University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1997

Two-dimensional bin packing: Innovations and statistical analysis.

Todd Arthur. Braithwaite
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Braithwaite, Todd Arthur., "Two-dimensional bin packing: Innovations and statistical analysis." (1997).
Electronic Theses and Dissertations. 4439.

https://scholar.uwindsor.ca/etd/4439

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4439?utm_source=scholar.uwindsor.ca%2Fetd%2F4439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, scme
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

TWO DIMENSIONAL BIN PACKING: INNOVATIONS AND
STATISTICAL ANALYSIS

by

Todd Braithwaite

A thesis
Submitted to the Faculty of Graduate Studies and Research
through the Department of Economics, Mathematics, and Statistics
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
1997

© 1997 Todd Braithwaite

i~

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your fle Votre reférence
Our fie Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

(Canada

0-612-30932-0

Abstract

In this thesis, we introduce and analyze a new two dimensional
bin packing algorithm. We focus on the problem of packing rectangles
with known dimensions into a fixed width, infinite height bin so as to
minimize the total height of the packing. To analyze the algorithm
we use statistical methods to compare the known optimal pack heights
with the pack heights obtained by the algorithm on a set of randomly
generated test problems. This gives us a general technique to not only
analyze a single algorithm, but also one which may be used to compare
existing algorithms. The method to generate test problems is another

contribution of this thesis.

iii

Acknowledgements

I would express my gratitude to everyone who helped along the way. Specif-
ically, I would like to thank Dr. Caron and Dr. Hlynka for their help
throughout the creation of this thesis and throughout my studies at the
University of Windsor. [would also like to thank Dr. Lashkari and Dr.

McDonald for serving on my thesis committee.

iv

LIST OF FIGURES

Figure 1.1 Packing of L = {p;, p2,p3,p4} onto a four
foot by twelve foot sheet of drywall.

Figure 2.1 An optimal packing of Example 2.1. This is also the partition
of a 30 by 10 bin, created by 2D-BPGen.

Figure 2.2 The packing of Example 2.1 given by the NFDH algorithm
into a bin of width 10.

Figure 2.3 The packing of Example 2.1 given by the FFDH algorithm
into a bin of width 10.

Figure 2.4 The packing of Example 2.1 given by the BL algorithm
into a bin of width 10.

Figure 2.5 The packing of Example 2.1 given by the UD algorithm
into a bin of width 10.

Figure 3.1 (a) The packing of Example 2.1 given by our new BU algorithm,
into a bin of width 10, when piece rotation is allowed. The slack
is set to zero.

Figure 3.1 (b) The packing of Example 2.1 given by our new BU algorithm,

into a bin of width 10, when piece rotation is allowed. The slack

is set to five.
Figure 3.2 (a) Using the BU algorithm on Example 2.1, we begin our first
pack run by selecting the tallest piece and packing in the bottom
left corner. This piece defines our pack height.
Figure 3.2 (b) The BU algorithm continues by selecting the remaining
bottom row pieces, for the first pack run, and packing them beside
the piece already chosen, by decreasing height from left to right.
Figure 3.2 (¢) The BU algorithm packs on top of the already packed bottom
row pieces. No piece is allowed to be packed higher than the
pack run height.
Figure 3.2 (d) The packing of Example 2.1 given by our new BU algorithm,
into a bin of width 10, when pieces have fixed orientations.
Figure 3.3 The step by step changes in the column definitions, that occur in
the BU algorithm, when creating the first pack run in Fig. 3.2. The
column modifications occur between Fig. 3.2 (b) and Fig. 3.2 (c).
Figure 4.1 The probability that each of the four possible partitions of a bin
of height 1 and width 3 will be generated by the 2D-BPGen
algorithm.

Figure 5.1 A histogram showing the distribution of the number of pieces in a

Figure 5.2

Figure 5.3

Figure 5.4

[9))
(91}

Figure

bin for 10,000 repetitions of a bin of height 20 and width 20. For
all bins the maximum piece size allowed was equal to that of the
full bin.

A histogram showing the distribution of the number of pieces in a
bin for 10,000 repetitions of a bin of height 40 and width 10. For
all bins the maximum piece size allowed was equal to that of the
full bin.

A histogram shbwing the distribution of the number of pieces in a
bin for 10,000 repetitions of a bin of height 10 and width 40. For
all bins the maximum piece size allowed was equal to that of the
full bin.

A histogram showing the distribution of the area of the pieces in a
bin for 10,000 repetitions of a bin of height 20 and width 20. For
all bins the maximum piece size allowed was equal to that of the
full bin.

A histogram showing the distribution of the area of the pieces in a
bin for 10,000 repetitions of a bin of height 40 and width 10. For
all bins the maximum piece size allowed was equal to that of the

full bin.

Figure 5.6 A histogram showing the distribution of the area of the pieces in a
bin for 10,000 repetitions of a bin of height 10 and width 40. For
all bins the maximum piece size allowed was equal to that of the
full bin.

Figure 6.1 A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 20 and width 20. All pieces have fixed but optimal
orientation. For all bins the maximum piece size allowed was
equal to that of the full bin.

Figure 6.2 A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 20
and width 20. All possible maximum piece size possibilities are
considered. Pieces are not allowed to rotate and are given
optimal orientations.

Figure 6.3 A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 40 and width 10. All pieces have fixed but optimal
orientation. For all bins the maximum piece size allowed was

equal to that of the full bin.

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 40
and width 10. All possible maximum piece size possibilities are
considered. Pieces are not allowed to rotate and are given
optimal orientations.

A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 10 and width 40. All pieces have fixed but optimal
orientation. For all bins the maximum piece size allowed was
equal to that of the full bin.

A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 10
and width 40. All possible maximum piece size possibilities are
considered. Pieces are not allowed to rotate and are given
optimal orientations.

A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 20 and width 20. All pieces have fixed but random

orientation. For all bins the maximum piece size allowed was

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

equal to that of the full bin.

A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 20
and width 20. All possible maximum piece size possibilities are
considered. Pieces are not allowed to rotate, yet are given
random orientations.

A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 40 and width 10. All pieces have fixed but random
orientation. For all bins the maximum piece size allowed was
equal to that of the full bin.

A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 40
and width 10. All possible maximum piece size possibilities are
considered. Pieces are not allowed to rotate, yet are given
random orientations.

A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of

height 10 and width 40. All pieces have fixed but random

orientation. For all bins the maximum piece size allowed was
equal to that of the full bin.

Figure 6.12 A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 10
and width 46. All possible maximum piece size possibilities are
considered. Pieces are not allowed to rotate, but are given
random orientations.

Figure 6.13 A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 20 and width 20. All pieces are permitted to rotate. For
all bins the maximum piece size allowed was equal to that of the
full bin.

Figure 6.14 A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 20
and width 20. All possible maximum piece size possibilities
are considered. Pieces are allowed to rotate.

Figure 6.15 A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of

height 40 and width 10. All pieces are permitted to rotate. For

Figure 6.16

Figure 6.17

Figure 6.18

Figure A.1

all bins the maximum piece size allowed was equal to that of the
full bin.

A contour plot showing the average performance, of 100
repetitions, of the Bottora-Up algorithm, for a bin of height 40
and width 10. All possible maximum piece size possibilities

are considered. Pieces are allowed to rotate.

A histogram showing the distribution of the pack heights given
by the Bottom-Up algorithm for 10,000 repetitions of a bin of
height 10 and width 40. All pieces are permitted to rotate. For
all bins the maximum piece size allowed was equal to that of the
full bin.

A contour plot showing the average performance, of 100
repetitions, of the Bottom-Up algorithm, for a bin of height 10
and width 40. All possible maximum piece size possibilities

are considered. Pieces are allowed to rotate.

The one dimensional pack given by the FFD algorithm for

the list L = {8,7,6,6,5,5,3,2,2,2,2}.

1 Introduction

1.1 Introduction

In this thesis we introduce and analyze a new algorithm for the two dimen-
sional bin packing problem [3]. We are given a finite list L = {p;,...,pn} of
rectangular pieces. Each piece, p; has known height h; and known width w;.
We wish to “pack” all pieces into a bin with fixed width W > maz{w;,i =
1,...,n} and infinite height. Furthermore, we wish to find the packing that
will minimize H, where H is such that the packed pieces fit into a W by H
bin so that no rectangles overlap. Numerous applications of this type are
discussed in [3]. We consider two variations of this problem. In one we allow
90° rotations, thus giving each piece two possible orientations. Pieces are
only allowed to rotate if they will still fit in the bin. In the other we do not
allow the pieces to rotate.

The problem of two dimensional bin packing is a generalization of the
one dimensional bin packing problem (see Appendix A) when instead of
minimizing the bin height we fix the bin height and minimize the total
number of bins. If all the rectangles have the same width as the bin, i.e.,
if w; = W, Vi, then the two dimensional problem (without rotation) is

equivalent to the one dimensional problem. The problem of one dimensional

bin packing is known to be NP-complete [12]. Thus, the two dimensional
problem is also NP-complete (see Appendix B). For this reason, we have
limited our research to a fast heuristic for the problem. In chapter 2 we will
present some of the existing heuristic algorithms. We introduce our new
algorithm, which we call the Bottom-Up algorithm in chapter 3.

With all these algorithms we are led to the question, “Is one algorithm
better than another?”. One way to address this question is to compare
bounds on the extent to which a solution from an algorithm can deviate from
optimality. The smaller the bound, the better the algorithm. These worst
case bounds give us information about an algorithm, however these bounds
are often difficult to find. [t is also not reasonable to state that one algorithm
is superior to another based solely on their respective worst case bounds. It
is quite possible for one algorithm to have a smaller worst case bound than
another, yet produce lower quality solutions on almost all test problems.
Instead of using worst case bounds to characterize the performance of our
new algorithm we create large test problem sets, with bins of known optimal
height, so that we can analyze the average performance of the algorithm.
The algorithm used to create these problem sets is new. This test problem
generator, named 2D-BPGen, is explained in chapter 4. We discuss three

test problem sets, created by 2D-BPGen, in chapter 5.

10

In chapter 6 we make use of our three test problem sets to analyze the
average performance of the Bottom-Up algorithm. Within this section we
give a method to compare two algorithms according to their performance
on a set of test problems. We will use our method to compare our two

variations of the Bottom-Up algorithm.

1.2 Motivation

The Bottom-Up algorithm was developed to solve a specific application of
two dimensional bin packing. The problem was to reduce the waste involved
in the installation of drywall in residential units. Drywall sheets have a fixed
width of four feet and can range in height from eight feet to twelve feet, in
one foot intervals. We modeled the sheets as bins. The first step was to
partition the walls into pieces which were small enough to fit onto a single
drywall sheet. All the piece dimensions were integers with inches as the unit
of measurement. Thus, for all i, w; < 48 and h; < 144. Typically A; > w;.
The pieces were placed in either the group with w; < 48 or the group with
w; = 48. The pieces with w; < 48 were packed into new four foot wide bins
using the Bottom-Up algorithm. The heights of these bins were at most
twelve feet. These bins were then treated as new pieces with w; = 48. The

original pieces with w; = 48 and the newly created pieces with w; = 48 were

11

then packed onto four foot by twelve foot drywall sheets using the First Fit
Decreasing algorithm (FFD), which is discussed in appendix A. After all the
pieces were packed, the sheets were reduced to the smallest possible drywall
sheet height.

In Figure 1.1 we show a list L = {p,, ..., p4} and how this list would be
packed onto a sheet of drywall with H = 144 and W = 48. The piece p; has
a width, w;, equal to 48. This piece is handled after the other pieces. Pieces
D2, P3, and p4 all have width’s, w;, less than 48. These pieces are packed
onto a newly created four foot wide piece, labeled ps. We now pack pieces
p1 and ps, using one dimensional bin packing techniques onto our drywall

sheet.

1.3 Goals

The main goals of this thesis are to introduce and analyze a new two dimen-
sional bin packing algorithm, to present a new two dimensional bin packing
test problem generator, and to develop a statistical technique to compare
algorithms.

In [17] it is stated that “it is usually difficult to evaluate and compare the
performance of heuristic algorithms, other than by running them on large

problem sets with known optimal solutions.” Yet this technique is often not

12

included when an algorithm is analyzed. In fact, this author was unable to
find a problem set with known optimal solutions. This was the motivation
for our development of the 2D-BPGen algorithm to generate random two di-
mensional test problems with known optimal pack heights. The 2D-BPGen
algorithm allows for bins of varying width and optimal pack height, thus
allowing us to vary the types of test problems sent to the Bottom-Up algo-
rithm. This problem generator will be defined in detail in chapter 4. We
will also attempt to give some feel as to the types of test problems that are
created by the 2D-BPGen algorithm. The final thing we aim to do is to give
a statistical method of comparing algorithms. To illustrate this method we

make use of it to compare two variants of the Bottom-Up algorithm.

13

2 Literature Survey

There are many existing two dimensional bin packing algorithms that can
be found in present literature. A few of these algorithms are, Bottom-Left
[3], First Fit Decreasing Height [6], Next Fit Decreasing Height [6], Split-Fit
[6], LFOLD [11], and Up-Down [2]. We will give a brief outline of the First
Fit Decreasing Height, Next Fit Decreasing Height, Bottom-Left and Up-
Down algorithms. The algorithms are compared mostly by their respective
worst case bounds. These bounds tell us the extent to which the heuristic
solution can deviate from optimality. These bounds are discussed in [6] and
explained in the following manner. For L, an arbitrary list of rectangles, all
assumed to have width no more than 1, let OPT(L) denote the minimum
possible bin height within which the rectangles in L can be packed, and let
A(L) denote the height actually used by a particular algorithm when applied
to L. Absolute performance bounds for various algorithms are bounds of the

form
A(L) £ B-OPT(L)
for all lists L. In contrast asymptotic performance bounds are of the form
A(L) <pB-OPT(L)+~

14

for all lists L. These bounds are asymptotic in regards to the number of
pieces. The difference between these two types of bounds will be illustrated
as we discuss other two dimensional bin packing algorithms.

In order to improve the understanding of two dimensional bin packing
algorithms we make use of a common example throughout this section. This
example will be packed using each of the algorithms.

Example 2.1 : Let p; = (hi,w;). Let Lx={(8, 6), (21,1), (6, 4), (16, 3), (14,3),(2,7),
(13,4),(6,1),(19,2),(1,7)}. For this list, p; = (8,6),p2 = (21,1),...,p10 =

(1,7). An optimal pack for .ais list L* is shown in Figure 2.1.

2.1 Next Fit Decreasing Height (NFDH)

For the Next Fit Decreasing Height algorithm [6] the list L is ordered by
non-increasing height. NFDH is a level oriented algorithm. This means that
as the pieces are packed into the bin a sequence of levels are formed. The
pieces are packed so that they rest on one of the levels. The first level is
defined by the bottom of the bin. (This level is referred to as the bottom
row throughout this thesis.) Each ensuing level is defined by a horizontal
line drawn at the height corresponding to the top of the maximum height
piece placed on the preceding level. NFDH packs the pieces in the order

given by L. The pieces are left justified on a given level, beginning with

15

the bottom of the bin, so that no two pieces overlap. This continues until
there is no longer enough space to the right to fit the next piece in the list.
Packing on the current level is finished and the next level is now defined.
Packing continues on this new level beginning with the piece that would
not fit on the previous level. This process continues until all the pieces in
L have been packed. The height at which the next level would have been
defined is referred to as NFDH(L). This is the height which NFDH uses to
pack all the pieces of list L into the given bin. Figure 2.2 shows the packing
of Example 2.1 when applying NFDH. To begin the list is ordered so that
L* = {p2,p9, P4, Ps, P17, P1, P3, D8, Ds, P1o}- The first piece, ps, is placed at the
(0,0) position of the bin. We continue placing pieces, working from left to
right, on the same level as py until there is insufficient space remaining to
pack the next piece in the list. Thus, we pack pieces pg, ps, and ps beside
p2. We cannot fit py on this current level. Piece p; is placed at (0,H}),
thus defining our next level. The next piece, p,, is placed to the right of ps.
When we place p3 we must once again begin a new level. Piece pg fits beside
ps and then pg and p)g each define a new level.

In [6] the absolute performance bound is given to be

NFDH(L) < 3-OPT(L)

16

for all lists L. It has also been proven that there exist lists L for which
NFDH(L) is arbitrarily close to 3- OPT(L). The asymptotic performance
bound, when the height and the width of each piece is no more than 1 has

been proved in [6] to be

NFDH(L) <2-OPT(L) +1

for all L, and the multiplicative constant 2 cannot be improved upon. For

Example 2.1 NFDH(Lx) =1.4-OPT(Lx) + 1.

2.2 First Fit Decreasing Height (FFDH)

The First Fit Decreasing Height algorithm is a level oriented algorithm and
is quite similar to the Next Fit Decreasing algorithm. Once again we assume
that the list L is ordered by non-increasing height. The difference is that
at any point in the packing the next piece to be placed is left justified on
the lowest level on which it will fit. Only when this piece will not fit on any
of the current levels is a new level started. FFDH(L) refers to the height
which FFDH uses to pack all the pieces of list L into the given bin. Figure
2.3 shows the packing of Example 2.1 when applying FFDH. This packing is
extremely similar to NFDH, except for the placement of pg. For this piece we

were allowed to look back at all previous levels to find the lowest level where

17

the piece would fit. The piece ps fit, and thus was placed, on the first level.
In NFDH we were forced to pack only on the current level or start a new
level if the piece did not fit. It is stated in [6] that FFDH(L) < NFDH(L)
for all lists L. For Example 2.1 FFDH(Lx) = NFDH(Lx).

The absolute performance bound is given to be

FFDH(L) < 2.7-OPT(L)

for all lists L. This bound is also tight. The asymptotic performance bound,
when the height and the width of each piece is no more than 1 has been

proved in [6] to be
FFDH(L) <1.7-OPT(L) +1

for all L, and that the muitiplicative constant 1.7 is the smallest possible.

In fact for all lists of squares it is proven that
FFDH(L)<1.5-OPT(L) +1

and that the multiplicative constant 1.5 is the smallest possible.

2.3 Bottom-Leftmost (BL)

The Bottom-Leftmost algorithm was first introduced in [3]. The BL algo-

rithm packs pieces in the order given by the list L. Each piece is placed

18

in the lowest possible place in the bin and then left-justified at this height.
This type of packing is shown in Figure 2.4 using Example 2.1. It was proved

in (3] that if L is ordered on decreasing widths then,
BL(L) <3-OPT(L).

In [5] a lower bound result was proven. This result states that there exists

a list L for which
BL(L) > 1.25-OPT(L).
Also it was shown in [3] that if only square pieces are considered then

BL(L) <2-OPT(L).

2.4 Up-Down (UD)

For the following description of the Up-Down algorithm [2] we assume that
the bin width has been normalized to 1. Subsequently all piece widths have
scaled down by the same factor used to normalize the bin width. The UD
algorithm divides a list, L = {pi,...,pn}, into 5 sublists, L;, according to
the piece widths. For j = 1,2,3,4,L; = {pilwi € (53,3, = 1,...,n}.
These pieces are ordered by non-increasing width. The final sublist, Ls,

is a list of the pieces of L with widths at most 1/5. The pieces of Ls are

19

ordered by non-increasing height. The pieces in L; are packed by the BL
algorithm. The top height which these pieces reach is defined as H;, where
Hg = 0. This region between the heights H; and Hy is defined as R;. The
pieces of Lj;,j = 2,3,4, are packed in one of two manners. If the piece,
pi € L; fits in a column along the right side of the bin, from a height H -1
downward then it is packed in this position. Otherwise, the piece is packed
using the BL algorithm, starting at a height of H j—1. When all the pieces
of L;j are placed, Hj is set as the highest height a piece from L; reaches. R,
is then defined as the region between H j and H;_;. The pieces of Lgs are
packed only after all the pieces in the other sublists have been packed. They
are placed using a generalized NFDH algorithm, named GNFDH [2]. This
algorithm packs pieces in between the BL pieces and the column pieces in a
region R;,7 = 1,2,3,4. As soon as any piece does not fit using the GNFDH
algorithm all remaining pieces are packed using the NFDH algorithm at the
height H;. The overall pack height used by UD is Hs. For a more detailed
description of the UD algorithm we refer the reader to [2]. In Figure 2.5
we show the packing of our list L, from Example 2.1, as given by the UD
algorithm. For this example L; = {ps,p10,p1}.- These pieces are packed,
using the BL algorithm, between the heights Hy and H,. We then pack the
pieces of L, where Ly = {ps, pr}. The piece p3 is packed in a column along

20

the right side of the bin, from the height H; downward. p; will not fit in
the column down along the right side of the bin and thus is packed using
the BL algorithm at the height H;. For L3 both ps and ps are too tall to
fit along the right side of the bin. Again the BL algorithm is used to pack
these pieces, this time at a height H2. The sublist L4 is empty and thus
H4 = H3. The remaining pieces, p2, pg, and ps, are in Ls. We attempt to
pack these pieces using the GNFDH algorithm. The first piece considered is
p2- Since this piece will fit in any of the spaces between the BL pieces and
the column pieces it is packed at the height H4 by the NFDH algorithm.
All remaining pieces, pg, and pg are also packed using the NFDH algorithm
at the height H4. It should be noted that pg would fit at a lower height in
the pack, however since p, did not fit at a lower height no remaining piece
in Ls is allowed to be packed using the GNFDH algorithm.

[t was proved in (2] that for any list L of rectangles of height at most H,

33

UD(L) < ;- OPT(L) + = - H.

] n

Moreover, the asymptotic bound of 5/4 is tight. As stated in [2] this bound
is an improvement of the previous best algorithm which had a bound of 4/3.
In our example UD(Lx) = 61, OPT(L%) = 30, and H = 21. Therefore,

5
2. OPT(L+) + 3 - H = 176.625.

21

2.5 Summary

One of the main differences between the Bottom-Up algorithm, which will
be introduced in the next chapter, and the other algorithms discussed is
the fact that the BU algorithm uses piece area as a factor for choosing the
packing order. This approach was used with the drywall application in mind.
On a drywall sheet the longest edges are beveled at the factory. These edges
are called factory edges. These factory edges give the wall a better finish
by giving a nice recess for filling the joints between drywall pieces. For this
reason it is desirable to have certain pieces placed along the factory edges
of the drywall sheet. These pieces we refer to as factory edge pieces. Most
of these pieces are skewed with h; much larger than w;. These pleces were
handled in a special manner, in an attempt to best make use of the edges
of the drywall sheet. This means that we do not want to pack all the tall
and thin pieces on the same pack run. Therefore we do not want the piece
height to be the deciding factor as to the packing order. At the same time
we want to always place the largest piece possible so as to best make use
of the drywall sheet area. For these reasons the piece area was used as the
main deciding factor for the packing order.

Also of importance when designing the Bottom-Up algorithm was to

22

insure that before any area was left empty that every remaining piece in the
list had been considered to make use of the space. In both the NFDH and
FFDH algorithms the space above the pieces packed at any given level height
and below the ensuing level height was never considered for piece placement.
The BL algorithm always packs a piece at the lowest height possible and thus
always considers all remaining space before placing a piece. This approach
however seemed unnatural. If a space was left at a low height and a piece
remaining in the list would fit why then was it not placed immediately
instead of waiting to see if the piece would still fit at a later point in time?
Let us look back to the packing of Example 2.1 given by the BL algorithm
in Figure 2.4. After we have packed pieces p; to ps we have a space 2 units
wide between p3 and ps. At this point pg would fit very well in this space.
The problem is that before we can pack pg we must pack pieces ps, ps, pr,
and pg. By the time these pieces are handled pg will no longer fit in this
space. Some of this space is used by ps, however pg would have been a better
fit. From examples like this it was felt that the order of the pieces in a list
was far too important to the overall pack given by the BL algorithm. How
would one decide how to order the pieces?

The Up-Down algorithm attempts to make use of any remaining space

at lower levels before placing a piece at a higher level. However this algo-

23

rithm would not work for our drywall application for one main reason. As
previously mentioned the drywall application was often called on to pack
tall, thin pieces. If the tallest piece of a given list is also the thinnest piece
the UD algorithm will always pack this piece close to the top of the pack.
This practice will often lead to poor results. In Example 2.1 po is the tallest
and thinnest piece. In Figure 2.5 we can see how such a piece can result in
a poor pack.

For all the reasons discussed above it was felt that we would be better
served to create a new two dimensional algorithm which better suited our

needs. The Bottom-Up algorithm is the result of this decision.

24

3 Bottom-Up Algorithm

The Bottom-Up algorithm is designed to give a two dimensional packing of
a given set of rectangular pieces. The user can decide if they wish to fix all
piece orientations or to allow all the pieces to rotate 90 degrees. Once the
algorithm chooses the position of a piece, that piece is no longer allowed to
change location.

The Bottom-Up algorithm was created by using the FFDH and NFDH
algorithms as templates. Like both the FFDH and NFDH algorithms, the
BU algorithm is level oriented. However, unlike the other two algorithms,
the BU algorithm makes use of the spaces between levels. Another added
feature of the BU algorithm is that the level heights do not have to be equal
to the tallest piece on the level. The level height varies according to the
“slack” the user defines. In this thesis we will only test the algorithm under
the condition where “slack” is set to zero.

If we allowed non-zero slack then any piece would be allowed to surpass
the level height by at most the slack value. If this occurred ther the level
height would be updated to the height reached by this given piece. If we
refer to Figure 3.1 we can see how the pack of Example 2.1 differs when

the slack variable is changed. In (a) we see the pack of the list Lx with the

slack variable equal to zero. In (b) we set the slack variable equal to 5. [n
both packs we allow rotation. It is important to note how the level heights
in (a) are all equal to the tallest piece packed on the pack run. In (b) the
pack run heights are allowed to be larger than the tallest piece. An example
of this can be seen in the first pack run. The piece pg is packed above pg,
causing the pack run height to increase. Although it may first seem that a
non-zero slack would be beneficial to the overall pack, in many cases it was
found that a large slack can give worse results. This is shown in Figure 3.1.

In the following subsections we describe the packing approaches used
by the Bottom-Up algorithm for the two variations of two dimensional bin
packing previously mentioned. We begin by describing how the Bottom-
Up algorithm packs a list when piece orientations are fixed. We use this
description and Example 2.1 to better illustrate the algorithm. Following
this the algorithm outline for fixed piece orientation is given. We then
explain how the algorithm differs when 90 degree piece rotation is permitted.

Example 2.1 is again used to better highlight these differences.

3.1 No Rotation

Before we begin to pack, the pieces are sorted by non-increasing height. Any

ties are sorted by non-increasing width. Packing starts by placing pieces into

26

what we shall refer to as a pack run. The width of a pack run is equal to the
bin width. The height of a pack run is defined by the first piece chosen to be
placed on it. This piece has the largest height of all the pieces remaining to
be packed. For the first pack run this piece is p;. This first piece is placed
in the bottom corner of the pack run. The remaining pieces for the bottom
row are chosen in the following manner. We find the minimum i such that
the w; is less than or equal to the remaining length along the bottom of
the pack run and the area of p; is not smaller than any other such piece.
This continues until the remaining length along the bottom of the pack run
is either zero or too small to permit any piece to fit. These bottom row
pieces are now sorted by non-increasing height and arranged from left to
right along the bottom of the pack run in the exact manner of the NFDH
algorithm. This creates a stair-like structure, with the top step to the far
left. No piece will be allowed to be packed at a height which places any
of the piece higher than the height of the pack run. Any piece which has
been packed is deleted from L. With this new list we proceed to pack up,
into the open area remaining between the bottom row pieces and the pack
run height. To do this we define columns. Any “step” of the stairs defines
a column. If there is any remaining area left in the bottom row this space

is merged with the column to its left. This is done since we have already

27

found that no piece will fit in this space. If a piece had fit it would have been
selected along with the other bottom row pieces. Also, if any neighboring
columns have the same height, they are merged into a single column. We
attempt to pack on the lowest column (step). We search our list for the
piece which uses the maximum amount of area defined by the column width
and the difference between the column height and the pack run height. This
piece is positioned on the column so that it is next to either a side of the
pack run or the tallest neighboring column. If the width of the piece is equal
to the width of the column then the column height is simply increased by
the amount of the piece height. If the width of the piece is less than the
width of the column then the piece defines a new column. In this case a
new column is inserted and the dimensions of the old column are corrected
accordingly. If this new column is beside a column of the same height, then
these two columns are merged. At any point if no piece will fit in the given
space defined between the column and the pack run height, then the column
is merged with its lowest neighboring column. If there is a placed piece, it
is deleted from the list and the process of building up the lowest column is
continued. We finish a pack run when we have only one column at a height
equal to the pack run height.

If there are any remaining pieces which have yet to be packed, we create

28

a new pack run by the same process as described above. This creates a set
of pack runs. These pack runs are now placed in the bin, one on top of the
other. You could think of this as a one-dimensional bin packing of the pack
runs. However, since we are only dealing with one bin, the order in which
the pack runs are placed in the bin is not important. At this point we have
packed all the pieces into our bin and our resulting bin height is found by
taking the sum of all the pack run heights.

Figure 3.2 gives a step by step packing of Example 2.1. Before we begin
packing, the pieces are sorted by non-increasing height. If more than one
piece has the same height then these pieces are also sorted by non-increasing
width. In (a) we begin packing the first pack run by selecting the tallest
piece, p2, and packing it in the position (0,0). We set the pack run height
equal to the height of p;. We then select pieces pr, ps and pg. We place these
pieces beside pp, working from left to right in the order of non-increasing
height. This is shown in (b). These bottom row pieces define our columns.
The columns, and how they are modified throughout the packing of this first
pack run, are given in Figure 3.3. Our shortest column, column 4, is defined
by pr. We now select p3 since it is the piece with the largest area which fits
in the 8 by 4 space above p,. Since this piece uses the whole column width,

the column height is increased by the piece height to a value of 19. Once

29

again we find the shortest column, column 3, which is defined by ps. When
we search for a piece to fit in the 5 by 3 space above column 3, we find that
no such piece exists in our given list. Since no piece fits above this column
we merge this column with column 2, which is defined by pg. The width
of column 2 is increased so that it covers column 3. We now set column 3
equal to column 4 and delete column 4. In other words we now have only
3 columns, instead of 4. Now, columns 2 and 3 are the same height and
thus we again merge columns. The width of column 2 is increased so that
it covers column 3 and column 3 is deleted. This leaves us with 2 columns.
Column 2 has the smallest height and thus we search for the piece with the
largest area that fits in the 2 by 9 space above the column. This piece is ps.
Since column 2 is the right-most column pg is packed to the far right side of
the bin. Since this piece does not use the full column width of column 2 we
must insert a new column. We define column 3 to have the height of column
2 plus the height of ps. The width of column 3 is equal to the width of pg
and the x-coordinate of column 3 is set as the left x-coordinate of pg. The
width of column 2 is redefined by subtracting the width of ps. Once again
column 2 is our shortest column. No piece will fit in the space above column
2 and we again merge columns. The end result is that we are left with only

1 column, where the column height is equal to the pack run height. This

30

tells us that we are finished packing on this pack run. This final pack of the
first pack run is given in Figure 3.2 (c). Since we still have pieces remaining
we must begin a new pack run, which we handle in the same manner as
the first pack run. This second pack run, as well as the final pack of Lx, is

shown in Figure 3.2 (d).

3.1.1 Bottom-Up Outline For No Rotation

We are given a set L = {p;|i = 1,...,n} where each piece pi has height A;
and width w;. We assume that h; > hy > ... > hn and that if h; = h; then
w; > w;. We are also given a bin width, W. The position at which each
piece is packed into the bin is given by the (x,y)-coordinates of its bottom
left corner, with the origin in the bottom left corner of the bin.

Variable Explanations:
t: Pack run number.
H,: Height of pack run ¢.
Lr: Set consisting of all packed pieces.
L Set consisting of all bottom row pieces.
¢: Number of columns.
X: x-coordinate for positioning bottom row pieces.

R: Remaining unused width of the bottom row.

31

position;: (x,y)-coordinate position of piece p;.
height,: Height of column gq.
widthy: Width of column gq.
Tq: x-coordinate of the left corner of column gq.

cq: Vector consisting of all the information for column g.

Algorithm Outline:

t=0

Hy =0

L ={p1,..,pn}

Lr=0

q=20

while ||[L1]| < n

begin

Ln=0

X=0
=t+1

R=W

32

t = min{j|p; € L,j =1,...,n}

Hy = by
R=R—wi
Lr=Lru {p;}

Lin=LnJ {p;}
while 3p; Sw; < R,p;€L1j=1,..,n
begin
¢ = min{j|p;j, px & L/;w; < R; hjw; > hewg; j k=1, ..., n}
R=R—w;
Lr=LiJ{p}
Lim= Ly {p;}
end
while ||[L1)| > 0
begin
i = min{jl|pj, px € L/ hj > hi;j k = 1,...,n}
position; = (X, He—1)
X=X+uw
L= Lu\ {p:}

end

33

fori=1lton
begin
if pi € LI then
begin
g=q+1
height, = h;
widthy = w;
x4 = position; - (1,0)
cq = (heighty, widthg, z4)
end
end
if R#0 then
widthy = widthg + R
if 3r > height, = height,oy, 7 =1,...,(s — 1) then
begin
width, = width, + widthe.,
foru=(r+1l)togq
Cu = Cu+1

g=gq-1

end
while g > 1
begin
m = min{r|height, < height.,r,z =1, ..., s}
if 3p; 3 w; < widthmandh; < Hy — heighty, then
begin
i = min{j|pj, px € L/;w; < widthm; h; < Hy — heightm; hjw; > hrw; j, k = 1,...,n}
if m # q then
position; = (zm, Hi—1 + heighty)
else
position; = (zm + widthy, — w;, He—1 + heighty,)
Lr = LU {p;}
if w; = widthy, then
height,, = height,m + hi
else
begin
if m # q then
begin

g=qg+1

35

foru=sto(m+1),step—1
Cy = Cy—1
em = (heightm + hi, wi, Trm)
cm+1 = (heightm, widthm — wi, Tm + w;)
end
else
begin
g=q+1
cq—1 = (heighty_, widthy_; — w;, Zg—1)
¢q = (heighte_q + hi, wi, W — wy)
end
end
end
else
begin
tf m =gq then
begin
cq-1 = (heightq_,, widthe_, + widthg, z4_1)

g=q-1

36

end
else
begin
if heightm—1 < heightm then
cm-1 = (heightm_1, widthm_1 + widthm, Tm-1)
else
cm+1 = (heighty i, widthy, + widthmy), Tm)
foru=mto(qg—1)
Cu = Cy+1
=q-1
end
tf 3r 3 height, = height, 1,7 =1,...,(s— 1) then
begin
width, = width, + width, .
Cy =Cy+1,u =(r+1),..,s
q=q-1
end
end

end

37

end

3.2 Rotation

[f rotation is allowed, each piece is set to the orientation in which A; > w;. As
in the previous algorithm we sort our list by non-increasing piece height. Ties
are again handled by sorting on non-increasing piece width. The first piece
to be chosen for a pack run is the tallest remaining piece. The remaining
bottom row pieces are selected in the same manner that they were in the
no rotation algorithm. We find the largest area piece whose width is no
larger than the remaining bin width. This continues until the bin width is
completely used or no piece will fit in the remaining width. At this time the
pieces are placed, once again in decreasing height, from left to right. Take
note that our pack may already differ from the pack given in the no rotation
algorithm. This is due to the fact that some pieces in our list were given
different orientations to begin with. It should be noted that, if at this point
there is only one piece on the pack run, the piece is rotated (if possible) so
that the pack run height is minimized.

Once again we use our bottom row pieces to define columns. We select

38

the lowest column and search our list for a piece to fit on top of this column.
Previously, in the no rotation algorithm, when selecting this piece, we only
checked that the width of a piece was no larger than the width of the column
and the height of a piece was no larger than the difference between the pack
run height and the column height. However, we now allow for piece rotation
and must check the possibility that a piece may fit, in the area above the
column, if we change its orientation. Thus we select the piece with the
maximum area such that at least one orientation of the piece will fit in
the area above the column. If both orientations are feasible we choose the
orientation so that the smaller dimension is placed parallel to the bottom
of the bin. This process of building up the lowest column continues until
all columns have been merged into one, or all pieces have been packed. If
any pieces remain we define a new pack run. We are again left with a set of
pack runs, which we pack one on top of another in our bin. The sum of the
pack run heights gives us the overall pack height for the algorithm.

In Figure 3.1 (a) we show how the Bottom-Up algorithm packs Example
2.1. It should be noted that before we begin packing, pieces ps and p,g are
rotated so their heights are greater than their widths. This causes a slightly
different order, when we sort on non-increasing height, than we had when

we packed Example 2.1 with no rotation. The pack of Lx with rotation is

39

almost identical to that of no rotation, shown in Figure 3.2. Other than
how the pieces are ordered before packing, there are three differences in the
pack allowing rotation. First, pg is rotated back to its original orientation
so that it will fit on the first pack run. Secondly, pg is packed in its new
orientation and is selected before pg, since it has a larger area. Finally pg is

packed above pjg.

40

4 Test problem creation

In order to analyze the Bottom-Up algorithm it became necessary to be
able to create randomly generated test problems which had known optimal
packing heights. This was essential since at the time of this paper no set of
test problems could be found for two-dimensional algorithms. Thus the 2D-
BPGen algorithm was developed. It should be stated that the test problems
created by this algorithm are in no means meant to be a benchmark for
two-dimensional bin packing. However it is this author’s intent that the
test problems given by this random partitioning algorithm, and the 2D-
BPGen algorithm itself, be available for the purpose of comparison between
algorithms.

The 2D-BPGen algorithm takes a bin, of given height and width, and
partitions it into a list of randomly selected rectangles which completely fill
the bin with no empty space. These rectangles are only allowed to be as
large as the given maximum height and width dimensions set by the user. [t
is important to note here that the partitions created by 2D-BPGen are not
all equally likely. To illustrate this fact we define Example 4.1 to be a bin
with width three and height one. As shown in Figure 4.1, there exist four

distinct partitions. Also shown in the figure are the respective probabilities

41

that 2D-BPGen will partition the bin in the according fashion. The width
of the first rectangle selected has an equal probability of being 3, 2, or 1.
Thus there is a probability of 1/3 that our bin will consist of only one piece.
[f we are given that our first piece chosen has width 2, then there is only one
unit remaining and therefore we must select piece of width 1. Therefore our
partition of two pieces, where the first piece is of width 2, also occurs with
probability 1/3. Both our final two partitions begin with a piece of width 1.
At this stage we have to make a choice. Our second piece can either have a
width of 2 or a width of 1. The probability we chose a width of 2 is 2/3. If
this is the case then our bin is done. This type of partition has a probability
of 2/9. If we chose width 1, which has a probability of 1/3, then we must
select a third piece with width 1. This type of partition has a probability of
1/9. As can be seen, the probabilities are not equal.

For the 2D-BPGen algorithm the user defines the bin height, A, bin
width , W, maximum piece height, A, and maximum piece width, w. The
algorithm randomly, using the rand function provided in Microsoft visual
C++, selects an integer piece height from one to h and an integer piece
width from one to w. These dimensions define the first piece in our list.
This piece is placed in the bottom left corner which is defined as (0,0).

We then select the rest of our bottom row pieces. We move from left to

42

right randomly selecting our piece dimensions. The height of these pieces
is selected in the exact same manner as the height of the first piece. The
width, however, is set to the minimum of the random number selected, from
1 to w, and the remaining bin width on the bottom row. In so doing we
guarantee that all of the bin width will be used.

We have now defined our bottom row and must now build up to use the
remaining bin height. To do this we use the bottom row pieces to define
columns. Each piece defines a column. A column is defined by its height,
left most x coordinate, and right most x coordinate. If any two neighboring
columns are the same height we merge them into one column. It is now
time to begin building up the columns. The smallest column is found and
we randomly choose our piece dimensions. The piece height is taken to be
the minimum of the difference between the column height and bin height and
the random height from 1 to h. The piece width is the minimum between
the column width and the random width from 1 to w. This piece is then
placed at the left most x coordinate of the column. If this piece does not use
the full column width then a new column is inserted as defined by the newest
piece and the old columns dimensions are updated. Once again we check
neighboring columns to see if any share the same height. If so these columns

are merged. This process of building up the lowest column continues until

43

all columns have reached the bin height and have thus been merged into one
column.

Now that we have defined our random partition of a fixed bin we output
the information to an input file to be read by a packing algorithm. For
each piece the length and width is output. For any algorithm, such as
the Bottom-Left algorithm, which does not sort the list L, it is necessary
to randomly scramble the order in which the pieces are output. Also it
may be necessary to give each piece a random orientation so that we are
not giving a bias to any algorithm that does not allow rotation by giving
a list containing pieces with “optimal orientation”. This consideration of
random piece orientation versus optimal piece orientation will be discussed
further in chapter 6. Along with the piece lengths and widths we output
the number of pieces and the bin width and height of the bin which was
partitioned. Any other information needed for the packing algorithm is also
output. By repeatedly running this partitioning algorithm we can create a
set of randomized test problems with known optimal heights. These test
problems can then be given to a packing algorithm to test how close to the
optimal packing the algorithm can reach.

Example 2.1 was in fact created by the 2D-BPGen algorithm. The bin

height was set to 30, the bin width was set to 10 and the maximum allowable

44

piece size was set as the full bin. The exact partition given by 2D-BPGen
is the optimal pack shown in Figure 2.1. The piece numbers have been
scrambled so that no bias was shown to any algorithm. The first piece
selected was pg. The algorithm randomly chose a height of 2 and a width
of 7. The next piece was ps. The height to this piece was randomly chosen
as 16. The random width could have been any number from 3 to 10. Any
of these values would have given a width of 3 since only 3 units remained
on the bottom row. These two pieces made up our bottom row and as such
defined our columns. Column 1, defined by pg, was the lowest and thus we
began building up on this column. The height of p;g was chosen as 1. The
width could have been any number from 7 to 10 since the full column width
was used. For ps the random width must have been 1 and the height must
have been 21. We continued building up by selecting p;, then p;. When the
random height for pg was chosen it could have been any number from 19 to
30. This is because the piece uses the full remaining height. The random
number chosen for the width of pg could have been any number form 2 to 10
since it to uses the full length available. Again we continue by selecting ps,
pr and finally pg. After ps is chosen we only have one column whose height
is equal to 30, the height of the bin. This is our signal that our bin has been

completely partitioned.

45

4.1 Test Problem Generator Outline

In this section we give the outline of the 2D-BPGen algorithm. For 2D-
BPGen the user inputs the bin width, W, and the bin height, H. This
bin height will be the optimal pack height for the list of pieces randomly
selected by 2D-BPGen. The user must also give a maximum piece width, w
and maximum piece height, h. We wish to create a list L = {p;[i = 1, ..n},
where p; = (hi, w;) as defined in chapter3. For all pieces h; < h and w; < w.
This list L will pack optimally in an H by W bin.

Variable Explanations:
position;: (X,y)-coordinates of p; within the bin.
height,: Height of column r.
width,: Width of column r.
z,: the x-coordinate of the left corner of column r.
¢r: (height,,width,,z.), array containing all the information for column r.
columns: Number of columns.

R: Remaining unused width of the bottom row.

Algorithm Outline:

46

h, = random number from 1 to h
w; = random number from 1 to w
p1 = (h1,w1)
position; = (0,0)
z1=0
c1 = (h1, w1, z1)
n=1
R=W ~-u,
while R#0
begin
n=n+1
h, = random number from 1 to h
wy, = min(random number from 1 to w, R)
Pn = (hn, wn)
Tp = In-1 + Wn-1
position, = (zn,0)
cn = (hn, wn, Tn)
R=R—wyn

columns = n

47

end
if 3r 3 height, = heightr1, 7 =1,...,(n — 1) then
begin
width, = width, + widthyy
ct =ce+1,8 = (L +1),...,columns
columns = columns — 1
end
while min{height,,r = 1,...,columns} # H
begin
m = min{t|height; < height,,t,u =1, ...,columns}
=n+1
hn = min(random number from 1 to h, H — height — m)
wy, = min(random number from 1 to w, widthy)
Pn = (hn, wn)
positionn, = (Zm, heightm)
if wn = widthm then
height,, = height,, + hn
else

begin

48

columns = columns + 1
for t = columns to (m + 1), step — 1
Ct = Ct—1
¢m = (heightm + hn, Wn, Tm)
em+1 = (heightm 1, widthmy1 — Wn, Tme1 + Wn)
end
tf 3r 3 height, = height 1,7 =1,...,(n —1) then
begin
width, = width, + widthy .
¢t =c+1,5 = (t+1), ..., columns
columns = columns — 1
end

end

49

5 Analysis of Test Problem Generator

The 2D-BPGen algorithm was used to create three main sets of test prob-
lems. The first set is divided up into three subsets of 10,000 randomly
generated test problems each. These subsets correspond to 3 different sized
bins. These bins have the following respective dimensions: 20 height by 20
width, 40 height by 10 width, and 10 height by 40 width. For all three of
these subsets the maximum piece size is the full bin size. This set of 30,000
problems, which is used later in chapter 6, was used to give an understand-
ing of the types of test problems being created by 2D-BPGen. In Figures
5.1 to 5.3 we give the distribution of the number of pieces per bin for each
of the three subsets of test problems. For each we note that 2D-BPGen
partitions the bin into approximately 7 pieces most often. We also see that,
rarely is any bin partitioned into any more than 20 pieces. This is not all
that surprising given that we allow such a large maximum piece size. [t is
also interesting to note the similarities between the three graphs. In Figures
5.4 to 5.6 we give the distribution of the piece areas for each of the problem
subsets. As would be expected the frequencies of the smaller area pieces are
high. Since we do not allow any empty space when a bin is partitioned we

would expect that many bins would need smaller pieces to fully fill the bin.

50

An interesting feature of these graphs are the “peaks” and “valleys”. Many
of these can be explained by the number of factorizations of the given area.
For example, an area such as 16 has 5 factorizations, (1,16), (16,1), (2,8),
(8,2), and (4,4), which give possible piece dimensions of length and width.
An area such as 11 only has 2 such factorizations, (1,11) and (11,1). Another
reason for many of the “valleys” is that many of the piece areas, less than
bin area, do not give any valid piece dimensions. For example, any piece
area which is a prime number greater than the largest bin dimension does
not give a valid piece. A piece area of 41 is not possible for a bin of height
20 and width 20. Neither factorizations, (1,41) or (41,1), will fit within the
bin. We also again note the similarities in the three graphs.

The second of the three main sets of test problems also consists of three
subsets. These subsets again represent the same three bin sizes used in
the first set of problems. This time, however each subset consists of 40,000
randomly generated test problems. These 40,000 test problems consist of
100 repetitions of each of the possible maximum piece sizes for the given
bin. For the bin sizes we are using there are 400 different maximum piece
sizes ranging from 1 by 1 to the full bin. This set of test problems is used
in chapter 6 to give average performance values of the BU algorithm under

all possible maximum piece size conditions.

51

The final set consists of 16,000 randomly generated test problems. For
all of these problems the maximum piece size has a width of 20 and height
of 5. Also all the problems have a bin width of 20. The bin height ranges
from 5 to 80 in steps of 5. Each step consists of 1,000 repetitions. The set,

like the previous two, is also used in chapter 6.

6 Analysis of Bottom-Up

In this section we analyze two variants of the Bottom-Up algorithm. We first
consider the variation when piece rotation is not permitted by the algorithm.
For this version of the algorithm we consider two cases. In one case each
piece is fixed in the orientation given by the 2D-BPGen algorithm. We
refer to this as optimal piece orientation. Given that all pieces have optimal
orientation, we know that there exists a pack using the optimal height.
For the second case we fix each piece with a random orientation. We then
consider the second variation of the Bottom-Up algorithm and allow piece
rotations of 90 degrees. In order to perform the analysis of the Bottom-Up
algorithm we use the test problem sets created by 2D-BPGen and discussed
in chapter5. Three different bin sizes are considered. These bin sizes have
the following dimensions: 20 height by 20 width, 40 height by 10 width, and
10 height by 40 width. For each variation of the algorithm we examine the
Bottom-Up algorithm’s performance in three ways.

Using the first set of test problems we give the distribution of the pack
heights achieved by the Bottom-Up algorithm, for each bin size. With these
10,000 test problems we give the mean pack height and the standard devi-

ation. For each of these problems the maximum piece size allowed is equal

33

to the full bin.

To analyze the BU algorithm under all possible maximum piece size
settings, we use the second test problem set. For each maximum piece size
the problem set contains 100 randomly partitioned bins. To characterize
the algorithm’s average performance, under a certain maximum piece size
setting, we calculate the average value of the Bottom-Up algorithm’s pack
height divided by the optimal pack height. For example, if this value is equal
to 1.5 we can state that the BU pack height, on average for this problem
set, is 1.5 times greater than the optimal pack height. For each of our three
bin sizes there exist 400 different maximum piece size settings. The average
ratio for each maximum piece size setting, between the BU algorithm height
anc the optimal height, is shown with the use of a contour plot.

The third and final test problem set is used to find regression equations
to characterize the average performance of the Bottom-Up algorithm. These
equations are intended to complement the worst case bounds discussed in
chapter 2. Instead of an absolute performance bound we give an “absolute
average equation”, of the form ALG(L) = §- OPT(L). For the asymptotic
performance bound we give an “asymptotic average equation”. This equa-
tion is of the form ALG(L) = 8-OPT(L) +~- H, where H is the maximum

piece height in the given list L. [n order to find these equations we force

54

the regression through the origin. For each equation we give the multiple R
value. It is very important to note that the assumptions of the regression
model are not satisfied by the data given by our test problem set. Specif-
ically, the assumptions of normality of the residuals and constant variance
are unsatisfied. Thus although the regression equations can be used to ob-
tain a description of the relationship between variables, they cannot be used

to test hypotheses about regression parameters.

6.1 No Piece Rotation Allowed

For the following chapter the Bottom-Up algorithm is not allowed to change
the piece orientations once the list has been input. Given a list of pieces,
with dimensions and orientations, created by the 2D-BPGen algorithm it
is certain that there exists a pack such that the pieces will fit into a bin
of known optimal height. The fact that it is known that the pieces with
these orientations will pack optimally gives a bias to the no piece rotation
version of the Bottom-Up algorithm. By allowing a piece to rotate out of
its “optimal orientation” we can no longer guarantee that the given list of
pieces will still pack into a bin of known optimal height. [n order to remove
this bias, we randomly select the piece orientations for the given list. A piece

is only rotated if it will still fit in the bin, i.e. h; < W. We then pack this

)

modified list. For the rotation algorithm this list of random orientations
will be packed the same as the list of optimal orientations. To analyze
the Bottom-Up algorithm when no piece rotation is allowed we consider
both the possibility of optimal piece orientation and that of random piece
orientation. Thus we can observe the effect of optimal piece orientation on

the BU algorithm.

6.1.1 Optimal Piece Orientation

For the Bottom-Up algorithm, under the condition that each piece is given

optimal orientation, the asymptotic average equation is found to be

BU(L) = 1.034- OPT(L) + 0.3 - H

The absolute average equation is

BU(L) = 1.061- OPT(L)

For both equations the multiple R value was 0.998.

20 Height by 20 Width Bin In Figure 6.1 we show the distribution
of the pack heights given by the Bottom-Up algorithm on our first set of
test problems. For these problems the optimal pack height is equal to 20,

and the maximum piece size allowed is equal to the full optimal bin size.

56

For this distribution the sample mean is 23.28. The sample standard de-
viation is 2.958. Figure 6.2 demonstrates that the average performance of
the Bottom-Up algorithm, for bins of height 20 and width 20, given opti-
mal piece orientation, achieves reasonable results except when the maximum
piece height is relatively large in comparison to the optimal height, and the
maximum piece width is small. As long as the maximum piece width is
large, the algorithm performs well. The worst average performance shown
by the contour lines is 1.5. This value occurs when the maximum piece size

allowed has height 20 and width 4.

40 Height by 10 Width Bin I[n Figure 6.3 we show the distribution
of the pack heights given by the Bottom-Up algorithm on our first set of
test problems. For these problems the optimal pack height is equal to 40,
and the maximum piece size allowed is equal to the full optimal bin size.
For this distribution the sample mean is 46.5. The sample standard devia-
tion is 5.681. Figure 6.4 demonstrates that the average performance of the
Bottom-Up algorithm, for bins of height 40 and width 10, given optimal
piece orientation, achieves excellent results for all possible maximum piece
size selections. The worst average performance shown by the contour lines

is only 1.3. Much like the results for bins of height 20 and width 20, the

largest value occurs when the maximum piece size allowed has large height

and small width.

10 Height by 40 Width Bin In Figure 6.5 we show the distribution of
the pack heights given by the Bottom-Up algorithm on our first set of test
problems. For these problems the optimal pack height is equal to 10. and the
maximum piece size allowed is equal to the full optimal bin size. For this dis-
tribution the sample mean is 11.38. The sample standard deviation is 1.4G.
Figure 6.6 demonstrates that the average performance of the Bottom-Up al-
gorithm, for bins of height 10 and width 40, given optimal piece orientation.
achieves reasonable results for most possible maximum piece size selections.
The performance of the algorithm is poor when the maximum piece size
allowed is approximately equal to the optimal bin height and the maximum
piece width is extremely small. The worst average performance shown by
the contour lines is 1.7. This result is comparable to the results for the other

bin sizes considered.

6.1.2 Random Piece Orientation

In order to give each piece a random orientation we randomly select the

value 0 or 1 as the piece information is input. Each of these values have

equal probability. If we receive a zero, and the height of the piece is less
that or equal to the bin width, we rotate the piece. Otherwise we leave the
piece with its current orientation. Once the complete list of pieces has been
read in we “lock” all piece orientations.

The asymptotic average equation for the BU algorithm, when pieces are

given random orientation, is found to be

BU(L) = 0.958 - OPT(L) +0.369 - H

For this equation the multiple R value is 0.993. The absolute average equa-

tion is

BU(L) = 1.06 - OPT(L)

The multiple R value is 0.987.

20 Height by 20 Width Bin In Figure 6.7 we show the distribution
of the pack heights given by the Bottom-Up algorithm on our first set of
test problems. For these problems the optimal pack height is equal to 20,
and the maximum piece size allowed is equal to the full optimal bin size.
For this distribution the sample mean is 25.94. The sample standard de-
viation is 3.534. Figure 6.8 demonstrates that the average performance of

the Bottom-Up algorithm, for bins of height 20 and width 20, given optimal

39

piece orientation, achieves good results for all possible maximum piece size
selections. The worst results occur when either maximum piece dimension

greatly differs from the other. The largest contour value is only 1.3.

40 Height by 10 Width Bin [n Figure 6.9 we show the distribution of
the pack heights given by the Bottom-Up algorithm on our first set of test
problems. For these problems the optimal pack height is equal to 40, and
the maximum piece size allowed is equal to the full optimal bin size. For
this distribution the sample mean is 47.39. The sample standard deviation
is 5.652. Figure 6.10 demonstrates that the average performance of the
Bottom-Up algorithm, for bins of height 40 and width 10, given optimal
piece orientation, achieves good results for all maximum piece size settings.
[t should be noted that the scale used for the contour lines is increased to
two decimal places for this plot. The largest contour line value is 1.34. This
occurs when the maximum piece height is slightly smaller then the optimal

bin height, and the maximum piece width is small.

10 Height by 40 Width Bin In Figure 6.11 we show the distribution of
the pack heights given by the Bottom-Up algorithm on our first set of test

problems. For these problems the optimal pack height is equal to 10, and

60

the maximum piece size allowed is equal to the full optimal bin size. For
this distribution the sample mean is 23.53. The sample standard deviation
is 8.343. Figure 6.12 demonstrates that the average performance of the
Bottom-Up algorithm, for bins of height 10 and width 40, given optimal
piece orientation, achieves extremely poor results when the maximum piece
width is large. The highest contour value is 4.1. This means that the
average pack height for the Bottom-Up algorithm is 4.1 times the optimal
pack height. In this case, when the optimal bin height is significantly smaller
than the bin width, it is not surprising that the results given, when pieces
are given random orientations, decline considerably from the results found
when pieces were given optimal orientations. If a piece having a relatively
large width is rotated, when it is read into the algorithm, we greatly increase

the bin height needed to fit such a piece.

6.2 Piece Rotation Allowed

[f pieces are allowed to rotate, the Bottom-Up algorithm, gives the asymp-

totic average equation

BU(L) =0.939- OPT(L) +0.386 - H

61

The multiple R value is 0.993. The absolute average equation, given by the

Bottom-Up algorithm is

BU(L) = 1.056 - OPT(L)

For this equation the multiple R value is 0.984.

20 Height by 20 Width Bin In Figure 6.13 we show the distribution of
the pack heights given by the Bottom-Up algorithm on our first set of test
problems. For these problems the optimal pack height is equal to 20, and
the maximum piece size allowed is equal to the full optimal bin size. For
this distribution the sample mean is 26.94. The sample standard deviation
is 3.643. Figure 6.14 demonstrates that the average performance of the
Bottom-Up algorithm, for bins of height 20 and width 20. given optimal
piece orientation, achieves fair results when both dimensions are less than
half of their maximum value. When either dimension is large the results
decline. The worst results occur when the maximum piece height greatly

differs from the maximum piece width. The largest contour value is 1.3.

40 Height by 10 Width Bin In Figure 6.15 we show the distribution
of the pack heights given by the Bottom-Up algorithm on our first set of

test problems. For these problems the optimal pack height is equal to 40,

62

and the maximum piece size allowed is equal to the full optimal bin size.
For this distribution the sample mean is 46.27. The sample standard de-
viation is 5.39. Figure 6.16 demonstrates that the average performance of
the Bottom-Up algorithm, for bins of height 40 and width 10, given opti-
mal piece orientation, achieves excellent results for all maximum piece size
settings. Only when the maximum piece height is approximately equal to
the optimal bin height, and the maximum piece width is small, is the per-

formance moderately poor. The largest contour line value is only 1.3.

10 Height by 40 Width Bin In Figure 6.17 we show the distribution
of the pack heights given by the Bottom-Up algorithm on our first set of
test problems. For these problems the optimal pack height is equal to 10,
and the maximum piece size allowed is equal to the full optimal bin size.
For this distribution the sample mean is 27.01. The sample standard devi-
ation is 6.668. Figure 6.18 demonstrates that the average performance of
the Bottom-Up algorithm, for bins of height 10 and width 40, given opti-
mal piece orientation, achieves extremely poor results when the maximum
piece width is larger than the maximum piece height. The highest contour
value is 3.4. Similar to the case when pieces are given random orientations,

it is not surprising that results decline when allowing piece rotation for a

63

bin whose optimal pack height is smaller then the bin width. If the BU
algorithm rotates a piece whose optimal orientation had a large width we

greatly increase the height needed in order to pack.

6.3 Summary

By using the graphs described in the previous sections, specifically the con-
tour plots, we can select the most reasonable version of the Bottom-Up
algorithm for a given list of pieces. When given a list of pieces and a bin
width, we can approximate the optimal bin height by summing over all the
piece areas and dividing by the bin width. Depending on the relative size of
the approximated bin height to the bin width, we can refer to the contour
plots for the bin size most representative of the bin dimensions. At this
point, we can select the version of the Bottom-Up algorithm, which gives
the smallest contour plot value for the maximum piece size selection for the
given list of pieces. For example, if we roughly estimated our bin height as
approximately equal to our bin width, we can refer to our contour plots for
bins of height 20 and width 20. Given that the pieces that we wish to pack
have heights no larger than 1/4 of the approximated bin height, and widths
which can be as large as the bin width, we can check the appropriate point

on our contour plots. For our 20 height by 20 width bins, with a maximum

64

piece height of 5 and maximum piece width of 20, we can see from our con-
tour plots (Figures 6.2, 6.8, and 6.14) that the no rotation version of the

BU algorithm may give the best results.

7 Statistical Tests

In the preceding sections we have used graphical methods to analyze an al-
gorithm'’s average performance. With these methods we increase our knowl-
edge about an algorithm'’s strengths and limitations. However, we are still
left with the question, “Is one algorithm better than another?”. We at-
tempt to answer this question by applying two well known statistical tests.
[n order toillustrate these statistical methods we shall compare our different

variations of the Bottom-Up algorithm.

7.1 Testing Means

[t would be useful to have a method of testing if an algorithm’s mean packing
height, 4, is a specific value, pg. To test such a hypothesis we can make
use of the central limit theorem, if we have a large sample size. For our
population of pack heights, given by an algorithm on a set of test problems,
the variance of the population is unknown.

To test the null hypothesis Hy : 4 = po versus the alternative hypothesis

H, : p # po we use the following test statistic,

Y—Ho
s/vn’

t =

For this equation, the sample mean, the sample standard deviation ,and the

66

sample size are dencted by g, s, and n respectively.

We reject the null hypothesis if [¢] > ts n-1, where tg ,_; denotes the
upper a/2 percentage point of the ¢ distribution with n — 1 degrees of free-
dom.

Example 7.1 : We wish to test if the mean pack height of the rotation
version of the Bottom-Up algorithm is equal to the optimal pack height plus
5, for bins of height 20 and width 20 and maximum piece size equal to the
full bin. To test this we make use of the results shown in Figure 6.13, from
our first test problem set. Thus, for this example ¥ = 26.94, s = 3.643, and
n = 10, 000.

The hypotheses to be tested are:

Ho:;l=25

Hy:p#25

The value of the test statistic is t = 53.25. If @ = 0.05, we find to.025,9909 < 2.
Therefore, we reject Hy and conclude that the mean pack height differs from

25, at a =0.05

67

7.2 Sign Test

In order to answer the question, “Is one algorithm better than another?”, we
use the sign test to compare two algorithms according to their performance
on a set of test problems. It should be noted that for these test problems
it is not necessary to know the optimal pack height. The data consists of
observations on a random sample, (X}, Y;),z = 1,...,n'. For our purposes the
pack height given by Algorithm 1 is denoted by X; and the pack height given
by Algorithm 2 is denoted by Y;. The number of test problems in our set is
n’. We assume that the bivariate random variables (X;, Y:),i = 1, ..., n/, are
mutually independent.

For each pair, (X;,Y:), a comparison is made. The pair is classified as
“+7if Xy <Y, =" if X; > Y}, and “0” if X; = Y;. We wish to test if the
expected pack height of Algorithm 1 is greater than or equal to the expected
pack height of Algorithm 2. Thus our null hypothesis is Hg : P(+) < P(-),
and our alternative hypothesis is H; : P(+) > P(—). P(+) is the probability
that X; < Y;. The test statistic, T, for our test is equal to the total number
of “4” pairs.

For our decision rule we first disregard all the pairs which are tied. Thus,

we let n equal the total number of “+” pairs plus the total number of “—"

68

pairs. For n > 20 we find the value ¢t = %(n+za-\/r_z), where 2, is the quantile
of the standard normal random variable Z such that P(Z < z,) = p. We
reject Hop, at a level of significance «, if T > n —¢

Example 7.2 : We wish to test if the Bottom-Up algorithm performs
better when we allow rotation compared to fixed random orientations. We
will only test for bins of height 20 and width 20, with the maximum piece
size allowable equal the full bin. We will use the results from our first test
problem set. We let the rotation algorithm be represented as Algorithm 2.
For this example n, = 10,000 and « = 0.05.

The hypotheses to be tested are:
Hg: The pack height when allowing rotation is less than or equal to the pack
height when pieces are fixed with random orientations for the Bottom-Up
algorithm. H;: The pack height when allowing rotation is greater than the
pack height when pieces are fixed with random orientations for the Bottom-
Up algorithm.

For our data it was found that, n = 7925, T = 4838, z05 = —1.645 and
t = 3889.279. Therefore, since T > (n —t), where n —t = 4035.72, we reject
Hy, at o = .05. We state that for the Bottom-Up algorithm, the pack height
for rotation is greater than the pack height for random orientations, for bins

of height 20 and width 20. Thus if we wish to pack pieces into bins which

69

are assumed to be of height 20 and width 20, where the maximum possible
piece size is equal to the full bin, we should receive better results using the
no rotation version of the BU algorithm as opposed to the rotation version.

Take note that the Wilcoxon paired signed rank test is likely to be more
powerful than the sign test when we have symmetry of the population dis-
tribution for the paired differences. If the sampled paired differences come
from a population with a normal distribution, then the two-sample t test
is the most powerful test. The sign test was selected since we desired a
test that could be used to compare any two algorithms, regardless of the

distribution of the sample paired differences.

70

8 Conclusions

In the previous sections we have introduced and analyzed both the 2D-
BPGen algorithm for creating two dimensional bin packing test problems
and the Bottom-Up algorithm for packing two dimensional bin packing prob-
lems. It is the feeling of this author that these algorithms have been shown
to be both practical and useful. It is felt that the Bottom-Up algorithm is
at least competitive with the other two dimensional bin packing algorithms
available in current literature. Within this thesis we have given a method
of statistically testing the hypothesis that the Bottom-Up algorithm may
in fact perform better than other algorithms, for given test problems. We
leave this and the following topics for future research.

First, consideration is needed in testing if there exists a better slack set-
ting for the Bottom-Up algorithm. It may be, that for certain parameters, a
non-zero slack value may enhance the algorithm’s performance. The second
topic involves modifying the order in which pieces are packed by the BU al-
gorithm. In our drywall application it was necessary to use area as a deciding
factor when selecting pieces. If we instead selected pieces in the same order
as the FFDH algorithm, could we then prove that BU(L) < FFDH(L) for

all L? Would this change improve the algorithm’s performance?

71

A One Dimensional Bin Packing

The standard one dimensional bin packing problem can be stated as follows.
We are given a list L = {p;,p2,...,pn} and an infinite number of bins each
with capacity C where each piece, p;, has size h; < C. We wish to pack
these pieces into the bins so that the capacity of no bin is exceeded and the
minimal number of bins is used. Also no two pieces are allowed to overlap.

The zero-one integer program for the bin packing problem, as given in

(18], is
min ;-‘___1yj
subject to: v hizij £ Cy; i=1,...,n
?=llij=1 i=1,...,n

Yj, Tij € {0, 1}

where z;; = 1 if piece 7 is placed in bin j, 0 otherwise and y; = 1 if bin j is
used, 0 otherwise. Note that in this classical formulation of the problem, the
objective is to minimize the number of bins. This is equivalent to minimizing
the overall waste since, for n bins, the waste is nC — 3°7 | h;, a constant.

This result generalizes to higher dimensions.

72

The problem of one dimensional bin packing is known to be NP-complete
[12]. Thus various heuristic algorithms have been developed. We give a brief
outline of one such heuristic algorithm. More information and results on one
dimensional bin packing can be found in (7], [13], [14], [15], [16], [17], [18],

and [20].

A.1 First Fit Decreasing (FFD)

The First Fit Decreasing algorithm is discussed in (17} and described in the
following manner. Let the bins be indexed as B, By, ..., with each initially
filled to a level zero and with a maximum capacity of one. Let the values
hi, ha, ..., hn be arranged into non-increasing order so that h; > h; Vi,j. To
place h;, find the least j such that Bj is filled to a level 8 < 1 — h;, and
place h; in B;. Bj is now filled to a level 3 + h;. For more information on
FFD refer to [17|. For our drywall problem the h; represented the height of
the four foot wide pieces to be packed onto the drywall sheet. An example
of how FFD packs a given list is given in Figure A.l.

In {17] it is proved that for any given list L,

i

FFD(L) < 3

OPT(L) + 4.
Here FFD(L) represents the number of bins used for FFD to pack the list

73

L. OPT(L) is the minimum number of bins required to pack the list L. It

is also proved in [17] that for any given list L,

FFD(L) > % .OPT(L) - 2.

74

B NP-Completeness

A problem is defined in {13] as an abstract description coupled with a ques-
tion requiring an answer. There are two types of problems that are of specific
interest to theoreticians. These are decision problems and search problems.
Decision problems are those in which the answer to the problem is either
“yes” or “no”. Search problems involve finding a structure, out of a (large)
set of possible structures, that has specified properties. The theory of NP-
completeness is restricted to decision problems and thus unless otherwise

stated we will concern ourselves with problems of this nature.

B.1 Algorithms, Time Complexity and Computation

An algorithm is a set of finite steps which solves a given problem. Thus if
the true answer to the posed question is yes, then the algorithm, obviously,
should return a yes. Often there are many algorithms which solve the same
problem. It is therefore necessary to be able to compare algorithms. The
amount of time that an algorithm takes to solve a problem is a standard
measure of how “good” the algorithm is. This amount of time is measured
by the time complexity of the algorithm. The time complexity of an algo-

rithm measures the time taken for the algorithm to solve the problem in

terms of the length of input. This time to solve can also be measured by
computational complexity which is the number of operations that solve a
problem.

It is important for us to define two types of computational algorithms;
deterministic and non-deterministic. A program is considered to be deter-
ministic of it has a finite set of states, including an initial state, and two
halting states. Also, the program has a transition function which alters the
current states of the computation. A deterministic program starts at the
initial state and applies the transition function repeatedly in a step-by-step
manner until either of the two halting states are reached. This is the way
in which most people think of computer programs.

Non-deterministic computation, on the other hand, is quite different than
deterministic computation. A non-deterministic program consists of two
stages, a guessing stage and a checking stage. The guessing stage guesses
a structure which may or may not be a solution to the problem. This is

determined in the checking stage in a normal deterministic manner.

B.2 The Classes P and NP

The theory of computational complexity involves classifying problems ac-

cording to how difficult, “easy” or “hard”, they are to solve. This classi-

76

fication scheme includes the classes P and NP. The class P is defined in
[13] as the set of recognition (decision) problems for which there exists a
polynomial-time algorithm. This class includes the problems that are for-
mally considered “easy”. The class NP is the set of all problems which
can be solved by a non-deterministic polynomial time algorithm. Take note
that the class NP contains the class P since the checking stage of a non-
deterministic algorithm may be replaced by the polynomial time algorithm
that solves the problem.

The class NP consists of all recognition problems with the following
property: for any “yes” instance of the problem there exists a proof of this

fact that can be verified in polynomial time. [13]

B.3 NP-Complete Problems

A problem is NP-Complete if it is in NP, and every problem in NP is translat-
able to it in polynomial time. Thus, if there is a polynomial-time algorithm
for any one of these NP-Complete problems, then there is a polynomial-time
algorithm for every problem in NP and then P=NP. At present no one has
been able to find an algorithm to solve any of these problems in polynomial
time. However, no one has been able to prove that a polynomial-time algo-

rithm does not exist. Although this question of whether the classes P and

77

NP are the same is one that at this moment does not have a known answer,
there is widespread belief that P # N P.

The class NP and the notion of “complete” problems for NP were first
introduced by Cook in 1971. In his paper, he showed that the problem
known as SATISFIABILITY was NP-Complete. He did this by showing
that every other problem in NP could be encoded as an appropriate special
case of SATISFIABILITY. For a proof of this and more detailed information
on NP-Complete we refer the reader to [12]. Once the first NP-Complete
problem had been established it became easy to show that other problems
were also NP-Complete. To do so requires providing a polynomial trans-
formation from a known NP-Complete problem to the candidate problem.
One needs to show that the known problem, such as SATISFIABILITY, is
a special case of the new problem. In {12] it is shown that one-dimensional
bin packing is NP-complete. Since one-dimension bin packing is a special
case of two-dimensional bin packing, then two-dimensional bin packing is

also NP-complete.

B.4 NP-hard

The term NP-hard refers to any problem that is at least as hard as any

problem in NP. Thus, the NP-Complete problems are precisely the inter-

78

section of the class of NP-hard problems with the class NP. In particular,
optimization problems whose recognition versions are NP-Complete, such as
bin-packing, are NP-hard, since solving the optimization version is at least

as hard as solving the recognition version [13].

B.5 Heuristics

A heuristic algorithm is a program which finds near-optimal, “good”, solu-
tions with reasonable computational time without guaranteeing optimality.
Since we know that bin packing is NP-complete we are justified in stating
that it is not practical to search for an algorithm to find the optimal solu-
tion. In fact, even if we felt that we had the optimal packing solution, for a
given set of rectangular objects, we would still need to check every possible
combination. This would be extremely time consuming. Of course this is
unless the solution we found had no empty, “wasted”, space. Therefore we
focus on searching for an algorithm which performs “reasonably well” and

“f%t” .

79

References

fi]

2]

3l

(4]

(6}

[7)

Brenda S. Baker. A new proof for the first-fit decreasing bin-packing

algorithm. Journal of Algorithms, 6:49-70, 1985.

Brenda S. Baker, Donna J. Brown, and Howard P. Katseff. A % algo-
rithm for two-dimensional packing. Journal of Algorithms, 2:348-368,

1981.

Brenda S. Baker, E.G. Coffman, and Ronald L. Rivest. Orthogonal
packing in two dimensions. SIAM Journal on Computing, 9:846-853,

1980.

B.-E. Bengtsson. Packing rectangular pieces - a heuristic approach. The

Computer Journal, 25:353-357, 1982.

Donna J. Brown. An improved bl lower bound. Information Processing

Letters, 11:37-39, 1980.

E.G. Coffman, Jr., M.R. Garey, D.S. Johnson, and R.E. Tarjan. Per-
formance bounds for level-oriented two-dimensional packing algorithms.

SIAM Journal on Computing, 9:808-826, 1980.

E.G. Coffman, Jr. and George S. Lueker. Probabilistic Analysis of Pack-

ing and Partitioning Algorithms. John Wiley and Sons, 1991.

80

(8]

[9]

[10]

(11]

(12]

[13]

[14]

[18]

W.J. Conover. Practical Nonparametric Statistics, Second FEdition.

John Wiley and Sons, 1980.

Harald Dyckhoff and Ute Finke. Cutting and Packing in Production

and Distribution. Physica-Verlag, 1992.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Op-
timal packing and covering in the plane are np-complete. Information

Processing Letters, 12:133-137, 1981.

Greg N. Frederickson. Probabilistic analysis for simple one- and two-
dimensional bin packing algorithms. Information Processing Letters,

11:156-161, 1980.

M.R. Garey and D.S. Johnson. A Guide to the Theory of NP-

Completeness. W.H.Freeman and Company, 1979.

Saul I. Gass and Carl M. Harris. Encyclopedia of Operations Research

and Management Science. Kluwer Acamdemic Publishers, 1996.

Micha Hofri. Probabilistic Analysis of Algorithms. Springer-Verlag,

1987.

Micha Hofri. Analysis of Algorithms. Oxford University Press, 1995.

81

[16]

(17]

[18]

19]

(20}

21]

Micha Hofri and Sami Kamhi. A stochastic analysis of the nfd bin-

packing algorithm. Journal of Algorithms, 7:489-509, 1986.

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham.
Performance bounds for simple one-dimensional packing algorithms.

SIAM Journal on Computing, 3:299-325, 1974.

Silvano Martello and Paulo Toth. Knapsack Problems: Algorithms and

Computer Implementations. John Wiley and Sons, 1990.

Douglas C. Montgomery. Design and Analysis of Ezperiments, Third

Edition. John Wiley and Sons, 1991.

David Simchi-Levi. New worst case results for the bin-packing problem.

Naval Research Logisitics, 41:579-585, 1994.

Daniel D.K.D.B. Sleator. A 2.5 times optimal algorithm for packing in

two dimensions. Information Processing Letters, 10:37-40, 1980.

82

1447

F’igure 1.1: Packing of L={p,, p2, Ps, ps} onto a sheet of drywall.

83

pe

p7

oS
J7)

p2

p3

P10
26

g“l‘re M
opnma
p kln
f
and

34

H=NFDH(L*)=43

Dio
H=42
ps

H;=40
r3

Hy=34
pr

J.J

72
pe o

pe

pPs

Hy=0

Figure 2.2: The packing of Example 2.1, into a bin of width 10,
given by the NFDH algorithm.

85

P10 H=FFDHC*)»43
H=42
26

H+=40

ps
H=34

-2

B

| p2
P9

pe

s

Ho=0

Figure 2.3: The packing of Example 2.1, into a bin of width 10,
given by the FFDH algorithm.

86

o T
(L

pi

Figure 2.4: The packing of Example 2.1, into a bin of width 10,
given by the BL algorithm. BL(L*)=41.

87

Hs=UDL*)=61

Hp=24

—1— ——=] H,=11

P L={ps P10 P1}
Ly~{ps. p1}
L:={ps, ps}
L=<

Ls={p2» P> P2}

P1

: 7l He=0
Figure 2.5: The packing of Example 2.1, into a bin of width 10,
given by the UD algorithm.

88

1 HF39
H,=35
ps
p1
s o
pr
s L H=25
H1=21
P3 p3
| p2
p2
pe o9
pa pa
pr pr
H=0 H~0
(a)

) (b)
Figure 3.1: In (a) we show the pack given by BU, of Example 2.1, when slack is set to zero. In

(b) we show the pack given by BU when slack is set to five. For both packs we allow rotation.

89

5 A s
G2 g LT
|p2 rzd
pPe po
P pe
27 27
®) ()

H=35

Pack Run #2 { ps -

p1

H,=21
Ppo

| p2
Pack Run #1 < pe

H=0

@

Figure 3.2: In (a) we select our first piece for our first pack run. In (b) we show the bottom row
pieces packed in decreasing height. We show the completed first pack run in (c) and then the final
pack in (d). Our list is given by Example 2.1. We pack in a bin of width 10 with fixed piece
orientation.

90

Figure 3.3: The step by step changes in the column definitions for the first pack run from Fig. 3.2.

91

25X g

Y ._“.F‘ B

st
5\ Xt
1 ﬁ M.Un.

w ;

Figure 4.1

92

Frequency

Distribution of the Number of Pieces Per Bin
for 10000 Repetitions of a 20 by 20 Bin with Maximum Piece
Size Equal to the Full Bin.

{ § i = :
T~ o002 QRIS 8E
Number of Pieces

Figure 5.1

Frequency

Distribution of the Number of Pieces Per Bin
for 10000 Repetitions of a 40 by 10 Bin with Maximum Piece
Size Equal to the Full Bin.

22025 Q8Q885885885

Number of Pieces

Figure 5.2

[S i Gy

Frequency
-BBBR885RERaRHA

Distribution of the Number of Pieces Per Bin
for 10000 Repetitions of a 10 by 40 Bin with Maximum Piece
Size Equal to the Full Bin.

Number of Pieces

Figure 5.3

Distribution of Piece Area for 10000 Repetitions of a 20 by 20 Bin
with Maximum Piece Size Equal to the Full Bin

B0 - -
3000
i
>
g1soo]
“ 1000 -
500 - L .
o 1. bl hodont o u
- O ~ -— N~ - ~ -— ~ - O b~
"h8R585¥88Z8RS838833880%8
Area
Figure 5.4

94

Distribution of Piece Area for 10000 Repetitions of a 40 by 10 Bin
with Maximum Piece Size Equal to the Full Bin

3500
3000
20
Fy
€ 2000 4
=
§ 1500 }
- 1000 Ly §
s00 1k
0 e— 2 L L4 te L
- O - ~ - ~ -— ~ - ~
PeB8R58588588B358888388 8
Area
Figure 5.5
Distribution of Piece Area for 10000 Repetitions of 10 by 40 Bin
with Maximum Piece Size Equal to the Full Bin
3500
3000
2500 1
g
S 2000 it
3 |
g 1500
€ 0 Ly
500 1L
o
TeRBBS8R8E3I B8 NBRBRESSBEY
Area
Figure 5.6

95

Frequency

Distribution of the Pack Heights Given by Bottom-Up for 10000
Repetitions of a 20 by 20 Bin With No Rotation and Pieces Given
Optimal Orientation

& 8 3 &8 88 8 8 & 8 8 ¢
Pack Heights

42
44

Figure 6.1

96

/
ol / - —
AX \ L& 2
18— I !
i
{ I~
17] i T
’ /‘\\ /_/
16— ’\\ g
/ — N ;
15~ | i and /
! —
14 5 : <
13
12 - . <
‘ ’
’_‘”
11 | K /
10— l . "
. rd
; o - ™
9 — 1 i /
I .‘ ' ; ’/
i ! r/ ~ - —~
8- ! ; ! :
7 . , ‘ A
6 , o
/ =
5 . . //
—. ~ _/
4 £ —_— -
i - i
'y /._ Al B
3 - , VN . ‘. ————
/ I . ~
E— ~. _’_‘
\\
{ - .
1= —_ — \ —
i 1§ 1 i 1 i 1] T ' 1 1 T 1 i i 1 R
I T - TR S S S S S |

Figure 6.2: The average performance given by the Bottom-Up algorithm for 20 by 20 bins, with no
rotation and optimal piece orientation, over all possible maximum piece size selections. The
horizontal axis gives the maximum piece height allowed and the vertical axis gives the maximum
piece width allowed. The contour lines show the average BU pack height divided by the optimal
pack height.

97

Frequency

Distribution of the Pack Heights Given by Bottom-Up for 10000
Repetitions of a 40 by 10 Bin With No Rotations and Pieces Given
Optimal Orientation

I I PIIZI B IEBBE I B8BRIYAIRRSG
Pack Heights

Figure 6.3

98

’ N

Jo L \ .

J

J o N\~ L /,/\
H o T \/""\/\//\ /
!-x'\\\ \ K—’__/—-R/
14 N s
T T i S - P B S

Figure 6.4: The average performance given by the Bottom-Up algorithm for 40 by 10 bins, with no
rotation and optimal piece orientation, over all possible maximum piece size selections. The
horizontal axis gives the maximum piece height allowed and the vertical axis gives the maximum
piece width allowed. The contour lines show the average BU pack height divided by the optimal
pack height.

99

Frequency

Distribution of the Pack Heights Given by Bottom-Up for 10000
Repetitions of a 10 by 40 Bin With No Rotation and Pieces Given
Optimal Orientation

16

~ 2 o2 g

- -—

Pack Heights

22
23
24
25

-—
~N

Figure 6.5

100

23+

22 =

21 -

20 —

e

11
2 —

Figure 6.6: The average performance given
by the Bottom-Up algorithm for 10 by 40
bins, with no rotation and optimal picce
oriertation, over all possible maximum piece
size sdections. The horizontal axis gives the
maximum piece height allowed and the
vertical axis gives the maximum piecce width
allowed. The contour lines show the average
BU pack haght divided by the optimal

pack height.

101

Distribution of the Pack Heights Given by Bottom-Up for 10000
Repetitions of a 20 by 20 Bin With No Rotation and Pieces Given
Random Orientation

102

1300 !
1200 |
1100 '
1000)
> 900
e 800
g 70
f S
& 400 +——
00
100 +: : § Bl B S I
& &8 ¥ &8 8 8 8 &8 8 8 @ ¢ 3%
Pack Heights
Figure 6.7

e ~N
™~
N
194 g \(‘,/ //\
P J e /
18 — / >
a'/
17 — P \~
\ ! //\ —
16 i s) //
~\ / ,/
15 S
- ~
14 : L=
—_—
13 .
’ _// '
~—- 2
12— T
=
7) \/—/
39— '
a— B
7 PRI - —_
\/"
& — ~.
~
5 -
~ —
4 -
~
2= T ~
< —
2= —— - \‘_
h———— ~-
1~ —_ N
i 1 . T T] 1 i i 1 1 i | ' T [1 1 [
- M P s s, 0~ @ @& 2 = N 2 ¥ £ 2 9~ @ @ g

Figure 6.8: The average performance given by the Bottom-Up algorithm for 20 by 20 bins, with no
rotation and random piece orientation, over all possible maximum piece size selections. The
horizontal axis gives the maximum piece height allowed and the vertical axis gives the maximum
piece width allowed. The contour lines show the average BU pack height divided by the optimal
pack height.

103

Distribution of the Pack Heights Given by Bottom-Up for 10000
Repetitions of a 40 by 10 Bin With No Rotation and Pieces Given
Random Orientation

S00
800 1=
> 80 f
1} -
§ 500]
3 E.
g a0 ¥
Ea-an
100 ¢ B
0 : 4 EE v I"Fh
@ 2 ¢ 2 3 B B 5 3 6 RR R R Z B B
Pack Heights
Figure 6.9

104

L -
\ ~. - B . - -
-) \. ! N _‘7 d\ / S — P / h,.//\\
1) \\ I\ L\ \ / / - T «’,//\\ e~ N ‘
SRR R g8 S >
o S F, H - R p
i RO NN / — L = 4’{@-\;—7\—/4/ =
! -~ - - //_\' ~ W) :./‘ - ~— e

rrrrrrrr

Figure 6.10: The average performance given by the Bottom-Up algorithm for 40 by 10 bins, with
no rotation and random piece orientation, over all possible maximum piece size selections. The
horizontal axis gives the maximum piece height allowed and the vertical axis gives the maximum
piece width allowed. The contour lines show the average BU pack height divided by the optimal
pack height.

105

Frequency

Distribution of the Pack Heights Given by Bottom-Up for 10000 g
Repetitions of a 10 by 40 Bin With No Rotation and Pieces Given ;
Random Orientation

° T 288838 ¢ ¢85 B8 Y8R IR

Pack Heights

Figure 6.11

106

pd
. ~

.\ ’ //_/
e
I
//; “/ ~
’,/’/ R§\r

. ~—

=)
/

v
I

=

“

g
\
’ 14
/‘:

R4
("
—

0

—
£\
&

S
ljJ
fi

[~

\

[
6
-

e
3

Figure 6.12: The average performance given
by the Bottom-Up algorithm for 10 by 40
bins, with no rotation and random picce
orientation, over all possible maximum picce
size sdections. The horizontal axis gives the
maximum piece height allowed and the
vertical axis gives the maximum piece width
allowed. The contour lines show the average
BU pack haght divided by the optimal

pack height.

107

Frequency

Distribution of the Pack Heights Given by Bottom-Up
for 10000 Repetitions of a 20 by 20 Bin With Rotation

RIYIRILLRIBRYS-INRIBBE&EEIRQ
Pack Heights

Figure 6.13

108

BB

_‘
4 -
-

L 1 T T T T 1 i 1 1
Figure 6.14: The average performance given by the Bottom-Up algorithm for 20 by 20 bins, with
rotation, over all possible maximum piece size selections. The horizontal axis gives the maximum
piece height allowed and the vertical axis gives the maximum piece width allowed. The contour
lmes show the average BU pack height divided by the optimal pack height.

109

—y

Frequency

Distribution of the Pack Heights Given by Bottom-Up
for 10000 Repetitions of a 40 by 10 Bin With Rotation

;

1100 £

e 1EY

B on —

THYY

42

IeeBBIN

BBIIBBRAILRIYST
Pack Heights

Figure 6.15

110

o ! V2N (7 —
11 ~ S sy T
T < 2 / > 3
15 N ST
e g ‘ D N
14 L/j,\ \’\ /—\u,\-:\ -
MR IR IR AP S S S S S S M S R S S S S S L L S S S

Figure 6.16: The average performance given by the Bottom-Up algorithm for 40 by 10 bins, with
rotation, over all possible maximum piece size selections. The horizontal axis gives the maximum
piece height allowed and the vertical axis gives the maximum piece width allowed. The contour
lmes show the average BU pack height divided by the optimal pack height.

111

Distribution of the Pack Heights Given by Bottom-Up
for 10000 Repetitions of a 10 by 40 Bin With Rotation

".;:gl

8

Frequency

8

8

o

EE8VTITIB8BIITT LY
Pack Heights

16
18
20
22
24

6

Figure 6.17

112

10 1

Figure 6.18: The average performance given
by the Bottom-Up algarithm for 10 by 40

bins, with rotation, over all possible maximum
picce size sdections. The horizontal axis gives
the maximum picce height allowed and the
vertical axis gives the maximum picce width
allowed. The contour lines show the average
BU pack height divided by the optimal

pack height.

113

2
3 5 6 - ’
2
2
8
7 6 5

w2

Figure A.1: The one dimensional pack given by FFD of the list L={8,7,6,6,5,5,3,2,2,2.2}
into a bin of height 12. The optimal pack is 4 bins. FFD packs using 5 bins.

114

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

VITA AUCTORIS
Todd Braithwaite
Windsor, Ontario
1973

Vincent Massey Secondary School, Windsor
1987-1992

University of Windsor, Windsor, Ontario,
1992-1996 B.Sc., Honours Mathematics and Statistics

University of Windsor, Windsor, Ontario
1996-1997 M.Sc., Statistics

115

IMAGE EVALUATION
TEST TARGET (QA-3)

16

14

I

125

I

150mm

IMAGE . Inc
653 East Main Stree!

~rauw

.._______._______

APPLIED

© 1993, Applied Image. Inc.. All Rights Reserved

	Two-dimensional bin packing: Innovations and statistical analysis.
	Recommended Citation

	tmp.1364334896.pdf.CbhlF

