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Abstract

Logic emulation systems are used to verify the functionality of logic designs targeted 

for integrated circuit implementation. In this thesis, the design and implementation 

of a low-cost processor-based logic emulation system is presented. It contains multi

ple processors interconnected together and packaged in one emulation engine. It is 

capable of emulating combinational and sequential logic at relatively high speeds of 

187 KHz or more, in real operating environments and with predictable compile time. 

The implementation was done on an FPG A  to reduce cost. The proposed system is 

scalable to a m ulti-FPGA system where several of these identical FPGAs could be 

connected together to increase the logic capacity of the system.

The architecture and operation of the emulator is first described. Architecture 

exploration experiments were conducted in order to choose suitable values for different 

architecture param eters for implementation on the target FPGA. The design was 

implemented on an Altera S tratix  FPGA. A four-bit multiplier was emulated to verify 

correct operation of the proposed emulation system.
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Chapter 1

Introduction

In this day and age, electronic devices, ranging from cell phones to  personal com

puters, play an essential role in our daily lives. Designing such devices and verifying 

their functionality could be an excruciating task for engineers if the necessary tools 

are missing. These tools, known as Computer-Aided Design (CAD) tools, have long 

been a vital part of the research in chip design where considerable research efforts 

have been made and are always being carried out to  ensure th a t designers have the 

most reliable and efficient of these tools.

One task of these design tools is design verification, the process where the func

tionality of an electronic device is validated. In the past three decades verification 

has become one of the most crucial parts of the design cycle. Its im portance is due 

to  the fact th a t it is absolutely necessary for designers to make sure th a t their design 

is correct prior to fabrication. A simple error discovered after production is very ex

pensive to  fix thus potentially costing the manufacturing company millions of dollars 

in losses [12]. In addition to tha t, the increase in chip size [26] and the need to reduce

1
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1. INTRODUCTION

tim e-to-m arket require more capable and robust design verification tools to  cope with 

the growing industry.

Several design verification tools are available 011 the market today. The most 

effective of these tools are logic emulators. A logic emulator is a design verification 

tool where a reprogrammable system im itates the functional behavior of a logic design. 

The system can be programmed to act exactly as a desired chip and thus gives 

the user the ability to check the logic design in real time circuit environments and 

conditions before m anufacturing [9, 17]. By doing so the designer could verify the 

Design under Test (DUT) by running tests th a t the real chip would have to pass. 

This process could be repeated several times and in this manner most errors could be 

identified and corrected. Logic emulators give the user the ability to catch almost all 

functional errors in a logic design, however we should note th a t timing requirements 

and constraints cannot be verified using this tool.

Currently there are two types of logic emulators, FPGA-Based Logic Emulation 

Systems (FBEs) and Processor-Based Logic Emulation Systems (PBEs). In FBEs, 

several reprogrammable chips known as Field Programmable Gate Arrays (FPGAs) 

are connected together to  emulate the functional behavior of a logic design. While 

FBEs are considered to  be low-cost and efficient emulators they face a m ajor problem 

when it comes to their CAD tools. The second type of logic emulation systems are 

processor-based emulators where multiple emulation processors are packaged together 

in an emulation engine capable of emulating a logic design of significant size and 

complexity. PBE systems are considered to be an efficient verification tool and do 

not suffer from problematic CAD tools, however they are implemented on custom 

made chips and are therefore very expensive.

The motivation behind this thesis is to design a logic emulation system th a t would 

combine the advantages of FBEs and PBEs; a system th a t would be as efficient as 

a PBE and as inexpensive as an FBE. To achieve this goal, one solution would be

2
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1. INTRODUCTION

to implement the processor-based emulation system on an FPGA, a reprogrammable 

chip known for its low cost. In this thesis we explore the architecture of such a system. 

The proposed emulation system would run at relatively high speeds and be capable 

of emulating designs of significant logic capacity and complexity.

1.1 Thesis O bjectives

The main objective of this thesis is to  explore FPG A design and implementation of 

a low-cost processor-based emulation system. To achieve this goal, an architecture of 

a logic emulation system is explored and implemented. This thesis has the following 

objectives:

1. Explore the architecture of a processor-based logic emulation system th a t can 

be implemented on an FPGA.

2. Implement the emulator by targeting a specific FPGA.

3. Ensure th a t the PBE is scalable. Several FPGAs should be able to  connect 

together in a m ulti-FPG A system to increase logic capacity.

4. Verify the system by emulating a logic design.

To satisfy the first objective, an architecture of a processor-based emulator was 

explored in terms of cost, functionality, area and speed upon which key design pa

ram eters were chosen accordingly. To satisfy the second objective, an Altera Stratix 

FPG A  was targeted. The implementation was tuned specifically for this FPGA. To 

address the third objective a scalability study was done and results are presented. 

For the fourth objective, a four-bit multiplier was designed, scheduled and emulated 

on the designed system to verify its correctness.
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1. INTRODUCTION

1.2 Thesis O rganization

The rest of this thesis is organized as follows. Chapter 2 discusses the background 

and previous work done on the subject. Chapter 3 presents the architecture and 

operation of the proposed system and its various components. Chapter 4 presents 

the architectural exploration and implementation results. Lastly, chapter 5 concludes 

with some discussion of possible future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Background and Previous Work

This chapter presents the background for the research done in this thesis and briefly 

describes related previous work. The first section begins by defining design verification 

and its significance in today’s industry. It then briefly discusses the five m ajor types 

of verification tools available on the market today, along with their main advantages 

and disadvantages. The second section of this chapter focuses on logic emulation 

systems. A brief introduction is given with a discussion of the two main types of 

logic emulators. The chapter concludes by presenting some examples of commercially 

available logic emulation systems.

2.1 D esign Verification

Design verification is the process whereby a logic design is checked for functional 

errors. In this part of the design cycle, the functional behavior of a logic design is 

validated. As chips increased in size and complexity, design verification tools became

5
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2. BACKGROUND AND PREVIOUS W ORK

more complicated and required more efforts. Today the design verification process 

alone may consume up to 60% of the whole design cycle in terms of time, resources 

and manpower making it the bottleneck for design development [14, 29, 16].

Over the past few decades design verification has evolved from simple m athem at

ical techniques tha t were carried out by manual calculations to test the validity of 

small designs to multi-million dollar machines capable of verifying a design consisting 

of millions of gates.

There are several types of design verification tools available on the m arket today, 

each with advantages and disadvantages, and in general they can be categorized into 

five m ajor groups:

1. Formal verification

2. Software simulation

3. Hardware-accelerated simulation

4. Rapid prototyping

5. Logic emulation

In the following sections we introduce each type of these tools and we describe 

their capabilities and weaknesses.

2.1 .1  Form al V erification

In form al verification the designers prove the validity of a logic design using formal 

methods; all or part of the design is modeled in a mathematical framework after 

which the designer would solve the m athem atical equations to verify the correctness 

of the design [20, 23].

The main advantage of formal verification is th a t it is highly effective in catching 

design errors. Since it relies on a m athem atical approach, formal verification is almost

6
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2. BACKGROUND AND PREVIOUS W ORK

completely guaranteed to  find any functional error. The main disadvantage, however, 

is th a t it is very time consuming. Proving the validity of a design using formal 

verification requires extended periods of time from expert designers and hence it is 

impractical to use in large IC designs [20].

Despite tha t, formal verification is probably the most comprehensive of all verifi

cation tools but due to its heavy cost in terms of time it could be only used in small 

circuits or in specific parts of large designs.

2.1 .2  Softw are S im ulation

Software simulation is w ithout doubt the most popular and widely used verification 

tool [29]. It is widely available, inexpensive and above all user friendly. In simulation 

the Design under Test (DUT) is represented in software models which the designer 

would test for correctness by applying input test vectors to them  then reading the 

outputs to  check for errors [27],

Simulation has many advantages over other verification tools. It is generally easy 

to  use; the user’s task is only to choose the input vectors after which he or she has 

to  wait for outputs. Simulation is also inexpensive since it requires only a software 

platform. It provides the user with high visibility and flexible debugging; the user can 

observe each signal traversing the design to  check for errors. But probably the most 

im portant advantage is the flexibility th a t simulation provides. Since it is software- 

based, changing and modifying parts or all the design is relatively easy to  do.

Software simulation also has several disadvantages. The degree of accuracy of the 

verification process depends heavily on the user’s choice of input test vectors. The 

choice of these vectors should be comprehensive enough to cover all aspects of the de

sign or else some functional behavior of the design might be missed and go unchecked 

for errors. A second m ajor disadvantage, and perhaps the most im portant, is tha t 

simulation is relatively slow [27]. Because of the sequential nature of software pro
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cessing, simulating a large design, especially in its real world operating environment, 

could literarily take days or even weeks.

2 .1 .3  H ardw are-A ccelerated  Sim ulation

Hardware-accelerated simulation  shares the same basic principles with software sim

ulation. The motivation behind this m ethod was to simply overcome the slow speed 

problem of software simulation. A logic design is still modeled in software, however 

this tim e the simulation is executed on custom made hardware rather on a software 

platform  running on a single processor. The processing power achieved by hard

ware accelerates the simulation and gives the advantage of faster simulation speed 

[27, 22, 31].

Despite the speed acceleration th a t this m ethod provides it still suffers from the 

same problem th a t software simulation suffers from: the degree of accuracy of the 

verification process still depends on the designer’s choice of inputs. In addition, the 

speedup provided by the hardware accelerators is still limited by the communication 

media between the host computer and the hardware accelerator itself [29]. The time 

needed for the input vectors to  be generated and the output signals to be read is still 

restricted by the connective devices.

2 .1 .4  R apid  P ro to typ in g

As the name suggests, in rapid prototyping, a custom made prototype of the logic 

design is built by the designer to  verify the functionality of a design [19, 8]. Usually a 

custom m ulti-FPG A system is built for each prototype. In such systems, the FPGAs 

are programmed to im itate the functional behavior of the design and perm anent 

connections are established between them  to ensure design connectivity.

The main advantage of prototyping is speed. Since the whole design is imple

mented in hardware, rapid prototyping achieves the fastest verification speeds of all

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS W ORK

verification tools. In addition to  speed, another advantage of rapid prototyping is tha t 

it provides the user with the capability of testing the prototype in its real operating 

environment. Rather than  using input test vectors to  test the system, real inputs are 

supplied from the surrounding target system, thus giving the user higher confidence 

in the validity of the design.

Nevertheless, rapid prototyping has a m ajor disadvantage when it comes to  cost. 

Once a prototype is built for a specific design it cannot be modified to  implement 

another design; in other words it is a throw-away effort after the user is done with 

only one design. This basically means th a t the system is not reusable making its cost 

very high.

2.1 .5  Logic E m ulation

The newest type of design verification and the most efficient one is logic emulation. 

A logic emulator is a reprogrammable system th a t can be programmed and repro

grammed to emulate logic designs a t relatively high speeds. Once programmed, an 

emulator would function exactly as the desired hardware without the need for fabri

cation. In doing so, an emulator would be combining the advantages of software and 

hardware together; because it is reprogrammable it is as flexible as software and since 

it utilizes hardware it achieves very high speeds. However, it is im portant to note 

th a t although an emulator is programmable it is still quite different from software 

simulation. The hardware here is not being modeled in software; in fact, it is actually 

implemented on reprogrammable hardware.

Compared to other verification tools logic emulation has many advantages. It is 

as flexible as software simulation yet much faster and although it is not as fast as 

rapid prototyping yet it is not as costly because it is reprogrammable. But the main 

advantages of the logic emulation would have to  be in-circuit emulation, the capability 

to  function like an actual IC chip in real world operating environments. After being

9
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programmed an emulator could be connected to a target system and tested, giving 

the user the opportunity to  verify the operation before fabrication. This removes the 

need to generate input test vectors, and like rapid prototyping, gives the user higher 

confidence in his or her design by relying on real inputs supplied by the target system.

Logic emulation still has some disadvantages, mainly its cost. Logic emulation 

systems are still very expensive and can only be afforded by big companies. Designing 

and manufacturing such a system is still a costly process.

Since it is the main focus of this research, in the following sections of this chapter 

we describe the main types of logic emulators and we discuss their advantages and 

disadvantages in detail.

2.2 Logic Em ulation System s

A typical logic emulation system, shown in Figure 2.1, contains three main elements:

1. Em ulation engine (or emulator for short)

2. Emulation support facilities

3. Interface circuitry

An emulator is basically a reprogrammable hardware system th a t can implement 

any logic design. This reprogrammable system could be a set of FPGAs or emulation 

processors connected together. Some details about the architecture of the emulator 

would be discussed in later sections of this chapter.

Emulation support facilities include a host computer along with an emulation 

compiler [15]. The task of the host computer is to  act as an interface between the 

user and the emulator. The compiler is responsible for converting the DUT supplied 

by the user into a bit stream  to be downloaded to  the programmable hardware. The

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS W ORK

DUT

I

Host
Computer

Interface
Circuitry

System

Logic
Emulator

Figure 2.1: Logic Emulation System

emulation support facilities might also include some other components like a D ata 

Capture Unit used to read the outputs from the emulator and relay them  to the user.

The interface circuitry of the logic emulation system is used to  connect the emu

lator to a target system to perform in-circuit emulation.

To use the system the user supplies the compiler with a logic design (e.g. written 

in a hardware description language). The compiler compiles the design and generates 

a bit stream  which can then be downloaded onto the emulation engine. At this time 

an emulator is working exactly as the desired chip would work. Using the interface 

circuitry the user could connect the emulator to  a target system and test the design. 

This is the main advantage of emulation: the ability to test a design in its typical 

operating environment with real inputs.

To illustrate this consider the example where the designers are verifying the func

tionality of a video card for a personal computer. In this case the DUT is the logic 

design for the video card and the target system is the personal computer. To perform 

in-circuit emulation, the designers would program the emulator with the design of the 

video card and connect it to the personal computer using the interface circuitry. The

11
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personal computer would then be powered up with the emulator acting as its video 

card. In this way the emulator could be checked thoroughly for errors.

Logic emulation systems are currently considered to be the most effective and 

fastest m ethod for design verification. They are used by most top semiconductor 

vendors to  test IC designs before fabrication. The price for such systems varies from 

tens of thousands to  millions of dollars depending on the type of the system, capacity 

and speed. Currently there are two main types of logic emulation systems available 

on the market:

1. FPGA-Based Emulators (FBEs)

2. Processor-Based Emulators (PBEs)

In what follows we present each of those types, their architectures, design tools 

and operation.

2.2 .1  F P G A -B a sed  E m ulation  S ystem s

The basic building block of an FBE system is an FPGA. In this emulator, several 

FPG As are connected together to  emulate (im itate) the functional behavior of a logic 

design. Before discussing the architecture of this system we first introduce FPG As in 

detail.

2.2.1.1 Field Program m able G ate Arrays

A field programmable gate array is a reprogrammable chip th a t was first introduced 

in the 1980s [17]. By means of reprogrammable logic embedded inside, an FPGA 

can virtually implement any logic design. The main advantages of FPGAs can be 

summed up in two main points. The first advantage is that they are inexpensive; the 

price for a single FPG A starts  from a few dollars. In addition, the reprogrammable 

capability of the FPG A  makes it reusable for many designs which lowers its cost even

12
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more. The second main advantage of FPGAs is th a t they have a fast time-to-market. 

Unlike custom made chips where every single design has to  be handled individually, 

FPGAs, because they are not custom made, are available off the shelf.

The above mentioned properties or advantages have given great importance to 

FPG As in the industry. More and more designs are being implemented on FPGAs 

to save money and time. Companies could use FPGAs for their designs instead 

of Application-Specific Integrated Circuits (ASIC) chips to  go around the lengthy 

and costly process of designing and building custom made chips. However, these 

gains do not come without a price; FPGAs are still bigger and slower than  their 

counterpart ASIC chips. Because of their programmable nature and since they are 

not built to suit a specific design but rather any design, FPGAs still suffer from a 

decrease in logic utilization, i.e. bigger area, and slower speed. FPG A  manufacturers 

are addressing this problem now more than ever and with the emergence of modern 

more sophisticated FPGAs these problems are becoming of lesser im portance and the 

advantages of FPGAs are outweighing any disadvantages they have.

The programmable ability of an FPG A  is derived from the use of programmable 

logic elements able to  emulate or im itate the functional behavior of any logic func

tion. Several architectures for FPG As have been proposed, however, they all share 

some basic components. Figure 2.2 is a simplified illustration of a typical FPG A 

architecture [30].

FPG As are made up of several m ajor components. The two most im portant 

components are logic elements and routing resources. A logic element in the FPGA 

is responsible for emulating the behavior of a logical function. In other words a 

logic element could im itate the function of any logic gate. A typical logic element, 

shown in Figure 2.3, contains three main elements: lookup table, flip-flop and a 2-to-l 

multiplexer. It is the task of the lookup table to  operate as a logic gate. A typical 

lookup table is shown in Figure 2.4. The lookup table shown in the figure has four

13
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Figure 2.2: A Generic FPGA Architecture
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inputs. It contains a memory array and each array element is connected to an input 

of a 16-to-l multiplexer. The selection bits for this multiplexer are the inputs of the 

lookup table, i.e. the presumed inputs of the logic gate. To program the table the 

compiler sets the bits of the memory array. Based on the selection bits (inputs) of 

the multiplexer one of those array elements is chosen. The lookup table shown in the 

figure is an example of a four-input AND gate; only when all the inputs are l ’s is the 

last element of the array chosen and the output is 1.

The lookup table only handles the combinational part of the logic element. To
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accommodate for sequential logic, the logic element contains a flip-flop whose input 

is the output of the lookup table. The output of this flip-flop is fed into a 2-to-l 

multiplexer whose selection bit is reconfigured by the compiler. This selection bit 

decides the output of the logic element.

Besides the logic elements, FPGAs contain routing resources to  connect these 

elements together. The routing resources are basically made up of connection blocks, 

switching blocks and a set of wires th a t run vertically and horizontally across the 

FPG A. Connection blocks situated between the logic elements can be programmed 

to connect the outputs of these logic elements to  any vertical or horizontal wire. 

Switching blocks situated between the connection blocks can in turn  be programmed 

to connect the wires together [13].

By programming the logic elements, connection blocks and switching blocks a user 

can implement any logic design on the FPGA. Nevertheless, mapping a logic design 

onto an FPG A  is not an easy task and is the m ajor challenge in FPG A  research.

In addition to the logic elements and routing resources, FPGAs contain two other 

im portant components: embedded memory blocks and inpu t/ou tpu t pads. Typically 

the FPG A  would have several memory blocks of different sizes to store data  th a t 

would be used to implement memory arrays or registers in a logic design. I /O  pads, 

on the other hand are used to  connect the FPG A  to the outside world. Both memory 

blocks and I/O  pads are connected to other elements of the FPG A via the routing 

resources mentioned above.

Currently there are two m ajor FPG A  vendors: Altera Corporation and Xilinx In

corporated [4, 34], The latest FPG As produced by these companies contains hundreds 

of thousands of logic elements capable of emulating what is equivalent to millions of 

ASIC logic g a te s  [6, 35]. The ro le of FPGAs in  th e  in d u s try  is grow ing a n d  significant 

research is being carried out to enhance their performance and capabilities.
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2.2.1.2 A rchitecture and C AD  for FBEs

In an FPGA-based emulation system several FPGAs are connected together to  be able 

to  emulate a design of significant size. Several architectures were proposed to create 

the M ulti-FPGA System  (MFS)[21, 32, 7]. A typical architecture is shown in Figure 

2.5. Here eight FPGAs are connected to  each other by means of a programmable 

interconnection network. Such a system is highly flexible since all inter-FPG A  con

nections are programmable.

The CAD flow, shown in Figure 2.6, for a multi-FPGA system is as follows. The 

user supplies the compiler with a logic design. After performing logic synthesis and 

technology mapping, the compiler partitions the design into several parts such tha t 

each part could fit on one FPGA. Then each part of the design would be assigned 

to  a specific FPGA inside the MFS and the compiler starts routing the signals or 

connections between all the FPGAs, this is known as inter-FPGA routing. After 

inter-FPG A  routing is done the compiler starts  placing and routing each part of the 

design in its specific FPGA, this is known as intra-FPGA placement and routing. 

The final step would be to  generate a bit stream  of the design and download it to  the 

FPG As [13].

FBEs are an efficient verification tool; they can emulate any design and can ac-
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Figure 2.6: CAD Flow for FBEs
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commodate any logic capacity by simply increasing the number of FPGAs. FBEs also 

have a relatively high emulation speed because they exploit parallelism in hardware. 

Another m ajor advantage is th a t they have a relatively low price starting from only 

several thousand dollars.

Nonetheless, FBEs still face a m ajor problem: CAD tools. Mapping a logic design 

to a m ulti-FPG A system by programming the FPGAs and the inter-FPGA routing 

resources is very problematic. Partitioning a design, placing it on FPGAs and then 

routing the signals have been one of the main focuses of FPG A research. Although 

many algorithms have been proposed and architectures suggested, CAD tools for 

FPG As are still very complex. Compiling a design for a m ulti-FPGA system has an 

unpredictable compile tim e and may never even succeed. In addition, FBEs have very 

limited visibility and debugging support, which makes it very difficult for the designer 

to  catch errors. Also, if an error was discovered and fixed the change might trigger 

a chain reaction in the whole system and the design would need to be compiled and 

downloaded again.

2.2 .2  P rocessor-B ased  E m ulation  System s

The second m ajor type of logic emulation systems is processor-based emulators. The 

basic building block of a PBE is what is known as an emulation processor th a t can 

emulate a large number of logic gates and memory functions. Several of these emula

tion processors are connected together and run in parallel to emulate the functional 

behavior of a logic design [15]. Before we discuss in detail the architecture of this 

system it is useful to briefly describe the emulation processors and their operation.

2.2.2.1 Em ulation Processors

Similar to  a logic element in an FPG A, an emulation processor can perform the 

logical operation for any given function. Although it is made from custom hardware
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it is still programmable; th a t is achieved because embedded inside this processor is 

a reconfigurable lookup table. The structure of this lookup table is exactly the same 

as th a t of the one inside the FPGA. The main difference between this processor and 

the logic element of the FPG A  is th a t a logic element of the FPG A  is programmed 

only once before emulation starts  and therefore can only implement one logic function 

during the whole emulation cycle. This is in contrast with this processor which can 

reprogram  its lookup table during emulation to emulate different logical functions. 

The array elements for the lookup table would be stored inside the processor and 

then loaded into its lookup table during emulation to change the logic function at 

any time. The ability to change its operation type during emulation is what gives the 

processor its advantage over the logic element of the FPGA. More on the processor’s 

architecture and operation will be described in later chapters.

It is worth noting th a t inside a PBE there might be several kinds of emulation 

processors. A PBE could have all homogeneous processors, in which case each proces

sor would have to  be able to perform any function of the logic design. Alternatively, 

a PB E could have heterogeneous processors, in which case specific processors would 

perform specific tasks (e.g. several processors would perform logic operations while 

others would perform memory functions) [15, 10].

2.2.2.2 A rchitecture and C AD for PB E s

A typical architecture of a processor-based emulator is shown in Figure 2.7. The emu

lation processors are connected together via a programmable interconnection network 

to ensure th a t a signal could traverse from one processor to another. It should be 

noted th a t unlike FBEs where the interconnections are fixed during emulation, this 

interconnection can be reprogrammed during emulation. The reader should keep in 

mind th a t reprogramming the processors during emulation is quite different from 

programming them  prior to emulation. The former is done by the emulation support

20
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Figure 2.7: Processor-Based Emulation System

facilities while the latter is done by the emulator itself with no connection to the 

facilities.

The CAD flow for PBE, shown in Figure 2.8, is described as follows. The user 

supplies the compiler with the logic design. The compiler performs logic synthesis and 

technology mapping then partitions the design into several parts such th a t each part 

would be able to fit in one emulation processor. After each of those parts is assigned 

to  a specific processor, a process called scheduling starts. During scheduling different 

logic functions which have been assigned to  each processor are allotted different time 

slots throughout the emulation period. For example, an emulation processor would 

perform a logical AND during a specific tim e slot and a logical OR during another 

time slot. After scheduling is done a b it stream  is generated and downloaded onto 

the processors before emulation starts  [15].

PBEs have several advantages. They have very efficient and fast CAD tools com

pared to  FBEs. In addition to tha t, they have much better visibility and debugging 

support. Finding an error and fixing it in a PBE is a standard procedure and usually 

does not trigger a chain reaction in the whole emulator. W hen an error is found 

the designer would only have to  fix the specified processor and not the whole design 

unlike FBEs. CAD tools in PBEs are much less complicated than  FBEs and have a 

well predictable compile time.

PBEs also have some disadvantages. They are comparatively slower than  FBEs. 

Because processors in PBEs have to  reprogram themselves periodically this leaves an
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effect on the emulation speed. Nonetheless, current PBEs are becoming faster and 

faster and are able to compete with their FBE counterparts. The m ajor disadvantage 

of PBEs is their price which is due to  the fact th a t the whole system is built on 

custom hardware. Their prices are currently in the order of millions of dollars.

2 .2 .3  C om m ercia lly  A vailab le Logic Em ulators

To give the reader an idea of the emulation technology on the market today, we 

present two examples of logic emulators manufactured by leading Electronic Design 

Autom ation (EDA) companies, Cadence Design Systems and Mentor Graphics [11, 

25].

The Incisive Palladium I I  is a PBE system supplied by Cadence Design Systems 

[18]. This machine is capable of simulation acceleration and in-circuit emulation and 

can reach a speed up to 1.5 MHz. This emulator can compile up to 30 million gates 

per hour on a single workstation and has a maximum capacity of 256 million gates.

The VStationPRO  is an example of an FPGA-based emulation system [33]. This 

product is m anufactured by Mentor Graphics. It has a scalable capacity from 1.6 to 

120 million gates and can reach a speed up to  1 MHz. This emulator can compile at 

a rate  of 5 million gates per hour.
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Chapter 3 

System  Architecture and 

Operation

This chapter presents the architecture and operation of the proposed logic emulation 

system. The first and second sections include an introduction and a general view of 

the emulator. Sections 3 and 4 discuss the two basic components, logic and memory 

emulation processors, in detail. Sections 5, 6 and 7 discuss the emulation module, 

emulation chip and emulation engine respectively.

3.1 Introduction and M otivation

Chapter 2 introduced the two m ajor types of logic emulation systems, FPGA-based 

em u la to rs  a n d  p rocesso r-based  em u la to rs , a long  w ith  th e  ad v an tag es a n d  d isad v an 

tages of each one of them. Keeping th a t in mind, the motivation behind this work 

is to  design an emulator th a t combines the two most im portant advantages of both
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systems: the low cost of FBEs and the high efficiency of PBEs. To achieve th a t we 

have to  design a PBE th a t can be implemented on an FPGA.

It is im portant to  note th a t this research only deals with the hardware part of 

this proposed system. The main goal is to  design an efficient architecture for a PBE. 

The CAD tools necessary to operate this emulator are not the focus of this research 

and are beyond the scope of this work.

Before delving into the details of the system architecture, it is im portant to high

light one im portant aspect of a processor-based emulator. The main clock in an 

emulator, known as the design clock, is shown on top of Figure 3.1. It is the fre

quency of this clock th a t determines the speed of a PBE. During each clock period 

of this design clock a number, known as the emulation step, increments from zero 

to  a specific number (127 in Figure 3.1). Shown at the bottom  of the figure is the 

emulation clock whose clock period corresponds to a single emulation step.

During each emulation step, emulation processors will perform a different opera

tion type which in effect means th a t a single processor could perform a maximum of 

128 different operations given th a t the number of emulation steps in a single design 

cycle is 128.

We now discuss the details of the architecture and operation of the logic emulation 

system starting  with the basic components. We should note th a t the architecture pro

posed for this design is based on the architectures of [15] and [10] but has substantial 

differences with them.

3.2 Levels o f Hierarchy

To enhance scalability, the design contains three levels of hierarchy connected together 

using different topologies. These levels are:

1. Emulation module

25
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2. Emulation chip

3. Emulation engine

The building blocks of this emulation system are the logic emulation processor 

and the memory emulation processor. A specific number of each type of these two 

processors are connected together by an interconnection network to form an emulation 

module making it the first level of hierarchy.

The second level of hierarchy is the emulation chip which contains a certain num

ber of identical emulation modules. All the modules inside one emulation chip are 

connected by an interconnection network similar to the one inside the emulation 

module itself. Each emulation chip would fit on one FPGA, hence the name chip.

The th ird  level of hierarchy is the emulation engine. To increase logic capacity, 

several emulation chips would be implemented in a specially designed m ulti-FPGA 

system. This m ulti-FPGA system is known as the emulation engine which is capable 

of emulating a design of significant size.

Figure 3.2 gives an overview of the hierarchy of the system. Here, the emulation 

engine is made up of 8 emulation chips and each of those chips contains 8 emulation 

modules. Inside each of those modules is a number of logic and memory processors. 

Note th a t the interconnections between the chips and between the modules are not 

shown.

3.3 Logic Em ulation Processor

The most basic component of the system is the Logic Emulation Processor (LP). The 

sole purpose of this processor is to  emulate the functional behavior of logic gates. 

Each gate is represented as a lookup table th a t can be programmed to im itate any 

desired logic function. The to ta l number of logic gates tha t a single processor can
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emulate depends on its lookup table size and the number of emulation steps executed 

in a single design cycle. The proposed logic processor has three main elements:

1. Control store

2. D ata stacks

3. Logic element

An architectural overview of this processor is shown in Figure 3.3.

3 .3 .1  C ontrol Store

The control store is used to store a unique control program for each processor to 

determine the operation type during each emulation step. The control store contains 

several instructions of predetermined width th a t are generated by an emulation com

piler whose task is to  partition a logic design given by the user into several clusters.
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Table 3.1: Logic Processor Control Word Fields Description

Control Word Field D escription

C hooselnput Picks an external input from the interconnection network.

L U T The array elements of the lookup table.

Se lA Selects the source of the first input to  the lookup table 

(internal or external stack).

R A A Read Address A: the address for the first input of 

the lookup table.

S e lM Selects the source of the M th input to the lookup table 

(internal or external stack).

R A M Read Address M: the address for the M th input of 

the lookup table.

These clusters are formed such th a t each one can fit into a single emulation processor. 

The emulation compiler then converts these clusters into a set of control words. The 

control store is filled up with these words prior to  emulation. During emulation, these 

control words are read to instruct the processor on what to do during a specific step 

[15].

The number of these instructions (i.e. the depth of the control store) is equal to 

the maximum number of emulation steps needed in a single design clock cycle. The 

fields of th e se  in s tru c tio n s  are  show n in F ig u re  3.4 an d  described  in  T ab le  3.1 w here 

M  is the size of the lookup table.

The number of bits dedicated for each field of the control word depends on two
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factors: the size of the internal and external stacks and the lookup table size. The 

size of the internal and external stacks is equal to the maximum number of emulation 

steps in a single design cycle as would be discussed later.

Since the inputs of the logic element are located in the stacks, therefore the size 

of the address of each of these inputs is equal to Log2(N) where N  is the number of 

emulation steps. The L U T  size depends on the size of the lookup table inside the 

logic element. More accurately L U T  size is equal to 2M where M  is the lookup table 

size. The size of the C hooselnput field depends on the interconnection network, more 

precisely on the number of processors (both logic and memory) and the number of 

their outputs in the interconnection network. The size of the C hooselnput field is 

Log2(P ) where P  is the to tal number of outputs of all the processors sharing one 

interconnection network. The only field th a t is independent of any external factors is 

the Sel field. The size of this field is only one bit since it is used to  choose between 

only two types of stacks, either external or internal stack.

Therefore, the size of a single control word in bits is Log2(P) + M  + 2M +  M  x 

Log2(N ).

3 .3 .2  D a ta  Stacks

The data stacks are used to store one bit values provided as inputs to  the logic element. 

The proposed design has two stacks: an internal stack and an external stack. Ideally 

the two stacks are of the same width (one bit) and same depth. The depth of the 

stacks is typically equal to the maximum number of emulation steps executed in a 

single design clock cycle.

The internal stack is used to  store values generated internally to the processor, 

specifically values from previous operations done during different emulation steps. 

The external stack is used to  store values generated externally to  the processor, 

specifically values from other logic or memory emulation processors. Both stacks
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have one write port and M  read ports which are provided as inputs to  the lookup 

table of the logic element.

At each emulation step, the internal stack provides output values on its read 

ports using the addresses {R A A ...R A M )  supplied to it from the control word. These 

outputs are used as inputs to the logic element. Also during the same emulation step, 

the internal stack stores the value of the current operation (i.e. the output of the 

logic element) in the address derived from the step value.

Equivalently, during each emulation step, the external stack provides output values 

on its read ports using addresses {R A A ...R A M )  supplied to it from the control words. 

These outputs are used as inputs to  the logic element. Also during the same emulation 

step, the external stack stores an input value external to the processor in the address 

derived from the step value.

Note th a t both internal and external stacks supply the logic element with the 

same number of inputs (M ) at the same time. It is the task of the logic element to 

choose between these inputs using the select values {SelM)  in the control word.

3 .3 .3  Logic E lem ent

The logic element is used to calculate the logic output for the processor. The logic 

element contains several multiplexers and a lookup table. The number of these multi

plexers is equal to the number of inputs to the lookup table, or lookup table size. The 

Sel fields in the control word are used as selectors in these multiplexers to  choose the 

sources of inputs for the lookup table (either internal or external stack). The logic el

ement also contains an M -input lookup table implemented as a 2M x 1 memory array 

and M - to-1 multiplexer. The elements of the array are filled by the L U T  field in the 

control word. By doing so we are defining the type of logical function to  be emulated 

during a specific emulation step. Figure 3.5 gives an overview of the logic element. 

Inputs shown in black are received from the internal stack, while inputs shown in grey
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Figure 3.5: Logic Element

are received from the external stack. Select values and L U T  are supplied from the 

control word. The lookup table of the logic element is identical to  the one described 

in chapter 2 and shown in Figure 2.4.

3 .3 .4  A rch itectu re  and O peration

The basic architecture of the logic processor is shown in Figure 3.3. The control store 

is filled up with the control words prior to  emulation through dedicated wires (not 

shown in figure). The processor has two external inputs and two external outputs. 

The first external input is the step value which is identical for all processors in the 

emulation engine and the second external input is used as an input for the exter

nal stack where it is stored for subsequent operations. The first external output is 

the C hooselnput field of the control word which is supplied to  the interconnection
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network to choose an input for the external stack as would be described later in 

more detail. The second external output is the output of the logic operation which 

is supplied directly to the interconnection network to be used by other processors.

Preferably the depths of the control store, internal stack and external stack are 

the same and equal to the maximum number of emulation steps in a single design 

clock cycle. This would ensure an entry to  every operation output in the internal 

stack, making this output available to any subsequent operations. As for the external 

stack, its usage enables the processor to  make use of other logical or memory outputs 

supplied to it through the interconnection network. Another advantage of having the 

same number of entries in all three embodiments is tha t the step value is used both 

as a read address for the control store and a write address for the stacks a t the same 

time.

The operation of the logic processor is as follows. A step value is supplied to the 

processor. The step value is used as an address to the control store where a control 

word is read. Address fields, R A A ...R A M , are sent to the stacks and M  bits are read 

from each stack at the same tim e then sent to  the logic element. Using the Sel fields 

of the control word the logic element selects the sources of its inputs, either internal 

stack or external stack. The lookup table, which is filled up using the L U T  field from 

the control word, performs the logic emulation and supplies the output. The output 

is then w ritten to the internal stack where the step value is used as a write address. 

Also at the same time, an external input is w ritten in the external stack. This input 

is chosen among the outputs of the other processors in the interconnection network 

using the C hooselnput fields of the control words. Again the step value here is used 

as a write address.

In other words, the logic processor performs three operations in one emulation 

step. It first executes a logical function using its lookup table then writes the output 

of this function in the internal stack. In addition to th a t the processor picks an
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external input from the interconnection network and writes it to the external stack.

The operation described above requires three memory accesses which have to occur 

in a single emulation step but not simultaneously. These accesses are:

1. Reading a control word from the control store.

2. Reading inputs from the data  stacks.

3. W riting values to the da ta  stacks.

The reason these accesses cannot be executed at the same time is because a certain 

delay has to be given between each of them. To read inputs from the da ta  stacks 

one has to  wait for the address fields from the control word and to  write values to 

the data  stacks one has to  wait for the output of the logical operation to be ready. 

To accommodate tha t, both edges of the clock are used since each emulation step 

corresponds to only one clock period. As shown in Figure 3.6 a t the first falling edge 

of the clock a control word is read using step value n. At the rising edge of the clock 

and after sufficient tim e is given to  fetch the control word, inputs to the lookup table 

are read from the stacks using addresses derived from the control word. At the second 

falling edge of the clock and after sufficient time is given for inputs from the stack to 

be read and the logic function is executed, the output of this logic function and an 

external input are written to the stacks a t address n. Also a t the second falling edge 

another control word is being read from the control store using address n  +  1. This 

scheme ensures th a t all the memory accesses required for a logical operation are done 

in a single emulation step at different timings.

3.4 M em ory Em ulation Processor

In this section we present the memory processor, the second basic component of 

a complete processor-based emulation system implemented on an FPGA. The sole
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purpose of the memory processor is to emulate memory registers and their functions. 

The to ta l number of memory bits th a t this processor can emulate depends on the 

size of the embedded memory arrays and the number of emulation steps th a t are 

completed during a design cycle. The proposed memory processor has four main 

elements:

1. Control store

2. Memory store

3. Capture memory word unit

4. Release memory word unit

Figure 3.7 gives an architectural overview of the memory processor.

3.4 .1  C ontrol Store

The control store is used to store a unique control program for each processor to 

instruct the processor what to do during each emulation step. The control store 

contains several instructions of predetermined width. Similar to the instructions of 

the logic processor, they are generated by an emulation compiler whose task is to
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Figure 3.8: Memory Processor Control Word Fields

Table 3.2: Memory h'ocessor Control Word Fields Description

Control Word Field D escription

M W A Memory word address in the memory store.

W /R W rite (1) or read (0) a memory word.

C l l Choose the 1st bit of the memory word from 

the external inputs.

C IQ Choose the Qth bit of the memory word from 

the external inputs.

partition a logic design given by the user into several clusters. These clusters are 

formed such th a t each one can fit in a single emulation processor. The emulation 

compiler then converts these clusters into a set of control words. The control store 

is filled up with these words prior to  emulation. During emulation these control 

words are read by the processor to  choose an operation to be performed in a specific 

emulation cycle [15].

The number of these instructions (i.e. the depth of the control store) is equal to 

the maximum number of emulation steps done in a single design clock cycle. The 

fields of these instructions are as shown in Figure 3.8 and described in Table 3.2 where 

Q is the size of the memory word.

The size of the control word and the number of bits dedicated for each field depends 

on three factors: the word size of the memory store Q , the number of emulation steps 

in a single design clock cycle N  and the to ta l number of outputs of all emulation 

processors in an interconnection network P.
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The word width Q  of the memory store is the same as the number of 1 bit inputs to 

the memory processor. This is because, ideally, we want an entry in the memory store 

for each input of the processor. The size of the memory word address M W A  depends 

on the size of the memory store. We propose a memory store of size equal to the 

maximum number of emulation steps done in a single design clock cycle. Therefore 

the size of M W A  in bits is Log2 (N).  The size of choose input field C l  depends on 

the to ta l number of outputs of all processors sharing an interconnection network (P).  

As a result the size of this field in bits is Log2 (P).

Therefore, the size of a single control word in bits is Log2 {N)  +  1 +  QLog2 {P).

3.4 .2  M em ory Store

The role of the memory store is to  emulate real memory functions; more precisely read 

and write memory operations. It contains several words of predetermined width and 

number. The memory words can be from either of two sources: emulation support 

facilities or other emulation processors. Emulation support facilities, such as an 

emulation compiler, fill up the memory store prior to emulation so th a t the filled 

memory words can be read during emulation. Also during emulation the output of 

other processors in the interconnection network might be written to  the memory store.

3 .4 .3  R elease M em ory W ord U n it

The purpose of this component is to  break up the memory word read from the memory 

store into one bit values. These bits are then supplied as outputs to  the interconnec

tion network to be used as inputs to  other processors.
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3 .4 .4  C apture M em ory W ord U n it

The purpose of this component is to concatenate several external inputs into a single 

memory word. The memory word th a t is formed after concatenation is entered into 

the memory store and therefore is of the same size as the memory word.

3 .4 .5  A rch itectu re  and O peration

The basic architecture of the memory processor is shown in Figure 3.7. The control 

store and the memory store are filled up with the control and memory words prior to 

emulation through dedicated wires (not shown in figure). The processor has several 

external inputs and outputs. The first external input is the step value which is 

identical for all processors in the emulation engine. The rest of the external inputs 

are values chosen from the interconnection network to be written to the memory 

store. The external outputs of this processor include the C l  fields of the control word 

which are supplied to the interconnection network to  choose inputs for the memory 

store. The rest of the external outputs are the bits read from the control store then 

are broken up by the release memory word unit.

Preferably the depths of the control store and the memory store are the same and 

equal to the maximum number of steps (N ) in a single design clock cycle. This would 

ensure an entry to  every memory word read or written in the memory store.

The operation of the memory processor is as follows. A step value is supplied 

to  the processor. The step value is used as an address to  the control store where a 

control word is read. The fields M W A  and W /R  are sent to the memory store. Using 

M W A  a memory word is read or w ritten and using the W /R  field we determine if we 

are reading (’O’) or writing (’1’) during this step. In case of a read, a memory word 

is read and supplied to the release memory word unit where it is broken up into Q 

bits and output to  the interconnection network. In case of a write, a memory word is 

formed by concatenating Q input bits from the interconnection network. This is the
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task  of the capture memory word unit which then supplies it to the memory store to 

be written.

In other words, the memory processor performs either one of two operations during 

a single emulation step: it can read a memory word from a certain address in the 

memory store and then supply it to the interconnection network as a set of single bits 

or it can write a memory word supplied by the interconnection network at a certain 

address in the memory store.

The above description of the operation indicates th a t all the stages of the operation 

described above have to occur during the same emulation step but not simultaneously. 

A certain delay should be allowed between reading a control word from the control 

store and reading a memory word from the memory store. Also another delay should 

be allowed between reading a memory word and writing a memory word to give time 

for the bits to be read before they are written. To accommodate tha t, both  edges of 

the clock were used similar to  the logic processor. As shown in Figure 3.9. at the first 

falling edge of the clock a control word is read using step address n. In case of a read, 

at the rising edge of the clock a memory word is read from the memory store after 

enough time is given for the address to be derived from the control word. In case of 

a write, a t the second falling edge of the clock several bits from the interconnection 

network are collected and w ritten to the memory store to ensure th a t sufficient time 

was given for these bits to  be read. Also at the second falling edge of the clock a new 

control word is read using step address n  +  1.

3.5 Em ulation M odule

The first level of hierarchy in our system is the emulation module, shown in Figure 

3.10. It consists of R  logic processors and S  memory processors. Each processor in 

one emulation module is connected to  every other processor in the same module to 

ensure th a t the output of any processor is readily available as an input to every other
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processor. Moreover, each processor has an external input which could be connected 

to  other processors in other modules.

In addition to the processors, the emulation module contains two other compo

nents: the interconnection network and the sequential filler. The interconnection 

network is made up of the set of wires connecting all the processors together and the 

module level routing switch.

3.5 .1  M od u le  L evel R ou tin g  Sw itch

Connecting all the processors together in an emulation module is an interconnection 

network controlled by the module level routing switch. This switch is basically made 

up of ( R + Q x S )  ( R + Q x S ) - to-1 multiplexers; one multiplexer for each logic processor 

and one for every input of each memory processor. The purpose of this switch is to 

make the output of each processor readily available to every other processor to use. 

Moreover, the switch can supply the processors inside the module with external inputs
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th a t are derived from other modules.

The switch uses the Choose In p u t  held supplied by each processor as the selection 

bits of the multiplexers to route the signals between processors.

3.5 .2  Sequential F iller

The limited number of pins on an FPG A  makes it impossible for the user to fill up 

the control and memory stores of all processors a t the same time. For this reason, 

a sequential filler is created to fill up the stores in a sequential manner. To choose 

which processor to  fill up, the sequential filler has two input signals: one to choose 

which logic processor and the other to  choose which memory processor. The usage of 

the filler should not affect performance in any way since it is only used once prior to 

emulation and at high speed.

3 .5 .3  A rch itectu re  and O peration

The basic architecture of the emulation module is shown in Figure 3.10. Each pro

cessor has one external input and one external output. The external input could be 

chosen from among all the outputs of all the processors in the same module or from a 

different source outside the module. The choice of this source will be described later. 

Each processor also supplies the interconnection network with an output. The wires 

used to  fill up the control and memory store along with the sequential filler are not 

shown in the Figure 3.10.

All the processors in one emulation module receive an identical step value during 

an emulation step. The processors use this value to determine the operation as 

described earlier.
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3.6 Em ulation Chip

The second level of hierarchy in this system is the emulation chip. It consists of 

T  identical emulation modules and fits on one FPGA. Specific processors inside the 

emulation module are connected to  specific processors in other emulation modules 

to  ensure th a t their outputs are readily available as inputs. Moreover, an emulation 

chip has several external inputs and external outputs whose numbers are to be chosen 

depending on the availability of pins on the FPGA. In addition to  the modules, the 

emulation chip has one other component, the chip level routing switch.

3.6 .1  C hip Level R ou tin g  Sw itch

The chip level routing switch connects all the module pins, external inputs and exter

nal outputs together. This switch is made up of several multiplexers; one multiplexer 

for each input of every module and one for each external output. The number of 

these multiplexers depends on the number of modules inside the emulation chip. As 

for their selection capacity, it depends on the resources available on the FPG A to 

store their selection bits. More about these multiplexers will be described in the next 

chapter.
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The switch allows inputs of processors inside one module to  choose among certain 

outputs of other modules. The switch also allows external outputs to  choose among 

the outputs of certain processors or external inputs.

3 .6 .2  A rch itectu re and O peration

The basic architecture of the emulation chip is shown in Figure 3.11. Each module 

would be able to  choose among several outputs from different modules or external 

inputs. Similar to the module, the step value is identical for all processors in the 

emulation chip.

3.7 Em ulation Engine

An emulation engine is the th ird  and last level of hierarchy. The emulation engine 

contains a  number of emulation chips connected together in a m ulti-FPG A system.

3.7 .1  M u lti-F P G A  S ystem

Several FPG A  connection schemes are available today. The system shown in Figure 

3.12 is an example of an 8-way mesh m ulti-FPGA system architecture while the 

one shown in Figure 3.13 is an example of a fully connected m ulti-FPGA system 

architecture.

Each FPG A contains an emulation chip. The chip would have a certain number 

of inputs and outputs through which it would communicate with other chips. Each 

processor inside the chip can choose among several of the external inputs and each of 

the external outputs can choose among several outputs of the processors. This gives 

each processor in the chip the capability to communicate with other processors in 

other chips implemented on other FPGAs.
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In addition to that, some of these external outputs can choose among several of 

the external inputs enabling the FPG A  to act as a routing switch. This would become 

useful in the case where two emulation chips are implemented on two FPGAs th a t do 

not share a direct connection. Here, intermediate FPGAs would serve as routers of 

the signal from its source and until it reaches its destination. Note th a t in the case 

where full connectivity is ensured for the m ulti-FPGA system these outputs are not 

necessarily useful.

We should note th a t the selection bits for the signal routings occurs a t the rising 

edge of the clock in order to precede the writing operations tha t occur a t the falling 

edge of the clock in all logic and memory processors.

3.7 .2  Scalability  Issues

The basic challenge th a t we have to  solve in the multi-FPGA system is the one th a t 

deals with speed. The difference of time between the read and write operations is the 

crucial factor when dealing with the speed. We have to make sure th a t the difference 

between the rising and falling edges of the clock is long enough for the signal to 

traverse throughout the system. As mentioned above the first falling edge of the 

clock is when we read the control word, the rising edge is when we read from the 

stacks or the memory store and the second falling edge is when we write to  the stacks 

or the memory stores. The challenge is to connect the FPGAs in such a way tha t 

if a certain processor in one FPG A  needs to  write a signal (or output) from another 

processor in a second FPG A  the tim e between the rising edge and the second falling 

edge is long enough for the signal to traverse from the first FPG A to the second.
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Assuming a non 50% duty cycle, the falling time of the clock is x  and the rising 

tim e of the clock is y, as shown in Figure 3.14. This means tha t the critical time 

is y  not x. The falling edge of the clock x  deals with intra-FPG A  connections; the 

rising edge of the clock y may have to  deal with inter-FPGA connections. More on 

the scalability issues will be discussed in the next chapter.
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Chapter 4

Architecture Exploration and 

Implementation Results

This chapter discusses the architecture exploration carried out and the implemen

tation  results for the proposed logic emulation system. The first section describes 

the implementation target used in this research. Section 2 presents the architecture 

exploration and the effect of changing key param eters on the area and performance 

of the emulator. Section 3 presents the implementation results.

4.1 Im plem entation Target

The FPG A  used for implementation in this research is the Altera Stratix  EP1S40F780C5 

FPGA. We now present a detailed description of this FPGA.
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4 .1 .1  A ltera  S tra tix  F P G A

The Altera S tratix  FPG A  Family [3] contains the following resources:

1. Logic Array Blocks (LABs)

2. M512 Blocks

3. M4K Blocks

4. M-RAM Blocks

5. DSP Blocks

6. I /O  Elements

Each LAB block contains ten logic elements similar to the ones discussed in chapter 

2 and shown in Figure 2.3. These logic elements are capable of emulating virtually 

any logic function. M512 is a memory block which contains 512 programmable bits 

plus parity bits. It can be configured as single-port or simple dual-port mode. The 

M4K is another memory block which contains 4,096 programmable bits plus parity 

bits and can be configured as single-port, simple dual-port or true dual-port mode. 

The third, and largest, memory block is the M-RAM which contains 512 kilobits of 

programmable memory plus parity bits. This memory block can be configured as 

single-port, simple dual-port or true dual-port mode. The DSP blocks of the Stratix 

FPG A  are used to implement several forms of multipliers while the I /O  elements are 

connected to  the FPG A pins and support different I/O  standards.

The FPG A  used in this research, the Altera Stratix EP1S40F780C5 FPGA, con

tains 4,125 LABs or 41,250 LEs. It also contains 384 M512, 183 M4K and 4 M-RAM 

blocks making the to ta l number of memory bits 3,423,744. In addition to tha t, it 

contains 14 DSP blocks and 616 I/O  pins [3].
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4.2 A rchitecture Exploration

In chapter 3 we described the architecture and operation of the emulation system 

without specifying certain values for im portant parameters such as the lookup table 

size or the number of emulation steps. In this section we describe architecture exper

iments th a t were performed to  determine the effects of varying different architectural 

param eters on the area and delay of the proposed emulator.

4.2 .1  K ey  P aram eters

The key param eters th a t were presented in chapter 3 and explored in this design are:

1. M: lookup table size.

2. N: number of emulation steps.

3. P: to ta l number of outputs of all processors in one emulation module.

4. Q: memory word size.

The main goal of the exploration is to choose a value for each of the above pa

rameters. The best way to accomplish this goal is to vary each of the param eters and 

fix the others while checking for effect on area and performance. To do th a t the logic 

and memory processors were both  implemented after each change and the results were 

recorded. It is im portant to  note th a t the effects of the change of the param eters were 

only considered for individual processors. The routing between these processors, and 

in effect the hierarchy of the emulator, were not taken into consideration due to the 

complexity of the process. Instead the effect of each param eter on single processors 

was assumed to  be proportional to  its effect on the whole system.
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4 .2 .2  Effect o f C hanging P aram eters

In this section we aim to monitor the effect of each of the param eters on the area and 

performance of the logic and memory processors. For tha t reason, each param eter 

under consideration was changed and its effect observed while the other param eters 

were given fixed values. This process was repeated for each param eter on both pro

cessors. In what follows we show in graphs the effect of the change of each of the 

param eters. The effect 011 area is measured by the number of logic elements and 

memory bits each processor consumes when implemented on the FPG A  while the 

performance is measured by emulation clock speed.

It is im portant to note th a t the results here were obtained after implementation 

and not from m athem atical equations. More about the implementation of each pro

cessor will be discussed in later sections of this chapter.

4.2.2.1 Effect of Changing Lookup Table Size

The size of the lookup table of the logic processor determines the logic capacity of 

the processor. In other words, it determines how many logic gates each processor can 

emulate. To determine how this param eter might affect the area and performance of 

the processor, the size of the lookup table was increased by one starting with 2 and 

ending with 8. To ensure th a t we are reading the effect of the lookup table size only, 

the other param eters were never changed. The number of emulation steps and the 

to ta l number of outputs were fixed at 128 and 64 respectively. Note th a t varying the 

lookup table size has 110 effect on the memory processor but on the logic processor 

alone. The results are shown in Figures 4.1, 4.2 and 4.3.

I t is clear from Figure 4.1 and Figure 4.2 th a t as the size of the lookup table 

increased the area consumed by the logic processor increased exponentially. The 

reason behind th a t could be mainly a ttribu ted  to the effect of the lookup table size 

on the control store and the logic elements. The size of the control word of the control
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store is exponentially proportional to the lookup table size, the size of a single control 

word in bits is Log2(P) + M + 2 M + M  x  Log2 (N),  and thus increasing the lookup table 

size will result in an exponential increase in the control store size. The exponential 

increase in the number of logic elements could be explained in a similar way. It is 

due to  the fact th a t the lookup table is implemented in the FPG A ’s logic elements 

and its size increase meant an increase in the number of logic elements consumed.

As for the effect of the lookup table size on the speed of the processor, it can 

be seen in Figure 4.3 th a t as the lookup table size increased the performance of the 

processor decreased gradually. This is predictable since the time for processing a 

certain number of inputs inside a processor is likely to increase as the number of 

these inputs increase.
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4.2.2.2 Effect of Changing Num ber of Em ulation Steps

The second key param eter to be tested is the number of emulation steps. The number 

of emulation steps, N,  is a critical param eter in both the logic and the memory 

processor. Here we study its effect in both processors.

• Effect on the Logic Processor: The number of emulation steps was varied from 

64 to  512 in steps of power of 2. The size of the lookup table, M , was fixed at 

4 while the number of to tal outputs, P, was fixed at 64. The results are shown 

in Figures 4.4, 4.5 and 4.6.

As shown in Figure 4.4 the change in the number of emulation steps barely 

had any effect on the number of logic elements used to  implement the logic 

processor. In contrast, as shown in Figure 4.5, the change in the number of 

emulation steps had a linear effect on the number of memory bits. This could 

be explained by the fact th a t the number of emulation steps does not affect the 

combinational part of the processor but rather the size of the memory blocks, 

control store and data  stacks.

As for the speed, it is clear from Figure 4.6 tha t changing the number of emu

lation steps had little effect on the speed of the processor.

• Effect on the Memory Processor: The number of emulation steps also affects 

the implementation of the memory processor. Here, the number of steps was 

also varied from 64 to  512 in steps of power of 2. The size of the memory word, 

Q , was fixed at 8 and the to ta l number of outputs, P. was fixed at 64. The; 

results of the implementation are shown in Figures 4.7, 4.8 and 4.9.

Similar to  the logic processor, the effect of the number of steps was only limited 

to  the number of memory bits as shown in Figures 4.7, 4.8 and 4.9. This 

is expected because the number of emulation steps determines the size of the
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Figure 4.6: Number of Emulation Steps vs. Speed in LP

control store and the memory store and does not affect the combinational part 

of the processor.

4.2.2.3 Effect of Changing Total Num ber of Outputs

The th ird  param eter to  be checked for its effect is the to ta l number of outputs, P, 

which will help determine the numbers of logic and memory processors packed in one 

emulation module.

• Effect on the Logic Processor: P  was varied from 32 to 256 in steps of power of 

2 while the lookup table size, M , was fixed at 4 and the number of emulation 

steps, N , fixed at 128. The results are shown in Figures 4.10, 4.11 and 4.12.

As can be observed in Figures 4.10, 4.11 and 4.12 the param eter had virtually no 

effect on the area and performance of the processor. This can be explained by 

the fact th a t the only effect this param eter has is 011 the size of the C hooselnput
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Figure 4.9: Number of Emulation Steps vs. Speed in MP

field of the control word. Changing the number of outputs only increases this 

field by one bit a t a time.

•  Effect on the Memory Processor: P  was varied from 32 to  256 in steps of power 

of 2 while the size of the memory word, Q, was fixed at 8 and the number of 

emulation steps, N , fixed at 128. The results are shown in Figures 4.13, 4.14 

and 4.15.

As shown in Figure 4.13 and Figure 4.14, the area consumed by the processor 

increased as the number of outputs increased. This can be explained by the fact 

th a t the C l  field in the control word for each input bit increases as P  increases.

As for the speed, it is shown in Figure 4.15 th a t changing the number of outputs 

had no m ajor effect on speed.
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4.2.2.4 Effect of Changing M em ory Word Size

The last key param eter to  be checked for its effect is the memory word size, Q, which 

only affects the memory processor. Here the number of emulation steps, N , was fixed 

at 128 and the to ta l number of outputs, P, was fixed at 64. The size of the memory 

word was varied from 1 to 16 in steps of power of 2. The results are shown in Figures 

4.16, 4.17 and 4.18.

As can be seen in Figure 4.16 and Figure 4.17 increasing the size of the memory 

word had a linear effect on the implementation of the memory processor. This is 

expected since as the size of the memory word increases the combinational logic 

required for the capture and release memory word units increases. In addition, the 

size of the memory store where the memory word is stored increases as the size of the 

word increases.

As shown in Figure 4.18, the effect of the memory word size on the speed of the 

processor was limited; however, it was observed th a t there was a small decrease in
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processor speed when the memory word size was increased from 8 to 16. This decrease 

in speed could be a ttribu ted  to  the fact th a t the processing time for the memory word 

will take longer as its size increases.

4 .2 .3  C hoice o f P aram eters

The choice of the param eters used in our implementation is based on the results 

obtained above. The following values were chosen:

• M  =  4. The lookup table was chosen to  be 4 because it provides good emulation 

speed and a low area cost.

•  N  = 128. The number of emulation steps was chosen to be 128. The reason 

behind this decision was the fact th a t FPG A resources are limited. M4K and 

M512 blocks both are of limited size and 128 words stored in each of them  seems 

a reasonable size.

• Q =  8. The size of the memory word was chosen to be 8 mainly because 

of the emulation speed. As noted earlier the emulation speed was relatively 

stable until the memory word size was increased from 8 to 16 where the speed 

comparatively fell more.

•  P  = 64. The to ta l number of outputs was chosen to be 64 which in effect meant 

32 logic processors and 4 memory processors were packaged together in one 

module. The exploration did not show th a t any specific value of this param eter 

had a m ajor effect on the area and performance of any of the processors.

4.3 Im plem entation R esults

In this section we discuss the implementation results of the system. Note th a t the 

values for the param eters used here were the ones chosen above. The design tool that
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was used was Quartus II which is supplied by Altera [2], The hardware description 

language th a t was used was VHDL [28].

4 .3 .1  Logic P rocessor

The elements of the logic processor were implemented as follows:

•  Control Store: using M  = 4, N  =  128 and P  = 64 the size of the control word 

would be 54 bits. This means th a t the size of the control store is 128 x 54. 

The control store has no combinational logic and only needs to be implemented 

as a memory block. The memory block chosen to implement the store was 

the M4K. To save on memory bits the control stores of two processors were 

combined together and implemented in 3 M4K blocks (each M4K is of size 

128 x 36). A decoder was created to later separate the two words from each 

other.

•  Data Stacks: since the number of emulation steps is 128 then the size of each 

stack is 128 x 1. Similar to  the control store, both the internal and external 

stacks need no combinational logic and are implemented as memory blocks 

inside the FPGA. The memory blocks chosen to implement the stacks were the 

M512 blocks. Since each M512 block can supply at most two outputs a t a time, 

each M512 was duplicated to  ensure th a t 4 outputs can be supplied at the same 

time.

•  Logic Element: the logic element is made up of purely combinational logic and 

requires no memory blocks. The 2-to-l multiplexers and the lookup table, which 

is in tu rn  a 4-to-l multiplexer, were implemented in standard VHDL code used 

typically to describe multiplexers. The memory array of the lookup table was 

also implemented in logic elements and no memory blocks were used.
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The implementation of each logic processor requires 1.5 M4K blocks, 4 M512 

blocks and 29 FPG A logic elements.

4 .3 .2  M em ory P rocessor

The elements of the memory processor were implemented as follows:

•  Control Store-, using Q = 8, N  = 128 and P  = 64 the size of the control word 

would be 56 bits. This makes the control store of size 128 x 56. The control 

store needs no combinational logic and is implemented in 2 M4K blocks.

• Memory Store: since the size of the memory word is 8 and the number of 

emulation steps is 128 then the size of the memory store is 128 x 8. Similar 

to  the control store, the memory store needs no combinational logic and is 

implemented in one M4K block.

•  Capture and Release M emory Word Units: the two units only require combi

national logic. Their functional behavior was described using standard VHDL 

statem ents used in typical concatenation and breakup instructions.

The implementation of each memory processor requires 3 M4K blocks and 72 

FPG A  logic elements.

4 .3 .3  E m ulation  M odule

Each emulation module contains 32 logic processors and 4 memory processors together 

having a to ta l number of 64 outputs and sharing one interconnection network. Aside 

from these processors the module contains two other elements: the sequential filler 

and the module level routing switch. Both of these elements were implemented in 

VHDL and require no memory blocks.
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Since the routing switch is made up of multiplexers, the VHDL code used to de

scribe its functional behavior is th a t which is typically used to describe the function

ality of multiplexers. As for the sequential filler its functional behavior was described 

in a series of conditional statem ents which determine which processor is being filled 

up before emulation starts.

4 .3 .4  E m ulation  Chip

Because of the limited resources of the FPG A  each emulation chip in our design 

contains three modules. It requires all 384 M512 blocks, 180 M4K blocks (98% of all 

M4K blocks) and all 4 M-RAM blocks. The M-RAM blocks were used to  store the 

selection bits for the multiplexers of the chip level routing switch.

The chip level routing switch, shown in Figure 4.19, connects all the module pins, 

external inputs and external outputs together. This switch is made up of 256 4-to-l 

multiplexers and 64 2-to-l multiplexers; one multiplexer for each input of the three 

modules and one for each external output. The switch allows inputs of processors 

inside one module to choose among certain outputs of other modules. For example, 

the input of processor 0 of module 0 can choose between: output of processor 0 in 

module 1, output of processor 0 in module 2, external input 0 or external input 1. 

The switch also allows external outputs to  choose among outputs of certain processors 

or external inputs. For example, external output 0 can choose between: output of 

processor 0 in module 0, output of processor 0 in module 1, output of processor 0 in 

module 2, or external input 0.

The emulation chip consumes 10,579 logic elements and 933,888 memory bits. 

This puts the FPG A logic utilization a t 25% and memory utilization at 27%. The 

key lim itation in resources was due to  the memory blocks, mainly the M512 and 

M4K blocks which were almost fully utilized by our design. The reason th a t the total 

memory utilization shows only 27% is due to the fact that the m ajority of the memory
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Figure 4.19: Module Level Routing Switch
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bits available are stored in the M-RAM blocks which were only partially utilized. In 

addition to the logic elements and memory blocks, each emulation chip requires 531 

pins, making the pin utilization 86%.

The whole design, one emulation chip, was made up of almost 6,100 VHDL lines 

describing the functional behavior of the combinational logic. The memory blocks 

were designed and implemented by means of megafunctions, a design tool supplied 

by Q uartus II to save the tim e required to write the code in VHDL. The design 

contains 7 megafunctions [24].

Each emulation chip is capable of emulating what is equivalent to 98,304 ASIC 

gates per design cycle. This was calculated by assuming th a t each logic processor 

with a 4-input lookup table can implement 8 ASIC gates per emulation step and 

1,024 ASIC gates per design cycle [10]. The emulation chip can also emulate 12,288 

memory bits, which is the sum of all the bits stored in all the memory stores of the 

memory processors.

Lastly the emulation clock frequency of a single emulation chip is 24.04 MHz. The 

emulated design can run at 187.8 KHz or more depending on the number of emulation 

steps used in the design cycle.

4.4 Im plem entation E stim ates for Em ulation En

gine

The implementation of this design only involved the second level of hierarchy, the 

emulation chip. The highest level of hierarchy, the emulation engine, was not imple

mented. In this section we give some estimates of the implementation of this engine.

A typical emulation engine would be made up of a fully connected m ulti-FPGA 

system, as the one shown in Figure 3.13. Here six FPGAs are connected together to 

act as an emulation engine. The logic capacity of this engine is equivalent to 589,824
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ASIC gates and 73,728 memory bits.

As mentioned in chapter 3 the main issue we would need to deal with in such a 

system is the speed. The high pulse of the clock, symbolized by y  in Figure 3.14, need 

to  be long enough for the signal to  traverse the longest path delay of the m ulti-FPGA 

system. On one Printed Circuit Board (PCB) we can assume th a t this delay is on 

average the same for all the connections.

To calculate this delay we assume th a t the dielectric used for the PCB is FR-4, 

the m ost widely used dielectric for PCBs [5]. This means th a t the propagation speed 

on the PCB is 1.48 X 108 m /s  [1], Therefore, the time needed by a signal to traverse 

half a meter, a typical size of a PCB, is approximately 3.4 ns. Following this logic 

y  should be a t least 3.4 ns to ensure th a t the signal has enough time to  reach its 

destination.

If we choose to have a 50% duty cycle then the period of one clock cycle should 

be around 7 ns for the signal to  traverse the longest path  delay. However, it was 

mentioned before tha t the emulation clock frequency is 24.04 MHz and its period is 

41.6 ns. It is clear th a t emulation clock period is much longer than the longest path 

delay and therefore the PCB connections would not add any extra delay and should 

not decrease the speed of the clock if the board remained of reasonable size.

4.5 Em ulation Exam ple

To illustrate and verify the operation of the emulator we chose to emulate a four bit 

multiplier on a single emulation chip.

4 .5 .1  F o u r -B it  M u lt ip lie r

The multiplier has two inputs each of size 4 bits and has one output of size 8 bits. 

Figure 4.20 shows the multiplication process. The goal is to give each operation of this
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Figure 4.20: Operation of the Four-Bit Multiplier

multiplication to one logic processor in a process known as scheduling. The symbols 

shown as superscripts are the overflow from the previous operations.

4 .5 .2  Scheduling and Im p lem en tation

Tables 4.1 and 4.2 shows the scheduling of the eight processors used for emulating the 

four bit multiplier. Normally the scheduling process would be autom ated but since 

our design lacks the CAD tools associated with it, the scheduling was done manually. 

It is im portant to  note th a t this schedule might not be the most efficient one since 

the aim here is only to verify the functionality of the emulator. Cap and Cal in the 

tables stand for capture value and calculate value respectively.

Step LPO LP1 LP2 LP3

0 Cap(AO) Cap(Al)

1 Cap(BO) Cap(BO)

2 Cal(DO) Cal(D l)

3 Cal(EO),

C ap(B l)

C al(E l),

Cap(Bl)

C ap(E l)

4 Cal(FO), Cap(F3) C al(F l), Cap(FO)
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Cap(F3) Cap(FO)

5 Cap(B2) Cal(GO),

Cap(B2)

Cal(EFO)

6

7 Cap(EF2) Cap(EF2)

8 Cal(G3) Cal(G4),

Cap(G3)

Cap(G4) Cap(G4)

9 Cal(HO),

Cap(H2)

Cap(H2) Cal(H l),

Cap(H3)

Cap(H3)

10

11 Cap(G H l) C ap(G H l)

12 Cal(I2),

Cap(B3)

Cal(GH2),

Cap(I2)

Cap(GH2) Cap(GH2)

13 Cal(I3),

Cap(B3)

Cal(I4), 

Cap (13)

14 Cal(JO),

C ap (Jl)

C ap (Jl) C al(Jl),

Cap(J2)

Cap(J2)

15 Cap(IJO) Cap (I JO)

16 C al(K l) C al(IJl) C al(IJl) C al(IJl)

17 Cal(K2) Cal(IJ2)

18

Table 4.1: Multiplier Scheduling for Processors 0-3
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S te p LP4 LP5 LP6 LP7

0 Cap(A2) Cap(A3)

1 Cap(BO) Cap(BO)

2 Cal(D2) Cal(D3)

3 Cal(E2),

C ap(B l)

Cap(E2) Cal(E3),

Cap(Bl)

Cap(E3)

4 Cal(F2),

C ap(F l)

C ap(F l) Cal(F3),

Cap(F2)

Cap(F2)

5 Cap(EFO) Cap(EFO)

6 C al(G l),

Cap(B2)

C al(E F l),

C ap(G l)

C ap(EFl) C ap(E Fl)

7 Cal(G2),

Cap(B2)

Cal(EF2),

Cap(G2)

8

9 Cal(H2),

Cap(HO)

Cap(HO) Cal(H3),

Cap(H l)

Cap(H l)

10 Cal(IO),

Cap(B3)

Cap(GHO) Cap(GHO) Cap(GHO)

11 Cal(Il),

Cap(B3)

Cal(G H l),

C ap(Il)

12

13 Cap(I4) Cap (14)
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14 Cal(J2),

Cap(J3)

Cap(J3) Cal(J3), 

Cap (JO)

Cap(JO)

15 Cal(KO) Cal(IJO)

16

17 Cap(IJ2) Cap(IJ2)

18 Cal(K3) Cal(K4)

Table 4.2: Multiplier Scheduling for Processors 4-7

After scheduling, the control words for each processor were generated and down

loaded onto the processors. Several values were tested and the multiplier gave the 

correct results proving the validity of our design.

We should note the emulation of the multiplier was simulated and not downloaded 

on the FPGA. The reason behind th a t is th a t we lack the connection circuitry with 

the FPG A  pins and building such a circuitry would be very time consuming. A more 

im portant reason is th a t we do not have a D ata Capture Unit to read the outputs of 

the processors and therefore we cannot verify the operation.
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Chapter 5

Conclusion and Future Work

The first section of this chapter summarizes the contributions made by this research. 

In section 2 we present a brief comparison between our design and previous processor- 

based emulator designs. We conclude in section 3 with some remarks on possible 

future work.

5.1 Research C ontributions

The main contribution made by this research is the design and implementation of a 

low-cost processor-based logic emulation system. To reduce cost, the design was im

plemented using FPG A  technology. Before implementation, architecture exploration 

experiments were conducted in order to choose suitable values for key architecture 

param eters. The proposed emulator can verify the functionality of logic designs at 

relatively high speeds and in real operating environments.

To increase logic capacity a fully connected multi-FPGA system can be used.
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Each FPG A is programmed to act as an emulation chip. The full (multi-FPGA) 

design of the emulator was not implemented in this research. Only one emulation 

chip was implemented using a single FPGA. Each of these emulation chips is capable 

of emulating around 98 thousand ASIC gates and 12 thousand memory bits. It can 

run at a speed of almost 187 KHz per design cycle or more, depending upon the 

number of instruction cycles needed in one design cycle.

A four-bit multiplier was emulated to verify the correctness of the proposed em

ulator design. Because we lack the CAD tools for the bit stream  generation, all the 

tasks of the CAD flow were carried out manually. The multiplier was emulated and 

verified the correct operation of the emulator.

5.2 Com parisons w ith  Other System s

To provide a context regarding the contributions made by this research, we present a 

brief comparison with previously proposed processor-based logic emulation systems.

In [15], a processor-based emulator was implemented using custom made chips. 

The building block of the system is a processor which can emulate both logic and 

memory functions. The two main differences between this design and ours are in ar

chitecture and implementation. In term s of architecture, the processor in this system 

performs both logic and memory emulation. In our design, two different processors 

are used one to emulate logic functions and the other to emulate memory functions. 

As for implementation, this design was implemented on custom made chips which 

makes it very expensive. In contrast, our processor-based emulator was implemented 

on FPGAs which would effectively make it a much lower cost system. We should 

note th a t there are several other similarities and differences in terms of operation and 

hierarchy.

In [10], a processor-based emulator was implemented on FPGAs. The emulator 

contains several kinds of processors. The main differences between this design and
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ours are in the design architecture and hierarchy. This design contains different kinds 

of processors in addition to logic and memory processors; our design only contains 

those two kinds. Another difference in architecture is in the interconnection network. 

The designer in this case chose to  use buffers in the interconnections between the 

processors to give more flexibility to  the CAD tools in terms of routing. We thought 

th a t using such buffers would consume the limited resources of the FPG A  and decided 

to  leave a tighter constraint on the CAD tools.

In comparison with commercially available emulators like the Incisive Palladium  II

[18] our emulator reached almost one eighth Palladium ’s top speed. Although speed 

might be a drawback, our design has a lower cost because of FPG A implementation.

5.3 Future Work

In our research we focused on the hardware architecture of a processor-based logic 

emulation system. The other main part is the mapping CAD tools tha t are required 

for a real world emulation system. The next step would be to design and develop 

the mapping CAD tools for this system. The mapping CAD tools would compile the 

logic design of the DUT and generate the b it stream  which could be downloaded to 

the programmable hardware.

Another future work in the hardware part of the project might involve designing 

a da ta  capture unit which would help the designer in finding errors and autom ate the 

checking process.
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