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Abstract

The recent advances in light wave communication technology over the past
several years enabled us to share enormous optical bandwidth among users in local,
metropolitan and wide-area networks. But with the increase in number of users utilizing
the network it leads to congestion of network. Congestion is a major issue while
evaluating the performance of a network. The lower the congestion in a network, the less
is the cost of the hardware (optical & electronic). The problem we are studying is that of
designing an optimum ordering of nodes if we are using a logical de Brujin topology. To
determine this, we will use the Genetic Algorithm approach. Our approach involves the

use of a new cross over strategy (sub-graph cross over) to solve the problem of designing

large networks.
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Chapter 1

Introduction

The recent advancements in optical networking technologies encourages us to
search for a way to achieve the goal of high-speed data transfer as well as to cope up with
the explosion of bandwidth demands. The emerging new technologies in the field of light
wave communications over the past several years enabled us to share enormous optical
bandwidth among users in local, metropolitan and wide-area networks. Optical
Wavelength Division Multiplexed (WDM) networking technology is leading a bandwidth
revolution in the infrastructure of the next generation Internet and beyond. Demand for
bandwidth is rapidly increasing with the possibility of recent applications such as
electronic commerce, video on demand, and global cooperative work. Optical fibers are
now widely deployed by various telecommunication companies. A single strand of
optical fiber with huge bandwidth, low signal attenuation and low signal distortion can
support several hundred times of current traffic load by employing WDM technology. All
optical wavelength division multiplexed networks using wavelength routing are

considered to be the best bets for the next generation of wide area optical networks.

1.1 Motivation

The problem of designing a good logical topology for a given network is always
an interesting and challenging thing due to the reason that it is very difficult to find the

corresponding routes between any source-destination pair and it has attracted



considerable interest. This is an important problem because it determines the traffic load
on the links and of the network there by helping in determining the maximum traffic a
network can handle. Some recent approaches employed various optimization techniques
to solve this problem. This usually results in a logical topology, an arbitrary graph,
constructed in such a way to minimize the congestion of the network. The main drawback
of these approaches is that as the number of nodes in the network increased, the problem

quickly becomes intractable.

1.2 Problem outline

In a wavelength routed optical network, if the set of light paths are defined in
different ways, there will be different logical topologies. An optical network topology can
be single hop or multiple hops. In a single-hop network [ZA95], every source destination
pair has a light path between them so that optical signals carry information from a source
node to a destination node without undergoing any opto-electronic conversion. In a multi-
hop network, the traffic from a source node S to a destination node D might travel using a
lightpath L, from S to the node S, another lightpath L, from S; to the node S- ... using
lightpath L, from node Sy to the node D. In an arbitrary multi-hop topology there is no
predefined connectivity pattern. A regular Multi-hop networks such as ShuffleNet,
Toroid, de Bruijn graph, GEMNET, hypercube is another approach, which provide
simple routing schemes due to their well-defined connectivity patterns.

A single hop topology suffers from two major drawbacks; it needs expensive
wavelength-agile transceivers and also pre transmission coordination between the

prospective communicators. These different logical topologies have different
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performance characteristics and are of great interest in further research to determine the
optimal logical topology for a given network with a specified physical topology, expected
traffic between all node pairs and other physical characteristics. Designing of a multi-hop
logical optical network architecture involves meeting various criteria such as small
average internodal distance, as it inversely proportional to the network utilization, adding
or deleting nodes from the network should result in a minimum impact on network
configuration and performance [SVS99]. These different logical topologies have different
performance characteristics and it is an important research area to determine the optimal
logical topology for a given optical network with a specified physical topology, expected
traffic between all node pairs and other physical characteristics. In general, for designing
optical networks, the important factors to be considered for evaluating the performance of
a multi-hop network are the delay and the congestion [RS98] where the delay is the time
taken by a signal to travel from the source node to the destination node and the
congestion is the maximum load offered to any logical link.

Following fig 1.1 is a simple example showing the congestion, may be minimizing by

choosing paths in a different manner

(a) Congestion is 80 (b) Congestion is 50




In fig 1.1 (a) 50 units of traffic is sent from A to C through the path A5B—-C
requiring 2 hops and 30 units of traffic from B to A through the path 2 hops, which gives
the congestion value of 80(Load on edge BC). On other hand in figure 1.1 (b) A and B are
sending same amount of traffic but over a different path. A is sending 50 units in a single
hop from A—C and B is sending 30 units in a same way as in figl.1 (a) along path
B—C— A. The resulting value of congestion is 50 (along A —C), which is lower than
congestion in figl.1 (a). Therefore, by reducing the number of hops required to transmit
data from A to C we are able to reduce the congestion of the network. It is expected that
logical topologies with low diameter should perform better than irregular topologies, since

there is and upper bound on the maximum path length [RS96].

1.3 Previous Approaches

In the past few years there has been a considerable research going on in the field of
designing logical topologies, one popular approach is to formulate the problem as a
combined design problem of logical topology and routing and to divide the problem into
two major sub-problems

eLogical Topology Design Problem

eRouting Problem

There are two important approaches [RS96][RS98] to solve the problem of designing
logical topologies using
a) Mathematical and optimization techniques and

b) Using regular topologies.



The first approach utilizes the mathematical optimization techniques to solve both logical
design and routing problem simultaneously. It is based on the traffic demands of the
various node pairs and attempts to design an optimal logical topology as well as a routing
scheme over the given physical topology [RS96]. The first problem formulation involves
MILP [RS96] that generates a large number of constraints, which is a major drawback
even for small-sized networks. As the MILP formulation was found to be infeasible for
practical networks, attempts were made to simplify the problem by dividing it into two
parts. First to determine a logical topology using some heuristics and then find an optimal
routing on that topology by formulating the routing as a LP problem. In regular topology
approach traffic demands are ignored and logical topologies are designed with some

desirable graph theoretical properties such as pre-determined routing, low diameter and

high connectivity

Gazen and Ersoy [GAZEN99] developed an approach using genetic algorithms to solve
the logical topology design problem. Here the problem again is divided into two
independent problems, the connectivity problem and the flow assignment problem. The
connectivity problem is solved using genetic algorithms, as it is best suited for the discrete
optimization problems. It introduces minimum-hop routing with Flow deviation as their
objective function. The flow deviation method works with a flow assignment algorithm.
The two solutions are the combined linearly so as to improve the result. But again this

approach uses mathematical linear equations to solve the flow assignment problem.




1.3 Proposed Approach

The problem addressed in this thesis can be presented as follows: For a given traffic
matrix, find out a good mapping of physical nodes onto the nodes of the logical topology,
in such a way that the congestion is minimized i.e., a proper ordering of nodes is required
to generate a logical topology such that the congestion is minimized. Mapping of the
existing nodes onto the nodes in the logical topology would generate various logical
topologies. These different mappings will have different performance characteristics and it
is an important research area of interest to find the best topology with minimum or optimal
logical topology for a given optical network with a specified physical topology, expected
traffic between all node pairs and other physical characteristics.
Different logical topologies and topological design techniques were proposed. It is shown
that de Brujin graphs as logical topologies can support significantly more nodes than a
ShuffleNet [HK88]. In the de Brujin graph [SR91], it is known that there are a number of
nodes disjoint paths from a source to a destination, each having almost the same number of
nodes as in the shortest path route [SSB88). This means that the routing scheme can make
full use of the rich interconnections available in a regular graph and the fact that numerous,
relatively short, route exist between any source and destination. Given a target logical
topology, it is much easier to find a good mapping between the logical and physical nodes
such that the congestion is minimized [HJBS00].

For example Table 1-1 represents a traffic matrix and figurel-1. is the De Bruijn
graph. The main goal of this thesis is to find a good mapping of physical topology (A, B,
C...) to logical topology where the nodes are (000,001,., 111) in the De Brujin graph. Let

6



node A be mapped to 001, B to 010 and C to 000 etc. Genetic algorithms are used to solve
the above problem by coming up with a good ordering of nodes in such a way that the
target logical topology will be one with minimal congestion. Genetic algorithmic approach
will generate different sets of ordering of nodes, which are nothing but the target logical
topologies. But to come up with the best logical topology is of main concern. The problem
of choosing the best one is solved by considering the congestion factor in the logical

topology. The logical topology with minimal or optimal congestion is considered.
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Figurel-2. Mapping in a De Brujin Graph for 8-node network (2*)



The Genetic Algorithm introduced in this thesis works by creating many random solutions
to the problem of mapping of nodes of physical topology on to the nodes of logical
topology. This population. of many solutions will then be subjected to an imitation of the
evolution of species. All of these solutions are coded as a list of numbers representing the

nodes, these solutions are also called as chromosomes.
Example 1-1

Let C, and C; be the two logical topologies (8-node De brujin graph) generated by
the genetic algorithm for a given physical topology.

Chromosome C;:

Logical 0(000) | 1(001) | 2(010) | 3(011) | 4(100) | 5(101) | 6(110) (111)
Physical | F C A G B D H E

Chromosome C,:

Logical 0(000) | 1(001) | 2(010) | 3(011) | 4(100) | 5(101) 6(110) | 7(111)
Physical | A B E D H G F C

To find out a good mapping of physical nodes onto the nodes of the logical topology, we
need to know the fitness of the two chromosomes. The chromosome with the highest
fitness function will be considered among the two. In GA, an objective function is used to
calculate the objective value of a chromosome. In this thesis, the chromosome represent a
mapping between the physical and logical nodes and objective value is the congestion for
that mapping. The value of congestion is dependent on how the communications are routed
over topology. Here the chromosome C; is having a fitness value of 37 when compared to

24 for C,.So C; will be considered as the better mapping.



1.4 Thesis Organization

In chapter 2, a detailed review of Optical Network Concepts are given to have an overview
of the concepts used in wavelength routed multi-hop optical networks and in Chapter 3, we
provide a literature review of Genetic Algorithms and its application in optical network
design. Chapter 4 presents a new approach to design the optical networks using Genetic
Algorithmic approach. Various crossover strategies are discussed and new crossovers are
introduced for the proposed GA. The experimental results are presented and analyzed in
Chapter 5.In Chapter 6 the contributions of this thesis and future work are suggested and

concludes with a critical summary.




Chapter 2

Optical Networking Concepts

Most of the recent advents of new technologies in telecommunications and
Internet industries are made possible by the increase in bandwidth due to the introduction
of optical fibers. It is widely believed that all-optical networking using wavelength
division multiplexing ought to become eventually the next networking generation after
ATM (Asynchronous Transfer Mode). These new technologies had made new path for

the recent exciting researches in the field of telecommunications and WWW.

Wavelength-division-multiplexed (WDM) optical networks [Green92] using wavelength
routing are considered to be potential candidates for the next generation of wide-area
backbone networks. A WDM all-optical network can use the large bandwidth available in
optical fiber to realize many channels, each at different optical wavelength, and each of
these channels can be operated at moderate bit rates. Networks using 20-100 wavelengths
will be feasible in the next few years [GGR93] .Use of DWDM allows providers to offer
services such as e-mail, video, and multimedia carried as Internet protocol (IP) data over
asynchronous transfer mode (ATM) and voice carried over SONET/SDH. Despite the
fact that these formats—IP, ATM, and SONET/SDH—provide unique bandwidth
management capabilities, all three can be transported over the optical layer using

DWDM. This unifying capability allows the service provider the flexibility to respond to

customer demands over one network [SR91].

10




The logical topology design problem based on WDM technology in optical
networks has been studied extensively in the past decade and there is ongoing research in
this area. Here in this chapter a brief introduction of WDM technology will be given and
also about the single and multi hop Optical networks. The new approach of using a

regular graph, the De Brujin graph, as the logical topology is going to be discussed.

2.1 Wavelength Division Multiplexing

Wavelength division multiplexing (WDM) divides the huge bandwidth of a fiber
into many non-overlapping wavelengths. These wavelengths are the WDM channels.
Each channel can be operated asynchronously and in parallel at any desirable speed. It is
thus the optical analog of the Frequency Division Multiplexing in the radio
communication world where every station transmits at a different frequency and receivers
that want to tune in to a particular channel must tune in to the desired frequency. The
main advantage of WDM is that is can reuse each channel, the relative positions of each

nodes can be changed dynamically based on the traffic fluctuations [GGR93].

In fig 2.1 wavelengths there distinct wavelengths 4,, A, and A, are combined at

multiplexer and carried over on a single fiber where optical amplifier has been used to
maintain the purity of the signal and at the demultiplexer end those distinct wavelengths

are retrieved.

11
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Maultinlexer Demultinlexer
Fig 2.1: Wavelength Division Multiplexing (WDM)

2.2 Classification of WDM networks

A distinction must be made in classifying networks between the physical
architecture of the system and its logical topology. The former is the actual physical
structure of the network (i.e. the fibers that link together the nodes), whereas the latter
describes the way in which data is transferred between the nodes on the network. The

physical architecture and logical topology are often the same for a given network, but

there are many instances where they differ.

Three basic architectures have been used, the bus, the ring and the star. The passive star
has proved to be the most popular to date while the ring has the advantage of superior

resilience, particularly against fiber breaks.
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2.2.1 Single hop and Multihop networks

Multi-wavelengths networks can be classified on the basis of number of hops to
reach from source to destination nodes. In a single-hop network, once the data stream has
been transmitted as light, it continues without conversion into electronic form until it
reaches its destination. For a packet transmission to occur, a transmitter at the source
must be tuned to the same wavelength as a receiver at the destination for the duration of
the packet transmission time. There are two main challenges to overcome in the
implementation of single-hop WDM networks: the need for fast wavelength tuning in the
transmitters and/or receivers and the development of efficient protocols to allocate

wavelength channels for different connections within the network.

A method of avoiding the above problems is to use a multi-hop network. In this
case, each node has access to only a small number of the wavelength channels used in the
network. Fixed-wavelength transmitters and receivers are used for this purpose with the
minimum requirement being a single transmitter and a single receiver tuned to different
wavelengths [Acam87). If a node wishes to transmit to another node whose receiver is
tuned to a different set of wavelengths than the source transmitter, the latter will transmit
to an intermediate node which has a receiver of the same channel as the source’s
transmitter and a transmitter with the same tuning as the destination’s receiver. More than
one intermediate node may thus be needed for a packet to reach its destination. At each
intermediate node, the data packet is switched electronically to the next appropriate node

and then retransmitted on a new wavelength carrier.

13



Design of multihop logical optical network architecture should meet the following

important requirements [BS99]:

® Average internodal distance should be small as it is inversely proportional to the
network utilization.

® Each node in the network should employ only a small number of transceivers

¢ Physical embedding of the logical network topology should require only a small

set of distinct wavelengths.

® Adding or deleting nodes should have a minimal impact on network configuration

and performance.

® Logical topology should be able to tolerate maximum node and link failures.

2.2.2 Wavelength Routed Optical Network (WRON)

Wavelength routing means that optical signals can be selectively routed, in the optical
domain, based on their wavelengths. These types of networks are referred to as
Wavelength Routed Optical Network (WRON). WRON is the combination of single hop
and multi hop network and they show the characteristics of both. A wavelength Routed
Switch is used at intermediate router nodes. Optical Networks using wavelength routing
are considered to be the backbone for high-speed future networks. Figure 2.3 shows an
optical network with 4 nodes. There are three light paths established over the physical
network 4 »C, C—> 4 and B — 4. Communication from node A to node C is an
example of single ~hop communication since communication is done by one single light

path 4 —» C. Communication from node B to node C is an example of multi-hop

14



communication since this communication is performed along the path B - 4 — C which

uses two light paths B — 4and 4 - C.

Physicat Topology

Logical Topology

Figure 2.3 Wavelength Routed Optical Network (WRON)

2.3 Regular Logical Networks Topologies

In this section various regular multihop logical topologies for light wave networks
will be discussed. First and fore most simple regular topologies: bus, ring, and star will be

discussed. Shuffle-exchange based topologies -- ShuffleNet, de Bruijn graph, and

GemNet are then considered.

2.3.1 Bus Topology:

In a logical bus topology, each node is equipped with two fixed-tuned transmitters
and two fixed-tuned receivers. A transmitter of node i is connected to a receiver of node
(i + 1), and the other transmitter of node i is connected to the receiver of node (1),

except for the first node and the last node where only one pair of transceivers is used.
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Average hop distance in an MN-node bi-directional bus network is AN/3 nodes.
In a bus topology, if the unused transceivers of the end nodes are connected to the unused
transceivers of the first node then a logical ring topology is obtained. The average hop
distance in a bi-directional ring topology is N/4 nodes. Also, in a ring topology there are
two link disjoint paths between any source and destination nodes, whereas in a bus
topology this path is unique. Ring topologies are attractive for their simple interfaces and
control. A unidirectional ring is minimal in the sense that it uses a minimum number of

links to achieve full connectivity.

2.3.2 Star Topology

In a logical star topology, all the nodes transmit and receive from a central node,
which can be an optical switch. Hop distance between any two nodes in a star topology is
always two and the path between any two nodes is also unique. It is an important to note

that the bus, ring, and star topologies are commonly found as physical topologies rather

than logical ones.

2.3.3 Shuffle Net:

ShuffleNet topology was proposed by Stone [Stone71]. Acompora first proposed
the Shuffle net architecture as a virtual optical network topology in 1987 [20]. A (p.k)

ShuffleNet can be constructed out of N=kp" (k= 1,2,3...) nodes which are arranged in

columns of p* nodes each, with K* column connected to the first .The connectivity
between the successive columns is a p-shuffle is a generalization of the P=2,k=2)

perfect shuffle.
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0,0 0,1

1,0 1,1

2,0 2,1
3,0 3,1
Figure 2.4 Shuffle Net
2.3.4 Gem Net:

GEMNet is a recently proposed class of network architecture that includes Shuffle Net
Fig 2.7 and de Brujin graph as its special members [1 1,12]. Modularity of Gem Net is
one and it generally has comparable or better properties than those of Shuffle Net or de
Brujin graph. GEMNet has a simple routing scheme and low diameter, O(log N), where N

is the number of nodes in the network. GEMNet can be defined for any arbitrary value of
N.

In GEMNet, unlike in Shuffle Net, deBrujin, or Shuffle Net, the number of nodes, M in a
column is not restricted to be of the form p®. Also, for a given N, there exists, as many
different GEMNet configurations as there are distinct ways of factoring N in to two
ordered integers. GEMNet also reduces to a de Brujin graph of diameter D when M = p?

and k£ = 1.There fore, GEMNet which is based on a generalized shuffle exchange
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connectivity pattern, has much more flexible structure than that of Shuffle Net or de

Brujin graph because the number of nodes is not restricted to any form

1 ..........:
0,0 0,1 — M 00

............
s 1,0 ¢

1,0 L1

2,0 2,1 20

3,0 3,1 30

4,0 a1 L a0
Figure 2.4 GEMNET

2.4 Advantages of Using Regular Topologies for Minimizing Congestion

Regular topologies such as GEMNET have symmetrical structure and thus results in
small average hop distance in such topologies. For GEMNET architecture of n node the
average hop distance is O(log(n)), which results in shorter paths for routing packets.
Maximum offered load on a link is called Congestion. The smaller he value of
congestion, the better the performance of the network. And it is shown that the de Brujin

Graph’s attractive low diameter property minimizes the congestion on logical topology.
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Chapter 3

Genetic Algorithms Concepts

Genetic Algorithms (GA) are adaptive heuristic search algorithms premised on
the evolutionary ideas of natural selection and genetic. The basic concept of GA’s is
designed to simulate processes in natural system necessary for evolution, specifically
those that follow the principles first laid down by Charles Darwin of survival of the fittest
[GOLD89]. They represent an intelligent exploitation of a random search within a
defined search space to solve a problem.

Genetic Algorithms, first pioneered by John Holland, has been widely studied,
experimented and applied in many fields in engineering worlds. GA’s provide an
alternative method to solving problem and consistently outperforms other traditional
methods in most of the problems. Many of the real world problems involved finding
optimal parameters, which might prove difficult for traditional methods but ideal for
GAs. However, because of its outstanding performance in optimisation, GAs have been
wrongly regarded as a function optimiser. In fact, there are many ways to view genetic
algorithms. Perhaps most users come to GAs looking for a problem solver, but this is a
restrictive view [DJONG93).

Genetic algorithm is a highly parallel mathematical algorithm that transforms a set or
population of individual mathematical objects. In general a fixed length character strings

patterned after chromosome strings, each with an associated fitness value, into a new
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population (i.e., the next generation) using operations patterned after the Darwinian
principle of reproduction and survival of the fittest and after naturally occurring genetic
operations [KOZA 92].

3.1 Search Techniques

Genetic algorithms are a type of optimisation search techniques. Search
techniques in general, as illustrated in figl can be grouped in to three broad classes
[GOLD89] Calculus, enumerative and random search methods, which can be further
subdivided. Calculus based methods include direct and indirect. Indirect is the search for
the peaks of maxima by finding zero of the gradient. Direct techniques are those such as
Newton’s method. Random methods include simulated annealing, evolutionary strategies,
genetic algorithms and the simple random walk through the search space. Enumerative
methods are the brute force methods where all the solutions in the whole search space are

generated.

SEARCH TECHNIQUES

/

CALCULUS BASED RANDOM @m@
Simulated l \

Annealing Random Walk Brute Force

EVOLUTIONARY
ALGORITHMS

ENETIC
ALGORITHMS
EVOLUTIONARY
STARATEGIES

SEQUENTIAL 20
Figure 3.1. Search Techniques

Newton’s Method Zero Gradient




3.1.1 Random Search

Random search is a brute force approach, usually used for difficult function where
there are no other viable search methods. In this approach, points in the search space are
selected randomly and their finesses are evaluated. This strategy is not very intelligent
and is rarely used alone. It is very unfavourable, as there is no guidance to direct the

search.

3.1.2 Gradient methods

There are number of methods for optimizing continuous functions, all of which
are based on using information about the gradient of the function to guide the direction of
search. A drawback is that these methods will only work on problems where the
derivative of the function is continuous. These methods are generally referred to as hill
climbing methods since they usually move upwards along a gradient in the hopes of
finding maxima. On functions that are multi-modal, where there are many peaks these
gradient techniques can be trapped in a peak that is perhaps the highest in the local
vicinity but not the highest globally. Once they have reached the top of a local maximum

no further progress can be made towards a solution.

3.1.3 Iterated Search:

It is a combination of both random and gradient search, which results in hill
climbing search. In this method, the gradient method is used to find a peak. But once a
peak has been located the hill climbing is stated over again, this time using a different
randomly chosen point This gives the technique the advantage of simplicity and gives it

ability to perform well even if the function has only a few local maxima.

21



This method is nothing more than several iterations of the gradient method and it
cannot find an overall picture of the shape of the domain. Therefore, as the search
progresses it cannot use any previously obtained information to choose a likely starting
point for the next hill climb. These forces to evaluate points in regions of low fitness, just
as often as in regions found to be of high fitness. A genetic algorithm, by comparison,
starts with an initial randomized population but allocates increasing trials to regions of

the search space found to have higher fitness.

3.1.4 Simulated Annealing

Simulated annealing is a process that is analogous to the cooling of a metal from a
molten state .In this method, an initial search point is chosen at random. A move is made
to another point in the search space also chosen at random. If the move is to a point with
higher fitness then it is accepted. How ever, if the move is to a point with lower fitness its
acceptance is determined by a portability function, which varies over time. This function
begins with a value near one but gradually reduces towards zero [GOLD89].

In this way, the search can proceed up and down in the beginning but as the search
starts to cool the amount of downward mobility is reduced. Towards the end of the
search, only upward moves are allowed. Downward moves are essential if local maxima
are to be escaped but after a period of time it is hoped that the search will be near the
peak of the global maximum and the cooling temperature will force the search to proceed
upwards towards this maximum. This technique only deals with one solution at a time
and does not build up an overall picture of the search space. Information from previous

moves is not used in the selection of the new moves. This is in direct contrast to a genetic
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algorithm where the search space peaks are embedded in the chromosomes of the

population individuals and tend to be passed forward during the search.

3.2 Genetic Algorithms vs. Traditional Methods

There are various traditional methods for search strategies, like Calculus-based
Search, Dynamic Programming, Random Search, Gradient Methods, Iterated Hill
climbing and Simulated Annealing. But Genetic Algorithms differ from the tradition
search methods in different ways.

Genetic algorithms manipulate decision or control variable representations at a
string level to exploit similarities among high-performance strings. Other methods
usually deal with functions and their control variables directly. GA's deal with parameters
of finite length, which are coded using a finite alphabet, rather than directly manipulating
the parameters themselves. This means that the search is unconstrained neither by the
continuity of the function under investigation, nor the existence of a derivative function.
Moreover, by exploring similarities in coding, GA’s can deal effectively with a broader
class of functions than can many other procedures. Search from a population, not a single
point.

Similarly, GA's finds safety in numbers, by maintaining a
population of well-adapted sample points; the probability of reaching a false peak is
reduced. The search starts from a population of many points, rather than starting from just
one point. This parallelism means that the search will not become trapped on a local
maxima - especially if a measure of diversity-maintenance is incorporated into the

algorithm, for then, one candidate may become trapped on a local maxima, but the need
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to maintain diversity in the search population means that other candidates will therefore

avoid that particular area of the search space.

Evaluation of the performance of candidate solutions is found
using objective, payoff information. While this makes the search domain transparent to
the algorithm and frees it from the constraint of having to use auxiliary or derivative

information, it also means that there is an upper bound to its performance potential.

3.3 Simple genetic Algorithm
Genetic Algorithms are used for a number of different application areas. An

example of this would be multidimensional optimization problems in which the character
string of the chromosome can be used to encode the values for the different parameters
being optimized.

A genetic algorithm or any evolution program for a particular problem must have the
following five components [MICH94]:

®*A genetic representation for potential solution to the problem.

®A way to create an initial population of potential solutions.

®An evaluation function that plays the role of the environment, rating solutions in

terms of their fitness.
*Genetic operators that alter the compositions of children,

eValues for various parameters that the genetic algorithm uses i.e., population size,

probabilities of applying genetic operators.
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3.4 Types of Genetic Algorithms

In general Genetic Algorithms can be classified in to three major categories.
eGenerational GA
oSteady-State GA

eGeneration Gap and CHC

3.4.1 Generational GA

In classical Generational GA the whole population is replaced by the new. This contrasts
with the steady-state GA where one member of the population is replaced at a time. GAs
that extrapolates between generational and steady state are said to have a generation gap.
To extrapolate between the generational and steady state GA, De Jong introduced the
notation of a generation gap [DJONG?7S5, 93] G denotes the fraction of the population that
is changed at each generation. Thus for a generational genetic algorithm G=1 while for a
steady-state genetic algorithm G=1/P. Eshelman introduced an evolutionary algorithm
called the CHC Adaptive Search Algorithm, where a new population is generated and
added to the old population before selection [ES93]. This is related to the evolutionary
strategies. The genetic drift caused by different generation gaps and for CHC has been
calculated in [ROJERS99]. The larger the generation gaps the small the genetic drift.

CHC has half the genetic drift of a generational GA.
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3.4.2 Steady-State GA

In a steady-state genetic algorithm one member of the population is changed at a
time. To perform selection a member of the population is chosen according to its fitness.
It is copied and the copy mutated. A second member of the population is selected which
is then replaced by the mutated string. In crossover two members of the population are
chosen, a single child created which replaces a member of the population. Any selection

method can be used to select the individual for mutation or the parents.

There are a number of different replacement strategies
*Replace worst (often gives too rapid convergence)
*Replace a randomly chosen member

eSelect replacement using the negative fitness.

Steady-state GAs have been investigated in [ROGERS99] and [ROGERS00]. The major
difference between steady -state and generational GAs is that for each P members of the
population generated in the generational GA there are 2P selections. Consequently the
selection strength and genetic drift for a steady-state GA is twice that of the generational
GA. The steady-state GA, therefore, appears twice as fast although it can lose out in the
long term because it does not explore the landscape as well as the generational GA. The
effects of genetic drift in steady state GAs and GAs with an arbitrary generation gap are
discussed in [ROGERS00].
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A typical GA consists of the following steps

1.Generate initial population

2.Measure fitness

3.Select a mating pool

4.Mutate each member of the mating pool

5.Pair member of the mating pool and perform crossover to obtain a new generation

6.Return to Step 2 until some stopping condition is satisfied.

START

Initialize Population

~

Measure Efficiency

]

Selection

v

Mutation

v

Crossover

Is There any
Imorovement

Figure 3.2 Typical Genetic Algorithm




3.5 Genetic Algorithm Mechanism

As mentioned earlier, Genetic Algorithms are biologically inspired search
methods. The GA mechanism copies the necessary and essential operations of natural
genetics. It operates on a large group of solutions known as a population and simulates
the biological operations of survival, mating and mutation [HOLL92]. Similar to a

biological cycle of birth, reproduction and death, a GA follows a similar cycle called the
GA cycle. [GOLDS39].

3.5.1 Solution Coding

Genetic algorithms use a vocabulary borrowed from natural genetics. Similar to a
biological chromosome, a GA chromosome is a string of characters that represent the
instructions for building an individual [MICH94]. Since in the GA realm and individual
is a solution to a problem, a GA chromosome must contain the coded instructions for
building a solution. That is the GA chromosome is the solution in a coded format.
Chromosomes are made of units - genes arranged in linear succession. Every gene
controls the inheritance of one or several characters. Genes of certain characters are
located at certain places of the chromosome, which are called loci. Any character of
individuals can manifest itself differently; the gene is said to be in several states, called
alleles.

Each genotype or a chromosome represents a potential solution to a problem. An
evaluation process run on population of chromosome corresponds to a search through a
space of potential solutions. Such a search requires balancing two objectives, exploiting

the best solutions and exploring the search space [BOOKS2).
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A GA performs a multi-directional search by maintaining a population
of potential solutions and encourages information formation and exchange between these
directions. The population undergoes a simulated evolution: at each generation the
relatively GOOD solutions reproduce, while the relatively "bad" solutions die. To

distinguish between different solutions an objective or evaluation function plays the role

of an environment.

3.5.2 Representation

Finding a powerful representation of the problem is a vital part of making GA'’s
work. A powerful representation of a problem allows simple operators to be used to
explore the solution space effectively. That is it imposes a metric whereby neighboring
solutions are likely to have similar fitnesses.

In a classic GA the problem is represented by a string of variables

S = {81,8,8;......Sv}

The mapping between the variables and the problem is essential if simple operators are
going to be used to explore the search space. If phenotype centered operators are used the
representation is irrelevant. String representations are not the only type of representation
of the problem. Tree structures can also be used, this is common in genetic programming.
In the traditional genetic algorithm's, genetic operators act on the genotype. That is, they
blindly manipulate the string representing the problem. This is not necessary, operators
can be considered acting in the phenotype space, i.e. the problem space. i.e., if we had a
problem defined on a lattice then we could consider crossover operators, which divided

the lattice into two contiguous pieces and swap the solution in either piece.
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This would appear simple in the phenotype space but might be very complicated
in the genotype space. For many simple test problems it is possible to choose a
representation so that genotype space has a similar structure to phenotype space. When

this isn the case then one should consider using phenotype operators [ROGER00].

3.5.3 Fitness Function

A fitness function must be devised for each problem to be solved using genetic
algorithms. For a given particular chromosome, the fitness function returns a single
numerical fitness or figure of merit, which is supposed to be proportional to the utility or
ability of the individual, which that chromosome represents. Particularly for function

optimizations, it is obvious what the fitness function should measure-it should just be the

value of the function

3.5.4 Reproduction

In the reproduction phase of GA, individuals are selected from the population and
recombined, producing offspring, which will comprise the next generation. Parents are
selected randomly from the population using a scheme, which favors the more fit
individuals. Good individuals will probably be selected several times in a generation,
poor ones may not be at all. Having selected two parents their chromosome are
recombined, typically using the mechanism of crossover and mutation. Some research is
done in the field of multi parent recombination where more than two parents are

considered for the reproduction in an evolutionary problem solver [EIBEN 97]. It was
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proposed that there are three different types of multi-parent mechanisms with tunable
arity.

3.5.4.1 Selecticn Methods in Genetic Algorithms

One of the most critical phases in a Genetic Algorithm is the choice of an appropriate
selection method. Individuals for recombination are selected according to their fitness.

Various methods have been suggested in literature [Bak85]. Basically, the various

methods can be divided in fitness scaling methods or ranking methods.

The problem of premature or rapid convergence can be solved by Fitness scaling
methods by scaling the "raw fitness” values, but still the selection probability is derived
from the scaled fitness value. Whereas, ranking methods use the fitness values to produce
a ranking list of the population and the probability of selection is derived from the rank.
Recently, ranking methods have gained increasing popularity and are thought to be
superior to fitness scaling methods [dIMT93].

The selection processes have to be optimized for the specific type of problem to
be solved . A subset of the population was kept intact to the next generation and to
reproduce. Too small subsets may lead to the loss of some promising genomes that
initially do not have high fitness but may have good offspring. Too large subsets may
lead to slow convergence. The choice of parents can be performed in several ways. You
can simply have a pool of parents and randomly choose two parents (sampling without
replacement). Another alternative is to assign a probability to be chosen to every parent

in the pool. The probability corresponds to the fitness of the parent. Highly fit parents

31



have greater probability to reproduce. The second alternative probably leads to a higher

convergence rate than the first.

To select the individuals to progress to the next population it is important to strike a
balance between fitness and diversity. Frequently an individual will appear during the run
of a GA’s that has a fitness factor above the population average yet is only showing signs
of a local optimum for the evaluation. These chromosomes are commonly referred to as
super-individuals: chromosomes of high fitness but only for a local optimum. It is
therefore important to guard against these super-individuals flooding the population
causing premature convergence of the population to a local optimum. To guard against
premature convergence it is important to use a selection method that promotes a diverse
population. One that balances the need for super-individuals' genetic material to be
spread throughout the population and the need to maintain a diverse population until a

suitably optimum value has been located.

3.5.4.1.1 Tournament Selection

One of the most popular ranking methods is Tournament Selection, where a
number of n individuals (typically n = 2) are chosen randomly from the population and
the individual with the highest fitness is selected and places in the mating pool. This
procedure can be extended to probabilistic tournament sel xction borrowing an idea from
Simulated Annealing. With a certain probability, which is decreasing with time the

individual with a lower fitness is selected.
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3.5.4.1.2 Roulette Wheel Selection

Roulette Wheel Selection is one of the most well known and more popular of the
selection methods listed above. It is a fitness-based selection with each individual in a
given population being assigned a wedge of a roulette wheel proportional to its fitness
against the total fitness of the population. Subsequently the fitter individuals of a
population tend to be selected more frequently being passed on to the next generation
after crossover and mutation. Due to the random nature of each spin of the roulette wheel,
stochastic errors can enter the selection process where individuals have a lesser or greater

representation in the next population than the fitness proportion for the individual

dictates.

3.6 Genetic Operators

In order for evolution to occur, there must be some genetic variation among the offspring.
In natural life, this is insured by natural imperfections in the replication of the
informational molecules. However, one way in which digital chemistry differs from
organic chemistry is in the degree of perfection of its operations. In the computer, the
genetic code can be reliably replicated without errors to such a degree that we must
artificially introduce errors or other sources of genetic variation in order to induce
evolution.

The main purpose of genetic operators is to cause chromosomes created during
reproduction to differ from those of their parents. They must be able to create
configurations of genes that were never existent before and that are likely to perform

well. When genetic operators are used with reproduction plans, the result is a surprisingly
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sophisticated set of adaptive plans. The two most commonly used genetic operators are

mutation and crossover.

3.6.1Crossover Operators

One of the unique aspects of the work involving genetic algorithms is
recombination. In most GA’s, recombination is implemented by means of a crossover
operator which works on pairs of individuals (or parents) to produce new offspring’s by
exchanging segments from the parent’s genetic material. In general, the number of
crossover points has been fixed at a very low constant value of 1 or 2. This is proved in
the previous work of both theoretical and empirical nature [HOLL75]. But in recent times
there were indications that there are situations in which having a higher number of

crossover points is beneficial [SYS89].

3.6.1.1 Crossover Techniques

The simple GA performs crossover by making a single cut at the same location in
each of the two parent chromosomes. This cut occurs somewhere between the first gene
and the last gene. The cut sections are then exchanged to form two offspring. This
method is very simplistic and tends to destroy building blocks that contain widely spaced
genes.

Due to this reason many researchers have devised many new crossover techniques
often using more than one cut point. The effectiveness of multiple-point crossover was
first investigated by DeJong [Djong75] and he found that while 2-point crossover gives

an improvement in the performance of GA. With the increase in addition of crossover
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points, the search becomes more random because building blocks are more likely to be

disrupted. The problem space is thoroughly searched at the expense of highly increased

search time.

3.6.1.1.1 2-Point Crossover

Chromosomes are regarded as loops formed by joining the ends together .Two
identical points are randomly selected along the length of two parent strings, dividing
each into three segments. The first and third segments from the first parent and the
second segment from the second parent are recombined to produce the offspring strings.
2-point crossover can be generalized to n-point crossover, where n is the number of
crossover points. Researchers generally agree that 2-point crossover is better than 1-point

because it samples uniformly across the full length of a chromosome [SDJ91b].

1101 0110 0110
0001 1001 1111

Figure 3.3. Multipoint -Crossover

3.6.1.1.2 Uniform Crossover

Another form of crossover is the n-point uniform crossover where the number of
points n varies dynamically with each mating [SPEARS91]. In this method a probability

P, characterizes the degree of disruption. A random number is drawn for each parameter
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along the string. If the value of this random number is greater than P,, then the value
from parent 1 is used to produce the offspring string. If the random number is less than
P,, parent 2s value is used. The greatest disruption occurs when P, = 0.5.The process is
repeated with the parents exchanged to produce the second offspring .A new crossover
mask is randomly generated for each pair of parents. Offspring is therefore; contain a
mixture of genes from each parent. The number of effective crossing points, while not

fixed, will average /2 (where / is the average length of chromosome).

1101 1001 | 110

Parent 1

Parent 2 0001 0110 1111
Template 1101 0010 0110
Child 1 1101 0100 1111
Child 2 0001 1011 01190

Figure 3.4 Uniform —crossover

3.6.1.1.3 Crossover Comparisons

There is many debates over which is the best crossover method to use. It was
shown that the uniform crossover causes fewer disruptions in long defining length
schemas [SYS89]. Syswerda shows that the overall amount of schemata is lower, there
by better preserving precious blocks.

Under 2-point crossover the defining length, and not the order, of the schemata
determines the likelihood of its disruption. While under uniform crossover, it is based on

the order and not its length. Which means that the ordering of genes within a
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chromosome is completely irrelevant and eliminates the need for many of the re-ordering
operators such as inversion.

An extensive comparison of 1-point, 2-point, multi-point and uniform crossover operators
was performed by Eshelman et al [ES93). Theoretical analysis was performed in terms of
positional and distributional bias on several problems. While they found that an 8-point
crossover was good on the problems they are tried there was only about a 20% difference
in speed between the slowest and fastest techniques. But the theoretical analyses by
Spears & DeJong [SPEARS91] shows that both 1 and 2-point crossovers are optimal.
They state that due to reduced productivity; 2-point crossover will perform poorly when
the population has largely converged.

If two similar chromosomes undergo 2-point crossover then the exchanged
segments are likely to be identical causing the offspring to be identical to their parents.
But under uniform crossover, this is less likely to happen. A new 2-point crossover is
described in [SPEARS91], which will check the offspring’s, and if they found to be
identical to their parents then the crossover is repeated using two new crossover points.
This crossover was found to be slightly better than uniform crossover. But this crossover
is best only when there is a large population, and that for small population uniform
crossover is best due to the increased disruption that it causes [DJONG90]. Syswerda
formulated a new crossover called simulated crossover [SYS92]. Simulated crossover
technique treats population of GA as a conditional variable to a probability density
function that predicts the chance of generating samples in the problem space. The
difference is that by using Simulated crossover technique is that only one child is
generated. In creating the child, BSC (Bit simulated crossover) ignores the bit values of
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individuals, but uses the statistics of bit values of entire population. But it is found that
Simulated crossover‘s rate of production of schemata is slower than that of explicit
crossover and also as the recombination rate is slower for schemata with low selection
probability compared to a schemata with high selection probability. But as these

differences are small, this crossover can be used as a recombination operator.

3.6.2 Mutation

Mutation occurs with low probability and functions as a background operator.
[BOOKS82][DJONGSS]. It is included to allow for the searching space that may otherwise
be precluded by the converging chromosomes as genetic information is discarded during
crossover. The exact amount of mutation necessary is somewhat open to debate. Too
little and useful alleles that are not currently in the population can never be found while
too much causes the GA to degenerate into a random search.

Although crossover is generally seen as the major mechanism for exploring new
search space, there are examples in nature where creatures using asexual reproduction
have evolved. When Schaffer et al [SCHA89] did a study to determine the optimum
parameters for Gas; it was found that mutation played a larger role than previously
thought.

In a study by Spears [SPEARS93], crossover and mutation were compared and it
was found that each operator contained characteristics not found in the other but that each
is simply a form of a more general exploration operator that modifies alleles based on
available information. As the population converges, Davis {DAVIS91] found that

mutation plays as increasingly important role while the role of crossover diminishes.
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Although its probability of use is small and it is seen as nothing more than a
background operator, mutation plays a very important part in a GA solution. Adjusting
for the optimum GA parameters is difficult since changes in mutation rate will affect

performance much more than changes to the crossover parameters [SCHAS9].

3.7 Applications of Genetic Algorithms

Genetic algorithms have proved very useful for optimizing highly complex cost
functions with large numbers of parameters. In many situations, GA’s are able to quickly
solve a problem where traditional methods of optimization have little or no success.
Genetic Algorithms are increasingly finding application in diverse fields. As they are
robust efficient optimization techniques for complex multi-dimensional problems, most
of these problems can be characterized as NP-hard and are generally intractable using
simple algorithms. Examples of such applications are Task scheduling, Designing VLSI
Circuits, Simulations of Biological Evolution, Adaptive Control Systems and
Optimization of Network Topologies. GA's can be used to find optimal ways of
scheduling a number of tasks under the presence of constraints in such a way that the
time taken to perform the tasks is minimized. It is also used in solving routing issues in

data and computer networks - minimizing path lengths etc.

One of the classical examples of GA’s application is the solving of TSP problem.
This is one of the most known problems, and is often called as a NP-Hard problem. A

salesman must visit » cities, passing through each city only once, beginning from one of
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them, which are considered as his base, and returning to it. The cost of the transportation
among the cities (whichever combination possible) is given. The program of the journey
is requested, that is the order of visiting the cities in such a way that the cost is the

Let’s number the cities from 1 to n, and Let City 1 be the city-base of the
salesman. Also let’s assume that c (i, j) is the visiting cost from i to j. There can be c (i,
J)<>¢ (j, i). Apparently all the possible solutions are (n-1)!.Someone could probably
determine them systematically, find the cost for each and every one of these solutions and

finally keep the one with the minimum cost. These requires at least (n-/)! Steps.

3.7.1 GA in optimization and planning: Traveling Salesman Problem

The TSP is interesting not only from a theoretical point of view; many practical
applications can be modeled as a travelling salesman problem or as variants of it. For
example, pen movement of a plotter, drilling of printed circuit boards, real-world routing
of school buses, airlines, delivery trucks and postal carriers. Researchers have tracked
TSP to study bio-molecular pathways, to route a computer networks’ parallel processing,
to advance cryptography, to determine the order of thousands of exposures needed in X-

ray crystallography.

In the last two decades an enormous progress has been made with respect to solving
travelling salesman problems to optimality, which, of course, is the ultimate goal of every

researcher. This progress is only party due to the increasing hardware power of
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computers. Above all, it was made possible by the development of mathematical theory

and of efficient algorithms

There are strong relations between the constraints of the problem, the representation
adopted and the genetic operators that can be used with it. The goal of traveling Salesman
Problem is to devise a travel plan or a tour, which minimizes the total distance traveled.
TSP is NP-hard it is generally believed cannot be solved in time polynomial. When GA’ s
applied to very large problems, they fail in two aspects. They scale rather poorly (in
terms of time complexity) as the number of cities increases and also the solution quality
degrades rapidly. Building a genetic algorithm to solve the TSP requires specifying those

elements described in the GA definition.
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Chapter 4

New approach for mapping problem

The main objective of this thesis is to investigate the genetic algorithms for designing the
logical topology of multihop optical networks. The target logical topology is a De Brujin
graph because of its attractive properties such as low diameter, rich connection and
simple routing scheme. The logical topology to be designed is represented by a directed

graph Gy(N,4) where N is the number of nodes and A, is the set of light paths established

over the physical network. Traffic matrix T= (t.q) where ty4 represents the arrival rate of

packets at node s destined for node d. A link (ij)e A, if there is a logical link between

nodes i and .

Since the target logical topology is already known, the topology design is reduced to find
an appropriate mapping between the nodes of the physical network and the nodes in the
logical topology. In this chapter a new genetic algorithm for the logical topology design
problem will be introduced and various control parameters (chromosome representation,

the objective function and the stop criteria) that effective the performance of this

algorithms will be discussed.

The basic structure of the algorithm follow that of simple genetic algorithm SGA
[Goldberg89] and is given in Figure 4-1.In the algorithm P(0) represents the initial

population and P(j) is the population in the i generation.
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Initialization
Setup all control parameters
Create first population, P(0);
Evaluate P(0)
i:=0;
Repeat
i= i+l
While P(i) is not full
{
Select chromosomes from P(i-1)
Apply crossover and mutation;

Figure 4-1 Proposed Genetic Algorithm

4.1 Chromosome Representation

Chromosome representation is a key issue in Genetic Algorithms (GAs). An appropriate
representation that stores problem specific information can enhance the performance of
the algorithm and expand the search of the problem space. In the proposed algorithm,
each possible solution (chromosome) is a mapping between the physical nodes and the
logical nodes. Each solution represents a uniquely ordered list of physical nodes, where
the positions in the list represents logical node numbers and the corresponding values are

the physical nodes, to which these logical nodes are mapped.
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Example: -

For a 8-node De Brujin graph (d = 2, k = 3) a chromosome can be represented as follows

Logical Node: 0 1 2 3 4 5 6 7
Label (000) (001) (010) (011) (100) (101) (110) (1l1)
Physical Node C E D H B A G F

The top row gives the logical node number and the associated label and the second row
shows the physical node to which each logical node is mapped. In general numbers are
used to represent logical nodes and alphabets to represent the physical nodes.

The logical node to which the physical node is mapped is simply determined by its
position of the physical node.

4.2 Initialization

All the control parameters are setup during the initialization phase, including the initial
population and population size, the possibilities of mutation and crossover, the crossover
strategies to be used. The population size is varied during the experiments depending on
the size of the network and the performance of the genetic algorithm.

4.2.1Genetic Parameters

4.2.1.1 Selection

For selection process, roulette selection method is used to select the individuals that are

participating in the crossover method with respect to the probability distribution based on

fitness values.



4.2.1.2 Crossover:

In this thesis logical topology is implement as a de Brujin graph [SSb88], and in a de
Brujin graph of degree d, each node has up to d _predecessors and d successors, i.e., up to
2d nodes adjacent to it. The main aim of this crossover is to preserve p adjacent nodes of

a given node n, where 1< p <24 . The number adjacent nodes to be preserved are chosen

by randomly picking a number from 1 to 2d.But some of the chosen node may contains a
cycle, ie, A 8 node logical topology can be represented as 2° deBrujin graph and if the
chosen node is 000 or 111, then those nodes can have only d -1 predecessors and d -/
successors as one of the successors and predecessors are 000 and 111 respectively. So in

that scenario p should be in the range 1 < p<2d-2.

There by the proposed crossover protects the entire cluster and the unfilled positions in

the first chromosome can be filled with genes from the second chromosome.

C|:

Logical Node: 0 1 2 3 4 5 6 7
Label 000 001 010 011 100 101 110 111
Physical Node C E D H B A G F
Table: 4-2.1 Chromosome C,

Cz:

Logical Node: 0 1 2 3 4 5 6 7
Label 000 001 010 011 100 101 110 111
Physical Node C D A E F G H B

Table: 4-2.2 Chromosome C;
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As an example, let C, and C; be the chromosomes for crossover. The proposed crossover

creates the new offspring as follows.

1. Randomly pick a node as the root of the sub-graph. Assume N (001) is chosen.

2. Randomly pick a number p from 1 to 2d(i.e, from 1 to 4 as d = 2 in this case).
Assume 4 is chosen and p = 3.

3. Node N has two predecessors, 000 and 100, and two successors 010 and 011.0Our
proposed crossover first protects the predecessors and then successors. There fore the
root node (001) and its 3 adjacent nodes including two predecessors (000 and 100)

and two successors (010) are filled in the Offspring':

Offspring':

Logical Node: 0 1 2 3 4 5 6 1
Label 000 001 010 011 100 101 110 111
Physical Node C E D * B * . *

4. Fill the vacant positions, marked by “*”, with genes from C,. After getting rid of
those nodes(C, E, D, B) already in Offspringl, (A, F, G, H) are left. Fill the “*”

marked places in Offspringl with (A, F, G) as it appears in C;, Thus, an offspring is

created:
Offspring':
Logical Node: 0 1 2 3 4 5 6 7
Label 000 001 010 011 100 101 110 111
Physical Node C E D A B F G H

Similarly applying the same crossover to Cyand C,, Offspring2 can be created
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4.2.1.3 Mutation

The mutation operator in this algorithm is a simple swap operator, where two genes in a
chromosome are randomly picked and switch their values. This can result in entirely new
gene values being added to the gene pool. With these new gene values, the genetic
algorithm may be able to arrive at better solution than was previously possible. Mutation
is an important part of the genetic search as it helps to prevent the population from
stagnating at any local optima. Mutation occurs during evolution according to a user-
definable mutation probability. This probability should usually be set fairly low (0.01 is a

good first choice). If it is set to high, the search will tum into a primitive random search.

4.3 Objective Function and Fitness Value

In genetic algorithms, an objective function is used to evaluate the fitness or to
test the ability of chromosomes to satisfy certain conditions. Here a chromosome
represents a mapping between the physical and logical nodes and the objective value is
the congestion for that mapping. In this thesis two objective functions are used to

evaluate the fitness of the solutions/chromosomes and the main objective is to maximize

these objective functions.

L YT (K=1)
2.35T;
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4.3.1 First Objective Function ¥’ 7, (X -/,):

The first function Z]}i (K —1;) is used to minimize the number of hops to reach a

packet from source node to a destination node.

Here T; Represents the traffic between node i and j

K : Represents maximum number of hops needed from any source to destination

I; : Represents number of hops needed from source node i to destination node Jj

To calculate the number of hops to reach from a source node to a destination node the
following shortest path algorithm is used. The main to implement this algorithm is to find
the minimum number of hops required for a packet to reach from a source node to

destination node.
4.3.1.1 Shortest Path Algorithm
Find all successors of u:
Sw) = {ww=uj ... up.1i i (0 ..d-1)}.
Calculate the shortest path:
e Calculate the longest matching prefix of v and suffix of «,
Uk-t-] Ukt .. Uf-] =VQV] ..vp.], t€ (0 ...k-2);
* Repeatedly left shift v; v¢+/ ... vk} to u to create the shortest path
® S =S —{uj ...uk-] ve}.
For each path P calculated, check for cycles in P:

e Ifcycles at the beginning of path P

® Discard P;
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¢ Ifcycles in the middle of path P

® Remove cycle to obtain a shorter path P

4.3.2 Second objective function ¥ 5,7; :

The main objective is to maximize the above objective function. Here

b; : Represents the value 0 or 1

1: If there is an edge between node i and ;
0: If there is no edge between node i and j

T, : Represents the traffic between node i and /.

Aim of the first objective function is to minimize the number of hops for a packet to
reach from source node to destination node. Since the target topology is an regular graph
De Brujin, We are sure about the maximum no of hops a packet can take, will be not
more than &.

The second objective function’s aim is to place the nodes with higher congestion

values close to each other such that the congestion can be minimized.
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4.4 Stop Criteria:

Reproduction, crossover and mutation operations and the results of the objective
function are the entire GA needs to optimize a solution set. The goal of the GA is to
generate a single exceptional individual with genes that would represent the optimal
solution to a problem, which is a bit contrary to the workings of evolution, which
operates to improve the population as a whole. However, to do this, the GA must
generally improve the average quality of the solution set, Just as evolution does in the
biological world .One important aspect of the GA is its stopping criteria. There are three
popular stopping criteria:

e A certain number of generations is reached

® A solution falls within an acceptable fitness margin.

® There have been a number of generations with no improvement in the
solution set.

Dependent on the goals of the particular implementation, any one of these may be more

viable.

The algorithm implemented in this thesis is a combination of on-line performance and
fixed number of generations. Here the concept of convergence is used, which corresponds
to the chromosomes in a population become identical or similar to each other. In general
a GA can be considered converged if the average fitness of the population is at least 90%

of the best fitness, which is called as the 90% rule.
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4.5 Crossover Strategies

Selection alone cannot introduce any new individuals into the population. These are
generated by genetically inspired operators, of which the best known is crossover and
mutation. Crossover is performed between two selected individuals, called parents, by
exchanging parts of their genomes to form two new individuals, called offspring. This
operator tends to enable the evolutionary process to move toward promising regions of
the search space. This chapter reviews various crossover operators at present to solve
TSP problem, which is basically to find a best order of cities.

4.5.1 Order Crossover

The order crossover was proposed by L.Davis [DAVIS8S] for the TSP (Traveling
salesman Problem). The main idea of Order Crossover was to create an offspring by
choosing a sub-sequence of a tour from one parent and preserving the relative order of
cities from the other parent. The following example represents the order crossover.

Let P1 and P2 be the chromosomes for crossover. Since OCX does not care about the

index and address, P1 and P2 can be simply writtenas (ABCDEFGH)and (CDAE
FGHB)

P1:

Logical Node 0 1 2 13 4 5 6
Label 000 |001 {010 !O11 {100 [101 |1

Physical Node | A B C D E E G H

Logical Node 0 1 2
Label 000 (001 (010 |oO11 100 | 101 110 | 111
Physical Node C D A E F G H B
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Because the chromosome length is 8, two numbers are randomly picked from 1 to n-1

where n = 8(8 cities), as the two crossover points. Assume 2 and 6 are picked and their

positions are marked by "|".

P:(AB|CDEF|GH)

P:(CD|AEFG|HB)

The offspring are produced in the following way. First the segments between the two cut

points are copied in to the offspring:

Offspringl=(22| CDEF| 2 )

Offspring2=(2? | AEF G |2 2)

Next starting from the second point of one parent, the nodes from the other parent are
copied in the same order, ignoring symbols already present. When reaching the end of the
string, continue from the head of the string, The sequence of the nodes in P»(from the
second cut point) is

(H-B -C -D -A -E -F -G)
To fill in the blanks marked by "?" in P, , nodes C D E F » which are already there, need
to be removed .As a result , the remaining sequence is

HBAG
This sequence is placed in Offspring] from the second cut point:

Offspringl: AGCDEFHB)
Similarly the second offspring can be created:

Offspring2: CDAEFGHB)
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4.5.2 Union Crossover

Union Crossover was developed by Fox et al [Fox91]. The UX operator take a mutually
exclusive sub string from each parent string and then write the elements directly to the

offspring string ensuring the precedence relations are preserved. Figure4.5 describes this

in detail with example

Parents:

(A[B|C[DTEJF JGH]

(BIDJAJCTF[H[G]E ]

Chooseparent1: (DAFE)
S1:

(DA [F JE |

S2: write the remaining elements to S2 in the order in which they appear in P1

|B |[C [G[H ]
Randomly choose S1 or S2, write the first element of the chosen sub string to offspring O

and delete it from chosen sub string

Choose S2: B S2: C G H
ChooseS2 BC S2 G H
ChooseS1 BCD S1: A F E
ChooseS1 BCDA S1: F E
ChooseS2 BCDAG S2: H

ChooseS1 BCDAGF S1: E

Choose S1 BCDAGFE S1:

Figure 4.5 Union Crossover
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4.5.3 Random Crossover

Random crossover does not care about any special structure of the chromosome
representation nor does it care about the problem itself. The idea of RCX comes from
uniform crossover, also known as multi-point crossover [Gol89], in SGA. In order to
create offspring, RCX randomly picks some positions to exchange genetic material while
the rest of the chromosomes remain unchanged. There fore, RCX exchange any element
whether it is part of a cluster or not. To demonstrate how it works, the chromosomes P1
and P2 are used again.

Pl: (BACEDGHF)

P2: (CDAEFGHB)
Since the chromosome contains 8 elements, an 8-bit binary string is created. Each bit
corresponds to one element. The value of the string is randomly generated. As a result a
binary 01101001 is created. Using this string, a mask operation is applied to P1 (figure 4-

2), If a bit is "1”, the corresponding element stays unchanged in the offspring; otherwise

it is removed.

* A C * D * * F
Then the vacant positions marked by "*" arde filled with genes from P2. The first

offspring, Offspring], is as shown below:
Offspringl =E A C G D H B F
Applying the same strategy to P2, the second offspring can be created:

Offping2 =C D A E F G H B
54



4.5.4 TBX 1 Crossover

The role of the crossover is to recombine information from two good parent solutions in
to what we hope are even better “offspring” solutions. The problem is to design a
crossover operator that combines characteristics of both “parents” while producing a
valid solution to he ordering problem. The TBX operators are designed to break ties
between two string locations competing for the same location.
In TBX1 (Tie breaking crossover 1) initially with the reference list of elements: ab.c..,
parent solutions are coded using position listing
Parent:
(bdcfae) 5 (513264)
(caebfd) > (241635)
Randomly choose two crossover points and exchange all the characters between the
crossover points as in traditional two-point crossover.
(51| 326} 4)
(24| 163]|5)
Now generate a crossover map, which is a random ordering of integers from 0 to n-1.
Where n is the number of elements. Multiply each character of each string by n and add
the corresponding number in the crossover map.
Eg. (501243)
(5367 38 22 27)

(17241914 40 33)

Replace the lowest character in each string by 1, the next lower by 2 etc up to n.
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(512634)
(243165)

Map the string back to elements. These are the offspring solutions.

Offspring:
(512634) > (bcefad)

(243165) —> (dachbfe)

4.5.5 TBX 2 Crossover

TBX2 crossover is a modification of TBX!1 crossover. Here instead of selecting two

random crossover points only one-crossover points are selected. The crossover process is

implemented as follows.

Parent:

b d [ f A e - 5 1 3 2 6

Randomly choose one initial element x and exchange the characters corresponding to that

element.

Eg., x = d => exchange 4™ character
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Now generate a crossover map, which is a random ordering of integers from 0 to n-1.
Where n is the number of elements. Multiply each character of each string by n and add

the corresponding number in the crossover map.

Eg.
5 0 1 2 4 3
@3s 6 19 38 42 27)
17 24 7 14 28 33)

Replace the lowest character in each string by 1, the next lower by 2 etc up to n.

Randomly choose the number of neighbor pairs to carry across. Delete this number of x’s
original neighbors in the parent string.
E.g.,r=1 = Deleteb & c in Pl

Delete f & c in the P2.

Move elements to make r spaces on each side of x leave x fixed in its original position.
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- F e a - D
- D - a b e
Fill in the spaces with x’s original neighbor maintaining the original order.

Offspring:

4.5.6. Cluster Crossover

This crossover is similar to the proposed crossover in this thesis (Sub graph
crossover). This crossover mainly concentrates on preserving the entire group of nodes
that surround the root node. This is mainly due to the fact that to minimize the
congestion, two nodes must be placed as close to each other as possible if they have high
traffic. In this crossover instead of selecting a selected number of nodes surrounding the
root node, we preserve the entire nodes surrounding the root node there by preserving
good cluster in the chromosome.

There by the proposed crossover protects the entire cluster and the unfilled positions in

the first chromosome can be filled with genes from the second chromosome.

C[t

Logical Node: 0 1 2 3 4 5 6 7
Label 000 001 010 011 100 101 110 111
Physical Node C E D H B A G F
Table: 4-2.1 Chromosome C,

Cs:

Logical Node: 0 1 2 3 4 5 6 7
Label 000 001 010 011 100 101 110 111
Physical Node C D A E F G H B
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Table: 4-2.2 Chromosome C,

As an example, let C, and C; be the chromosomes for crossover. The proposed crossover
creates the new offspring as follows.As an example, let C; and C; be the chromosomes
for crossover. The proposed crossover creates the new offspring as follows.
1. Randomly pick a node as the root of the sub-graph. Assume N (001) is chosen.
2. Node N has two predecessors, 000 and 100, and two successors 010 and 011.This
crossover protects both the predecessors and successors. There fore the root node
(001) and its 4 adjacent nodes including two predecessors (000 and 100) and one

successors (010) are filled in the Offspring':

Offspring':

Logical Node: 0 1 2 3 4 5 6 71—
Label 000 001 010 011 100 101 110 111
PhysicalNode C  E D H B * * .

3 Fill the vacant positions, marked by “*”, with genes from C,. After getting rid of
those nodes(C, E, D, H,B) already in Offspringl, (A, F, G) are left. Fill the “*”

marked places in Offspring] with (A, F, G) as it appears in C,. Thus, an offspring

is created:
Offspring':
Logical Node: 0 1 2 3 4 5 6 7
Label 000 001 010 011 100 101 110 111
Physical Node C E D H B A F G

Similarly applying the same crossover to Czand C,, Offspring2 can be created
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4.6 Conclusion

This chapter proposes a new genetic algorithm to solve the problem of designing an
optimum ordering of nodes for the logical topology of an optical network. An outline of
its working mechanism, the objective functions and the stopping criteria was explained.
At the end a detailed explanation of different crossover strategies that have been

investigated are presented. The experimental results are presented and analyzed in

Chapter 5.
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Chapter 5§

Egperimentation Results

The main objective of our experiments is to test our algorithm in designing an
optimum ordering of nodes for the logical topology of an optical network using the
Genetic Algorithms. A number of experiments are performed on different sizes of
networks, which are distinct from one another in terms of their physical connectivity,
sizes and the traffic matrices used. Experiments in this thesis focus on various key
parameters and how they affect the performance of the GA. The key parameters of
interest are crossover strategy, number of generations, population size, persentage of

mutation and crossover.

5.1 Control parameters

Experiments in this thesis will focus on various parameters that affect the performance of
the genetic algorithm. These parameters include the crossover rate, mutation rate,
population size, the number of generations and the traffic matrix. In order to provide and
maintain good diversity of the population, a larger population size of 300 is also used.
The minimal and maximal numbers of generations are 100 and 150.
The initial values of all the key parameters are as follows:

e All the test runs are of 100 runs

® Crossover rate: 0.6

e Mutation rate: 0.05-0.1

¢ Population: 100-400
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Traffic matrix is a randomly generated matrix where, randomly values are assigned

between each source and destination pair.

alBlclplelr|c|n]
Alolslelsfoli|o]s]
B 12 loloJ3ls]alsls
clilsfole]ostsls
D12 Isfslol3folsls
Elof20s0afofs]els]
[ F 12 1o f1 la]3]ols >
Glo 121831686 fols
B8 12 o1 lo 3]s ]o

Table 5.1 Traffic Matrix for 2° De Brujin Graph
Since it is extremely difficult to determine the optimal logical topology, this thesis will
evaluate the performance of the GA in terms of following factors,

e Convergence of GA and

¢ The fitness of the best member with respect to the best member among the

possible n/ members. (n! Ordering of nodes where n = number of nodes).

S.2 Results for Sub-Graph Crossover

In this thesis we studied the effectiveness of sub graph crossover and cluster crossover
strategies and compared their performance in getting the optimal solution from the
possible no of generations (Max_gen). The results are then compared using the two
objective functions discussed in the chapter 4.At first the optimum ordering of nodes,
which with the highest fitness value among the n! ordering of nodes (where n is the no of
nodes) is obtained. It is then compared with the optimal ordering obtained from the sub

graph crossover and cluster crossover strategies
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# Pop | Best Possible | Fitness | Best Solution | Fitness | Iterations | Time

Nodes | Size | Solution

8 100 | 12537640 (37 25376041 |33 100 12sec
200 12406537 |36 100 24sec
300 12537640 |37 100 41sec

Table 5.2.1 Experiment Results for Sub graph crossover using objective function’

# Pop | Best Possible | Fitness | Best Solz:tion Fitness | Iterations | Time

Nodes | Size | Solution

8 100 120374156 |48 37402516 |47 100 16sec
200 20374156 |48 100 23sec
300 37415602 |47 100 54sec

Table 5.2.2 Experiment Results for Sub graph crossover using objective function’

5.3 Results for Cluster Crossover

# Pop | Best Possible | Fitness | Best Solution | Fitness | Iterations | Time

Nodes | Size | Solution

8 100 112537640 |37 25376410 |35 100 14sec
200 04125376 |36 100 2l1sec
300 25376410 |35 100 29Sec

Table 5.3.1 Experiment Results for Cluster crossover using objective function'
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# Pop | Best Possible | Fitness | Best Solution | Fitness | Iterations | Time

Nodes | Size | Solution

8 100 120374156 |48 65203741 |47 100 24sec
200 20374165 |48 100 27sec
300 37402156 |47 100 33sec

Table 5.3.2 Experiment Resulits for Cluster crossover using objective function’

Each of the above experiments is carried for 8-node network and for 100 iterations. Most
of the time the solution fitness are slightly less than or sometimes inferior when
compared with the best solution fitness. To obtain a solution with fitness on par with the
best solution, elitism is used to preserve the best solution in a generation for the nest
generation.

For an 8-node network, both the Sub graph and cluster crossover perform satisfactorily
for population sizes of 100 and 200.Most of the time solutions fitness’s are about 90% of
the best solution. But the results produced are unsatisfactory, as the program never
converges. So to eliminate the problem of non-convergence, elitism was introduced.
Elitism always retains the best individual in the population, found so far and copied in to
the population set for the next generation.

In our next experiment we introduced 10 % elitism such that 10% of the best solutions in

a generations are preserved for the next generation




Pop | Best Possible | Fitness | Best Solution | Fitness | Iterations | Time
Nodes | Size | Solution
8 100 {12537640]37 04125376 |36 100 12sec
200 04125376 {36 100 20sec
300 04125376 |36 100 30sec

Table 5.4.1 Experiment Results for Sub Graph crossover using objective function’

Pop | Best Possible | Fitness | Best Solution Fitness | Iterations | Time
Nodes | Size | Solution
8 100 {20374156 |48 37415602 {47 100 14sec
200 37415602 |47 100 19sec
300 37415602 |47 100 24sec

Table 5.4.2 Experiment Results for Sub Graph crossover using objective function’

The results found to be encouraging with the introduction of elitism for the population of

100 and 200.It was found that population with size of 100 had a 100% convergence and

approximately 95% for the population size of 200.And another significant factor to be

noticed is the time it took to get the optimal solution. It was found that it took

significantly less time when compared to the non-elitist one.

As the number of nodes increases, ie, from 8-node to 16 and 27 node network, the search

space increases from 8! To 16! And 27! . To compare the results obtained from the
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algorithm to the best solution among these 16! and 27! ordering of nodes is practically

time consuming, as we need to check each of the 16! (20922789888000 solutions)

solution’s fitness to get the best solution.

The following results will give a brief idea about how the results varied as the number of

nodes increase. Results are tested for various values of crossover rate, mutation rate and

the time it took to converge.

#Nodes | SIZE | Elitism | Objective | Fitness | No of Iterations | Time
Function
8 100 NO 1 41 180~200 17sec
100 YES 1 41 140~170 16sec
100 NO 2 46 >200 >30 sec
100 YES 2 46 >200 >30 sec
200 NO 1 41 485~500 S6sec
200 YES 1 41 325~400 45sec
200 NO 2 46 >200 >30 sec
200 YES 2 46 >200 >30 sec
16 100 NO 1 61 150~250 61sec
100 YES 1 61 150~250 S6sec
100 NO 2 72 >500 -
100 YES 2 72 >500 -
200 NO 1 61 - -
200 YES 1 61 - -
200 NO 2 72 - -
200 YES 2 72 - -




27 100 NO 1 73 200~250 81sec
100 YES 1 - - -
100 NO 2 - - -
100 YES 2 - - -

From the above results it is evident that the sub graph crossover strategy works well with
the objective function' and the algorithm is converging after a reasonable number of
generations. Elitism is introduced to solve the problem of non-convergence, but it is
successful for smaller network like 8-node and it made a negligible effect on the larger
networks. Also the crossover rate is increased from 0.7 to 0.9 to increase the rate of
convergence in the case of second objective function®, but it had a little impact on the
performance of the algorithm. In the above experiments the algorithm never converged
for 16-node and 27-node network for population of 200 and 300. The main reason for the
results given above is that, for larger networks, the search space becomes too large that
no crossover strategy with such a small population can cover a reasonable amount of the

search space within such limited number of generations.

The above results are compared with the results generated by the cluster crossover
and it found that the cluster crossover results are comparable with the sub graph

crossover and some times better than the previous one.
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5.3 Results for Cluster Crossover

The following table gives the brief description of the results generated for 8,16 and 27-

node networks.
#Nodes | SIZE | Elitism | Objective | Fitness | No of Iterations | Time
Function
8 100 NO 1 4] 120 - 150 12sec
1C0 YES 1 41 140-170 14sec
100 NO 2 46 200 - 250 44 sec
100 YES 2 46 200 - 240 38 sec
200 NO 1 41 485 - 500 S6sec
200 YES 1 41 450 - 480 45sec
200 NO 2 46 750 - 800 >2 min
200 YES 2 46 550 - 600 100sec
16 100 NO 1 61 150 - 250 61sec
100 YES 1 61 150 - 250 56sec
100 NO 2 72 150 - 250 40sec
100 YES 2 72 150 - 250 37sec
200 NO 1 61 - -
200 YES 1 61 - -
200 NO 2 72 400 - 450 S6sec
200 YES 2 72 700 - 750 137sec
27 100 NO 1 73 200 - 250 81sec
100 YES I - - -
100 NO 2 - - -
100 YES 2 - - -
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5.4 Conclusions

In this chapter various experiments were conducted by changing the values of parameters
that affect the performance of the genetic algorithm. And the results can be summarized
as follows.

e For smaller networks like 8-node network both the sub graph crossover and
cluster crossover perform well and the results are satisfactory. The algorithm
always finds out the better solution in a reasonable amount of time.

e With the increase in the number of nodes in a network, it takes lot of time to get
the desired result and some times it never converges to get the result. Even with
the introduction of elitism, the results are unsatisfactory. Good genes at the start

and larger population sizes may solve this problem.
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Chapter 6

Conclusions and Future Work

This chapter outlines the contribution of this thesis and discusses the conclusions that
have been reached. A brief outline of directions for the future work is given and also the

strategies for the further improvement.

6.1 Conclusions

The genetic algorithm outlined in this thesis meets our objective of designing an
optimum ordering of nodes for the logical topology of an optical network using the
Genetic Algorithm approach. A genetic algorithm was given to solve the problem of
finding an optimum ordering of nodes that is comparable with the best possible solution.
The results obtained are encouraging and comparable with the best solutions. For a small
network of 8-nodes results are encouraging and results are on par with the best possible

solution and it takes a matter of seconds to get the result.

This thesis analyses various parameters that affect the performance of genetic algorithms
like population size, elitism, no of generations and the crossover strategies. A few new
crossover strategies like sub graph crossover and cluster crossover are introduced and

compared with the standard crossovers like OX, TBX1, TBX2, Cluster Crossover, Union

Crossover and Random Crossover.

70



Since this algorithm is tested with smaller network like 8-node network and compared
with the best possible solution, it may be necessary to use Parallel Genetic Algorithm
(PGA) to solve the problem for larger networks. Some mathematical optimization
techniques like MILP and LP can be used to find the best topology but they fail due to the
drawback of generating huge number of constraints and it is practically intractable.
Therefore GA’s with its attractive features like high flexibility and high efficiency can be

used to solve the problem of finding the best results.

6.2 Future Work

The following are some of the topics that need to be explored in improving the algorithm
® The optimum ordering of nodes for the logical topology of an optical network
using the Genetic Algorithm approach will need not to be a best ordering in terms

of minimizing the congestion. So these solutions should be checked using the

routing.

® Since this algorithm is used to solve the problem of smaller networks, we need
large populations to solve the larger networks like 27-node or 32-node. There
fore we need a different approach like PGA (Parallel Genetic Algorithm) to solve

the above problem.

® The target logical topology in this thesis is De Brujin graph, which will support a
regular topologies which can be expressed as d*, where d* is the total number of
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nodes in the network. To solve the problem of designing a logical topology for an

irregular graph we need a regular topology capable of supporting an arbitrary
number of nodes such as GEMNET.
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Appendix A Definitions
Allele

Each gene occupies a specific character location within the chromosome string.

Each gene position may take a character value called an allele.

Building Block

A pattern of genes in a contiguous section of a chromosome.

Chromosome

A data structure consisting of a character string of coded task parameters.
Convergence

Tendency of members of a population to be the same. A gene is said to have
converged when 90% of the chromosomes in the population all contain the same allele
for that gene. A population is said to have converged when all gene converged.
Crossover:

Crossover is the procedure by which two chromosomes mate to create a new
offspring chromosome. This means that the offspring string is a copy of parent 1 up to a
randomly chosen point, and a copy of parent 2 from that point onwards.

Elitist:

GA, which always retains the best individual in the population, found so far
(Tournament selection is naturally elitist).

Evolution Strategy:

A search technique, where the next point to search is given by adding gaussian

random noise to the current search point.
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Fitness Function:

Function that evaluates a member of a population.

Fitness: fitness is a measure of how good a solution it codes. Fitness is calculated by a

fitness function.

Generation:

An iteration of the measurement of fitness and the creation of a new population by

means of genetic operations.
Genetic Algorithm (GA):

Model of machine learning that uses a genetic/evolutionary metaphor.
Genetic Operator:

An operator in a genetic algorithm or genetic programming, which acts upon the
chromosome to produce a new individual. Example operators are mutation and crossover.
Genetic Programming (GP):

Genetic Algorithms applied to programs. Genetic Programming is more
expressive than fixed-length character string GA’s, though GA'’s are likely to be more
efficient for some classes of problems.

Genotype:

"Physiological Team" in which a gene can make a maximum contribution to
fitness by elaborating its chemical "gene product” in the needed quantity and at the
appropriate stage of development.

Mutation:

Arbitrary change to representation, often at random.
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Phenotype:
Product of the interaction of all genes.

Premature Convergence:

When a Genetic Algorithm’s population converges to something that is not the

solution you wanted.

Reproduction:

The genetic operation that causes an exact copy of the genetic representation of an

individual to be made in the population.
Roulette wheel selection:

Roulette wheel selection is a way of picking out a string from among a group of

strings (a population).

Solution:

A solution is coded by a string or chromosome. The words string and

chromosome are used interchangeably.

Tournament Selection:
A mechanism for choosing individuals from a population. Groups are selected at

random from the population and the best (normally only one, but possibly more) is

chosen.
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