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Abstract

An approach for developing a tire suitable for performing small scale vehicle dynamics research is

discussed. This will allow for physical verification of vehicle dynamics modelling and controls in

environments where a full scale prototype is either not feasible or too large an investment. Currently,

scale vehicle research is limited by the availability of tires on the desired scale, which are typically

sourced from the radio controlled (RC) vehicle industry. Use of these tires, however, results in

poor similitude between the representative scale vehicle and the full scale vehicle. This is due to

variations in the behaviour of the scale tire to the full scale tire. An existing analytical tire model

known as the cornering force self-aligning torque model (CF/SAT), is analyzed and modifications

to the model are proposed to allow it to be used for non-dimensional tire parameterization. The

model is then non-dimensionalized, using Buckingham Pi theory, to allow for comparison of small

scale tire performance to large scale tire performance. A static load-deflection tire testing apparatus

named the Windsor Automotive Tire Tester (WATT) is also developed. This machine is used to

analyze if it is possible to determine the CF/SAT parameters for a given tire without the use of full

scale tire dynamic studies and regression analysis. A DUBRO 5.00 T.V. RC airplane tire is then

parameterized and modelled using relationships derived from the static tire data. The results of the

tire model are compared with experimental data of the DUBRO 5.00 T.V. tire in order to analyze

the effectiveness of the approach. It was found that it was possible to estimate some tire parameters

using this method, however, more research is required to fully parameterize the tire using static

load-deflection data.
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Chapter 1

Introduction

1.1 Motivation and Purpose

While scale modelling of dynamic systems has found widespread adoption in the aerospace and

marine industries, it is a largely under-utilized technique within the automotive industry. The large

scale of aircraft and seafaring vessels makes physical experimentation with these vehicles a chal-

lenge, if not impossible. By using smaller, but dynamically similar, models of the vehicle to conduct

physical verification, the cost associated with these studies is reduced greatly.

Ground vehicles, on the other hand, are much less difficult and costly to instrument in full scale.

While OEMs (original equipment manufacturers) of automobiles undoubtedly have ample resources

to construct, instrument, and test full size vehicles, academia is much less equipped to deal with this

type of testing. Beyond the cost associated with obtaining a full size vehicle and instrumenting it,

the availability of an appropriate proving ground and the risk involved with vehicle dynamics trials

is typically too great for an academic association to bear. However, the need for these trials is un-

avoidable in the physical verification of vehicle dynamics models and control algorithms developed

by academia. Scale modelling not only offers a cost effective solution, but also significantly reduced

risk of injury to the analyst.

The application of scale modelling is not entirely new to the automotive industry; however,

1
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the research that has been conducted in this area is minimal. One of the largest challenges when

dealing with scaled ground vehicle models is proper treatment of the tire. The highly non-linear

nature of tire response, coupled with the large variety of surfaces to which a tire is subjected, make

precise mathematical modelling of the tire extremely challenging. A result of this the majority of

studies conducted on the topic of scale vehicle modelling assume simplistic tire models, limiting the

efficacy of the approach. The purpose of this research is to explore new avenues by which to treat

the tire with respect to scale vehicle modelling, in such a way as to not reduce both the efficacy or

practicality of the approach.

1.1.1 Objectives

There are three main objectives that are required in order to fully realize a method to properly

develop a small scale tire for vehicle dynamics research. A set of criteria is required by which

to evaluate the response characteristics of a tire. This can be accomplished through the selection

or development of an appropriate tire model. Once this has been established, the model must be

defined non-dimensionally to allow comparison of the dynamic response of the full scale tire to a

small scale tire. This is the first objective of the research.

The second objective of this research is to establish a method by which to characterize the

physical tire within the selected model. It is imperative the cost associated with this characterization

remains low; otherwise, the practicality of a scale vehicle approach diminishes. This requirement

prohibits the use of full scale dynamic tire studies due to the exceptional cost associated with such

testing. To accomplish this objective the possibility of using a static tire testing approach was

investigated.

The complete attainment of these two objectives would allow an analyst to ascertain whether

the dynamic response of a small scale tire was similar to that of a desired full scale tire. With

this information, a scaled vehicle based on a fully non-linear model can be developed without the

limitations associated with linear scale models. New construction of a scale tire that is dynamically
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similar to a specific full size tire; however, would further require a third objective, that a relationship

is determined between the criteria outlined within the first objective to the specific design elements

of the tire. While this final objective is required for the desired goal of this research, it is not

attainable within the constructs of this study.

1.2 Structure of the Thesis

The thesis itself is broken up into six major sections. The first chapter introduces the topic of

discussion and provides the motivation and objectives of the research. Chapter two discusses and

presents the relevant work on the topic of scale vehicle modelling, as well as provides relevant

background material for complete understanding of the work presented.

Chapter three deals primarily with the first stated objective, to establish a model by which to de-

scribe tire response. An appropriate model is selected and modifications are provided in order to im-

prove its suitability for use as a scale vehicle model. The selected model is then non-dimensionalized

to allow comparison of the performance of tires on various scales.

Chapter four details the work done on the development of a system to conduct the required

static tire tests for characterization of the developed model. The mechanical design, as well as

the electronic design of the machine are detailed. The calibration process and performance of the

machine are finally assessed and presented.

Chapter five discusses the results obtained from the studies done with the static tire tester and

the results of the estimation of tire parameters from these tests. The manner in which the results

are treated to determine parameters for the tire model is presented along with details of the tire’s

response to the static tests. The results of the parameter estimation are then compared with results

obtained from a dynamic tire testing system and manual fitting of the model to the dynamically

obtained results.

Chapter six completes the thesis with a discussion of the contributions of the work derived from

the results presented within it. The limitations of what can be concluded from these results and what
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further research is required to fully realize the goals of this research is also presented.



Chapter 2

Background and Literature Review

2.1 Vehicle Modelling

The ability to model vehicle dynamic response mathematically has been of great interest over the

last century, and has grown substantially since the introduction of the automobile. There are many

models that exist today to model the behaviour of a vehicle in several contexts; straight line, han-

dling, ride quality or a combination of all. The work presented in this thesis is a small step towards

verification of the results predicted by these models through physical testing with scale vehicles. In

order to understand that goal we must first look at how the vehicle can be modelled fundamentally.

The enormity of this field alone is outstanding, and so, in the interest of brevity, a common vehicle

handling model will merely be introduced, as it is referred to periodically throughout this work. The

interested reader is encouraged to look at some of the excellent publications for more information

on this model specifically, as well as other vehicle models [21, 10].

2.1.1 Vehicle Handling

Perhaps the most well known, and certainly the most common vehicle handling model, is the linear

yaw-plane model or bicycle model. The term ‘bicycle model’ is derived from the simplification

that the width of the vehicle has a negligible effect on the vehicle’s handling response. Figure 2.1

5
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Figure 2.1: The equivalent system representation of an automobile within the bicycle model. Repro-
duced from Miliken [15].

depicts the equivalent system representation of a vehicle in the linear bicycle model.

This two degree of freedom model allows for variation in the vehicle’s lateral velocity, v, and

yaw rate, r. The forward speed of the vehicle, u, is fixed. The input forces to this system are solely

a result of tire force acting at length l f and lr from the center of mass to the front and rear axles

respectively; aerodynamic effects are ignored. The lumped tire response, f f and fr, is assumed to

increase linearly with increased tire slip angle, α f and αr, as shown in equation (2.1),

f f =−c f α f

fr =−crαr

(2.1)

where c f and cr are the front and rear tire ‘cornering stiffness’ respectively.

A small angle assumption is then applied, such that the tire slip angles can be expressed linearly
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as

α f +δ f =
v+ rl f

u

αr +δr =
v− rlr

u

(2.2)

where δ f and δr are the front and rear steer angles respectively.

Applying the preceding assumptions to Newton’s equations results in the equations of motion

shown below in equation (2.3) [22], where m is the mass and iz is the moment of inertia about the

vertical axis.

m 0

0 iz


v̇

ṙ

+

 (cf + cr)

u
(lfcf− lrcr)

u
+mu

(lfcf− lrcr)

u

(
l2
f cf + l2

r cr
)

u


v

r

=

 cf

lfcf

{δf

}
(2.3)

Despite the large number of assumptions made during the formulation of this model, it has been

found to be very accurate in predicting real world vehicle behaviour in certain situations. The two

most important limitations of this model are the small angle assumption and negligence of vehicle

width.

The small angle assumption is used to maintain the linearity of the model, as well as remain

within the linear region of tire response. In later sections, a more realistic tire response will be

presented. Although limited to operate within this regime, this model gives excellent insight into

the fundamental handling behaviour of a vehicle.

The width of the vehicle begins to play a much more significant role as vehicle manoeuvres

become more aggressive. This is due largely to the non-linear behaviour of the tire. The over-

steer/understeer characteristics of the vehicle at high slip angles can be largely influenced by the

roll stiffness of the vehicle. The reason for this behaviour will be looked at in more depth in Sec-

tion 2.2.2

Much of the current research on scale vehicles utilizes this model for the development of the

scale test beds, which is why this model was introduced. It is important for the reader to be aware
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of their limitations due to this reliance as one reads the subsequent chapters.

2.2 Tires

The world’s first pneumatic tire was invented by John Dunlop in 1888 for use on bicycles. It was

later applied to an automobile by Andre Michelin in 1895 [1]. Over the next 100 plus years, the tire

would undergo many revolutionary changes to become the cutting edge piece of engineering it is

today. Aside from aerodynamic forces, the tire is the only available means by which a road vehicle

may be controlled. As a result of this, the response of the tire is highly influential on the behaviour

of the vehicle. Not only must the tire be capable of generating the required force to manoeuvre the

vehicle under vastly different road conditions, but it also must do so in such a way as to not limit

its useful service life, generate excessive noise, or transmit undesirable amounts of vibration to the

occupants. These highly demanding and sometimes conflicting requirements make tire design a

difficult task, and the selection of an appropriate tire for a given application is equally challenging.

In order to better understand how the tire affects vehicle performance, the following sections will

outline the typical construction of the common tire, tire force response characteristics, as well as

various methods for modelling tire force responses.

2.2.1 Construction

In order to meet the desired dynamic performance, wear, and comfort requirements, the pneumatic

tire is comprised of several layers, featuring various compounds of rubber, additives, and cords.

These many layers work together to control how the tire deforms under various loads, maintain air

pressure, and reduce noise and wear of the tire. Figure 2.2 depicts a cut away of a typical modern

day radial tire.
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Figure 2.2: Typical radial tire construction. Reproduced from Rieveley [22]

Bead

The bead is constructed of several strands of high-tensile strength steel cord formed into a ring

around the inner circumference of the tire. The bead provides the tire with hoop strength to seal the

tire against the side of the wheel and prevent air leakage. It is typically coated with rubber in order

to ensure adhesion between the bead and the tire carcass during construction [23].

Inner Liner

The inner liner is designed to prevent air from permeating out of the tire. It is constructed of a soft,

fatigue resistant, durable rubber [23].

Ply Coat

The ply coat consists of rubber coated cords, made from nylon, textile or other high tensile strength

material. The plies reinforce the tire and provide adequate resistance to inflation. A radial tire

aligns the cords along the radial direction of the tire, while a bias tire runs the ply cords diagonally

alternating the orientation by ninety degrees for each layer. The number of cords, their orientation,
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and the material they are constructed from has a large influence on the tire’s force response and

comfort characteristics [23].

Belt Coat

The belts are used to stiffen the tread section of the tire, and are aligned circumferentially around

the tire. They are typically made from steel or fiberglass. In most bias ply tires, the belt is absent

since tread rigidity is supplied by the ply coat [23].

Sidewall

The sidewall transmits the torque applied by the wheel to the contact patch. It also supports the

weight of the vehicle in conjunction with the inflation pressure. It is constructed of a rubber exhibit-

ing high abrasion and tear resistance, as well as excellent weathering characteristics [23].

Tread

The tread is the area of the tire which contacts the road. It must provide good traction while also

being highly durable, and provide low rolling resistance. In most applications it features deep

grooves in order to facilitate the evacuation of water and increase wet traction [23].

2.2.2 Behaviour

The force response of the tire is largely governed by the manner in which the tire deforms. The

stiffness of the tire under various loading conditions affects the pressure distribution at the contact

patch, which ultimately determines the tire’s response to slipping. The amount of slip the tire

undergoes is the element that is actively, but indirectly, controlled in most vehicles through the

steering wheel, or the accelerator. In order to determine the amount of slip the tire undergoes, the

no slip condition of the tire must be defined. Since a tire rolling at a constant velocity must undergo

a small amount of slip, due to the load it is bearing, there is no true zero slip condition. However,
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in the case of road vehicles, the zero slip condition is assumed to occur when the relationship in

equation (2.4) is maintained.

Ω0re =Vx (2.4)

Where, Ω0 is the free rolling angular velocity, re is the effective radius, and Vx is the forward

velocity of the vehicle [21].

This condition is referred to as the free rolling tire. Tire force generation is typically analyzed in

lateral and longitudinal components individually in order to better understand the mechanisms in-

volved in the generation of the component forces. Aside from the quantity of slip the tire undergoes,

the force generation is highly dependent on the normal load the tire is withstanding. While the slip

and normal load are not the only factors that affect tire response, they have the largest contribution.

Longitudinal Response

Tire force is generated in the longitudinal direction by the applied torque at the wheel from the

powertrain or braking system. This wheel torque is opposed by the frictional contact at the ground,

causing longitudinal acceleration of the vehicle. As the tire travels in the longitudinal direction,

the material entering the contact patch tends to compress, while the material leaving the contact

patch expands, causing slip relative to the ground. With increased driving torque, deflection in the

tire increases, as well as the quantity of slip generated within the contact patch. The longitudinal

force developed increases with an increased quantity of slip. The quantity of slip in the longitudinal

direction is defined in equation (2.5)

κ =
Ωre

Vx
−1 (2.5)

where κ is defined as the slip ratio, Ω is the angular velocity of the wheel, re is the effective tire

radius, and Vx is the forward velocity of the vehicle [21].

The longitudinal force developed by the tire at a given normal load tends to increase quickly and

linearly at low slip ratios until the limit of adhesion is reached. Once this point has been reached, the

tire response reduces minimally and maintains a near constant value for increasing slip quantities.
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Figure 2.3: Typical Longitudinal force response at a fixed normal load. It should be noted that the
slip ratio can be greater than 1 during extreme tire slip, however, the slip ratio is very rarely less
than negative one as this would indicate a tire rolling in the opposite direction of the vehicle.

Figure 2.3 depicts the typical longitudinal response of a tire.

Lateral Response

In a similar fashion to the manner in which the longitudinal force was described, the lateral force

a tire develops increases with increasing tire deflection and slip. The torque applied by the driver

through the steering wheel causes the wheel to change its angle along an axis approximately per-

pendicular to the ground. The tire is now forced to follow a path that is not aligned with the forward

direction of the wheel, which causes a shear force in the lateral direction at the contact patch as the

tire rolls. The quantity of slip developed at the contact patch in the lateral direction is defined as

the slip angle. The slip angle is given as the angle between the wheel heading and the wheel path.

Figure 2.4 describes the slip angle more clearly. The slip angle is defined in equation (2.6)

tanα =−
Vy

Vx
(2.6)
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Figure 2.4: Slip angle definition.

where α is the slip angle, Vy is the lateral velocity, and Vx is the longitudinal velocity of the tire.

The lateral force developed by the tire, as a function of slip angle, increases steadily at low slip

angles, and begins to drop off as the limit of adhesion is approached. This somewhat gradual drop

off peaks as the majority of the contact patch reaches the limit of traction, then drops off to a steady

value as the slip angle increases further. Figure 2.5 depicts a typical tire’s lateral response.

Self-Aligning Torque

Along with the forces developed at the contact patch, a torque is also generated. This is typically

referred to as the self-aligning torque, or SAT, due to its tendency to realign the tire with the forward

direction. Both the longitudinal force and the lateral force contribute to the SAT; however, the lateral

force is far more dominant due to the center of pressure being located much further from the center

of the tire. The SAT is usually described in terms of the slip angle and not the slip ratio due to its
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Figure 2.5: Typical lateral force response at a fixed normal load.

significantly larger impact. The SAT is an important feature of the tire’s response since it contributes

to driver feedback through the steering wheel, helping inform the driver of the tire’s current state.

The SAT increases linearly with slip angle up to a peak, almost coinciding with the peak in

lateral force. After the peak, the SAT quickly drops off and tends toward a zero moment as the

center of lateral pressure approaches the center of the tire. To the driver, this will be interpreted as

a reduction of steering effort and will alert them to the impending limit of lateral force. Figure 2.6

depicts the typical SAT response of a tire.

Contact Patch Phenomena

The behaviour of the tire within the contact patch has very important consequences to the tire’s

overall response. As the tire rolls along the ground, it compresses from the applied loads. As the

material exits the contact area it expands. The energy released during expansion, however, is less

than the required energy for compression. This tends to move the center of normal pressure within

the contact patch forward of the center of the tire. The forward movement of the center of pressure
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Figure 2.6: Typical SAT response at a fixed normal load.

of the normal force generates a moment against the rolling direction of the tire, contributing to the

rolling resistance of the tire. Figure 2.7 depicts this effect.

In a similar fashion, the lateral force distribution within the contact patch changes as the slip

angle is increased. As slip builds from zero, the center of pressure migrates away from the center of

the tire. Once the tire begins to saturate and a greater portion of the tire is sliding along the ground,

the center of pressure migrates back towards the center of the tire. This phenomena is the largest

contributing factor for the behaviour observed in the self aligning torque response of the tire. The

distance between the center of the tire and the center of pressure for the lateral force is defined as

the pneumatic trail. This effect is described in Figure 2.8

State Sensitivity

The previous sections outlined how tire response varies with the quantity of slip, however, there

are several other parameters that affect the response of the tire. Variations in normal load, forward

speed, as well as camber angle also have an effect on tire response. Figure 2.9 shows a tire’s lateral
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Forward Direction

Normal Load Distribution

Resultant Normal load and offset

Figure 2.7: Normal load variation with applied torque.

response at various normal loads. Analyzing the figure, it can be seen that the lateral force a tire is

capable of developing increases with increasing normal load. However, it does not do so linearly.

Doubling the amount of normal load does not yield double the potential lateral force. It is due to

this phenomena that the over/under steer behaviour of a vehicle can be affected by variation of the

front and rear suspension roll stiffness distribution as mentioned in Section 2.1.1. The longitudinal

force capabilities of the tire follow a similar trend.

Other considerations that affect tire response, such as forward velocity and camber angle have

a much less dramatic effect on the tire’s response. Increased negative camber, to an extent, tends

to increase the lateral force capability of a tire through a phenomenon known as camber thrust. As

the tire is tilted inwards, the deformation of the tire tends to pull the tread underneath it thereby

increasing the contact patch area. However, increased negative camber tends to reduce the size of

the contact patch under braking and acceleration, and therefore reduces the tires ability to apply

force longitudinally.
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Figure 2.8: Pneumatic trail. Typical lateral force distribution within the contact patch. Reproduced
from Dressel [7].

2.2.3 Tire Modelling

Due to the highly non-linear nature of the tire, modelling its behaviour is quite difficult. Despite this,

many models exist, such as the Fiala model [9], the LuGre model [6], and the Dugoff model [8].

Although the method by which a tire can be modelled follows a continuum, there are typically

three main categories in their mathematical treatment: finite element modelling (FEA), analytical

modelling, and empirical modelling.

Tire designers use FEA models in order to better understand how the tire behaves prior to the

production of the tire itself. An accurate FEA model is both very time consuming to produce and

resource intensive to complete. It also requires the use of accurate material models. Since the tire

is a composite structure featuring non-linear materials such as rubber, material modelling alone is

quite challenging.

Empirical tire models use testing equipment in order to map the tire response under many differ-

ent configurations. The data is then used to develop curve fits and interpolation is used to estimate
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Figure 2.9: Lateral force response at various loads.

tire behaviour outside of the tested conditions. One of the most well known empirical tire models

is the Pacejka [19], or ‘magic tire model’. While empirical models give excellent results, as far as

accuracy, the cost of fitting a specific tire to a model, such as the Pacejka model, is quite significant.

Furthermore, they provide little, if any, insight as to what design aspect of the tire is responsible for

the observed behaviour.

Analytical tire models attempt to predict tire behaviour through the analysis of a simpler rep-

resentative dynamic system. Though this is likely the least utilized method of modelling a tire, it

has some advantages over the previously discussed approaches. First, one analytical model should

be capable of describing the behaviour of any tire, while FEA and empirical models only give in-

formation about the specific construction being analyzed. Secondly, parameterization of the tire

theoretically should not require a full scale empirical test of the direct dynamic response of the

tire. Unfortunately, the majority of analytical models encountered during this research used full

scale dynamic testing and regression analysis to fit the developed model to the results measured.

This undermines the significance of the model and there is no longer any guarantee the estimated
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parameters from the regression analysis match the intended physical meaning.

To further contrast the difference between empirical and analytical modelling, an example of

each will be given. First, the empirically based Pacejka tire model will be introduced. As stated

earlier, this is the most utilized method and is more or less the industry standard for tire modelling.

Next an analytical model known as the Cornering Force/Self-Aligning Torque Model (CF/SAT) will

be introduced.

Pacejka Model

The Pacejka tire model uses empirically derived data to develop a series of coefficients representing

the tire’s response. The model is referred to as the ‘magic tire model‘ because, while it has no

physical basis for its form, it accurately predicts tire behaviour for a wide range of tire types and

constructions. The Pacejka model has received wide adoption, not only because it is fairly accurate,

but it is relatively simple to construct and allows for very fast estimation of tire response. One major

drawback of the approach is the requirement of a fairly substantial dataset of dynamic tire response

for each individual tire construction to be modelled.

The formulation for this model is given in equation (2.7),

y(x) = D · sin{C arctan [(1−E)x+E · arctan(Bx)]} (2.7)

where y is the force or moment generated, x is the slip quantity, B is the Stiffness factor, C is the

Shape factor, D is the Peak factor, and E is the Curvature factor. Each of these factors are determined

through analysis of the collected dataset. It should be noted that these factors are each functions of

both normal load and camber angle. For more information on this method, please see [19].

CF/SAT

The CF/SAT model is an analytical model based on the Fiala tire model. The system is represented

by a wheel assumed to behave as a rigid ring and the sidewall as a spring connecting the belts and



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

Figure 2.10: CF/SAT block diagram. Reproduced from Miyashita and Kabe[17]

tread to the wheel. The belts and tread are allowed to deform in plane based on the shear force Fy

and out of plane by a rotation caused by the self aligning torque Mz. These deflections are caused by

the generation of force by the tire. In turn the deflection of the tire affects the generation of force,

and so a feedback loop is introduced, allowing the deflection caused by the generation of force to

affect its own ability to further generate force. A block diagram outlining the various steps the

model uses is shown in Figure 2.10. The governing equations of the model are given in Table 2.1.

For a description of the variables used in the model, please refer to the notation section. For a more

complete description of this model, please see Miyashita and Kabe [17].

The contact pressure distribution is estimated using a skew parabolic function. This is shown in

equation (2.8),

Dgsp(t;n,q) = (1−|2t−1|n)[1−q(2t−1)] (2.8)

where Dgsp is the generalized skew parabola, t is the independent variable, in this case length

along the contact patch, n is the shoulder coefficient, and q is the circumferential asymmetric co-

efficient. As n increases, the pressure distribution tends to flatten out around the midpoint. As q

increases, the pressure distribution tends to adjust rearward. This assumption represents the pres-

sure distribution well, and the model adjusts the backward shift of the contact patch as a function

of the SAT. The model, however, does not determine the shoulder exponent from the physical tire,
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Table 2.1: Governing equations of the CF/SAT model.

Model component Expression

Slip angle correction ae = a− Mz
Gmz

Circumferential asymmetry co-
efficient for pressure distribution
within contact patch

q =CqMz

Location of steering axis within
contact patch

xc =
l
2 −

ζMz
l

Adhesion to sliding mode defini-
tion

2ky0

(
lh
l

)[
tanae− εlFy

(
1− lh

l

)]
=

n+1
n

µsFzDgsp

(
lh
l

;n,q
)

Lateral force output
Fy(a) = 2ky0

∫ lh
l

0
[t tanae− εlFy (1− t)]dt

+
n+1

n
µdFz

∫ l

lh
l

[Dgsp(t;n,q)]dt

Aligning moment output
Mz(a) = 12As0

∫ lh
l

0
[t tanae− εlFy (1− t)]

(
t− xc

l

)
dt

+
n+1

n
µdFz

∫ l

lh
l

[
Dgsp(t;n,q)+Ax0

lh
l

tanae

]
dt
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which is a shortcoming of this model.

2.3 Scale Modelling

Scale modelling is a technique that is highly utilized in the aerospace and marine industries due to

the prohibitively high cost of constructing prototypes. While it is much less expensive to build a

prototype ground vehicle, OEMs, motorsports, and academia alike can benefit from doing at least

preliminary physical vehicle studies at a scale level. In order to develop and better understand the

state of the art of scale vehicle modelling, the principle that allows for dynamic scale modelling,

known as Buckingham Pi theory, must be introduced. Once this is accomplished, some of the

current research in scale vehicle modelling will be discussed.

2.3.1 Buckingham-Pi

Through the use of dimensional analysis, a dynamic system can be redefined in terms of a series of

non-dimensional parameters describing the behaviour of the system. Buckingham-Pi theory [3] is

the method by which this non-dimensionalization is accomplished. There are two direct benefits to

this approach. One is that the variable space that defines the system’s behaviour is reduced. The

other is that it allows for direct comparison of two dynamic systems that are governed by the same

parameters, but are on vastly different scales.

The theory is based on the concept of dimensional homogeneity. If there is a physically mean-

ingful function such that

f (q1,q2, ....,qn) = 0 (2.9)

where qn represents a physical variable that affects the system, and these variables can be repre-

sented in terms of j independent physical units, such as mass, length, time, then the same system

may be represented in k = N− j non-dimensional terms, where each non-dimensional term is de-
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scribed by equation (2.10).

πi = qa1
1 qa2

2 ...qan
n (2.10)

The application of this stems from the concept of similitude. If the response of multiple systems

on different scales can be defined by the same πi, then the systems are said to be similar. If two

dynamic systems have the same value for each of the pi parameters then similitude between the two

systems is guaranteed. It is very important that all the pi parameters be matched, otherwise the scale

system will have a response that may not match the full size system’s response in some manners.

To better understand how to use this theory, an example system will be non-dimensionalized.

The dynamic system analyzed will be that of an object falling through empty space under the influ-

ence of a gravitational field.

The first step is to identify each parameter that affects the dynamic response of the system. In

this case the objects height, z, is a function of the elapsed time, t, the initial height, z0, the initial

velocity, w0, and the gravitational acceleration of the field, g.

z = f (t,z0,w0,g) (2.11)

The next step is to list the primary dimensions of each of the parameters. The results are shown

below in equation (2.12).

z = {L1
n}, t = {t1}, z0 = {L1

n}, w0 = {L1
nt−1}, g = {L1

nt−2} (2.12)

The third step is to select the number of repeating parameters. The number of repeating param-

eters should match the number of primary dimensions that exist within the system. In this case there

are two primary dimensions, time and length. The number of non-dimensional parameters, k, we

should expect is equal to the number of parameters, N, minus the number of primary dimensions, j.

N = 5, j = 2, k = N− j = 3 (2.13)
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The fourth step is to select the repeating parameters to use to non-dimensionalize the remain-

ing parameters. This choice is ultimately up to the analyst, but there are some guidelines. First

the repeating parameters must encompass all of the primary dimensions used in the system. Also,

the dependent variable is a poor selection as it will show up in each of the non-dimensional pa-

rameters, making analysis very cumbersome. If interested, please consult Çengal [4] for additional

suggestions. For this example the initial height, z0, and the initial velocity, w0, were selected.

The final step is to form the non-dimensional parameters by combining the repeating parameters

as products with the remaining parameters such that the primary dimensions are eliminated. These

parameters are sometimes also referred to as pi parameters. In this example the resultant pi groups

are,

π1 =
z
z0

π2 =
w0t
z0

π3 =
gz0

w2
0

(2.14)

For comparison purposes, the dimensional equation of motion for this system is given as,

z =
g
2

t2 +w0t + z0 (2.15)

and the non-dimensional equation of motion is defined as,

π1 =
π2

2π3

2
+π2 +1 (2.16)

The two equations are equivalent to each other, however, the non-dimensional equation allows for

the direct comparison of the response of two systems on different scales. The equivalency of these

two equations can be proven by replacing the pi parameters in equation (2.16) with their definitions

in equation (2.14) and multiplying through by z0. When this is done the result in equation (2.15) is

obtained.

It is this theory that allows for the direct comparison of two similar dynamic systems of different

scale. The next section will introduce some examples of current research into the application of this

theory to scale vehicle modelling.
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Table 2.2: Pi parameters for the IRS scale vehicle model [2]. For variable definitions, please refer
to the notation section.

Parameter π1 π2 π3 π4 π5 π6 π7

Expression a
L

b
L

R
L

Cα f L
mU2

CαrL
mU2

Iz
mL2

T
mU2

2.3.2 Scale Vehicles

The Illinois Roadway Simulator (IRS) at the University of Urbana-Champaign is one example of the

current research being conducted in scale vehicle modelling. The scale vehicle for the IRS is based

on the linear bicycle model described in section 2.1.1. The parameters for the bicycle model were

non-dimensionalized using Buckingham Pi theory and a scale vehicle was constructed to match

the dynamic performance of a full size vehicle. The non-dimensional bicycle model parameters

used in this study are shown in Table 2.2. For vehicle state feedback, the IRS, which is shown

in Figure 2.11, utilizes a sensing arm featuring three revolute joints. The sensing arm is capable

of measuring vehicle motion along the planar principal axes, as well as the vehicle’s roll, pitch,

and yaw angles. Due to the tire design and small width of the track, the vehicle was limited to

non-aggressive manoeuvres within the linear region of tire response in order to maintain dynamic

similitude. Though limited, this study successfully demonstrated the ability to use scale vehicles for

the testing of full scale vehicle dynamics [14].

The Pennsylvania State University Rolling Roadway Simulator, (PURRS), is a similar, but more

advanced, scale vehicle than the IRS described earlier. This scale vehicle is also based on the linear

bicycle model, with the addition of vehicle roll dynamics into the model. This increases the fi-

delity of the model and results in greater similitude between the full and scale vehicles. This model

was again non-dimensionalized using the procedure described in section 2.3.1. The resultant non-

dimensional parameters for the model are shown in Table 2.3. While the state feedback system was

almost identical to the one developed by the University of Urbana-Champaign, it allowed addition-

ally for the inclination of the road surface both in the pitch and roll directions. This allowed for a

much greater range of test conditions. The scale vehicle itself was developed using pi parameters
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Figure 2.11: The Illinois Roadway Simulator. Reproduced from Liburdi [14]

that matched a 1992 Mercury Tracer. Testing accomplished with this testbed showed that there was

good correlation between the scale and full size vehicles at low frequency inputs, but high error

at high frequency inputs. This was attributed to the use of solid rubber tires on the test platform,

reducing the effect of tire lag dynamics in the scale model [14].

2.3.3 Scale Tires

While the current work in scale vehicles allows for good correlation at low slip angle and input

frequencies, the real benefit of scale vehicle testing is realized within the non-linear regime of

tire response. In order to accomplish this, a tire that is scaled independently from the vehicle is

necessary. Currently the only known research accomplished to this end was done by Polley [20] at

the University of Urbana-Champaign.

Polley developed a small scale tire flat track test machine, shown in Figure 2.12, with the in-

tention of testing the response of existing pneumatic radio controlled (RC) application tires. The
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Table 2.3: Pi parameters for the PURRS system [13]. For variable definitions, please refer to the
notation section.

Parameter Expression Parameter Expression

π1
a
L π9

Iyy
mL2

π2
b
L π10

ms
m

π3
Cα f L
mU2 π11

hs
L

π4
CαrL
mU2 π12

Ixzs
mL2

π5
Izz

mL2 π13
Ixxs
mL2

π6
h
L π14

Kφ

mU2

π7
t
L π15

Dφ

mU2

π8
Ixx

mL2
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Figure 2.12: University of Urbana-Champaign Scale Tire Tester. Reproduced from Liburdi [14]

only pneumatic tire found at that scale was the Dubro RC model aircraft tire. Using the developed

testing machine, a dataset for the tire was collected and fit with a magic tire model. The results

demonstrated that the lateral and aligning moment responses were similar to that of a full scale tire;

however, a good set of longitudinal response data was unable to be collected due to excessive tire

wear. An example of the lateral force response results is shown in Figure 2.13.

Although the curve shapes for this small scale tire were similar to that of a full scale tire, this tire

is not appropriate for use in scale modelling. Using the collected data, Polley attempted to design

a scale vehicle around the available scale tire. This resulted in a scale vehicle mass far exceeding

the load capability of the tire. In order to build the scale vehicle, some of the non-dimensional

parameters between the full and scale vehicles did not match. This results in non-similarity between

the scale vehicle and the full size vehicle.

In order to accurately capture the full range of vehicle response in a scale vehicle, the tire must

be scaled independently from the vehicle. The research conducted in the foregoing sections was

accomplished as a means to this end.
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Figure 2.13: Lateral force response of DU-BRO 5.00 T.V.



Chapter 3

Scale Tire Modelling

In order to properly evaluate the performance characteristics required of a scale tire for use in vehicle

dynamics, it must be capable of being defined by a mathematical model in terms of physically

significant properties. This is mandatory to both assess the performance of the full size tire of

interest, and provide a basis to non-dimensionalize the parameters for comparison of the full and

scale tires. This requirement mandates that an analytical type model, as described in Section 2.2.3,

is selected. While many of these types of models exist, one model, the CF/SAT model, lends itself

quite well to this application.

3.1 CF/SAT model

The CF/SAT model was selected for several reasons. The parameters within the model that define

tire performance, shown in Table 3.1, are based on real physical tire characteristics. There are some

caveats to this statement, the details of which will be discussed in the subsequent section. The model

was also selected because it only attempts to predict lateral force and self-aligning torque, reducing

the set of parameters required to define a tire when compared with other models. This is desirable

as a first attempt approach due to the highly complicated nature of tire response.

The ability of a tire to generate force in any one component direction is directly coupled with

30
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Fy

Fx

Lines of constant slip angle

Absolute traction limit

Figure 3.1: Tire friction ellipse. The friction ellipse represents the range space of a tire’s force
generation capabilities. The axes represent pure slip in the component directions. The absolute
traction limit, represented by the outer most ring, shrinks and enlarges with changes in normal
load. The inner lines represent tire force generation at a constant slip angle. The ability of a tire to
generate force in a component direction is enhanced or mitigated by the combined load placed on
the tire.

the force currently being generated in the opposing direction. This effect is outlined in Figure 3.1.

While this model, and subsequently the approach presented as a whole, do not take this effect into

account, the results are still very beneficial and give insight into the mechanisms within the tire

that cause the observed behaviour. There are other nuances of this model, however, that present a

challenge when applied to scale modelling.
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Table 3.1: CF/SAT model parameters [17].

Parameter Description

w(m) Width of the contact patch

R0(m) Unladen tire radius

l(m) Length of the contact patch

n
Shoulder coefficient for the skew
parabolic function

Cy
(kN

m3

) Lateral spring constant of tread
element

ε
( 1

kN m

)
Belt deflection compliance

Cq
( 1

kN m

) Compliance of front inclination
in contact pressure

ζ
( m

kN

)
Contact-patch shift compliance

Ax0(kN m)
Self-aligning torque stiffness of
a rigid ring model from longitu-
dinal force

EIz(kN m2) Bending rigidity of the belt

µs Static coefficient of friction

µd Dynamic coefficient of friction

Fz(kN) Normal load on the tire

Fy(kN) Lateral force output

Mz(kN m) Aligning moment output
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3.1.1 Model Caveats and Shortcomings

While the CF/SAT does provide a good starting point for dimensional analysis, there are several

shortcomings that make its use for this application a challenge. These issues and the manner in

which they were treated will be discussed in the following sections.

Contact Patch Length

As shown in Table 3.1, the CF/SAT model requires the analyst to give the model the length of the

contact patch. This is a challenge not only because it is difficult to measure directly, but it is also

changing with tire load. As an improvement to the model a relationship was developed relating the

overall vertical stiffness, Cz, and normal load, Fz, with the laden and unladen radius, Re,and R0, of

the tire. This information is then used to determine the contact patch length, l, in the relationship

given in equation (3.1)

Re = R0−
Fz

Cz

l = 2
√

R2
0−R2

e

(3.1)

This model of the contact patch length assumes that the contact patch only expands in length,

and not width, as the tire is loaded. The results obtained in Chapter 5 suggest the error introduced

by this assumption are insignificant for the purposes of this approach. Figure 3.2 depicts the contact

patch length model.

Normal Load Distribution

Determining the contact pressure distribution within the contact patch is a difficult problem to deal

with both analytically and empirically. While there are methods of measuring the distribution using

commercial products, these are generally for static pressure distributions and do not help clarify

what is happening dynamically.
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Re
R0

l = 2
√

R2
0−R2

e

Figure 3.2: Estimation of contact patch length.Visual representation of contact patch length inter-
pretation.

Finding an analytically method by which to determine the pressure distribution is a challeng-

ing issue due to variations between tire constructions, and surface effects. As a result of these

challenges, Miyashita and Kabe use the general skew parabolic function to estimate the contact

pressure distribution. This assumption is a significant improvement over the more commonly used

quadratic parabola function as it allows for the forward inclination and backwards shift of the con-

tact patch [17]. Figure 3.3 depicts the function and describes its use as an estimate for contact

pressure distribution of a tire.

While this assumption may match the contact profile of the tire quite well, it does not de-

scribe what physical characteristics are responsible for the observed behaviour. The two parameters

associated with the pressure distribution in the model are the shoulder coefficient, n and the cir-

cumferential asymmetric coefficient, q. The authors define q in terms of the self-aligning torque

being generated; however, n is left undefined in terms of the tire’s physical properties, making non-

dimensionalization of this parameter for a specific tire impossible. To deal with this, optimally, an

analytical relationship between the tire’s physical parameters and the behaviour of the contact patch

pressure distribution could be found; however, this topic is beyond the scope of this work. As a
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Figure 3.3: Generalized skew parabolic function description[17].(a) Describes the forward inclina-
tion of the contact pressure distribution. (b) Depicts the effect of variation of the shoulder coefficient
and the circumferential asymmetric coefficient. Reproduced from Miyashita and Kabe [17]

result the shoulder coefficient was determined through regression analysis, as done by Miyashita

and Kabe, in order to carry on with the study.

3.2 Model Verification and Non-Dimensionalization

The first step taken in the development of an appropriate non-dimensional scale tire model was to

verify the results of the CF/SAT model. MATLAB® was used to evaluate the findings of Miyashita

and Kabe. The MATLAB® M-code developed for this model is given in appendix A.

3.2.1 Model Output Comparison

To ensure that the MATLAB® model developed matches the behaviour of the model as described by

Miyashita and Kabe, the output of the developed model was compared to the results provided in the

literature. The tire parameters used for each of the comparison results are given in Table 3.2. The

comparison results are outlined in Figures 3.4 - 3.6.
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Table 3.2: Model verification parameters The model output results from the literature use these
parameters. These results were compared with the output of the developed MATLAB® model.
1 No value was reported for these parameters. As a result, an estimate was made using values
reported in other sections of the literature.
2 The model typically defines Ky0 in terms of the length and width of the contact patch, as well as
the lateral spring constant of a tread element. However, in the regression analysis in the literature,
direct estimates of Ky0 were reported. As a result, for this comparison, the value of Ky0 was used
directly instead of the relationship previously defined.

Parameter Case A Case B Case C

w(m) 0.205 0.205 0.205

R0(m) 0.31595 0.31595 0.31595

l(m) 0.0902 0.116 0.155

n 9.28 9.34 18.1

C(1)
y
(kN

m3

)
6.47x10−4 8.02x10−4 6.7x10−4

Ky(2)0 (kN) 54.7 111 177

Ax(1)0 (kN m) 0 0 −0.38

ε(1) 5.78x10−2 5.78x10−2 5.78x10−2

Cq
( 1

kN m

)
18.6 4.27 1.03

ζ
( m

kN

)
1.35x10−2 1.78x10−2 1.67x10−2

EI(1)z (kN m2) 1.17 1.17 1.17

µs 1.93 1.62 1.24

µd 1.07 1.06 1.03

Fz(kN) 2.28 3.98 5.69



CHAPTER 3. SCALE TIRE MODELLING 37

To compare the models, results for three different loading conditions on the same tire were used,

as provided in Miyashita and Kabe [17]. The tire used for this study was a 205/55R16 of unknown

make and model. As described earlier, the authors used regression analysis to fit the CF/SAT model

to the empirical data gathered. The results of the fitting procedure were outlined in the literature and

were used as the input to the MATLAB® model created for this study. Four of the parameters required

for input to the model, however, were not provided. As a result, the parameter values were estimated

from a previously published paper by the same authors [16], as well as through regression analysis.

For case A and B only the lateral spring constant of a tread element, Cy, required modification to

match the results found in the literature. Case C further required the Ax0 parameter to be fit due to the

influence of longitudinal force on the self-aligning torque. This influence is outlined in Figure 3.9c.

The regression analysis required for Cy and Ax0 was accomplished through a manual fitting

procedure. Through careful inspection of Figures 3.4 - 3.6 a small discrepancy between the results

can be observed. This is most easily visualized through inspection of the composite of the two

results. This discrepancy was determined to be solely a result of an incomplete data set provided

in the literature. As a result, the MATLAB® model created was assessed to accurately represent the

model portrayed in the literature.
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(a) Literature results (b) MATLAB® model results (c) Composite of results

Figure 3.4: CF/SAT model comparison of literature and MATLAB®lateral tire force response results
for case A.

(a) Literature results (b) MATLAB® model results (c) Composite of results

Figure 3.5: CF/SAT model comparison of literature and MATLAB®lateral tire force response results
for case B.

(a) Literature results (b) MATLAB® model results (c) Composite of results

Figure 3.6: CF/SAT model comparison of literature and MATLAB®lateral tire force response results
for case C.
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(a) Literature results (b) MATLAB® model results (c) Composite of results

Figure 3.7: CF/SAT model comparison of literature and MATLAB®aligning torque response results
for case A.

(a) Literature results (b) MATLAB® model results (c) Composite of results

Figure 3.8: CF/SAT model comparison of literature and MATLAB®aligning torque response results
for case B.

(a) Literature results (b) MATLAB® model results (c) Composite of results

Figure 3.9: CF/SAT model comparison of literature and MATLAB®aligning torque response results
for case C.
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3.2.2 Model Sensitivity Analysis

Due to the large number and the complexity of the parameters within the model, some use of regres-

sion analysis is unavoidable. In order to better understand the relationship between each of the input

parameters and the output of the model, a sensitivity analysis was completed. Case B parameters

from the previous analysis were utilized as reference parameters. Each of these values were then

adjusted independently to analyse their effect on the system response. Figures 3.10 - 3.12 show the

results of this analysis.

Inspection of Figures 3.10a - 3.11b show the model is relatively insensitive to parameters Cq, ε,

and EIz in terms of both lateral force and aligning torque response. Furthermore, the model shows

relative insensitivity to n and ζ in lateral force response, as can be seen in Figures 3.12c and 3.12e.

It should be noted that Figure 3.11d indicates numerical instability of the model as the contact patch

becomes too low. This information will be used in Section 3.3.1 to estimate CF/SAT parameters for

the DU-BRO RC airplane tire used in Polley’s study.
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(a) Cq Lateral force sensitivity analysis. (b) Cq Aligning moment sensitivity analysis.

(c) Cy Lateral force sensitivity analysis. (d) Cy Aligning moment sensitivity analysis.

(e) ε Lateral force sensitivity analysis. (f) ε Aligning moment sensitivity analysis.

Figure 3.10: CF/SAT model parameter sensitivity analysis part I
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(a) EIz Lateral force sensitivity analysis. (b) EIz Aligning moment sensitivity analysis.

(c) l Lateral force sensitivity analysis. (d) l Aligning moment sensitivity analysis.

(e) µd Lateral force sensitivity analysis. (f) µd Aligning moment sensitivity analysis.

Figure 3.11: CF/SAT model parameter sensitivity analysis part II
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(a) µs Lateral force sensitivity analysis. (b) µs Aligning moment sensitivity analysis.

(c) n Lateral force sensitivity analysis. (d) n Aligning moment sensitivity analysis.

(e) ζ Lateral force sensitivity analysis. (f) ζ Lateral force sensitivity analysis.

Figure 3.12: CF/SAT model parameter sensitivity analysis part III
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3.2.3 Non-Dimensionalization

Once the CF/SAT model had been verified and some of the shortcomings of the model had been

addressed, the model was non-dimensionalized using the technique presented in 2.3.1. The normal

load on the tire and the unladen radius of the tire were selected as repeating parameters. Assuming

the analyst would desire to apply this tire to an existing scale vehicle, these parameters would give

the analyst the greatest control over the scale and load bearing capability of the scale tire. With the

repeating parameters selected, the remaining thirteen parameters were non-dimensionalized to give

the non-dimensional CF/SAT model. The pi parameters for this model are outlined in Table 3.3.

The goal of this research is to allow for physical verification of vehicle dynamics in a fast and

cost effective manner. If the analyst knows the values for each of the parameters of the CF/SAT

model, then the required values for a scale tire can be determined using the pi parameters outlined

in Table 3.3. For example, suppose an analyst has determined π6 to have a value of 635.55 for the

full size tire of interest. Since the pi parameters for both the full and scale tires must match for

dynamic simultude, then to determine the required value for the scale vehicle’s Cy, equation (3.2)

needs to be evaluated. This is accomplished by selecting the desired unladen radius and load of the

scale tire. To determine the remaining required parameters, the same analysis is simply repeated for

each of the parameters at the selected normal load and unladen radius.

[
CyR3

0
Fz

]
f ull

= 635.55 =

[
CyR3

0
Fz

]
scale

(3.2)

While the ability to determine the required parameters of a scale tire is an excellent and necessary

step towards a successful scale vehicle testbed, the information is meaningless without the ability to

both determine the CF/SAT parameters of the full size tire in a cost effective manner, and correlate

these parameters to the scale tire’s physical construction. The remainder of this thesis is dedicated

to a solution to the first of these two requirements.
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Table 3.3: Pi parameters for the Non-dimensional CF/SAT model

Parameter Expression Parameter Expression

π1
Fy
Fz

π9 CqFzR0

π2
Mz

FzR0
π10

ζFz
R0

π3
w
r0

π11
Ax0
FzRo

π4 µs π12 n

π5 µd π13
CzR0

Fz

π6
CyR3

0
Fz

π7 εFzR0

π8
EIz

FzR2
0

3.3 Parameterization

One of the largest challenges to analytical modelling is the method by which the tire is parame-

terized. In order to preserve the utility of the approach presented, the physical parameters, which

define tire response within the model, must be easily obtained. Unfortunately, in the work done by

Miyashita and Kabe [17], the tire was parameterized through regression analysis performed on a set

of empirical data obtained through dynamic tire testing on an MTS Flat-Trac® tire testing system.

The cost associated with this method is prohibitively expensive, negating much of the benefit of

performing scale vehicle testing. Furthermore, fitting a model to empirically derived data results in

physical tire parameters that may no longer represent their intended meaning due to a multiplicity

of inputs for a unique output. Figure 3.13 illustrates this more clearly. In order to ensure that the

estimated tire parameters match the physical tire’s characteristics, the number of parameters that
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CF/SAT model

Model input

Model output

Parameters based on
regression analysis

Parameters based on
physical tire properties

Figure 3.13: Duplication of output for multiple inputs. The circle and triangle represent different
sets of input data to the CF/SAT model. One based on regression analysis and the other on the actual
physical tire properties each parameter is intended to represent. The range space of the model is
such that it is possible to reach the same result with multiple input configurations, however, the real
tire can only be represented by one.

require regression analysis need to be reduced. Some form of empirical testing is a requirement

for parameterization of a tire. Testing every tire individually in a full dynamic study, however, is

impractical and results in very little applicability between tire constructions. It stands to reason

that tire response is fundamentally determined by the manner in which the tire deforms. Due to

this, the approach taken in this study was to perform a series of static load deflection tests on a

tire and attempt to find a relationship between the tests performed and the parameters required for

the CF/SAT model. Optimally, a consistent relationship between the load deflection tests and each

of the CF/SAT parameters could be determined with some confidence such that future tire studies

would no longer require verification through full scale dynamic studies.

To determine any relationships between static load tests and tire response, both a set of deflection

curves and results of a full scale dynamic study are required. Due to the cost associated with full

scale dynamic testing of tires, the results are typically highly guarded by the customer of such

services. Furthermore, the construction of a machine to statically test a full size tire would come
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at quite an expense. In keeping with the nature of the study, it was decided that attempting to find

these results in a scale tire would be a cost effective and equally valid approach for a first attempt.

Dynamic testing data was obtainable for the DU-BRO RC airplane tire through the study done by

Polley [20]. Initial estimates for the CF/SAT model parameters for this tire were made using the

data through regression analysis. The information discussed in Section 3.2.2 was also used to aid

in the fitting analysis that will be discussed in Section 3.3.1. Static load data was obtained from a

purpose built load testing machine. The development of this machine is outlined in Chapter 4. The

results of this testing, as well as the relationships between these results and the CF/SAT parameters

discovered are outlined in Chapter 5.

3.3.1 DU-BRO CF/SAT Model Parameter Estimation

Using the data provided by Polley, a set of CF/SAT parameters were estimated through the use of

regression analyses. This was a necessary step to compare pure regression techniques to load deflec-

tion relationships in their ability to parameterize a tire for the CF/SAT model. The first challenge to

overcome is to find a reasonable estimate for the initial values for each of the parameters. This was

accomplished by using the non-dimensional relationships found earlier and the full scale CF/SAT

parameters from Miyashita and Kabe.

First the free radius of the tire was measured, and empirical data from Polley was gathered at

each normal load desired. Once this was achieved, the pi parameters for the CF/SAT model were

calculated using the full scale tire parameters. With this information, the initial parameters for the

DU-BRO RC airplane tire were estimated using the technique described in Section 3.2.3. Table 3.4

shows the resulting pi parameter values for the full scale tire, as well as the initial estimate for the

DU-BRO CF/SAT model parameters.

The CF/SAT model was then fit to the results obtained by Polley through a manual curve fitting

procedure. In order to simplify the analysis the curve fitting was limited to modification of the

shoulder coefficient, n, vertical tire stiffness, Cz, the lateral stiffness of a tread element, Cy, and
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Table 3.4: Full size tire pi parameter values and initial CF/SAT model parameter estimates for the
DU-BRO tire.

Pi Parameter Result DU-BRO Parameter Result

w
R0

0.6488 w 0.0225

µs 1.62 µs 1.3

µd 1.06 µd 1.06

CyR3
0

Fz
635.5451 Cy 1.7375x105

εFzR0 0.0727 ε 16.3515

EIz
FzR2

0
2.9449 EIz 8.312x10−4

CqFzR0 5.3694 Cq 1.208x103

ζFz
R0

0.2242 ζ 0.2032

Ax0
FzR0

0 Ax0 0

n 9.34 n 9.34

CzR0
Fz

34.482 Cz 38.022
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Table 3.5: Resultant CF/SAT parameters from manual curve fitting for the DU-BRO 5.00 T.V. tire.

Parameter Normal load

70N 50N 30N 20N

w 0.0225 0.0225 0.0225 0.0225

µs 1.3 1.3 1.3 1.3

µd 1.05 1.08 1.17 1.25

Cy 8.6875x104 6.6397x104 5.4731x104 4.7161x104

ε 16.3515 22.8921 38.1535 57.2302

EIz 8.312x10−4 5.9372x10−4 3.5623x10−4 2.3749x10−4

Cq 1.208x103 1.6912x103 2.8186x103 4.2279x103

ζ 0.2034 0.2848 0.4746 0.7119

Ax0 0 0 0 0

n 2.2 3.8 4.5 4.5

Cz 71.942 42.553 23.310 13.928

the dynamic coefficient of friction, µd . The tire width, w, free radius, Ro, normal load, Fz, and

the static coefficient of friction, µs were either directly measured from the tire or estimated from

the research done by Polley. The remaining parameters were left unmodified from the original

dimensional analysis due to the relative insensitivity of the model to these parameters, as outlined

in Section 3.2.2. Table 3.5 gives the resulting parameters of the curve fitting analysis. The results

obtained from the fitting procedure are compared to the results obtained by Polley in Section 5.3.



Chapter 4

The Windsor Automotive Tire Tester

The need to evaluate the performance characteristics of a tire is mandatory for all varieties of tire

modelling. This research aims to develop a method to assess tire performance in terms of the

parameters required for use of the CF/SAT model. Since the goal of this research is to develop scale

tires, the need for a cost effective solution is even more imperative than for full scale tire research.

The approach taken was to collect a series of static load deflection curves to determine relationships

between this data and the parameters for the CF/SAT model. To accomplish this, a custom testing

apparatus entitled the Windsor Automotive Tire Tester (WATT) was developed. Section 4.1 outlines

the design and construction of the WATT, Section 4.2 details the sensor and electronic design, and

Section 4.3 describes the calibration and test process as well as the performance capabilities of the

apparatus.

4.1 Mechanical Design

The WATT is a 2-axis load deflection testing apparatus that was used to collect vertical and lateral

deflection data of the DU-BRO T.V. series of tires. The complete assembly is depicted in Figure 4.1.

The system is comprised of six main components; the frame, lateral load sensing block, lateral

carrier block, vertical load sensing block, vertical carrier block, and the tire fork. Each component

50
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Figure 4.1: WATT CAD assembly. Final CAD design of the Windsor Automotive Tire Tester. All
design work was completed in CATIA®.

performs a specific function to allow the determination of the loads on the tire with minimal error.

4.1.1 Frame

The frame’s primary function is to hold the assembly together and provide a test surface for the

testing apparatus. The base and stanchions of the frame are comprised of hardened 1020 steel due

to its low cost and hardness. The base plate features a slot with which to locate the stanchions

accurately and increase their bending rigidity. The alignment of the stanchions is critical to prevent

binding of the carrier assemblies. The frame must be very stiff in order to prevent deflection of the

test assembly, which would cause error in the measurements taken. Four guide rods are pressed into

the frame to support the lateral load sensing block and the lateral carrier block. An acme thread

drive screw and nut are located on the right stanchion to allow the analyst to control the lateral

displacement of the tire during testing. This feature can be seen in Figure 4.5.
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Figure 4.2: WATT lateral load sensing block. The load cells are placed in series with the load screw
to allow direct measurement of the lateral force exerted on the tire.

4.1.2 Lateral Load Sensing Block

The lateral load sensing block features a strain gauge type load sensor for force measurement along

the lateral axis of the testing apparatus. These sensors are discussed in greater detail in Section 4.2.

This component additionally features 4 LM10UU linear bearings to allow for motion along the

lateral access with minimal friction. These bearings are a mandatory feature of this system in order

to minimize the effect of friction on the measurements taken. This block is driven into the lateral

carrier block to cause deflection in the tire along this axis. This component is depicted in Figure 4.2.

4.1.3 Lateral Carrier Block

The lateral carrier block’s primary purpose is to support the entire vertical assembly, as well as

transfer the load placed on the lateral sensing block to the tire. This component also features six

LM10UU linear bearings to reduce friction within the assembly. This block and the remaining

components are comprised of 6061 T6 aluminium due to its reduced weight over steel components
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Figure 4.3: WATT vertical load sensing block. The two load cells in the figure are placed in line
with the load placed by the drive screw, allowing direct measurement of the applied vertical tire
load.

and relatively low cost. An Acme thread drive screw and nut are also located in this component to

allow the analyst to control the vertical load and deflection of the tire during testing.

4.1.4 Vertical Load Sensing Block

In similar fashion to the lateral load sensing block, this component is intended to measure the verti-

cal load on the tire in the assembly. It features two linear bearings and a load sensor to accomplish

this task. These features can be seen in Figure 4.3 The block is driven into the vertical carrier block

to measure the additional load placed on the tire in the normal direction. While it is possible to

place zero lateral load on the test tire, due to the design of the machine, the minimum load that can

be achieved vertically is equivalent to the weight of this and all the remaining components. This

weight amounts to a minimum normal load of 19.5 N.



CHAPTER 4. THE WINDSOR AUTOMOTIVE TIRE TESTER 54

Figure 4.4: WATT wheel fork assembly.

4.1.5 Vertical Carrier Block

The vertical carrier block’s primary purpose is to support the entire vertical axis and transfer both

the vertical and lateral loads to the tire. The block features two steel rods to support these functions.

These rods are press fit into the block. The block also features a counter sunk hole to allow a 10mm

bolt to be used to mount the fork and wheel assembly to the testing apparatus.

4.1.6 Tire Fork Assembly

The fork assembly, shown in Figure 4.4, has the primary task of supporting and transferring loads to

the tire. A 6mm steel rod is used as an axle for the wheel and the tire is centred along the axle through

the use of bushings. A hole through the center of the fork is used to mount the fork to the vertical

carrier block. The fork also features a ring on the top surface to locate a needle thrust bearing. This

feature will allow the fork to rotate along the vertical axis, allowing for easier modification of the

WATT in future applications when a moment sensing system has been developed.
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Figure 4.5: WATT final assembly

4.2 Electronic Design

The complete electronic package is comprised of three main subsystems that were utilized to mea-

sure and record the loads placed on the tire in real time. The electronic system was comprised of

four strain gauge type load sensors, a signal conditioning unit, and a LabJack U12® data acquisition

system.

4.2.1 Load Sensors

Low-cost-off-the-shelf load sensors were utilized for this machine. The scale was equipped with

four load cells, and was rated for a 320 pound load capacity. It was estimated this translated into

a load capacity of about 80 pounds for each load cell. Each load sensor was comprised of two

active strain gauges. This arrangement allows for greater sensitivity of the sensor as well as implicit

temperature regulation. The load sensor is depicted in Figure 4.6.

The typical arrangement of a load cell with two active strain gauges is with one strain gauge

on the top surface and one on the bottom surface of a cantilevered beam. This is because the
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Figure 4.6: WATT internal construction of the load cells. Each cell features two active strain gauges
oriented on the top surface.

resistance of the gauges must be divergent from one another with load, otherwise changes in load

would change each resistance proportionally, preventing any way of measuring the load. This type

of arrangement is depicted in Figure 4.7. This load cell, however, features both strain gauges on the

top surface of a beam. Initially it was believed these cells were designed with only one active gauge

by placing the second gauge perpendicular to load. This would result in one gauge maintaining a

constant resistance with any load on the cell. Through careful disassembly of the load cell, it was

realized both gauges are oriented such that they are active. The tab shown in Figure 4.6 was rotated

180 degrees to allow for viewing of the strain gauges. When the load tab is in the normal position,

any load placed on the tab results in a combined end load and moment on the sensing beam. This

combined loading condition results in a compressive strain on the top surface of the beam from

the end of the beam where the tab is mounted to the center, and a tensile strain from the center to

the opposite end of the beam. Figure 4.8 depicts the load cell undergoing exaggerated strain. The

combined end loading of the beam results in differential loading on the strain gauges allowing both

gauges to be placed on the top surface. This arrangement dramatically improves manufacturability,

without compromising performance.
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Figure 4.7: Typical half bridge strain gauge arrangement. This figure depicts the typical arrange-
ment of a load cell with two active strain gauges. To measure the strain using a Wheatstone the load
must be in opposing loading conditions. This figure depicts the strain gauges arranged with two
inactive legs to complete the bridge. In the set-up used for the WATT, an additional load cell was
utilized for the second half of the bridge, increasing the sensitivity of the system.

Figure 4.8: Load cell deformation from applied force. The figure was produced using CATIA’s built
in finite element analysis software. The strain gauge was clamped around the perimeter of the base
and a 70N distributed load was placed on the center of the load tab. This was done to illustrate the
change in loading condition on the top surface of the beam from compressive to tensile.
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Figure 4.9: WATT Full active Wheatstone bridge arrangement. The use of two load cells, and
therefore four active strain gauges, increases system sensitivity and inherently compensates for
temperature fluctuation.

Two load cells were utilized for each axis, which further increased the sensitivity of the system

and reduced noise in the signal. Each load cell represented half of a Wheatstone bridge and, when

combined to make a full bridge, could be utilized to measure the load on the cell. Figure 4.9 shows

the arrangement of the load cells in the Wheatstone bridge. A twelve volt applied voltage was

used for bridge excitation, and when each cell was loaded, a bridge imbalance occurred allowing

measurement of the applied strain by the change in voltage across the bridge.

The change in resistance of the strain gauge with load is quite small, only a fraction of a percent

with full load. As a result of this the particular arrangement used in this system generates less than

2 mV maximum. To generate a measurable signal from this system some conditioning is required.

4.2.2 Signal Conditioning

The first issue when dealing with small signal outputs is noise. The electromagnetic interference

(EMI) present in a typical lab environment is much too high for the signal output of the bridge used



CHAPTER 4. THE WINDSOR AUTOMOTIVE TIRE TESTER 59

WATT Output LabJack Input

1KΩ 1KΩ

100µ farads 100µ farads

Figure 4.10: Diagram of the WATT second-order low pass filter. The second order low pass filter
utilized in the WATT attenuates signals from the load cells dramatically when the input frequency
is beyond the cut-off frequency.

(a) Filtered input signal (b) Unfiltered input signal

Figure 4.11: Filtered and unfiltered input signal comparison. Variation in the signal from the load
sensors results when the input signal is unfiltered. This effect is caused by ambient electromagnetic
interference.

in this experiment. Sources such as cell phones, wireless routers and the like are unavoidable. To

reduce the effect of this noise an aluminium braided shielded wire was used for the signal line. This

was grounded at one end only to avoid a ground loop from inducing noise.

Even with this arrangement, the system still exhibited issues with high frequency noise. To

eliminate the remaining noise a second order passive low pass filter was utilized. This filter is

depicted in Figure 4.10. Since the system is intended to measure static tire load deflection, the

cut-off frequency for this filter was set quite low, 1.59 Hz. The measured signal frequency is much

lower than this, so there is little performance impact from this arrangement. Figure 4.11 compares

the signal input with and without the low pass filter.

The second component required for signal conditioning is amplification of the signal. For this

an integrated circuit instrumentation amplifier, the TEXAS INSTRUMENTS INA128, was utilized.
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The INA128 allows for gains of up to 10000:1 with very low offset voltage, and temperature drift,

with the ability to adjust the system output sensitivity. The WATT utilizes two of these amplifiers,

one for each axis, both set for a gain of 895
(V

V

)
. For more details on the TEXAS INSTRUMENTS

INA128 please refer to the data sheet [11].

4.2.3 Data Acquisition

For real-time signal processing a LabJack®U12 data acquisition system was utilized. Initially the

design intent was to use the Arduino Uno micro controller prototyping board for data acquisition.

A simple software front end was written for the Arduino to convert and display the loads measured

by the WATT; however, this system was abandoned due to issues with repeatability.

The LabJack® U12 hardware features a vast array of input and output options. The U12 incor-

porates eight analogue inputs featuring a twelve bit analogue to digital converter. It also features

four configurable digital input/outputs, two analogue outputs, and various voltage source options.

For more details on this system please refer to the U12 user’s guide [12]. The WATT utilizes two

of the single ended analogue inputs from the U12 for data transmission to the acquisition system.

The capabilities of the U12 are far beyond what is needed by the WATT; however, this system was

readily available at no extra cost and was therefore utilized as a replacement for the Arduino unit.

The software front end utilized was developed by LabJack® and is referred to as LJscope. The

software allows for real-time measurement of the output signals from the WATT, and displays the

signal as a function of time in the top window of the viewer. The software interface is depicted

in Figure 4.12. The bottom window of the viewer displays frequency information of the incoming

signals.

4.3 Testing and Calibration

Once the machine was constructed, the electronics package needed to be calibrated in order to

determine the relationship between applied load and voltage output for each of the axes. This was
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Figure 4.12: LJ scope user interface. This software front-end displays both voltage of the input
signal as well as the frequency. The average voltage of the input signal over the displayed time span
is shown below the top window.

accomplished by isolating each axis on a bench and loading them with a series of known weights

and recording the voltage output at each load. This procedure was repeated three times for each

axis to ensure repeatability and accurate calibration of the WATT. The results of this calibration are

shown in Figure 4.13.

Looking at goodness of fit values for each of the calibration curves in Figure 4.13, it can be seen

that the z-axis performed much better than the y-axis in terms of repeatability. This is a result of the

weights available for calibration. The z-axis load sensor block was much easier to calibrate due to

the two in-line posts that support the assembly, which lend themselves much better to the available

slotted calibration weights. The four post y-axis sensor block, however, was much more challenging

to centre the weights over, since the four posts used to support the y-axis interfered with the weights.

As a solution to this, one post of the z-axis carrier block was used to support the lateral sensor block.

The arrangement used is depicted in Figure 4.14. Due to the offset calibration weight and single

bearing, much more load was present in the system than normal, resulting in increased friction. This

friction in turn induced some error in the load cell calibration of the lateral axis. Despite this, the
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(a) Vertical axis calibration data (b) Lateral axis calibration data

Figure 4.13: WATT load cell calibration results. Combined results of all calibration testing for each
axis. Linear regression results were used to find a transfer function between sensor voltage output
and applied load. These regression results are displayed in the upper right hand corner of the figure.

calibration results are still satisfactory.

Using the calibration data obtained, a transfer function was found to convert the voltage output

to the data acquisition system to the actual load on the sensor. This was done through the use of the

built in linear regression analysis tool in Microsoft® Excel. Using the data obtained from this anal-

ysis and the data sheet for the INA128, the performance capabilities of the WATT were determined.

These results are compiled in Table 4.1. With the construction, calibration and verification of the

WATT complete, the DU-BRO tire was then tested.
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Figure 4.14: Lateral axis load cell calibration set-up. Due to the four posts present in the lateral
axis, a single post of the vertical axis carrier block was utilized to support the lateral load sensing
block during calibration.

Table 4.1: System specifications of the WATT. Compiled testing results and system specifications for
the WATT.

Parameter Specification

Maximum measurable load (N) 130

Lateral load resolution (N) 0.5

Signal gain
(V

V

)
895

Vertical load sensitivity
(N

V

)
49.348

Lateral load sensitivity
(N

V

)
48.704

Filter cut-off frequency (Hz) 1.59

Bridge excitation voltage (V ) 12

Amplifier supply voltage (V ) 24
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4.3.1 Test Procedure

In order to reduce operator error introduced during the testing process, the following general test

procedure was observed. For both the vertical and lateral deflection testing, the same general testing

procedure was used, with small variations between tests. These variations were intended to highlight

different aspects of the results obtained. The specific variations on this test procedure for each

experiment are highlighted in the corresponding test sections in Chapter 5.

1. Initialize the tire by removing applied load from the load screws and weight loads to remove

any residual deflection from hysteresis effects.

2. Initialize each axis by setting each load block up against the respective carrier block without

applying load from the screw.

3. Measure the initial distance from the stanchion, for the lateral axis, or the lateral carrier block,

for the vertical axis, to the respective load cell block.

4. Measure the unladen load reading from LJ scope

5. Begin loading the desired axis while maintaining a constant load on the opposing axis. stop

after a small distance and record both the load and distance deflected.

6. Repeat until desired load is obtained.

7. Measure the fully deflected distance and begin unloading the tire slowly. Stop after a small

distance and record both the load and distance deflected.

8. Repeat until load screw is fully removed from the load cell block.

9. Measure final position.



Chapter 5

Results and Discussion

The following sections will present and discuss the results of the studies done with the WATT on

the DUBRO 5.00 T.V. tire. The first section, 5.1, will present the general static load deflection

behaviour measured by the WATT. The second section, 5.2, will discuss the relationships used to

find a correlation between the load deflection behaviour and the CF/SAT model parameters. The

final section, 5.3, will compare the results of the CF/SAT model from the parameterization using the

developed relationships to the regression analysis performed in Section 3.3.1, as well as, the magic

tire model developed by Polley.

5.1 Tire Load Deflection Behaviour

The DUBRO 5.00 T.V. tire was tested in both the lateral and vertical directions independently.

Independently loading each axis allows for the derivation of CF/SAT parameters responsible for tire

behaviour solely along the corresponding axis. During the vertical deflection tests, no lateral load

was placed on the tire. During the lateral deflection tests, a constant normal load was maintained

as the tire was loaded laterally. Adjustment of the vertical load screw was mandatory to maintain

normal load, due to tire deflection. Several tests were conducted at various normal loads in the

lateral direction.

65
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5.1.1 Vertical Deflection Behaviour

In the vertical direction, six separate tests were conducted. The first test measured tire deflection

with increasing load only. The tire was loaded and tested following the procedure in Section 4.3.1

until the normal load exceeded 100 N. Once this was achieved, the tire was reinitialized and loaded

again a minimum of one hour later. The time between each load cycle was inconsistent during this

test. A total of four loading cycles were completed for the first test. The second test was to measure

tire deflection behaviour starting in a loaded position and decreasing the load on the tire. The tire

was quickly loaded to about 150 N and incrementally unloaded until the load screw was released

from the load block. This test was only conducted for a single load cycle. This was because it was

observed during the second load cycle in test two that the normal load on the tire at high load and

constant deflection was rapidly diminishing. A third test that loaded the tire and unloaded the tire

in the same load cycle was completed. The same effect observed in test two was seen in test three.

Before further testing was conducted, these results were investigated. Once the observed results

were verified to be a tire phenomenon and not an error introduced by the WATT, four additional

tests were conducted following a similar procedure to test three. For tests four to seven, the tire

was loaded and measured incrementally up to about 120 N. It was then held at a fixed displacement

for two minutes. After the two minutes were complete the tire was incrementally unloaded and

measured. Each of these tests and the observations made at high normal loads will be discussed in

more detail in the following sections.

Vertical Load Test One

Figure 5.1 shows the results obtained for the first vertical load test on the DUBRO 5.00 T.V. tire.

The first test seemed to show a fairly linear relationship between tire deflection and normal load

with increasing load. Microsoft® Excel’s built in linear regression tool was utilized to fit a line to

the results obtained in test one. The Goodness of fit value obtained from this analysis was 0.9919,

indicating the results indeed approximate a linear relationship. The slope of this curve would there-
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Figure 5.1: DUBRO 5.00 T.V. vertical deflection results for test one.

fore give the average vertical stiffness of the tire. With these promising results an effective tire

stiffness with decreasing load was then pursued.

Vertical Load Test Two and Three

To capture the tire’s behaviour with decreasing load the same procedure used in test one was to be

applied to test two, except with decreasing load. The result of the first load cycle of testing indicated

a much less linear relationship than observed in test one. This was attributed to a rapidly decreasing

observed normal load with fixed vertical displacement of the tire. It was initially believed this was a

product of the test equipment. The use of inexpensive load cells and heat rejection from the higher

current as a result of a significantly more imbalanced bridge at high loads was believed to result in

temperature effects in the measurement. Instead of continuing testing on more load cycles with this

procedure, a third test was conducted, slowly loading the tire and measuring the results, followed by

slowly unloading the tire and measuring the results. It was believed this would give the system time

to normalize the temperature of the load cell; however, the same effect of rapidly decreasing load

with time at high normal loads was observed. The results obtained from these tests are provided in
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Figure 5.2: DUBRO 5.00 T.V. vertical deflection results for test two and three.

Figure 5.2. These results were not utilized due to improper management of the observed behaviour

at a fixed displacement with high normal load.

High Normal Load Tire Behaviour

Before further testing could be conducted, the source of the observed results needed to be under-

stood. To accomplish this, the tire was loaded to a high load and the displacement was maintained

over five minutes. The normal load was recorded incrementally over the time period. This was done

three times to ensure the observed results were repeatable. The results of this test are shown in Fig-

ure 5.3. To determine whether these observations were a result of the WATT or a tire phenomenon

the same procedure was repeated without the tire. The tire fork was driven directly into the base

of the WATT. These results are shown in Figure 5.4. As can be seen in Figure 5.4 there is some

time dependence on the measurement observed by the WATT as suspected. The change in the ob-

served measurement, however, only account for about 1-2% of the initial value. After 1 minute the

measurement decreases less than 0.5%. In the observations made by the WATT with the DUBRO

5.00 T.V. tire, the change in load over the observed time span was between 10-15%. This indicates
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Figure 5.3: DUBRO 5.00T.V. effect of time on normal load at high loads.

the time dependency of the normal load is an effect inherent in the tire and not the measurement

equipment.

One property of vulcanized rubber material, such as that used in the DUBRO tire, is that of

stress softening. As the material is stretched the force required to maintain the strain induced in

the material declines with time. This effect is also known as the Mullins effect, named after the

discoverer [18]. This effect results in both reduced force to maintain constant strain in the material

over time, as well as reduced material stiffness during subsequent loading cycles of the material.

After an extended period of time the majority of the material stiffness returns. In the tests conducted

in this study the effect manifested itself as both a reduced normal load with fixed deformation over

time at high normal loads, as well as reduced vertical tire stiffness with subsequent load cycles. The

latter manifestation is illustrated further in the next section. In Bever [5], several possible sources

for this effect are cited.

1. Breaking and remaking of cross links during extension.

2. Residual load orientation of network chains persisting after recovery.
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Figure 5.4: WATT effect of time on normal load at high loads.

3. Breaking of network chains.

The normal load on the tire continued to decrease over the time period it was analyzed in this

study, however, eventually the tire must reach some equilibrium point. The time required for this to

occur was not established within this body of work. A rolling tire will undergo a similar effect as

observed during the sequential load cycles of these tests, due to the loading and unloading of tire

sections as they enter and exit the contact patch. This will affect how the tire behaves in a dynamic

setting, however, to what extent this will affect response is unknown. As a result, the remaining

tests were conducted by carefully controlling the time the tire spent at high load to produce more

repeatability within the tests.

Vertical Load Tests Four Through Seven

Once the behaviour observed in the previous tests had been understood, a final set of tests was

developed to capture vertical tire deflection behaviour such that the influence of these effects would

be manifested in a repeatable manner across the remaining tests. To accomplish this, the tire was

again loaded and incrementally measured up to the peak normal load. The tire was then allowed to
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Figure 5.5: DUBRO 5.00 T.V. vertical deflection results for test four through seven.

rest at full load for two minutes. This period of time was selected because the majority of the stress

softening and sensor effects within the WATT would have occurred. After this period, the tire was

incrementally unloaded and measured. The tire was allowed to rest at a 20 N normal load for five

minutes between tests four through six. Test seven was completed 60 minutes after test six. The

results are shown in Figure 5.5

By controlling the time the tire was allowed to rest at both high and low loads, a predictable

effect on the tire’s behaviour with vertical load can be demonstrated. As described in Section 5.1.1,

the stress softening effect of the tire material is visible in Figure 5.5. A drop in normal load is

seen between each individual test’s increasing and decreasing load curves over the two minute span,

for which it was held at a fixed deflection at high load. The normal load required to maintain tire

deflection at peak normal load consistently dropped 5.5-6% for each of the tests.

The effect of the stress softening property of the material is also seen in the reduction of the

overall vertical tire stiffness between subsequent tests. To demonstrate this, a linear curve fit was
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made for tests four and five. The reduction in the slope of this curve is due to stress softening. In

tests four through six, the fixed five minute interval resulted in reduced overall stiffness with each

test. A larger reduction of stiffness was observed between test five and six than between test four

and five. After the tire was allowed to rest at low normal load for 60 minutes, a recovery of the tire’s

overall stiffness was observed in test seven.

5.1.2 Lateral Deflection Behaviour

Once the tire’s behaviour in the vertical direction was understood, it was then tested for lateral

response. Five tests were conducted in total, each at a different normal load. Because the tire

deforms as it is loaded laterally, the normal load screw had to be adjusted during the testing to

maintain a constant normal load on the tire. As a result, the normal load on the tire varied within

+/- 2% of the nominal normal load, with larger variations occurring at higher normal loads.

Due to the nature of the testing, sliding of the tire during the loading phase is unavoidable.

As a result, the reference used for the loading phase cannot be used for the unloading phase. To

resolve this, it is assumed the tire returns to a state of zero deflection once the lateral load on the

tire had been completely eliminated. As the normal load on the tire increases, this assumption can

be observed to diverge farther from reality. Despite this fact, however, the assumption allows for

comparison of the stiffness of the tire between the loading and unloading phase even if the actual

displacement of the tire during unloading is unknown.

In the lateral direction, the deflection response of the tire displayed much more non-linearity

than observed in the vertical direction across all of the tests. As the tire was loaded laterally, the

force response of the tire would actually decrease occasionally with increased lateral displacement.

The response seemed to resemble that of snap-through buckling. This could, perhaps, be caused by

a buckling of the sidewall as the tire is deflected laterally. This snap through buckling effect, where

the lateral response decreases with increased displacement, can be observed in every test, except the

70 N load, to occur at two distinct locations prior to full saturation of the tire’s contact patch. This
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is likely due to each sidewall buckling at a separate instance, resulting in the observed reduction

in lateral response. In test five, however, there are three locations where this seems to occur. It

is believed this is due to a buckling event from each of the side walls and a separation of the tire

bead from the wheel at very high displacement. The specific results for each of these tests will be

discussed in more detail in the following sections.

Lateral Load Test One: 20 N

The first test was conducted at a normal load of 20 N. Figure 5.6 shows the results obtained from

this test. As expected, the response of the tire to lateral deflection occurred in a very non-linear

fashion. The snap through buckling effect discussed earlier in Section 5.1.2 can be observed to

occur at around 2 mm of displacement and 5 mm of displacement. The tire reached its peak lateral

load, 23 N, at around 6.5 mm of displacement. It is at this point the tire began to slide along the

surface. Continued deflection beyond this point simply resulted in oscillation between about 19 and

23 N. During the unloading phase of each test, 0.5 mm of deflection was initially removed from the

last position of the loading phase. This resulted in a significant reduction of lateral load on the tire,

from 22 N to 6 N for test one. As a result of this, there were limited data points collected during the

unloading phase of this test. Despite this, the test data is still viable since the objective of these tests

is to estimate stiffness of the tire during each phase individually and data points at high displacement

need to be rejected due to sliding. Microsoft® Excel was used to fit a line to the test results in order

to estimate an overall lateral stiffness. Data after a 6.5 mm displacement was ignored. This resulted

in an estimated stiffness of 2.57 and 3.38 N/mm for the loading and unloading phases, respectively.

Lateral Load Test 2: 30 N

The second test was conducted at a normal load of 30 N. Figure 5.7 displays the results observed

during this test. The buckling effect can again be observed to occur at about 3.5 mm and 9 mm of

deflection. In this case the snap through effect seemed to coincide near the peak of lateral force,
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Figure 5.6: DUBRO 5.00 T.V. lateral deflection results for test one.

also occurring at 9 mm of deflection. The maximum observed load during this test was about 25 N.

It was again observed with continued deflection beyond this point the tire force oscillated between

23 and 25 N. During the unloading phase the majority of the load on the tire was released during

the initial 0.5 mm of reduced deflection. After this point, the tire unloaded in a much more linear

fashion than during the loading phase. Ignoring the data points obtained after the tire began sliding,

beyond 9 mm of deflection, a lateral tire stiffness was estimated using Microsoft® Excel’s built in

linear regression tool. This resulted in an estimated stiffness of 2.72 and 2.27 N/mm for the loading

and unloading phases, respectively.

Lateral Load Test 3: 40 N

A third test was conducted at a 40 N normal load. These results are depicted in Figure 5.8. Through

inspection it can be observed that snap through buckling occurred in this test configuration at a de-

flection of 4 mm and 10.5 mm. A much less defined peak was observed in this test than encountered

in previous tests. This could be a result of tire slippage prior to capturing the peak load measure-

ment. The observed maximum force was 31 N occurring at 13 mm of deflection. This oscillated
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Figure 5.7: DUBRO 5.00 T.V. lateral deflection results for test two.

between 28 and 31 N with increased loading. For a third time it was observed that the majority of

the load in the tire was released during the initial unloading segment. After this large decrease, the

tire unloaded somewhat linearly from about 16 N of load. Using linear regression a tire stiffness

was estimated during each of the phases ignoring data occurring after the observed peak at 13 mm.

The estimated stiffness at 40 N of normal load was found to be 2.05 and 2.14 N/mm for loading and

unloading of the tire, respectively.

Lateral Load Test 4: 50 N

The fourth test was conducted at a normal load of 50 N. These results are depicted in Figure 5.9. As

can be seen in the graph the peak lateral load of 36 N occurs at 15 mm of deflection. Further loading

resulted in oscillation between 32 and 36 N of force. The snap buckling effect was observed to occur

at a displacement of 6 mm and 10 mm during this load cycle. During the unloading phase the lateral

load decreased initially to a value of 17 N and steadily declined over 9.5 mm of unloading. The

loading and unloading overall lateral stiffness of the tire was estimated to be 2.14 and 1.85 N/mm

for this cycle, respectively.
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Figure 5.8: DUBRO 5.00 T.V. lateral deflection results for test three.

Lateral Load Test 5: 70 N

The final test conducted was performed with a normal load of 70 N. Although the research con-

ducted by Polley included results obtained at this normal load, it appears to be beyond the load

capacity of the tire at high lateral loads. Large deflections at this normal load resulted in separation

of the tire bead from the edge of the wheel. This can be seen in Figure 5.10. It is believed this

resulted in higher than anticipated lateral load results due to compression of material on the trailing

edge of the wheel. Vertical deflection was increased dramatically over the course of the test, to

maintain normal load with the stretching of the tire, causing material to compress as it attempts to

exit the contact patch.

The results for this test are shown in Figure 5.11. The peak lateral force observed during this

test was 52 N, occurring at 22 mm of deflection. Continued deflection beyond this value resulted in

lateral load oscillation between 42 and 49 N. The snap-through effect is observed to occur at 6 mm

and 12 mm of deflection. A third region of reduced lateral load with increased deflection is seen at

17 mm of deflection. It is believed this is a result of the separation of the tire from the wheel at this
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Figure 5.9: DUBRO 5.00 T.V. lateral deflection results for test four.

point.

During unloading the observed lateral load dropped dramatically initially and reduced less lin-

early than observed in the previous tests, starting from about 21 N. Once the lateral load had been

fully removed a significant deflection remained in the tire prior to the removal of the normal load.

This deflection is depicted in Figure 5.12. Due to the tire wheel separation, the tire material seemed

to be caught between the wheel and the test surface, unable to return to it’s initial position. This

resulted in a significantly higher than expected estimated overall lateral stiffness for the tire in both

the loading and unloading case. The estimated stiffness was found to be 2.31 and 2.26 N/mm,

respectively.

5.2 Parameterization Relationships

The load deflection results obtained in Section 5.1.2 were then used to estimate some of the CF/SAT

model parameter values for the DUBRO 5.00 T.V. tire. The most obvious and simplest parameter

to estimate is the overall vertical stiffness of the tire, Cz. This was a simple choice as it is the only
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Figure 5.10: DUBRO 5.00 T.V. tire wheel separation at large deflection under 70 N normal load.

parameter within the model that relates the tire to vertical deflection. Parameterization of the tire in

the lateral direction is a much more difficult challenge.

The CF/SAT model uses several parameters to define the lateral deflection response of the tire.

Namely, the lateral spring constant of a tread element, Cy, belt deflection compliance, ε, and the

bending rigidity of the belt, EIz. One of the features lacking on the DUBRO tire that is present

on a full size tire is a belt. As a result of this, it was decided that the data collected on the lateral

deflection response of the tire would be used to estimate the parameter Cy directly. The remaining

parameters for the CF/SAT model were either estimated directly from the research done by Polley,

or determined by scaling the parameters used in the work by Miyashita using the non-dimensional

parameters developed in Section 3.2.3. The following sections will detail the relationships used to

estimate the selected CF/SAT parameters from the load deflection data obtained in Section 5.1.
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Figure 5.11: DUBRO 5.00 T.V. lateral deflection results for test five.

5.2.1 Overall Vertical Tire Stiffness

The tire’s overall vertical stiffness was estimated from the slope of the regression analysis done in

the vertical deflection testing of the tire. Only the data obtained during the loading phase of the

cycle was used. This was because of the inconsistencies encountered during the unloading phase

due to the effects discussed in Section 5.1.1. Of the tests performed, only test one, four and five

were used to estimate the vertical stiffness of the tire. This was done to limit the influence of the

poorly managed hysteresis effects encountered during testing. A better estimate may result from a

more controlled testing procedure if the influence of these effects is better understood in regards to

dynamic tire performance. Without this knowledge, the results may be unfairly weighted towards a

lower vertical stiffness. Unfortunately, a full treatment of the hysteresis encountered is beyond the

scope of this study. Despite these challenges, an estimate for Cz was made that differed dramatically

from the results obtained through pure regression analysis, but still resulted in good correlation

between the CF/SAT model and the results obtained by Polley. These results are discussed in more

detail in Section 5.3. Using the average of these slopes, Cz was approximated to be 18.229 N/mm.
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Figure 5.12: DUBRO 5.00 T.V. residual tire deflection with full removal of lateral load during 70 N
normal load test.

5.2.2 Lateral Stiffness of a Tread Element

The relationship between the lateral spring constant of a tread element, Cy, and the lateral deflection

relationship is not as simple as the relationship used for the vertical tire stiffness. Looking at the

units used in the CF/SAT model for this parameter, it was discovered the parameter is defined as

a force over a volume or a stiffness over an area. Using the slope of the regression fit to the data

obtained in Section 5.1, an estimate of an overall lateral stiffness was made. Several relationships

were explored to try and relate the overall lateral stiffness to the CF/SAT model in terms of the units

described within the model. Since there were three parameters defined by length within the model

from which to select from and which parameter was an appropriate selection was not obvious, the

stiffness was divided by the sum of squares of each of these lengths. The initial result did not give

good correlation, however if the estimated stiffness is multiplied by 0.981×102, then an excellent

correlation was obtained at each normal load. If this result was obtained for a single normal load

case, then it could easily be dismissed as coincidence. However, since good correlation is obtained
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at every normal load, except the 70 N which is explained in Section 5.3.2, it is unlikely to be merely

happen stance. This is particularly true because the value of the contact patch length, which is used

to determine this parameter, is changing with each normal load in relation to the obtained vertical

stiffness Cz. This relationship is depicted in equation (5.1), where ky is the estimated overall lateral

tire stiffness in kN
m3 .

Cy =
0.981×102ky

l2 +w2 + r2
0

(5.1)

While the reasoning behind why this relationship gives such accurate results is unknown, the

dependency of this value on a second estimated parameter, as well as, its applicability across dif-

ferent normal loads make it hard to believe it is mere coincidence. The results obtained using the

relationships described above will be compared with the results obtained by Polley, as well as the

results obtained through pure regression analysis in Section 5.3.

5.3 CF/SAT Parameterization Results

Using the data obtained from Polley, the results of the manual curve fitting procedure, and the

relationships described in Section 5.2, the ability of the CF/SAT model to predict the performance

of the DUBRO 5.00 T.V. was determined. The magic tire model results from Polley are assumed

to represent the actual tire performance accurately. The manual curve fitting of the CF/SAT model

to these results is shown to assess the validity of the use of regression analysis in determining the

parameters of this model for any given tire. The results obtained from the static tire deflection

testing and their corresponding relationships are compared at each normal load to both Polley’s data

and the manual curve fit.

The load-deflection data was used to estimate both the overall vertical stiffness, Cz and the

lateral spring constant of a tread element, Cy. The remaining parameters were estimated in an

identical way to the manual curve fitting procedure. These parameters were estimated through
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dimensional analysis of the full size parameters provided in Miyashita using the non-dimensional

relationships obtained in Section 3.2.3 and data from Polley. As such, the parameters not defined by

these relationships match those used in the manual curve fitting analysis. It should be noted that the

parameters that are similar between these two approaches were never modified in either case; they

were estimated from the full size data and left unchanged both during the manual fitting of the model

and the estimation of the parameters from the static load tests. This is important because it would

be quite easy to manipulate the data to achieve the observed results; however, this would render

the relationships discovered insignificant. The results given in the following section were purely a

result of the relationships ascertained. Table 5.1 gives the values used for the CF/SAT parameters

with the model estimates from the load deflection data. It can be observed that no modifications

of the parameters was required in order to maintain the accuracy of the discovered relationships by

comparing these values with Table 3.5

5.3.1 20, 30, and 50 N Normal Load Results

Figure 5.13 compares the results for the 20, 30, and 50 N normal loads found by Polley to the

manual curve fit, and load deflection relationship parameterization methods for the CF/SAT model.

It can be seen that the results show excellent correlation between all three of these approaches in

each of the three cases. The largest variation between Polley’s results and the CF/SAT model using

the load deflection data is 2.74%, 1.93% and 17.43% for the 20, 30, and 50 N tests respectively.

While the 17.43% result seems quite high for the 50 N load case, it occurs at a low slip angle which

over inflates the percent error when compared to the absolute error. The average difference between

the results more accurately represents the overall error, which is only 1.042%, 1.170% and 3.481%

for each of the tests. This result indicates the relationships used to estimate the Cz and Cy parameters

for the CF/SAT model for this dataset are valid.

The values for Cz and Cy for the measured parameters and the curve fit parameters are shown in

Table 5.1 and Table 3.5 respectively. Looking at these values it can be seen that the measured value
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(a) 20 N normal load (b) 30 N normal load

(c) 50 N normal load

Figure 5.13: DUBRO 5.00 T.V. CF/SAT model results comparison.
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Figure 5.14: DUBRO 5.00 T.V. CF/SAT model results comparison for 70 N normal load.

of Cz varies as much as 294.2% from the estimated curve fit value, and the measured value of Cy

varies as much as 65.38% from the value estimated through the manual curve fit. This indicates that

while regression analysis is capable of determining parameters that force the model to match the

desired results, these parameters are not founded on the physical tire properties, and therefore lose

their meaning entirely. Since the values determined from the deflection data match the results ob-

tained from physical tire testing and consistently predict tire performance using the CF/SAT model,

then it is highly likely these values accurately reflect the intended physical interpretation as defined

in the CF/SAT model.

5.3.2 70 N Normal Load

Figure 5.14 shows the comparison of Polley’s magic tire model to both the manual curve fit and

physically estimated parameters for the CF/SAT model for the 70 N test. In this case, it can be seen

the model estimates using the physically derived data correlate very poorly to the results obtained

by Polley and the manual curve fit. Since the relationships derived resulted in excellent correlation
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at each of the normal loads previous to this test, it is likely not an error in the relationship, but in

the test data obtained. As discussed in Section 5.1.2, the tire was separating from the wheel during

the testing. It is unlikely this is the intended mode of operation for the tire and it is, therefore,

assumed the tire was operating beyond its maximum recommended load. Since the effects of the

observed behaviour on the load-deflection results obtained are unknown, it is reasonable to believe

that the poor correlation of the physically estimated CF/SAT model to the results obtained by Polley

is a possible result of this behaviour. Complete dismissal of this result, however, is imprudent,

and further testing is required to understand how this behaviour affected the CF/SAT model results.

Despite this, the excellent correlation observed in the previous three trials indicates a plausible

relationship between the CF/SAT model parameters and the load deflection data was obtained.
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Table 5.1: Resultant CF/SAT parameters from load deflection estimates for the DU-BRO 5.00 T.V.
tire. Each parameter was either estimated directly from Polley, scaled values from Miyashita and
Kabe using the developed non-dimensional parameters, or measured from the static load-deflection
relationships. The source of each of the values is given in the last column.

Parameter Normal load Source of parameter

70N 50N 30N 20N

w 0.0225 0.0225 0.0225 0.0225 Measurement

µs 1.3 1.3 1.3 1.3 Polley

µd 1.05 1.08 1.17 1.25 Scaled

Cy 3.8007x104 3.3119x104 4.5653x104 5.7301x104 Measurement

ε 16.3515 22.8921 38.1535 57.2302 Scaled

EIz 8.312x10−4 5.9372x10−4 3.5623x10−4 2.3749x10−4 Scaled

Cq 1.208x103 1.6912x103 2.8186x103 4.2279x103 Scaled

ζ 0.2034 0.2848 0.4746 0.7119 Scaled

Ax0 0 0 0 0 Scaled

n 2.2 3.8 4.5 4.5 Scaled

Cz 18.229 18.229 18.229 18.229 Measurement



Chapter 6

Conclusions and Recommendations

The physical verification of vehicle dynamic models and control algorithms presents a challenge to

researchers, both in terms of the resources available and cost associated with these types of studies.

This is of particular concern to academia due to limited facilities and funding when compared to

OEM efforts. The work presented in this thesis was aimed at alleviating some of the issues currently

facing scale modelling approaches to physical vehicle dynamic studies. Particular emphasis was

placed on the treatment of the tire due to a general lack of focus on this issue in previous studies.

The method by which this was accomplished was to first define the tire’s behaviour in terms of a

mathematical model in order to allow non-dimensional characterization of the tire. The CF/SAT

model was selected and non-dimensionalized to serve this purpose. The non-dimensionalized

CF/SAT model would allow direct comparison of the response between tires of differing scale.

In order for this approach to remain viable, however, a method of characterizing an individual tire

with this model was required without adding substantial cost, in terms of time and capital, to the

approach. An exploratory study was then conducted to establish whether it was possible to define a

tire in terms of the required model parameters without the use of a full battery of dynamic tire tests.

To limit the cost of this introductory analysis, a scale tire, the DUBRO 5.00 T.V. tire, was

utilized to probe whether a simple set of static tire load-deflection tests could be used to characterize

87
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a tire in terms of the CF/SAT model. The Windsor Automotive Tire Tester was then designed and

constructed for the purpose of collecting static load-deflection data on the scale tire. This data

was then analyzed and compared to the parameters that define tire performance within the CF/SAT

model. A set of relationships were then developed to allow parameterization of the tire from the

static tests.

6.1 Contributions

Three major contributions result from this work. The first of which is the non-dimensional CF/SAT

model. The second is the Windsor Automotive Tire Tester, and the third is the set of parameteriza-

tion relationships determined through the testing done with the WATT.

The results obtained from the non-dimensionalization of the CF/SAT model are discussed in

section 3.3. This non-dimensionalized version of the original model allows the analyst to compare

the dynamic response of two tires directly. By applying this non-dimensionalization to the tire

independently from the non-dimensionalization of the vehicle, the findings of the scale vehicle

model are no longer coupled with the tire’s behaviour. This will allow for comparison of two

different vehicles using the same tire, or even the comparison of the same vehicle with different

tires. It also allows the analyst the ability to apply non-linear vehicle models without the need to

operate within the linear regime of vehicle dynamics due to the tire. This will greatly broaden the

applicability of the results obtained through scale vehicle studies and further reduce the need for

full scale vehicle testing.

The WATT is a load-deflection testing machine specifically designed to statically perform tire

testing on small scale tires. In its current configuration, it is capable of measuring both vertical

and lateral load-deflection relationships for a tire. The cost associated with the construction of this

testing apparatus is very low, allowing inexpensive replication at other facilities. This is important

in order to allow continued research in this field to be easily accessible, as well as to allow tire

characterization with little capital investment.
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The most significant contribution of this work is the parameterization relationships discovered,

which correlate the static test data to the CF/SAT parameters. Tire characterization, for scale studies

or otherwise, is a prohibitively expensive endeavour. The relationships discovered here, detailed in

section 5.2, indicate that it is possible to characterize a tire for mathematical modelling through the

use of static load-deflection tests. Although this study was only exploratory in nature, the results

indicate that more detailed research into static parameterization relationships is not only warranted,

but is likely to deliver the desired results.

6.2 Future Work

The contributions made in this study, while significant, are hardly a complete picture of the desired

outcome, a method by which to develop a scale tire for vehicle dynamics research. Much more

work is required to find a means to this end. Despite this, the required work is justified not only

to fulfill this specific goal, but also due to the many fringe benefits which result from this research.

The most significant of these is the ability to determine tire response without the need of full scale

dynamic testing.

6.2.1 Non-Dimensional CF/SAT Model

While some of the shortcomings of this model, for the purpose of a non-dimensional approach,

discussed in section 3.1.1, have been alleviated, the issues surrounding the contact patch pressure

distribution remain. In the CF/SAT model, the contact patch pressure distribution is defined em-

pirically by a general skew parabolic distribution. This gives no information on the physical tire

properties responsible for this response, making tire characterization based on analytical properties

impossible. In order to allow for full physical non-dimensional characterization of this model, the

relationship must be redefined in terms of measurable physical parameters. This will require the use

of a large number of tires and a rather complex testing apparatus to find a consistent relationship

between the pressure distribution and the pertinent tire properties, if one exists at all.
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6.2.2 WATT

The WATT was successful at finding the required information for developing parameterization re-

lationships for the vertical and lateral response of the tire. In order to determine relationships for

the aligning moment response of the tire, further instrumentation is required. The ability to mea-

sure the aligning moment response of the tire during these static load tests is required to indicate

if there are any relationships between the results and the CF/SAT model parameters. Some design

elements were incorporated into the WATT to allow for this measurement; however, they were not

utilized due to the inability to source an inexpensive method to measure the moment response of the

tire. This could be done in a more expensive manner for the initial study; however, such an invest-

ment would diminish the benefit of the approach as a whole if a cheaper solution is not realized for

implementation of the methodology.

6.2.3 Tire Parameterization

The most significant amount of research is required for greater understanding of static tire param-

eterization; however, the largest benefits can be realized from this work. The work done in this

study on the topic was exploratory in nature; as a result, much more testing is required to determine

the precision and accuracy with which these results can be obtained. Although the number of tests

performed were statistically insufficient, and therefore the certainty of the relationships discovered

cannot be ensured, the goal was to determine if, at minimum, an approximate relationship could

be developed. It is imprudent to invest the time and capital into a full series of tests without any

knowledge whether the desired outcome is possible. Despite this, the results are quite remarkable

and warrant further research to determine, statistically, the value of these relationships.

Once this has been accomplished, this research should be conducted on a set of full size tires to

determine if the relationships discovered, or ones similar to them, exist in full size tires. The tests

will also require the use of a large variety of full size tire constructions to ensure any relationships

discovered can be stated generally, allowing any desired tire to be defined in terms of the CF/SAT
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model using a fixed set of tests and relationships. The scale and cost of such a research project

would be substantial; however, if successful, the outcome would result in significant cost reduction

of tire modelling for both researchers and industry.

6.3 Final Remarks

The research conducted in this thesis is very promising both in terms of scale modelling and tire

modelling as a whole. Though more investigation is required to fully establish an approach for the

development of a small scale tire for vehicle dynamics research, the results obtained in this study

are a segue to both this realization and a method by which to ascertain tire response without the use

of full scale dynamic tire testing.
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Appendix A

CF/SAT M-Code

A.1 User Main File

clc

clear all

close all

%------------------------------------------------------------------------

slip = 20;

res = 2.5;

%{

datset 1 full size tire modelled using original CF/SAT model

dataset 2 full size tire modelled using modifed CF/SAT model

dataset 3 Scale tire modelled using modified CF/SAT model

tire parameters are calcualted from desired radius and normal

load and pi parameters for the full size tire from dataset 2

dataset 4 Dubro tire response , using estimated parameters from polley

dataset 5 Dubro tire response , using estimated parameters from tire load ...

deflection relationships

dataset 6-9 Original CF/SAT mode lused for sensitivity analysis
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APPENDIX A. CF/SAT M-CODE 96

cf_sat(slip ,resolution ,dataset ,pi parameters) calcualtes a tires lateral ...

force

and aligning torque response for slip angles fr0m 0 to the value of slip

%}

[output1 ,press1 ,deflec1 ,x1,pi_param1 ,pi_out1 ,params1] = cf_sat(slip ,res ,1);

[output2 ,press2 ,deflec2 ,x2,pi_param2 ,pi_out2 ,params2] = cf_sat(slip ,res ,2);

[output3 ,press3 ,deflec3 ,x3,pi_param3 ,pi_out3 ,params3] = cf_sat(slip ,res ,3,...

pi_param2);

[output4 ,press4 ,deflec4 ,x4,pi_param4 ,pi_out4 ,params4] = cf_sat(slip ,res ,4,...

pi_param2);

[output5 ,press5 ,deflec5 ,x5,pi_param5 ,pi_out5 ,params5] = cf_sat(slip ,res ,5,...

pi_param2);

% [output6 ,press6 ,deflec6 ,x6,pi_param6 ,pi_out6 ,params6] = cf_sat(slip ,res ,6);

% [output7 ,press7 ,deflec7 ,x7,pi_param7 ,pi_out7 ,params7] = cf_sat(slip ,res ,7);

% [output8 ,press8 ,deflec8 ,x8,pi_param8 ,pi_out8 ,params8] = cf_sat(slip ,res ,8);

% [output9 ,press9 ,deflec9 ,x9,pi_param9 ,pi_out9 ,params9] = cf_sat(slip ,res ,9);

polleyslip = xlsread('polley_tire_data','O41:O49');

polleylatforce = xlsread('polley_tire_data','S41:S49');%S is 50N data P is 20...

N

polleyaligntor = xlsread('polley_tire_data','self aligning moment data','M8:...

M18');

%--------------------------------------------------------------------------

% slipangle = 5; %slip angle of interest for pressure distibution

% figure('name','Fy vs. SA','numbertitle','off')

% plot(0:res:slip ,output1(:,1) ,0:res:slip ,output6(:,1) ,0:res:slip ,output7...

(:,1) ,0:res:slip ,output8(:,1) ,0:res:slip ,output9(:,1))

% title('Fy vs. SA')

% % axis([0,20,-inf ,10])

% % set(gca,'Xtick ',0:5:20)

% % set(gca,'Ytick ',0:2:10)
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% legend('l: Reference value from case B','l: Reference -50%', 'l: -25%','l: ...

+25%','l: +50%')

% xlabel('Slip Angle (Degrees)')

% ylabel('Lateral Force (KN)')

figure('name','Scale tire Fy vs. SA','numbertitle','off')

plot(polleyslip ,polleylatforce ,0:res:slip ,output5(:,1)*1000)%, 0:res:slip ,...

output4(:,1)*1000)

legend('M.Polley Magic tire model','CF/SAT model using force deflection data'...

,'CF/SAT model using pure regression analysis')

title('Fy vs. SA')

xlabel('Slip Angle (Degrees)')

ylabel('Lateral Force (N)')

% figure('name','Mz vs. SA','numbertitle','off')

% plot(0:res:slip ,output1(:,2) ,0:res:slip ,output6(:,2) ,0:res:slip ,output7...

(:,2) ,0:res:slip ,output8(:,2) ,0:res:slip ,output9(:,2))%*1000,polleyslip ,...

polleyaligntor)

% title('Mz vs. SA')

% % axis([0,20,-inf ,0.22])

% % set(gca,'Xtick ',0:5:20)

% % set(gca,'Ytick ',0:0.1:0.22)

% legend('l: Reference value from case B','l: Reference -50%', 'l: -25%','l: ...

+25%','l: +50%')

% xlabel('Slip Angle (Degrees)')

% ylabel('Self -Aligning Torque (N M)')

% figure('name','Pressure Distribution ')

% plot(x3(slipangle/res+1,:)*1000,press3(slipangle/res+1,:)*0.14504 ,x2(...

slipangle/res+1,:)*1000,press2(slipangle/res+1,:)*0.14504)

% title('Pressure Distribtion ')

% xlabel('longitudnal position (mm)')

% ylabel('Pressure (Psi)')
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%

% figure('name','Lateral Belt Deflection ')

% plot(x3(slipangle/res+1,:)*1000,deflec3(slipangle/res+1,:)*1000,x2(...

slipangle/res+1,:)*1000,deflec2(slipangle/res+1,:)*1000)

% title('Lateral Belt Deflection ')

% xlabel('longitudnal position (mm)')

% ylabel('lateral deflection(mm)')

A.2 CF/SAT Main File

function [output ,press ,deflec ,pos,pi_param ,pi_out ,params] = cf_sat(slip ,res,...

dataset ,pi_param_full)

i=1;

j=1;

k = 1;

%--------------------------------------------------------------------------

%Finds the lateral and moment forces

switch dataset

case {1}

disp('Using dataset with original CF_SAT method')

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_1(slipangle ,fy(j,i-1),mz(j,i-1));

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);
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for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));

pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params_orig(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {2}

disp('Using dataset with modified CF/SAT method')

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_2(slipangle ,fy(j,i-1),mz(j,i-1));

fy(j,i) = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));
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deflec(j,k) = beltdeflec(x,params(j));

pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {3}

display('Using scale tire dataset')

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_3(slipangle ,fy(j,i-1),mz(j,i-1),...

pi_param_full);

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));
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pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {4}

display('Using estimated CF/SAT model for 5.00T.V. Dubro tire')

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_4(slipangle ,fy(j,i-1),mz(j,i-1),...

pi_param_full);

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));
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pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {5}

display('Using measured CF/SAT model for 5.00T.V. Dubro tire')

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_5(slipangle ,fy(j,i-1),mz(j,i-1),...

pi_param_full);

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));
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pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {6}

disp('Using dataset with original CF_SAT method sensitivity analysis'...

)

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_6(slipangle ,fy(j,i-1),mz(j,i-1));

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));
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deflec(j,k) = beltdeflec(x,params(j));

pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params_orig(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {7}

disp('Using dataset with original CF_SAT method sensitivity analysis'...

)

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_7(slipangle ,fy(j,i-1),mz(j,i-1));

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));
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pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params_orig(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {8}

disp('Using dataset with original CF_SAT method sensitivity analysis'...

)

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_8(slipangle ,fy(j,i-1),mz(j,i-1));

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));

pos(j,k) = x-params(j).l/2;



APPENDIX A. CF/SAT M-CODE 106

pi(j,:) = pi_params_orig(params(j));

k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

case {9}

disp('Using dataset with original CF_SAT method sensitivity analysis'...

)

for slipangle = 0:res:slip

fy(j,1) = 0; %KN

mz(j,1) = 0; %KN

for i = 2:100

params(j) = tire_params_9(slipangle ,fy(j,i-1),mz(j,i-1));

[fy(j,i)] = cf(slipangle ,fy(j,i-1),mz(j,i-1),params(j));

mz(j,i) = sat(slipangle ,fy(j,i),mz(j,i-1),params(j));

if abs(fy(j,i)-fy(j,i-1)) < 0.001 && abs(mz(j,i)-mz(j...

,i-1)) < 0.001

output(j,1) = fy(j,i);

output(j,2) = mz(j,i);

for x = 0:0.01*params(j).l:params(j).l

press(j,k) = pressuredist(x,params(j));

deflec(j,k) = beltdeflec(x,params(j));

pos(j,k) = x-params(j).l/2;

pi(j,:) = pi_params_orig(params(j));
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k=k+1;

end

pi_out(j,1) = pi(j,1);

pi_out(j,2) = pi(j,2);

break

else

continue

end

end

j=j+1;

k=1;

end

pi_param(:,1) = pi(1,3:13);

otherwise

error('Please select a valid case')

end

return

A.3 Cornering Force Function

function [Fy] = cf(slipangle ,fy,mz,params)

Fy = 2*params.Kyo*quadgk(@(t) shearforce(t,params),0,params.lh/params.l)+((...

params.n +1)/params.n)*params.Mu_d*params.Fz*quadgk(@(f) Dgsp(f,params.n ,...

params.q),params.lh/params.l ,1);

end

A.4 Aligning Moment Function

function [Mz] = sat(slipangle ,fy,mz,params)
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Mz = 12*params.Aso*quadgk(@(t) shearmoment(t,params),0,params.lh/params.l)+((...

params.n +1)/params.n)*params.Mu_d*params.Fz*params.l*quadgk(@(f) ...

Dgspmoment(f,params),params.lh/params.l ,1)+params.Axo*(params.lh/params.l)...

*tan(params.ae);

end

A.5 Belt Deflection Function

function [y] = beltdeflec(x,params)

y = params.eps.*params.lˆ2.*params.Fy.*(x/params.l).*(1-(x/params.l));

end

A.6 Contact Patch Pressure Distribution Due to Lateral Force

function [D] = Dgsp(t,n,q)

D = (1-abs(2.*t-1).ˆn).*(1-q.*(2.*t-1));

end

A.7 Contact Patch Pressure Distribution Due to Aligning Torque

function [D] = Dgspmoment(t,params)

D = ((1-abs(2.*t-1).ˆparams.n).*(1-params.q.*(2.*t-1))).*(t-(params.xc/...

params.l));

end

A.8 Calculation of the Location for Transition from Grip to Sliding
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function [eq] = grip2slip(lhf,params)

eq = 2*params.Kyo*lhf/params.l*(tan(params.ae)-(params.eps*params.l*params.Fy...

*(1-lhf/params.l))) -(((params.n+1)/params.n)*params.Mu_s*params.Fz*Dgsp(...

lhf/params.l ,params.n ,params.q));

end

A.9 Pi Parameter Calculation Function

%Sean Maloney CF/SAT model

%Tire parameters

function [pi] = pi_params(params)

%Repeated parameters

r0 = params.r0; %Tire radius in meters

Fz = params.Fz; %vertical load in KN

%-----------------------------------------------------------

pi(1) = params.Fy/Fz;

pi(2) = params.Mz/(Fz*r0); %Width of contact patch in meters

pi(3) = params.w/r0;

pi(4) = params.Mu_s;

pi(5) = params.Mu_d;

pi(6) = params.Cy*r0ˆ3/Fz;

pi(7) = params.eps*Fz*r0;

pi(8) = params.EIz/(Fz*r0ˆ2);

pi(9) = params.Cq*Fz*r0;

pi(10) = params.zeta*Fz/r0;

pi(11) = params.Axo/(Fz*r0);

pi(12) = params.n;

pi(13) = params.Cz*Fz/r0;

end

A.10 Shear Force Calculation
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function [Fshear] = shearforce(t,params)

Fshear = t*tan(params.ae)-(params.eps*params.l*params.Fy*t.*(1-t));

end

A.11 Shear Moment Calculation

function [Mshear] = shearmoment(t,params)

Mshear = (t.*tan(params.ae)-(params.eps*params.l*params.Fy.*t.*(1-t))).*(t-(...

params.xc/params.l));

end

A.12 Input Files

A.12.1 Modified CF/SAT Model Input File

%Sean Maloney CF/SAT model

%Tire parameters

function [params] = tire_params_2(a,Fy,Mz)

%-----------------------------------------------------------

params.n = 9.34; %Shoulder exponent for tire pressure distrobution

% ˆ

%/|\

% |

% |

%perhaps this should be a function of pressure?

%--------------------------------------------------------------------------

%Tire properties

%These are easily estimated directly

params.w = 0.205; %Width of contact patch in meters
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params.r0 = 0.31595; %Tire radius in meters

params.Fz = 3.98; %vertical load in KN

%for finding effective radius

%params.press = 18; %pressure in psi inteded for finding effective radius

params.Cz = -0.0023; %vertical stiffness M/KN

%How to estimate these?

params.Cy = 8.02*10ˆ4; %Lateral spring constant of tread element

params.eps = 5.78*10ˆ-2; %deflection compliance of belt

params.Cq = 4.27; %Compliance of front inclination in contact pressure

params.zeta = 1.78*10ˆ-2; %Compliance of contact -patch shift

params.Axo = 0; %longitudinal force torque stiffness

params.EIz = 1.17; %Bending ridgity of the belt

%--------------------------------------------------------------------------

%Tire properties that should be functions of other properties

%params.l = 0.0902; Length of contact patch in meters , should be a function ...

of tire pressure

%normal load ,tire radius , aspect ratio

params.Mu_s = 1.62; %static coefficent of friction

params.Mu_d = 1.06; %dynamic coefficent of friction

% perhaps considering revising to account for simliairty to non

% dimensionalized lateral force

%--------------------------------------------------------------------------

%Resultant properties

params.arad = deg2rad(a); %converts degree input to radians

%testing results of updating contact patch length by normal load deflection

params.re = params.Cz*params.Fz+params.r0;

params.l = 2*sqrt((params.r0ˆ2-params.reˆ2));

params.Fy = Fy;
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params.Mz = Mz;

params.q = params.Cq*params.Mz;

params.xc = params.l/2 - (params.zeta*params.Mz/params.l);

params.Kyo = params.Cy*params.w*params.l ˆ2/2;

params.Aso = params.Cy*params.w*params.l ˆ3/12;

params.ky = ((4ˆ(4/5)*((params.EIz)ˆ(3/4))*params.eps)ˆ-4); %elastic modulus ...

of the sidewall

params.G_mz = params.ky*pi()*params.reˆ3; %rotational stiffness of sidewall

params.ae = params.arad - (Mz/params.G_mz);

if grip2slip(0.001 ,params) < 0

[params.lh] = fzero(@(lhf) grip2slip(lhf,params),[0.001 ,params.l]);

else

params.lh = 0;

end

end

A.12.2 manual DUBRO fit CF/SAT Model Input File

%Sean Maloney CF/SAT model

%Tire parameters for Dubro tire

function [params] = tire_params_4(a,Fy,Mz,pi_param)

%-----------------------------------------------------------

params.n = 3.8; %modified %for 70N use 2.2 for 50N use 3.8 for 30N use 4.5 ...

for 20N use 4.5

%Affects curvature

%--------------------------------------------------------------------------

%These are easily estimated directly

params.w = 22.5/1000; %measured

params.r0 = 0.0635; %measured

params.Fz = 50/1000; %from polley
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params.Cz = (pi_param(11)*params.r0./params.Fz)*0.64; %modified 70N use 0.53...

50N use 0.64 use 0.7 30N 0.78 for 20N

%How to estimate these?

params.Cy = (pi_param(4)*params.Fz/params.r0ˆ3)*0.535; %modified %70N use 0.5...

use 0.535 for 50N 0.735 for 30N 0.95 for 20N

params.eps = pi_param(5)/(params.Fz*params.r0); %estimated from known full ...

size tire

params.Cq = pi_param(7)/(params.Fz*params.r0); %estimated from known full ...

size tire

params.zeta = pi_param(8)*params.r0/params.Fz; %estimated from known full ...

size tire

params.Axo = pi_param(9)*(params.Fz*params.r0);%estimated from known full ...

size tire

params.EIz =pi_param(6)*(params.Fz*params.r0ˆ2); %estimated from known full ...

size tire

%--------------------------------------------------------------------------

params.Mu_s = 1.3; %estimate from polley

params.Mu_d = 1.08; %modified 1.05 for 70N 1.08 for 50N 1.17 for 30N 1.25 for...

20N

%--------------------------------------------------------------------------

%Resultant properties

params.arad = deg2rad(a); %converts degree input to radians

%testing results of updating contact patch length by normal load deflection

params.re = params.Cz*params.Fz+params.r0;

params.l = 2*sqrt((params.r0ˆ2-params.reˆ2));

params.Fy = Fy;

params.Mz = Mz;

params.q = params.Cq*params.Mz;

params.xc = params.l/2 - (params.zeta*params.Mz/params.l);

params.Kyo = params.Cy*params.w*params.l ˆ2/2;
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params.Aso = params.Cy*params.w*params.l ˆ3/12;

params.ky = ((4ˆ(4/5)*((params.EIz)ˆ(3/4))*params.eps)ˆ-4); %elastic modulus ...

of the sidewall

params.G_mz = params.ky*pi()*params.reˆ3; %rotational stiffness of sidewall

params.ae = params.arad - (Mz/params.G_mz);

if grip2slip(0.001 ,params) < 0

[params.lh] = fzero(@(lhf) grip2slip(lhf,params),[0.001 ,params.l]);

else

params.lh = 0;

end

end

A.12.3 Static Testing Parameterization of DUBRO tire for CF/SAT Model Input File

%Sean Maloney CF/SAT model

%Tire parameters for Dubro tire

function [params] = tire_params_5(a,Fy,Mz,pi_param)

%20 PARAMS GOOD

% 30 PARAMS GOOD

%40 PARAMS NEED FITTING

%50 params good

%70 params not good

%-----------------------------------------------------------

params.n = 3.8; %modified %for 70N use 2.2 for 50N use 3.8 for 30N use 4.5 ...

for 20N use 4.5

%Affects curvature

%--------------------------------------------------------------------------

%Tire properties
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%These are easily estimated directly

params.w = 22.5/1000; %measured

params.r0 = 0.0635; %measured

params.Fz = 50/1000; %from polley

params.Cz = -0.0548;

%modified 70N use 0.53 50N use 0.59 use 0.7 30N 0.78 for 20N

%How to estimate these?

%params.Cy = pi_param(4)*params.Fz/params.r0ˆ3*0.58; %modified %70N use 1.02 ...

use 1.14 for 50N 1.4 for 30N 1.7 for 20N

params.eps = pi_param(5)/(params.Fz*params.r0); %estimated from known full ...

size tire

params.Cq = pi_param(7)/(params.Fz*params.r0); %estimated from known full ...

size tire

params.zeta = pi_param(8)*params.r0/params.Fz; %estimated from known full ...

size tire

params.Axo = pi_param(9)*(params.Fz*params.r0);%estimated from known full ...

size tire

params.EIz =pi_param(6)*(params.Fz*params.r0ˆ2); %estimated from known full ...

size tire

%--------------------------------------------------------------------------

params.Mu_s = 1.3; %estimate from polley

params.Mu_d = 1.08; %modified 1.05 for 70N 1.08 for 50N 1.17 for 30N 1.25 for...

20N

%--------------------------------------------------------------------------

%Resultant properties

params.arad = deg2rad(a); %converts degree input to radians

%testing results of updating contact patch length by normal load deflection

params.re = params.Cz*params.Fz+params.r0;

params.l = 2*sqrt((params.r0ˆ2-params.reˆ2));
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%params.Cy = (2.9734*98.1)/(params.lˆ2+params.wˆ2+params.r0ˆ2); % 20N actual ...

average stiffness

%params.Cy = (2.4957*98.1)/(params.lˆ2+params.wˆ2+params.r0ˆ2); % 30N actual ...

average stiffness

%params.Cy = 205/( params.lˆ2+params.wˆ2+params.r0ˆ2); % 40N estimated average

%stiffness

params.Cy = (1.992*98.1)/(params.lˆ2+params.wˆ2+params.r0ˆ2); %actual average...

stiffness 50N

%params.Cy = (2.286*98.1)/(params.lˆ2+params.wˆ2+params.r0ˆ2); %70N actual ...

average stiffness

%params.Cy = 160/( params.lˆ2+params.wˆ2+params.r0ˆ2); %fitted 70N

params.Fy = Fy;

params.Mz = Mz;

params.q = params.Cq*params.Mz;

params.xc = params.l/2 - (params.zeta*params.Mz/params.l);

params.Kyo = params.Cy*params.w*params.l ˆ2/2;

params.Aso = params.Cy*params.w*params.l ˆ3/12;

params.ky = ((4ˆ(4/5)*((params.EIz)ˆ(3/4))*params.eps)ˆ-4); %elastic modulus ...

of the sidewall

params.G_mz = params.ky*pi()*params.reˆ3; %rotational stiffness of sidewall

params.ae = params.arad - (Mz/params.G_mz);

if grip2slip(0.001 ,params) < 0

[params.lh] = fzero(@(lhf) grip2slip(lhf,params),[0.001 ,params.l]);

else

params.lh = 0;

end

end
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