitting coordinate system
without performing any conventional grid generation. This is because the trans-
formation has an excellent property that allows a singlz set of equations to play a
double role, i.e. simultaneously serving as governing equations (flow physics) and
grid generation equations (flow geometry). In recent years, the stream function (or
streamline) coordinate system has been used in fluid flow computations, Some of

them are reviewed below.

For incompressible potential flow, Jeppson (1970) solved an axisymmetric flow
from a large reservoir through a circular orifice using a streamline coordinate system
in which the velocity potential and Stokes stream function are independent vari-
ables and the radial and axial dimensions are unknowns. Yang and Nelson (1979)
employed a similar method to solve a 2D incompressible potential flow through
the Griffith diffuser. Breeze-Stringfellow and Burggraf (1983) treated the interfer-
ence flow of a propeller and a nacelle by solving the axisymmetric potential flow

in stream tube coordinaies where the stream function and axial distance are co-

3



ordinates. Using the same coordinates, Greywall (1985) solved 2D incompressible

potential fows.

For incompressible viscous fluid flows, Duda and Vrentas (1967) developed a so-
called Protean coordinate system, whose fundamental feature is the use of stream
function as an independent variable in the radial direction of an axisymmetric flow.
Essentially, this coordinate transformation is an extension of the method employed
by von Mises (1927) to transform the boundary layer equations into a tractable
form. Clermont and Lande (1986) and Andre et al. (1989) proposed a stream
tube method in which the flow field is solved in a mapped domain where the trans-
formed streamlines are rectilinear or circular. Their method is used to investigate
axisymmetric viscous flows including the flow through a convergent duct and a jet
flow at the exit of a cylindrical tube. To handle hydraulic power machinery prob-
lems, Takahashi (1982) derived the governing equations for 2D and axisymmetric
laminar flows in an orthogonal curvilinear coordinate system where one coordinate
is a streamline and the other is perpendicular to the streamline. The metrics are
to be solved as unknowns. Using this method, Takahashi solved the 2D liquid jet
flow from a channel with parallel walls into the atmosphere, Takahashi and Tsukiji
(1985} solved a 2D laminar jet issuing from a skewed-symmetrical orifice in the
spool valve mechanism generally used in hydraulic power systems and Tsukiji and

Takahashi (1989) solved an axisymmetric laminar jet leaving a Poiseuille tube.

For compressible fluid flows, on the other hand, Pearson (1981) proposed a 3D
streamline coordinate method in which the streamline geometry is expressed in
terms of two parameters (for 2D flow only one parameter is nceded) and is corrected
iteratively by the transformed governing equations in the streamline coordinates.
In fact, this approach is the same as that in the von Mises transformation if the two
parameters are taken as two stream functions. Using this method, he calculated
a 2D jet flov from an orifice into the air. Owen and Pearson (1988) extended the
method to solve an axisymmetric actuator disc flow in a turbomachine and 3D flows

through ducts with various cross sections and the flow past a 3D corner. In the case

4



of unsteady flow, Srinivasan and Spalding (1986) solved the shock tube flow using
1D unsteady gas dynamics equations for primitive variables in stream function co-
ordinates. In turbomachinery analysis and design, since Wu (1952) proposed the
general theory of the stream surfaces to solve cascade problems, the applications
of this theory have been extensive. A typical work of this kind is the image-plane
method used in the inverse problems of cascade flows by Liu and Tao (1989) and
Chen et al.(1989). Their method leads to a problem of solving an integro-differential
cquation for the meridian angle in cylindrical coordinates in the von Mises coor-
dinates, composed of the axial distance and the stream function, which construct
an image-plane. Furthermore, Tiu and Zhang (1989) improved their approach by
introducing another unknown, the moment function, which represents a generaliza-
tion of the Kutta-Joukowski lift theorem for 2D flow. The above approaches and
applications are summarized by Liu (1991). Huang and Dulikravich (1986) and
Dulikravich (1988, 1990) suggested that the streamwise coordinate system in which
the stream function serves as a coordinate be referred to as the stream-function-
coordinates (SFC). Applying this concept they gave an explicit formulation for
3D inviscid steady compressible flow and solved the incompressible flow around a

cylinder and the subsonic flow past an airfoil.

Regarding von Mises coordinates, since Barron (1989) connected Martin’s (1971)
approach with the von Mises transformation and successfully solved the resulting
elliptic equation to simulate incompressible potential flow past an airfoil, numerical
simulations based on the von Mises transformation and stream function coordinates
have been considerably extended, such as to incompressible lifting (Naeem and Bar-
ron 1989), axisymmetric (Barron et al. 1990) and design (Barron 1990) problems, as
well as to tranconic analysis and design problems (Barron and Maeem 1989, Naeem
and Barron 1990, Barron and Naeem 1991, Barron and An 1991, An and Barron
1992).



1.3 Present 'Work

In this study, a new approach is developed to calculate two dimensional steady
transonic flows past airfoils using the Euler equations in a stream function coor-
dinate system. Through the introduction of stream function and von Mises trans-
formation, a set of Euler-equivalent equations in stream function coordinates is
formulated. It consists of three coupled equations with three unknowns. One is
a geometrical variable, the streamline ordinate y, and the other two are physical
quantities, density p and vorticity w. All of them are unknown functions of the
von Mises variables, abscissa  and stream function 3. These three equations are
numerically solved sequentially and iteratively. To solve the ‘main cquation’ for y,
which is a mathematically well classified and physically consistent second order par-
tial differential equation, Murman and Cole's type-dependent difference scheme is
applied. To treat the embedded shock wave correctly, the shock jump conditions are

analyzed and a shock point operator is constructed in stream function coordinates.

In order to solve for density p, a traditional method is to use the Bernoulli equa-
tion. In the transonic range, however, the classical double density problem still
exists in the new stream function coordinate formulation. From the author and
his colleagues’ experiences, even if the artificial density technique is applied in con-
junction with the use of upwind differencing in supersonic regions, the supersonic
pocket and the shock waves are still difficult to handle. This is perhaps because
there is no obvious mechanism by which the art'iicial density provides dissipation
to the y equation, as explained by Jameson (1976) or Hafez et al.(1979) for the
potential equation and by Habashi and Hafez (1982b) or Hafez and Lovell (1983)
for the stream function equation. To overcome this difficulty, instead of solving the
algebraic Bernoulli equation, a first order partial or ordinary differential equation,
called the ‘secondary equation’, is derived and solved to avoid the double density

trouble. Once y and p are nbtained, w can be easily calculated from its definition.

Under the isentropic and irrotationality assumptions, the full potential-equivalent,

equations in stream function coordinates are formulated and several choices for the
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‘secondary variables’ and the related equations are possible. If a further assumption
of incompressibility is made, the Laplace-equivalent equation in the stream function
coordinates can be derived.

In the first part of this dissertation, the Euler-equivalent equations and the full
potentinl-equivalent equations are formulated in chapters 2 and 3, respectively. This
constitutes the principal theoretical analysis and presents the basic mathematical
models. The second part consists of numerical methodologies. In Chapter 4, numer-
ical techniques related to our problems, such as type-dependent difference scheme,
successive line overrelaxation (SLOR), first order equation marching strategy, etc.,
are discussed. In chapter 5, attention is paid to the shock wave treatment, including
the analysis of the shock jump conditions and structure of the shock point operator.
Chapter 6 extends the procedure given in the previous two chapters to a stretched
coordinate system. Chapter 7 gives the results of analysis and design problems
using the full potential formulation. Chapter 8 gives the Euler solution. In both
these chapters, sample comput: tions are conducted and the calculated results are
compared with the available expe-imental data and other computations. In chapter
9, some extensions of the basic analysis have been made, including the extensions
to axisymmetric flows, to unsteady flows, to viscous flows, to the arc length/stream
function coordinates and to the (z, () coordinates. They are direct and immediate
extensions of the approach proposed in this dissertation and can be conducted in
the future. In the last chapter, brief conclusions are given, the advantages and
limitations of the present approach are discussed and possible ways to resolve the

problems are suggested.



Chater 2. Euler Formulation in SFC

2.1 Euier Equations in Stream Function Form
Tor a two dimensional, steady, inviscid fluid flow around an airfoil, the most

accurate mathematical model is the Euler equations

gu pu
Pupu-: p p,f?u.:). | = 0 (2-1)
puH / pol /
where )
u*+ v
H=- 1 1% + ;’

is total enthalpy per unit mass, p is density, u and v are velocity components in
Cartesian coordinates (z,y), p is pressure and 7 is the ratio of specific heats. The
dependent variables p,u,v and p have been normalized by the quantities a free
stream condition: density peo, speed Ve, and dynamic pressure head pooVZ. The
independent variables z and y have been scaled by the airfoil chord length.

Introducing stream function 3, such that

¢y = pu, Y = —pv, (2'2)

the first equation in (2-1), the continuity equation, is automatically satisfied and

the Euler equations take the stream function form

Yilp+p ~zty/p
—peityfp | + | ¥i/p+p | =0 (2-3)
wWH ), \ ~b:H ],

where

7 p Yet¥
7=1p  2p?
is the total enthalpy in stream function form. Here, only three equations are left

H=

with three unknowns v, p and p, as functions of z and y.
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2.2 von Mises Transformation and Stream Function Coordinates

The explicit form of stream function ¥ = (z,y) can be written in an implicit
form as F(z,y;4¥) = 0, or in an alternative explicit form as y = y(z,¥). This
process is equivalent to the introduction of the von Mises transformation (Pai 1956

or Ames 1965):
t=¢, y=y$yP) or é=gz, ¥=y¢(y) (2-4)
Now, notice that
2s=1, zy=0 or ¢.=1, ¢,=0 (2-5)

so that the Jacobian of the transformation is

_ a(m,y) _ Ty Ty Y _ 3
J‘a(qb,l/:)"det(w yw)"y"’ (26)

and the differential operators are

-é;=a—¢-+¢x5$, ‘@=¢y5q—b- (2-7)
Applying (2-7) to y gives
0= Yo + T:b:yllu 1= "'/’yy#’ (2'8)
which implies that
Yo 1
e ma— _—— 2‘9
Yz Ve’ Yy Yo (2-9)
Therefore, the differential operators become
9.0 w0 2_10 210

8z 9% yy 09’ By yudt
The Euler equations in stream function form (2-3) can be written in a compact

form
F.+Gy=0 (2-11)

9



where

- d':/P +p N _f': 'rf'nyP
F=| —deyyfo ), G=|¥i/etr].
vy H —v:H

If the Jacobian of the transformation J = yy # 0 and finite, then the Euler equations

in stream function form (2-11) can be transformed to

Fy- Y2, 4 —Gu=0 (2-12)
Yo Yo
where . .
1/(py3)+p ys/(py3)
F=| wys/lpvd) |, G={vj/lpvi)+r]-
Hlyy yeH /[y

Multiplying (2-12) by yy, we have
YypFp —yeFyp + Gy =0

or

(y,J,F)qb + (G - y¢F)¢, = (. (2-13)

Substituting the expressions for F and G in (2-12) into (2-13) and simplifying the

resulting equations, we get
1/(pyy) + Py ~PYs
ve/(oyy) +1 p =0 (2-14)
H o 0/,

€,.2,2°
T-1p Z2p%yy

where

Noticing that ¢ = z, we can rewrite the Euler equations (2-14) in (x, ) coordinates

1/(pyy) + pyy —PYz
Y=/ (pyy) +1 » =0 (2-15)
H 0
z U/
where \
H 7 p, l+yz

Ta-1p " 2%
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Usually, the (x, %) coordinates are referred to as the stream function coordir ates
(SFC) as suggested by Huang and Dulikravich (1986). The Euler equations (2-15) in
stream function coordinates (x, 1) are completely equivalent to the Euler equations
(2-1} in Cartesian coordinates (z,y) as long as the von Mises transfc..nation is
permissible for the problem under consideration. In this formulation, there are three
dependent variables, streamline ordinate y, density p and pressure p, as unknown
functions of two independent variables, abscissa x and stream function .

The last equation in (2-15), H, = 0, means that the total enthalpy H is invariant
along a streamline. However, for a flow with uniform free stream, H is also invariant
along any line. Therefore, H is a constant throughout the flow field. This is
the homnoenergetic assumption made by many Euler equation researchers, e.g. Ni

(1982). The constant can be evaluated at free stream conditions

1 1
= == 2-

H=lo = st ot (2-16)

Thus, equations (2-15) become

1
(— + pyy): — (py=)p =0, (2-17a)

PYy
(), +py =0, (2-17b)
Yy
2

L He. (2-17¢)

—10 20,2

Y=1p  2p%y;

Here, the energy equation has been reduced to an algebraic equation for p, p and y
derivatives due to the homoenergetic assumption.

Equations (2-2) and (2-9) imply that

1 Yz

U= — V=

Py’ pYy’

(2-18)

and therefore, the velocity components can be easily calculated after equations (2-

17) are solved.
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2.3 Euler-Equivalent Equations in SFC

Equations (2-17) are not easy to solve simultaneously and directly. However, if

we manage to solve one of the equations resulting from (2-17a) and (2-17b)} for y

and the other for p, and calculate p from the last algebraic equation (2-17¢}), then

we might be successful. As a matter of fact, this approach is quite feasible because

the prospective y equation will be a second order partial differential equation which

is more convenient to classify and solve.

Expanding (2-17a) and (2-17b) gives
Yzp + Yy Bpi — PYyP: + PYsyepy = 0,

YopYez — YrlYzy — yxyt.b%: + Py-fbpl.b =0.
Differentiating (2-17c) with respect to z leads to

7 L)
mpyﬁ,px = —YrYylYzr + (1 + yﬁ)yz'ﬁ
. 1492 p:
+ yp(Hoop v, + —2—’-)%

Y

and, with respect to ¥, leads to

2 2 1 2
_ — —(1
S qPYPe =~ Yzley + W,( + Yz Wuy

1 2
+ (Hoop™y?, + —0z)P¥

1
2y,yﬁ,yn+2yw(7_—1 = 292 )z + 29=(1 + Y2 Jyuy

+1
=y5(2Hoopy} — 7{—3 + yi)pf

- yyp(2Ho PPy + 14+ yi)p?"’,
2y o 2(2y-1)
v
12

2 p
Substituting p;, py from (2-20a), (2-20b) into (2-19a} and (2-19b) yields

T YYer — — 7 YeUu¥ey + 2L+ yz)yuw

(2-19a)

(2-19b)

(2-20a)

(2-20D)

(2-21a)



Q-
_ = 2 Pz P
= ~— lJIJVF - yv(oHcoP Jv + 1+ J:) P (2-21b)

The vorticity is defined by

W= vz — Uy
in Cartesian coordinates and expressed as

1. 9z 14+y2
w=—{[=F], - [-—= 2.92
y-.o{[p [ o lu} (2-22)

in (x,v) coordinates, or

y;ﬁ;y::_zyxyt})y:qb + (1 + yg)yﬁbﬂ"

2 Pz )p!l'

=UsUy ) = yu(l + y2)= + pwys, (2-23)

after expansion.
Solving equations (2-21a) and (2-21b) for p/p and py/p, substituting them into

equation (2-23) and simplifying the resulting equation, we get

W3 — 21 yzz — 2Walp¥ep + (1 + 12)ypy = Z2 (2-24)

where
Zl ‘7—1 y\b
2H e p?yd, — (1 +42)

is the compressibility parameter and

P2 Y% + (L +y2)

Z, =
e Jm""’H woP?y3 — (1 +32)

incorporates the rotational effect.
Equation (2-24), which can be solved for y if p and w are known, is a second order
nonlinear nonhomogeneous partial differential equation. To classify this equation,

consider its discriminant

A = (=2y.yy)? - 4% - Z))(1 +42)

_ —49; 1+y;
= o (/) T T g (2:25)
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The coefficient before the curly brackets is negative due to equation (2-17¢). Thus,

the type of equation {2-24) is hyperbolic (or elliptic) if

1442
e SV <0 (or>0)
2507y
On the other hand,
2
M?P-1= V—z -1
a
V2
T wle
e
Hoo = (1+y2)/(20%3)
-1 1+y2
Ho =G4+ A0 = 32y

where V is velocity, a is speed of sound and M is local Mach number. So, the local
flow is supersonic (or subsonic) if
1442

P
9=l 12,2
“yR P Yy

<0 (or>0)

Comparing equations (2-25) and (2-26), we conclude that if the local flow is super-
sonic (or subsonic), then the governing equation must be hyperbolic (or elliptic).
Therefore, the classification of the governing equation remains invariant after the
von Mises transformation, or in other words, the mathematical classification of
the governing equation in stream function coordinztes (z, %) is consistent with the
physical nature of the local flow field. This feature provides the possibility of ap-
plying the type-dependent difference scheme propnsed by Murman and Cole (1971)
to numerically solve equation (2-24) for y.

It is obvious that equation (2-24) for y is coupled with p and w through Z, and
Z,. Therefore, to solve equation (2-24) for y iteratively, p and w must be updated

frora iteration to iteration. In order to update density p, we have several options:

14



i) V-PDE made

Eliminating the term
YpYzr — Waly¥oy + (14 ¥ )0ue
from (2-23) and (2-24), we get
ye¥pPz — Yol + ¥2)py = (Z1yz2 + Za)p (2-27)

where the compressibility parameter Z, is the same as in (2-24)} and

2oy (1 + y2)
2Hoopyl, — (1 +42)

Z;;=Zg-——pwy,?j,=

is the term representing the rotational effect. Equation (2-27) is a first order non-
linear partial differential equation for p. From the theory of first order partial
differential equations (Courant and Hilbert 1965), the slope of its characteristic

curve is
d _ _lty:
dz Yoliy
At infinity, y, — 0,yyp — 1, and hence dip/dz — oo. Therefore, the characteristic

(2-28)

curve of (2-27) at infinity is a vertical line in the (z,v) plane. For this reason, it is
termed the V-PDE mode.

i1} H-PDE mode

Rewriting (2-21a) in the form

y+1

y3(2Hop?y3, — =1t yi)%’ — yzyp(2Hoop?y2 + 1 + y?n)%;£

1
= 2y, Y5 Yes + ?-yw(m = 292 Yoy + 2y2(1 + 92 )yuus
multiplying (2-23) by a factor of 2y,

2y§yi£§ — 2y:yp(1 + yi)% =
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2ysYphrr — 4Yiuelre + 20e(1 + ¥ e — 20wy Y

subtracting them and dividing the resulting equation by y,, we get

¥+1 . - vy Pur
Yo {2Hoop*yy, — (b3 yﬁ)}% — ¥ {2Hoop®yy — (1 + y;)}'T:

2

= —J Ve + 20y

which can be written as

Yoyl — Z1)px — y=Uhpy = (Z1yzg + Z4)p (2-29)
whcre Z; is the same as in (2-24) and the rotational effect is included in

2pwy Yy,

5 S Het— (L 7

Equation (2-29) is also a first order nonlinear partial differential equation for density

p. However, in contrast to equation (2-27), the slope of its characteristic curve is

dp _ y: 2Hoop'yy —(1+12)
dz  yy 2Hop?y? — (I +42)

(2-30)

At infinity, y; — 0,y — 1,p — 1, and therefore dip/dz — 0. That is, the horizontal
line at infinity is a characteristic curve of equation (2-29). Therefore, this method

of updating p is called the H-PDE mode.

iii) ODE mode
Eliminating the py/p term froin equations (2-21a) and (2-21b), we have

2

—jy—__—l{yzyﬁ,yu —yp(1+ ¥ )2y}

+1 x
= U {2Heat™y — T (1D}

or
1 ,(1+y2). Q+¥2)yl)- 14y?
_.__1{( = )1!_ 34 ¥ }=2{Hm__2’_1 y;:z}sz
v Yo Yy b (1A
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which finally simplifies to

1 1+
P )x—__[ yx
'7 yl'[)

2
Jo/{Heo %} (2:31)
Equation (2-31}) is a first order nonlinear ordinary differential equation for p® which
can be solved by marching it from some initial values, step by step (cf. Johnson
and Riess 1982). Numerical solutions can be obisined at all points except for sonic
points and shock waves.

At a sonic point, cquation (2-31) deteriorates to an indeterminate form because
both numerator (mass flux rate} and denominator (critical velocity criterion) vanish
and cannot be solved for p?. Fortunately, p? can be obtained by requiring that the
local velocity be equal to the local speed of sound, i.e.

2 _ 1+y:

T2l H

(2-32)

Across a shock wave, the differential equation (2-31) fails because p and desiva-
tives of y are discontinuous. Thus, equation (2-31) should be replaced by the
Rankine-Hugoniot shock relation (Landau and Lifshitz 1959)

py _ M)
p- 1+ (M2)_

where the squared Mach number upsiream of the shock can be calculated from

oyl +v2)

(M%) = [2H00P2y —(1+y2)

]~

Substituting the expression of (M?)_ into the Rankine-Hugoniot relation, the den-

sity downstream of the shock is given by

1442 -
=1
'H-l H°°y¢p

= ot (2-53)

Here, the subscript "4” and "—" denote the quantities downstream and upstream

of the shock, respectively. Equations (2-31)-(2-33) can be solved for density p.
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After y is solved from (2-24) and p is updated from (2-27) or (2-29) or (2-31})-
(2-33), the vorticity w can be updated from its definition (2-22). Thesc equations,
(2-24), (2-27) or (2-29) or (2-31)-(2-33) and (2-22), constitute a complete set of the
‘Euler-equivalent equations’ in the stream function coordinates (x, ). For conve-
nience, equation (2-24) is referred to as the ‘main equation’ for the corresponding
‘main variable’ ¥ (geometric quantity) and equations (2-27) or (2-29) or {2-31)-(2-
33) and (2-22) are referred to as the ‘secondary equations’ for the related ‘secondary
variables’, p and w (physical quantities). Having solved for y, p and w, we can cal-

culate the local Mach number and pressure coefficient from

M2 = "‘2‘(2 v:) = (2-34)
2Hoop?yy, — (1 - ¥3)
1
=2 2-35
C,=2p 7M30) (2-35)
where )
1 1+¢2
p= 1= (Hoop - 5—52).
“PYy
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Chapter 3. Full Potential Formulation in SFC

3.1 Non-Isentropic Jrrotational Flows
For non-isentropic irrotational flows (Hafez et al. 1985), w = 0, the main equation

(2-24) reduces to a homogeneous one
(yzw = 21 Yzz = 2y Yplzy + (1 + yi)yﬁ'ﬂ' =0 (3-1)
where the compressibility parameter is

2,2
Z] = ¥—1 y'!»' .
2Hp?y3 — (14 42)

The secondary equations (2-27) and (2-29) are simplified because Z3 =0and Z, =0
while (2-31)—(2-33) remain the same:

1) V-PDE mode

y:yfppz —yu(l + yi)P'Jf = Z1Yzzp; (3-2)
ii) H-PDE mode
y(¥3 — Z21)pz — v=u5 00 = Z1yzyp; (3-3)
iti) ODE mode
1 1442 l1+42
(p2)= = __"_[_Q']r/{Hoo }, (3-4&)
Y- 1 y‘b 23? 2 2
1
2= —i}i&— at sonic points, (3-4b)
25 Hoot
14 y2
P+ = =5 at shock waves. (3-4c)
2351 Heotiyp

To obtain a more compact formulation, let

R=/" (3-5)
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Then, the main equation (3-1) reads

(W3 = Z1)yer = Wevpyey + (1 + 0:)Yee =0 (3-6)
where )
~ = -;:_l'y!‘[r
2HooRyﬁ. -(1+y3)
Accordingly, the secondary equations (3-2)—(3-4) are reduced to:

i) V-PDE mode
yevd Re — yo(L + 92 Ry = 2Z1y.. R; (3-7)
ii) H-PDE mode
yo(v3 — Z1)R. - vy Ry = 27yl (3-8)
iii) ODE mode
= 1 1+y? 1+ y?
R:=—__ x]z/{ o0 — — 3 }a (3'93')
7-1" ¥} °§f+—}R 2
R= ——lﬂ—”— at sonic points, (3-9b)
215 Hooty
= 1+ y? 1
R+ = {2—%'}1-5: at ShOCk waves. (3-90)

The main equation (3-6) and one of the secondary equations (3-7)—(3-9) con-

struct a complete set of equations to solve for y and R.

3.2 Isentropic Rotational Flows

If the flows are isentropic and rotational, then

_ P
p= o M2 (3-10}
holds and
1 T I z
Yy {[y Iz - [1 E ]'P} # 0. (3-11)
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Expanding (3-11) leads to

Y2 Yre—2yzplzy + (1 + 93 )¥0y
J
=y:yi£j’ —yp(l+ yi)%’” + pwyfb (3-12)

Differentiating the isentrcpic relation (3-10) with respect to z and ¥ yields

pr! pr!
Pz = pr’ Py = ML P (3-13)

Substituting these into the z- and y- momentum equations (2-19a) and (2-18b) gives

Tt+1 1+l
2 P Pz 2P " Py
Yy — Yul¥ —1)}=+y:¥ — =0 3-14a)
Ty y#’( #«'Mgo )P Yz !ngo P ' (
+1
bz 22 P (3-14b)

YypYrze — YzlYzyp — yzy’#? + y'.bﬁoz: P)

Solving (3-14a) and (3-14b) for p./p and py/p, substituting them into (3-12) and
simplifying the resulting equation, we get

. M2
(vg = i Wee = 2ebyter + (14 2 ey = pwid. (3-15)

Eliminating yzy from (3-14a) and (3-14b) gives
yzy5p pr — yp(1 + ¥2)P7 0y = Macyzz- (3-16)
Equation (3-14a} can be rewritten as

2
oo

M
vo¥h ~ 31 )PPz ~ Ye¥yp TPy = M3 Yoy (3-17)

Substituting y;z, yzy from (3-16) and (3-17) into equation (3-15) leads to

M2 M2 1 +y2
v (3 ~ =2=2)p7pe + upl(1 - 13) - =2 = }p"py
p P Yy
2 (1+42
= Moo{ ") Yoy — PWYy}- (3-18)
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The main equation (3-15), one of the secondary equations (3-15)—(3-18) and the

vorticity definition {3-11) constitute a full set of equations to solve for y, p and w.

3.3 Full Potential-Equivalent Equations in SFC
If the flows are isentropic and irrotational, then both p = p?/(vMZ) and w =0
hold. Equations (3-15) and (3-18) can be reduced since the right hand sides contain

the factor w:

M2
(v - s = Yy e — 2y Yuloy + (L + 42 )ype =0, (3-19)
YyzU507p: — yp(l +¥2)p Py = Mayee, (3-20)
M2 .
yp(vs — p.,i‘} )PPz — Ysy5p Py = Myrys (3-21)
M2 o ML 14 y
ety ~ 757 )P +yu ye) - P —=}0"py
1 + 3: Ly
= M2y (3-22

Yy
In order to simplify the formulation further, define the generalized density

R= p'f'H . (3-23)

Then, equations (3-19)—(3-22) become

2

(yib - Roo )y:cz - 2y:y\byzw + (1 + yi)yﬂ!lb =0, (3-24)

Y2¥3 Re — yu(1+ ¥3) Ry = (1 + )Mz, (3-25)
M2

y¢(y3, - T_—?)Rz yzwarlJ (v+1)M, ooyzr.'n (3-26)
M2 M2 1442

ye(v3 — =2)R: +yu{(1—42) - —°°-—-2—y-}R¢

R R
= (y+ 1ML 7 e . (3-27)
P

The main equation (3-24) can be solved for the main variable y and one of the

secondary equations (3-25)—(3-27) can be solved for the secondary varieble R.
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This set of equations is referred to as the full potential-equivalent equations in
stream function coordinates {z,%). Checking the secondary equations (3-25)-(3-
27) carefully, we find that equation (3-25) is the simplest to solve for R due to
its linearity. Therefore, this equation should be given priority as much as possible
unless other difficulties occur with it. After y and R are solved, the local Mach

number and pressure coefficient can be calculated from

M2 1442
2 _ Moo z )
M R y,?:, . (3 8)
c, = Wz 2 (R -1). (3-29)

3.4 Other Forms of Secondary Equations
Apart from equations (3-25)—(3-27), several secondary equations for R can be

derived. A few of them are listed below:

i) Conservative Form

Dividing equations (3-25) by y2, we have

1+y; y
YRz — - erp = ('Y + l)Mgo?:gj

or

2 1+y3

v}

14 ::z
(yzR)z — ( LE ) = (y+1)M M Yoz + R{yxz
Uy ¢-

The term in the curly brackets is

1+ yx g = y,p'y::z — 2ysyyyzy + (1 + y:)ylb&b
Yy y,p

y::‘(

On the other hand, equation (3-24) can be rewritten in the form

M2
Ygzz — WebigYes + (L + 120w = F2¥ss-
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Therefore, we have

1+y: 2 Yor .
(y:R): — (—Y=R)y = (v + 2IME ”J (3-30)

¥ [

This is a conservative form of the secondary equation (3-25) and can also be used

to solve for R.

1) ODE Form
Eliminating the Ry term from (3-25) and (3-26) leads to

MZ 1+y2 1+32
{“'Rﬁ_y'z'y_—l}R = (7+1)A‘I§°[ 23}:1: y yu.b]'
v ¥
The right hand side term is
y4+1, o 14 Y2
5 MZ[ ) ;.
Hence, we have
R, =11y Atysy Molty: (3-31a)
r 2 fu’s] yﬁ’ I R y;zp .
Likewise,
1 M1
Ry = ";’1M2[ +y=] HF +y= ~1}. (3-31b)
yh

1t is interesting that equations (3-31a) a.f,‘d (3-31b) are similar and symmetric. Any
one of these two ordinary differential equations can be chosen as a secondary equa-
tion. According to the theory of ordinary differential equations, R can be solved
by marching (3-312) or (3-31b) step by step along the z- or - direction. However,
wi:en marching (3-31a) along z- direction across a sonic line or 2 shock wave, it is

necessary to replace this equation by the sonic condition (cf. (3-28), for M =1)

2
R=M§°1+y

(3-32)
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or by the Rankine-Hugoniot relation (cf. (3-4c))

1+y3 +1_1
Ry = {-ot¥e _yrer L (3-33)
2wy} R-

wlere the subscripts ‘4’ and ‘—’ represent the downstream and upstream sides of

the shock wave, respectively.

iii) Second Order PDE Form
Differentiating (3-25) and (3-26) with respect to 1) and z, respectively, we get the

following equations

Yy Rey - yu(1+y2)Ryy =

~(ye¥3)e Rz + [y (L + v2)]p Ry + (7 + DML yzzy

and

M2
y!.b(ya; - 'f’)Rz: - yxybezw =

MZ,
—lye(vd — T)]sz + (¥=43)s Ry + (7 + V)MZ yzys.

Subtracting these equations to eliminate the third derivatives y:.y and yzyz, we
have

M? .
Yoy — > Ree = 20: ¥y Ry + yu(1+ 92) Ryy =

{(v=y3)w = lvo(yy ~ -4%2’;)]:}12: + {93z — [yw(1 + ¥2)]y} Ry.

Substituting R., Ry, from equaticns (3-31a) and (3-31b) into this equation, we ob-
tain a second order partial differential equation for R with the same second order
differential operator as in the y equation (3-24), but with a nonhomogeneous right

hand side term

M2,
(y?b = T)Rzz - gy:yl,bR:w + (1 + yz)Rw =G (3-34)
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where

'y+1 2H1+Hg M2 1442
G=1—M, A 1},
2 M o0 1+f~
Hy = {(v:93)0 — lyulvd — ooy, 1),
R y,x
1+ b
Hy = {(0:93)e — o1 + 12w} Uz,

All of the above R equations, first order nonconservative partial differential equa-
tions (2-26)—(2-27), conservative partial differential equation (3-30), first order
ordinary differential equations (3-31a)—(3-31b) and second order partial differen-
tial equation (3-34), can be used as secondary equations to solve for R in order
to update the compressibility parameter MZ%/R in the main equation (3-24). Of

course, the numerical solution procedure will be different from one to another.

3.5 Alternative Sets of Variables

Moreover, we can construct the full potential-equivalent equations in SEFC using

alternative sets of variables:

i) (y — M?) Set
Using the (M?2-R) relation (3-28) in the main equation (3-24) produces the main

equation with the compressibility parameter expressed by M?
2

2 _ a2 Yo
W =M

Yyzz — 2YzYyp¥zy + (1 +¥5)9py =0 (3-35)

where the squared Mach number has been used as the secondary variable. To
derive the secondary equation for M2, taking the logarithm of equation (3-28) and

differentiating it with respect to z, we get

2 2
Of). _ B (1i) ti

M? R Y5
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From (3-31) and (3-28),

R. ++1 M?* 14y ,1+y2
= [ . /1 ).

R 2 M?-1 vs
Thus,
(M%) _ 1+ 5 M? 1442, 1+y;
M2 = 1 M2 [ 2 ]-‘E/[ 2 ]
- v Yy
or 2 =1 ar2 2
. M*(1 + 5=-M?) l+y
), = 2 £ 3 20
L (3 %)
Similarly,
M1+ 3 M2 1442
Vg = 2 =1} u- 3-36b
(M*)y Tl 7 i (3-36b)

To solve for the secondary variable MZ, the ordinary differential equations (3-362)
or (3-36b) can be marched along the z- or ¥- direction. This is similar to the R
equations (3-31a) or (3-31b). Likewise, when marching (3-36a) across a sonic line

or a shock wave, equation (3-36a) should be replaced by the sonic condition
Mi=1 (3-37)

or by the Rankine-Hugoniot relation (Landau and Lifshitz 1959)

14 274(M?)

(M*)+ = [m]—- (3-38)

i) {y —u) Set

From equation (2-18), p = 1/(yyu), we can rewrite the main equation (3-19) as

(3 = MEy)  w ™  Yyee — 2ycyyyze + (1 + ¥2)ypy =0 (3-39)

where the z- velocity component u has been chosen as the secondary variable. The

secondary equation to solve for u can be derived from w=10:

(Yzypu)z ~ [(1+y2)u)y = 0. (3-40)
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i) (y — o) Set

Letting density reciprocal

1
c=- (3-41)
p
be the secondary variable, then a new set of equations is obtained:
(W5 — M0 Yoz — eyudew + (1 + v doge = 0, (3-42)
1+ y?
(y:0): — [—-—O’],;, = 0. (3-43)

Yy
iv) (y —u — p) Set

Traditionally, the algebraic Bernoulli equation is used to update density p. In the
transonic regime, however, the classical double valued density /mass-flux relation in
stream function formulation still exists in this SFC formulation and is perhaps even
more difficult to handle. As s compromise, the intermediate quantity u 1s solved
first and the density p is evaluated by the Bernoulli equation afterwards. Thus, the

following set of equations comes up:

M2, .

(v = 2355 e = atyyen + (1 y2yww =0, (3-44)

(Ysypu)e — (1 + vz )uly =0, (3-45)
-1

p={1+ =MLl - @+ (3-46)

More details regarding the full-potential-equivalent equations in streamn function
coordinates and its application to transonic airfoil calculations can be found in the

paper of An and Barron (1992).

28



Chapter 4. Numerical Methodologies

4.1 Governing Equations and Boundary Conditions

Suppose an airfoil is placed in a two-dimensional air flow with free stream Mach
number My, at angle of attack a (Fig. 4-la). The governing Euler-equivalent

cquations in stream function coordinates are (2-21), (2-27) and (2-22):

(Y5 — 23 )z — 2Walpley + (1 + ¥2)yypy = Za, (4-1a)
y::yipx - y\b(l + yE:)Pl,b = (Z1Yzz + Z3)p, (4’1b)
W=y~ —|— 4-1c
yw{[f’] { 7o Jv} (4-1¢)
where
—2_.2
Zl y—1 y‘l’

T 2Hwp?yl —(1+42)’

_ 2Heop'y +(1+y7)
T Hp?yl - (Lt ga) oW
_ 201 +y2)

" 2Hoop?y? — (1 + 42)

On the airfoil, the boundary condition is simply Dirichlet

Zy

Za

Py

y = fx(z) (4-2a)

where f,.(z) and f_(z) represent the shape functions of the upper and lower surfaces
of the airfcil, respectively. In the far field, the stream function can be expressed as
the sum of a uniform stream, a doublet and a vortex flow. In most cases, the doublet
term is sufficiently small and can be ignored. Finally, the boundary condition at
infinity is given in an explicit form for 1) (Atkins and Hassan 1985):

1/)(.'8, y) = ycosa — T8ina -+ -‘-)-P;In{zz + (1 - Mgo)y2}

in Cartesian coordinates, or in an implicit form for y:

y(mi ¥) = In{xz +(1- Mgo)[y(m$¢)]2} (4"2]3)

+ ztana —
cosSt 2reosa
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in stream function coordinates, where T is the circulation. This algebraic equation
for y = y(x, ) is nonlinear so that some kind of iteration algorithm (e.g. Newton’s
iteration) must be applied. In addition, at the trailing edge, the Kutta condition

must be satisfied, i.e. the velocities

2
Vre = [p2 5| TE (4-2¢)

calculated from upper and lower surfaces at the trailing edge must be equal to each
other,
If the flow is assumed to be potential, the governing full potential-equivalent

equations in stream function coordinates are (3-24) and (3-25):

M2, .
(yﬁ; - T)yzr - zyxyqbynb + (1 + yi)yrpl.b =0, (4-311.)

Yevg Fz —yp(1 4+ ¥2)Ry = (v + 1)MYzz (4-3b)

where R = p7*?! is the generalized density. The boundary conditions on the airfoil,
at infinity and at the trailing edge are the same as those in (4-2a}, (4-2b) and {4-2c),
respectively.

The sketches of the physical and computational domains and the boundary con-

ditions are shown in Figs. 4-1a and 4-1b, respectively.

4.2 Type-Dependent Scheme for the Main Equation

Because the main equations (4-1a) for the Euler formulation and (4-3a) for the full
potential formulation are well classified as hyperbolic/elliptic type depending on the
local supersonic/subsonic flow property, it is possible to apply the type-dependent
scheme to solve for y.

Equation (4-1a) can be rewritten as

A1Yzz + A2yz¢ + A3y1,b11: = A4 (4"4)

where

A=yl -2, Ay =-2yy, As=1+y:, Ai=2,
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and

2 .2
2Hoop?y?, — (1 +42)’
z 2Hoop®yl + (1 +92)

2T BHup?y - (L 2)

The type-dependent scheme reads

{A[vAz +(1 - v)V:]|V2
+Ag[v6e + (1 — )Valby
+Aabyylyii = Ag (4-5)

where A,V and ¢ are forward, backward and central difference quotient operators,

respectively, and the switch parameter

b= { 1 for subsonic points, (4-6)

0 for supersonic points.
Expanding the type-dependent scheme (4-5) and rearranging the terms to express
it in a tridiagonal coefficient matrix form, one gets
Ay -1 + Byij + Cyij+1=RHS (47)
where
A= ﬂzAs - (1 - V)ﬁA2/2,

B= —2ﬁ2A3 + (1 - 3V)A1,
C = B2 Az + (1 - v)BA2/2,

RHS = = vA;(¥i41,j + vi-1,5) + (1 = ) A1 (2yi-1,j — ¥i-2,5)
— vBA2(Yit1,j41 — Yit1,j-1 — Yi—1,j+1 + ¥i-1,5-1)/4
+ (1= v)BAz(y: 1,41 — ¥i-1,i-1)/2 + Az’ Ay
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fori=2,3, vy Imaz=1,7 = 2,3, 1, Jmaz—1 and 3 = AI/AIJ'
If the flow is potential, equation (4-3a) can be rewritten in the same form as (4-4},
but the A's are slightly different:

ArYrr + Aoyey + Aaypy = A4 (4-8)

where
2 ‘n/‘[go 9 2
Al =yy— R Ay = =29.yp, Az=1+4y; A1=0.

The system of difference equations with a tridiagonal coefficient matrix is the same
as equation (4-T) except for the different A’s as shown in equation (4-8).

Following Jones' (1980) ‘patch relaxation method’, the computational domain
is divided into four subdomains as shown in Fig.4-2a. Each subdomain is swept
sequentially by SLOR from left to right and, due to the nonlinearity of the equation,

the whole process is iterated up to convergence.

4.3 Crank-Nicolson Scheme for the Secondary Equation

As mentioned in section 2.3, paragraph i), equation (4-1b) has vertical charac-
teristics in the far field. From the theory of first order partial differential equations
(Courant and Hilbert 1965), equation (4-1b) can be solved by marching it line by
line from & non-characteristic curve. In our case, the horizontal far field boundary
can be used at which density is specified p = 1, and equation (4-1b) can be marched
to the airfoil from the lower and upper boundaries for lower and upper half planes,
respectively (Fig.4-2b).

Equation (4-1b) can be rewritten as
Bip: + Bapy + Bap =0 (4-9)
where
B, = y:yfm B; = —yll-'(l + y?:)i B; = "'(Zlyz:: + Z.’!)
and s
_ F-1Y9
2Hoop?y? — (1 +42)’

Z
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_ 2(1 + y2)
2Ho0p%yd — (1 +y2)

Crank-Nicolson scheme is an implicit, second order accurate and unconditionally

Z3

Py

stable difference scheme. Applying it to (4-9) at point (i,j — 3) for the lower half

plane, we have

Pig1,j-4 — Pi-1,j-1 Pig — Pi,j—1
B 2 2 Tl o
! 2Ax + B Ay

+ BSP;‘,J‘—-} = 0.

Evaluating density p at (j — ) level by the average at j and (j — 1) levels and

rearranging the equations in a tridiagonal form, one gets
Apiv,j+Bpij + Cpis1,j = RHS (4-10)
where
A=-B,, B=48B,+2AzB;, C =B,
RHS = Bpi—1,j-1 + (48B2 — 28z Bs)pi j—1 — Bipit1 i

for i = 2,3, ..., Imaz—1, 7 =2,3,..., ma1. Here 8 = Ax/Ay and Jin41 represents
the “zero” streamline coinciding with the airfoil surface. It should be noted that
By, B, and Bj; are the averages of the corresponding quantities at j and (j — 1).

Similarly, for the upper half plane, Crank-Nicolson scheme yields
A~Pi—1,j + E,O,‘,J‘ + 5,0,‘.1.1,_,' = RHS (4-11)

where
A=-B,, B=-48B;+2AzB;, C =B,
RHS = Bypi-1,j+1 — (48B2 + 282 B3)pi,j41 — B1pisa 1

for i = 2,3,...,Jmaz—1, J = Jmaz=1,Imaz—2, -+ Jmd1- Likewise, By, B, and B3
are the averages of the corresponding quantities at j and (j + 1).

If the flow is potential, equation (4-3b) can be rewritten as

BR. + BgR,p =B, (4—12)
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where
By =yz13, Ba=—yp(l+u3), Ba=(v+DMys.

Applying Crank-Nicolson scheme to (4-12) for lower and upper half planes, re-
spectively, we get the following system of difference equations with a tridingonal
coefficient matrix:

ARi_,; + BRi; + CRiy, ;= RHS (4-13)

where

A=-B,, B=48B;, C=B,
ﬁS = 6‘R,'_1’J‘_1 + .§R,“J‘_1 + ER,‘.;.[J-] +4AzB;

for the lower half plane, and
A=-B,, B=-48B,, C=B

RHS = CRi_1,j41 + BRijs1 + ARigy,j+1 +402Bs

for the upper half plane, respectively. Likewise, By, B; and B; are the averages of
the corresponding quantities at j and (j — 1) levels for the lower half plane and at
j and (j + 1) levels for the upper half plane, respectively.

The systems of difference equations (4-10) and (4-11) for the Euler formulation,
or equation (4-13) for the full potential formulation, have tridiagonal coefficient
matrices and can be solved line by line horizontally using SLOR from far field
boundaries to the airfoil. An iterative procedure is needed for the Euler formulation
due to the nonlinearity of the B; term for p in equation (4-9), while no iteration
procedure is needed for the full potential formulation because equation (4-12) is
linear for R. It should be pointed out that the second derivative yz. in the Bj term
of equation (4-9) or (4-12) should be type-dependent differenced to be consistent
with the differencing in the y equation:

v
Yoz =‘A—$"§(yi+1,j —2y;; + ¥i-1,j)
1—-v
+—Aa:2 (¥ij — 2Yi-1,; + Yi-2,j) (4-14)
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where the switch factor v is defined in equation (4-6).
After p is solved, the vorticity can be updated from its definition (4-1c) and the

local Mach number can be calculated from

(1 +43)
2 _ ¥-1 z
M= 2Hoop%y3 — (1 +y2) (#152)

for the Euler formulation or from

_ M1+

2
M R 4

(4-15b)

after R is solved for the full potential formulation.
The velocities at the trailing edge calculated from the upper surface, Vi, and

from the lower surface, Vi, must be equal to each other. That is,
(AV)re=Vifg - Vg =0 (4-16)

where the velocities Vi are given by (4-2¢) and evaluated from the upper and lower
surfaces of the airfoil, respectively. Equation (4-16) is the Kutta condition at the
trailing edge. Furthermore, is (4-16) is not satisfied, more iterations are needed and

the circulation I' around the airfoil can be corrected from the following expression
suggested by Hafez et al.(1985):

T =T 4 By(AV)re (4-17)

where the superscripts (n) and (n+1) indicate the iteration levels and the relaxation
parameter Bp can be determined from numerical tests. The numerical solution
process can be described as follows:

First, the tridiagonal system of algebraic equations (4-7) is solved for y along a
verticel line. Each vertical line is then successively relaxed from left to right in each
subdomain and each subdomain is swept in the order of I, II, III and IV. The latest
values of y are always used whenever they become available. After y is relaxed, the

difference between the current and previous iterations is checked by

W ="M <e (4-18)
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for all grid points (4,j) where ¢ is the prescribed tolerance. If condition (4-18) is
satisfied, the iterations are considered to have converged, otherwise, the iterations
are repeated until convergence. After y is converged, p can be solved from cquation
(4-10) and (4-11) for the Euler formulation «r from equation (4-13) for the full
potential formulation. This time, the tridiagonal system of algebraic cquations
(4-10), (4-11) or (4-13) is solved along a horizontal line and each horizontal line is
marched upward or downward to the airfoil. After p is converged, the Mach number
M, vorticity w (for the Euler formulation) are calculated and the Kutta condition
is checked by (4-16). If it is not satisfied, the circulation I' is updated by (4-17)
and the procedure is repeated again until convergence. The Mach number is used
to distinguish the grid point type: subsonic, supersonic or shock wave (see the next

chapter). The computational flow chart is shown in Fig.4-3.
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Chapter 5. Special Treatment of Shock Waves

5.1 Shock Jump_Condition

After some numerical tests, it was found that the type-dependent scheme is effec-
tive only for subcritical flows and for supercritical flows with very weak shock waves.
However, for a supercritical flow with moderate or strong shock waves, the compu-
tation either fails to converge or is forced to stop due to inaccurate intermediate
values of the unknowns y and p during the iteration. Occasionally, the computa-
tion converges but gives inaccurate pressure distributions and incorrect shock wave
positions. This means that the shock waves are not properly handled. Therefore,
a special treatment of shock waves is necessary. In the early work of Murman and
Cole (1971), the shock jump conditions are automatically involved in their scheme
for the TSD equation. The sonic line and shock waves develop naturally during
the course of iteration. No special shock wave treatment has been made in their
computation. To improve the approach, Murimau (1974) proposed the concept of
shock point operator (SPQ) for the TSD equation. Although his SPO cannot be
applied here-directly, his basic idea and analysis of the shock wave structure pro-
vides a useful hint for more accurate models, such as the full potential or Euler
equations. The shock wave theory which has been developed rather completely, e.g.
Courant and Friedrichs 1948, Shapiro 1953, Landau and Lifshitz 1959, etc., can be
used to analyze the shock jump conditions and construct the shnck point operator

in stream function coordinates (z,%).

Suppose an oblique shock wave makes an angle 8 with the z axis, and V, a are the
velocity and its angle with the z axis. u,v are z and y components. V,,, V; are normal
and tangential components to the shock. Superscripts ‘F’ represent upstream and
downstream of the shock (Fig.5-1). The tangential velocity conservatior, across a

shock, V;* = V=, gives

Vteos(f — a*) =V~ cos(f — a™).
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Expanding it yields

V*cosatcos + VTsinatsing

=V " cosa"cosB + V "sina” sinp

or
(vF —v7)sinf + (ut — u”)eosB = 0.
Therefore,
vt — v~ .
;i'_-——t:: =—K (5-1)

where K = 1/tanf is the reciprocal of shock wave slope. The normal momentun

conservation across a shock, p*V;} = p~V,, gives
ptVtsin(B—at)=p V7 sin(f—a”).
Likewise, expanding yields

p+V+cosa+sz'nﬁ - p+V+sina+cosﬁ

=p~V "cosa”sinf — p~ V™ sina” cosf

or
(p*ut — p7u)sing — (ptvt —p v )cosf = 0.
Therefore,
oyt — pmu
ptut —p~u™ _ _
————p‘*‘v'*'—p"v‘ =K. (5-2)

Equations (5-1) and (5-2) can be expressed in a compact form
[v] + K[u] =0, [pu] - Kpv] =0

where [...] represents the jump of the corresponding quantities across the shock
wave. Considering puyy = 1 and v = y,u, we get the following obligue shock jump

conditions in stream function coordinates (z, %):

Yz 1 1 oYz
+ K[—]=0, [—]-K[=]=0. 5-3
[Pw] [wa] [yw] [w] (5-3)
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For a shock wave perpendicular to the r axis, 8 = #/2, K = 0, and the shock

jump conditions reduce to

Yz 1
= 0‘ —| =10
[wa] [ytb]
or in a simpler form
(&= ] =0, [yyl=0. (5-4)

These are the normal shock jump conditions in stream function coordinates (z, ¥).

5.2 Shock Point Operator
For a moderate transonic Mach number, the shock wave is approximately normal

and, therefore, assumed to be an infinitesimally thin discontinuity surface located at
point (i — %, 7) and perpendicular to the streamline. From shock jump conditions (5-
4) in the previous section, only y./p and y, are continuous across this discontinuity
but other quantities are not (see Fig.5-2).

The normal shock jump conditions (5-4) gives

vi =D,  vi=vp (5-5)

where the density jump factor p is given by the Rankine-Hugoniot relation for a
normal shock (Shapiro 1953 or Landau and Lifshitz 1959)
pt (M)

P~ Ty A (M2

p= (5-6)

The squared Mach number at point (z — %, 7)” can be evaluated by extrapolation

from the two upstream grid points

1

- gMis,;. (5-7)

. 2y —
(M ):‘—% i = 5 Il—l WJ
Thus, the shock jump ~onditions (5-5) can be rewritten as

(Wioy s = #i(ve)iy oty = W)y, (5-8)
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where
3#(31\1'? - .M,'-"_._,_J-)

_ i—-1,j
14+ IE@ML, - ML, )

-1,

Hj

is the density jump factor on the j'* streamline.
Finally, we construct the difference approximation to y,, at a shock point ¢ = i,

i.e. the grid point just behind the shock:

1
(yza:)i,j = E[(U:)i-}-%.j - (y:);'t._},j

1 -
= aplWediay s — #ilvzliiy ;

1,1 u;
= oAy Wi = ¥ig) = 3o Wim1j = Yi-a,j)]

1
= Az? (Yi41,5 = Yirj — Hi¥i-1,5 + i5¥i-2,5) (5-9)

where the first part of the shock jump condition (5-8) and the following difference

formulae have been used:

1
(yz)i+l,j = ——(Yit1,; — Yirj )
7 Az
_ 1
(y:: i-1,j = E(yi-—l,j - yt’—2.j)-

Similarly, the cross derivative can be given by

(e )i =7 [@o)ie 3.5 = W)y
=iy — G0y ]
=‘éﬁ[(%’¢)i+ld + (g )i — 3y )io1,; + (Y )i-2,5]

1
=m('ye+1,j+1 - Yit1,j—1 + Vi j+1 — Vi, j~1

— 3yi—1,j41 + BYi-1,j~1 F Vi-2,j41 — Yi-2,j—1) (5-10)

where the second part of the shock jump condition (5-8), the arithmetical average

fo1

(Yo)irs,; = slwwdivri + (We)iil;
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the extrapolation formula
3, . 1
(y)i-1,; = 5(Wpli-15 = §(yw)£—2,j
and the central difference for yy
1 . , ..
(W)k.j = —2A¢(yk.j+1 - ?H:,j—1), k=1-2,1—1,2,:+1

have been used. Equations (5-9) and (5-10) define the so-called shock point operator
(SPO) in stream function coordinates (z,%). Numerical tests show that the first

derivatives, y., pz, etc., do not need to be specially treated across shock waves.

5.3 Type-Dependent Scheme with Shock Point Operator

Due to the special treatment of the grid point at a shock wave, we have to revise
the type-dependent difference scheme (4-7) and Crank-Nicolson schemes in (4-10)
and (4-11) for the Euler formulation and (4-13) for the full potential formulation.

The system of difference equations for y is still of the same form as in (4-7):
Ayij—1 + Byi; + Cyijy1 = RHS (5-11)

but the coefficients A, B, C and the RHS term have to be modified:

(1—v)BAa/2  ifis#i,
A= %4 —
Fds {ﬁA2/4 i =1y,
1-3v)A; ifiski,
B=-23%4 (
g 3+{-.41 if§ =,
(1-v)BAz/2  ifi#i,
C =p%A
P 3+{ﬁ.42/4 if i =1,

( —vA(irni + vie,g) (1= v) ARy, — vie2,5)
—vBA2(Yit1,j+1 — Yit1,j—1 — Yi=1,j4+1 + Yi-1,j-1)/4

+(1 = ¥)BA2(Yi-1,541 = Yim1,j-1)/2 + Az’ 44 ifi#i,
RHS = ¢
~A1(Yis1,j = B3¥i-1,j + Bj¥i-2,5)
=B A2(Yiv1,541 — Yit1,i-1 = 3i-1,j41 -
U 43Yim1,jm1 F Yic2, 41 — Yimg,j-1)/4 + Az’ Ay ifi=1,
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where 8 = Az/AY and i = 2,3,..., Inar-1,J = 2.3, ..y Jmer—1- The A's are given
by (4-4) for the Euler formulation and by (+-8) for the full potential formulation.
For the p equation (4-9), the corresponding Crank-Nicolson scheme with shock
point operator gives the same forms of difference equation, its coefficients and its
RHS term as those in equations (4-10)-(4-11) for the Euler formulation and equation
(4-13) for the full potential formulation, but the second derivative y,, in the By
expr:ssion should be approximated by the type-dependeut difference with shock

point operator, cf. equation (5-9):

yos = { (i1, — Wi j + Vie1,j) + 5 Wiy — Wim1g HVi-2g)y EF
T —

er(Yirnj — Vi — Hi¥i-ry + BiYi-2,j} i =1s
(5-12)

where the switch parameter v and the density jump factor u; are defined in (4-6)
and (5-6).

In order to determine the type of local flow at grid point (4, j), we have to check
the flow property at two adjacent grid points, the current point (¢, j) and the im-

mediate upstream point (i — 1,5). The criterion is shown in the following table:

Miz—l,j M,?'J- Local flow type at (4,7)
<1 <1 Subsonic point

<1 >1 Sonic point

>1 >1 Supersonic point

>1 <1 Shock point

In computational practice, the sonic point need not be distinguished because there
is no jump across it but the shock point must be identified carefully and it is a key

step in getting a convergent solution. in supercritical transonic flow computation.
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Chapter 6. Coordinate Stretching Transformation

6.1 Jones’® Stretching Transformation
In order to improve accuracy by increasing the number of grid points on the

airfoil, without consuming too much computational time, some kind of coordinate
stretching transformation may be applied to pack mesh points for larger gradient
regions and spread out mesh points for smaller gradient regions. Jones’ (1980) alge-
braic stretching transformation for independent variables is a simple and effective

one:
z = Ae~%tant, ¢ = Dtann (6-1)

where —1/2 < € < 7/2,-7/2 < 7 < 7/2, A, B and D are constants determined

from numerical tests. The derivatives of z and i with respect to £ and 5 are

Te = Ae"Bg(seczg — 2B¢tant),

Tee 2tan.£ — Bsinfcos€ - B¢

xe 1— 2B€sinfcosf 25¢,

'pﬂ =D Secth
Y

— = 2tany.
7

The differential operators are transformed as

8 18 8 _ 138

oz 579? ?ﬂ B ¥y on
# 1 &
Oz8¢y — zeypy OEOY’
? 18 dmd

9%~ o0 93 oy’
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The Jacobian of the transformation is

J= =2 = ADe B (sect — 2BEtant)sec’y.
8(€, 1) ‘ Ssecn
It can be seen that J # 0,00 for —7/2 < € < #/2,—7/2 < 5 < /2, hence the
Jones’ transformation does not have any singularities.
For further simplification of boundary conditions, a new dependent variable

may be introduced by
y=Y 4. (6-2)

After this dependent variable transformation, the derivatives of y with respect to «

and i are transformed to

Y Yy

= -2 =41

yx w& ¥ y![) w" + k]
Yeo x4 e Yoy = 3 Yoy = Yin  ¥m

Iz = b ] x - b) - n
Tg T ¥ v

8.2 Main Equation for ¥ in Stretched Coordinates
After the transformations (6-1) and (6-2), the main equation (4-1a) for the Euler

formulation becomes
A1Y£g + Azqu + AaY,m + A4Y€ - AsYﬂ = Ag (6-3)

where

(A = (Yn + ¢ﬂ)2 - ¢§ZI
Ap = =2Ye(Yy + ¥y)

Az = Y? + :n%

A4 = —Alxeelﬂfe

As = —AsPyn /g

\ Ag = .’3%41?,22,
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;%TI?E(YW +1)?
2Hoop? g (Yy + 02 — Y3(YE + )
_ 2H°°p23:€(y +¢n)2+¢2(y2+$£) (Y 110
2 Y Hoop?al(Yy + ¥y ) — G2V +22)

Z =

For the full potential formulation, the main equation (4-3a} leads to

A1Yee + AgYen + AaYy, + AdYe + AsYy = Ag (6-4)
wherce 0 2112

(A = (Yn + %) — l/)',|‘Mc>::o/'R
A= _Q}E(Y’r + '»brt)

< Az = Y? + x%
Ay = —Ayzge/ze
As = ‘A3¢nn/¢ﬂ

| Ag=0.

On the airfoil, the boundary condition is
Y = fe[z(€)]. (6-52)
In the far field, the boundary condition can be derived from (4-2b):

- 1 ~B¢
Y(&,n) —Dtann(cosa 1) + Ae tanftana

r 2
In{A2e~2B g0
2rcosa { 3

+(1 = MY (€, 1) + Dtang]’}. (6-5b)

At the trailing edge, the Kutta condition must be satisfied so that the velocities

2(YE + z3)
\/ [ (Y n ¢i)2]TE (6-5¢)

calculated from lower and upper surfaces at the trailing edge are equal to each other.
After transformations (6-1) and (6-2), the normal shock jump conditions (5-4):
become

Y,
gL ti=0
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Because z¢, ¥, are continuous everywhere, the shock jump conditions reduce to the

same form as in (5-4):
Y, .
[=f]=0, [¥))=0 (6-6)
p
or

e -— 4y
Y= p¥o, Y=Y

where p = pt*/p~ is the density jump factor across the shock. In more detail, the

shock jump conditions in the stretched coordinates are (cf. Fig.5-2)

(YE);}-J,-,J‘ = lu’J'(YE)i_—Jz-,j’ (Y?l);l-—-},j = (Yu):—%.j (6-7)
where the density jump factor on the j** streamline is

LML, — Ma;)

#i= 1+ 3:—1(31\/!'-2_1‘)- - Miz—-z,j).

Finally, we can construct the shock point operator in J ones’ stretched coordinates:

1 .
(Yee)i; = Z"E;(Ym,j —Yi;— ;Yo +#iYio25) (6-8)

and

1
(Yen)ii = M(l’?+1.j+1 —Yiprj-1+Yijm — Yiim
— 8Yi—1,j+1 + 3Yic1,j-1 + Yiez,j41 — Yicz j-1)- (6-9)

Using the type-depend=nt scheme with shock point operator in equation (6-3) for

the Euler formulation, we get the following system of difference equations:

AY;j_1 + BY;; +CYi . = RHS (6-10)
where
aepmosn (L
= —28% 4, + { (—IA—l 3v)A; +(1 - v)AEA, if.: f ::,
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(1—v)BAx/2 if i # 1,

_ 2

( ~vAI(Yiq1,;+Yio5) + (1 = v)Al(2Yin; - Yiea 5)
—vBA(Yig1,j+1 = Yig1,j-1 — Yie1,541 + Yic1,5-1)/4
+(1 — v)BAs(Yiz1,j+1 — Yio1,j-1)/2
—vAEAY(Yis1,; = Yie,5)/2 + (1 = v)AEALYi
+AE A 54,

RHS = {
—A1(Yigr,5 = p¥i1,5 + p;Yi2,5)
~BAz(Yie1,541 — Yia1,5-1 — 3Yi1 41

+3Yi1,j-1 + Yicg j41 — Yicg j1)/4
—A§A(Yip,; — Yioa 5)/2

L A4 ifi =1,

for i =2,3, . Imazet1y = 2,3, s Jmaz_1 and B = AE/A7.

For the full potential formulation, the system of difference equations is the same

as equation (6-10) but the A’s are differently defined as in equation (6-4).

6.3 Secondary Equation for p in Stretched Coordinates
Applying transformations (6-1) and (6-2) to the secondary equation (4-1b) for

the Euler formulation, we have
Byp¢+ Bapy+ B3p=0 (6-11)

where

By =Ye(Y; +¢y)?
By = —(Yy + #5)(YE + 23)
By = —¢p%(Yee — FYe)Z, - zgpiZs,

2= iy + y)’
2Hoop?al(Yy + %) — Y3(YE +22)’
2p2(Y2 + 22 Y,
= SH AT . E)z el + 1)

Z3
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For the full potential formulation, the secondary equation in (&, 7) coordinates is

where o \
B, = }'E(}'u + d’u)

By = —(¥y + ¥, )(¥2 + £2)
By = (7 + )ME$3(Yee — 22 15).

The Crank-Nicolson scheme for equation (6-11) of the Euler fo 1nulation or (6-12)
of the full potential formulation produces the same forms of difference equation, its
coefficients and its RHS term as in equation (4-10) and (4-11) or (4-13), but the
B's take different forms from (4-9) as shown in (6-11) for the Euler formulation or
(6-12) for the full potential formulation. In addition, the second derivatives Yee
in the expression of B3 should be approximated by type-dependent difference with
shock point operator:

Yee = { 3??(1’?4-1,3' ~ 2+ Yio, )+ (Vi — 2Yicyj + Yica,j), i3

aa(Yivr; —Yij —p¥iorj +p5Yia), i=1s
(6-13)

For the Euler formulation, the vorticity and the local Mach nwnber can be cal-

culated from

1 9y Ye ¥a(Y¢ +28)
W= — - . 6-14
Yﬂ+¢ﬂ $£[pm£]E [Pm%(yn‘i"!)u)]l} ( )
and 2_p2(Y2 4 o2
Py +z
M* = 7 2 1% 62 Ez) 2 1 .2 (6-15)
2Heop xg(Yn +1y)? — :;(Y.s +$5)
The local Mach number for the full potential formulation is expressed by
2 2 Y2 2

R 3%(1/11 +y)?
The equations for the Kutta condition and for updating the circulation around the
airfoil are the same as those in (4-16) and (4-17) where Vg should be calculated
from (6-5¢). The pressure coefficient C, is also expressed by (2-35) for the Euler
formulation and by (3-29) for the full potential formulation.
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Chapter 7. Full Potential Analysis and Design

The governing equations for irrotational and isentropic fluid flow are the full
potential-equivalent equations derived in Chapter 3. There are several options for
secondary equations and the corresponding secondary variables. For analysis prob-

lems, we can chose the (y, R) set of equations (3-24) and (3-25) to solve:

, ML
(v§ — R Wer = 2ysyuvzy +(1+ Y2 ywy =0, (7-1a)
yzyprz —yyp(l+ yi)R\b =(7+ I)Mgoyrx (7-1b)

where R = p?*! is the generalized density. The boundary conditions on the airfoil,
at infinity and at the trailing edge are the same as in the Euler formulation: (4-2a),
(4-2b) and (4-2¢). The difference equations which should be solved are equation
(5-11) for y and equations (4-13) for R, but the A's and B’s should be adjusted
accordingly.

For design problems, however, due to the different boundary condition on the
airfoil, an alternative set of governing equations is selected. The main equation is

still (3-24), but the secondary equation is changed to (3-26):

M2,
yulyy — SR — vy Ry = (7 + DM yey (7-2)

The boundary conditions for the design problem are the same as in the analysis
problems, except on the airfoil whose shape is unknown. There, the pressure (or

velocity) distribution is specified, hence, the generalized density is also specified:
Ry(2) =1+ S MACpu()] (7-3)

where Cp,(z) is the prescribed surface pressure coefficient. On the airfoil, the

Bernoulli equation in stream function coordinates leads to

F(z)y} ~yi=1 (7-4)
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where

(v — 1M,

is a known function of . Equation (7-4) is a Neumann boundary condition on the

{1+ LA (RUIH - Ru(o)

F(z}) = .
airfoil when solving (7-1a) for y. Equation (7-3) is a Dirichlet boundary condition
on the airfoil when solving (7-2) for R. At infinity, R = 1. If the problem is
symmetric, the condition Ry, = 0 on a symmetry line off the airfoil should be
applied. If streamlines do not intersect each other on the airfoil, then gy > 0, and
if, furthermore, F(z) # 0 on the airfoil, then equation (7-4) gives

_ [+
WV FR)

For most practical transonic flows the required conditions are easily satisfied as long
as Cp,(z) is reasonably specified. Differencing yy with second order accuracy, we

get
1
yi,l = 5[4%'.2 - ¥i3 — 2G(z;)) (7-5)

Glan) = Ay TR,

Considering this boundary condition, we modify system (5-11) as below: for j=2,

where

equation (5-11) becomes
4 1 2
(B + §A]yi,2 +[{C — §A]yi,3 =RHS + §AG($=') (7-G)

Replacing the first equation in system (5-11) by (7-6), solving the resulting system of
equations and applying (7-5), we can obtain the desired airfoil contour f(x;) = i,
without any further iteration of the airfoil shape.

Equation (7-2) for R has different characteristic curves than equation (7-1b). In
fact, the slope of the characteristic curves of equation (7-2) is

&y _ __ ysyy

i = - MLIR (1)
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At infinity, dp/de = 0. So, the horizontal far field boundary is a characteristic
curve, but the vertical boundaries are not. Therefore, the marching process can be
carried out from left to right. The whole domain can be divided into the same four

subdomains to march R as for the y equation in Fig.4-2a.

For full potential anzlysis and design problems, only symmetric flows have been
calculated, Figs.7-1 — 7-3 are comparisons of the calculated Cp distributions for
a NACA 0012 airfoil with experimental data from the laboratories at ONERA
and NAE for M,,=0.703, 0.803 and 0.835. The computational domain (z,) has
been covered by a 65x33 uniform grid for moderate My, (Fiz.7-1). For higher
Mach numbers (Fig.7-2 and 7-3), a denser 81x31 mesh in the stretched coordinates
(&,7) has been used. The agreement between computed pressure coefficient and the
available experimental data is quite satisfactory. For supercritical transonic flows,
the shock waves can be captured by the type-dependent scheme plus the shock point
operator (SPO).

Figs.7-4 — 7-8 show the Cp distributions for a NACA 0012 calculated by dif-
ferent sets of equations and the associated secondary variables. Fig.7-4 shows the
calculated result for the (y, R) set of equations (3-24) and (3-25). Fig.7-b is the
result of calculations in which R is solved from the first order ODE (3-31a). Fig.7-6
shows the calculated Cp distribution by solving the set of equations in which R
is solved from the second order PDE (3-34). Fig.7-7 depicts the calculated result
using the (y, M?) set of equations (3-35) and (3-36a). Fi,.7-8 show the result of
the computation from the (y,u,p) set of equations (3-44)—(3-46). Other sets of
equations also have been tried and all of these computations have given acceptable
results. However, the set of (y, R) with the first order PDE for R, i.e. equation
(3-25), is the simplest due to its linearity for R and gives a more accurate result
especially for the supercritical flows. Therefore, this set of equations appears to be

the optimal choice.

Fig.7-9 indicates the typical convergence history of the full potential calculation.

The horizontal axis gives the total iteration number and the vertical axis is the
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logarithm of the error of R between two successive iterations. For suberitical Mach
number, the convergence is fast and the maximum error decreases steeply. For
supercritical flow, however, the convergence rate is much slower and the maximumn
error decreases slowly with oscillations.

Fig.7-10 shows the designed contours of a 6 percent biconvex airfoil compared
with the exact shape (Abbott and von Doenhoff 1959). The specified Cp,(x) on
the airfoil comes from the experiments at NASA (I(netchtel 1959) for M= 0.909.
Figs.7-11 and 7-12 give the designed NACA 0012 airfoil contours compared with the
exact shape (Abbott and von Doenhoff 1959). The specified Cp4(2) is from NAE
(Ohman 1979) for M,=0.490 (subcritical case) and from ONERA (Thibert and
Grandjacques 1979) for Mo.=0.803 (supercritical case). In the example in Fig.7-11,
a coarser uniform grid of 65x33 has been used and, in the computation of Fig.7-12,
a finer clustered grid of 81x31 has been used. Here, we can see that the present

full potential approach is capable of designing airfoil contours with satisfactory

accuracy.



Chapter 8. Euler Solutions

The developed approach using the Euler-equivalent equations in stream function
coordinates has also been used to calculate transonic flows past airfoils at zero
and non-zero angle of attack. Both subcritical and supercritical Mach numbers
have been considered. For unstretched stream function coordinates (x, ), a 65x65
uniform mesh covers the computational domain of -2 < ¢ £ 3,-25 < ¥ £ 25
and the airfoil is located between 0 and 1 with 13 grid points on it. For stretched
coordinates (£,7), a 65x65 uniform grid system covers the computational domain
of =1.54 € £ < 1.54,-1.54 < 5 < 1.54 corresponding to a domain of —7.04 <
z < 7.04,-19.47 < ¢ < 19.47 in clustered (z,v) coordinates. The airfoil is placed

between -0.5 and 0.5 and contains 25 grid points on its surface.

The computations are executed for the set of equations (2-24), (2-27) and (2-22)
for y,p and w. The corresponding difference equations are (5-11) for ¥ and (4-10),
(4-11) for p. The vorticity w is calculated using central differences for all z and ¥
differentiations. The iteration includes three levels of loops. The most internal loop
is the y iteration, the intermediate level is for p and the most external iteration loop
is for w, or for I'. The convergence criteric., the Kutta condition (4-16), must be

satisfied. The computational flow chart is given in Fig.4-3.

Most calculations have been carried out on 2 PC machine. The typical computa-
tional time on a 25 MHz 386 IBM compatible computer with 387 Math Coprocessor

is about 20 minutes for supercritical flows and 5 minutes for subcritical flows.

Figs.8-1 — 8-12 show the comparisons of surface Cp distributions between the
calculated results and experimental data or other computations. Figs.8-1 — 8-2
are Cp distributions for a NACA 0012 in subcritical flows: M,=0.490 and 0.696
at zero angle of attack. Figs.8-3 — 8-5 show comparisons of computed and experi-
mental Cp distributions on a NACA 0012 in supercritical flows: M,=0.756, 0.803
and 0.814. For moderate My, (Fig.8-3), the coarse uniform grid in (z, %) has been
used. For higher Mach numbers (Figs.8-4, 8-5), the finer clustered grid in (£,7)
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has been used. The experimental data in Figs.8-1 — 8-5 are obtained from a lab-
oratory of ONERA, France, (Thibert and Grandjacques 1979) and a laboratory of
NAE, Canada, (Ohman 1979). Fig.8-6 shows the comparison of Cp distributions
for a NACA 0012, M..=0.8, a=1.25 between the present clustered grid caleulation
and another Euler computation by Viviand (1985) using the O type 320x64 grid.
Figs.8-7 — 8-8 show Cp distributions on the 6 percent biconvex airfoil at subcritical
M_,=0.840 and supercritical Moo=0.909, respectively, compared with the experi-
mental data from a laboratory of NASA (Knetchtel 1959). Figs.8-9 — 8-12 give the
Cp distributions for the NACA 0012 at Moo= 0.502 and various angles of attack:
a=0, 2, 4 and 6 degrees. From these plots we can see that the present approach
can accurately predict Cp distributions for both suberitical and supercritical flows.
The small discrepancies between the calculated and experimental results at leading
and trailing edges and at shock waves are expected because the experimental results

necessarily involve the effect of viscosity.

Figs.8-13(a)—(d) show the effect of type-dependent (TD) differencing and shock
point operator (SPO) in a typical supercritical calculation: NACA 0012, M ,=0.803,
a=0. Fig.8-13(a) gives the result of central differencing with neither TD nor SPO.
The computed Cp distribution is totally incorrect and the shock wave cannot be
captured. Fig.8-13(b) shows the result of only TD differencing without SPQO. The
calculated Cp distribution is inaccurate and the shock wave location is too far back-
ward. Fig.8-13(c) shows the result of TD differencing plus relevant SPO, i.e. SPO
is used in yzz,Yzy terms only. The calculation gives a satisfactory Cp distribution
and the shock wave can be captured accurately. Fig.8-13(d) shows the result of
TD differencing plus too much SPO, i.e. SPO is used not only in yzz,¥zy terms
but also in y; term. The computed Cp distribution is inaccurate and oscillations
occur at the shock wave region. Comparing these pictures we conclude that the TD
differencing plus relevant SPO is an effective scheme to calculate transonic flows

and the SPO is a crucial tool to capture the embedded shock waves.
Figs. 8-14(a)—(h) demcnstrate the evolution of iteration and convergence process
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for a typical supercritical calculation: NACA 0012, M,=0.803, a=0. The Cp
distributions on the airfoil after the following numbers of iterations are plotted: 31,
67, 103, 165, 251, 380, 449 and 528. From these plots we can see that before 165
iterations the calculated flow field has no shock wave. After 165 iterations, a shock
wave is formed and pushed backward. The accuracy becomes better and better
with the process of iterations. The computation converges after 528 iterations and
gives a satisfactory solution.

Fig. 8-15 shows the convergence history for several typical calculations. The
horizontal ordinate is the total numl =t of iterations for y and the vertical ordinate
is the logarithm of the error of p. For subcritical flow (Meo=0.703), the iteration
converges very fast, the error decays to order 10™4 within 100 iterations. For su-
pereritical flow with no obvious shock wave (Moo=0.756), the iteration converges
slower and oscillation occurs, but it does not take long to decay the error to order
10~3. However, for supercritical flow with a shock wave (Moo=0.803}, the conver-
gence becomes very low and the calculation oscillates. It takes a long time (more
than 500 iterations) to decay the error to order 1072

Figs.8-16 — 8-17 show the effect of the stretching coordinate transformation.
For the subcritical case, without and with the stretching coordinate transforma-
tion, the Cp distributions for the NACA 0012 at M_,,=0.703 and o=0 are shown in
Figs.8-16(a) and (b), respectively. ‘[he accuracy improvernent is not obvious as the
unstretched discretization has already given a good result. However, for the super-
critical case, the accuracy is improved considerably as shown in Frs.8-17(a) and
(b). The stretched coordinate discretization gives a more accurate Cp distribution

and shock wave location.
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Chapter 9. Further Extensions

9.1 Extension to Axisymmetric Flows

Similar to the two dimensional case, for an inviscid compressible axisymmetric

flow the governing Euler equations take the following form

(pur)y + (per)r =0, (9-1a)
puuy + pou,. 4+ pr =0, {9-11)
puvg + povy + pr =0, (9-1c)

2 9-1d
P=oMz (9-1d)

where u and v represent velocity ‘components along the axial («) and radial (=)
directions, respectively. The coordinates (z,r) define a point in a meridian plane.
Here, the isentropic zssumption is made so that the energy equation is replaced by
the isencropic relation (9-1d). After using the continuity equation, the axial and
radial nomentum equations (9-1b) and (9-1¢) can be rewritten as

uy

(pu2 + P)z + (puv)r -+ p—r— =0,
2
(puv)s + (p* +p)r + = = 0.

Introducing Stokes stream function ¢ such that

P = pur, Y, = —pur, (9-2)

the continuity equation (9-1a) is automatically satisfied and the above momentumn

equations becon. :

2 Yrpr Pzr .
(B +p)e ~ (25 - S5 =0 (9-3)
Py i 2 ____2{_ _
=( o )z +(pr2 +p)r+ i (9-3b)
Making the von Mises transformation
r=z, r=r(z,) (9-4)



and assuming that the Jacobian J = &z, 7)/d(z, ) = ry is non-zero and finite, we

can get a single-valued transformation and the transformed operators:

0 & r. O a 1 9

Using these in (9-3a) and (9-3b) leads to

e

Tz ]
— 2.2 ——\—=T =0
(pr"'ri +p)-l‘ r'b(przr'p p)lf)"l‘ (Prz 2 )V Pr;;rﬁ’ ]
- 2 2
Ty _l._ T_t . _'r_:_ - 0
(pr). 2 ) (przrﬂ )'ob + r'p(przrfb +p)v -+ prsrﬁj
ar
Try T'r _
'a'J( rzrz ): Przrﬁ, pr3r¢ “+rePr — TzPy = 0,
o er)s + 5 e py=0.
v P’"2 2 ordry Py =

Differentiating (9-1d) with respect to z and 1,
pr=p""p /ML, py=p""'py/M]

substituting pz, py into the above momentum equations and simplifying, we get

T r"j; +l T p.‘f
e -}-r,p(rzrigp - 1)% r2r3 b a ”—"’ =0, (9-52)
riTy 2.2 P pu
PyTzr = TxTzy — P rzrwp? +7r°ry M2 » = 0. (9-5b)

The vorticity expression can be transformed to (z,) coordinates as below:
W=V —Up
¥ P
= —['f' r— [_r

JR 1412
= e [—x [prr lo} (9-6)
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or in expanded form

Peree=2reryrey + (14 1o + r—"

=] :r"(p —re(14r3 )—-+pu.'n3,. 19-7)
Solving (9-5a) and (9-5b) for p,/p and py/p, substituting them into (9-7) and

simplifying the resulting equation, we get

M2 ) Y :

(1§ = g rea = 2reroroy + (L4 oy + E = porrye (98)
Equation (9-8) which can be solved for r, is almost the same as equation (3-15)
for the two dimensional case, except for an extra term r2/r on the left hand side
and slight changes in the compressibility parameter and in the rotational term.

Eliminating vz, rcm (9-5a) and (9-5b) gives
2 000 — ol +12)pTpy = M2 S 9-9
TzTyp Pz ‘l"w( +rx)p Py = Mg P2 ( )

Equation (9-5a) can be rewritten as

M2 Trgp | TeTy
r¢(rfb W)p pr— r,_.r,',,p py = ME( rd + -—-r—s-'{-) (9-10)
Eliminating r» and rzy from (9-9), (9-10) and (9-8), we get
M2 . MZ 1 + re
rz(rd — W)P"P: +rp{(1—-r2) - p.,.,f,”:_z =) Yoy
1+rir 1422 r
2 v z W' -
= M:{ 2 + e o }. (9-11)

Any one of equations (9-9)-(9-11) can be chosen to solve for p. At last, w can be
calculated from its definition (9-6) after r and p are solved. Equations (9-8), one of
(9-9)-(9-11) and (9-6) constitute a set of equations governing inviscid axisyminetric
flows. Similar to the two dimensional case, equation (9-8) is termed the ‘main

equation’ for the corresponding ‘main variable’ r, and equations (9-9)-(9-11) are
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called the ‘secondary equations’ for the ‘secondary variable’ p. After solving for r
and p, the local Mach number can be evaluated by
2 2
(L +rz)

2 _
M= 2Hop?r?r — (1 +712)

(9-12)

The pressure coefficient C,, is also expressed by (2-35).
For irrotational flows, w = 0, equations (9-8)-(9-11) can be simplified. Defining
the generulized density R = p7*! (cf. (3-23)), equations (9-8)-(9-11) become
M2, ry

(7'3, For? =B Yrzr — 2rpryrew + (1 + )y + —:’- =0, (9-13)
reryRe = ry(1+ 18Ry = (v + DML, (9-14)
re(r — g 2R, - rerRy = (7 + 1)M2 ("—”E +28), (9-15)
ra(r} — B, r{(1 =12 )-E—””} Ry
= G DML (R 4 =51 (9-16)

Among the secondary equations (9-14)-(9-16), the linear equation (9-14) for R is
the simplest. Therefore, priority should be given to it unless other difficulties occur.
The local Mach number is given by

MZ 1+y2

M2 =
R r2p

(9-17)

and the pressure coefficient expression is the same as in (3-29).
In addition, if the flow is incompressible, then the flow field is governed by a

single equation for r = r(z,¥):

2
, r
rﬁ,rz: = 2reryrey + (1+ ri)r!l"l’ + 'Tw =0. (5-18)

This equation has been obtained by Barron et al.(1990). To remove the singularity
at r = 0 and get a homogeneous boundary condition at infinity, they have introduced
a new dependent variable 7 defined by

Flz,$) = 577z, 9) — ¥ (6-19)
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so that equation (9-18) becomes

(Fp + 1P Fr — 2 (Fo + 1) py + (72 + 2F + 29 )Fpp = 0. (9-20)

9.2 Extension to Unsteady Flows

Srinivasan and Spalding (1986) solved shock tube flows using one dimensional
unsteady gas dynamics equations for primitive variables in stream function coor-
dinates by a floating grid finite difference method and claimed that the method
can locate the contact discontinuity in temperature and density profiles precisely.
Kalman (1960) also apolied a similar idea to the oscillation of a zero-temperature
plasma. In this section, vve will derive a wave-like equation governing one dimen-
sional unsteady compressible fluid flows as an extension of the approach in previous
chapters.

For one dimensional unsteady flow of the inviscid isentropic gas, the governing

equations are

pi + (pu)s = 0, (9-21a)

pus + puur +pr =0, (9-21b)
£ 9-21

pP= 'rﬂffgu ( ts C)

where the density p, velocity u and pressure p are unknown functions of time ¢ and
coordinate z. The continuity equation (9-21a) is automatically satisfied through

the introduction of the stream function # such that

Y:=p, Yr=-—pu (9-22)
or
p=ths u= —jjj—‘. (9-23)



Differentiating the isentropic equation (9-21c) with respect to z gives

P! !

YA < S 9-24

Substituting (9-23) and (9-24) into the nomentum equation (9-21b) and simplifying,

we get the governing equation for stream function ¥:
2 " ¢,"!+1
¢,¢u = 2pethrher + ('l’l - 1\}2 )'J’.r.t = Q. (9‘25)
oc
The discriminant of this equation

PpIte
00

is always positive because 1, = p > 0. Therefore, equation (9-25) is always hyper-
bolic, which is consistent with the physical nature of the flow.

Making a von Mises-like transformation
t=7, z=2z(r1%) (9-27)

chang es the roles of z from independent variable to dependent and ¢ from dependent
variable to independent. If the Jacobian J = 8(¢,z)/8(r,#) = zy is non-zero and
finite, then the transformation is one-to-one and no singularities exist throughout

the flow field. After the transformation, the differential operators are

8 0 =z 0 d 1 08

Bt Or zy0p Oz zg0b

Therefore,
T 1
Pr=--", P:=—,
Ty Ty
23 Trr — 2T TyTry + TETyy
lp!! == 3 1
1
TyTry — T+T T
¢£:="' Y 3 . ‘W’, 'd)zz:—#.
Ty T
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Substituting these into (9-25), we finally obtain the governing equation for one

dimensional unsteady isentropic flows in stremn function coordinates (7, ¢*):
2 1
J‘Im.l‘z,-l- Try = Ly (9-28)

This nonlinear second order partial differential equation is always hyperbaolie, or
more precisely, it is a wave equation with a variable propagation speed, beeause its
discriminant

A= d4ME7H (9-29)
is always positive {zy = 1/p > 0). The dependent variable £ = (7,4}, as the
unkaown function of time r and stream function ¢, is to be solved from (9-28).

After z is obtained, the density, velocity and pressure can be easily calculated by

1 1

—. - .30
Ty P 71\/I§°x$ (9-30)

9.3 Extension to Viscous Flows
The formulation for inviscid incompressible rotational flows can be extended to
the viscous case. For a two dimensional steady incompressible viscous flow, the

governing Navier-Stokes equations are

uz + vy =0, (9-31a)
g + vy + pr = (Uzz + uyy)/ Re, (9 31b)
uvg + vy + py = (Vzz + vyy)/ Re, (9-31c)
W=v; — Uy (9-31d)

where Re is Reynolds number and u,v,p and w have the same meaning as hefore.
Introducing stream function % and eliminating p from (9-31b) and (9-31c), we can

obtain the following stream-function/vorticity formulation in the viscous case:
Vzz + Py = —w, (9-32a)
Yywz — Yewy = (wez + wyy)/Re- (9-32b)
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After the von Mises transformation, the Poisson equation (9-32a} becomes

Yilre — 2WeYuey + (1 + 2 )upy = wyl. (9-33)

This equation is the same as for inviscid fluid flow. It can be solved for y when w is

preseribed or somehow determined. Likewise, after the von Mises transformation,

Wy =W —y—zw,p Wy = —wy
x — Wwr v —
Yo 1 - 1

1
Wyeyp = y—,z{yiw,, - 2y:ywwt!}! + ygwl{"f’}
Y

1
- y_;;{y?pyz: — 2 YpYzp + YiYuou fu,s
']

1 1
Wyy = T3 Wyy T g yppldy-
Yo )

Therefore, the vorticity equation (9-32b) can be transformed to

yﬁ;wzz — 2y Yywept(1+ yi Yy

=Reyyws + yhuwwy. (9-34)

This is also a second order non-homogeneous partial differential equation of elliptic
type and can be solved for w if y is obtained. Equation (9-34) is considered as a
linear equation in the sense that the coefficients of the second derivatives of w do
not depend on w itself. The second order differential operator for w in this equation
is the same as that for y in equation (9-33). On the other hand, it is also considered
as a nonlinear equation due to the last term on the right hand side, but the degree
of nonlinearity in (9-34) is much less than that in equation (9-33).

Equations (9-33) and (9-34) constitute a set of coupled equations for y and w gov-
erning two dimensional incompressible viscous flows in stream function coordinates

(z,v). Similar to the inviscid case, equation (9-33) and (9-34) are called the ‘main
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equation’ and the ‘secondary equation’, respectively. After y and w are determined,

the velocity components can be evaluated by
u=—, v= Yz, {9-35)

For rotational flows, the Bernoulli equation in integral form does not exist. So, in
order to get pressure after y and w are solved, it is necessary to deduce the pressure
equation in {x, ) coordinates. Differentiating equations (9-31b) and (9-31¢) with

respect to ¢ and y, respectively, and adding them together, we have
Pzz +Pyy + u'ﬁ + 2uyv; + vg = 0. (9-36)
From (9-31d) and (9-31a},
Vr = Uy T W, Uy = —Uz.
Then, equation (9-36) becomes
Pzz + Dyy + 2(u3 + u'; + uyw) = 0. (9-37)

In stream function coordinates (z, ),

1 1
Uz = — =5 (Yp¥ey — Yz¥yu) Uy = ~ T Vou (9-38)
Yy Yo
1 ;
Pzz + Py = 'y?{yfbpzz — W YyPoy + (1 + U2 )Pyw} — wpy. (9-39)
¥

Here, equation (9-33) has been used to simplify the expression in (9-39). Substitut-
ing (9-38) and (9-39) into (9-37), we finally obtain the p equation:

Y5Pzz — 2zyyPzy + (1 + Y2 )Puw

2 , :
== yGwpy + ?(yzzyw - Yay)- (9-40)
¥
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This second order linear partial differential equation for p is also elliptic with the
same operator as in equation (9-33). It can also be obtained from the Poisson

equation for pressure in the section III-E-2 of Roache’s book (1976):

A2p = g(lbzz“:byy - 1;53,,) (9'41)

through the von Mises transformation. Equation (9-40) can be used to solve for p
after y and w are known.

To summarize, for a two dimensional steady incompressible viscous flow, in-
stead of solving Navier-Stokes equations in primitive variable form or in stream-
function/vorticity form, we can solve the two coupled equations (9-33) for y(z, %)
and (9-34) for w(x,1). Once y and w are solved, pressure p can be solved from
equation (9-40) and velocity components u and v can be calculated by (9-35). All
of the equations (9-33), (9-34) and (9-40) for the corresponding variable y,w and p
have the same second order differential operator and, therefore, are of the same el-
liptic type. However, (9-33) is highly no: linear, while (9-34) and (9-40) are slightly

nonlinear and linear, respectively.

9.4 Arc Length/Stream Function Formulation

In previous chapters, we always assumed that the von Mises transformation is
permissible throughout the flow field. For most flow problems of practical interest
this assumption is valid, especially for thin airfoils with sharp or slightly blunt
leading edges at small angle of attack. In this case, the distance between the leading
edge and the forward stagnation point is very small, hence, there is no reverse flow
region or the reverse flow region is negligibly small. As a first approximation, the
assumption that the stagnation point exactly coincides with the leading edge can
be made so that no reverse flow appears at all.

However, when the leading edge is blunt and the angle of attack is not small, a

reverse flow region cannot be neglected and the assumption of coincidence between
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leading edge and stagnation point does not hold. Iu this case, the r-veloeity compo-
nent z becomes zero and the Jacobian goes to infinity at certain points (see Fig.9.1,
points B and D), hence, the von Mises transformation is singular and the multi-
value problem occurs (see Fig.9.1, points A, C and E). A possible way to overcome
this difficulty is the use of arc length s to replace x in von Mises coordinates, Next,
we will derive a so-called arc length/stream function formulation from the basic
principles of differential geometry and the governing equations of incompressible
potential flows.

Suppose two families of curves, s = const. and ¥ = const., overlay the (a,y)
plane and form a regular coordinate net in which each s-curve intersects with a
y-curve at only one point and neither an s-curve nor a ¥-curve intersects with itself

(see Fig.9.2). Consider a coordinate transformation

Tr= .'17(8, T,b), y= y(s, '»b) (9'42)

For the time being, s and ¢ ar arbitrary curvilinear coordinates and do not yet

have any specific physical meaning. The differentials of (9-42) are
dz = xyds + zydy, dy = y.ds + yydy.

The squared length of an arbitrary element arc in (z,y) plane can be expressed by

the first fundamental form

ds? = dz* + dy?
= Eds® + 2Fdsdi + Gdp* (9-43)

where

E=z§+y3, F=z,zy + yaly, G=m?p+y:‘},
are the metrics of the transformation. By the chain rule,

dr  TOs *

— —

oy’ By Yos  TVoy
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Applying these operators to ¢ and y, respectively, we have
Tys: +Tpthr =1, Tasy+Tppy =0,

YadSz + Yy = 0, yasy+ y¢¢y =1.
Solving for s., 3y, ¥z, Py gives

Yo =-Iv =¥ =Is 9-44
8r = 7 y Sy T ) ";b: ik d’y 7 ( )

where the Jacobian of the transformation is

3(3—', y) — det (:Ba

J \9( 8 1,[)) Ys

I
yi’) = TyYyp — TyYs-

It is easy to verify that

J? = EG - F?, (9-45)

If the Jacobian is non-zero and finite, then the transformation (9-42) is one-to-one

and there are no singularities throughout the domain. In this case, the differential

operators are transformed as

_3_ Yo & ys O 0 zy¢ 0 z, 0

Gz JO8s Jop dy Jobs JToy (9-46)
and
32 1 62 62 82
5z = T 2”’”“’3 5+ Ve gy
Yy Yy 0
+{5 (5 - ( %)y }E
{ ( )-'! L )'.D}'a'iz;v (9'473)
S R d?
By = 7 (Tv g T2, a¢ °a¢2}
+{Z ( ) - -( )w} 33
+ {——J-(T)a + 7(7)¢}55. (9-47b)
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Assuming that s is the arc length along a streamline and ¢ is the stream function,
then the second order differential operators in (8-47) can be significantly reduced.

Applying (9-47) to stream function ¢ yields

ez = (y_.. }s + )!l " (9-48n)
byy = —ff fJ—) + %—(%h (9-48D)

It is noted that the first two terms on the right hand sides of equations (9-47a) and
(9-47b) vanish because % is independent of s and the second derivative of ¥ with
respect to 1 is also zero. Only the last terms involving the first derivative of ¢ with
respect to 3 remain.

The inviscid incompressible irrotational flow is governed by the Laplace equation

for stream function ¥

vzd’ =Pz + "ubyy =0. (9'49)

Substituting (9-48) into (9-49) gives
[’} Ys Ty Ty
ynb("f)s —9s(Fhw +2u(F)s = z{5)w =0

or

T o(GYss = 2Fysy + Eyyy) = Ys(GTss — 2Fz,y + Ezyy) (9-50)

where the metrics E, F and G are defined in (9-43). Equation (9-50) is a second
order nonlinear partial differential equation for y and z as functions of s and .
In this equation, the unknown variables y(s,%) and z(s,%) are coupled with each
other and have a symmetric or interchangeable format. So, this equation can be
used to solve for y if  has been obtained, and vice versa. The type of this equation
is elliptic for y as well as for & hecause the discriminants for both y and x are less

than zero:
AW = 422(F? - EG) = -4z2J% <0, (9-51a)

A® = 4%(F? - EG) = —4y2J* < 0. (9-51b)

68



Nevertheless, one equation {5-30) is not enough to solve for two unt:nowns y and
z. Another independent equation is needed to comglete the formulation. It is known

that along a streamline, ¥ = const. or dy = 0, hence equation (9-43) reduces to
dS? = Eds*.
Ou the other hand, along a streamline, S = s, or
dS = ds.
Comparing these two equations, we get £ =1, or
4yt =1 (9-52)

This first order partial differential equation is also symmetric or interchangeable for
z and y.

Equations (9-50) and (9-52) constitute a set of equations called the arc length
/stream function formulation for incompressible potential flows and can be solved
simultaneously for y and z under certain boundary conditions. In principle, the
choice of equation to be solved for y and the other for z is completely arbitrary.
However, for conventional flow problems, in which z- axis roughly represents the
main flow direction, it is recommended to use {9-50) as the y equation and (9-52)
as the r equation. The second order equation (9-50) can be solved by SLOR iu the
whole region and the first order equation (9-52) can be marched along a streamline

and proceeded streamline by streamline.

9.5 Laplace-Equivalent Equation in {z.({) Coordinates

For the purpose of cascade design, Ye (1991) developed a ‘decomposition method’
to solve steady incompressible potential flows in a more general curvilinear non-
orthogonal coordinate system (z,{). The key point of the method is that the
governing Laplace equation is decomposed into two equations in (z, {) coordinates.

One is the y equation which functions as a grid generation equation and the other
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is the equation for the stream function ¢». The two equations have a common
differential operator. The most attractive advantage of this method is that the
choice of the ¢ coordinate is more flexible. This method can alse be used to solve
airfoil flows as long as boundary conditions are properly specified. Next, we will

briefly outline this method. Let

r=x, Y=yl (9-53)

define a coordinate transformation which transforms the Cartesian coordinates
(z,y) into new coordinates (x,¢). If the Jacobian J = o, y)/O(x,¢) # 0,00
then the transformation is one-to-one and invertible. After this transformation, the

differential operators are

& 1 o Z Ty
a7 yE Yo T N arac ~’=acz

|_n

{viyez — 2rYcyzg +1 Jth.n.}ac

J‘b@

y
o7 = OC T D
Therefore, the Laplace operator becomes
i o*
2.9 9
v 03:2 + Oy?
a? a%
‘)
{yCaxg -y:ycazac+(1+.}z)ac2}
—={y; [ 1 -2 I 1 2 —_—
7 {yqy YzYcyz¢ + (1 + yx)ng}ac
Defining the differential operator

L= oyt b+ (9-54)
=Y 922 Yz U 9z8(¢ 5z aczs
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one can express the Laplace operator symbolically as

VH(eeh = {ueLlen) = (e Lly) (9-55)
[y

where (...) represents any continuously twice differentiable function. The governing
cautation for an incompressible potential flow is the Laplace equation for stream

function 1 in Cartesian coordinates
vzd’ =trr+ '!)yy =0 (9'56)
Using Laplace operator (9-55) in equation (9-56) produces a Laplace-equivalent

equation in (z, () coordinates

yeL{4) — ¢ L(y) = 0. (9-57)

Suppose a curve ({z,y) = const. defines a coordinate line of a curvilinear coordinate

system (i, () and satisfies Laplace equation V2({ = 0, then one gets

yeL(¢) — L{y) = 0. (9-58)

Moreover, equation {9-58) can be further reduced to

L(y) = 2yzz = 29z¥cyzc + (1 + ¥2)yce =0 (9-59)

because L({) = 0. Recalling (9-57), we must have

L(Y) = yZthze — 2Wyctzg + (1 +y2 e = 0. (9-60)

In this way, Laplace equation (9-56) has been decomposed into two equations {9-59)
and (9-60) which constitute a set of Laplace-equivalent equations in (z,{) coordi-
nates governing incompressible potential flows. The first nonlinear equation for y
serves as a grid generation equation which defines the y distribution from (z, {) dis-
cretization. The second linear equation can be solved for 3 if y has been solved from
the first equation. It should be pointed out that although there are two equations,
one of which plays the role of grid generation, used in this formulation the resulting
CPU time does not increase too much aue to the same differential operator in the

two equations.
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Chapter 10. Conclusions

1. The newly developed approach based on the Euler-equivalent equations, and
the full potential-equivalent equations as well, in a stream function coordinate sys-
tem, is able to simulate transonic flows past two dimensional airfoils, The embedded
shock waves in supercritical flows can be captured automatically in the process of
iterations. The calculated results compare well with existing experimental data and
other computations.

9. The Euler-equivalent equations in stream function coordinates consist of a
main equation for the corresponding main variable, streamline ordinate y, and a
secondary equation for the secondary variable, density p, and an equation for the
vorticity w. These three equations are coupled together and must be solved simulta-
neously or iteratively. In the full potential-equivalent equations, only two cquations

are used: one is for y and the other for R, the generalized density.

3. The main equation for y is a second order nonlineor partial differential equation
which is solved by SLOR using type-dependent (TD) differencing plus shock point
operator (SPO). The shock point operator is a crucial tool to capture the embedded
shock waves.

4. The secondary equation for p in the Euler formulation, or for R in the full
potential formulation, is a first order partial differential equation. For analysis
problems, it is solved horizontally and marched vertically from far field boundaries
to the airfoil. For the full potential design problem, the secondary equation for R is
solved vertically and marched horizontally. In any case, the Crank-Nivolson scheme

is effective in solving these equations.

5. Most existing transonic codes require grid generation which takes a significant
proportion of the CPU time and the storage requirements. This time-consuming
step is completely avoided in the present approach because a single set of equations

plays the double role of grid generation and governing the flow.
6. For analysis problems, 21l boundary conditions are Dirichlet which arc easy to
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implement.

7. For design problems, the airfoil contour can be obtained in a non-iterative
manner beeause the airfoil shape is a part of the solution of the main equation.

8. The method used for calculation of the density is advantageous. Traditionally,
the algebraic Bernoulli equation is solved for p, but the classic double-density prob-
lem is very difficult to handle. This difficulty is successfully overcome by marching
the first order density equation.

9. The approach can be extended to handle a variety of flows, such s axisymmet-
ric low, unsteady flow, viscous flow, internal flow and so on. Some other streamwise
coordinate systems each of which has its own advantages, can also be applied to
solve the proposed problems.

10. The approach has some limitations. First of all, a very important property
of the Euler equations in Cartesian coordinates, i.e. the homogeneous property,
is destroyed after the von Mises transformation so that the opportunity to apply
some current Euler solver techniques seems to be lost. In addition, if the flow is
supercritical, the convergence is slow. Some possible ways to overcome this difficulty
may be to employ the multi-grid method, the preconditioned conjugate gradient
method, the implementation of a direct solver for the system of algebraic equations,

and so ou.
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Fig. 4-1b Computational Plane
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Fig. 4-2a y Equation Sweeping
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Fig. 4-2b Density Equation Marching
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Fig. 4-3 Computational Flow Chart
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Fig. 5-1 Shock Jump Condition
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Fig. 5-2 Shock Point Operator
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Fig. 7-1 Cp Comparison (1)
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Fig. 7-2 Cp Comparison (2)
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FIG. 7-3 Cp Comparison (3}
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FIG. 7-4 Different Set of Variables (1)
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Fig. 7-5 Diffeient Set of Variables (2)
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FIG. 7-6 Different Set of Variables (3)
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FIG. 7-7 Different Set of Variables (4)
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FIG. 7-8 Different Set of Variables (5)
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Fig. 7-9 Convergence History (1)
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FIG. 7-10 Designed Biconvex(6%) Airfoil
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FIG.7-
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FiG.7-12 Designed NACA 0012 Airfoil (2)
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FIG. 8-1 Cp Comparison (1)
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FIG. 8-2 Cp Comparison (2)
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Fig. 8-3 Cp Comparison (3)
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Fig. 8-4 Cp Comparison (4)
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Fig. 8-5 Cp Comparison (5)
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Fig. 8-6 Cp Comparison (6)
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FIG. 8-7 Cp Comparison (7)
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FIG. 8-8 Cp Comparison (8)
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Fig. 8-9 Cp Comparison (9)
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Fig. 8-10 Cp Comparison (10)
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Fig. 8-11 Cp Comparison (11)
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Fig. 8-12 Cp Comparison (12)
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Fig. 8-13a Effect of TD and SPO (a)
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Fig. 8-13b Effect of TD and SPO (b)
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Fig. 8-13¢c Effect Of TD and SPO (¢}
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Fig. 8-13d Effect of TD and SPO (d)
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Fig. 8-14a Evolution of Iterations (a)
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Fig. 8-14b Evolution of Iterations (b)
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Fig. 8-14c Evolution of iterations (c)
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Fig. 8-14d Evolution of Iteration (d)
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Fig. 8-14e Evolution of Iterations (e)
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Fig. 8-14f Evolution of Iterations (f)
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Fig. 8-14g Evolution of lteration (g)
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Fig. 8-14h Evolution of lterations (h)
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Fig. 8-15 Convergence History (2)
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Fig. 8-16a Effect of Stretching (1)
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Fig. 8-16b Effect of Stretching (2)
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Fig. 8-17a Effect of Stretching (3)
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Fig. 8-17b Effect of Stretching (4)
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Fig. 9-1 Muiti-Value Problem

P =1
Yv=0
Y=y,

N\
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Fig. 9-2 Curvilinear Coordinates (s,4)

v +dy
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