
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

A low-cost processor-based logic emulation system using FPGAs A low-cost processor-based logic emulation system using FPGAs

Marwan Kanaan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Kanaan, Marwan, "A low-cost processor-based logic emulation system using FPGAs" (2007). Electronic
Theses and Dissertations. 4615.
https://scholar.uwindsor.ca/etd/4615

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4615?utm_source=scholar.uwindsor.ca%2Fetd%2F4615&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Low-Cost Processor-Based Logic
Em ulation System U sing FP G A s

by

M arw an K anaan

A Thesis
Subm itted to the Faculty of Graduate Studies
through Electrical and Computer Engineering

in Partia l Fulfillment of the Requirements for the
Degree of M aster of Applied Science at the

University of Windsor

W indsor, Ontario, Canada
2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-34930-4
Our file Notre reference
ISBN: 978-0-494-34930-4

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2007 Marwan Kanaan

All Rights Reserved. No P art of this document may be reproduced, stored or oth

erwise retained in a retreival system or transm itted in any form, on any medium by

any means without prior w ritten permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Logic emulation systems are used to verify the functionality of logic designs targeted

for integrated circuit implementation. In this thesis, the design and implementation

of a low-cost processor-based logic emulation system is presented. It contains multi

ple processors interconnected together and packaged in one emulation engine. It is

capable of emulating combinational and sequential logic at relatively high speeds of

187 KHz or more, in real operating environments and with predictable compile time.

The implementation was done on an FPG A to reduce cost. The proposed system is

scalable to a m ulti-FPGA system where several of these identical FPGAs could be

connected together to increase the logic capacity of the system.

The architecture and operation of the emulator is first described. Architecture

exploration experiments were conducted in order to choose suitable values for different

architecture param eters for implementation on the target FPGA. The design was

implemented on an Altera S tratix FPGA. A four-bit multiplier was emulated to verify

correct operation of the proposed emulation system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family for their unending love and support.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknow ledgments

I thank God Almighty th a t this thesis has been completed. I stand here humbly at

the end of this accomplishment confident th a t I would not have been able to do it

without His support and help. I ask Him, once and again, to continue to shed light

on each and every path I take.

I would like to thank my supervisor, Dr. Mohammed Khalid, for his support,

guidance and determ ination throughout the course of this work. I am deeply and

forever grateful for all the invaluable efforts he made. I would also like to thank Dr.

Abdel-Raheem and Dr. Zhang for sitting on my committee and reviewing my thesis

and Dr. Kar for sitting in as Chair of Defense.

Thanks to my family for all their love, support and advice. To my mom and

dad, thanks for all the encouragements, prayers, help and patience. I am what I am

today largely because of my parents and for th a t I am thankful. To my sister and my

grandm other, I am thankful for all the encouragements, prayers and care.

Thanks to all my friends and fellow graduate students at the University of W ind

sor. Jay and Ian, I ’ll never forget all the times we spent together. It was wonderful

to have you as officemates. My thanks also go to the current and former members

of our research group: Amir, Kevin, Raymond, Omar, Junsong, Aws, Hongmei and

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Thuan. I would also like to thank my friends Harb, Ali, Bahador, Payman, Ashkan,

Mahzad, and Amr for their friendship over the past two years.

Funding and technical support for this research was provided by the Natural

Sciences and Engineering Research Council (NSERC) of Canada, the University of

W indsor, the Canadian Microelectronics Corporation (CMC) and Altera Corporation.

Their contributions are gratefully acknowledged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

A bstract iv

D edication v

A cknowledgm ents vi

List o f Figures xii

List o f Tables xiv

List o f A bbreviations xv

List o f Symbols xvi

1 Introduction 1

1.1 Thesis O b je c tiv e s ... 3

1.2 Thesis O rganization ... 4

2 Background and Previous Work 5

2.1 Design V e rif ic a tio n ... 5

2.1.1 F o rm al V e r i f ic a t io n .. 6

2.1.2 Software Simulation .. 7

2.1.3 Hard ware-Accelerated S im u la tio n .. 8

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

2.1.4 Rapid P r o to ty p in g .. 8

2.1.5 Logic Emulation ... 9

2.2 Logic Emulation S y stem s... 10

2.2.1 FPGA-Based Em ulation S y s te m s ... 12

2.2.1.1 Field Program mable Gate A r ra y s 12

2.2.1.2 Architecture and CAD for FBEs 17

2.2.2 Processor-Based Em ulation System s.. 19

2.2.2.1 Em ulation Processors .. 19

2.2.2.2 Architecture and CAD for P B E s 20

2.2.3 Commercially Available Logic E m u la to rs 23

3 System A rchitecture and Operation 24

3.1 Introduction and M o tiv a tio n ... 24

3.2 Levels of H ie ra rc h y .. 25

3.3 Logic Emulation P ro c e sso r .. 27

3.3.1 Control S t o r e ... 29

3.3.2 D ata S ta c k s .. 31

3.3.3 Logic E le m e n t... 32

3.3.4 Architecture and O p e r a t io n .. 33

3.4 Memory Emulation P r o c e s s o r .. 36

3.4.1 Control S t o r e ... 37

3.4.2 Memory S to r e ... 39

3.4.3 Release Memory Word U n i t .. 39

3.4.4 Capture Memory Word U n i t .. 40

3.4.5 Architecture and O p e r a t io n .. 40

3.5 Emulation M o d u le .. 42

3.5.1 Module Level Routing S w i t c h ... 43

3.5.2 Sequential F ille r .. 44

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

3.5.3 Architecture and O p e r a t io n ... 44

3.6 Emulation C h i p .. 45

3.6.1 Chip Level Routing S w itch .. 45

3.6.2 Architecture and O p e r a t io n ... 46

3.7 Emulation E n g in e ... 46

3.7.1 M ulti-FPGA S y s te m .. 46

3.7.2 Scalability I s s u e s ... 48

4 A rchitecture Exploration and Im plem entation R esults 50

4.1 Implementation T a r g e t ... 50

4.1.1 Altera S tratix F P G A .. 51

4.2 Architecture E x p lo ra tio n ... 52

4.2.1 Key P a ra m e te rs ... 52

4.2.2 Effect of Changing P a ram e te rs .. 53

4.2.2.1 Effect of Changing Lookup Table Size 53

4.2.2.2 Effect of Changing Number of Emulation Steps . . . 56

4.2.2.3 Effect of Changing Total Number of O utputs 58

4.2.2.4 Effect of Changing Memory Word S i z e 64

4.2.3 Choice of P a ra m e te rs ... 66

4.3 Implementation Results ... 66

4.3.1 Logic P ro c e s s o r ... 67

4.3.2 Memory Processor .. 68

4.3.3 Emulation M o d u le .. 68

4.3.4 Emulation C h ip ... 69

4.4 Implementation Estim ates for Emulation E n g in e 71

4.5 Emulation E x am p le .. 72

4.5.1 Four-Bit M u ltip lie r .. 72

4.5.2 Scheduling and Im p le m e n ta tio n ... 73

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

5 Conclusion and Future Work 77

5.1 Research C o n trib u tio n s ... 77

5.2 Comparisons with O ther S y s te m s .. 78

5.3 Future W o rk ... 79

R eferences 80

V ITA AUCTO R IS 83

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Logic Emulation S y s t e m ... 11

2.2 A Generic FPG A A rch itec tu re ... 14

2.3 Internal Structure of a Logic E le m e n t.. 15

2.4 Internal Structure of a Lookup T a b l e .. 15

2.5 M ulti-FPGA S y s t e m .. 17

2.6 CAD Flow for F B E s .. 18

2.7 Processor-Based Em ulation S y s te m ... 21

2.8 CAD Flow for P B E s .. 22

3.1 Emulation Design C y c l e ... 26

3.2 System H ie ra rc h y ... 28

3.3 Logic Emulation P ro c e sso r .. 29

3.4 Logic Processor Control Word F i e l d s .. 30

3.5 Logic E le m e n t.. 33

3.6 Operation of the Logic Processor ... 35

3.7 Memory Emulation P r o c e s s o r .. 37

3.8 Memory Processor Control Word F ie ld s ... 38

3.9 O p e ra tio n of th e M em ory P r o c e s s o r .. 41

3.10 Emulation M o d u le .. 43

3.11 Emulation C h i p .. 45

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

3.12 8-Way Mesh M F S .. 47

3.13 Fully Connected MFS .. 47

3.14 Clock Duty C y c le .. 48

4.1 LUT Size vs. Area in L P ... 54

4.2 LUT Size vs. Memory Bits in L P .. 54

4.3 LUT Size vs. Speed in L P ... 55

4.4 Number of Emulation Steps vs. Area in LP 57

4.5 Number of Emulation Steps vs. Memory Bits in L P 57

4.6 Number of Emulation Steps vs. Speed in L P 58

4.7 Number of Emulation Steps vs. Area in M P 59

4.8 Number of Emulation Steps vs. Memory Bits in M P 59

4.9 Number of Emulation Steps vs. Speed in MP 60

4.10 Number of Total O utputs vs. Area in L P ... 61

4.11 Number of Total O utputs vs. Memory Bits in L P 61

4.12 Number of Total O utputs vs. Speed in L P ... 62

4.13 Number of Total O utputs vs. Area in MP .. 62

4.14 Number of Total O utputs vs. Memory Bits in M P 63

4.15 Number of Total O utputs vs. Speed in M P ... 63

4.16 Memory Word Size vs. Area in M P .. 64

4.17 Memory Word Size vs. Memory Bits in MP .. 65

4.18 Memory Word Size vs. Speed in MP ... 65

4.19 Module Level Routing S w i t c h .. 70

4.20 Operation of the Four-Bit Multiplier... 73

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Logic Processor Control Word Fields Description 30

3.2 Memory Processor Control Word Fields D escrip tio n 38

4.1 Multiplier Scheduling for Processors 0 -3 ... 74

4.2 Multiplier Scheduling for Processors 4 -7 ... 76

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Abbreviations

Abbreviation Definition
ASIC Application-Specific Integrated Circuit
CAD Computer Aided Design
DUT Design Under Test
EDA Electronic Design Autom ation
FBE FPGA-Based Logic Emulation System
FF Flip-Flop
FPG A Field Programmable Gate Array
IC Integrated Circuit
I /O Inpu t/O u tpu t
LE Logic Element
LP Logic Emulation Processor
LUT Lookup Table
MFS M ulti-FPGA System
MP Memory Emulation Processor
MUX Multiplexer
PBE Processor-Based Logic Emulation System
PCB Printed Circuit Board
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLSI Very Large Scale Integration

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

Symbol Definition

M Lookup table size.

N Total number of emulation steps in one design cycle.

P Total number of outputs of all processors in one module.

Q Memory word size.

R The number of logic emulation processors in one emulation module.

S The number of memory emulation processors in one emulation module.

T The number of emulation modules in one emulation chip.

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

In this day and age, electronic devices, ranging from cell phones to personal com

puters, play an essential role in our daily lives. Designing such devices and verifying

their functionality could be an excruciating task for engineers if the necessary tools

are missing. These tools, known as Computer-Aided Design (CAD) tools, have long

been a vital part of the research in chip design where considerable research efforts

have been made and are always being carried out to ensure th a t designers have the

most reliable and efficient of these tools.

One task of these design tools is design verification, the process where the func

tionality of an electronic device is validated. In the past three decades verification

has become one of the most crucial parts of the design cycle. Its im portance is due

to the fact th a t it is absolutely necessary for designers to make sure th a t their design

is correct prior to fabrication. A simple error discovered after production is very ex

pensive to fix thus potentially costing the manufacturing company millions of dollars

in losses [12]. In addition to tha t, the increase in chip size [26] and the need to reduce

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

tim e-to-m arket require more capable and robust design verification tools to cope with

the growing industry.

Several design verification tools are available 011 the market today. The most

effective of these tools are logic emulators. A logic emulator is a design verification

tool where a reprogrammable system im itates the functional behavior of a logic design.

The system can be programmed to act exactly as a desired chip and thus gives

the user the ability to check the logic design in real time circuit environments and

conditions before m anufacturing [9, 17]. By doing so the designer could verify the

Design under Test (DUT) by running tests th a t the real chip would have to pass.

This process could be repeated several times and in this manner most errors could be

identified and corrected. Logic emulators give the user the ability to catch almost all

functional errors in a logic design, however we should note th a t timing requirements

and constraints cannot be verified using this tool.

Currently there are two types of logic emulators, FPGA-Based Logic Emulation

Systems (FBEs) and Processor-Based Logic Emulation Systems (PBEs). In FBEs,

several reprogrammable chips known as Field Programmable Gate Arrays (FPGAs)

are connected together to emulate the functional behavior of a logic design. While

FBEs are considered to be low-cost and efficient emulators they face a m ajor problem

when it comes to their CAD tools. The second type of logic emulation systems are

processor-based emulators where multiple emulation processors are packaged together

in an emulation engine capable of emulating a logic design of significant size and

complexity. PBE systems are considered to be an efficient verification tool and do

not suffer from problematic CAD tools, however they are implemented on custom

made chips and are therefore very expensive.

The motivation behind this thesis is to design a logic emulation system th a t would

combine the advantages of FBEs and PBEs; a system th a t would be as efficient as

a PBE and as inexpensive as an FBE. To achieve this goal, one solution would be

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

to implement the processor-based emulation system on an FPGA, a reprogrammable

chip known for its low cost. In this thesis we explore the architecture of such a system.

The proposed emulation system would run at relatively high speeds and be capable

of emulating designs of significant logic capacity and complexity.

1.1 Thesis O bjectives

The main objective of this thesis is to explore FPG A design and implementation of

a low-cost processor-based emulation system. To achieve this goal, an architecture of

a logic emulation system is explored and implemented. This thesis has the following

objectives:

1. Explore the architecture of a processor-based logic emulation system th a t can

be implemented on an FPGA.

2. Implement the emulator by targeting a specific FPGA.

3. Ensure th a t the PBE is scalable. Several FPGAs should be able to connect

together in a m ulti-FPG A system to increase logic capacity.

4. Verify the system by emulating a logic design.

To satisfy the first objective, an architecture of a processor-based emulator was

explored in terms of cost, functionality, area and speed upon which key design pa

ram eters were chosen accordingly. To satisfy the second objective, an Altera Stratix

FPG A was targeted. The implementation was tuned specifically for this FPGA. To

address the third objective a scalability study was done and results are presented.

For the fourth objective, a four-bit multiplier was designed, scheduled and emulated

on the designed system to verify its correctness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

1.2 Thesis O rganization

The rest of this thesis is organized as follows. Chapter 2 discusses the background

and previous work done on the subject. Chapter 3 presents the architecture and

operation of the proposed system and its various components. Chapter 4 presents

the architectural exploration and implementation results. Lastly, chapter 5 concludes

with some discussion of possible future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and Previous Work

This chapter presents the background for the research done in this thesis and briefly

describes related previous work. The first section begins by defining design verification

and its significance in today’s industry. It then briefly discusses the five m ajor types

of verification tools available on the market today, along with their main advantages

and disadvantages. The second section of this chapter focuses on logic emulation

systems. A brief introduction is given with a discussion of the two main types of

logic emulators. The chapter concludes by presenting some examples of commercially

available logic emulation systems.

2.1 D esign Verification

Design verification is the process whereby a logic design is checked for functional

errors. In this part of the design cycle, the functional behavior of a logic design is

validated. As chips increased in size and complexity, design verification tools became

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

more complicated and required more efforts. Today the design verification process

alone may consume up to 60% of the whole design cycle in terms of time, resources

and manpower making it the bottleneck for design development [14, 29, 16].

Over the past few decades design verification has evolved from simple m athem at

ical techniques tha t were carried out by manual calculations to test the validity of

small designs to multi-million dollar machines capable of verifying a design consisting

of millions of gates.

There are several types of design verification tools available on the m arket today,

each with advantages and disadvantages, and in general they can be categorized into

five m ajor groups:

1. Formal verification

2. Software simulation

3. Hardware-accelerated simulation

4. Rapid prototyping

5. Logic emulation

In the following sections we introduce each type of these tools and we describe

their capabilities and weaknesses.

2.1 .1 Form al V erification

In form al verification the designers prove the validity of a logic design using formal

methods; all or part of the design is modeled in a mathematical framework after

which the designer would solve the m athem atical equations to verify the correctness

of the design [20, 23].

The main advantage of formal verification is th a t it is highly effective in catching

design errors. Since it relies on a m athem atical approach, formal verification is almost

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

completely guaranteed to find any functional error. The main disadvantage, however,

is th a t it is very time consuming. Proving the validity of a design using formal

verification requires extended periods of time from expert designers and hence it is

impractical to use in large IC designs [20].

Despite tha t, formal verification is probably the most comprehensive of all verifi

cation tools but due to its heavy cost in terms of time it could be only used in small

circuits or in specific parts of large designs.

2.1 .2 Softw are S im ulation

Software simulation is w ithout doubt the most popular and widely used verification

tool [29]. It is widely available, inexpensive and above all user friendly. In simulation

the Design under Test (DUT) is represented in software models which the designer

would test for correctness by applying input test vectors to them then reading the

outputs to check for errors [27],

Simulation has many advantages over other verification tools. It is generally easy

to use; the user’s task is only to choose the input vectors after which he or she has

to wait for outputs. Simulation is also inexpensive since it requires only a software

platform. It provides the user with high visibility and flexible debugging; the user can

observe each signal traversing the design to check for errors. But probably the most

im portant advantage is the flexibility th a t simulation provides. Since it is software-

based, changing and modifying parts or all the design is relatively easy to do.

Software simulation also has several disadvantages. The degree of accuracy of the

verification process depends heavily on the user’s choice of input test vectors. The

choice of these vectors should be comprehensive enough to cover all aspects of the de

sign or else some functional behavior of the design might be missed and go unchecked

for errors. A second m ajor disadvantage, and perhaps the most im portant, is tha t

simulation is relatively slow [27]. Because of the sequential nature of software pro

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

cessing, simulating a large design, especially in its real world operating environment,

could literarily take days or even weeks.

2 .1 .3 H ardw are-A ccelerated Sim ulation

Hardware-accelerated simulation shares the same basic principles with software sim

ulation. The motivation behind this m ethod was to simply overcome the slow speed

problem of software simulation. A logic design is still modeled in software, however

this tim e the simulation is executed on custom made hardware rather on a software

platform running on a single processor. The processing power achieved by hard

ware accelerates the simulation and gives the advantage of faster simulation speed

[27, 22, 31].

Despite the speed acceleration th a t this m ethod provides it still suffers from the

same problem th a t software simulation suffers from: the degree of accuracy of the

verification process still depends on the designer’s choice of inputs. In addition, the

speedup provided by the hardware accelerators is still limited by the communication

media between the host computer and the hardware accelerator itself [29]. The time

needed for the input vectors to be generated and the output signals to be read is still

restricted by the connective devices.

2 .1 .4 R apid P ro to typ in g

As the name suggests, in rapid prototyping, a custom made prototype of the logic

design is built by the designer to verify the functionality of a design [19, 8]. Usually a

custom m ulti-FPG A system is built for each prototype. In such systems, the FPGAs

are programmed to im itate the functional behavior of the design and perm anent

connections are established between them to ensure design connectivity.

The main advantage of prototyping is speed. Since the whole design is imple

mented in hardware, rapid prototyping achieves the fastest verification speeds of all

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

verification tools. In addition to speed, another advantage of rapid prototyping is tha t

it provides the user with the capability of testing the prototype in its real operating

environment. Rather than using input test vectors to test the system, real inputs are

supplied from the surrounding target system, thus giving the user higher confidence

in the validity of the design.

Nevertheless, rapid prototyping has a m ajor disadvantage when it comes to cost.

Once a prototype is built for a specific design it cannot be modified to implement

another design; in other words it is a throw-away effort after the user is done with

only one design. This basically means th a t the system is not reusable making its cost

very high.

2.1 .5 Logic E m ulation

The newest type of design verification and the most efficient one is logic emulation.

A logic emulator is a reprogrammable system th a t can be programmed and repro

grammed to emulate logic designs a t relatively high speeds. Once programmed, an

emulator would function exactly as the desired hardware without the need for fabri

cation. In doing so, an emulator would be combining the advantages of software and

hardware together; because it is reprogrammable it is as flexible as software and since

it utilizes hardware it achieves very high speeds. However, it is im portant to note

th a t although an emulator is programmable it is still quite different from software

simulation. The hardware here is not being modeled in software; in fact, it is actually

implemented on reprogrammable hardware.

Compared to other verification tools logic emulation has many advantages. It is

as flexible as software simulation yet much faster and although it is not as fast as

rapid prototyping yet it is not as costly because it is reprogrammable. But the main

advantages of the logic emulation would have to be in-circuit emulation, the capability

to function like an actual IC chip in real world operating environments. After being

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

programmed an emulator could be connected to a target system and tested, giving

the user the opportunity to verify the operation before fabrication. This removes the

need to generate input test vectors, and like rapid prototyping, gives the user higher

confidence in his or her design by relying on real inputs supplied by the target system.

Logic emulation still has some disadvantages, mainly its cost. Logic emulation

systems are still very expensive and can only be afforded by big companies. Designing

and manufacturing such a system is still a costly process.

Since it is the main focus of this research, in the following sections of this chapter

we describe the main types of logic emulators and we discuss their advantages and

disadvantages in detail.

2.2 Logic Em ulation System s

A typical logic emulation system, shown in Figure 2.1, contains three main elements:

1. Em ulation engine (or emulator for short)

2. Emulation support facilities

3. Interface circuitry

An emulator is basically a reprogrammable hardware system th a t can implement

any logic design. This reprogrammable system could be a set of FPGAs or emulation

processors connected together. Some details about the architecture of the emulator

would be discussed in later sections of this chapter.

Emulation support facilities include a host computer along with an emulation

compiler [15]. The task of the host computer is to act as an interface between the

user and the emulator. The compiler is responsible for converting the DUT supplied

by the user into a bit stream to be downloaded to the programmable hardware. The

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

DUT

I

Host
Computer

Interface
Circuitry

System

Logic
Emulator

Figure 2.1: Logic Emulation System

emulation support facilities might also include some other components like a D ata

Capture Unit used to read the outputs from the emulator and relay them to the user.

The interface circuitry of the logic emulation system is used to connect the emu

lator to a target system to perform in-circuit emulation.

To use the system the user supplies the compiler with a logic design (e.g. written

in a hardware description language). The compiler compiles the design and generates

a bit stream which can then be downloaded onto the emulation engine. At this time

an emulator is working exactly as the desired chip would work. Using the interface

circuitry the user could connect the emulator to a target system and test the design.

This is the main advantage of emulation: the ability to test a design in its typical

operating environment with real inputs.

To illustrate this consider the example where the designers are verifying the func

tionality of a video card for a personal computer. In this case the DUT is the logic

design for the video card and the target system is the personal computer. To perform

in-circuit emulation, the designers would program the emulator with the design of the

video card and connect it to the personal computer using the interface circuitry. The

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

personal computer would then be powered up with the emulator acting as its video

card. In this way the emulator could be checked thoroughly for errors.

Logic emulation systems are currently considered to be the most effective and

fastest m ethod for design verification. They are used by most top semiconductor

vendors to test IC designs before fabrication. The price for such systems varies from

tens of thousands to millions of dollars depending on the type of the system, capacity

and speed. Currently there are two main types of logic emulation systems available

on the market:

1. FPGA-Based Emulators (FBEs)

2. Processor-Based Emulators (PBEs)

In what follows we present each of those types, their architectures, design tools

and operation.

2.2 .1 F P G A -B a sed E m ulation S ystem s

The basic building block of an FBE system is an FPGA. In this emulator, several

FPG As are connected together to emulate (im itate) the functional behavior of a logic

design. Before discussing the architecture of this system we first introduce FPG As in

detail.

2.2.1.1 Field Program m able G ate Arrays

A field programmable gate array is a reprogrammable chip th a t was first introduced

in the 1980s [17]. By means of reprogrammable logic embedded inside, an FPGA

can virtually implement any logic design. The main advantages of FPGAs can be

summed up in two main points. The first advantage is that they are inexpensive; the

price for a single FPG A starts from a few dollars. In addition, the reprogrammable

capability of the FPG A makes it reusable for many designs which lowers its cost even

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

more. The second main advantage of FPGAs is th a t they have a fast time-to-market.

Unlike custom made chips where every single design has to be handled individually,

FPGAs, because they are not custom made, are available off the shelf.

The above mentioned properties or advantages have given great importance to

FPG As in the industry. More and more designs are being implemented on FPGAs

to save money and time. Companies could use FPGAs for their designs instead

of Application-Specific Integrated Circuits (ASIC) chips to go around the lengthy

and costly process of designing and building custom made chips. However, these

gains do not come without a price; FPGAs are still bigger and slower than their

counterpart ASIC chips. Because of their programmable nature and since they are

not built to suit a specific design but rather any design, FPGAs still suffer from a

decrease in logic utilization, i.e. bigger area, and slower speed. FPG A manufacturers

are addressing this problem now more than ever and with the emergence of modern

more sophisticated FPGAs these problems are becoming of lesser im portance and the

advantages of FPGAs are outweighing any disadvantages they have.

The programmable ability of an FPG A is derived from the use of programmable

logic elements able to emulate or im itate the functional behavior of any logic func

tion. Several architectures for FPG As have been proposed, however, they all share

some basic components. Figure 2.2 is a simplified illustration of a typical FPG A

architecture [30].

FPG As are made up of several m ajor components. The two most im portant

components are logic elements and routing resources. A logic element in the FPGA

is responsible for emulating the behavior of a logical function. In other words a

logic element could im itate the function of any logic gate. A typical logic element,

shown in Figure 2.3, contains three main elements: lookup table, flip-flop and a 2-to-l

multiplexer. It is the task of the lookup table to operate as a logic gate. A typical

lookup table is shown in Figure 2.4. The lookup table shown in the figure has four

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

I/O I/O I/O I/O I/O I/OI/O

I/O I/O I/OI/O I/O I/OI/O

L = Logic Block
C = Connection Block
S = Switching Block
I/O = Input/O utput Pad

Figure 2.2: A Generic FPGA Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Logic Element (LE)

Configuration b itB

Output
Inputs

>clk

4-Input
LUT

Clock

Figure 2.3: Internal Structure of a Logic Element

Lookup Table

0
1
2

! 15
■

Inputs —

Figure 2.4: Internal Structure of a Lookup Table

inputs. It contains a memory array and each array element is connected to an input

of a 16-to-l multiplexer. The selection bits for this multiplexer are the inputs of the

lookup table, i.e. the presumed inputs of the logic gate. To program the table the

compiler sets the bits of the memory array. Based on the selection bits (inputs) of

the multiplexer one of those array elements is chosen. The lookup table shown in the

figure is an example of a four-input AND gate; only when all the inputs are l ’s is the

last element of the array chosen and the output is 1.

The lookup table only handles the combinational part of the logic element. To

15

0 ^
1
2

MUX
Output

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

accommodate for sequential logic, the logic element contains a flip-flop whose input

is the output of the lookup table. The output of this flip-flop is fed into a 2-to-l

multiplexer whose selection bit is reconfigured by the compiler. This selection bit

decides the output of the logic element.

Besides the logic elements, FPGAs contain routing resources to connect these

elements together. The routing resources are basically made up of connection blocks,

switching blocks and a set of wires th a t run vertically and horizontally across the

FPG A. Connection blocks situated between the logic elements can be programmed

to connect the outputs of these logic elements to any vertical or horizontal wire.

Switching blocks situated between the connection blocks can in turn be programmed

to connect the wires together [13].

By programming the logic elements, connection blocks and switching blocks a user

can implement any logic design on the FPGA. Nevertheless, mapping a logic design

onto an FPG A is not an easy task and is the m ajor challenge in FPG A research.

In addition to the logic elements and routing resources, FPGAs contain two other

im portant components: embedded memory blocks and inpu t/ou tpu t pads. Typically

the FPG A would have several memory blocks of different sizes to store data th a t

would be used to implement memory arrays or registers in a logic design. I /O pads,

on the other hand are used to connect the FPG A to the outside world. Both memory

blocks and I/O pads are connected to other elements of the FPG A via the routing

resources mentioned above.

Currently there are two m ajor FPG A vendors: Altera Corporation and Xilinx In

corporated [4, 34], The latest FPG As produced by these companies contains hundreds

of thousands of logic elements capable of emulating what is equivalent to millions of

ASIC logic g a te s [6, 35]. The ro le of FPGAs in th e in d u s try is grow ing a n d significant

research is being carried out to enhance their performance and capabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Interconnection
V Network J

FPGA

FPGA

FPGA FPGA

FPGA

FPGA

FPGA FPGA

Figure 2.5: M ulti-FPGA System

2.2.1.2 A rchitecture and C AD for FBEs

In an FPGA-based emulation system several FPGAs are connected together to be able

to emulate a design of significant size. Several architectures were proposed to create

the M ulti-FPGA System (MFS)[21, 32, 7]. A typical architecture is shown in Figure

2.5. Here eight FPGAs are connected to each other by means of a programmable

interconnection network. Such a system is highly flexible since all inter-FPG A con

nections are programmable.

The CAD flow, shown in Figure 2.6, for a multi-FPGA system is as follows. The

user supplies the compiler with a logic design. After performing logic synthesis and

technology mapping, the compiler partitions the design into several parts such tha t

each part could fit on one FPGA. Then each part of the design would be assigned

to a specific FPGA inside the MFS and the compiler starts routing the signals or

connections between all the FPGAs, this is known as inter-FPGA routing. After

inter-FPG A routing is done the compiler starts placing and routing each part of the

design in its specific FPGA, this is known as intra-FPGA placement and routing.

The final step would be to generate a bit stream of the design and download it to the

FPG As [13].

FBEs are an efficient verification tool; they can emulate any design and can ac-

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

0=0
/ >

Logic Synthesis and
Technology Mapping

Partitioning

Board-Level
Placem ent

Inter-FPGA
Routing

(Intra-FPGA
I Placem ent and Routing

(Generate
Bit Stream

Figure 2.6: CAD Flow for FBEs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

commodate any logic capacity by simply increasing the number of FPGAs. FBEs also

have a relatively high emulation speed because they exploit parallelism in hardware.

Another m ajor advantage is th a t they have a relatively low price starting from only

several thousand dollars.

Nonetheless, FBEs still face a m ajor problem: CAD tools. Mapping a logic design

to a m ulti-FPG A system by programming the FPGAs and the inter-FPGA routing

resources is very problematic. Partitioning a design, placing it on FPGAs and then

routing the signals have been one of the main focuses of FPG A research. Although

many algorithms have been proposed and architectures suggested, CAD tools for

FPG As are still very complex. Compiling a design for a m ulti-FPGA system has an

unpredictable compile tim e and may never even succeed. In addition, FBEs have very

limited visibility and debugging support, which makes it very difficult for the designer

to catch errors. Also, if an error was discovered and fixed the change might trigger

a chain reaction in the whole system and the design would need to be compiled and

downloaded again.

2.2 .2 P rocessor-B ased E m ulation System s

The second m ajor type of logic emulation systems is processor-based emulators. The

basic building block of a PBE is what is known as an emulation processor th a t can

emulate a large number of logic gates and memory functions. Several of these emula

tion processors are connected together and run in parallel to emulate the functional

behavior of a logic design [15]. Before we discuss in detail the architecture of this

system it is useful to briefly describe the emulation processors and their operation.

2.2.2.1 Em ulation Processors

Similar to a logic element in an FPG A, an emulation processor can perform the

logical operation for any given function. Although it is made from custom hardware

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

it is still programmable; th a t is achieved because embedded inside this processor is

a reconfigurable lookup table. The structure of this lookup table is exactly the same

as th a t of the one inside the FPGA. The main difference between this processor and

the logic element of the FPG A is th a t a logic element of the FPG A is programmed

only once before emulation starts and therefore can only implement one logic function

during the whole emulation cycle. This is in contrast with this processor which can

reprogram its lookup table during emulation to emulate different logical functions.

The array elements for the lookup table would be stored inside the processor and

then loaded into its lookup table during emulation to change the logic function at

any time. The ability to change its operation type during emulation is what gives the

processor its advantage over the logic element of the FPGA. More on the processor’s

architecture and operation will be described in later chapters.

It is worth noting th a t inside a PBE there might be several kinds of emulation

processors. A PBE could have all homogeneous processors, in which case each proces

sor would have to be able to perform any function of the logic design. Alternatively,

a PB E could have heterogeneous processors, in which case specific processors would

perform specific tasks (e.g. several processors would perform logic operations while

others would perform memory functions) [15, 10].

2.2.2.2 A rchitecture and C AD for PB E s

A typical architecture of a processor-based emulator is shown in Figure 2.7. The emu

lation processors are connected together via a programmable interconnection network

to ensure th a t a signal could traverse from one processor to another. It should be

noted th a t unlike FBEs where the interconnections are fixed during emulation, this

interconnection can be reprogrammed during emulation. The reader should keep in

mind th a t reprogramming the processors during emulation is quite different from

programming them prior to emulation. The former is done by the emulation support

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Interconncetion
Network

Processor Processor ProcessorProcessor

Figure 2.7: Processor-Based Emulation System

facilities while the latter is done by the emulator itself with no connection to the

facilities.

The CAD flow for PBE, shown in Figure 2.8, is described as follows. The user

supplies the compiler with the logic design. The compiler performs logic synthesis and

technology mapping then partitions the design into several parts such th a t each part

would be able to fit in one emulation processor. After each of those parts is assigned

to a specific processor, a process called scheduling starts. During scheduling different

logic functions which have been assigned to each processor are allotted different time

slots throughout the emulation period. For example, an emulation processor would

perform a logical AND during a specific tim e slot and a logical OR during another

time slot. After scheduling is done a b it stream is generated and downloaded onto

the processors before emulation starts [15].

PBEs have several advantages. They have very efficient and fast CAD tools com

pared to FBEs. In addition to tha t, they have much better visibility and debugging

support. Finding an error and fixing it in a PBE is a standard procedure and usually

does not trigger a chain reaction in the whole emulator. W hen an error is found

the designer would only have to fix the specified processor and not the whole design

unlike FBEs. CAD tools in PBEs are much less complicated than FBEs and have a

well predictable compile time.

PBEs also have some disadvantages. They are comparatively slower than FBEs.

Because processors in PBEs have to reprogram themselves periodically this leaves an

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

GD
Logic Synthesis and
Technology Mapping

Partitioning,
Assignm ent and

Scheduling

Generate
Bit Stream

Figure 2.8: CAD Flow for PBEs

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

effect on the emulation speed. Nonetheless, current PBEs are becoming faster and

faster and are able to compete with their FBE counterparts. The m ajor disadvantage

of PBEs is their price which is due to the fact th a t the whole system is built on

custom hardware. Their prices are currently in the order of millions of dollars.

2 .2 .3 C om m ercia lly A vailab le Logic Em ulators

To give the reader an idea of the emulation technology on the market today, we

present two examples of logic emulators manufactured by leading Electronic Design

Autom ation (EDA) companies, Cadence Design Systems and Mentor Graphics [11,

25].

The Incisive Palladium I I is a PBE system supplied by Cadence Design Systems

[18]. This machine is capable of simulation acceleration and in-circuit emulation and

can reach a speed up to 1.5 MHz. This emulator can compile up to 30 million gates

per hour on a single workstation and has a maximum capacity of 256 million gates.

The VStationPRO is an example of an FPGA-based emulation system [33]. This

product is m anufactured by Mentor Graphics. It has a scalable capacity from 1.6 to

120 million gates and can reach a speed up to 1 MHz. This emulator can compile at

a rate of 5 million gates per hour.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

System Architecture and

Operation

This chapter presents the architecture and operation of the proposed logic emulation

system. The first and second sections include an introduction and a general view of

the emulator. Sections 3 and 4 discuss the two basic components, logic and memory

emulation processors, in detail. Sections 5, 6 and 7 discuss the emulation module,

emulation chip and emulation engine respectively.

3.1 Introduction and M otivation

Chapter 2 introduced the two m ajor types of logic emulation systems, FPGA-based

em u la to rs a n d p rocesso r-based em u la to rs , a long w ith th e ad v an tag es a n d d isad v an

tages of each one of them. Keeping th a t in mind, the motivation behind this work

is to design an emulator th a t combines the two most im portant advantages of both

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

systems: the low cost of FBEs and the high efficiency of PBEs. To achieve th a t we

have to design a PBE th a t can be implemented on an FPGA.

It is im portant to note th a t this research only deals with the hardware part of

this proposed system. The main goal is to design an efficient architecture for a PBE.

The CAD tools necessary to operate this emulator are not the focus of this research

and are beyond the scope of this work.

Before delving into the details of the system architecture, it is im portant to high

light one im portant aspect of a processor-based emulator. The main clock in an

emulator, known as the design clock, is shown on top of Figure 3.1. It is the fre

quency of this clock th a t determines the speed of a PBE. During each clock period

of this design clock a number, known as the emulation step, increments from zero

to a specific number (127 in Figure 3.1). Shown at the bottom of the figure is the

emulation clock whose clock period corresponds to a single emulation step.

During each emulation step, emulation processors will perform a different opera

tion type which in effect means th a t a single processor could perform a maximum of

128 different operations given th a t the number of emulation steps in a single design

cycle is 128.

We now discuss the details of the architecture and operation of the logic emulation

system starting with the basic components. We should note th a t the architecture pro

posed for this design is based on the architectures of [15] and [10] but has substantial

differences with them.

3.2 Levels o f Hierarchy

To enhance scalability, the design contains three levels of hierarchy connected together

using different topologies. These levels are:

1. Emulation module

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

Design
Clock

Emulation
Steps

Emulation
Clock

Figure 3.1: Emulation Design Cycle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

2. Emulation chip

3. Emulation engine

The building blocks of this emulation system are the logic emulation processor

and the memory emulation processor. A specific number of each type of these two

processors are connected together by an interconnection network to form an emulation

module making it the first level of hierarchy.

The second level of hierarchy is the emulation chip which contains a certain num

ber of identical emulation modules. All the modules inside one emulation chip are

connected by an interconnection network similar to the one inside the emulation

module itself. Each emulation chip would fit on one FPGA, hence the name chip.

The th ird level of hierarchy is the emulation engine. To increase logic capacity,

several emulation chips would be implemented in a specially designed m ulti-FPGA

system. This m ulti-FPGA system is known as the emulation engine which is capable

of emulating a design of significant size.

Figure 3.2 gives an overview of the hierarchy of the system. Here, the emulation

engine is made up of 8 emulation chips and each of those chips contains 8 emulation

modules. Inside each of those modules is a number of logic and memory processors.

Note th a t the interconnections between the chips and between the modules are not

shown.

3.3 Logic Em ulation Processor

The most basic component of the system is the Logic Emulation Processor (LP). The

sole purpose of this processor is to emulate the functional behavior of logic gates.

Each gate is represented as a lookup table th a t can be programmed to im itate any

desired logic function. The to ta l number of logic gates tha t a single processor can

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

E m ula tion
Eng ine v

E m ula tion
Chip 0

E m ula tion
Chip 1

Emulation
Chip 2

E m ula tion
Chip 3

Emulation
Chip 5

E m ula tion
Chip 4

E m ula tion
Chip 6

E m ula tion
\ c h i p 7

E mulation
Chip 8

E m ula tion
M odule 0

E m ula tion
M odule 1

Emulation
Module 2

E m ula tion
M odule 3

Emulation
Module 5

E m ula tion
M odule 4

Emula tion
Module 8

Em ula tion
M odule 6

E m ula tion
M odule 7

Figure 3.2: System Hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

Step

External
Input Logic

Output

Internal
Stack

External
Stack

Control Store

Logic
Element

Figure 3.3: Logic Emulation Processor

emulate depends on its lookup table size and the number of emulation steps executed

in a single design cycle. The proposed logic processor has three main elements:

1. Control store

2. D ata stacks

3. Logic element

An architectural overview of this processor is shown in Figure 3.3.

3 .3 .1 C ontrol Store

The control store is used to store a unique control program for each processor to

determine the operation type during each emulation step. The control store contains

several instructions of predetermined width th a t are generated by an emulation com

piler whose task is to partition a logic design given by the user into several clusters.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

Choose Input LUT SelA RAA SelB RAB SelM RAM

Figure 3.4: Logic Processor Control Word Fields

Table 3.1: Logic Processor Control Word Fields Description

Control Word Field D escription

C hooselnput Picks an external input from the interconnection network.

L U T The array elements of the lookup table.

Se lA Selects the source of the first input to the lookup table

(internal or external stack).

R A A Read Address A: the address for the first input of

the lookup table.

S e lM Selects the source of the M th input to the lookup table

(internal or external stack).

R A M Read Address M: the address for the M th input of

the lookup table.

These clusters are formed such th a t each one can fit into a single emulation processor.

The emulation compiler then converts these clusters into a set of control words. The

control store is filled up with these words prior to emulation. During emulation, these

control words are read to instruct the processor on what to do during a specific step

[15].

The number of these instructions (i.e. the depth of the control store) is equal to

the maximum number of emulation steps needed in a single design clock cycle. The

fields of th e se in s tru c tio n s are show n in F ig u re 3.4 an d described in T ab le 3.1 w here

M is the size of the lookup table.

The number of bits dedicated for each field of the control word depends on two

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

factors: the size of the internal and external stacks and the lookup table size. The

size of the internal and external stacks is equal to the maximum number of emulation

steps in a single design cycle as would be discussed later.

Since the inputs of the logic element are located in the stacks, therefore the size

of the address of each of these inputs is equal to Log2(N) where N is the number of

emulation steps. The L U T size depends on the size of the lookup table inside the

logic element. More accurately L U T size is equal to 2M where M is the lookup table

size. The size of the C hooselnput field depends on the interconnection network, more

precisely on the number of processors (both logic and memory) and the number of

their outputs in the interconnection network. The size of the C hooselnput field is

Log2(P) where P is the to tal number of outputs of all the processors sharing one

interconnection network. The only field th a t is independent of any external factors is

the Sel field. The size of this field is only one bit since it is used to choose between

only two types of stacks, either external or internal stack.

Therefore, the size of a single control word in bits is Log2(P) + M + 2M + M x

Log2(N).

3 .3 .2 D a ta Stacks

The data stacks are used to store one bit values provided as inputs to the logic element.

The proposed design has two stacks: an internal stack and an external stack. Ideally

the two stacks are of the same width (one bit) and same depth. The depth of the

stacks is typically equal to the maximum number of emulation steps executed in a

single design clock cycle.

The internal stack is used to store values generated internally to the processor,

specifically values from previous operations done during different emulation steps.

The external stack is used to store values generated externally to the processor,

specifically values from other logic or memory emulation processors. Both stacks

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

have one write port and M read ports which are provided as inputs to the lookup

table of the logic element.

At each emulation step, the internal stack provides output values on its read

ports using the addresses {R A A ...R A M) supplied to it from the control word. These

outputs are used as inputs to the logic element. Also during the same emulation step,

the internal stack stores the value of the current operation (i.e. the output of the

logic element) in the address derived from the step value.

Equivalently, during each emulation step, the external stack provides output values

on its read ports using addresses {R A A ...R A M) supplied to it from the control words.

These outputs are used as inputs to the logic element. Also during the same emulation

step, the external stack stores an input value external to the processor in the address

derived from the step value.

Note th a t both internal and external stacks supply the logic element with the

same number of inputs (M) at the same time. It is the task of the logic element to

choose between these inputs using the select values {SelM) in the control word.

3 .3 .3 Logic E lem ent

The logic element is used to calculate the logic output for the processor. The logic

element contains several multiplexers and a lookup table. The number of these multi

plexers is equal to the number of inputs to the lookup table, or lookup table size. The

Sel fields in the control word are used as selectors in these multiplexers to choose the

sources of inputs for the lookup table (either internal or external stack). The logic el

ement also contains an M -input lookup table implemented as a 2M x 1 memory array

and M - to-1 multiplexer. The elements of the array are filled by the L U T field in the

control word. By doing so we are defining the type of logical function to be emulated

during a specific emulation step. Figure 3.5 gives an overview of the logic element.

Inputs shown in black are received from the internal stack, while inputs shown in grey

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

SelA

LUT
A -----

A -----

SelB

M-lnput
Lookup Table

B ----- Output

B ----

SelM

M----

Figure 3.5: Logic Element

are received from the external stack. Select values and L U T are supplied from the

control word. The lookup table of the logic element is identical to the one described

in chapter 2 and shown in Figure 2.4.

3 .3 .4 A rch itectu re and O peration

The basic architecture of the logic processor is shown in Figure 3.3. The control store

is filled up with the control words prior to emulation through dedicated wires (not

shown in figure). The processor has two external inputs and two external outputs.

The first external input is the step value which is identical for all processors in the

emulation engine and the second external input is used as an input for the exter

nal stack where it is stored for subsequent operations. The first external output is

the C hooselnput field of the control word which is supplied to the interconnection

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

network to choose an input for the external stack as would be described later in

more detail. The second external output is the output of the logic operation which

is supplied directly to the interconnection network to be used by other processors.

Preferably the depths of the control store, internal stack and external stack are

the same and equal to the maximum number of emulation steps in a single design

clock cycle. This would ensure an entry to every operation output in the internal

stack, making this output available to any subsequent operations. As for the external

stack, its usage enables the processor to make use of other logical or memory outputs

supplied to it through the interconnection network. Another advantage of having the

same number of entries in all three embodiments is tha t the step value is used both

as a read address for the control store and a write address for the stacks a t the same

time.

The operation of the logic processor is as follows. A step value is supplied to the

processor. The step value is used as an address to the control store where a control

word is read. Address fields, R A A ...R A M , are sent to the stacks and M bits are read

from each stack at the same tim e then sent to the logic element. Using the Sel fields

of the control word the logic element selects the sources of its inputs, either internal

stack or external stack. The lookup table, which is filled up using the L U T field from

the control word, performs the logic emulation and supplies the output. The output

is then w ritten to the internal stack where the step value is used as a write address.

Also at the same time, an external input is w ritten in the external stack. This input

is chosen among the outputs of the other processors in the interconnection network

using the C hooselnput fields of the control words. Again the step value here is used

as a write address.

In other words, the logic processor performs three operations in one emulation

step. It first executes a logical function using its lookup table then writes the output

of this function in the internal stack. In addition to th a t the processor picks an

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. SYSTEM ARCHITECTURE AND OPERATION

Design
Clock

Emulation
Steps

Emulation
Clock

Read word
from the

Control Store

Write external
input to

External Stack
Read bits from ar>d internal
External and input to Internal

Stack /Internal Stacks

Figure 3.6: Operation of the Logic Processor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

external input from the interconnection network and writes it to the external stack.

The operation described above requires three memory accesses which have to occur

in a single emulation step but not simultaneously. These accesses are:

1. Reading a control word from the control store.

2. Reading inputs from the data stacks.

3. W riting values to the da ta stacks.

The reason these accesses cannot be executed at the same time is because a certain

delay has to be given between each of them. To read inputs from the da ta stacks

one has to wait for the address fields from the control word and to write values to

the data stacks one has to wait for the output of the logical operation to be ready.

To accommodate tha t, both edges of the clock are used since each emulation step

corresponds to only one clock period. As shown in Figure 3.6 a t the first falling edge

of the clock a control word is read using step value n. At the rising edge of the clock

and after sufficient tim e is given to fetch the control word, inputs to the lookup table

are read from the stacks using addresses derived from the control word. At the second

falling edge of the clock and after sufficient time is given for inputs from the stack to

be read and the logic function is executed, the output of this logic function and an

external input are written to the stacks a t address n. Also a t the second falling edge

another control word is being read from the control store using address n + 1. This

scheme ensures th a t all the memory accesses required for a logical operation are done

in a single emulation step at different timings.

3.4 M em ory Em ulation Processor

In this section we present the memory processor, the second basic component of

a complete processor-based emulation system implemented on an FPGA. The sole

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

Choose
External
Inputs

Step

Inputs Outputs

Release
Memory

Word
Unit

Capture
Memory

Word
Unit

Memory
Store

Control Store

Figure 3.7: Memory Emulation Processor

purpose of the memory processor is to emulate memory registers and their functions.

The to ta l number of memory bits th a t this processor can emulate depends on the

size of the embedded memory arrays and the number of emulation steps th a t are

completed during a design cycle. The proposed memory processor has four main

elements:

1. Control store

2. Memory store

3. Capture memory word unit

4. Release memory word unit

Figure 3.7 gives an architectural overview of the memory processor.

3.4 .1 C ontrol Store

The control store is used to store a unique control program for each processor to

instruct the processor what to do during each emulation step. The control store

contains several instructions of predetermined width. Similar to the instructions of

the logic processor, they are generated by an emulation compiler whose task is to

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

MWA W/R C ll CI2 CIQ

Figure 3.8: Memory Processor Control Word Fields

Table 3.2: Memory h'ocessor Control Word Fields Description

Control Word Field D escription

M W A Memory word address in the memory store.

W /R W rite (1) or read (0) a memory word.

C l l Choose the 1st bit of the memory word from

the external inputs.

C IQ Choose the Qth bit of the memory word from

the external inputs.

partition a logic design given by the user into several clusters. These clusters are

formed such th a t each one can fit in a single emulation processor. The emulation

compiler then converts these clusters into a set of control words. The control store

is filled up with these words prior to emulation. During emulation these control

words are read by the processor to choose an operation to be performed in a specific

emulation cycle [15].

The number of these instructions (i.e. the depth of the control store) is equal to

the maximum number of emulation steps done in a single design clock cycle. The

fields of these instructions are as shown in Figure 3.8 and described in Table 3.2 where

Q is the size of the memory word.

The size of the control word and the number of bits dedicated for each field depends

on three factors: the word size of the memory store Q , the number of emulation steps

in a single design clock cycle N and the to ta l number of outputs of all emulation

processors in an interconnection network P.

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

The word width Q of the memory store is the same as the number of 1 bit inputs to

the memory processor. This is because, ideally, we want an entry in the memory store

for each input of the processor. The size of the memory word address M W A depends

on the size of the memory store. We propose a memory store of size equal to the

maximum number of emulation steps done in a single design clock cycle. Therefore

the size of M W A in bits is Log2 (N). The size of choose input field C l depends on

the to ta l number of outputs of all processors sharing an interconnection network (P).

As a result the size of this field in bits is Log2 (P).

Therefore, the size of a single control word in bits is Log2 {N) + 1 + QLog2 {P).

3.4 .2 M em ory Store

The role of the memory store is to emulate real memory functions; more precisely read

and write memory operations. It contains several words of predetermined width and

number. The memory words can be from either of two sources: emulation support

facilities or other emulation processors. Emulation support facilities, such as an

emulation compiler, fill up the memory store prior to emulation so th a t the filled

memory words can be read during emulation. Also during emulation the output of

other processors in the interconnection network might be written to the memory store.

3 .4 .3 R elease M em ory W ord U n it

The purpose of this component is to break up the memory word read from the memory

store into one bit values. These bits are then supplied as outputs to the interconnec

tion network to be used as inputs to other processors.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

3 .4 .4 C apture M em ory W ord U n it

The purpose of this component is to concatenate several external inputs into a single

memory word. The memory word th a t is formed after concatenation is entered into

the memory store and therefore is of the same size as the memory word.

3 .4 .5 A rch itectu re and O peration

The basic architecture of the memory processor is shown in Figure 3.7. The control

store and the memory store are filled up with the control and memory words prior to

emulation through dedicated wires (not shown in figure). The processor has several

external inputs and outputs. The first external input is the step value which is

identical for all processors in the emulation engine. The rest of the external inputs

are values chosen from the interconnection network to be written to the memory

store. The external outputs of this processor include the C l fields of the control word

which are supplied to the interconnection network to choose inputs for the memory

store. The rest of the external outputs are the bits read from the control store then

are broken up by the release memory word unit.

Preferably the depths of the control store and the memory store are the same and

equal to the maximum number of steps (N) in a single design clock cycle. This would

ensure an entry to every memory word read or written in the memory store.

The operation of the memory processor is as follows. A step value is supplied

to the processor. The step value is used as an address to the control store where a

control word is read. The fields M W A and W /R are sent to the memory store. Using

M W A a memory word is read or w ritten and using the W /R field we determine if we

are reading (’O’) or writing (’1’) during this step. In case of a read, a memory word

is read and supplied to the release memory word unit where it is broken up into Q

bits and output to the interconnection network. In case of a write, a memory word is

formed by concatenating Q input bits from the interconnection network. This is the

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

Design
Clock

Emulation
Steps

Emulation
Clock

Read word
from the

Control Store
Write memory

word to Memory
Store in case of a

write operation
Read m emory

word from
Memory Store

in case of a
read operation

Figure 3.9: Operation of the Memory Processor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

task of the capture memory word unit which then supplies it to the memory store to

be written.

In other words, the memory processor performs either one of two operations during

a single emulation step: it can read a memory word from a certain address in the

memory store and then supply it to the interconnection network as a set of single bits

or it can write a memory word supplied by the interconnection network at a certain

address in the memory store.

The above description of the operation indicates th a t all the stages of the operation

described above have to occur during the same emulation step but not simultaneously.

A certain delay should be allowed between reading a control word from the control

store and reading a memory word from the memory store. Also another delay should

be allowed between reading a memory word and writing a memory word to give time

for the bits to be read before they are written. To accommodate tha t, both edges of

the clock were used similar to the logic processor. As shown in Figure 3.9. at the first

falling edge of the clock a control word is read using step address n. In case of a read,

at the rising edge of the clock a memory word is read from the memory store after

enough time is given for the address to be derived from the control word. In case of

a write, a t the second falling edge of the clock several bits from the interconnection

network are collected and w ritten to the memory store to ensure th a t sufficient time

was given for these bits to be read. Also at the second falling edge of the clock a new

control word is read using step address n + 1.

3.5 Em ulation M odule

The first level of hierarchy in our system is the emulation module, shown in Figure

3.10. It consists of R logic processors and S memory processors. Each processor in

one emulation module is connected to every other processor in the same module to

ensure th a t the output of any processor is readily available as an input to every other

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

External
Outputs

External
Inputs

LP

MP

MP

LP

Module
Level

Routing
Switch

Figure 3.10: Emulation Module

processor. Moreover, each processor has an external input which could be connected

to other processors in other modules.

In addition to the processors, the emulation module contains two other compo

nents: the interconnection network and the sequential filler. The interconnection

network is made up of the set of wires connecting all the processors together and the

module level routing switch.

3.5 .1 M od u le L evel R ou tin g Sw itch

Connecting all the processors together in an emulation module is an interconnection

network controlled by the module level routing switch. This switch is basically made

up of (R + Q x S) (R + Q x S) - to-1 multiplexers; one multiplexer for each logic processor

and one for every input of each memory processor. The purpose of this switch is to

make the output of each processor readily available to every other processor to use.

Moreover, the switch can supply the processors inside the module with external inputs

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

th a t are derived from other modules.

The switch uses the Choose In p u t held supplied by each processor as the selection

bits of the multiplexers to route the signals between processors.

3.5 .2 Sequential F iller

The limited number of pins on an FPG A makes it impossible for the user to fill up

the control and memory stores of all processors a t the same time. For this reason,

a sequential filler is created to fill up the stores in a sequential manner. To choose

which processor to fill up, the sequential filler has two input signals: one to choose

which logic processor and the other to choose which memory processor. The usage of

the filler should not affect performance in any way since it is only used once prior to

emulation and at high speed.

3 .5 .3 A rch itectu re and O peration

The basic architecture of the emulation module is shown in Figure 3.10. Each pro

cessor has one external input and one external output. The external input could be

chosen from among all the outputs of all the processors in the same module or from a

different source outside the module. The choice of this source will be described later.

Each processor also supplies the interconnection network with an output. The wires

used to fill up the control and memory store along with the sequential filler are not

shown in the Figure 3.10.

All the processors in one emulation module receive an identical step value during

an emulation step. The processors use this value to determine the operation as

described earlier.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

External
Outputs

External
Inputs

Module

Module

Chip
Level

Routing
Switch

Figure 3.11: Emulation Chip

3.6 Em ulation Chip

The second level of hierarchy in this system is the emulation chip. It consists of

T identical emulation modules and fits on one FPGA. Specific processors inside the

emulation module are connected to specific processors in other emulation modules

to ensure th a t their outputs are readily available as inputs. Moreover, an emulation

chip has several external inputs and external outputs whose numbers are to be chosen

depending on the availability of pins on the FPGA. In addition to the modules, the

emulation chip has one other component, the chip level routing switch.

3.6 .1 C hip Level R ou tin g Sw itch

The chip level routing switch connects all the module pins, external inputs and exter

nal outputs together. This switch is made up of several multiplexers; one multiplexer

for each input of every module and one for each external output. The number of

these multiplexers depends on the number of modules inside the emulation chip. As

for their selection capacity, it depends on the resources available on the FPG A to

store their selection bits. More about these multiplexers will be described in the next

chapter.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

The switch allows inputs of processors inside one module to choose among certain

outputs of other modules. The switch also allows external outputs to choose among

the outputs of certain processors or external inputs.

3 .6 .2 A rch itectu re and O peration

The basic architecture of the emulation chip is shown in Figure 3.11. Each module

would be able to choose among several outputs from different modules or external

inputs. Similar to the module, the step value is identical for all processors in the

emulation chip.

3.7 Em ulation Engine

An emulation engine is the th ird and last level of hierarchy. The emulation engine

contains a number of emulation chips connected together in a m ulti-FPG A system.

3.7 .1 M u lti-F P G A S ystem

Several FPG A connection schemes are available today. The system shown in Figure

3.12 is an example of an 8-way mesh m ulti-FPGA system architecture while the

one shown in Figure 3.13 is an example of a fully connected m ulti-FPGA system

architecture.

Each FPG A contains an emulation chip. The chip would have a certain number

of inputs and outputs through which it would communicate with other chips. Each

processor inside the chip can choose among several of the external inputs and each of

the external outputs can choose among several outputs of the processors. This gives

each processor in the chip the capability to communicate with other processors in

other chips implemented on other FPGAs.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

FPGA

FPGA

FPGAFPGA

FPGA

FPGA

FPGA

FPGAFPGA

Figure 3.12: 8-Way Mesh MFS

FPGA

FPGA

FPGAFPGA

FPGAFPGA

F ig u re 3.13: F ully C o n n ec ted M FS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

Emulation
Clock

Figure 3.14: Clock Duty Cycle

In addition to that, some of these external outputs can choose among several of

the external inputs enabling the FPG A to act as a routing switch. This would become

useful in the case where two emulation chips are implemented on two FPGAs th a t do

not share a direct connection. Here, intermediate FPGAs would serve as routers of

the signal from its source and until it reaches its destination. Note th a t in the case

where full connectivity is ensured for the m ulti-FPGA system these outputs are not

necessarily useful.

We should note th a t the selection bits for the signal routings occurs a t the rising

edge of the clock in order to precede the writing operations tha t occur a t the falling

edge of the clock in all logic and memory processors.

3.7 .2 Scalability Issues

The basic challenge th a t we have to solve in the multi-FPGA system is the one th a t

deals with speed. The difference of time between the read and write operations is the

crucial factor when dealing with the speed. We have to make sure th a t the difference

between the rising and falling edges of the clock is long enough for the signal to

traverse throughout the system. As mentioned above the first falling edge of the

clock is when we read the control word, the rising edge is when we read from the

stacks or the memory store and the second falling edge is when we write to the stacks

or the memory stores. The challenge is to connect the FPGAs in such a way tha t

if a certain processor in one FPG A needs to write a signal (or output) from another

processor in a second FPG A the tim e between the rising edge and the second falling

edge is long enough for the signal to traverse from the first FPG A to the second.

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. SYSTEM ARCHITECTURE AND OPERATION

Assuming a non 50% duty cycle, the falling time of the clock is x and the rising

tim e of the clock is y, as shown in Figure 3.14. This means tha t the critical time

is y not x. The falling edge of the clock x deals with intra-FPG A connections; the

rising edge of the clock y may have to deal with inter-FPGA connections. More on

the scalability issues will be discussed in the next chapter.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Architecture Exploration and

Implementation Results

This chapter discusses the architecture exploration carried out and the implemen

tation results for the proposed logic emulation system. The first section describes

the implementation target used in this research. Section 2 presents the architecture

exploration and the effect of changing key param eters on the area and performance

of the emulator. Section 3 presents the implementation results.

4.1 Im plem entation Target

The FPG A used for implementation in this research is the Altera Stratix EP1S40F780C5

FPGA. We now present a detailed description of this FPGA.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

4 .1 .1 A ltera S tra tix F P G A

The Altera S tratix FPG A Family [3] contains the following resources:

1. Logic Array Blocks (LABs)

2. M512 Blocks

3. M4K Blocks

4. M-RAM Blocks

5. DSP Blocks

6. I /O Elements

Each LAB block contains ten logic elements similar to the ones discussed in chapter

2 and shown in Figure 2.3. These logic elements are capable of emulating virtually

any logic function. M512 is a memory block which contains 512 programmable bits

plus parity bits. It can be configured as single-port or simple dual-port mode. The

M4K is another memory block which contains 4,096 programmable bits plus parity

bits and can be configured as single-port, simple dual-port or true dual-port mode.

The third, and largest, memory block is the M-RAM which contains 512 kilobits of

programmable memory plus parity bits. This memory block can be configured as

single-port, simple dual-port or true dual-port mode. The DSP blocks of the Stratix

FPG A are used to implement several forms of multipliers while the I /O elements are

connected to the FPG A pins and support different I/O standards.

The FPG A used in this research, the Altera Stratix EP1S40F780C5 FPGA, con

tains 4,125 LABs or 41,250 LEs. It also contains 384 M512, 183 M4K and 4 M-RAM

blocks making the to ta l number of memory bits 3,423,744. In addition to tha t, it

contains 14 DSP blocks and 616 I/O pins [3].

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

4.2 A rchitecture Exploration

In chapter 3 we described the architecture and operation of the emulation system

without specifying certain values for im portant parameters such as the lookup table

size or the number of emulation steps. In this section we describe architecture exper

iments th a t were performed to determine the effects of varying different architectural

param eters on the area and delay of the proposed emulator.

4.2 .1 K ey P aram eters

The key param eters th a t were presented in chapter 3 and explored in this design are:

1. M: lookup table size.

2. N: number of emulation steps.

3. P: to ta l number of outputs of all processors in one emulation module.

4. Q: memory word size.

The main goal of the exploration is to choose a value for each of the above pa

rameters. The best way to accomplish this goal is to vary each of the param eters and

fix the others while checking for effect on area and performance. To do th a t the logic

and memory processors were both implemented after each change and the results were

recorded. It is im portant to note th a t the effects of the change of the param eters were

only considered for individual processors. The routing between these processors, and

in effect the hierarchy of the emulator, were not taken into consideration due to the

complexity of the process. Instead the effect of each param eter on single processors

was assumed to be proportional to its effect on the whole system.

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

4 .2 .2 Effect o f C hanging P aram eters

In this section we aim to monitor the effect of each of the param eters on the area and

performance of the logic and memory processors. For tha t reason, each param eter

under consideration was changed and its effect observed while the other param eters

were given fixed values. This process was repeated for each param eter on both pro

cessors. In what follows we show in graphs the effect of the change of each of the

param eters. The effect 011 area is measured by the number of logic elements and

memory bits each processor consumes when implemented on the FPG A while the

performance is measured by emulation clock speed.

It is im portant to note th a t the results here were obtained after implementation

and not from m athem atical equations. More about the implementation of each pro

cessor will be discussed in later sections of this chapter.

4.2.2.1 Effect of Changing Lookup Table Size

The size of the lookup table of the logic processor determines the logic capacity of

the processor. In other words, it determines how many logic gates each processor can

emulate. To determine how this param eter might affect the area and performance of

the processor, the size of the lookup table was increased by one starting with 2 and

ending with 8. To ensure th a t we are reading the effect of the lookup table size only,

the other param eters were never changed. The number of emulation steps and the

to ta l number of outputs were fixed at 128 and 64 respectively. Note th a t varying the

lookup table size has 110 effect on the memory processor but on the logic processor

alone. The results are shown in Figures 4.1, 4.2 and 4.3.

I t is clear from Figure 4.1 and Figure 4.2 th a t as the size of the lookup table

increased the area consumed by the logic processor increased exponentially. The

reason behind th a t could be mainly a ttribu ted to the effect of the lookup table size

on the control store and the logic elements. The size of the control word of the control

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

250

200
193

150

(A
UJ_l

107
100

90 1 2 4 6 7 83 5
M: LUT Size

Figure 4.1: LUT Size vs. Area in LP

50,000

45,000
43,776

40,000

35,000

w 30,000

s
I* 25,000
E4>s

26,112

20,000

16,640
15,000

11,264
10,000

7,936
5,000

3,840

96 7 81 4 50 2 3
M: LUT Size

Figure 4.2: LUT Size vs. Memory Bits in LP

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

80

70.72
70

62.93
60

57.36
54.61

51.35
50

47.12

N

s

30

20

10

0
0 1 2 3 5 6 7 8 94

M: LUT Size

Figure 4.3: LUT Size vs. Speed in LP

store is exponentially proportional to the lookup table size, the size of a single control

word in bits is Log2(P) + M + 2 M + M x Log2 (N), and thus increasing the lookup table

size will result in an exponential increase in the control store size. The exponential

increase in the number of logic elements could be explained in a similar way. It is

due to the fact th a t the lookup table is implemented in the FPG A ’s logic elements

and its size increase meant an increase in the number of logic elements consumed.

As for the effect of the lookup table size on the speed of the processor, it can

be seen in Figure 4.3 th a t as the lookup table size increased the performance of the

processor decreased gradually. This is predictable since the time for processing a

certain number of inputs inside a processor is likely to increase as the number of

these inputs increase.

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

4.2.2.2 Effect of Changing Num ber of Em ulation Steps

The second key param eter to be tested is the number of emulation steps. The number

of emulation steps, N, is a critical param eter in both the logic and the memory

processor. Here we study its effect in both processors.

• Effect on the Logic Processor: The number of emulation steps was varied from

64 to 512 in steps of power of 2. The size of the lookup table, M , was fixed at

4 while the number of to tal outputs, P, was fixed at 64. The results are shown

in Figures 4.4, 4.5 and 4.6.

As shown in Figure 4.4 the change in the number of emulation steps barely

had any effect on the number of logic elements used to implement the logic

processor. In contrast, as shown in Figure 4.5, the change in the number of

emulation steps had a linear effect on the number of memory bits. This could

be explained by the fact th a t the number of emulation steps does not affect the

combinational part of the processor but rather the size of the memory blocks,

control store and data stacks.

As for the speed, it is clear from Figure 4.6 tha t changing the number of emu

lation steps had little effect on the speed of the processor.

• Effect on the Memory Processor: The number of emulation steps also affects

the implementation of the memory processor. Here, the number of steps was

also varied from 64 to 512 in steps of power of 2. The size of the memory word,

Q , was fixed at 8 and the to ta l number of outputs, P. was fixed at 64. The;

results of the implementation are shown in Figures 4.7, 4.8 and 4.9.

Similar to the logic processor, the effect of the number of steps was only limited

to the number of memory bits as shown in Figures 4.7, 4.8 and 4.9. This

is expected because the number of emulation steps determines the size of the

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

___ ___________________♦ 31

28
29

30

0 64 128 1 92 256 320 384 448 512 576
N: Em ulation S tep s

Figure 4.4: Number of Emulation Steps vs. Area in LP

40,000

35,840
35,000

30,000

25,000
(A

CD

I* 20,000
E«
S 16,896

15,000

10,000

7,936

5,000
3,712

448 512 576256 320 3840 64 128 192
N: Em ulation S tep s

Figure 4.5: Number of Emulation Steps vs. Memory Bits in LP

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

80

3 0 --

20 - - - --------------------------

10 - - •

0 J 1----------------- 1------------------,------------------1------------------1----------------- .----------------- ,------------------1-----------------
0 64 128 192 256 320 384 448 512 576

N: Em ulation S tep s

Figure 4.6: Number of Emulation Steps vs. Speed in LP

control store and the memory store and does not affect the combinational part

of the processor.

4.2.2.3 Effect of Changing Total Num ber of Outputs

The th ird param eter to be checked for its effect is the to ta l number of outputs, P,

which will help determine the numbers of logic and memory processors packed in one

emulation module.

• Effect on the Logic Processor: P was varied from 32 to 256 in steps of power of

2 while the lookup table size, M , was fixed at 4 and the number of emulation

steps, N , fixed at 128. The results are shown in Figures 4.10, 4.11 and 4.12.

As can be observed in Figures 4.10, 4.11 and 4.12 the param eter had virtually no

effect on the area and performance of the processor. This can be explained by

the fact th a t the only effect this param eter has is 011 the size of the C hooselnput

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

___________________ — ♦ 76
74

70

0 64 128 192 256 320 384 448 512 576

N: Em ulation S te p s

Figure 4.7: Number of Emulation Steps vs. Area in MP

40,000

35,000
33,792

30,000

25,000
(A

C O

I* 20,000
E
OJ
S '16,640

15,000

10,000
5,192

5,000

512 576128 44 80 192 256 320 38464

N: Em ulation S tep s

Figure 4.8: Number of Emulation Steps vs. Memory Bits in MP

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

100

90

80

70

60

N
| 50

40

30

20

10

0
0 64 128 192 256 320 384 448 512 576

N: Em ulation S tep s

Figure 4.9: Number of Emulation Steps vs. Speed in MP

field of the control word. Changing the number of outputs only increases this

field by one bit a t a time.

• Effect on the Memory Processor: P was varied from 32 to 256 in steps of power

of 2 while the size of the memory word, Q, was fixed at 8 and the number of

emulation steps, N , fixed at 128. The results are shown in Figures 4.13, 4.14

and 4.15.

As shown in Figure 4.13 and Figure 4.14, the area consumed by the processor

increased as the number of outputs increased. This can be explained by the fact

th a t the C l field in the control word for each input bit increases as P increases.

As for the speed, it is shown in Figure 4.15 th a t changing the number of outputs

had no m ajor effect on speed.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

- ♦ 31

32 64 128 160

P: No. of O utputs

192 224 256 288

Figure 4.10: Number of Total O utputs vs. Area in LP

>,000

>,000
,064

7,808

7,000

,000

g 5,000

§ 4,000 -

3,000

2,000

1,000

256 288128 192 2240 64 96 16032

P: No. of O utputs

Figure 4.11: Number of Total O utputs vs. Memory Bits in LP

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

80

3 0 -------- -

2 0 --

10---

0 -I---------- ,---------- ,---------- ,---------- ,---------- ,---------- ,---------- ,---------- ,----------
0 32 64 96 1 28 160 192 224 256 288

P: No. o f O utputs

Figure 4.12: Number of Total O utputs vs. Speed in LP

100

80 - -

70 - -

60

0 32 64 96 128 160 192 224 256 288

P: No. of O utputs

Figure 4.13: Number of Total O utputs vs. Area in MP

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

12,000

10,24010,000

,216

i . O O O

7,168
S
£o
Eo>
S

,000 • -

4,000

2,000

0 32 64 96 128 160 192 224 256 288

P: No. of O u tpu ts

Figure 4.14: Number of Total O utputs vs. Memory Bits in MP

100

90

80

70

60

50

40

30

20

10

£ 76"

32 64 128 160 192

P: No. o f O u tpu ts

224 256 288

Figure 4.15: Number of Total O utputs vs. Speed in MP

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

140

128

120

100

-23

0 2 4 6 8 10 12 14 16 18

Q: M emory W ord Size

Figure 4.16: Memory Word Size vs. Area in MP

4.2.2.4 Effect of Changing M em ory Word Size

The last key param eter to be checked for its effect is the memory word size, Q, which

only affects the memory processor. Here the number of emulation steps, N , was fixed

at 128 and the to ta l number of outputs, P, was fixed at 64. The size of the memory

word was varied from 1 to 16 in steps of power of 2. The results are shown in Figures

4.16, 4.17 and 4.18.

As can be seen in Figure 4.16 and Figure 4.17 increasing the size of the memory

word had a linear effect on the implementation of the memory processor. This is

expected since as the size of the memory word increases the combinational logic

required for the capture and release memory word units increases. In addition, the

size of the memory store where the memory word is stored increases as the size of the

word increases.

As shown in Figure 4.18, the effect of the memory word size on the speed of the

processor was limited; however, it was observed th a t there was a small decrease in

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

18,000 -r

16,000
15,360

14,000

12,000

g 10,000

5,000

>,000

'4,608
4,000

2,816
2,000

1,920

0 2 4 8 10 12 14 186 16

Q: M em ory W ord Size

Figure 4.17: Memory Word Size vs. Memory Bits in MP

100

1.8489.67 i.42 87.41

70 -

N
Xs

180 2 8 10 12 14 164 6
Q: M em ory W ord Size

Figure 4.18: Memory Word Size vs. Speed in MP

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

processor speed when the memory word size was increased from 8 to 16. This decrease

in speed could be a ttribu ted to the fact th a t the processing time for the memory word

will take longer as its size increases.

4 .2 .3 C hoice o f P aram eters

The choice of the param eters used in our implementation is based on the results

obtained above. The following values were chosen:

• M = 4. The lookup table was chosen to be 4 because it provides good emulation

speed and a low area cost.

• N = 128. The number of emulation steps was chosen to be 128. The reason

behind this decision was the fact th a t FPG A resources are limited. M4K and

M512 blocks both are of limited size and 128 words stored in each of them seems

a reasonable size.

• Q = 8. The size of the memory word was chosen to be 8 mainly because

of the emulation speed. As noted earlier the emulation speed was relatively

stable until the memory word size was increased from 8 to 16 where the speed

comparatively fell more.

• P = 64. The to ta l number of outputs was chosen to be 64 which in effect meant

32 logic processors and 4 memory processors were packaged together in one

module. The exploration did not show th a t any specific value of this param eter

had a m ajor effect on the area and performance of any of the processors.

4.3 Im plem entation R esults

In this section we discuss the implementation results of the system. Note th a t the

values for the param eters used here were the ones chosen above. The design tool that

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

was used was Quartus II which is supplied by Altera [2], The hardware description

language th a t was used was VHDL [28].

4 .3 .1 Logic P rocessor

The elements of the logic processor were implemented as follows:

• Control Store: using M = 4, N = 128 and P = 64 the size of the control word

would be 54 bits. This means th a t the size of the control store is 128 x 54.

The control store has no combinational logic and only needs to be implemented

as a memory block. The memory block chosen to implement the store was

the M4K. To save on memory bits the control stores of two processors were

combined together and implemented in 3 M4K blocks (each M4K is of size

128 x 36). A decoder was created to later separate the two words from each

other.

• Data Stacks: since the number of emulation steps is 128 then the size of each

stack is 128 x 1. Similar to the control store, both the internal and external

stacks need no combinational logic and are implemented as memory blocks

inside the FPGA. The memory blocks chosen to implement the stacks were the

M512 blocks. Since each M512 block can supply at most two outputs a t a time,

each M512 was duplicated to ensure th a t 4 outputs can be supplied at the same

time.

• Logic Element: the logic element is made up of purely combinational logic and

requires no memory blocks. The 2-to-l multiplexers and the lookup table, which

is in tu rn a 4-to-l multiplexer, were implemented in standard VHDL code used

typically to describe multiplexers. The memory array of the lookup table was

also implemented in logic elements and no memory blocks were used.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

The implementation of each logic processor requires 1.5 M4K blocks, 4 M512

blocks and 29 FPG A logic elements.

4 .3 .2 M em ory P rocessor

The elements of the memory processor were implemented as follows:

• Control Store-, using Q = 8, N = 128 and P = 64 the size of the control word

would be 56 bits. This makes the control store of size 128 x 56. The control

store needs no combinational logic and is implemented in 2 M4K blocks.

• Memory Store: since the size of the memory word is 8 and the number of

emulation steps is 128 then the size of the memory store is 128 x 8. Similar

to the control store, the memory store needs no combinational logic and is

implemented in one M4K block.

• Capture and Release M emory Word Units: the two units only require combi

national logic. Their functional behavior was described using standard VHDL

statem ents used in typical concatenation and breakup instructions.

The implementation of each memory processor requires 3 M4K blocks and 72

FPG A logic elements.

4 .3 .3 E m ulation M odule

Each emulation module contains 32 logic processors and 4 memory processors together

having a to ta l number of 64 outputs and sharing one interconnection network. Aside

from these processors the module contains two other elements: the sequential filler

and the module level routing switch. Both of these elements were implemented in

VHDL and require no memory blocks.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

Since the routing switch is made up of multiplexers, the VHDL code used to de

scribe its functional behavior is th a t which is typically used to describe the function

ality of multiplexers. As for the sequential filler its functional behavior was described

in a series of conditional statem ents which determine which processor is being filled

up before emulation starts.

4 .3 .4 E m ulation Chip

Because of the limited resources of the FPG A each emulation chip in our design

contains three modules. It requires all 384 M512 blocks, 180 M4K blocks (98% of all

M4K blocks) and all 4 M-RAM blocks. The M-RAM blocks were used to store the

selection bits for the multiplexers of the chip level routing switch.

The chip level routing switch, shown in Figure 4.19, connects all the module pins,

external inputs and external outputs together. This switch is made up of 256 4-to-l

multiplexers and 64 2-to-l multiplexers; one multiplexer for each input of the three

modules and one for each external output. The switch allows inputs of processors

inside one module to choose among certain outputs of other modules. For example,

the input of processor 0 of module 0 can choose between: output of processor 0 in

module 1, output of processor 0 in module 2, external input 0 or external input 1.

The switch also allows external outputs to choose among outputs of certain processors

or external inputs. For example, external output 0 can choose between: output of

processor 0 in module 0, output of processor 0 in module 1, output of processor 0 in

module 2, or external input 0.

The emulation chip consumes 10,579 logic elements and 933,888 memory bits.

This puts the FPG A logic utilization a t 25% and memory utilization at 27%. The

key lim itation in resources was due to the memory blocks, mainly the M512 and

M4K blocks which were almost fully utilized by our design. The reason th a t the total

memory utilization shows only 27% is due to the fact that the m ajority of the memory

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

O utput 0 o f Module 1 ■
O utput 0 o f Module 2

External Input 0
External Input 1

M
U
X

O utput 1 of Module 1 ■
O utput 1 of Module 2 ■

External Input 2
External Input 3

M
U
X

Output 63 of Module 1
Output 63 of Module 2
Output 63 o f Module 3

External Input 127

M
U
X

External Input 0
External Input 1

M
U
X

External Input 2
External Input 3

M
U
X

External Input 126
External Input 127

M
U
X

Input 0 of Module 0

Input 1 of Module 0

External O utput 63

External Output 64

External O utput 65

External Output 127

Figure 4.19: Module Level Routing Switch

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

bits available are stored in the M-RAM blocks which were only partially utilized. In

addition to the logic elements and memory blocks, each emulation chip requires 531

pins, making the pin utilization 86%.

The whole design, one emulation chip, was made up of almost 6,100 VHDL lines

describing the functional behavior of the combinational logic. The memory blocks

were designed and implemented by means of megafunctions, a design tool supplied

by Q uartus II to save the tim e required to write the code in VHDL. The design

contains 7 megafunctions [24].

Each emulation chip is capable of emulating what is equivalent to 98,304 ASIC

gates per design cycle. This was calculated by assuming th a t each logic processor

with a 4-input lookup table can implement 8 ASIC gates per emulation step and

1,024 ASIC gates per design cycle [10]. The emulation chip can also emulate 12,288

memory bits, which is the sum of all the bits stored in all the memory stores of the

memory processors.

Lastly the emulation clock frequency of a single emulation chip is 24.04 MHz. The

emulated design can run at 187.8 KHz or more depending on the number of emulation

steps used in the design cycle.

4.4 Im plem entation E stim ates for Em ulation En

gine

The implementation of this design only involved the second level of hierarchy, the

emulation chip. The highest level of hierarchy, the emulation engine, was not imple

mented. In this section we give some estimates of the implementation of this engine.

A typical emulation engine would be made up of a fully connected m ulti-FPGA

system, as the one shown in Figure 3.13. Here six FPGAs are connected together to

act as an emulation engine. The logic capacity of this engine is equivalent to 589,824

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

ASIC gates and 73,728 memory bits.

As mentioned in chapter 3 the main issue we would need to deal with in such a

system is the speed. The high pulse of the clock, symbolized by y in Figure 3.14, need

to be long enough for the signal to traverse the longest path delay of the m ulti-FPGA

system. On one Printed Circuit Board (PCB) we can assume th a t this delay is on

average the same for all the connections.

To calculate this delay we assume th a t the dielectric used for the PCB is FR-4,

the m ost widely used dielectric for PCBs [5]. This means th a t the propagation speed

on the PCB is 1.48 X 108 m /s [1], Therefore, the time needed by a signal to traverse

half a meter, a typical size of a PCB, is approximately 3.4 ns. Following this logic

y should be a t least 3.4 ns to ensure th a t the signal has enough time to reach its

destination.

If we choose to have a 50% duty cycle then the period of one clock cycle should

be around 7 ns for the signal to traverse the longest path delay. However, it was

mentioned before tha t the emulation clock frequency is 24.04 MHz and its period is

41.6 ns. It is clear th a t emulation clock period is much longer than the longest path

delay and therefore the PCB connections would not add any extra delay and should

not decrease the speed of the clock if the board remained of reasonable size.

4.5 Em ulation Exam ple

To illustrate and verify the operation of the emulator we chose to emulate a four bit

multiplier on a single emulation chip.

4 .5 .1 F o u r -B it M u lt ip lie r

The multiplier has two inputs each of size 4 bits and has one output of size 8 bits.

Figure 4.20 shows the multiplication process. The goal is to give each operation of this

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

A3
B3

A2
B2

A1
B1

AO
BO

Multiplicand
M ultiplier

C3c“
D3

C2cd1
D2

c i CD0
D1

CO
DO

Initial Partial Product
M ultiply A by BO

E4
F3EF2

E3ef1
F2

E2EF0
F I

E l
FO

E0 Add
M ultiply A by B1

G4 G3gh1 G2gh° G1 GO E0 Add
H3GH2 H2 H I HO M ultiply A by B2

14 I3U1 I2|jo 11 10 GO E0 Add
J3'12 J2 J1 JO M ultiply A by B3

K4 K3 K2 K1 KO 10 GO E0 Add

Figure 4.20: Operation of the Four-Bit Multiplier

multiplication to one logic processor in a process known as scheduling. The symbols

shown as superscripts are the overflow from the previous operations.

4 .5 .2 Scheduling and Im p lem en tation

Tables 4.1 and 4.2 shows the scheduling of the eight processors used for emulating the

four bit multiplier. Normally the scheduling process would be autom ated but since

our design lacks the CAD tools associated with it, the scheduling was done manually.

It is im portant to note th a t this schedule might not be the most efficient one since

the aim here is only to verify the functionality of the emulator. Cap and Cal in the

tables stand for capture value and calculate value respectively.

Step LPO LP1 LP2 LP3

0 Cap(AO) Cap(Al)

1 Cap(BO) Cap(BO)

2 Cal(DO) Cal(D l)

3 Cal(EO),

C ap(B l)

C al(E l),

Cap(Bl)

C ap(E l)

4 Cal(FO), Cap(F3) C al(F l), Cap(FO)

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

Cap(F3) Cap(FO)

5 Cap(B2) Cal(GO),

Cap(B2)

Cal(EFO)

6

7 Cap(EF2) Cap(EF2)

8 Cal(G3) Cal(G4),

Cap(G3)

Cap(G4) Cap(G4)

9 Cal(HO),

Cap(H2)

Cap(H2) Cal(H l),

Cap(H3)

Cap(H3)

10

11 Cap(G H l) C ap(G H l)

12 Cal(I2),

Cap(B3)

Cal(GH2),

Cap(I2)

Cap(GH2) Cap(GH2)

13 Cal(I3),

Cap(B3)

Cal(I4),

Cap (13)

14 Cal(JO),

C ap (Jl)

C ap (Jl) C al(Jl),

Cap(J2)

Cap(J2)

15 Cap(IJO) Cap (I JO)

16 C al(K l) C al(IJl) C al(IJl) C al(IJl)

17 Cal(K2) Cal(IJ2)

18

Table 4.1: Multiplier Scheduling for Processors 0-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

S te p LP4 LP5 LP6 LP7

0 Cap(A2) Cap(A3)

1 Cap(BO) Cap(BO)

2 Cal(D2) Cal(D3)

3 Cal(E2),

C ap(B l)

Cap(E2) Cal(E3),

Cap(Bl)

Cap(E3)

4 Cal(F2),

C ap(F l)

C ap(F l) Cal(F3),

Cap(F2)

Cap(F2)

5 Cap(EFO) Cap(EFO)

6 C al(G l),

Cap(B2)

C al(E F l),

C ap(G l)

C ap(EFl) C ap(E Fl)

7 Cal(G2),

Cap(B2)

Cal(EF2),

Cap(G2)

8

9 Cal(H2),

Cap(HO)

Cap(HO) Cal(H3),

Cap(H l)

Cap(H l)

10 Cal(IO),

Cap(B3)

Cap(GHO) Cap(GHO) Cap(GHO)

11 Cal(Il),

Cap(B3)

Cal(G H l),

C ap(Il)

12

13 Cap(I4) Cap (14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. ARCHITECTURE EXPLORATION AND IMPLEMENTATION RESULTS

14 Cal(J2),

Cap(J3)

Cap(J3) Cal(J3),

Cap (JO)

Cap(JO)

15 Cal(KO) Cal(IJO)

16

17 Cap(IJ2) Cap(IJ2)

18 Cal(K3) Cal(K4)

Table 4.2: Multiplier Scheduling for Processors 4-7

After scheduling, the control words for each processor were generated and down

loaded onto the processors. Several values were tested and the multiplier gave the

correct results proving the validity of our design.

We should note the emulation of the multiplier was simulated and not downloaded

on the FPGA. The reason behind th a t is th a t we lack the connection circuitry with

the FPG A pins and building such a circuitry would be very time consuming. A more

im portant reason is th a t we do not have a D ata Capture Unit to read the outputs of

the processors and therefore we cannot verify the operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion and Future Work

The first section of this chapter summarizes the contributions made by this research.

In section 2 we present a brief comparison between our design and previous processor-

based emulator designs. We conclude in section 3 with some remarks on possible

future work.

5.1 Research C ontributions

The main contribution made by this research is the design and implementation of a

low-cost processor-based logic emulation system. To reduce cost, the design was im

plemented using FPG A technology. Before implementation, architecture exploration

experiments were conducted in order to choose suitable values for key architecture

param eters. The proposed emulator can verify the functionality of logic designs at

relatively high speeds and in real operating environments.

To increase logic capacity a fully connected multi-FPGA system can be used.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. CONCLUSION AND FUTURE W ORK

Each FPG A is programmed to act as an emulation chip. The full (multi-FPGA)

design of the emulator was not implemented in this research. Only one emulation

chip was implemented using a single FPGA. Each of these emulation chips is capable

of emulating around 98 thousand ASIC gates and 12 thousand memory bits. It can

run at a speed of almost 187 KHz per design cycle or more, depending upon the

number of instruction cycles needed in one design cycle.

A four-bit multiplier was emulated to verify the correctness of the proposed em

ulator design. Because we lack the CAD tools for the bit stream generation, all the

tasks of the CAD flow were carried out manually. The multiplier was emulated and

verified the correct operation of the emulator.

5.2 Com parisons w ith Other System s

To provide a context regarding the contributions made by this research, we present a

brief comparison with previously proposed processor-based logic emulation systems.

In [15], a processor-based emulator was implemented using custom made chips.

The building block of the system is a processor which can emulate both logic and

memory functions. The two main differences between this design and ours are in ar

chitecture and implementation. In term s of architecture, the processor in this system

performs both logic and memory emulation. In our design, two different processors

are used one to emulate logic functions and the other to emulate memory functions.

As for implementation, this design was implemented on custom made chips which

makes it very expensive. In contrast, our processor-based emulator was implemented

on FPGAs which would effectively make it a much lower cost system. We should

note th a t there are several other similarities and differences in terms of operation and

hierarchy.

In [10], a processor-based emulator was implemented on FPGAs. The emulator

contains several kinds of processors. The main differences between this design and

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. CONCLUSION AND FUTURE W ORK

ours are in the design architecture and hierarchy. This design contains different kinds

of processors in addition to logic and memory processors; our design only contains

those two kinds. Another difference in architecture is in the interconnection network.

The designer in this case chose to use buffers in the interconnections between the

processors to give more flexibility to the CAD tools in terms of routing. We thought

th a t using such buffers would consume the limited resources of the FPG A and decided

to leave a tighter constraint on the CAD tools.

In comparison with commercially available emulators like the Incisive Palladium II

[18] our emulator reached almost one eighth Palladium ’s top speed. Although speed

might be a drawback, our design has a lower cost because of FPG A implementation.

5.3 Future Work

In our research we focused on the hardware architecture of a processor-based logic

emulation system. The other main part is the mapping CAD tools tha t are required

for a real world emulation system. The next step would be to design and develop

the mapping CAD tools for this system. The mapping CAD tools would compile the

logic design of the DUT and generate the b it stream which could be downloaded to

the programmable hardware.

Another future work in the hardware part of the project might involve designing

a da ta capture unit which would help the designer in finding errors and autom ate the

checking process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Altera Corporation. High Speed Board Designs, November 2001.

[2] Altera Corporation. Introduction to Quartus II Version 5.0, April 2005.

[3] Altera Corporation. Stratix Device Handbook, July 2005.

[4] Altera Corporation, h ttp ://w w w .altera .com /, Accessed August 2007.

[5] A ltera Corporation. Stratix II Device Handbook, May 2007.

[6] Altera Corporation. Stratix I I I Device Handbook, May 2007.

[7] J. Babb, T. Russell, M. Dahl, S. Z. Hanono, D. M. Hoki, and A. Agrawal. Logic
emulation with virtual wires. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 16(6):609-626, June 1997.

[8] K. Banovic, M. A. S. Khalid, and E. Abdel-Raheem. FPGA-based rapid pro
totyping of digital signal processing systems. In Proc. o f the 48th M id-W est
Symposium on Circuits and Systems, pages 647-650, August 2005.

[9] M. Butts. Future directions of dynamically reprogrammable systems. In Proc.
o f IEEE Custom Integrated Circuits Conference, pages 487-494, 1995.

[10] M. R. Butts. Logic multiprocessor for FPG A implementation. U.S. Patent Ap
plication 2004/0123258 A l, June 2004.

[11] Cadence Design Systems Incorporated, http://w w w .cadence.com /, Accessed Au
gust 2007.

[12] E. M. Clarke and R. P. Kurshan. Computer-aided verification. IEEE Spectrum,
33(6):61-67, June 1996.

[13] K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and
software. A C M Computing Surveys, 34(2):171-210, June 2002.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.altera.com/
http://www.cadence.com/

REFERENCES

[14] C. Edwards. Tracking down the chip killers. IEE Review, 50(12):44-46, December
2004.

[15] Beausoleil et al. Multiprocessor for hardware emulation. U.S. Paten t 5551013,
August 1996.

[16] H. Goldstein. Checking the play in plug-and-play. IEEE Spectrum, 39(6) :50—55,
June 2002.

[17] S. Hauck. The roles of FPG A ’s in reprogrammable systems. Proceedings of the
IEEE, 86(4):615—638, April 1998.

[18] Incisive Palladium II. http://w w w .cadence.com /products/functional_ver/
aceLemul/pseries.aspx, Accessed August 2007.

[19] P. H. Kelly, K. J. Page, and P. M. Chau. Rapid prototyping of ASIC based
system. In Proc. o f the 31st A C M /IE E E Design Automation Conference, pages
460-465, June 1994.

[20] C. Kern and M. R. Greenstreet. Formal verification in hardware design: A survey.
A C M Transactions on Design Automation o f Electronic Systems , 4(2):123-193,
April 1999.

[21] M. A. S. Khalid and J. Rose. A novel and efficient routing architecture for multi-
FPG A systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 8(l):30-39, February 2000.

[22] D. MacMillen, M. Butts, R. Camposano, D. Hill, and T.W . Williams. An in
dustrial view of electronic design autom ation. IEEE Transactions on Computer
Aided Design o f Integrated Circuits and Systems, 19(12): 1428—1448, December
2000 .

[23] K. L. McMillan. F itting formal m ethods into the design cycle. In Proc. of the
31st A C M /IE E E Design Automation Conference, pages 314-319, June 1994.

[24] A ltera Megafunctions, h ttp ://w w w .altera .com /products/ip /altera/m ega.h tm l,
Accessed August 2007.

[25] Mentor Graphics Corporation, h ttp ://w w w .m entor.com /, Accessed August 2007.

[26] G. E. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(l):82-85, January 1998.

[27] R. Murgai and M. Fujita. Some recent advances in software and hardware logic
simulation. In Proc. o f the 1 Oth IE E E International Conference on VLSI Design,
pages 232-238, January 1997.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cadence.com/products/functional_ver/
http://www.altera.com/products/ip/altera/mega.html
http://www.mentor.com/

REFERENCES

[28] Institu te of Electrical and Electronics Engineers. IEEE standard VHDL language
reference manual, A N SI/IEEE Std 1076-1993, 1993.

[29] C. Pixley, A. Chittor, F. Meyer, S. McMaster, and D. Benua. Functional ver
ification 2003: Technology, tools and methodology. In Proc. of the 5th IEEE
International Conference on ASIC, pages 1-5, October 2003.

[30] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of field-
programmable gate arrays. Proceedings of the IEEE , 81 (7): 1013—1029, July 1993.

[31] L. Soule and T. Blank. Parallel logic simulation on general purpose machines.
In Proc. of the 25th A C M /IE E E Design Automation Conference, pages 166-171,
June 1988.

[32] J. Varghese, M. Butts, and J. Batcheller. An efficient logic emulation system.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1 (2): 171—
174, June 1993.

[33] VStationPRO. h ttp ://w w w .m entor.com /products/fv/em ulation/vstation_pro/,
Accessed August 2007.

[34] Xilinx Incorporated, http://w w w .xilinx.com /, Accessed August 2007.

[35] Xilinx Incorporated. Vertex-5 Family Overview - LX, LX T , and S X T Platforms,
May 2007.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mentor.com/products/fv/emulation/vstation_pro/
http://www.xilinx.com/

VITA A U C T O R IS

Marwan Kanaan was born in Haret Hreik, Lebanon, in 1983. He received his B.E.
in computer and communications engineering in 2005 from the American University of
Beirut in Beirut, Lebanon. He is currently a candidate in the electrical and computer
engineering M.A.Sc. program at the University of Windsor. His research interests
include logic emulation systems, field-programmable technologies and digital design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A low-cost processor-based logic emulation system using FPGAs
	Recommended Citation

	tmp.1619631789.pdf.9HofO

