
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2005 

Never a 'needless' suicide: An empirical test of Shneidman's Never a 'needless' suicide: An empirical test of Shneidman's 

theory of psychological needs, psychological pain, and suicidality theory of psychological needs, psychological pain, and suicidality 

(Edwin Shneidman). (Edwin Shneidman). 

Brenda J. Davie 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Davie, Brenda J., "Never a 'needless' suicide: An empirical test of Shneidman's theory of psychological 
needs, psychological pain, and suicidality (Edwin Shneidman)." (2005). Electronic Theses and 
Dissertations. 2839. 
https://scholar.uwindsor.ca/etd/2839 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2839?utm_source=scholar.uwindsor.ca%2Fetd%2F2839&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Neural Network-Based Shape Retrieval Using 

Moment Invariants and Zernike Moments

by 
Xiaoliu Chen

A Thesis

Submitted to the Faculty of Graduate Studies and Research 

through the School of Computer Science 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 

University of Windsor

Windsor, Ontario, Canada 

2005

© 2005 Xiaoliu Chen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 * 1
Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-494-09759-0 
Our file Notre reference 
ISBN: 0-494-09759-0

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Shape is one of the fundamental image features for use in Content-Based Image Retrieval 

(CBIR). Compared with other visual features such as color and texture, it is extremely 

powerful and provides capability for object recognition and similarity-based image 

retrieval. In this thesis, we propose a Neural Network-Based Shape Retrieval System 

using Moment Invariants and Zemike Moments. Moment Invariants and Zemike 

Moments are two region-based shape representation schemes and are derived from the 

shape in an image and serve as image features, k  means clustering is used to group 

similar images in an image collection into k  clusters whereas Neural Network is used to 

facilitate retrieval against a given query image. Neural Network is trained by the 

clustering result on all of the images in the collection using back-propagation algorithm. 

In this scheme, Neural Network serves as a classifier such that moments are inputs to the 

Neural Network and the output is one of the k  classes that have the largest similarities to 

the query image.

iii
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1 Introduction

In real world, images play an essential role in a wide selection of fields such as art history, 

manufacturing, medicine, geologic exploration, astronomy, and even military defense to 

name a few. With advances in digital technology, image compression techniques, storage 

capabilities and processing power of computer systems, the volume of digital image 

collections has experienced a rapid increase in recent years, and diverse image 

applications based on large digital image collections have been emerging. To utilize the 

image information effectively, techniques for storage, searching, indexing, and retrieval 

need to be developed [16,17].

Since the 1970’s, image retrieval has been a very active research area within the 

disciplines of Database Management and Computer Vision. These two major research 

communities study image retrieval from two different points of view (Figure 1.1): the 

former primarily takes a text-based approach, whereas the later relies on visual properties 

of the image data [35, 3].

Text-based image retrieval can be traced back to the late 1970’s [45, 5]. A popular image 

retrieval framework at that time was to first annotate images with text such as filename, 

caption, keywords and descriptions, and then employ typical database management 

techniques to perform retrieval from the image database [35]. Text-based image retrieval 

approaches are simple to implement and perform fast but with two major problems, 

especially when the size of the image collection becomes very large. First problem is the

Text features 
; (high level)

Caption

Figure 1.1 Image Retrieval System classification
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prohibitive amount of labor required in manual image annotation, and the second 

problem, which is probably more critical, results from the contradiction of the rich image 

contents and subjectivity of the human perception [35].

To overcome these difficulties, Kato [19] introduced the notion of Content-Based Image 

Retrieval (CBIR) in the early 1990’s, and used it to design and implement a project about 

automatic retrieval of images from a large image database by using image content 

information. In Content-Based Image Retrieval, images are represented and indexed by 

visual content, such as color, texture and shape. Theses features are objective and can be 

directly derived from the images themselves, without reference to any external 

knowledge. Thus, allowing low-level numerical features extracted by a computer to be 

substituted for higher-level text-based manual annotations [35, 3].

1.1 Low Level Features

Unlike high level features which describe the human world properties and understanding 

of the meaning of whole images or scenes, low level features of an image denote several 

of its objective perceived characteristics, including color, texture and shape. These 

features are essential for describing and representing an image, and nowadays, many of 

them are used by the CBIR systems.

1.1.1 Color

Among all visual features, color is probably the most straightforward one and enables 

human beings to recognize different images. As a result, color similarity measure has 

become a very important aspect in the implementation of CBIR systems. Color 

Histogram [42] is a well known technique used to represent the color of an image. 

Statistically, it denotes the joint probability of the intensities of the three color channels: 

red, green and blue. Color Moments [42] is a mathematical way to overcome the 

quantization effects present in Color Histogram. The first three order moments, i.e., mean, 

variance and skewness, are extracted as color feature representation. Color Sets [39] is a

2
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selection of bins of colors in the perceptually uniform color space, such as HSV space, 

which is transformed from the RGB space. Color sets as an approximation to color 

histograms can facilitate fast retrieval over large image collections because of their binary 

structures [35].

1.1.2 Texture

Texture is also an important feature in pattern recognition, segmentation and image 

retrieval. It refers to “the visual patterns that have properties of homogeneity that do not 

result from the presence of only a single color or intensity” [35]. Basically, every surface 

has this property, including clouds, tree bark, bricks, hair, fabric, etc. Haralick et al. [14] 

introduced the co-occurrence matrix representation of texture feature. The two 

dimensional co-occurrence matrix describes the gray level spatial dependence of the 

texture. After the psychological studies in human perception of texture, Tamura and 

Yokoya [45] developed computations from six visual texture properties: contrast, 

coarseness, directionality, regularity, periodicity, and randomness. The texture of an 

image can be represented by Wavelet transformation -  a technique used in image 

processing in which a signal is transformed from the time domain to the frequency 

domain. This transformation based texture analysis approach achieves higher accuracy 

than typical texture-based approaches [35].

1.1.3 Shape

The shape of objects in an image is another important image feature and helps to 

represent content of an image. In many situations, people can recognize an object only 

with its shape. The shape of an object can be obtained by tracking its boundary. 

Generally, there are two approaches used in shape analysis: boundary-based techniques, 

e.g., Fourier Descriptors [53, 33], and region-based techniques, e.g., Moment Invariants 

[15]. More details about shape representation and shape similarity measure are provided 

in section 2.1.

3
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1.2 CBIR Systems

After the first introduction of Content-Based Image Retrieval, many image retrieval 

systems have been developed using image content features. In order to make image 

retrieval more effective, some systems try to combine different visual features, as well as 

textual annotations [1].

Text
Annotation

j Color#■****■ mm ̂
Visual jTffltture 
Features f Z Z Z z

Query

Retrieval
Engine

Ranked retrieved images

User

Interface

MatchingFeature Extraction

Feature Extraction

Multidimensional Indexing

Figure 1.2 A CBIR image retrieval system architecture 

(Source: [35], [18])

Figure 1.2 [35, 18] shows one of the possible integrated system architectures with three 

databases in this system. The image collection database contains raw images for visual 

display purpose. The visual features database stores color features, texture features and 

shape features which are extracted from the images using different image representation

4
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techniques. This information is needed to support Content-Based Image Retrieval. Text 

annotation database contains keywords and ffee-text descriptions of image contents. In 

CBIR, text annotations are simply there to assist visual features and indexing techniques 

are applied to facilitate fast and efficient retrieval.

The query request to the system could be in the form of an image or a rough sketch drawn 

by the user. The visual features of the query image need to be extracted using the same 

techniques that are applied to the database images. Features are matched in the retrieval 

engine and similar images are returned to the user through a graphic interface. The 

resultant images are normally ranked in terms of similarity distance between the query 

image and the retrieved database images.

1.3 Problem Statement

Color, texture and shape are the three primary image content features. However, the 

image retrieval techniques based on color and texture have been developed more 

thoroughly than shape-based techniques, primarily due to the inherent complexities in 

representing shape features. On the other hand, shape features are very powerful in object 

identification and recognition. It is important to note that the human beings can generally 

recognize objects solely from their shapes. Retrieval of images based on the shapes of 

objects, generally termed as “Shape-based Retrieval” is an important CBIR technique and 

has applications in many different fields. Examples of such retrieval can be found but are 

not limited to recognition and retrieval of trademarks and logos, medical structures, 

fingerprint, face profiles, hand written signatures, etc.

Primary issues associated with Shape-Based Image Retrieval are: shape representation, 

similarity measure and retrieval strategy. In shape representation, there are normally two 

classes of methods: contour-based methods and region-based methods.

5
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The objective of this thesis is to:

• compare two types of moments in the region-based method category: Moment 

Invariants (MI) and Zemike Moments (ZM). We use these two moment-based 

representations as feature descriptors to represent shapes and compare their 

performance in similarity retrieval;

• introduce artificial Neural Network (NN) to Shape-Based Image Retrieval as an 

intelligent search engine instead of traditional techniques of multidimensional 

indexing trees. We employ k  means clustering method to provide learning 

samples for the Neural Network to facilitate back propagation training;

• apply the proposed methodology to build an image retrieval system for 

application to a real-life system.

Remainder o f this thesis is organized as follows. Section 2 reviews the fundamental and 

traditional techniques related to shape-based image retrieval, including contour-based 

shape representations, region-based representations, and techniques on multidimensional 

indexing trees. Section 3 describes the methodologies used in this thesis to represent, 

classify and retrieve shape images. In section 4, we present our experimental results 

whereas section 5 contains the concluding remarks and directions for future research 

work.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 Related Work

2.1 Shape Representations

Shape representations are formalistic identification models of the original shapes so that 

the import characteristics of the shape are preserved [23]. The goal of shape 

representation is to derive a numeric shape descriptor (also called a feature vector), which 

can uniquely characterize the given shape.

The required properties of a shape representation scheme are [32,23]:

• Unique. Each shape must have a unique representation, i.e., two dissimilar shapes 

should not have a same or very similar representation.

• Compact. A good representation should have the ability to provide an excellent 

compression capability of the shape in the image.

• Accurate and Reliable. A good representation must reflect the basic features of a 

shape correctly and unambiguously. It should be able to handle small changes in 

an object’s shape and be robust to noises.

• Invariant. The shape of an object should not change after a series of geometric 

transformations. Accordingly, the representation of a shape must be invariant 

under translation, rotation, and scaling.

Two-dimensional shapes can be described in a number of different ways. There are 

several classifications of shape representation techniques [23], such as classification on 

the basis of information preservation, classification based on whether the result is 

numeric or non-numeric, etc. The most popular and widely used classification is the one 

proposed by Pavlidis [32], which is based on the use of shape boundary points as opposed 

to the interior features of the shape. The two resulting classes of algorithms are known as 

contour-based and region-based, respectively.

Contour-based methods emphasize the outer closed curve that surrounds the shape, and 

region-based methods describe the entire shape region occupied by the shape within the 

closed boundary on the image plane.

7
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Figure 2.1 Example of contour-based and region-based shape similarity

(After: [2])

Figure 2.1 [2] is an example of the two methods in a 2D case. The shape similarity can be 

measured based on contour-based representation and region-based representation. Shapes 

in the first row have similar spatial distribution of pixels and are, therefore, similar 

according to a region-based criterion. However, they clearly have different outline 

contours. When contour-based similarity is considered, then shapes shown in each 

column are similar. If a query is built by the second shape in the first row, the retrieved 

results will be the shapes from the first row with region-based similarity criteria or the 

second column with contour-based similarity criteria.

In the following subsections, a brief review of some of the techniques for these two 

classes is presented.

2.1.1 Contour-Based Representations

2.1.1.1 Chain Codes

A shape can be uniquely represented by its boundary. Let us suppose that all the images 

we deal with are binary images since we are concerned with only the shape features of 

objects in the images. Pixels that are part of an object have values of 1, and pixels that are

8
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part of the background have values of 0. “A boundary of an object is represented by a 

connected path of Is” [34]. Chain codes describe an object boundary path by a sequence 

of unit-size line segments with a given orientation. The basic idea was introduced by 

Freeman [8] in 1961 by establishing a method that permitted the encoding of arbitrary 

geometric configurations.

In chain codes, the direction vectors between the successive boundary pixels are encoded. 

The commonly used chain codes employ 4 or 8 elementary directions based on the 

definition of connectivity [6]. Typically, chain codes contain a starting pixel address

followed by a sequence of direction codes. It is obvious that the chain codes

representation depends on the starting point of a boundary path and the direction of 

traversal, clockwise/anticlockwise [34].

If chain codes are used for shape matching and retrieval, there are a number of

advantages. First of all, it is compact. Chain codes provide a good compression of

boundary description because each chain code element can be encoded with 2 bits (for 4- 

connected chain codes) or 3 bits (for 8-connected chain codes) only, compared with the 2 

bytes required for the storage of the coordinates (x, y) of each boundary pixel [34]. Chain 

codes can be used to calculate many other shape features, such as perimeter, area, and 

even Moment Invariants (MI) [6].

Chain codes representation is translation invariant. Scale invariance can be achieved by 

normalizing the size of the shape. The difference chain codes can be constructed in order 

to obtain rotation invariance [34].

Lu [25] derived the normalized chain codes, which are invariant to translation, scale and 

rotation. The normalized chain codes are good for shape representation but quite difficult 

to use for computing shape similarity. They describe a normalization process to obtain 

the unique chain code for each shape which is invariant to translation, scale and rotation 

followed by a method to derive an alternative shape representation to compute shape 

similarity.

9
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Although chain codes have a compact representation, chain codes could be very long, 

especially for shapes of large objects. This drawback may cause difficulties in 

comparison and matching of codes. Also, chain codes are very sensitive to noises.

2.1.1.2 Signatures

In general, a signature is a ID function representing a 2D boundary. Signatures can be 

generated in a number of ways but regardless of how a signature is generated, the basic 

idea is to reduce the boundary representation to a ID function, which apparently is easier 

to describe than the original 2D boundary [12].

One of the simplest and the most commonly used signatures is to plot the distance from a 

shape centroid to its boundary and is called the centroid-to-boundary distance or centroid 

distance approach.

If (xi, yi) are the 2D shape boundary coordinates, where and N  is the number

of boundary pixels, the centroid of the shape (xc, yc) is the average of the boundary 

coordinates [50]:
Y N  ]  iV

The centroid distance signature function is then given by:

r(j) = +(y i - y c ) 2 .

In addition to the centroid distance signature, there are many other types of shape 

signatures, including complex coordinates, polar coordinates, tangent angle, cumulative 

angle, curvature, area and chord-length. A detailed study of shape signatures can be 

found in [31, 30].

Shape signatures are invariant to translation, and are usually normalized to fulfill the 

scale invariance requirement by standardizing the shape into a specific size. However, in

10
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order to compensate for orientation changes, the shift matching of ID signature series is 

needed to find the best match between two shapes. Alternatively, signatures can be 

quantized into a signature histogram, which is rotation invariant and can be used for 

shape matching [40].

Shape signatures are normally sensitive to noises, and slight changes in the boundary can 

cause large errors in the matching. Roh and Kweon [36] devised a contour shape 

signature descriptor for the recognition of planar curved objects in noisy scenes. A 

descriptor consisting of five-point invariants was used to index into a hash table. 

However, it is still impractical or undesirable to directly use shape signatures for shape 

retrieval. Other descriptors such as Fourier descriptors (FDs) can be further derived from 

signatures and then utilized for shape matching [50].

2.1.1.3 Fourier Descriptors

Fourier descriptors are obtained by applying Fourier transform on a shape boundary, 

which is usually represented by a shape signature (section 2.1.1.2). For good shape 

description, an appropriate shape signature is essential to obtain Fourier descriptors [47]. 

The method was first introduced by Zahn and Roskies [53]. They represented a shape as a 

parametric function of tangential direction and cumulative angular bend function of the 

plane curve, and then transformed the function into the amplitude/phase-angle form. The 

result of the transformation is a real, continuous, and periodical function. Therefore, it 

can be described by a Fourier series. The set of Fourier transformed coefficients are 

called the Fourier Descriptors (FDs) of the shape. They stay constant irrespective of any 

of the transformations involving: translation or rotation of the shape, change of scale or 

of origin [53].

Zahn and Roskies’s method is restrictive and may have trouble when the modified shape 

is no longer a closure of the curve. Granlund [11] introduced complex Fourier 

Descriptors that ensure a closed curve will correspond to any set of descriptors. A shape 

is described by a set of N  vertices {r(i): corresponding to N  points of the

11
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boundary. The Fourier Descriptors {z(k): k= -  7V/2 + \,...,N/2} are the coefficients of the 

Fourier transform of r:

r i =  L  z k  e x p ( 2 ^ — ) .
k - - N  /  2+1 A

The inverse relationship exists between z(ft) and r(i):

1 r i  ./A:z, = — > r, exp(-2m —).

andzt are usually denoted as FD„,

Zhang and Lu [47] derived Fourier Descriptors from the centroid distance signature, and 

their experiment results show that the shape signature using centroid distance exhibits 

better performance than other shape signatures in shape-based image retrieval. The 

Fourier Descriptors obtained in their approach is translation invariant because of the 

translation invariance of centroid distance. To achieve rotation invariance, they ignore the 

phase information of the Fourier Descriptors by using the magnitudes \FDn\ only. Scale 

invariance is achieved by dividing the magnitudes by \FD(\. Since centroid distance is a 

real value function, only half of the Fourier Descriptors are needed for indexing the 

shapes. Thus, the shape can be represented by feature vector [47]:

x = i-F.Pi | \FD 2 | | FD„ , 2 |
iFPJ'lFD.r ’ |FDJ

Two shapes can be compared by comparing the subsets of the Fourier Descriptors, 

beginning with the lower order coefficients and then using higher order coefficients. To 

make the description simpler, one can get rid of the Fourier descriptors of the higher 

frequencies. However, the high-frequency components account for fine detail, and low- 

frequency components determine global shape features. Thus, the fewer the FD terms 

used, more are the details that are lost on the shape boundary [12].

The excellent properties of Fourier Descriptors are their robustness, ability to capture 

some perceptual characteristics of the shape and ease to derive. Although there is a trade

off between using low order coefficients and high order coefficients, usually only a small

12
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number of low order coefficients are enough to capture the overall shape features. 

Therefore, the representation is also compact. In addition, since noise can only appear in 

very high frequency [12], with Fourier Descriptors, noise can be easily truncated out.

The disadvantage of Fourier Descriptors is that local features cannot be located, because 

in “Fourier Transform only the magnitudes of the frequencies, not the location, are 

known” [50]. To overcome the drawbacks of existing shape representation techniques, a 

Generic Fourier Descriptor (GFD) has been proposed [52]. GFD is derived by applying 

2D Fourier transformation on a polar raster sampled shape image, and it is said to be 

application independent and robust [52].

An Enhanced Generic Fourier Descriptor (EGFD) is obtained based on GFD [51]. It is 

acquired by deriving GFD from the shape that has been rotation and scale normalized. 

The EGFD outperforms GFD significantly. It solves GFD’s low retrieval performance on 

severely skewed and stretched shapes. It also improves GFD’s robustness to general 

shape distortions.

2.1.2 Region-Based Representations

2.1.2.1 Grid Descriptors

In grid shape representation, a shape is projected onto a grid of fixed size square cells, 

say 16x16 pixels for example [24, 4, 43]. The grid is just big enough to completely cover 

the shape such that some grid cells are fully or partially covered by the shape and some 

are not. The grid cells are assigned the value of ‘1’ if  they are covered by the shape 

region (or covered beyond a threshold, e.g., 15% of pixels) and ‘0’ if  they are outside the 

shape. A shape number consisting of a binary sequence is created by scanning the grid in 

left-right and top-bottom order, and this binary sequence is used as a shape descriptor to 

index the shape [24].

For two shapes to be comparable using Grid Descriptors (GDs), several normalization 

processes have to be done to achieve scale, rotation and translation invariance [24, 49].

13
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The process begins with finding out the major axis, i.e., the line joining the two furthest 

points on the boundary. Rotation normalization is achieved by turning the shape so that 

the major axis is parallel with the x-axis. To avoid multi-normalization result for mirrored 

shapes and flipped shapes, the centroid of the rotated shape may be restricted to the 

lower-left part, or a mirror and a flip operation on the shape number are applied in the 

matching stage. Scale normalization can be done by resizing the shape so that the length 

of the major axis is equal to the grid width, and by shifting the shape to the upper-left of 

the grid, leaning the representation to be translation invariant [24, 49]. The distance 

between two set of grid descriptors is simply the number of elements having different 

values.

Grid representation is a straightforward shape representation which may be suitable for 

shape coding as is adopted in MPEG-4 [49]. However, it is questionable for retrieval 

purposes, because a slight shape distortion such as affine transform can cause very big 

difference in the similarity measure. Furthermore, since “the normalizations are mainly 

based on major axis (which is unreliable in essence) and eccentricity (which is only 

reliable for convex shapes or compact shapes), shapes otherwise similar may be treated as 

different due to this normalization” [49]. Furthermore, it is clear that the smaller the cell 

size, the more accurate the shape representation but more the storage and computation 

requirements.

2.1.2.2 Moment Invariants

Moments are extensively used in the area o f pattern recognition and for shape 

representation and similarity measure. Moment Invariants (MI) are derived from 

moments of shapes and are unchanged under 2D geometric transformations such as 

translation, scale and rotation [15,1].

The theory of moments provides an interesting and useful alternative to a series of 

expansions for representing a real bounded function [9]. Suppose f ix y )  > 0 is such a 2D 

function on a region R, the geometric moment of order p  + q is defined as:

14
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mn  = £ £ xV/(*>.V)<2«fy-

forp,q = 0,1,2,.... A uniqueness theorem [27] states that iffix,y) is piecewise continuous 

and has nonzero values only in a finite part of the Ay-plane, moments of all orders exist, 

and the moment sequence mpq is uniquely determined by fix,y). Conversely, mpq uniquely 

determines fix,y).

Many shape features can be conveniently represented in terms of geometric moments 

such as the total mass (area), the centroid, the angle of the principal axis, the bounding 

box, the best-fit ellipse and the eccentricity [6].

The central moments are defined as

MPq = £  £  ( x - x ) p( y - y Y  f ( x ,  y)dxdy ,

where

x = ^ ,
moo moo

is the centre of mass.

The normalized moments are defined as

PQ

with

Vpq ~  y
M oo

p + q  ■, y  = - —-  + l .
'  2

Hu [15] first introduced seven Moment Invariants which are given as follow: 

=  7/20 +  7/02 

@2 =  (7/20 +  7/02) 2 +  4 ( 7711)2

=  (7/30 -  3 7 /12 ) 2 +  (37 /21  -  7/03)2 

@4 =  (7/30 +  7/12) 2 +  (7/21 +  7/03)2

# 5  =  (7/30 "  3 7 /i2 )(7 /3 0  +  7 /i2 )[ (7 /3 0  +  7 / n ) 2 -  3 (7 /21  +  7/03)2 ]
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+  (3*721 -  ?/03)(??2i +  *7o3)[3(*730 +  r }n f - (*721 +  *7o3)2]

@ 6  = (7720 “  *702)[(*730 + 3712)2 " (>721 + W3?)

+ 4^u(^3o + r}n)(ri2 \ + *703)

= (3̂ 21 -  ?73o)(?730 + *7l2)[(*730 + ??12)2 - 3(^21 + *7o3)2]

+ (3*721 -  *703)0721 + *703)[3(*730 + *7i2)2 - (*721 + *7(b)2] (Equation 2.1)

(Pi -  (p6 are invariant with respect to rotation and reflection, and (P7 remains unchanged 

under rotation but changes sign under reflection (i.e., invariant in absolute value). If we 

replace fin  by r\pq in the above equations or normalize them directly with moo (woo), we 

have:

¥ X = 0 XI w°2°

¥ 2  = 0 i I m°4°

¥o = 0 3 / m°°

¥ 4  = 0 4 / m°°

m10¥5 = 05 I m00

¥6 = 0J <
10

SPV = |<P7| / 00 (Equation 2.2)

5Pi ~!F7 are dependent on unique shape regardless of their location, size and orientation.

A Feature vector consists of the seven components: x = [ ¥\,¥ i, ¥ 5 , ¥ 4 , ¥ 5 , ¥(,, ¥ 2 ] and is 

used to index shapes in the image database.

The values of the computed geometric moments are usually small, values of higher order 

moment invariants, in some cases are close to zero. Therefore, all of the Moment 

Invariants can be further normalized into [0,1] by the limit values of each dimension [49].

The advantage of using Moment Invariants is that it is a very compact shape 

representation with low computational overhead. However, it is difficult to obtain higher 

order moment invariants.
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2.1.2.3 Zernike Moments

Based on the idea of replacing the conventional kernel of moments with a general 

transform, orthogonal moments have been proposed to recover the image from moments 

[44]. Zernike Moments (ZMs), which allow independent moment invariants to be 

constructed to an arbitrarily high order, are orthogonal moments. The complex Zernike 

moments are derived from the Zemike polynomials:

where n and m are subject to conditions:

n —|m| = even, and |m| < n .

Zemike polynomials are a complete set of complex-valued function orthogonal over the

The theory of Zemike Moments is similar to that of the Fourier transform, to expand a 

signal into a series of orthogonal basis. The precision of shape representation depends on 

the number of moments truncated from the expansion. Since Zemike basis functions take 

the unit disk as their domain, this disk must be specified before moments can be 

calculated [49]. The unit disk is then centered on the shape centroid, thus, making the 

obtained moments scale and translation invariant. Rotation invariance is achieved by 

using only the magnitudes of the moments [49]. The magnitudes are then normalized into 

[0,1] by dividing them by the mass of the shape.

v nm(*>y) = V n m ( P cos0 , p sin0 ) = Rnm(yo)exp(ym0 ) , and

unit circle, i.e., x + y 2  = 1. Then the complex Zemike moments of order n with repetition 

m are defined as:

17
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Zemike Moments do not need to know boundary information, thus, making them suitable 

for more complex shape representation. Like Fourier Descriptors, Zemike Moments can 

also be constructed to some arbitrary order, and this overcomes the drawback of the 

Moment Invariants in which higher order moments are difficult to construct [48]. 

However, Zemike moments lose the important perceptual meaning as reflected in Fourier 

Descriptors and Moment Invariants [48]. In other words, we don’t know what shape 

feature each Zemike Moment represents.

2.2 Multidimensional Indexing

Normally, image descriptors or shape descriptors are represented by multidimensional 

vectors, which are often used to measure the similarity of two images by calculating a 

descriptor distance in the feature space. When the number of images in the database is 

small, a sequential linear search can provide a reasonable performance. However, with 

large scale image databases, indexing support for similarity-based queries becomes 

necessary. In traditional databases, data is indexed by key attributes, which are selected to 

support the most common types of searches. Similarly, the indexing of an image database 

should support an efficient search based on the image contents or extracted features. In 

relational database management systems, the most popular class of indexing techniques is 

the B-tree family, most commonly the B+-tree [45, 5]. B-trees, in general, allow 

extremely efficient searches when the key is a scalar. However, they are not suitable to 

index the content of images represented by high-dimensional features. Popular 

multidimensional indexing techniques include KDB Tree, R/R* Tree, SS Tree and SR 

Tree.

2.2.1 KDB Tree

The KDB tree is an index structure for multidimensional point data. It is a height- 

balanced tree similar to the B+-tree and its structure is constructed by dividing the search 

space into subregions with coordinate planes recursively [37]. Nodes and leaves 

correspond to subregions and a disk block is allocated for each of them. The distinctive
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characteristic of the KDB tree is the disjointness among subregions on the same tree level. 

This makes the search path of a point query to be single branch from the root to a leaf. 

Therefore, the search time of a point query is logarithmic to the size of a data set [10]. 

However, the KDB tree cannot ensure the minimum storage utilization, and this reduces 

the performance of the KDB tree on range and nearest neighbor queries.

2.2.2 R/R* Tree

R tree was initially proposed to index data objects of non-zero size in high-dimensional 

spaces [10]. “This index structure can be simply adapted to indexing multidimensional 

points with some small modifications to its insertion and search algorithms” [10]. An R 

tree is built based on the clustering of all the points in a data space. Each nonterminal 

node in the tree structure corresponds to a cluster in the space with its minimum 

bounding rectangle representing the extent of the cluster [10, 20, 3]. When a node is 

overfilled, the cluster represented by the node is partitioned and the node is split into two 

new nodes.

An R tree is completely dynamic since its insertions and deletions can be intermixed with 

queries and no periodic global reorganization is required. However, since the structure 

allows the bounding rectangles of different entries to overlap on each other, the search 

algorithm must traverse more than one path to search for the desired data. Hence, 

generally it is not possible to achieve a worst-case performance [10]. With R tree, the 

optimization criterion used by the data insertion and node split algorithms is to minimize 

the area of enclosing rectangles in the resulting nodes. This criterion has a tendency to 

generate strip-like bounding rectangles in leaf nodes, thereby resulting in a large overlap 

among covering rectangles in non-leaf nodes [10].

R* tree is one of the most successful variants of the R tree. It shares the same tree 

structure with R tree, but improves the performance of R tree by modifying the insertion 

and node split algorithms and by introducing the forced reinsertion mechanism [20,10].
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2.2.3 SS Tree

The SS tree has a similar configuration as that of R and R* trees, but it improves the 

performance and enhances the nearest neighbor queries. The major difference between 

the tree structures is that the SS tree makes use of minimum bounding spheres instead of 

minimum bounding rectangles in its non-leaf nodes [10, 20]. Because a bounding sphere 

is determined by only the center and the radius, it requires much less (nearly half) storage 

compared to bounding rectangles [20]. The algorithms for data search, insertion, deletion, 

and node split from both the R and R* trees can be applied to the SS tree with some minor 

modifications.

Using bounding spheres has certain advantages to partition data space. However, 

“experimental evaluations have discovered that minimum bounding spheres in an SS tree 

tend to have larger volumes than minimum bounding rectangles in the equivalent R tree 

or R* tree” [10]. In addition, larger sphere volumes result larger overlaps between 

different nodes, which deteriorates the data retrieval performance.

2.2.4 SR Tree

To Combine the benefits and overcome the disadvantages of R/R* trees and SS tree, SR 

tree was proposed by Katayama and Satoh [20]. The SR tree uses the intersection area of 

the minimum bounding spheres and the minimum bounding rectangles in its internal 

nodes and leaves. The distinguishing feature of the SR tree is that it specifies a region by 

the intersection of the bounding sphere and the bounding rectangle, and this permits to 

divide points into regions with both small volumes and short diameters.

2.2.5 Comparison

A comparison study of multidimensional indexing trees was made by Katayama and 

Satoh [20]. In their evaluation, both uniform data set and real data set were used for 

performance test. Test results revealed that the four tree structures can be divided into 

two groups: KDB tree and R/R* tree, SS tree and SR tree. Furthermore, SS tree and SR
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tree group outperforms the KDB tree and R/R* tree groups in terms of both tree building 

cost and the retrieval performance. SR and SS trees require less CPU time than R/R* tree, 

because the centroid-based insertion algorithm of the SS tree requires significantly less 

CPU time than the algorithm of the R/R* tree [20]. SR tree contains not only bounding 

spheres but also bounding rectangles, therefore it requires higher creation cost and more 

disk accesses than the SS tree. However, SR tree enhances the query performance 

remarkably. It allows to divide data point into regions with smaller volume and shorter 

diameter than any other index structures. SR tree is especially effective for high 

dimensional and non-uniform data sets, which can be practical in actual image similarity 

indexing.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 Thesis Approach

3.1 Shape Feature Extraction

In this thesis, we study and compare two shape representations: Moment Invariants (MI) 

and Zemike Moments (ZM). Moment Invariants and Zemike Moments are both region- 

based shape representations but need boundary sequence of the shape object for 

computation.

3.1.1 Boundary Sequence

We assume that all the images we deal with are binary images since we are concerned 

only with the shape features of the objects in the images. We also assume that the pixels 

in the object have value of ‘ 1’, and pixels on the background have value of ‘O’. Therefore, 

a boundary sequence is a list of connected pixels on the edge of the object, separating the 

shape region (1) and the background (0).

Figure 3.1 Turtle procedure in binary object boundary following

(Source: [34])

The boundary of a binary object can be easily followed by employing a Turtle procedure 

[34]. For a clockwise boundary sequence, the Turtle begins from a boundary pixel (the 

start point), and then if  the current pixel value is 1, it turns left and advances one pixel; if
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the current pixel value is 0, it turns right and advances on pixel. The algorithm terminates 

when the Turtle returns to the starting boundary point as shown in Figure 3.1 [34].

However, the Turtle algorithm has its limitation. It may not always be able to identify a 

part of the shape which is only one pixel diagonally connected to the other part of the 

shape. The following procedure elegantly avoids this problem, and is employed in our 

proposed approach:

Algorithm: Finding the Boundary Sequence 

Input: a digital binary shape image 

Output: a boundary sequence C[i]

Method:

(1) Find the start point S(sx,sy) in the image whose value is 1; 

i = 0;

Let the current pixel be C[i](cx,cy), i.e., set C = S;

(2) Let the 4th neighbor (neighbor pixel on the left) of C be B(bx,by);

(3) i ++;

(4) Let D[ 1 ], D[2],..., D[8] be the 8 neighbors (anticlockwise, starting with B) of C; 

Find the smallest k ,k = l ,  2,..., 8, that D[k\ has value of 1;

(5) Let C = D[k] and B  = D [k-  1];

(6) If C is the start point S  then terminate;

Otherwise goto step (3).

Then, C[/]s are the boundary pixels, starting with S, in the anticlockwise order.

3.1.2 Moment Invariants from Extreme Boundary Pixels

Moment Invariants are derived from geometric moments. Dai et al. [6] suggest that 

geometric moments can be directly calculated from the chain codes and the method is 

called integral method. However, we need to know only the extreme boundary pixels of 

an object’s shape to compute the geometric moments and Moment Invariants.
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We assume that each boundary pixel has a contribution type: negative, zero, or positive 

(Figure 3.2 [6]). The left extreme pixels of every scan line are of the negative 

contribution type, the right extreme pixels are of the positive contribution type, and 

others are of type zero. For pixels which are both left extreme and right extreme, we 

considere them as the hybrid case which contains all characteristics of negative case and 

positive case.

r r r r r c  

■■r r r

Figure 3.2 Contribution type of boundary pixels 

(Source: [6])

From the definition of geometric moments given in section 2.1.2.2,fix,y) > 0 is a 2D real 

bounded function, the (p + g)th order moment of the shape enclosed by f(x,y) is:

moa = r  r  x py qf(x ,y )dxdy  (Equation 3.1)
“  J — o o  J - e o

for p,q = 0,1,2,....

In computer vision applications, for the reasons of simplicity and speed, in many cases

binary shape representation are used. The binary shape of an object may be directly

represented by the region it occupies. The binary function

fl, if  ( x ,y )e R  
u(x,y) = <

[0, otherwise

is a simple representation of the region R. If we replace Jipĉ y) by u(x,y) in Equation 3.1, it 

will give us the moments of the region R representing a binary shape. In this case, 

Equation 3.1 will become:
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m pq =  } \RXpy qd x d y .

To compute geometric moments of a digital image, the double integrals could be 

approximated by the double summations in the moment definitions

mP9 = X £ xV /(* > .y )-
*  y

For a binary shape u(x,y):

mPq= Y ^ xPy q
x y

where (x ,y )e  R .

A large number of multiplications and additions are involved in above equations. In real

time applications, the speed of computation is of vital importance. For a binary shape, an 

algorithm called the “Delta method” was proposed by Zakaria et al. in 1987 [54]. This 

method used the contribution of each row rather than individual pixels for the 

improvement of computation speed. Only the coordinates of the first pixel and the length 

of the chained pixels of the shape R in each row are needed in the “Delta method”. The 

Integral method proposed by Dai et al. [6] uses the contribution of each extreme point of 

the shape in each row instead of the contribution of the total row, and this computation is 

directly based on the integral operation. The geometric moments and Moments Invariants 

in this method are derived from the chain codes.

Based on the same idea of computing from the integral and extreme pixels, we propose 

the following methods to calculate the moments:

Assuming a given shape as a pixel matrix shown in Figure 3.3 [6], where xlj, xrj are the 

abscissas of the first pixel (extreme left) and the last pixel (extreme right) of the shape in 

row i, Si is the number of connected pixels in row i, i.e., <S; = xLj -  xrj + 1. y t is the 

ordinate of row i, so the geometric moments mpq could be written as:

m = > m ■ .m Lu pqs 
i
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y i - Y i  --

y i  +  Y ,2

■■■ ■■ 
■■■■■■ ■■■rrrm

Figure 3.3 A Shape consisting of small uniform squares 

(Source: [6])

The contribution of row i in terms of xlj, xrj and yi for a horizontal convex shape is 

considered as a region consisting of small uniform squares of size lx l. Therefore, we 

adjust the coordinates by ±lA, and the contribution of row i is derived using the Newton- 

Leibniz Formula:

_  p,+K p*,,+Xm xpy ?dxdy
lyi-Yi /.,i~Y

V +1' XR,i+}i 1+S'1 y.+Yz
" xp+1 '

xij-Yi [ 1U + i  J 0 . * + 1 . y,-Yz .P  + l . 0 _q + l \

yi+Yz

y~Yi

rp+1 xR,i+K Xp+l

p + 1

Xlj-Yz\  r-

y 9+1

q + 1

y.+Yz

y-Yip + l  

Forp + q< 3,

= [ (* « + K -  0 ) -  {xu  - y -  0 )] • [(y; + y2) -  (y, -  y2)]
= (Xrj+)0 - ( x Lj-% )
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The (p + q)\h moment of the whole binary shape is the sum of the contributions of every 

row:

mpq = Y lmrn,i

For a binary shape, the central moments can be given as:

v,*, = £ X ( * - * ) p0 ; - t ) ? •
x y
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After m p q  have been calculated by the extreme pixels, the central moments /j.pq could be 

obtained by using the following formulas:

Moo = ^  = moo
X y

An = X 5 > - 5 0  = ™01 -  —  -w00 =0
* y  m 00

M o 2 = Y < l L ( y ~ y ')2 = m o2 - — = m o2 ~ y m oi
x  y  m 0O

M m  = E S ^ - ^ 3= w o3 - 3 y m 0 2 + 2 y 2m 0l
x  y

M i o  = S Z ( x _ I )  =  m i o ~  —  , m oo = °
* y  m 00

M u  = ^ ^ ( x - x ) ( y - y )  =  m n  -■l”10 m ° '  = m n - y m i0
X y  m 0Q

M i 2 = ^ ^ ( x - x ) ( y - y ) 2 = m n  - 2 y m u  - x m 0 2 + 2 y 2m l0
x  y

M20  = 2 X ( * - x )2 =  m 2 0 -  — =  m 20- x m 10
X y

M21  =  X X ( * - * ) 20 ' - 5J)  =  w 21 ~ 2 x m n  - y m 2 0 + 2 x 2m 0l
x  y

M30 ~  i x  — x )  =  t n 2Q — 3 x w i 2q +  2 x  n t l0
x  y

Then, by using Equations 2.1 and 2.2, we can easily get the seven Moment Invariants, as 

mentioned earlier.

Figure 3.4 shows some binary shape images: (a) and (b) are two kinds of butterflies; (c) is 

a pier of pincers. If we flip the pincers, rotate it by 12° and 45° in clockwise, and resize it 

to 50% of its original width and height, then we obtain the transformed shapes (d), (e), (f), 

and (g), respectively.
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m f g

(a) (b) (c)

(<0 (0 (g)

Figure 3.4 Example of binary shapes and shapes under geometric transformation

Table 3.1 shows the corresponding Moment Invariants of the shapes in Figure 3.4. From 

this table, we can see that: (a) and (b), two butterflies, are close in the Moment Invariants 

feature space, but are both far away from (c), the pincers. The transformed shapes (d) (e) 

(f) and (g) are very close to the original shape (c).

(a) (b) (c) (d) (e) (f> (g)

Vx 2.3579E-01 2.1699E-01 7.4873E-01 7.5060E-01 7.6499E-01 7.1600E-01 6.7028E-01

Yi 2.1204E-03 7.8817E-03 4.4297E-01 4.4536E-01 4.6700E-01 3.9698E-01 3.5543E-01

^3 1.5002E-03 1.8027E-04 8.8653E-04 8.6760E-04 5.3087E-04 6.4979E-04 2.778 IE-06

!K. 1.6026E-05 2.2426E-05 1.0625E-02 1.0589E-02 8.9542E-03 9.6474E-03 2.8673E-03

^5 -2.4427E-09 -1.4237E-09 3.2580E-05 3.2092E-05 1.8712E-05 2.4048E-05 -6.8134E-08

-7.351 IE-07 -1.9900E-06 7.0714E-03 7.0667E-03 6.1122E-03 6.0777E-03 1.7053E-03

Yi 4.5564E-10 7.8733E-11 1.3684E-06 5.2998E-07 5.5653E-06 2.2624E-06 2.4583E-07

Table 3.1 Example of Moment Invariants as shape features
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3.1.3 Complex Zernike Moments and the Magnitudes

Essentially, Zemike Moments do not need to know the boundary information. Zemike 

Moments are defined over a unit disk which is a circle o f unit radius on a Cartesian plane. 

However, the unit disk is centered on the shape centroid, and the centroid of a shape (xc,yc) 

is the average of its boundary coordinates (xi,yi), i = 1,2,...,A
1 N  1 N

N ^ X' ’ y - = N ^ y ”

Before computing the complex Zemike Moments, we need to transform the shape from 

its digital image coordinate system into the Zemike unit coordinate system. As shown in 

Figure 3.5, the origin of the digital image coordinate system is the top-left comer of the 

image whereas positive u points to horizontal right, and positive v points to vertical down. 

The coordinate system transformation consists of three steps: translation, rotation and 

scaling.

Figure 3.5 Coordinate system transformation

We first translate the origin from the left-top comer to the shape centroid (xc, yc). xc and 

yc can be considered as positive quantities in uv system. The relationship between uv 

system and x y  ’ system can be expressed as:

f x ’ — u — x,
1 /  - V - , .
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Then, we flip the;; ’ axis so that it fits the typical xy system in geometry:

[y = - /

Finally, we normalize the shape into a unit disk of radius R. Suppose the distance from 

the shape centroid (circle center) to its far most boundary pixel is L, the scaling factor for 

this normalization would be R/L. From the above transformations, we obtain:

u = — x + xr 
R

v = y , - { y

The complex Zemike moments are derived from the Zemike polynomials as:

vnm (x, y ) = Vnm (p  cos 0, p  sin 0) = Rnme J m 0

and

(m - s)!(n-M)/2
* * (/> )=  L  (-1)'

.n -2s

s= 0
*!(■

n+
2 2

m -s) \

where p is the length of the vector from the shape centroid to pixel (x,y), 6  is the angle 

between vectorp and the x  axis in the anticlockwise direction and j  = V - l .

Zemike moments allow independent moment invariants to be constructed to an arbitrarily 

high order n with repetition m [49] where n and m are integers and subject to the 

condition:

n -\m \ = even, \m\ < n.

Possible values of n and m are:

n = 0 , S II o

n = 1, \m\ = 1

n = 2, 3_ II p to

n = 3, \m\ = 1,3

n = 4, \m\ = 0, 2, 4

n = 5, |m| = 1, 3, 5
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The first six orthogonal radial polynomials are: 

p ° = l
0! 0! 0! 

*„(/>) = H ) °  ”0M!-0! P = P

RioiP) = H ) °  . . . P 2~° + ( - ! ) ' . T  = 2 p * - l
(2 - 1)! p2-2

x * ( p ) = ( - iy

0!-(l — 0) !-(l — 0)! 1!-(1 —1)!-(1 — 1)!

P =P

(3-1)!

**< /»  = <-D" ^  0)' - 2-0 - - 20!-(2 — 0)!-(0 — 0)! 

(3 -0)!
p 3-° + ( - ! ) ' p 3-2 = 3 p * - 2 p

0!-(2 — 0)!-(l — 0)! l!-(2 —1)!(1 — 1)!

'J
P =Pfl„ (P ) = H ) °  (3 ° )! ~w - - !0!-(3 — 0) !-(0 — 0)!

Figure 3.6 shows these six radial responses. From the figure it can be seen that the 

polynomials are separated between 0 and 1. They become more grouped as they approach 

1, and then scatter again.

0J 8000
B00D

0.4 WOO 33
02

-0 i

1000

1
p

Figure 3.6 Six orthogonal radial polynomials plotted for increasing p

Since Zemike basis functions take the unit disk as their domain, this disk must be 

specified before moments can be calculated. In our implementation, all the shapes are 

normalized into a unit disk of fixed radius of 32 (=25) pixels, i.e., R = 32. We can also
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choose 8  (=23), 16 (=24), or 64 (=26) as the value of the disk radius. However, the larger 

the disk is, the more computation is required and the more details the feature reflects. The 

unit disk is then centered on the shape centroid by the transformations we discussed 

before.

For digital images, we substitute the integrals with summations and the complex Zemike 

moments of order n with repetition m are defined as:

A„m = X  X  (x’t )  where x2  + y 2 <R2.
x x y

In the equation above, fix,y) can be replaced by u(x,y) for binary images, therefore,

A nm =  X  X  y W n m  ( * >  j O

x  x y

X x y

= y)Rnm [e° (cos (m 6 ) + j  sin(m 0))]*
X  x y

n + 1 Y ^ u(<x^ Rnm cos(m0) + jR nm sin(m0))*
X x y

Furthermore,

Km(x>y) = Rnm cos(m0 ) -  jR„m sin(m 0 )
= Rnm cos(-m d) + jR nm sin{-m d)

•’•K m(X’y) = Vn,-m(X>y)

Zemike transformation makes the obtained moments scale and translation invariant. 

Rotation invariance is achieved by only using magnitudes (absolute values) of the 

moments.

Table 3.2 shows the Zemike Moments features of shapes in Figure 3.4.
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(a) (b) (c) (d) (e) (f) (g)

^00 3.9088E+02 5.0516E+02 9.7721E+01 9.6767E+01 9.8676E+01 1.0791E+02 1.1268E+02

^11 1.0576E+04 1.5920E+04 2.4752E+03 2.3695E+03 2.6036E+03 3.0097E+03 2.7164E+03

•̂ 20 6.8396E+05 1.0420E+06 1.5806E+05 1.4688E+05 1.5142E+05 1.7404E+05 1.7090E+05

^22 2.0218E+05 4.1820E+05 5.2699E+04 4.7746E+04 6.7507E+04 8.3522E+04 5.6793E+04

^31 2.5204E+07 4.3413E+07 6.2397E+06 5.6012E+06 6.2481E+06 7.3978E+06 6.6449E+06

A 33 3.0881E+06 1.1208E+07 9.0766E+05 7.3056E+05 1.9273E+06 2.4398E+06 1.0317E+06

Table 3.2 Example of Zemike Moments as shape features

3.2 Indexing Mechanism

3.2.1 Retrieval Strategy

Im age
C ollection =) Feature Extraction —A Shape

—y Features

Feature Clusters 
(£  means clustering)

U ser
Query

Feature Extraction

'  r ■ r

Neural M atching
N etwork and
classifier R anking

R etrieval Engine

t Training Phase

---------------► R etrieval Phase

Figure 3.7 Architecture of shape-based image retrieval system using Neural Network
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Traditional method for Content-Based Image Retrieval is to index the extracted visual 

feature vectors with multidimensional indexing trees as discussed in Section 2.2. In this 

thesis, we introduce clustering techniques and Neural Network for shape-based image 

retrieval and build an automatic intelligent retrieval engine.

Our strategy consists of two stages: training and retrieving (testing), as shown in Figure 

3.7. In the training stage, we use all of the images in our image database as training 

samples. We first group the training samples into clusters with their feature vectors. Then, 

we use an Artificial Neural Network and train it with the result of clustering. In the 

testing stage, for a query image q, we extract its feature vector and feed it into the trained 

Neural Network and the network assigns it to one or more similar clusters. Then, we 

compare all of the images in the selected cluster(s) against the query image q. Finally, 

similar images are ranked by their similarities using distance functions and returned as 

the retrieval results.

3.2.2 Clustering

3.2.2.1 k  Means Clustering

k  means clustering [26] is one of the best known clustering algorithm in Pattern 

Recognition. It is a non-hierarchical approach to forming good clusters -  specify a 

desired number of clusters, say, k, then assign each sample to one of the k  clusters so as 

to minimize a measure of dispersion within the clusters. The procedure of determining 

the membership for every sample is through an unsupervised learning procedure.

Of the various techniques that can be used to simplify the computation and accelerate 

convergence, we consider one elementary but very popular method. The algorithm of k 

means clustering is very simple. It first randomly initializes k  cluster means, and then 

assigns each patter vector to the cluster of the nearest mean. Re-compute cluster means 

and re-assign pattern vectors, until no changes occurred. The algorithm shows as 

following:
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Algorithm: k  Means Clustering 

Input: Number of clusters, k\

A training dataset D -  {xi, x2, X3, . . xjv}

Output: k mean vectors pi, p2, P3, • ••, P*

Method:

(1) Initialize ph p2, p3, . . p*;

(2) rep ea t {

(3) Assign xi, x2, X3, ..., x/y to the cluster of the nearest p,

(4) Recompute pi, p2, p3, ..., p*

(5) } until no change in p;

Although it is unsupervised, k  Means Clustering algorithm needs to provide the number 

of clusters, k, to start with. It also needs some knowledge about the problem to determine 

the value of k. The nearest mean p, is found by using an arbitrary distance function, and 

will be discussed more in Section 3.2.2.2. Initial values of p, affect the convergence since 

different initialization values may lead to different membership results. Therefore, we 

either guess initial values based on the knowledge of the problem, or choose k  random 

samples from xi,x2, . . .,xn.

3.2.2.2 Distance Functions

Distance functions are used to measure the similarity or dissimilarity of two feature 

vectors. In a d-dimensional space, for any two elements x and y, there exists a real 

number D(x,y), called the distance function (or metric), and it satisfies the following 

properties [12, 3]:

(1) D(x, y) > 0 (non-negativity)

(2) D(x,y) = 0 if  and only if x = y (identity)

(3) D(x,y) = D( y,x)

(4) D(x,z) <D(x,y) + D(y,z)

(symmetry) 

(triangle inequality)
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There are many distance functions available, for example, Manhattan distance, Euclidean 

distance, Minkowski distance and Mahalanobis distance. We have tested and compared 

Euclidean distance and Mahalanobis distance in our thesis work.

Euclidean Distance

Euclidean distance is a very simple, well known and widely used distance function. It is 

defined as:

f  d - 1
y) =

1=0
~T,)2 = V(x - y ) ' ( x - y ) »

where x and y are two feature vectors of the same dimension d.

Euclidean distance is a member of the Minkowski-form distance family. The general 

definition of Minkowski-form distance is:

(  d - 1

A ,(x>y) = ' L i h - y . Y
i= 0

This family of distance functions is parameterized by p. When p  = 1, it is called 

Manhattan distance, and is also known as the city block distance:
d- 1

A ( x>y) = Z k - y , 1 ;
f=0

When p  = 2, it is our Euclidean distance; And when p = oo (p—>co), it is called Chebychev 

distance:

£L(x,y) = max{|x; - y ,  |} .
0<i<d

To intuitively convey the difference between these distance functions, we can construct a 

metric space where a set of points centered at a point O with the same distance r make up 

a ball (sphere). Figure 3.8 [3] shows the unit spheres under Manhattan (£>i), Euclidean 

(£>2), Minkowsky with p  = 14 (£>14), and Chebychev (£)») distance. Balls in Euclidean 

spaces, as we all know, are the spherical surfaces. A ball in £)« is a hypersquare aligned 

with the coordinate axes. A ball in D\ is a hypersquare, having vertices on the coordinate
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axes. A ball in Dp, for l<p<2, looks like a “slender sphere” that lies between the D\ and 

D 2 balls, whereas for p >  2, lies between the D2  and balls and looks like a “fat sphere”.

m u a.s

Figure 3.8 The unit spheres under Minkowsky distances 

(After: [3])

Mahalanobis Distance

The Mahalanobis distance is a generalization of the Euclidean distance. It is defined as:

D(x,y) = [ ( x - yyE-1( x - y ) r  

where E is the covariance matrix of x:

s  = “ I1)' ’A ;=o
AM

ii = S x,
1=0

E is a positive, semidefinite and symmetric matrix. When E = I, the distance is reduced to 

Euclidean distance and when E ^  I, it is called Mahalanobis distance. Both Euclidean 

distance and Mahalanobis distance are commonly used in clustering algorithms. We
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know that the center of a cluster is determined by its mean vector, n, and the shape of the 

cluster is determined by its covariance matrix, S.

The use of the Mahalanobis distance removes several of the limitations of the Euclidean 

distance:

• it automatically accounts for scaling of the coordinate axes.

• it corrects for correlation between different features.

• it can provide curved as well as linear decision boundaries.

M a h » l» n o b i»

O Euclidean

Figure 3.9 Euclidean distance and Mahalanobis distance 

(Source: [3])

Figure 3.9 [3] graphically illuminates the relationship between the Euclidean distance and 

the Mahalanobis distance. For most datasets, Mahalanobis distance can present a precise 

shape of the cluster but with more time complexity than the Euclidean distance which 

though corresponds to less time complexity but at the cost of reduced precision.

3.2.2.3 Clustering Evaluation

Clustering techniques generally aim to partition the dataset into a number of clusters. The 

two fundamental questions that need to be addressed in any typical clustering system are: 

(i) how many clusters are actually present in the dataset and (ii) how real or good is the 

clustering itself [28].
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In our approach, our aim is to use a clustering algorithm that could provide us a minimum 

within-cluster distance and maximum inter-cluster distance. Based on this idea, there are 

several cluster validity indices to evaluate the partitioning obtained by the clustering 

algorithm. Davies-Bouldin (DB) Index is one of them. This index is a function of the 

ratio of the sum of within-cluster scatter to the inter-cluster separation. The scatter within 

the Ith cluster, Si, is computed as:

i

and the distance between two clusters C, and Q, denoted by Ay, is defined as:

Dy = ||» ,- |» , I-

Here, p, represents the /th cluster center. The Davies-Bouldin (DB) index is then defined 

as:

d b = \ | x , .

where

Ruqi = max, , { ^ [

with the objective to minimize the DB index for achieving proper clustering.

3.2.3 Neural Network

In our approach, after clustering, we use the Neural Network as part of the retrieval 

engine. Neural Network is a computer model to imitate human brain. It has great 

potential in image retrieval and has been successfully used in pattern recognition, data 

mining, industrial process control, data validation, etc. [38]. Neural Network is often used 

as a classifier. The best advantage of Neural Network classifier is its ability to recognize 

unfamiliar patterns.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



з.2.3.1 Background of Neural Network

Neural Network (also called Artificial Neural Network) is a mathematically modeled 

information processing simulation of Biological Neural Network, which has the 

following characteristics [7]:

• information processing takes place at neurons where many signals are transmitted.

• neurons communicate with each other via axons, each of which has a synapse to 

multiply signal transmitted over it.

• each neuron applies certain activation to its input signal to determine its output 

signal. The output from a particular neuron may go to many other neurons.

• a synapse’s strength may be modified by experience.

In Neural Network, neurons (or nodes) are mathematically modeled by an activation 

function/ such as the identity function, binary step function, binary sigmoid function and 

bipolar sigmoid function, etc. Axons (or links) are modeled by the combination function

и. The most common combination function is the sum of weighted input. Nodes and links 

compose basic unit of Neural Network as shown in Figure 3.10 [22].

In its applications in the filed of Pattern Recognition, Neural Network can predict an 

input pattern to a familiar class or recognize unfamiliar patterns. Neural Network has 

great potential of achieving human-like performance in the fields of image recognition 

[22] and is a promising technique for indexing image features [35].

Figure 3.10 Basic unit of Neural Network 

(Source: [22])
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3.2.3.2 Multilayer Neural Network

A multilayer Neural Network consists of an input layer, an output layer, and one or more 

hidden layers as shown in Figure 3.11 [22]. Computing nodes in each layer are arranged 

so that the output of every node in one layer becomes an input of every node in the next 

layer [1 2 ].

orward

- Output

Output Layer
Hidden Layer Hidden Layer (Q)

Figure 3.11 Multilayer (3-later) Neural Network 

(Source: [22])

Input Layer

Feature vectors x = [x/, x ,̂ X3, ..., xj  serves as an input to the Neural Network. The 

number of nodes in the input layer is the number of elements of the feature vector, i.e., i. 

In this thesis, Moment Invariants and Zemike Moments serve as feature vectors, so that 

every element of the moment vector is fed in to the Neural Network. The number of 

nodes in the input layer in our case are 7 for Moment Invariants, and 6  for Zemike 

Moments.

Normally, the inputs of the Neural Network do not need to be normalized. However, 

there is a significant difference of magnitude between values o f Moment Invariants and 

those of Zemike Moments. Therefore, we normalized the feature vector as follows:

X  [ X j , X j , X 3  ]  ,
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where xu is the unit vector after normalization.

Hidden Layer

The hidden layer is used to represent the interaction between the input layer and the 

output layer. The number of hidden layers and nodes depends on the particular problem 

being attacked using a Neural Network, and in many cases, such issues can be solved in 

practice by trial and error [29],

For the number of hidden layers and the number of nodes in each layer, there is always a 

tradeoff: with too few nodes and links, the Neural Network may not be powerful enough 

to form a decision region that is as complex as required by a given learning task, and may 

perform poorly on new testing samples; on the other hand, with a large size network, it 

may not be possible to reliably estimate weights from the available training data and 

computation would be too expensive.

Assuming that all members in a cluster belong to the same class and samples of each 

class may be spread over different clusters, Lippmann [22] has studied the types of 

decision regions that can be formed by a single- and multi-layer Neural Network with one 

and two layers of hidden units and two inputs, and are illustrated in Figure 3.12 [22].

The smooth closed contours labeled coi and co2 in Figure 3.12 are the input distribution 

for the two classes. Distributions for the two classes for the exclusive OR problem are 

disjoint and can not be separated by a single straight line. Input distributions for the 

second problem shown in this figure are meshed and also can not be separated by a single 

straight line.
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Figure 3.12 Neural Networks with one or two hidden layers and their corresponding type
of decision region

(After: [22])

With only two layers (one layer of hidden units), a Neural Network can generate a 

convex open or closed decision region as shown in the second row of Figure 3.12. It is 

effective enough for the exclusive OR problem, but still has difficulties with meshed 

classes. A three-layer network can form arbitrarily complex decision regions and can 

separate the meshed classes as shown in the figure. It can form regions as complex as 

those formed using mixture distributions and nearest-neighbor classifiers.

The above analysis demonstrates that a three layer network may be sufficient for a feed

forward Neural Network because it can outline arbitrarily complex decision regions. It 

can also provide some insight into the problem of selecting the number of nodes to use in 

the three-layer networks. The number of nodes in the second layer must be greater than 1 

when decision regions are disconnected or meshed and cannot be formed from one 

convex area. The number of second layer nodes required in the worst case is equal to the 

number of disconnected regions in input distributions. The number of nodes in the first
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layer must typically be sufficient to provide three or more edges for each convex area 

generated by every second-layer node. There should typically be more than three times as 

many nodes in the second layer as in the first layer [22].

Output Layer

The output layer in our system is used to predict the cluster to which the testing sample 

may belong. There are two kinds of representation schemes that can be used on the output 

layer [13]: (i) direct representation, and (ii) binary coding representation. Direct 

representation uses the number of clusters of dataset as the number of nodes on the output 

layer. In this representation, only one node gets the “high” value and the node that has the 

“high” value is the cluster of the testing sample. For example, there are eight nodes on the 

output layer if  there are eight clusters of shape images. If a test shape belongs to the third 

cluster (index number of cluster is 3), then the output of the output layer will be 

00001000. The other representation scheme, binary coding representation, uses flog2 k]

nodes on the output layer for k  clusters of shape images. For example, if  a shape belongs 

to the third cluster, then the output of the layer will be 011.

In this thesis, we use the direct representation because it is straightforward, easy to use 

and has the capability of extension (see section 5.2).

3.2.3.3 Feed-Forward

Feed-forward is a process in which a sample vector feeds the input layer, goes through 

the computation of functions of every node in every layer in an order, and finally reaches 

the output layer.

As illustrated in Figure 3.10, each neuron (node) has the same structure as the basic unit 

in the Neural Network. Since the combination function u is the weighted sum, the input 

to a node in any layer is the weighted sum of the outputs from the previous layer. In our 

3-layer Neural Network model (Figure 3.11), K  denotes the first hidden layer, J  denotes
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the second hidden layer, and Q denotes the output layer. If the inputs to the activation 

function/ of each node in each layer are denoted as /, then we have:

h  = Yuiwkix< >

I j = yL kwj k ° k ’ anA

The outputs of each node in each layer are:

o  = f { i ) ,

w here/is the activation function.

Activation Functions

An ideal activation function for a Neural Network should have several important 

characteristics [7,29]:

• The same activation function should be used for all nodes in any particular layer 

of a Neural Network, even though it is not a requirement.

• In order to achieve the advantages of multilayer network, in most cases, a 

nonlinear activation function should be used.

• The activation function should be continuous, differentiable, and monotonically 

non-decreasing.

• Aiming at the back-propagation, for computational efficiency, it is desirable that 

the derivative of the activation function be easy to compute. For the most 

commonly used activation functions, the values of the derivative can be expressed 

in terms of the value of the function.

Therefore, the soft-limiting sigmoid functions (S-shape curves) are useful activation 

functions whereas the binary/bipolar sigmoid function and the hyperbolic tangent 

function are the most common ones. It is especially advantageous to use them in Neural 

Networks trained by back-propagation, because the simple relationship between the value 

of the function at a point and the value of the derivative at the point reduces the 

computational burden during training.
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1. Binary sigmoid:

The Binary sigmoid function is expressed as:

and as shown in Figure 3.13, it is a soft-limiting function. It is always positive, and 

can reach its limiting values of 0 and 1 only if  the input to the activation element is 

infinitely negative or positive, respectively. For this reason, values near 0 and 1 (say, 

0.05 and 0.95) are considered as “low” and “high” values at the output of the nodes in 

the network.

The derivative procedure of binary sigmoid function is given as follows: 

1
/(*) = l + e~

A * )  = -
l

(1 + e~ x ) 2 

1

■(1 + 0 *

(O'
( i + o 2

— -— Te~x(-xy(1 + e~ x ) 2 K J

(l + e~ x ) 2 

1 e~x 
l + e~x 1 + e-

1 l + e~
l + e~x 1 + e l + e~

2. Bipolar sigmoid:

Sigmoid function can be scaled to have any range of values that may be appropriate 

for a given problem. The most common range is from -1 to 1. We call this sigmoid a 

bipolar sigmoid and is illustrated in Figure 3.14, whereas its expression is given as:
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The bipolar sigmoid is closely related to the hyperbolic tangent function, which is 

also often used as the activation function when the desired range of output values is 

between -1 and 1. The hyperbolic tangent is:

The derivatives of bipolar sigmoid function and hyperbolic tangent function are 

derived as follows:

g '(x) = 2  f '(x )
= 2 f (x ) [ l- f (x ) ]
= f (x ) [2 -2 f (x ) ]

= j [ l  + 2 f ( x ) - W - 2 f ( x )  + l]

h(x) =

h \x ) (ex +e~x)(ex + e~x) - ( e x ~e~x)(ex - e ~x) 
(ex +e ~ x ) 2 

(ex +e ~ x ) 2 ~( ex - e ~ x ) 2 

(ex +e ~ x ) 2

f  X - x  \ 2

h \x )  = 1 - A 2 ( x )
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Figure 3.13 Binary sigmoid

-os

Figure 3.14 Bipolar Sigmoid

Initialization of Weights

Computation in a Neural Network generally starts by choosing the initial weights. 

Typically, the weights chosen are small random values (between -1.0 and 1.0 or -0.5 to 

+0.5), since larger weight magnitudes may drive the output of layer 1 nodes to saturation, 

requiring much larger training time to emerge from the saturated states [29]. This 

phenomenon results from the behavior of the sigmoid functions.

If the magnitudes o f some of the inputs are much larger than the others, as is the case 

with Moment Invariants and Zemike Moments in this thesis, random initialization may
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bias the network to give much greater importance to the inputs whose magnitudes happen 

to be large. In such a situation, weights can be initialized as stated below so that the 

network input to each hidden node is roughly of the same magnitude.

For the weights associated with inputs:

+ 1 V  1

where N  is the size of the dataset. For the weights associated with other layers in the 

network:

1 AM 1 

Wjk ~ 2 N ^ 0 f ( ^ w kix i) ’

w»
1 1 = ±_L y— -------.

3.2.3.4 Training by Back-Propagation

Training a Neural Network by back-propagation involves three stages [7]: feed-forward 

the input training sample, back-propagate the associated error of each layer to its previous 

layer, and adjust the weights connecting these two layers accordingly.

Starting from the output layer, the total squared error between the actual output Oq and 

the target result Tq is:

*  <7=1

where Nq is the number of nodes in the output layer Q.

The objective of training is to adjust the weights in each of the layers in a way to 

minimize the total squared error Err. To achieve this result, we can adjust the weights in 

proportion to the partial derivative of the error with respect to the weights:

Aw . = - a ^ rr . (Equation 3.2)
® dw.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The error Err is a function of the output Oq, which in turn is a function of the input Iq. 

Using the chain rule, we evaluate the partial derivative of Err as follows:

DErr _  DErr Dlq
dw. Dl dwnl

From the combination function,

J _ _ y  w 0 . = 0 .. 
^  '  '  J

(Equation 3.3)

(Equation 3.4)

Substituting Equation 3.3 and 3.4 into 3.2 yields:

where

DErr
Aw<n= ~a ~ ^ r ° j = aS^ ° j ’

q

„ DErr

Then, we use the chain rule again to express the partial derivative in terms of the rate of 

change of Err with respect to Oq and the rate of change of Oq with respect to Iq. That is,

= J J r L  = J E r L *03_ (Equation 3.5)
* SI, SO, BI,

From the definition of the total squared error,

DErr
DO,,

= < Tq - O q)

From the activation function,

D°q _ d
diq a / / '  9

(Equation 3.6)

(Equation 3.7)

Substituting Equation 3.6 and 3.7 into 3.5 yields
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which is proportional to the error quantity (Tq -  Oq). Therefore, after the activation 

function /h a s  been specified, all the terms in the above questions are known or can be 

observed in the network.

Continuing to work our way back from the output layer, let us now analyze what happens 

at the hidden layer J. Proceeding in the same manner as above yields

A wjk = aS,O k,

where the error term is

< ? ,= (r , - o , ) / • ( / , ) .

With the exception of 2}, all the terms in the above two equations are either known or can 

be observed in the network.

Going back to the error term for layer J, we can write it as

dErr _ dErr dO,
s dO, d l, ’

The term dOj / dlj is easy to explain. As before, it is given as:

dO,
dl, dl,

The term that produced Tj is the derivative dErr I dO, , so it must be expressed in a way 

that does not contain 2}. Using the chain rule, we write the derivative as:

dErr Y’ (iErr ^  q

= x

= 2 / .

where the last step follows from

' 9 1 ,  90,

dErr

dErr
~dl~ do, 1L j wv ° j

dT %/

w . q qj

c dErr
' = ~ n r

Finally, we can express 8 j  as
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and now that all of its terms are known, it can be computed very easily.

Similarly, for the hidden K, we can write:

Awkj = ocdkOi = a 8 kx i, and

s t = /■ (/, ■

Training termination criterion

Training is complete when the weights no longer change much or until the network has 

gone through the training set for a specified number of iterations. More specifically, the 

termination condition in this thesis is:

1) Minimum Squared Error (MSE) is less than a threshold e, say e = 0.05

2) OR

a) | MSE(t) - MSE(t-l) | < e

b) AND the network has gone through the training samples a maximum number of 

times.

In summary, the back-propagation algorithm is illustrated as follows:

Algorithm: Back-Propagation. Neural Network learning for classification, using the 

back-propagation algorithm.

Input: The training samples, Samples', a multilayer feed-forward neural network, NN. 

Output: A Neural Network trained to classify the samples.

Method:

(6 ) Initialize all weights in NN;

(7) while terminating condition is not satisfied {

(8 ) for each  training sample X  in Samples {

(9) // Propagate the input forward:

(1 0 ) for each  hidden or output layer unit j  {

< ” >
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// Compute the net input of unit j  with respect to the previous layer /

(12) Oj = f  (I  j ); // Compute the output of each unit j

(13) // Back-propagate the errors:

(14) for each  unit j  in the output layer

(15) Sj = (T. -  O j) / '  { Ij); // Compute the error

(16) for each  unit j  in the hidden layers, from the last to the first hidden layer

(17) S ,  =  f ' ( I j ) ^ k E r r t w J k ;

II Compute the error with respect to the next higher layer k

(18) for each  weight wy in NN  {

(19) Aw.. (/) = (ji ) S j O i + («)Aw.. (t - 1);

// Weight increment where 0 < a,r\ < 1 with typical values of r j-  0.5 to 0.6, 

II a = 0.8 to 0.9

(20) Wy (t +1) = Wy (t) + Awy ( t) ;} // Weight update

(21) }}}
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4 Experiments and Discussions

4.1 Image Collection

Since our main objective is to classify and retrieve specific shapes and to validate our 

proposed theoretical steps, we chose to deal with only binary shape images. Use of binary 

images allowed us to focus more on training and retrieval strategies rather than the image 

processing steps such as edge detection, etc. However, it must be noted that a system can 

be developed to deal with any type of images, including color images, and that system 

needs to employ specific image processing steps. It is also important to note that in order 

to deal with the requirements of robustness and invariance under various geometrical 

transformations, data set needs to contain images with noise and geometric 

transformations such as rotation and scaling.

MX bV k * *
V\ — — *

4 * <r<rj?* m
1 * ■m*%* l 1 **T

Figure 4.1 Sample binary shape images in the image collection
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Our image data set consists of images from “A Large Binary Image Database” [55] which 

is a large database of closed binary shapes collected by the LEMS Vision Group at 

Brown University. This collection contains more than 5000 binary shape images and has 

many variations of same shape and object. This data set consists of some groups of 

similar shapes that are scaled, rotated and slightly distorted, as well as some images that 

are unique. Figure 4.1 is an example of some of the images in this collection.

Programs to extract Moment Invariants and Zemike Moments from binary shape images, 

k  means clustering and back-propagation Neural Network for indexing and retrieval are 

implemented using C# on Microsoft .NET Framework 1.1. Algorithms have been 

preliminarily tested using Matlab 6.1 with a small set of data (150 images). Experiments 

are done and results are collected on an Intel Pentium III PC, running Microsoft 

Windows 2000.

4.2 Comparison on Euclidean and Mahalanobis Distances

From our analysis in section 3.2.2.2, we know that compared with Euclidean distance, 

Mahalanobis distance presents a more precise shape of a cluster because it takes into 

account not only the average value but also the variance and the covariance of the cluster 

members. Table 4.1 shows the experiments on k  means clustering with these two 

distances. We use the Davies-Bouldin (DB) Index mentioned in section 3.2.2.3 to 

evaluate the result of clustering, and plot the values of DB index in Figure 4.2 for 

different value of k  (from 3 to 10). From this figure, we can see that for the small values 

of k, for example k = 3, k = 4, clustering results with both the Euclidean distance and the 

Mahalanobis distance are very similar, but when k  is greater than 5, Mahalanobis distance 

performs much better than Euclidean distance. It is primarily due to the fact that the 

Mahalanobis distance presents a precise shape of clusters whereas the Euclidean distance 

always forms a circle irrespective of the shape of the data set.
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k
Euclidean Distance Mahalanobis Distance

DB Index Time (s) DB Index Time (s)

3 0.061037 0.170 0.061037 0.140

4 0.077329 0.250 0.071343 0.761

5 0.173958 0.330 0.086476 7.360

6 0.189725 0.451 0.106956 28.680

7 0.187746 0.741 0.114014 56.600

8 0.189074 0.912 0.108673 68.847

9 0.175987 1.392 0.123772 99.871

1 0 0.179971 1.663 0.105527 1 2 2 . 2 2 2

Table 4.1 Clustering validity and time with Euclidean and Mahalanobis distances

—♦— Euclidean 
Mahalanobis

3 4 5 6 7 8 9  10
k

Figure 4.2 The values of DB index for k  means clustering with Euclidean and
Mahalanobis distances

However, Mahalanobis distance function has a higher time complexity than Euclidean 

distance function. In the k  means clustering algorithm with Mahalanobis distance, after
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assigning samples to the cluster of the nearest mean, we have to recompute not only the 

new cluster mean, but also the new cluster covariance in each loop of our computation.

120

0  • »  » » »  ♦ 1

3 4 5 6 7 8 9  10

— Euclidean
■*— Mahalanobis

k

Figure 4.3 Clustering time with Euclidean and Mahalanobis distances

For Euclidean distance, even after few iterations, it is easy to have the cluster means 

stable, but for Mahalanobis distance, it always takes much longer despite the fact that we 

use a cutoff or threshold as a termination condition (new cluster means doesn’t move 

very much, say less than 0.1%). Figure 4.3 shows the clustering time (in seconds) with 

these two distances. Obviously, the larger the value of k, more is the time needed for k 

means clustering; with end result that the Mahalanobis distance is more time consuming 

than the Euclidean distance.

4.3 Comparison on Activation Functions

As mentioned before, in our Neural Network system, we have used and collected results 

with three activation functions: binary sigmoid, bipolar sigmoid and hyperbolic tangent. 

Results in terms of errors of Neural Network after training and corresponding training 

time are given in Table 4.2. During the training phase, we can observe that the minimum 

squared error (MSE) fluctuates in the first few training loops, and then keeps on
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decreasing at a very slow rate. Since the error reduction is very slow, the training 

termination in our case mostly occurs due to the second condition as mentioned in section 

3.2.3.4. This allows the Neural Network to go through all the training samples a 

maximum number of times, i.e., 1 0 0 0 0  times in our experiments.

k
Binary Sigmoid Bipolar Sigmoid Hyperbolic Tangent

MSE AVErr Time (h) MSE AVErr Time (h) MSE AVErr Time (h)

5 0.1373 0. 2343 1.1142 0.1213 0.2203 1.1536 0.1345 0.2319 1.2782
6 0.1550 0.2273 1. 3451 0.1464 0.2209 1.3607 0.1361 0.2130 1.4401
7 0.1734 0 . 2226 1. 5935 0.1548 0. 2103 1.6546 0.1496 0. 2067 1.6932
8 0.1918 0. 2189 1.8410 0.1632 0.2019 1. 9484 0.1630 0 . 2018 1. 9462
9 0.2137 0. 2179 2.0627 0.1724 0.1957 2. 2414 0.1725 0.1958 2 . 2261

1 0 0. 2345 0. 2165 2.1988 0.1793 0.1893 2. 3379 0.1793 0.1893 2. 3149

Table 4.2 Errors of the Neural Network with three different activation functions

Binary Sigmoid 

Bipolar Sigmoid 

Hyperbolic Tangent

5 6 7 8 9 10
k

Figure 4.4 The MSE of the Neural Network with three different activation functions
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Binary Sigmoid 
■*— Bipolar Sigmoid 

Hyperbolic Tangent

5 6  7 8  9 10
k

Figure 4.5 The average of errors of each node in the output layer of the Neural Network
with three different activation functions

We know that the total squared error on the output layer of the Neural Network is:

M5E = i f ; ( r s - o a)!
1  <7=1

where the number of nodes in the output layer is the number of clusters k  in our case. 

Thus the average of errors of each node in the output layer of the Neural Network can be 

estimated by:

\2-MSE  
err~ \  k

We plot the MSE and the average of errors of the output nodes with the three mentioned 

activation functions in Figure 4.4 and Figure 4.5 respectively. Both figures illustrate that 

the bipolar sigmoid and hyperbolic tangent functions with values in the range from - 1  to 

1 perform better than the binary sigmoid whose values ranges from 0  to 1 .
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4.4 Retrieval Performance of Moment Invariants and Zernike 

Moments

After finishing the training of Neural Network -  our retrieval engine, we can run the test 

program to see how the system performs on a given query image. Ideally, the shape- 

based image retrieval system must return all the similar shape images and must not return 

any dissimilar shape images. Such a system is considered to have high precision. 

However, real image retrieval systems are able to return only some of the similar images 

in the image collection, and may retrieve some irrelevant images as well.

I

Figure 4.6 Measuring of retrieval effectiveness 

(Source: [56])

In the CBIR, we often use precision and recall as a measure of evaluating the 

effectiveness of the retrieval engine. As shown is Figure 4.6, if rectangular I  is the whole 

image collection, the left ellipse represents the set of the relevant images in the image 

collection against a given query image, and the right ellipse represents the set of images 

retrieved by the retrieval engine, then, area A represents the relevant images retrieved; 

area B  is the relevant images not retrieved whereas area C is the irrelevant images 

retrieved.

The relevant images not retrieved are also known as “false negative”, and the irrelevant 

images retrieved are called “false positive”. We want to minimize “false negative” (B) as 

well as “false positive” (Q . However, “false positive” is still acceptable in real image
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retrieval system because they can be visually discarded by the user, whereas absence of 

“false negative” is vital to a retrieval system because the user may never know if  there are 

images in the data set which have not been retrieved.

M l 
M I + M I

from where we can see that “false negative” effects recall, and “false positive” effects 

precision.

Recall is a measure of how well the retrieval engine performs in returning relevant 

images, whereas precision is a measure of how well the retrieval engine performs by not 

returning the irrelevant images. Recall and precision are inversely related: Recall is 1.0 or 

1 0 0 % when every relevant image is retrieved, and precision is 1 . 0  or 1 0 0 % when every 

image returned to the user is relevant to the query. In theory, it is easy to achieve good 

recall by just simply returning every image in the image collection for every query. 

Therefore, recall by itself is not a good measure of the quality of a retrieval engine. 

However, there is no easy way to achieve 100% precision other than in the trivial cases 

where no irrelevant image is ever returned for any query [56].

Precision and recall are defined as [56]:

. . Number of Relevant Images Retreived IA IPrecision = ------------------------------- 2 ----------------= -— — — -
Number of Images Retrieved | A | + 1C |

Recall - ________Number of Relevant Images Retrieved________
Total Number of Relevant Images in the Image Collection
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Figure 4.7 Precision-recall graph of Moment Invariants and Zemike Moments (1)

Figure 4.7 shows the precision-recall graph for Moment Invariants and Zemike Moments. 

The query images used in this experiment are part of training samples, and the retrieval 

precision achieved is as high as 1 0 0 %.

r- 0.40

£  0.30

..

C 0.50

■■

0.00 0.20 0.40 0.60

Recall

0.80

-Ml
-ZM

1.00

Figure 4.8 Precision-recall graph of Moment Invariants and Zemike Moments (2)
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0.00 0.20 0.40 0.60 0.80 1.00

Recall

Figure 4.9 Precision-recall graph of Moment Invariants and Zemike Moments (3)

Figure 4.8 shows the precision-recall graph of the query images that the shape-based 

image retrieval system has never seen before and have not been part of training, and the 

retrieval precision reaches to about 70% for Moment Invariants, and about 58% for 

Zemike Moments.

The average result for precision and recall is shown in Figure 4.9 such that the shape 

retrieval using Moment Invariants reaches a precision of about 83%, and shape retrieval 

using Zemike Moments reaches a precision of about 75% in precision. More than 90% of 

relevant images can be retrieved by the system.

From above experimental results we can see that the Moments Invariants perform better 

than the Zemike Moments in terms of shape similarity retrieval for both precision and 

recall. Figures 4.10 and 4.11 illustrate some examples of shape retrieval results using 

Moment Invariants. The query image of example shown in Figure 4.10 is a new shape 

pattern to the retrieval system, whereas the query image of example shown in Figure 4.11 

is a mirror image of one of the images in the database. Figure 4.12 and 4.13 are the 

retrieval results using Zemike Moments, for same exact query images.
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Figure 4.10 Example of the shape image retrieval results using Moment Invariants (1)
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Figure 4.11 Example of the shape image retrieval results using Moment Invariants (2)
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Figure 4.12 Example of the shape image retrieval results using Zemike Moments (1)
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Figure 4.13 Example of the shape image retrieval results using Zemike Moments (2)
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5 Conclusion and Future Directions

5.1 Conclusion

Shape is an important image feature and provides an ability to recognize individual 

objects in an image as well as for similarity based search and retrieval in Content-Based 

Image Retrieval. Because of inherent complexity associated with the shape description, 

this image feature is fairly less used than color and texture in image retrieval techniques 

but is still an active research area. Generally, in shape-based image retrieval, shape 

features of an image are first extracted as shape descriptors, and are represented by 

multidimensional vectors. Theses feature vectors are then used to measure the similarity 

of two images by calculating a descriptor distance in the feature space. Since the feature 

vectors are usually of high dimension, multidimensional indexing techniques are often 

employed for efficient and effective retrieval.

In this thesis, we have studied and compared two different types of moments: Moment 

Invariants and Zemike Moments. Generally speaking, there are two types of shape 

representation schemes: contour-based representations and region-based representations. 

In contour-based representations, the main emphasis is on the shape boundary whereas 

region-based representations emphasize on the interior region of a closed shape boundary. 

Moment Invariants and Zemike moments are both region-based representations schemes. 

Moment Invariants are robust under geometric transformations. The first six orders of 

Moment Invariants are translation and rotation independent for shape images and the sign 

of the seventh order of Moment Invariants can be used to detect mirror images. However, 

higher orders of Moments Invariants are very intricate to compute. Zemike Moments, on 

the other hand, are complex numbers and are orthogonal. We can calculate any order of 

Zemike Moments, but may not necessarily know the meaning of each of the value. Both 

Moment Invariants and Zemike Moments can uniquely represent a shape and, thus, 

provide visual features to facilitate shape-based image retrieval.

In this thesis, we have proposed use of k  means clustering to organize the image 

collection. Shape images in the image database are grouped with the similarity of their
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feature vectors. Neural Network serves as part of our retrieval engine. The clustering 

result of k  means clustering on all the images in the image collection serves as the 

training samples of the Neural Network. After training, the Neural Network has the 

intelligence to assign a query image to the nearest clusters which contain the most similar 

images to it or recognize it as an unfamiliar shape. Although the training of the Neural 

Network is a time consuming process, we realize that training and retrieving are not 

symmetric and once the training is done, it can achieve higher retrieval efficiency and 

lower computational cost.

5.2 Future Direction

The shape-based image retrieval approach and application presented in this thesis can be 

further improved in the following ways:

• Normalize the shape before feature computation: Although Moment Invariants 

and Zemike Moments and other shape representations have some properties of 

remaining invariant under basic forms of planar shape distortions, there is a 

normalization algorithm called shape compacting [2 1 ] which can normalize a shape 

and its distorted versions so that they all become similar to each other. Therefore, 

after shape compacting, the moment-based shape descriptors may become more 

effective to geometric transformations.

• Apply fuzzy k  means clustering or Simulated Annealing for better training 

samples: We used k  means clustering algorithm in this thesis. It is a very well 

known clustering technique but may not necessarily be the most effective clustering 

method. Fuzzy k  means clustering algorithm groups the data points into k clusters 

represented by a fuzzy membership matrix, which indicates a sample’s degree of 

similarity to each cluster. Both k  means and fuzzy & means clustering methods need 

preliminary knowledge on the number of clusters, k, which may not be feasible in 

many practical applications. Simulated Annealing [46], which has succeeded in 

grouping gene data, can be extended and applied to determine the optimal number 

of clusters k.
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• Accelerate the training procedure of the Neural Network: Back-propagation 

training o f Neural Network is a time consuming procedure and often takes hours or 

even days. Since MSE decreases very slowly in every training epoch, faster 

solutions are needed to improve the training algorithm while maintaining the same 

or higher prediction accuracy of the Neural Network.

• Add user’s feedback to amend the search engine: new features such as relevant 

feedback [41] can be added to the shape-based image retrieval application to 

improve retrieval effectiveness.
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