
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2004 

Space and time adaptation for parallel applications via data over-Space and time adaptation for parallel applications via data over-

partitioning. partitioning. 

Lin Han 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Han, Lin, "Space and time adaptation for parallel applications via data over-partitioning." (2004). Electronic 
Theses and Dissertations. 3545. 
https://scholar.uwindsor.ca/etd/3545 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3545?utm_source=scholar.uwindsor.ca%2Fetd%2F3545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Space and Time Adaptation for Parallel Applications 

via Data Over-Partitioning

by 

Lin Han

A Thesis

Submitted to the Faculty of Graduate Studies and Research 

through the School of Computer Science 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 

University of Windsor

W indsor, Ontario, Canada 

2004 

©2004 Lin Han

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-612-96377-2 
Our file Notre reference 
ISBN: 0-612-96377-2

The author has granted a non­
exclusive license allowing the 
Library and Archives Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque et Archives Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

C an ada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Adaptive resource allocation is a new feature to run parallel applications. It is 

used to obtain better space and time sharing according to current workload, to 

schedule around obstacles through reservation and to cope with lack of accurate 

predictability on heterogeneous resources. The implementation of resource 

adaptation is potentially very expensive if  total remapping or partitioning from 

scratch has to be performed. The existing popular run-time systems include AMPI 

and Dome. AMPI, which uses huge numbers of threads in MPI process to implement 

resource adaptation, suffers from frequent thread switches and loss of cache locality; 

and Dome, an object-based migration environment, suffers from lack of general 

language supports.

When resource adaptation occurs, load balancing techniques are used to 

allocate the workload fairly across processors, so that each processor takes roughly 

the same time to execute the processes assigned to it, and that every processor has 

the same workload to obtain the best performance and maximize resource utilization.

This thesis proposes a novel approach -  Adaptive Time/space sharing via 

Over-Partitioning (ATOP) -  to implement resource adaptation with better 

performance in terms of time overhead. Total workload is represented by a data 

graph. ATOP performs over-partitioning on the graph to create a certain number of 

workload pieces, or partitions, while processing partitions per processor as one data 

collection in a single MPI process. Typically, the number of partitions is set equal to 

the number of processors potentially allocated. This approach is feasible for the 

applications using 2” processors. In the cases where our over-partitioning approach 

does not perform well, or non-fitting numbers of resources need to be chosen, ATOP 

still provides the alternative option to repartition from scratch.

Ill
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1. Introduction

Parallel computing is an effective approach to transcend the physical limitations 

of processing capabilities of the traditional sequential computers. In a parallel 

environment, workload of an application is assigned on the processors in two steps: 

partitioning and mapping. In the partitioning (also called “decomposition”) step, the 

workload is divided into multiple processes, which, as abstract software entities, 

execute assigned work on processors [XL97]. Each process has one or several work 

units (such as threads or objects) that are the smallest units of concurrency the 

parallel program can exploit. In the “mapping” (also called “migration” in load 

balancing) step, such processes are mapped to available processors by a job 

scheduler or load balancer. In two conditions, the workload imbalance may occur. 

First, the workload of a parallel application may be not static but dynamic -  which 

means the new workload on each processor can be generated during the run-time. 

Second, resources allocated to the application may be adaptive -  which means the 

job scheduler can change the resources allocation according to current workload or 

task reservation. Thus, it may be that some processors will complete their work and 

become idle while others are busy. Ideally, we want all processors to perform the 

tasks continuously and simultaneously, and to complete their tasks at the same time 

roughly in order to obtain the minimum execution time and maximum resource 

utilization. Load balancing is used to achieve this goal by spreading the overall 

workload evenly across all processors and by minimizing the overhead of 

communications.

In general, according to the stage when load balancing is performed, it is 

categorized into static and dynamic. Static load balancing is performed during 

compile-time, and distributes the workload on processors before real execution. One

l
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obvious advantage of static load balancing is that there is no run-time cost created 

during the load balancing procedure. On the other hand, dynamic load balancing is 

based on the redistribution of workload at execution time. During execution of an 

application, the dynamic load balancer invokes the load redistribution to transfer 

some workload from heavily loaded processors to lightly loaded processors or idle 

processors when imbalance is beyond a special predefined threshold, or the 

resources allocated on this application change. Dynamic load balancing must ensure 

the advantage gained by the load balancing is more than the disadvantage caused by 

additional overhead it generates. Because the load balancer has to collect the global 

workload status and calculate the new distribution, partitioning overhead in dynamic 

repartitioning is very expensive. Chapter 2 discusses these two categories in more 

detail.

Traditionally, parallel applications are executed on a fixed number of processors, 

and the workload on each processor is roughly the same. This kind of application is 

not flexible enough for job scheduling. More and more researchers have focused on 

the problem of adaptive resource allocation in order to obtain better space and time 

sharing according to current workload, to schedule around obstacles through 

reservation and to cope with lack of accurate predictability on heterogeneous 

resources. Before the following discussion, we need to clarify some concepts more 

precisely: “space adaptation”, “time adaptation”. See Figure 1. [SH04B]

Definition 1 Svace Adaptation: The number of discrete processors allocated to a 

job can dynamically be changed during its execution.

Definition 2 Time Adaptation: The time shares allocated to the job can be 

different on different processors and can be changed dynamically during the job’s 

execution.

2
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Both space and time adaptation provides the chance for better resource 

utilization and better average response time. Space adaptation requires jobs to be 

space malleable; time adaptation requires jobs to be time malleable.

Tim® Adaptation
Spaca Adaptation

—  i   i

Figure 1. Space (left) and time (right) adaptation

As mentioned above, the overhead caused by partitioning in dynamic load 

balancing is very expensive. When resource adaptation happens, the workload has to 

be repartitioned and migrated to the corresponding processors. Just as with the 

dynamic load balancing operation, repartitioning for resource adaptation is an 

extremely expensive step. Table 1 shows the motivation of our research: load 

balancing overhead consists of partitioning cost and migration cost, of which the 

partitioning cost is the main part. The potential percentage of time saved by avoiding 

partitioning is up to 56% for this specific step. Adaptation time differs according to 

the adaptation situation: the results in the table reflect the middle step of adaptation 

(16->8 processors) with 16 partitions.

Table 1. Partitioning and migration overhead by partitioning from scratch

Graphs
Partitioning

Time
Migration

Time
Total
Time

%of
Migration

Time

% of
Saving

3elt 0.359 0.285 0.644 44% 56%
wing 9.517 8.081 17.598 46% 54%

3
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The main innovative idea in our approach ATOP (Adaptive Time/space sharing 

via Over-Partitioning) is to employ so-called over-partitioning to create more data 

partitions than the processors allocated on the application. If the resource allocation 

changes, the load balancer simply migrates corresponding partitions and avoids 

recalculating how to separate the graph into new partitions. By doing so, almost all 

partitioning overhead can be eliminated. For space adaptation, a certain constraint is 

applied to the number of processors -  the number of partitions divided exactly by the 

number of processors allocated without remainder. Therefore, we may create 32 

partitions for a maximum of 32 processors and permit space allocations of 32, 16, 8, 

4, 2, and 1—but not, e.g., of 5. In the cases where over-partitioning does not perform 

well or a non-fitting processor number is chosen, ATOP provides an alternative 

option to partition from scratch. For the time adaptation, we create a huge number of 

partitions which is much larger than the processors allocated, and approximately 

remap these partitions according to allocation of certain time shares. Partitioning 

from scratch is also provided for time adaptation if it can give better performance or 

distribution results.

The remainder of the thesis is organized as follows. The state of the art is 

reviewed in Chapter 2, including the problem of load balancing, job malleability, and 

run-time system supports. Chapter 3 focuses on a discussion of two related libraries: 

ParMETIS and ZOLTAN. The main algorithms, functions and interfaces are 

introduced. Chapter 4 describes ATOP approach in detail, introduces the motivation, 

general concepts, partition allocation strategy and cost model. Chapter 5 illustrates 

the experimental results and test analysis. Finally, Chapter 6 concludes by reiterating 

the contributions of this method and proposes future research directions.

4
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2.Review of the State of the Art

The load balancing problem has been investigated for many years. In this 

chapter, we will review the existing load balancing categories, algorithms, and 

run-time systems. As well, the malleability problem will be introduced in this 

chapter, including space malleability and time malleability. Finally, we will describe 

a popular approach to deal with the data distribution problem, namely graph 

partitioning, and various algorithms used to partition a graph.

2.1 Load Balancing Problem

There are two categories of load balancing approaches according to the stage 

when the load balancing approach is performed. Load balancing can be attempted as 

static load balancing before the execution of an application, only in compile-time. Or 

it can be performed as dynamic load balancing during the execution of an 

application, and performs workload redistribution in run-time. There are several 

algorithms for each of these two categories.

2.1.1 Static Load Balancing

Static load balancing is usually referred to as the “mapping problem” or 

“scheduling problem” [Bok81]. It typically uses optimization techniques that greatly 

rely on the information regarding the task execution time and resources allocation. 

This information is assumed to be known before the execution of a parallel 

application at compile-time. The primary advantage of static load balancing is that 

the run-time overhead caused in the load balancing procedure can be completely 

avoided. Moreover, static load balancing sometimes is the only choice for such

5
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parallel applications whose sizes are too large to be migrated among processors 

during run-time.

Two static load balancing algorithms are:

♦ Round Robin algorithm

Assigning tasks in sequential order of processors, coming back to the first 

one when all processors have been allocated one task

♦ Randomized algorithm

Allocating the tasks randomly on processors

However, there are several fundamental disadvantages to static load balancing. 

First of all, it is not suitable for the applications whose workload may be created 

dynamically at run-time. Because the workload and necessary resources of such an 

application are unpredictable, the data distribution on processors created by static 

load balancing is inherently inaccurate. In fact, without executing a parallel 

application, it is very difficult to estimate accurately the execution times of various 

parts of the program [WA02]. In addition, some applications have an indeterminate 

number of steps to gain the final results. For example, with search algorithms in an 

irregular tree structure, typically it is unknown how many paths one must traverse or 

how deep to go through the tree, and we do not know whether it should be done in 

parallel or sequentially at compile-time. Furthermore, in a heterogeneous 

environment, the computational speeds of processors are different. It happens 

generally that the workload, which is divided fairly by static load balancing at 

compile-time, completes earlier on faster processors than on slower processors. 

Finally, static load balancing approaches do not work for malleable applications. 

Since “when” and “how” the adaptation will happen is unknown before execution of 

a malleable application, it is impossible to use static load balancing approaches in 

these circumstances.

6
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2.1.2 Dynamic Load Balancing

Before discussing the matter further, it is necessary to explain terminology in 

advance. Load balancing allocates processes onto processors and as usual, each 

processor is mapped with only one process. A process is the software entity of the 

corresponding processor. The workload of a parallel application which can be 

represented by a data graph is divided into many objects or work-shares that are 

represented as vertices in the graph. In such a data graph, partition is a set of objects 

that always migrate together. Each process performs several objects or work-pieces 

on one processor. (See Section 2.3 for details.) So the terms process and processor 

are used interchangeably in this thesis.

In dynamic load balancing, the above factors -  execution time, resources needed 

and current step -  have been taken into consideration when dividing workload 

according to the status of execution and resource utilization. Therefore, it has higher 

efficiency than static load balancing. Dynamic load balancing must also ensure the 

advantage obtained by the load balancing is more than the disadvantage caused by 

additional overhead it generates.

As mentioned above in the introduction, during the execution of an application, 

workload imbalance occurs in two conditions: the workload on processors changes 

during the execution time; or the resources allocated on the application change 

dynamically. Traditional dynamic load balancing works in the former case by 

monitoring the workload status on each processor and invoking load redistribution 

operations to transfer some workload from heavily loaded processors to lightly 

loaded processors when the imbalance is beyond a predefined threshold. Such kind 

of dynamic load balancing operations can be initiated by the system periodically or 

by the application explicitly. In the latter case, when system resources change, an 

overall remap or total data redistribution is generally required. When resource

7
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adaptation occurs, the load balancer performs an overall repartitioning and transfers 

some data among the processors according to the current workload status. The 

problem of existing approaches in this case is that the overall repartitioning (or 

partitioning from scratch) is very expensive. In Chapter 4, our ATOP approach will 

be introduced to solve this problem.

According to the number of specific load balancers, traditional dynamic load 

balancing can be classified into centralized or distributed. If there is one or several 

master processors working as the load balancers to control the slave processors and 

direct the data migration, it is called centralized dynamic load balancing. Otherwise, 

if there is no specific load balancer and all processors are equal when doing load 

balancing, it is distributed dynamic load balancing. Furthermore, according to the 

communication type in dynamic load balancing operation, it can also be categorized 

as synchronous approach and asynchronous approach. If the application has to be 

stopped during the execution of load balancing, it is synchronous load balancing; 

otherwise it is asynchronous one. We will introduce these two categories in detail.

2.1.2.1 Centralized vs. Distributed Dynamic Load Balancing

In centralized dynamic load balancing, a master/slave structure exists. The 

master processor calculates the repartitioning and controls every salve processor 

directly.

In the case of so-called divide-and-conquer, the workload of an application first 

is partitioned into many work-shares and kept in a work-share queue or pool 

maintained on the master processor. The master processor passes a work-share to the 

slave processor when the slave processor completes one work-share and requests 

more. If all work-shares have the same priority, it is best to hand out the work-shares 

that take a longer time and cost more resources first to avoid slave processors sitting

8
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idle and waiting for the larger work-shares to be finished. If the work-shares have 

different priorities, a general way is to maintain a separate queue for each priority, 

and hand out the work-shares from the queues in descending order. Figure 2 shows 

the divide-and-conquer technique with three different priority queues.

Slave 1

Job Queue Low

Job Queue Mid

Job Queue High

Master Processor

Slaven

Figure 2. Centralized job queues with different priorities

In another case of centralized strategies, the workload of an application is 

partitioned and broadcasted to all allocated processors in the initial stage. And a 

centralized dynamic load balancer will make repartitioning when imbalance occurs 

and direct the data migration among slave processors. This approach usually depends 

on a global view of overall workload status across processors. The master processor 

must obtain such view before performing a load balancing operation [BOS96], In 

practice, the master processor collects and maintains the workload information of all 

slaves and initiates dynamic load balancing by special trigger policies -  periodical 

initiation or demand initiation. Both the workload information and the workload 

itself can transfer among all processors either directly or in a relay fashion. In this 

case, in addition to assigning the work-shares to slaves and keeping workload status 

information, the master processor can even adjust the global thresholds periodically 

according the runtime status and therefore balance the workload for better 

distribution [XH90].

9
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The centralized strategies led to the best results in general cases [TVC+02], But 

there must be a master processor, and because the master process can only issue one 

work-share at a time, a bottleneck in communication could develop. Hence, 

centralized load balancing strategies are only suitable for the parallel environment 

with few slaves and the work-shares are computationally intensive [WA02].

The centralized approach can be improved by using a hierarchy structure to 

solve the bottleneck problem. A variation of the above centralized work-shares queue 

approach is to separate the centralized queue or pool into several sub-queues or 

sub-pools, and to distribute these small sub-queues to several master-agents. Each 

master-agent controls a group of slave processors. During load balancing, a 

master-agent would find an optimum in its local group, and transfer the optimum to 

the master processor. The master processor can select the optimal solution from all 

optimums collected from those master-agents. Figure 3 shows the distributed 

work-share queues.

Slave

Slave

Job Queue High

Master Prooessor

Figure 3. Distributed job queues with 3 master-agents

10
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By contrast to a centralized load balancing approach, the distributed load 

balancing algorithms do not depend on one or several master processors and can 

perform load balancing operations locally. All processors are the same in distributed 

dynamic load balancing approaches. Thus it avoids the bottleneck of communication 

and allowing for better scalability. The most popular distributed algorithms are 

nearest neighbour algorithms, including diffusion algorithm, dimension algorithm, 

and gradient algorithm. In this thesis, we use the diffusion algorithm to demonstrate 

the main advantage of distributed algorithms.

Figure 4. Neighbours and overlapping neighbours in 4 x 4 mesh 

In the diffusion method, a processor balances the workload with all of its nearest 

neighbours simultaneously, gives some work-shares to one or more neighbours, and 

maybe requests some workload from other neighbours as well. After one load 

balancing operation, the workload among the processor and all its neighbours is 

balanced. Figure 4 (left) shows an example of the neighbours in a 4 x 4 distributed 

computing system, and Figure 4 (right) shows two overlapping domains of 

neighbourhood on a mesh topology. In the figure, the grey nodes are the neighbours 

of the dark nodes. In the right figure, two dark nodes’ neighbour domains overlap. In 

[CRS+99A], performance of a diffusion method was compared to another popular 

distributed load balancing strategy: Generalized Dimension Exchange (GDE) and the

li
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experimental results show that the diffusion method obtains better load balance in 

ring and hypercube topologies. In Chapter 5, a specific diffusion algorithm, the 

adaptive repartitioning algorithm in ParMETIS [SKK03] is used to compare our 

over-partitioning approach. More load balancing algorithms are described in Chapter 

3 within the Zoltan library.

2.1.2.2 Synchronous vs. Asynchronous Dynamic Load 

Balancing

In addition to centralized and distributed categories, the dynamic load balancing 

can also be classified as either synchronous or asynchronous. Synchronous dynamic 

load balancing stops the application execution, performs a redistribution of the 

workload, and then continues the execution. Because the application on all 

processors has to be halted during performing load balancing, synchronous 

approaches are also called “semi-static dynamic load balancing”. Such balancing can 

be split into the two basic steps of (1) data partitioning (calculating the new 

distribution of the workload) and (2) data migration (moving the workload to the 

new location). In general, semi-static synchronous approaches are more feasible 

where the quality of distribution is important [SKKOO].

On the other hand, asynchronous dynamic load balancing does not stop the 

execution of applications. If any processor needs more work-shares, it informs the 

load balancer (in centralized model) or exchanges work-shares directly with another 

processor which has additional workload (in distributed model). The most 

well-known example of the asynchronous dynamic load balancing approaches is 

“work stealing” proposed by the MIT group. In work stealing, if a processor runs out 

of workload, it asks another processor which is chosen randomly for work. Thus, 

other processors continue performing the application without interruption.

12
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There are two main synchronous approaches to deal with the workload 

distribution problems in load balancing: geometric partitioning and graph 

partitioning. Geometric partitioning is based on a geometric representation of 

workload. And graph partitioning is on a graph without coordinates. In this thesis, 

we only discuss the graph partitioning in section 2.3. Our ATOP approach is a 

semi-static (or synchronous) approach that performs the graph partitioning to 

calculate the initial data distribution first; then it stops the application execution and 

performs the partition redistribution and migration when resource adaptation occurs; 

finally, it continues executing the application again.

2.2 Malleability Problem

Typical parallel applications are executed on a fixed number of processors; the 

resources -  the processor number or time shares -  cannot be changed in run-time, 

and the workload allocated on each processor is roughly the same. This kind of 

application is not flexible enough for job scheduling, and cannot improve the system 

utilization [SH04A]. In a study with Supercomputing-Center users, it was found 

that 98% of the jobs were moldable, i.e. can run with different initial resource 

allocations [CB03]. In [SH04A], it was shown that response times are better by up to 

50% if jobs are malleable. Figure 5 shows such a case of inflexibility. Job 1 is 

executed on three processors, and because Job 2 needs two processors to run, it is 

impossible to perform Job 1 and Job 2 simultaneously on a four-processor system. 

One processor is idle even there is a Job 2 in the waiting queue of the system. 

However, if the Job 1 can be executed with an adaptive resource, its space can be 

dynamically “shrunk” on two processors; Job 2 is now able to run with Job 1 

simultaneously without any idle processor. It will of course improve the system 

utilization and obtain better overall response time.

13
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Figure 5. Im provem ent by space malleable jobs

Here we give another two related definitions: “space malleable” and “time 

malleable” [SH04B].

Definition 3 Space Malleable: A job is space malleable if  it is capable of 

running with dynamically chosen and potentially changing numbers of processors.

Definition 4 Time Malleable'. A job is time malleable if it is able to run with 

different time shares and potentially changing time shares on different processors.

At present, two kinds of techniques are used to implement adaptive parallel 

applications: object-based technique and thread-based technique. In the former 

category, the migration units are parts of an object or data members of objects; while 

in the latter the threads are the smallest units to migrate across the processors. In the 

following part of this section, we introduce two runtime systems that support 

resource adaptation by using the above techniques: Dome (object-based), and AMPI 

(thread-based).

2.2.1 Dome (Distributed Object Migration Environment)

Dome (Distributed Object Migration Environment) [NAB+96] supports the 

reconfiguration of executing applications by allowing the modification of parallelism 

of applications. It provides a distributed object library for parallel programming to

14
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support dynamic load balancing at run-time. In the library, Dome defines some 

classes (Dome objects), which hide the detailed implementation of parallelism. 

When such an object is instantiated, it is automatically decomposed and distributed 

within the parallel environment. Workload is represented as the data members of the 

objects and such members constitute the basic migration units of the objects. Dome 

clones the program on every node and keeps track of all Dome variables in the 

program. During partitioning (or decomposing) the objects, three methods can be 

chosen: whole, block and dynamic. In the whole partitioning, all data elements of the 

Dome object are cloned on the distributed processes; the block partitioning method 

discomposes the object workload evenly on each node; the dynamic method divides 

the object elements evenly initially, and repartitions these elements periodically 

among the processors according to the dynamic workload status.

In order to balance the workload periodically, a timer is added to the Dome 

operations and it measures the amount of time spent on each processor for doing 

computations. During the load balancing phase, these times are collected and 

compared to remap the workload in every node. Therefore, in Dome, the load 

balancing operation decisions are made based on the time taken for each workload 

during the last computing phase. In addition, Dome implements both global and 

local load balancing algorithms. In the global method, a master node collects the 

time information, remaps the workload and broadcasts the new ideal workload 

distribution. Although this method will always yield the more accurate balance 

result, it may cause a large amount of data migration, as well lead to the limitation of 

scalability. In the local method, by contrast, every node in Dome just exchanges the 

workload with its neighbours. It will not result in a global optimal balance, but it is 

easy to expand to a large number of processors and requires less data migration.

The problem of Dome is that Dome does not support the most popular MPI 

library.

15
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2.2.2 AMPI (Adaptive MPI)

Adaptive MPI (or AMPI for short) is a variation of standard MPI (Message 

Passing Interface). AMPI enables the parallel application to be executed adaptively, 

which is not supported by the traditional MPI programming model. “The basic idea 

behind AMPI is to separate the issue of mapping workload onto processors from that 

of identifying work to be done in parallel [HLK03].” In traditional MPI, a parallel 

application is always divided into a special number of processes, which are allocated 

on the same number of physical processors. However, in AMPI, a huge number of 

logical MPI processes are created. The number of such logical processes is generally 

much larger than the number of the physical processors. That means on every 

physical processor, there will be many logical MPI processes to execute. As a result, 

the programmers will never be restricted by the limitation of the number of the 

processors. The programmers only focus on deciding what to do in the parallel 

applications, while the run-time system decides when and where to run these 

programs.

In practice, the logical processes are implemented as user-level threads in MPI 

programs. The smallest migration unit in AMPI is such a thread (or logical process). 

By transferring a number of logical processes among the processors, the parallel 

system gains the load balance at run-time. In conventional MPI programs, because 

there is only one process executing on each physical processor, there is no problem 

for MPI processes to keep only one set of global variables. However, such a unique 

set of global variables is not suitable for AMPI, where many logical processes are 

allocated on one physical processor. The global variables in each logical MPI 

process must be different from the ones in other logical processes. Therefore, the 

AMPI programs have to be modified to “encapsulate the global variables into a
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dynamically allocated structure” [KKD02]. Only by doing such encapsulation can 

AMP I provide good language support for easily creating adaptive programs.

Although AMPI provides applications with resource adaptation by allocating 

dynamically the workload that is represented as logical MPI processes across 

processors, it still suffers from inefficient partitioning and a rigid number of threads. 

The main problem of this approach is that when a larger number of threads is created 

on each processor, the overhead of the thread-switch is very expensive and will 

greatly slow down the program execution. Another shortcoming is that the number 

of logical processes or threads cannot be changed dynamically. Once it is set at the 

initiation stage, the application can only use such a number of threads. However, 

from our research in chapter 4, partitioning with a certain number of partitions 

(similar as the threads in AMPI) does not always obtain the best performance.

2.3 Graph Partitioning / Repartitioning

The main idea of graph partitioning is to represent the computational application 

as a weighted graph. The weights of vertices in the graph correspond to the amount 

of computation. The edge-weights in the graph usually correspond to communication 

costs. In graph partitioning, each vertex is allocated into one of K possible sets called 

partitions, and the total weights of the edges between different partitions are called 

edge cuts. The aim of graph partitioning is to find a partitioning of the graph that 

minimizes the edge cuts subject to the partitions having approximately equal vertex 

weights. In graph repartitioning, a partitioning already exists. The problem is to find 

a good partitioning that divides the vertices of a graph into roughly even sets 

"similar” to the existing partitioning. This keeps the migration cost low. These two 

kinds of problems described above are NP-hard problems. Therefore, no efficient 

exact algorithm is known. In this thesis, we use two dominant graph partitioning 

algorithms: the parallel multilevel K-way graph partitioning algorithm [SKK93] and
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the adaptive repartitioning algorithm [SKK97] to compare the performance with our 

over-partitioning.

The K-way graph partitioning algorithm is based on a serial partitioning 

algorithm -  multilevel K-way algorithm described in [KK98]. It consists of three 

phases: graph coarsening, initial partitioning and uncoarsening/refinement. In the 

graph coarsening phase, a relatively coarser graph is created by combining adjacent 

vertices in the original input graph together. This coarsening step is performed 

several times and a coarsest graph is created. On this coarsest graph, the 

Kemighan-Lin partitioning algorithm is used to calculate the initial partitioning. 

Since the graph is coarsest, the domain of the problem becomes very small, and the 

calculation will be completed much quicker than partitioning from the original graph. 

After getting the partitioning, partition refinement is performed to convert the 

coarsest graph back to the finest (i.e., original graph). In the cases where it is 

impossible to get the balance in a coarser level, the graph needs to be uncoarsensed 

one level to increase the vertex number, and then to do the calculation again. Figure 

6 shows the Multilevel K-way Partitioning.

\ =  3

Initial Partitioning Phase

Figure 6. Multilevel K-way Partitioning [SKK03] Page 6
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The adaptive repartitioning algorithm is an incremental variation of the diffusion 

partitioning algorithm, taking the initial partitioning status into consideration to 

decrease the migration cost during repartitioning. The main difference is that while 

calculating the vertices to be transferred, the adaptive repartitioning algorithm only 

considers the border vertices. If a vertex is in an over-balanced partition, it will 

migrate to a non-overbalanced neighbour partition. If more than one 

non-overbalanced neighbour partition exists, the vertex will migrate to the partition 

that results in the least edge cut. After all border vertices are visited once, this phase 

will be repeated until balance is obtained. Similarly, if it is impossible to get the 

balance in a level, uncoarsening has to be performed again.

19
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3 Zoltan library

Zoltan is a collection of data management services for unstructured, adaptive 

and dynamic applications [BDH+02]. It includes a suite of parallel partitioning 

algorithms, data migration tools, unstructured communication services, and dynamic 

memory management tools. Therefore Zoltan is strictly speaking not a method or 

algorithm but rather a collection of methods and services. The data structure of 

Zoltan is not dependent on the applications data structure; rather it is a data-structure 

neutral library. This feature allows it to be used by a variety of applications without 

imposing a particular data structure on an application. Zoltan is a highly portable 

library. It runs on various platforms and operating systems, such as SUN/Solaris, 

IBM/AIX, ASCI Red, and several Linux clusters. In addition to several of its own 

load balancing approaches, Zoltan incorporates the Jostle and ParMETIS 

approaches.

3.1 Zoltan’s General Interface

A great feature of Zoltan is its general interface [DHB+00] that enables the 

application developers to continue using their own data structures. In order to keep 

the interface simple, Zoltan employs a set o f function interfaces called “callback 

function interfaces” or “query function interfaces”, in which Zoltan queries the 

application for needed information and the application must implement these 

callback functions to answer Zoltan’s queries. The callback function is "registered" 

in Zoltan by passing it a pointer to the function, and then Zoltan calls that function 

when corresponding information is needed. Basically, query functions can be divided 

into General Zoltan Query Functions and Migration Query Functions. Table 2 shows 

the main callback (or query) functions we used in this thesis.
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Table 2. Zoltan’s query functions

QUERY FUNCTIONS RETURNED INFORM ATION

ZOLTAN_NUM_OBJ_FN Number o f objects that are assigned to the processor

ZOLTAN_OBJ_LIST_FN Objects list currently assigned to the processor

ZOLTAN_FIRST_OBJ_FN & 

ZOLTAN_NEXT_OBJ_FN

First object assigned to the processor & 
the next object assigned to the processor

ZOLTANJPARTITION_MULTI_FN 

or ZOLTAN_PARTITION_FN

A list o f partitions to which given objects are assigned 
or partition to which a given object is assigned

ZOLTAN_NUM_EDGES_MULTI_FN 

or ZOLTAN_NUM_EDGES_FN

Number o f edges for each object in a list o f objects or 
number o f edges for a given object

ZOLTAN_EDGE_LIST_MULTI_FN 

or ZOLTAN_EDGE_LIST_FN

Lists o f global IDs, processor IDs, and edge weights for 
object sharing edge(s) with a given object or objects list

ZOLTAN_OBJ_SIZE_FN Size o f the buffer needed to pack a single object

ZOLTAN_PACK_OBJ_FN
To tell Zoltan how to copy all needed data for a given 
object into a communication buffer

ZOLTAN_UNPACK_OBJ_FN

To tell Zoltan how to copy all needed data for a given 
object from a communication buffer into the 
application’s data structure

ZOLTAN_PRE_MIGRATE_PP_FN To perform any pre-processing desired by application

ZOLTAN_POST_MIGRATE_PP_FN To perform any post-processing desired by application

When different partitioning algorithms are performed in Zoltan, different query 

functions are needed for the library. For example, when performing “PartKway - 

multilevel Kemighan-Lin partitioning” algorithm, the following query functions 

have to be implemented in advance: ZOLTAN_NUM_OBJ_FN,

ZOLTAN_OBJ_LIST_FN, ZOLTAN_NUM_EDGES_FN, and

ZOLTAN_EDGE_LIST_FN. In addition, the ZOLTAN_PRE_MIGRATE_PP_FN 

and ZOLTAN_POST_MIGRATE_PP_FN query functions are optional for migration. 

If they are registered, they will be called at the beginning, and end of migration 

routine of Zoltan.
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Table 3. Zoltan’s operations

OPERATIONS
CATEGORIES

ZOLTAN’S OPERATIONS SEMANTICS OF OPERATION

Initialization and 
Finalization

Zoltan_Initialize initiates MPI for Zoltan

Zoltan_Create
creates a Zoltan instance, allocates memory 
for Zoltan information and sets the default 
values.

Zo ltan_S et_P aram 
Zoltan_Set_Param_V ec

modifies the values of any parameter used 
in Zoltan. Only one parameter can be 
changed in each time.

Zoltan_SetJFn
Zoltan_Set_<zoltan_fii_type>_Fn

provides Zoltan the registration 
information of application-supplied query 
functions (call back functions).

Zoltan_LB_Free_Part
returns the memory allocated for the 
import and export arrays during execution 
of load balancing and migration.

Zoltan_Destroy
frees the memory allocated to a Zoltan 
structure and sets the structure to NULL

Partitioning

ZoltanJLB _Set_Part_Sizes

specifies the desired relative partition sizes; 
equal by default; for some ParMetis 
algorithms, the partition size cannot be set 
as empty (zero)

Zoltan_LB_Partition

invokes the real load-balancing routine that 
was specified using Zoltan_Set_Param 
function with the LB_METHOD 
parameter.

Migration Zoltan_Migrate

performs the real migration for Zoltan; 
selects object lists to be sent to other 
processors, along with the destinations of 
these objects, and performs the operations 
necessary to send the data associated with 
those objects to their destinations

In addition to Zoltan’s query functions, this library of course provides a suite of 

operations to perform the graph partitioning and data migration. When load 

balancing is performed in Zoltan, these operations are executed in three stages: 

initialization stage, partitioning stage, migration stage, and finalization stage. In 

partitioning stage, Zoltan’s partitioning routine returns import/export lists, describing
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the object movements necessary to implement the new partitioning based on the old 

one.

Data migration using Zoltan's migration tools can be accomplished in two 

different ways: auto-migration or user-guided migration. For some applications, only 

the objects used in balancing must be migrated and no auxiliary data structures must 

be moved, such as the particle simulation applications, in which the load balancing is 

based on the number of particles per processor and we have to move only the 

particles and their data to establish the new distribution. For such applications, 

Zoltan's auto-migration tools can be used. Other applications, such as finite element 

methods, perform load balancing on the objects of a finite element mesh, but objects 

that are moved to new processors also need to have their connection information 

moved to the new processors. In this complex case, more user-controlled approaches 

to data migration are required than the auto-migration. Users have to implement their 

own data migration functions. In the cases of graph partitioning, the objects and their 

connection information have to be moved to new processors. Thus the 

auto-migration is not applicable for our ATOP approach for resource adaptations. 

Table 3 lists the main Zoltan’s operations based on Zoltan Version 1.52

3.2 Algorithms provided by Zoltan

As mentioned above, Zoltan provides several of its own algorithms and 

incorporates the Jostle and ParMETIS approaches as well. The following dynamic 

load-balancing algorithms are included in the Zoltan library of version 1.52 

[BDH+02]:

♦ Recursive Coordinate Bisection (RCB)

♦ Recursive Inertial Bisection (RIB)

♦ Hilbert Space-Filling Curve (HSFC)
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♦ Refinement Tree Based Partitioning (REFTREE)

♦ Octree Partitioning (OCTPART)

♦ ParMETIS (PARMETIS)

♦ Jostle (JOSTLE)

The first three approaches, RCB, RIB and HSFC, need geometric information. 

The fourth and fifth algorithms, REFTREE and OCTPART, use a tree-based 

workload representation.

We do not consider Jostle but ParMETIS in the context of this thesis. ParMETIS 

[KSK03] is a parallel library that performs the partitioning in parallel. The following 

three partitioning approaches are related in this thesis:

♦ PartKway - multilevel Kemighan-Lin partitioning

♦ RepartGDiffusion - diffusion algorithm

♦ AdaptiveRepart - adaptive repartitioning

PartKway is a multilevel K-way partitioning algorithm that divides the graph 

into K partitions. RepartGDiffusion is a global diffusion algorithm. And 

AdaptiveRepart appears only in ParMETIS 3.0 and higher version. It is an 

incremental algorithm with small migration cost. The first two algorithms are used in 

this thesis to compare their performances with our over-partitioning algorithm.

In Zoltan, users choose the algorithm to perform by setting a string parameter -  

LB_METHOD through calling the function Zoltan_Set_Param (see table 3).

3.3 Implementing Resource Adaptation with Zoltan

In this section, the methods we used to implement resource adaptation by 

exploiting the Zoltan library are discussed.

For space adaptation, (1) the function Zoltan_LB_Partition is executed to create 

more data partitions than the processors currently allocated on the application. (2)
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From the returned import/export lists, we get the information on which object is 

allocated to which partition and which partition is mapped on which processor. (3) 

After data migration by calling Zoltan’s migration routine Zoltan_Migrate, the 

workload is balanced on current resources and a global view of the workload across 

the processors allocated on the application is established. (4) When the number of 

allocated processors changes, we modify the import and export lists with 

corresponding objects and execute the Zoltan_Migrate again. (5) Finally, one 

processor broadcasts the refreshed global workload view across the new resource 

domain. For time adaptation, in addition to the above Zoltan_LB_Partition function, 

Zoltan_LB_Set_Part_Sizes is used to change the relative weights of partitions 

dynamically.

Because Zoltan, ParMETIS and Jostle do not support resource adaptation 

explicitly, and do not provide interfaces to shrink or expand the available processors, 

we have to use empty partitions to implement space adaptation. However, empty 

partitions are not permitted for most algorithms in ParMETIS, except K-way and 

Global Diffusion algorithms. Thus we can only use these two approaches in space 

adaptation. Diffusion is not used for initial distribution but for re-distribution with 

the most incremental nature of balancing. Since space adaptation is changing the 

workload radically on some processors (e.g. empty processors), we consider 

diffusion only for time adaptation.
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4 Our Approach -  ATOP

4.1 General Architecture of our Approach

In our approach ATOP, we employ a so-called “over-partitioning” approach to 

address the goals of eliminating the partitioning overhead and providing resource 

adaptation. The over-partitioning concept was proposed in [GK98] in 1998. 

However, it was not originally designed for load balancing with resources 

adaptation, but for traditional dynamic load balancing. When workload imbalance 

occurs, the partitions are exchanged between a heavily loaded processor and a lightly 

loaded processor to balance the workload, while the partition number on each 

processor remains the same during all procedures. In our approach ATOP, we employ 

over-partitioning to create more data partitions than the processors currently 

allocated on the application. When the resource adaptation occurs, the corresponding 

partitions will migrate among processors without re-calculating a new partitioning. 

Therefore, the overhead for repartitioning is almost eliminated. In order to keep the 

workload on each processor roughly the same, the numbers of partitions and 

processors must satisfy a specific constraint, that is, the number of partitions divided 

by the number of processors must be without a remainder. For example, we may 

create 16 partitions for a maximum of 16 processors and then permit using 16, 8, 4, 

2, and 1 processors — but not, e.g., of 3 or 10 processors. In addition, we investigate 

another case where the created partitions are significantly more than the available 

processors in a system (e.g. 128 partitions on a cluster with 16 processors). Then it is 

possible to allocate these partitions on a more arbitrary number of processors. 

However, a risk of increasing edge cuts exists under this condition. With the cases 

where over-partitioning does not perform well or non-fitting resource numbers need
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to be chosen, ATOP still provides an alternative option to do partitioning or 

repartitioning from scratch.

For time adaptation, because the total partition numbers on all processors may 

not be a multiple of the available processor number, we employ much finer grains 

when performing over-partitioning, e.g. creating 128 partitions on 8 processors. Then 

we can allocate the corresponding number of partitions on each processor according 

to the relative weights approximately. Certainly, in time adaptation the data 

distribution after over-partitioning will be better if  much finer grains (or a larger 

partition number) are created. Figure 7 shows the general architecture of our ATOP 

approach.

Parallel Applications

ATOP
Adaptation Layer y

Overpartitioning 
Approach

Job
Scheduler

Resource
Monitor

Partitioning from 
Scratch

Zoltan Library

ParMETIS Library

OS and Machines

Figure 7. The general architecture of our adaptation framework

4.2 Partitioning and Migration Strategy

As mentioned above, in space adaptation, we have two options to perform 

over-partitioning -  to create the partitions equal to the maximum number of 

processors that may be allocated to the application, say the number of total 

processors on a cluster, or to create many more partitions than the number of
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available processors. The results, especially the edge cuts, from these two options 

will be investigated in our experiments. Furthermore, in time adaptation, a 

significantly larger number of partitions should be created in order to make accurate 

partitioning in proportion to the expected relative weights.

In addition to deciding the partition numbers, partitioning and migration strategy 

also determine how to allocate partitions across processors. For time adaptation, it is 

relatively simple -  ATOP uses a serial manner to allocate the partitions. Because the 

time shares on processors in the next adaptation step are totally unpredictable, we 

have to allocate partitions one by one on each processor sequentially. However, in 

space adaptation the problem becomes more complicated. In order to improve the 

quality of distribution of over-partitioning, ATOP should not only keep the workload 

on all processors roughly the same, but also try to decrease the edge cuts. The ideal 

solution is to create a hierarchical structure (see Figure 8) and use it internally by the 

over-partitioner. Therefore, if several partitions should be allocated on one processor, 

we should allocate neighbouring partitions or the partitions that have the same parent 

partition together. This ideal solution always obtains the lowest possible edge cuts. 

Currently, we assume that the partitions are delivered from Zoltan in a sequential 

order that reflects the neighbourhood relation of the partitions. We call this kind of 

migration with sequential order of partitions “structure-oriented order” that allocates 

the first P/N partitions to the first processor, the second P/N to the second processor 

and so on, for P partitions and N processors. However, it will cause more data 

migration than the following “migration-oriented order”

In contrast to “structure-oriented order”, “migration-oriented order” focuses 

mainly on decreasing the migration overhead. It calculates the destination processor

by Proc id = Partid mod N  with Proc id being the destination processor id and Part_id the 

partition id. Although “migration-oriented order” can decrease the migration
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overhead, it will increase edge cuts at the same time. The tradeoff will be 

investigated in the experiment.

As we mentioned above, the potential approach to improve the quality of 

distribution with over-partitioning is to create a hierarchical structure of partitions if 

internally used by the partitioner (see Figure 8). Then, if  multiple partitions should 

be allocated to a processor, we can allocate neighbouring partitions or siblings of the 

same parent partition together to obtain the lowest possible edge cuts. To implement 

this internal hierarchical structure, we have to modify the internal load balancer in 

ParMETIS. It is not considered in this thesis. However, we will investigate whether 

the partitions are delivered in a sequential order that reflects the geometric 

neighbourhood. Figure 8 (left) shows a recursive partitioning approach with binary 

hierarchical partition structure compared with a K-way partitioning case (right).

K-way
P a r t i t io n

P art

P art
P art

8 P art

P a rt 5

Figure 8. Binary partitioning (left) and K-way partitioning (right)

4.3 Cost model

Originally, the load balancing approaches did not include any cost estimations 

for partitioning and data migration [SH04B]. The first aim of load balancing is to 

divide the workload fairly across processors. And the second aim is to create as few
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edge cuts as possible. Some approaches such as the diffusion algorithm perform 

better in terms of partitioning/migration cost and worse where edge cuts are 

concerned, i.e. the quality of the distribution obtained.

Here we propose a model to evaluate our over-partitioning approach compared 

with partitioning from scratch. In our model, the application (1) executes 

computation and communication work for several iterations, then (2) performs load 

balancing for resource adaptation once, and (3) repeats the above two phases until 

completing all calculations. In addition, we do not take dynamic workload changes 

into consideration. That is, the overall workload of an application always remains 

unchangeable during all phases. As well, we have to assume the computation and 

communication phases are mostly synchronous in iterations.

The following arguments will be used for calculating the cost of load-balancing 

and evaluation the benefits of our ATOP approach:

♦ Tmg : Migration time for partitioning from scratch

♦ T0verMig: Migration time for over-partitioning

♦ TPar: Partitioning/repartitioning time for partioning from scratch

♦ Toverpa t '• Partitioning/repartitioning for overpartioning

♦ N iter: Number of iterations between adaptations

♦ N ven (*): Number of vertices on ith processor

♦ Pnum : Number of processors used in each adaptation step

♦ 7pervert • Time used to simulate the computation overhead on each node

♦ TperEig '• Time used to simulate the communication overhead on each edge 

cut

TC om p 9 ^O verCom p M ax(N vert(i)) * T p erV ert > * ~  [®» ̂ n u m  ) *
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C om putational tim e in  each iteration, tim e used for perform ing the 

longest jo b  on all processors

* Tcom m  » ̂ OverComm ~  '̂PerEdg * ^  cuts (0 > * = [®> ̂ n u m  ) ■
i

Overall com m unication tim e in  each iteration, sum  o f  the tim e used for 

com m unication through all edge cuts am ong processors

♦ IMB = M ax(Nm  (>))/((£ N v,„ (.'))/ P _  ), i = [0, P „  ):
/

Im balance am ong allocated processors: the m axim um  processor weight, 

M a x ( N vert (0)> divided by  the optim al weight, (£  N Vert (i» / Pnum.
i

Thus, w e calculate the following two form ulas:

-  Tim e saved during adaptation by  using over-partitioning,

$  ~  (T p a r  +  -Twij ) -  Over Par +  ? OverMig )

-  Tim e for application com m unication cost caused by  m ore edge cuts

C  =  N  iter *  ( ( T OverComp +  ? OverComm ) -  ( ^Comp ^Comm ))

T p e r v e r t p e r Edg should be set according to the different application properties.

I f  S >  C, it is w orth em ploying the over-partitioning; otherw ise w e should do a 

traditional partitioning from  scratch. In addition to the trade-off betw een saving in  

adaptation and additional application (com putation and com m unication) overhead 

caused b y  over-partitioning, w e should investigate another im portant criterion -  

relative benefit, w hich depends on the interval tim e betw een tw o resource 

adaptations, i.e. the sm aller the tim e interval, the higher the relative benefit o f  

over-partitioning.
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5 Experimental Results

5.1 Experimental Framework

We perform all experiments on our Horus cluster with 16 nodes each of which 

has two 2 Ghz Xeon processors (though we only allocate one process per node), 512 

Mbyte memory, and 512 Kbyte L2 cache. The interconnection is Myrinet. The MPI 

library version is MPICH-GM 1.2.5.12bs, Zoltan is Version 1.52 and ParMETIS is 

Version 3.1.

We use benchmark graphs taken from the University of Greenwich Graph 

Partitioning Archive [GPA] as the test input graphs. The graphs are selected with 

different sizes and different properties, that is, different ratios of edges vs. vertices 

(see Table 4, where |V| is the number of vertices and |E| is the number of edges in the 

mesh). These graphs describe the graph structure only and do not have any weights 

attached to vertices or edges. In our experiments, we set all weights uniformly, 

though we could easily use different weights.

Table 4. Benchmark graphs with different properties

Graphs |V| |E| Description

3elt 4720 13722 2D finite element mesh
wing_nodal 10937 75488 3D finite element mesh

4elt 15606 45878 2D finite element mesh

fe_sphere 16386 49152 Not Available
cti 16840 48232 Not Available

wing 62032 121544 3D finite element mesh
brack2 62631 366559 3D finite element mesh

finan512 74752 261120 Not Available

To explore the performance and distribution quality of our adaptation approach, 

we perform the following tests:
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• Comparison between our over-partitioning approach and partitioning 

from scratch, both using K-way partitioning (a ParMETIS approach); 

furthermore, we compare with adaptive partitioning via the diffusion 

algorithm (also a ParMETIS approach) in time adaptation

• Adaptation between different numbers of allocated processors for space 

adaptation

• Use of different maximum resource allocations (8 or 16 processors) to 

test the scalability. Adaptation with the number of partitions set 

according to the maximum resource allocation

• Comparison of number of partitions set to the maximum allocation on 16 

processors (using 16 partitions) and set to a much larger number (using 

128 partitions)

• Comparison of migration-oriented and (approximate) structure-oriented 

allocation of partitions to processors

• Use of different weight combinations for time adaptation

To evaluate the performance, we employ the following measurements and 

metrics:

• Time for each step of adaptation as a total and differentiated into 

partitioning and migration cost

• Edge cuts per adaptation step in total

• Vertices per processor (to check imbalance)

5.2 Experimental Results for Space Adaptation

To examine the overall performance of our over-partitioning approach, we test 

our approach compared to partitioning from scratch with eight benchmark graphs
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described above which have different properties. In all following tables, the unit of

measurement of time is in seconds. Table 5 shows the results from over-partitioning

vs. partitioning from scratch, using 8 processors with 8 partitions. It includes the

edge cuts in each adaptation step and the total overhead for four space adaptations in

terms of time. In any case of space adaptation, we apply an initialization step which

we show separately. In this initial step, we read the graph on 1 processor (i.e. in one

process) and partition and distribute it for the first configuration.

Table 5. Adaptation time and edge cuts of over-partitioning (upper table) vs. partitioning from 
scratch (lower table) on 8 processors

Over-partitioning with 8 partitions

Graphs
Overall edgecuts Init

Step
Time of Adaptation 

steps4 8 4 2
3elt 338 505 338 156 0.3 0.056
4elt 419 665 419 194 2.934 0.572
cti 2143 2282 2143 1141 3.069 0.612

fe_sphere 1076 1331 1076 704 2.666 0.645
wing_nodal 4911 5963 4911 3622 1.4 0.289

wing 2390 3261 2390 1858 202.33 25.8
brack2 5047 8528 5047 4069 204.09 26.85

finan512 405 648 405 324 295.95 49.1

Partitioning from scratch

Graphs
Overall edge cuts Init

Step
Time of Adaptation 

steps4 8 4 2
3elt 297 471 259 92 0.298 0.18
4elt 410 643 364 171 2.997 1.039
cti 1253 2399 1182 415 3.744 1.666

fe_sphere 936 1395 878 490 3.062 2.283
wing_nodal 4213 6093 3759 1759 1.572 0.903

wing 2129 3081 2036 947 215.32 102.67
brack2 3163 8221 3113 747 222.96 88.83

finan512 324 648 324 162 328.71 199.82

Figure 9 is created from the data in Table 5. From these data, we observe that 

although the overhead in the initialization step for two approaches are almost the 

same, ATOP outperforms partitioning from scratch by up to 75% in terms of
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adaptation cost. At the same time, ATOP only moderately increases overall edge

cuts.

cti fe_sphere uine.nodal track2 finan512

I  Adapt at ion overhead of ATOP
1 Adaptation overhead of Partitioning from Scratch

Figure 9. Adaptation overhead for different graphs on 8 processors

To test the scalability of our ATOP approach, we make similar experiments on 

an expanded allocation with a maximum of 16 processors. The upper and middle 

tables in Table 6 show the results from using over-partitioning vs. partitioning from 

scratch on 16 processors with 16 partitions. The results show good scalability for our 

ATOP approach, which again performs significantly better on any number of 

processors. For the graph “wing”, however, the saving is now about 33%, whereas 

on 8 processors, it was about 25% but also the problem size is relatively smaller if 

running on up to 16 nodes. Figure 10 reflects such saving.

Table 6. Adaptation time and edge cuts of over-partitioning with 16 partitions (upper table), 
Partitioning from scratch (middle table), Over-partitioning with 128 partitions (lower table)

Over-partitioning with 16 partitions on 16 processors

Graphs
Overall edge cuts Init

Step
Time of Adaptation 

steps8 16 4 2
3elt 543 896 326 147 0.267 0.064
4elt 912 1045 432 167 3.296 0.518
wing 4632 4897 4183 2274 210.667 20.263

brack2 11926 13434 9527 7868 222.85 22.6
finan512 1296 1296 1053 810 312.75 37.98
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Partitioning from scratch on 16 processors

Graphs
Overall edge cuts Init

Step
Time of Adaptation 

steps8 16 4 2
3elt 473 882 252 117 0.298 0.176
4elt 662 1087 382 154 3.624 2.237
wing 3461 4781 2191 989 234.38 61.516

brack2 8875 13884 3074 746 245.17 56.51
fman512 648 1296 324 162 354.58 112.96

Over-partitioning with 128 partitions on 16 processors

Graphs
Overall edge cuts Init

Step
Time of Adaptation 

steps8 16 4 2
3elt 414 675 234 105 0.397 0.066
4elt 792 1232 514 253 4.076 0.414
wing 3906 5650 2657 1397 215.78 17.508

brack2 9182 15043 3964 1005 224.32 18.08
Finan512 784 1533 331 169 326.25 30.09

4 e lt wins t>rack2 finan512

EBAdaptation overhead of ATOP (16 p a r t i t io n s )
■  Adaptation overhead of P a r tit io n in g  from Scratch 
□  Adaptation overhead of ATOP (128 p a r t i t io n s )

Figure 10. Adaptation time of ATOP with 16 partitions (left column), partitioning from scratch 
(middle column) and ATOP with 128 partitions (right column)

In addition to show the flexibility of ATOP, we compare the number of 

partitions set to maximum allocation on 16 processors with 16 partitions and set to a 

much larger number with 128 partitions. The lower table in Table 6 also 

demonstrates the effect from using such larger numbers of partitions. We increase 

over-partitioning on 16 processors from 16 partitions to 128 partitions. The results 

show that larger numbers of partitions do not significantly affect performance of
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partitioning and migration (the differences in edge cuts are minor and in some cases 

even the differences are on the positive side), (see lower table in Table 6 and Figure 

10.) This is a promising result as larger numbers of partitions provide more 

flexibility in resource allocation (arbitrary numbers of processors chosen) and 

may—because being fmer-grain—also increase cache locality.

Table 7. Adaptation time of over-partitioning vs. partitioning from scratch per adaptation step

Over-partitioning with 16 partitions

Graphs
Adaptation time on 16 processors

Init
8->16 16->4 4->2

Par__time Mig_time Par_time Mig_time Par_time Mig_time
3elt 0.267 0 0.016 0 0.015 0 0.033
4elt 3.296 0 0.221 0 0.084 0.001 0.212
wing 210.667 0.005 5.902 0.005 1.664 0.005 12.682

brack2 222.85 0.004 5.786 0.005 2.567 0.005 13.628
fman512 312.75 0.015 12.473 0.006 3.375 0.006 22.149

Partitioning from scratch

Graphs
Adaptation time on 16 processors

Init
8->16 16->4 4->2

Par_time Mig_time Par_time Mig_time Par_time Mig_time
3elt 0.298 0.048 0.02 0.024 0.018 0.036 0.03
4elt 3.624 0.822 0.336 0.359 0.285 0.165 0.27
wing 234.38 19.14 6.527 9.517 8.081 4.944 13.307

brack2 245.17 17.613 6.221 8.481 6.263 4.263 13.676
fman512 354.58 27.534 9.615 13.361 11.239 7.118 21.368

Table 7 and Figure 11 differentiate the adaptation cost per adaptation step for

over-partitioning vs. partitioning from scratch, using 16 processors with 16 

partitions. In both table 7 and figure 11, Par_time is partitioning time, and Mig_time 

is migration time. The results demonstrate that in each step of adaptation, our ATOP 

over-partitioning approach outperforms the partitioning from scratch by almost 

eliminating the partitioning overhead. From Figure 11, we find that the primary 

overhead of adaptation, i.e. partitioning cost (dark column), is almost zero in our 

over-partitioning approach, and the migration costs of the two approaches do not
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make a difference. Therefore, our ATOP over-partitioning approach always obtains 

better performance in each step of adaptation than the partitioning from scratch in 

terms of time cost.

B P a r_ tim e  □ M ig _ tim e

Figure 11. Accumulative adaptation overhead in different steps of over-partitioning with 16 
partitions (left column) vs. partitioning from scratch (right column) for space adaptation

Table 8. Imbalance of the data distributions by using over-partitioning (upper table) vs. 
partitioning from scratch (lower table)

Over-partitioning on 16 processor

Graphs
Workload per processor

l->8 8->16 16->4 4->2
Max Min IMB Max Min IMB Max Min IMB Max Min IMB

3elt 590 590 00.0% 295 295 00.0% 1180 1180 00.0% 2360 2360 00.0%
4elt 2090 1797 07.1% 1065 841 09.2% 4080 3674 04.6% 7852 7754 00.6%
wing 8090 7376 04.3% 4199 ■502 08.3% 15864 14778 02.3% 31390 30642 01.2%

brack2 8305 7347 06.1% 4276 ■383 09.2% 16501 14725 05.4% 32101 30530 02.5%
finan512 9348 9341 00.0% 4675 ■670 00.1% 18691 18687 00.0% 37378 37374 00.0%
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Partitioning from scratch

Graphs
Workload per processor

l->8 8->16 16->4 4->2

Max Min IMB Max Min IMB Max Min IMB Max Min IMB
3elt 592 585 00.3% 295 295 00.0% 1180 1180 00.0% 2370 2350 00.4%

4elt 2053 1875 05.2% 1053 795 08.0% 3936 3846 00.9% 7854 7752 00.7%
wing 8083 6981 04.2% 4201 285 08.4% 16338 15055 05.4% 31022 31010 00.0%

brack2 8558 7124 09.3% 4290 3273 09.6% 16969 15005 08.4% 31960 30671 02.1%

finan512 9345 9342 00.0% 4675 4668 00.1% 18689 18687 00.0% 37376 37376 00.0%

In addition to the edge cuts, the vertex distribution is another important factor to

evaluate the workload redistribution. From the above cost model, the computational 

time per iteration step depends on the largest work chunk on all allocated processors. 

In this thesis, we use a matrix of IMB to describe the quality of data redistribution, 

which is the percentage of the maximum processor weight divided by the optimal 

weight. Table 8 shows the data distribution results with imbalance percentage (IMB) 

per adaptation step for over-partitioning vs. partitioning from scratch. We find that 

for the graph “3elt”, ATOP is 0.3% worse than partitioning from scratch; whereas 

for the graph “wing”, ATOP is 2.9% better. For the graph “brack2”, the performance 

is different in each different adaptation step. ATOP is 3% better in the first step, but 

1% worse in the fourth step. Therefore, ATOP is at least not worse than the 

traditional partitioning from scratch as regards the imbalance factor. In Table 8, max 

and min show the maximum and minimum number of vertices among the nodes.

Table 9. Adaptation time and edge cuts by using structure-oriented order (upper table) vs. 
migration-oriented order in over-partitioning (lower table) on 16 processors

Structure-oriented order

Graphs
Overall edge cuts

Init
Time of 

Adaptation 
steps

8 16 4 2

3elt 543 896 326 147 0.267 0.064
4elt 912 1045 432 167 3.296 0.518
wing 4632 4897 4183 2274 210.667 20.263

brack2 11926 13434 9527 7868 222.85 22.6
fman512 1296 1296 1053 810 312.75 37.98
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Migration-oriented order

Graphs
Overall edge cuts

Init
Time of 

Adaptation 
steps

8 16 4 2

3elt 859 896 852 675 0.331 0.056
4elt 1023 1045 1013 645 4.708 0.42
wing 4573 4897 3920 2974 216.61 17.16

brack2 11793 13434 11793 9339 202.35 21.05
fman512 1134 1296 1134 810 318.25 26.15

We compare the edge cuts and adaptation overhead with two migration 

strategies: structure-oriented order vs. migration-oriented order. Table 9 shows the 

results obtained on 16 processors for ATOP, comparing structure-oriented order and 

migration-oriented order of partition allocation. We observe that using 

structure-oriented order generally decreases the overall edge cuts on all processors, 

i.e. provides better distribution quality. In some general cases, the decrease of edge 

cuts is around 10% to 50%. Using migration-oriented order, migration cost is 

slightly improved. Although using migration-oriented order to allocate workload 

among processors creates less adaptation overhead than using structure-oriented 

order, the overall advantage generated by using such strategy is insignificant. 

Because using structure-oriented strategy potentially creates better edge cuts, we 

have used it in all other tests.

5.3 Experimental Results for Time Adaptation

As mentioned in the above section, we employ much finer grains when 

performing over-partitioning in time adaptation, e.g. 128 partitions on an 8-processor 

cluster. Thus we can allocate the corresponding number of partitions on each 

processor according to the relative weights approximately. That is, using finer grains 

(or a larger partition number) we can create better data distribution after 

over-partitioning in time adaptation.
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We compare the results of time adaptation on 8 processors, using

over-partitioning with 128 partitions. In the initial step, the workload is allocated on

the processors with the relative weights 2:2:2:2:1:1:1:1, and then changes following

the sequence: 2:2:2:2:1:1:1:1 -> 1:1:1:1:1:1:1: 1:1:1:1:2:2:2:2 1:1:1:1:2:2:3:3.

In the experiments, we employ two repartitioning algorithms: K-way partitioning

and adaptive repartitioning by diffusion, to compare their performance. Since we do

not change the number of processors, the diffusion approach can be used in time

adaptation. Table 10 and Figure 12 are the results of the comparison, in which Ecuts

are edge cuts, Part is partitioning time, and Migr is migration time.

Table 10. Adaptation time and edge cuts for time adaptation by using over-partitioning (upper 
table) vs. K-way partitioning from scratch (middle table) vs. diffusion adaptive partitioning 
(lower table) on 8 processors

Over-partitioning with 128 Partitions

Graphs Init
1:1:1:1:2:2:3:3

Ecuts Part Migr Ecuts Part Migr Ecuts Part Migr
3elt 0.37 414 0 0.01 692 0 0.01 783 0 0.006
4elt 2.89 772 0 0.09 1250 0 0.15 1286 0 0.04
wing 221.91 3795 0.001 3.92 4986 0.001 4.58 4697 0.001 0.91

brack2 222.34 9410 0.004 3.724 14865 0.004 4.477 12975 0.003 0.926
fman512 347.65 660 0.005 4.328 2784 0.005 6.014 2607 0.004 0.999

K-way partitioning

Graphs Init
1:1:1:1:2:2:2:2 1:1:1:1:2:2:3:3

Ecuts Part Migr Ecuts Part Migr Ecuts Part Migr
3elt 0.33 493 0.04 0.02 466 0.02 0.008 496 0.03 0.009
4elt 5.62 668 0.57 0.23 707 0.25 0.15 715 0.11 0.05
wing 226.93 3313 20.28 1.85 3345 17.69 11.8 3084 1.15 0.72

brack2 229.98 8002 21.24 4.556 7437 14.57 9.913 6917 1.12 0.978
finan512 354.52 648 18.998 3.186 1302 14.4 10.14 1409 1.704 1.496
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RepartGDifEusion partitioning (adaptive repartitioning via diffusion)

Graphs Init
1:1:1:1:1:1:1:1 1:1:1:1:2:2:2:2 1:1:1:1:2:2:3:3

Ecuts Part Migr Ecuts Part Migr Ecuts Part Migr
3elt 0.33 387 0.05 0.01 381 0.03 0.004 381 0.03 0.004
4elt 4.29 749 0.46 0.1 692 0.35 0.02 690 0.34 0.01
wing 225.94 3858 20.14 2.15 3599 17.03 0.04 3540 16.96 0.04

brack2 236.29 19761 12.67 0.248 19396 12.35 0.045 19357 12.33 0.04
fman512 358.48 6817 13.81 0.105 6485 13.72 0.095 6346 13.61 0.06

From the Table 10 and Figure 12, we find that over-partitioning always obtains 

better performance than partitioning from scratch (K-way) by down to 15% in terms 

of time cost. The additional number of edge cuts is moderate. Because the diffusion 

approach just takes the vertices on the border of partitions into consideration, the 

data distribution created by this approach is worst and its migration time is 

significantly better only for big graphs, i.e. “wing”, “brack2” and “finan512”. The 

specifications wl:w2:w3:w4:w5: w6:w7:w8 show the different weights per 

processor.

0. 14 

1  0.12
0.1 

0.08

o  0.06 

J  0.04

S 0.02 -o 0 .2

Part u M igr

Figure 12. Adaptation time in each step of ATOP with 128 partitions (left column) vs. K-way 
partitioning from scratch (middle column) vs. diffusion adaptive partitioning (right column)

Table 11 shows the vertex distribution results after time adaptation for 

over-partitioning vs. K-way partitioning. The results demonstrate that the vertex 

distribution created by over-partitioning is at least not worse than the traditional 

partitioning approaches.
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Table 11. Number of vertices per processor per adaptation step using over-partitioning vs. 
K-way partitioning on 8 processors

Over-partitioning with 128 partitions on 8 processors

Graphs
2:2:2:2:1:1:1:1

PO PI P2 P3 P4 P5 P6 P7
3elt 774 775 775 776 367 367 370 516
4elt 2567 2543 2567 2571 1212 1211 1215 1720
wing 10165 10137 10069 10200 4895 4813 4903 6850

brack2 10336 10214 10330 10142 4927 4934 4940 6808
finan512 12281 12289 12247 12300 5803 5818 5775 8239

Over-partitioning with 128 partitions on 8 processors

Graphs
P0 PI P2 P3 P4 P5 P6 P7

3elt 591 590 589 591 591 588 590 590
4elt 1966 1945 1952 1946 1952 1943 1942 1960
wing 7719 7730 7620 7768 7795 7818 7757 7825

brack2 7907 7803 7850 7764 7779 7907 7809 7812
finan512 9363 9350 9374 9314 9341 9344 9348 9318
Over-partitioning with 128 partitions on 8 processors

Graphs
1:1:1:1:2:2:2:2

P0 PI P2 P3 P4 P5 P6 P7
3elt 369 368 370 368 776 775 771 923
4elt 1226 1224 1216 1211 2559 2569 2550 3051
wing 4887 4780 4818 4832 10051 10236 10189 12239

brack2 4970 4901 4779 4984 10253 10132 10417 12195
finan512 5786 5915 5841 5858 12251 12319 12342 14440

Over-partitioning with 128 partitions on 8 processors

Graphs
1:1:1:1:2:2:3:3

P0 PI P2 P3 P4 P5 P6 P7
3elt 332 331 333 333 663 665 994 1069
4elt 1105 1110 1089 1089 2210 2185 3281 3537
wing 4366 4342 4325 4320 8627 8734 13201 14117

brack2 4437 4386 4414 4425 8896 8695 13204 14174
finan512 5311 5194 5287 5280 10520 10497 15770 16893
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Partitioning from scratch

Graphs
2:2:2:2:1:1:1:1

PO PI P2 P3 P4 P5 P6 P7
3elt 787 787 786 787 391 394 394 394
4elt 2601 2694 2470 2680 1368 1313 1237 1243
wing 9039 10897 10913 10898 5472 5475 3810 5528

brack2 11154 10422 10145 11154 3657 5155 5723 5223
finan512 11823 11694 11979 13703 6020 6852 6601 6080

Partitioning from scratch

Graphs
P0 PI P2 P3 P4 P5 P6 P7

3elt 590 590 590 590 590 590 590 590
4elt 1976 1884 2057 1762 1781 2018 2112 2016
wing 8101 8094 8078 7555 7547 7549 7553 7555

brack2 8096 8570 8522 7920 7514 8313 5633 8063
fman512 9343 9343 9344 9343 9345 9344 9345 9345

Partitioning from scratch

Graphs
1:1:1:1:2:2:2:2

P0 PI P2 P3 P4 P5 P6 P7
3elt 394 394 394 382 789 789 789 789
4elt 1356 1408 1243 1126 2543 2690 2607 2633
wing 4951 5569 4910 5682 9856 10143 10465 10456

brack2 5498 5445 4556 5678 9460 11026 10976 9992
fman512 5793 6226 6851 6851 13090 12581 11680 11680

Partitioning from scratch

Graphs
1:1:1:1:2:2:3:3

P0 PI P2 P3 P4 P5 P6 P7
3elt 338 337 337 338 671 675 1012 1012
4elt 1109 1034 1162 1057 2290 2446 3314 3194
wing 3439 4436 4716 3937 9218 9746 13982 12558

brack2 4721 3996 4566 3153 9641 8537 14450 13567
finan512 5133 5510 4981 5869 9357 11209 16345 16348
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5.4 Scenario Study and Experimental Summary

To demonstrate the implication of different cost factors, we present a scenario 

based on the graph “wing”. The number of allocated processors changes from 16 to 4 

(in step 16->4).

In the first case, we assume that the computation cost per vertex 

is TPerVert = 0.075ms, and the communication cost per edge cut is TPerEdg =0.005ms .

The iteration steps between two space adaptations are N iter =100 .Using the formulas 

for S and C from Section 3, we calculate that in the adaptation:

S = (9.517 + 8.081) -  (0.005 +1.664) = 15.929 sec = 15929m s,

C = 100 * ((15864* 0.075 + 4183 * 0.005) -  (16338 * 0.075 + 2191 * 0.005)) = -2559ms.

The time between these adaptation steps is

Titer = 100 * (15864 * 0.075 + 4183* 0.005) = 121.07 sec * 2 min.

SinceS > C , it is worth applying over-partition. The saving is 18.5 sec which is 

about 15% of 2 min time interval.

In another case where weight of edge cuts is dominant, we set TPerVerl = 0.1ms, 

TperEdg = 0.5ms, and N iter =33.  ThenS  = 15929ms, C = 31303.8ms.and the time 

between this adaptation isTjter = 121.37sec ~ 2m in . The adaptation cost is 15.4 sec 

(12.8%) worse than partitioning from scratch of 2 min time interval.

From the above scenarios, we conclude as a rough approximation that if the 

communication cost per edge cut is dominant for an application, or the interval is 

very long, partitioning from scratch is likely to gain better performance, whereas 

over-partitioning will obtain better performance under the remaining conditions.
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6 Conclusion and Future Work

We have presented a flexible approach for adaptive resource allocation in both 

space and time dimension. Our ATOP approach employs a standard load-balancing 

library (Zoltan) to accomplish the data redistribution. Zoltan enables parallel 

application developers to keep the original data representation of the application. We 

provide two possible approaches: partitioning from scratch and over-partitioning. 

The latter significantly reduces adaptation cost by saving partitioning time and only 

slightly decreases the distribution quality of the data. Our results have shown 

improvements by up to a factor o f 4 in space adaptation and of 6.5 for time 

adaptation. Over-partitioning appears to be especially useful if  there are frequent 

adaptations as may be more likely in time-shared environments.

Defining the callback functions for Zoltan, however, proved to be a bit 

tedious—thus, as future work our AlphaMeta group will provide a higher-level 

automatic interface as part of our own load balancing library. Furthermore, our 

group plans to integrate allocation of partitions with the internal multi-level structure 

by making the latter explicitly available, and also plans to improve migration cost by 

hiding the communication latency. Another potential project is to integrate our work 

with the typical dynamic load balancing frameworks which focus on handling the 

application-internal imbalance at run-time.

Most importantly, our ATOP load balancing approach is one link of a whole 

chain that is formed by our AlphaMeta Lab. Our ATOP will be integrated with an 

adaptive MPI runtime environment, a job scheduler, and a resource monitor to 

provide a flexible and efficient platform for parallel applications development.
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