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Abstract

Disparity estimation from stereo imagery has gained substantial interest of research

community from its commencement with the recent trend being the use of multiresolu-

tion methods. Existing multiresolution based methods generally rely on approximate

band based matching neglecting other subbands that carry high-frequency informa-

tion. Present research is an effort to find a multiresolution based stereo correspon-

dence method that effectively uses the high and low-frequency subbands in multiple

resolutions, bridges the gap between feature-based and area-based matching by incor-

porating the vast feature space of multiresolution and develops an optimum approach

between global and local area-based methods in terms of accuracy, implementation

and computational complexity. As a response to the lack of exploration of different

multiresolution based stereo, a novel comprehensive comparison framework is pro-

posed to evaluate different multiresolution based disparity estimation methods. Ex-

tensive qualitative and quantitative results with detailed analysis have been provided

to support the claims of the work.
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Chapter 1

Introduction

Computer vision is a vast area of research. Among many interesting areas, the recon-

struction of 3-D structure and shape from a number of 2-D images of a scene is still

a challenging field for research. 3-D reconstruction is a process to recover the depth

and structure of an object or a scene from images. Whenever a scene is captured in

an image, the depth information of the scene is lost forever. Practically, there is no

way to extract the depth information from a single image of the scene if the objects

in the scene have no known surface regularity that can be modeled.

There exists a number of methods for depth recovery from multiple images of a

scene. Stereo vision, shape from focus, shape from shading and shape from defocus

are some examples. Stereo Vision is one of the most popular methods for depth

estimation. The next section provides a brief overview of stereo Vision.

1.1 Stereo Vision

The simplest and popular method for depth recovery is stereo vision or stereo re-

construction that takes a pair of images of a scene and uses a technique commonly

called Triangulation to extract the depth from the images. When two image points

in the image pairs corresponding to a specific scene point are known, the depth of

the scene point can be recovered. A complete scene reconstruction requires exact

1
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Figure 1.1: A scene point P is projected in reference and target images as p and p′

respectively. Scene point Q is projected as q and q′.

matching of all image points between the two images. Generally, the image points of

first or reference image are matched to the image points of the second image called

target image and the matching process is termed correspondence matching. Corre-

spondence matching yields the shift of position of the projection of a scene point from

the reference image to the target image.

Figure 1.1 shows the process of triangulation. Scene points P and Q project

to p and q in reference image, respectively. Similarly, they project to p′ and q′ in

target image. A point p(xp, yp) denotes that xp and yp represent the X − − and

Y − −coordinates of p. The camera centers are denoted by O and O′ respectively.

If the image point pair (p, p′) is known, the projection lines pO and p′O′ intersect in

P which is uniquely estimated. The shift of location of an image point p(xp, yp) in

reference image to image point p′(xp′ , yp′) in target image is termed as Disparity or

Correspondence. Mathematically, it can be expressed as d = (xp − xp′ , yp − yp′). The

criteria for a depth recovery is that the scene point must be visible from both the

cameras. If the correspondence pair does not exist, there is no way to extract the

2



depth information.

Note: Throughout the research document, the terms disparity estimation and

stereo correspondence will be used interchangeably.

If a gray level image is constructed, whose pixel values are scaled disparity values

of the image pair, the image is termed Disparity Map. Based on the number of

correspondence pair matched, disparity map can be categorized as dense and sparse.

A dense disparity map contains disparity for each pixel of the reference image, while,

a sparse map contains disparities for a fraction of the total number of pixels. For

a complete scene reconstruction, a dense disparity map is required. The following

sections explain the challenges involved in a dense disparity estimation followed by

the the motivation and the problem statement of the research.

1.2 Challenges

In simple terms, stereo Correspondence is matching the reference image points to the

target image points. Apparently, matching two pixels seems easy. But there exist a

number of factors that make stereo correspondence a highly challenging task. Some

of the factors are discussed below.

1. Occlusions and Discontinuities: A scene is captured by two cameras from

two different angles. This results in a shift of objects with respect to each other

between the reference and target images. Near the object boundaries where

two objects meet, some pixels get occluded by the object on the front. The

amount of occlusion varies between views. Thus, an image point may be visible

from one image while invisible in the other. This effect is called half-occlusion

and generally occurs near object boundaries (discontinuity). Occlusion near

discontinuity is shown in Figure 1.2.

In Figure 1.2(a), the chimney of the toy house is shifted to left in the target

image. The image points in the background visible from the reference image

3



Reference Image Target Image

Reference Image Target Image

?

?
?

(a)

(b)

Figure 1.2: Occlusions in stereo images. (a) The background is visible inside the
white rectangle in reference image but occluded by chimney in target
image. (b) The background is half-occluded in both images.

are occluded by the chimney in the target image. These points do not have

any correspondence pair and cannot be matched by searching. Similarly, in

Figure 1.2(b), the background is occluded on the right in reference image and

on the left in target image. But, in both cases, the correct matching is not

possible.

2. Repetitive Patterns and Uniform Patterns: Repetitive patterns repeat

themselves in a region, while, the regions with uniform patterns consist of many

4



Reference Image Target Image
(a)

Reference Image Target Image

(b)

???

Figure 1.3: Repetitive and uniform patterned regions. (a) The folders at the back
have repetitive pattern resulting in ambiguous matching. (b) The back-
ground image points have uniform gray values resulting in multiple
choices for matching.

pixels with similar color and intensity profile. They provide ambiguous choices

for matching a candidate.

Any repetition has atleast another candidate with similar properties to be

matched. The problem is shown in Figure 1.3(a) which shows the top-left re-

gions of the Tsukuba pair. As shown in the figure, the folders at the back have

similar patterns. The circles represent the prospective candidates for matching.

As the candidates are almost identical, the matching is ambiguous.

Likewise, regions with uniformity in patterns are difficult to match. The top-

5



Reference Image Target Image

Figure 1.4: The machine has metallic surface which is specular in nature. The
target image has a reflection in the circled region.

right regions of Tsukuba pair as shown in Figure 1.3(b) demonstrate the prob-

lem. The background pixels in the images have similar color and pattern. Thus,

for each pixel in reference image, there exist a number of potential candidate

pixels in target image.

3. Specularity: A specular surface reflects light from a single incoming direction

into a single outgoing direction abiding by the laws of reflection in contrast to the

diffused reflection, where, the light is reflected in a broad range of directions. In

photometry, specular surface is also known as non-Lambertian surface, because,

a Lambertian surface scatters the incoming light such that the brightness of

the surface remains same from any direction of observation. Some examples

of specular surface are glass, stainless steel or any shiny material. Figure 1.4

shows the difficulty with specular surfaces.

The metallic object has specular surface which can reflect light in a specific

direction collinear with the target-view direction. Due to the reflection, the

circled region cannot be matched properly.

4. Perspective Distortion and Foreshortening: The projective geometry of

6



Reference Image Target Image

Figure 1.5: The two images are taken from different perspective views. The circled
area in reference image is smaller and distorted compared to that of
target image due to larger distance from camera. The width of the
black square is also foreshortened in reference image.

3-D scenes make them perspective in nature. The properties of perspective view

are as follows:

• The object becomes smaller as the distance from observer increases

• The length of object along the line of sight is relatively shorter than the

length across the line of sight. This phenomenon is called Foreshortening.

The effects of perspective distortion and foreshortening are depicted in Fig-

ure 1.5. The circled area is distorted due to the apparent change in perspective

view. Thus, the total number of pixels to match are different in two views of the

circled region. The foreshortened width of the black square makes it difficult

for correspondence matching.

5. Photometric Distortions and Noise: Photometric distortions and noises are

inherently present in any capture by a camera. The two images have lighting

variations due to the change of camera positions, camera noise etc. Change

in intensity level is very common between two views. Figure 1.6 shows the

7



Reference Image Target Image

Figure 1.6: The circled regions have different illumination variations due to the
change in camera view.

problem.

The circled regions in the images have photometric distortions. A key matching

criteria is intensity profile. Due to the changes in intensity in the circled regions,

the matching is very difficult.

6. Transparent Objects: Transparency presents another difficulty in matching.

A transparent object surface contains the background as well. A shift of the

view may create a background mismatch, and consequently, correspondence

mismatch. The problem is shown in Figure 1.7. The circled areas are on the

bottle. As the bottle is transparent, the background is partially visible. With

the shift in location, the background is changed and the change can be seen

inside the circled region in the target image. The transparency of the material

makes correspondence matching more difficult. It is also worthy to note that

the transparent objects suffer from specularity problem as can be seen from the

figure.

The aforesaid challenges together make stereo correspondence estimation a difficult

problem in computer vision. The extensive searching operations involved in the pro-
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Reference Image Target Image

Figure 1.7: The background in the circled areas are different but they are not totally
occluded by the transparent bottle.

cess also makes it computationally expensive. Thus, even with the current progress

in computer vision, stereo correspondence is an ill-posed problem.

1.3 Motivation

The challenges in stereo correspondence estimation as described in Section 1.2, make

it one of the fundamental subject of investigation in computer vision. There has been

numerous research on this subject. An elementary but important question can be

raised - does it worth the amount of research involved? The answer to the question

would lie in the number of application areas. Stereo Vision is used primarily for depth

estimation and has been in use along with range imaging or range sensors. Range

sensors are famous for easy depth estimation but not suitable for all purposes. They

are difficult to use with tiny robots. Active sensors affect other devices. They also

get affected by other IR and LASER rays. On the other hand, stereoscopy is easier

to apply in these sectors. Stereoscopic sensors are immune from spurious readings,

cross-talks and multiple reflections present in IR, LASER or SONAR sensors. They

are also low cost, realtime, robust and suitable for any size of vehicles. Naturally,
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considerable amount of research has been done to improve the robustness of stereo

algorithms.

Currently, researchers try to find better solutions to the challenges. Some of

the state of the arts methods are listed with their results in the Middlebury stereo

evaluation webpage [1]. A tradeoff exists between accuracy and speed. The methods

with higher accuracy suffer from higher implementation and time complexity, whereas,

fast and low complexity methods are often of lower accuracy. Yet, there exists no

method that can completely satisfy atleast one of the challenges. The motivation of

the work comes from this aspect of stereo correspondence analysis.

1.4 Problem Statement

The goal of this research is to find a method that can work with higher accuracy in

low computation and implementation complexity. Searching for a possible solution

to all the problems present in disparity estimation would be an intemperate chal-

lenge and probably infeasible. Instead, the focus of the work is to provide a generic

solution that can bridge gaps among higher accuracy, higher speed and lower im-

plementation complexity, and also partially defend against occlusions, repetitive and

uniform patterns that are the most common problems in stereo. The work is based

on multiresolution analysis that provides pyramidal structure to optimize searching

and a high number of image features for better matching accuracy.

1.5 Objective

The research is targeted towards improvement in accuracy of stereo correspondence

using multiresolution analysis and comparison among different multiresolution based

correspondence methods. It involves the development of a multiresolution based

disparity estimation method that yields good accuracy in lower implementation com-
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plexity. The study also aims to improve the accuracy of disparity estimation with the

use of continuity constraints. The objective also includes a comparison and perfor-

mance evaluation of different multiresolution based stereo correspondence estimation

methods.

1.6 Scope of this Work

A novel approach towards disparity estimation based on multiresolution analysis is

discussed in the thesis. This work includes the following studies:

1. Stereo correspondence estimation using curvelet decomposition and modified

adaptive support weights.

2. Improvement on correspondence estimation using curvelet decomposition, adap-

tive support weight and disparity calibration.

3. A proposed novel framework for evaluation of different multiresolution meth-

ods for stereo correspondence with comparisons and evaluations for wavelets,

curvelets, multiresolution form of singular value decomposition and contourlets

for disparity estimation.

1.7 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, a detailed review of the

related works is provided with the general workflow, constraints and types of stereo

correspondence methods. Chapter 3 gives an overview of the different multiresolution

methods used in the research. Chapter 4 and 5 explain the proposed methods with ex-

perimental results and comparison tables. Chapter 6 introduces a novel framework to

evaluate the performances of different multiresolution based correspondence methods.

Chapter 7 summarizes the contributions and provides scope for future work.
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Chapter 2

Literature Review

Stereo correspondence algorithms search the disparity of the reference image pixels

with respect to the target image pixels. There have been numerous researches for

accurate disparity estimation. Current state of the arts methods have reached high

accuracy but with high computational and implementation complexity. In this chap-

ter, the general workflow of any correspondence estimation method is described. The

workflow is followed by a brief description of the basic constraints of stereo vision. The

review also describes the broad classification of algorithms followed by the individual

descriptions.

2.1 General Workflow

In literature, most of the correspondence algorithms follow some basic steps. Accord-

ing to the taxonomy in [31], a general workflow is discussed below.

1. Matching Cost Computation: In this step, a dissimilarity measure is em-

ployed to compute pixel-wise matching costs. Examples of such measures are

Euclidean distance (squared difference), Color difference (absolute or square

difference in color space) and Manhattan difference (absolute difference). The

computed matching costs for each pixel for all disparities are the outputs of the
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step.

2. Cost Aggregation: In this step, the computed matching costs are summed or

averaged over a support region in the image space. The support region chosen

may be two-dimensional for a fixed disparity to favor fronto-parallel surfaces or

three-dimensional in the 3-D space constituted by image dimension (x, y) and

disparity values d (xyd space) to favor slanted surfaces. Two dimensional regions

inherently assume the pixels to be from same depth resulting in an unwanted

fattening effect. This effect is explored further in Chapter 4. Examples of 2-

D support regions are square windows, shifted windows, segmented windows

and Gaussian convolution. Some examples of 3-D regions are limited disparity

difference [14] and limited disparity gradient [29].

3. Disparity Computation/Optimization: This step is one of the most im-

portant step of the workflow that generates the disparity map. In this step,

disparity is chosen or computed using the aggregated costs. The type of com-

putation divides the algorithms into two categories - local and global. Local al-

gorithms mainly compute pixel-based disparity and they can simply choose the

disparity associated with the minimum cost for each pixel. Global algorithms,

on the other hand, optimizes the disparity plane by some energy minimization

procedure. Local and global algorithms are discussed in section 2.3.1 and 2.3.2

respectively. The output of the step is the initial disparity map. If the last step

is not performed, this may be the final disparity map.

4. Disparity Refinement: The final step refines the disparity map by some post-

processing methods like iterative optimization, curve fitting, mean or median

filtering, left-right consistency check or by application of constraints (discussed

in section 2.2). The output of this step is the final disparity map.
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2.2 Constraints

Stereo vision is essentially a two view search problem. Each pixel in the reference

view can have one matching pixel in the target view at the most. But, the pixel

can lie on any row or column of the two dimensional image. An exhaustive two

dimensional searching operation needs to be performed to find out the exact location

of the matching pixel. Due to the challenges mentioned in section 1.4, stereo-matching

is still a very complex and time consuming process. Fortunately, due to the projective

geometry in stereo vision and properties of natural images, there exists a number of

constraints that reduces the complexity of matching and provides higher accuracy in

search. The constraints along with the relative geometry are described next.

P

Q

p p'

q q'

O O'e' e

Reference Image Target Image

Figure 2.1: A scene point P is projected in reference and target images as p and p′

respectively. Scene point Q is projected as q and q′.

1. Epipolar Constraint: Consider, two scene points P and Q are projected onto

two image planes as shown in Figure 2.1. P and Q have projections p, p′ and
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q, q′ respectively. For clarity, the camera centers O and O′ are moved to the back

of the camera plane. This does not make any difference to the computation,

but simplifies the diagram to a large extent. The points O, O′, p and p′ are

coplanar because O,O′ and P are coplanar. Thus, the cross product of
−−→
O′O and

−→
Op is a vector perpendicular to the plane defined by O, O′, p and p′ and hence,

perpendicular to
−−→
O′p′. Mathematically, the following can be written:

−−→
O′p′ · (−−→O′O ×−→Op) = 0, (2.1)

where · and × denote the dot and cross products, respectively. However, this

relationship holds only if all the vectors are defined in same reference frame.

Taking the target camera plane as reference, Eq. 2.1 becomes

−−→
O′p′ · (−−→O′O ×R

−→
Op) = 0, (2.2)

where R is the 3× 3 rotation matrix from the reference frame of target camera

to that of reference camera. There also exists a translational part, but due to

the cross product, it becomes zero. Let’s denote
−−→
O′p′,

−−→
O′O and

−→
Op by p′T ,t and

p respectively. Then, Eq. 2.2 becomes

p′T · (t×Rp) = 0, (2.3)

where t = (tx, ty, tz) represents the coordinates of O in target camera reference

frame. Again, t× can be written in a rank-deficient matrix form S as

S =




0 −tz ty

tz 0 −tx

−ty tx 0


 . (2.4)

Thus, Eq. 2.3 becomes

p′T SRp = 0. (2.5)

Normally, the product SR is represented as a matrix E called the essential

matrix. Using the notation, Eq. 2.5 can be written as:

p′T Ep = 0. (2.6)
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Geometrically, Ep is a product of a 3× 3 matrix and a 3× 1 vector. Thus, Ep

can be represented as a 3× 1 vector as shown

V =




a

b

c


 .

Also, P ′T can be expressed in projective space as (x, y, 1) because it has zero

Z −−component. Then, p′T V becomes

ax + by + c = 0, (2.7)

which states that point p′ on target image lies on the line defined by Ep. This

line is called the epipolar line. By geometry, the corresponding point p′ is

constrained to lie on the epipolar line defined by the reference point p and the

essential matrix E. This leads to the following points:

• The epipolar line Ep is a representation of the vector
−→
Pp in the target

image.

• As all the vectors
−→
Pp in the reference image pass through camera center O,

all the epipolar lines in the target image pass through the corresponding

point of O in target image.

• The corresponding point of O in target image is called the epipole e. As

stated above, all epipolar lines pass through e. This can be observed from

Figure 2.1.

Thus, epipolar line reduces the burden of searching for a corresponding point

in two-dimensional space to a one-dimensional line.

16



P Q

O
O'

q

p
q'

p'

Reference Image Target Image

Figure 2.2: The relative order of p and q on the reference image epipolar line, are
maintained in the target image epipolar line for p′ and q′.

2. Order Constraint: The order constraint states that the image points lying

on the reference epipolar line appear in the same order in the target epipolar

line. This constraint is clear from Figure 2.2.

3. Uniqueness Constraint: The uniqueness constraint comes from the fact that

a scene point can have a single projection in one image. Thus, each image point

in reference image can have maximum one corresponding point in target image.

In fact, there may not exist a corresponding point at all.

4. Continuity Constraint: Objects have continuous surfaces that provide depth

continuity along the surface. Depth discontinuity occurs at object boundaries

in general. The continuity constraint provides a measure to predict the depth

(disparity) of a image point on an object surface from the depths (disparities) of

the previous image points on the same object surface. The continuity constraint

has been successfully used in the proposed method described in Chapter 5.
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The constraints discussed above help to reduce false matches, reduce searching com-

plexity and provide better prediction for correct matches.

2.3 Method Classification

There are presently two types of approaches for stereo correspondence matching–area-

based and feature-based.

Feature-based methods work by extracting local features from the images and

matching the features across the stereo pairs. The features, such as edges, corners, and

lines, are matched using local feature descriptors. Local features remain more or less

unaltered across the image pairs. So, feature-based methods are robust, accurate, and

fast, although they usually generate sparse disparity maps that are not appropriate for

some operations like dense reconstruction. There are broadly three types of features:

interest points [26, 33], edges [34], and regions [27]. But there are also global feature

based methods [40]. Global feature based methods, also termed structural matching,

match larger features that consist of local smaller features.

Area-based approaches rely on some statistical correlation of color or intensity

values. They can be classified into two types: local and global methods. The local

methods estimate the disparity of a pixel by correlating a support window around

the pixel with a similar support window in the other image. Area-based methods

assume all pixels in the support window to have similar depth. This assumption is

violated in depth discontinuities and results in a fattening effect near these regions.

The methods select the best correlation match for each pixel. This sometimes results

in wrong disparity estimation for image points having ambiguity of depth. As a

consequence, textureless regions, repetitive textured regions, and regions with depth

discontinuity fail to match correctly.

Some algorithms proposed for densely textured regions are variable windows [38]

and shiftable windows [21]. Adaptive support window methods [4, 19] try to find
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Reference Image Target Image

d

Figure 2.3: The support window in reference image is matched to a similar window
in target image. The maximum shift of window is denoted by d. The
epipolar line is shown as a dotted line in target image.

an optimum size support window for each pixel. An initial disparity based adaptive

support window selection method was proposed by Kanade and Okutomi [19]. Vek-

sler [37] proposed a method to compare different sized windows based on window

cost. Multiple window methods try to select an optimal support window size from a

predefined range of windows [3, 13, 20].

In contrast to local window-based methods, global area-based methods try to esti-

mate an optimum disparity plane that minimizes a global cost function. Some global

methods proved to be very effective, like cooperative optimization [41], belief propa-

gation [42, 43], graph cuts [23], dynamic programming [24, 39], etc. Brief descriptions

to local and global methods are presented next.

2.3.1 Local Methods

Local matching methods generally compute disparity map using step 1,2 and 3 in

section 2.1. As shown in Figure 2.3, for matching a pixel shown in black dot, a

support window around the pixel is considered. The support window is matched

against a similar support window around pixels that lie on the epipolar line shown as

a dotted line in target image.
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A number of different matching cost functions are used by local methods, namely

Sum of Absolute Differences (SAD), Sum of Square Differences (SSD) and Zero Mean

Normalized Cross Correlation (ZNCC). Due to simple operation, local methods are

very fast. But, the support window implicitly assumes that all pixels belong to

same depth and the surface of the window is a fronto-parallel surface. Both the

assumptions are incorrect in practical situations. In object boundaries, there exist

depth discontinuities because two objects may lie in different depths. Also, object

surfaces are not always fronto-parallel, but slant. Thus, the local methods have lower

accuracy.

2.3.2 Global Methods

Global methods try to estimate the disparity plane using a global cost function.

Generally, the cost function has the following form:

E(d) = Edata(d) + λEsmooth(d), (2.8)

where d is the disparity, Edata is known as the data cost and Esmooth is known as the

smoothness cost. The data cost is generally the local matching cost like SAD, SSD

etc. The smoothness cost is the cost of assigning disparities to neighbor pixels. If

the smoothness cost is high for some disparity d, then it implies d violates the depth

continuity around its neighboring pixels and should not be assigned.

The minimization of such a function E(d) can generate a highly accurate disparity

map. But, this minimization is a very complex process and may be computationally

expensive. This disadvantage of global methods sometimes prevent them from being

used in practical situations where low computational and execution complexity is

desired.
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2nd Resolution

3rd Resolution
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Figure 2.4: The smaller search area in lower resolution is extended in larger reso-
lutions.

2.3.3 Multiresolution Methods

Multiresolution methods are relatively new members in the family of disparity esti-

mation methods. They were introduced for stereo by Mallat [25] and Kim et al. [22].

Later, improved algorithms have been proposed by M. Shim [35], Zhang et al. [45]

and Caspary and Zeevi [9]. Recently, Bhatti and Nahavandi [2] have proposed an ef-

fective way of stereo-matching based on multiwavelets that actually involves different

detail subbands. Ding et al. [11] have proposed the use of shift invariant contourlet

transform in stereo.

Classical approach of multiresolution based stereo is explained in Figure 2.4. As

shown in figure, the image is decomposed into different levels of resolution. The dis-

parity is estimated in the lowest or approximate resolution. This disparity is properly

scaled and projected onto the next resolution and refined in neighboring region. The

refinement is possible because higher resolution provides higher amount of details.
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This iterative refinement of disparity is continued till the highest resolution i.e the

original image. This progressive searching operation reduces number of comparisons.

This can be explained as follows -

For simplicity, wavelet decomposition is taken as the multiresolution method. Let,

the image has dimension N ×N where, N is a positive integer.

If the image is decomposed into multiple resolutions, the dimension reduces by a

factor of 2 with each level of decomposition. Thus, if the image is decomposed into

n levels, the dimension of nth level image is (N/2n)× (N/2n).

Let, the maximum disparity is d. Then, number of comparisons for nth level image

is ((N/2n) × (N/2n)) × d as each pixel in reference image is compared with d pixels

in target image.

The initial disparity map is progressively corrected in higher resolutions by taking

a small region around the initial projected disparity and searching for the best match

inside the region. Let, each level consists of p extra searching for disparity refinement.

Without violating the conditions, it can be assumed that p ¿ d as the refinement

region is very small compared to the disparity d. Thus, total number of comparisons

is

((N/2n)× (N/2n))× (d + n× p).

Simplifying the terms, the expression becomes

((N ×N)× (d/22n + (n× p)/22n)).

As previously assumed, p ¿ d. Again, n represents the level of decomposition.

Usually, 2 to 4 level of decomposition is used. d can range from as low as 4 to as high

as 200. Thus, Without any loss of generality, it can be assumed that n < d. This

leads to the inequality

((N ×N × n× p)/22n) ≤ ((N ×N × d)/22n).

If both term are taken equal for simplicity, then the expression becomes

2× (N ×N × d/22n).
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Summing the powers of 2, the expression becomes

N ×N × d/22n−1.

If multiresolution is not used, the dimension does not reduce and number of matching

per pixel remains d. Thus, the total number of comparisons becomes

(N ×N)× d.

As 22n−1 À 1, it is evident that

(N ×N)× d À N ×N × d/22n−1.

This proves the executional advantage of multiresolution based analysis over others.

The disadvantages of classical method lies in the fact that the approximate band

decomposition does not contain the detail features of the image. The absence of

important features degrades the disparity estimation process. This problem is well-

handled if high frequency detail bands are included in the process. Also, based on

the type of multiresolution method used, the quality of disparity map changes. These

scenarios are explored in the work.
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Chapter 3

Multiresolution for Stereo Vision

Searching disparity in multiple resolutions has been an interesting topic among re-

searchers. Multiresolution methods bridge a gap between local and global methods in

terms of execution speed and accuracy of disparity map generation. They are faster

than global methods due to the searching space reduction as shown in section 2.3.3,

and, more accurate than local methods due to higher number of matching features

and progressive refine of disparity in multiple resolutions. Still, there has been less

research reported on this field to enhance the performance of classical methods, or

compare different multiresolution based disparity estimation methods. With a target

to contribute to this research and gain more understanding of relative performances,

the current work comprises of the development of two multiresolution based corre-

spondence methods and a comparison among four different multiresolution methods

for disparity estimation. This chapter briefly discusses the multiresolution methods

used in the research.

3.1 Wavelet Transform

The necessity of wavelets came from the shortcomings of Fourier transform. Fourier

transform is used to generate a frequency domain description of a signal. For a time-

limited signal, it can provide the frequency components necessary to synthesize the
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signal within the time interval. However, Fourier transform stretches the frequency

response as the time interval reduces. This makes it impossible to understand which

frequency components are the constituents for an arbitrarily small section of the

total signal. This phenomenon is called the Uncertainty Principal, and, wavelets try

to solve it as much as possible. Wavelets are time-limited functions that are localized

in frequency [25]. For their transient nature, they are fundamentally different from

the functions used for Fourier Transform. The 1D wavelet function ψ in continuous

form is defined as

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
, (3.1)

where a and b are the dilation (scale) and translation (position) parameters respec-

tively. The 1-D continuous Wavelet Transform (WT) of a function f(t) is defined

as

Wf (a, b) =

∫ ∞

−∞
f(t)ψa,b(t)dt. (3.2)

Coming to the discrete domain, if the parameters a and b are represented as a = aj
0

and b = kb0a
j
0, then the wavelet in discrete domain may be obtained as

ψj,k(t) = a
−j/2
0 ψ(a−j

0 t− kb0), (3.3)

where in general, j, k ∈ Z and a0 = 2, b0 = 1. The 1-D discrete WT of a function f(t)

decomposes the function into two parts. The first part called the approximate part

consists of the low frequency components of the function. The second part called the

detail part consists of the high frequency components of the function. These parts

are expressed as

Wφ(j0, k) =
1√
M

∑
t

f(t)φj0,k(t), (3.4)

Wψ(j, k) =
1√
M

∑
t

f(t)ψj,k(t), (3.5)

where φ is called the scaling function with the same definition as of ψ. φ and ψ

give the approximate and detail part respectively. Normally, j0 is chosen as 0, M
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as a power of 2 i.e, M = 2J . Thus, j = 1, 2, ..., J − 1; k = 0, 20, 21, ..., 2j retaining

their previous definitions. As the WT is separable, the 2-D WT can be obtained

using repeated 1D WT along X− and then Y−axis. 2-D WT is used to analyze two

dimensional signals.

2-D WT of an image decomposes it into an approximate subband and a detail part

consisting of horizontal, vertical and diagonal subbands. The four subbands together

produce a large number of features for matching across the stereo image pairs. For

the current work, Daubechies wavelets have been used as a representative for the

wavelet family.

3.2 Curvelet Transform

Wavelets as a multiresolution analysis method has had much success. Wavelets are

capable of interpreting a signal as a sum of contributions in different scales and

locations. They can detect point singularities in single dimensional signals due to

their effective localization and multiscaling. But for higher dimensions, they yield

poor results due to the lack of orientation selectivity.

Curvelets were developed by Candes and Donoho in 1999, mainly for image anal-

ysis. They have strong directional characteristics and due to their variable width

and length with a parabolic scaling of length2∼width, the coefficients are highly

anisotropic at fine scales.

As described by Candes [6], curvelets can be thought of as obtained by applying

parabolic dilations, rotations, and translations to a specifically shaped function ψ;

they are indexed using scale a(0 < a < 1), location b, and orientation θ as

ψa,b,θ(x) = a−
3
4 ψ[(DaRθ(x− b))] (3.6)

with

Da =




1
a

0

0 1√
a


 ,
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where, Da is a parabolic scaling matrix and Rθ is a rotation by θ radians. A close

example of such a function would be multiscale ridgelets. The ridgelet theory was

proposed by Candes. The involvement of ridgelets and formation of curvelets are well

discussed in his paper [8].

Second-generation Curvelet Transforms (CTs) are simpler and faster than their

previous versions. There are two types of implementation–via unequally spaced fast

Fourier transform (USFFT) or via wrapping [7]. Curvelets via wrapping has been

used here because it is faster and can be applied to any size of images effectively.

For a 2-D function f [t1, t2] with 0 < t1, t2 < n (a specific length), the main steps for

wrapping are as follows:

1. Take the 2-D fast Fourier transform (FFT) of f [t1, t2] → f̂ [n1, n2].

2. Separate f̂ [n1, n2] into dyadic subbands using a scale window Wj, with j repre-

senting the jth scale.

3. Separate each subband into angular wedges using angular windows Wj,l, with l

representing lth wedge.

4. Form the product Ũj,l[n1, n2]f̂ [n1, n2], where, Ũj,l[n1, n2] is a discrete localizing

window like in eq. (3.6).

5. Wrap the product inside a rectangle W of size L1,j×L2,j (in east-west) or L2,j×
L1,j (in north-south) around the origin to obtain f̃j,l[n1, n2] = W (Ũj,lf̂)[n1, n2],

where, L1,j ∼ 2j and L2,j ∼ 2
j
2 .

6. Take the 2-D inverse FFT of each f̃j,l to obtain curvelet coefficients at scale j

and orientation l.

Generally, CT measure the information of a signal at specified scale and loca-

tions along specified orientations. Thus, they effectively represent objects with curve-

punctuated smoothness–smoothness except discontinuity along a general curve with
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bounded curvature [8, 6]. Real images have lots of curves, i.e., edges along different

orientations. Using CT, these features can be represented more accurately compared

to wavelets. Roughly, to represent an edge to a square error of 1/N requires 1/N

wavelets but only 1/
√

N curvelets.

3.3 Multiresolution Form of Singular Value De-

composition

Multiresolution Form of Singular Value Decomposition (MRSVD) is a new addition

to the family of multiresolution methods. In 2001, Kakarala and Ogunbona [18]

generalized the Singular Value Decomposition (SVD) to MRSVD. The idea is to

replace the low and high pass filters in decomposition by SVD. This is done in the

following way.

1. The level variable is initialized to level l = 1.

2. The image is subdivided in blocks of size p× q.

3. A column vector of pq × 1 is generated from each block.

4. A feature vector matrix Rl of size pq × (MN/pq) is formed by stacking the

column vectors.

5. Zero-mean matrix R̄l is produced from Rl by mean subtraction.

6. Eigen vector matrix Ul is obtained by Singular Value Decomposition of R̄lR̄l
t
.

7. The transform domain representation R̂l = U t
l R̄l is obtained.

8. First row of R̂l represents the approximate subband and the remaining rows are

the detail subbands at lth level.

9. l is incremented by 1 and Rl is replaced with ̂Rl(1, :).
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10. The steps are repeated from step 2 till the required level of decomposition is

reached.

The number of subbands depend on the size of block size p × q. For current imple-

mentation, block size is kept 2× 2 (dyadic) to get subbands equivalent to WT.

3.4 Contourlet Transform

A key feature in multidimensional signal being the directional features, Contourlet

Transform (CONT) decomposes an image into several directional subband by com-

bining the Laplacian pyramid with a directional filter at each scale [11]. One of the

classical yet popular way to obtain multiresolution decomposition of a signal is to use

the Laplacian Pyramid introduced by Burt and Adelson [5]. The laplacian pyramid

decomposes the image into a hierarchy of images that consist of different frequency

band of image frequencies. It generates a lowpass image and difference between the

original and the prediction, which is the bandpass image. Do [12] proposed a con-

struction for the 2-D directional filter bank that avoids modulating the image and

can simply expand the decomposition tree.

Combining the laplacian pyramid and the directional filter bank, a multiscale and

directional filter decomposition can be obtained. This iterative filter bank structure

is called Contourlet filter bank. The bandpass outputs of the laplacian pyramid, when

fed to the directional filter bank, produce directional information.

For example, let a0[n] be the image. Each level of laplacian pyramid decomposes

its input into a coarse and a detail image. Thus, the outputs of laplacian pyramid

consist of J bandpass images bj[n] where, j = 1, 2, ..., J and a lowpass image aJ [n].

The detail images bj[n] are fed to the lj-level directional filter bank each producing

2lj bandpass directional images c
(lj)
j,k [n] where, k = 0, 1, 2, ..., 2lj − 1.

Due to the cascade structuring, the multi-scale and directional stages are indepen-

dent of each other and each scale can be separately decomposed into any number of
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directions provided the number of directions is a power of 2. CONT has a similarity

to CT in terms of its directionality and parabolic scaling nature. For implementation,

the code provided in Contourlet Toolbox by Minh. Do. is used with 9-7 filter for

pyramidal decomposition stage and pkva filter for direction decomposition stage.

30



Chapter 4

Stereo Matching Algorithm based on

Curvelet Decomposition and Modified

Adaptive Support Weights

This chapter proposes an accurate dense disparity estimation method using curvelet

decomposition and modified adaptive support weights. The method has been tested

on Middlebury stereo datasets and compared with the best algorithms in current lit-

erature. The chapter consists of a brief overview of the proposed method, description

of modified adaptive support weights, followed by the description of the algorithm

and finally, the experimental results and comparisons.

4.1 Overview

This chapter introduces a novel method for stereo-matching based on curvelet de-

composition and modified adaptive support weights. The method is termed as Stereo

Matching based on Curvelet Decomposition with Modified Adaptive Support Weights

(Curv+MASW). The selection of multiresolution method is based on the performance

of the method to extract important features for matching across different resolutions

(scales). Curvelets, as already described in Section 3.2, can efficiently represent the
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(a) (b)

Coefficient {1,1} Coefficient {2,1}

Coefficient {3,1}Coefficient {2,4}

Coefficient {1,1} Coefficient {2,1}

Coefficient {3,1}Coefficient {2,4}

Figure 4.1: Disparity estimation in different curvelet coefficients. (a)Four curvelet
coefficients are shown for left image of Tsukuba pair as gray level im-
ages. Coefficient {x,y} denotes curvelet coefficient at scale x and ori-
entation y, (b) Their corresponding disparity maps as processed using
proposed method.

curves present in the natural images. Wavelets on the other hand, can represent first

order singularities (point singularities) very well but fail to represent higher order

singularities (line and region) effectively. Disparity estimation is based on effective

matching between the image pairs and can be considerably improved with higher

number of better features to match.

Some of the coefficients as grayscale images are shown in Figure 4.1(a). There exist

two advantages of using curvelets for matching. The first advantage consists of both

initial disparity estimation and robust disparity estimation in multiple resolutions.

The smallest curvelet coefficients, including the approximated image, provide smaller

areas for searching. This results in higher search speed for an approximation of

the correct location of the matched pixels. The actual location may have a small

deviation, but with correct selection of the search window, the approximated disparity

map is close to the ground truth. With the initial estimation of disparity, the search

area in higher scales is reduced by a large amount. This reduction can increase

computation speed and decrease uncertainty at the same time. The increase in speed
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is evident from the method as the search area reduces. The decrease in uncertainty is

due to the decrease of choices. If the choice of a matching pixel is known to be part

of a complete row of the image with an unknown exact location, then there may be a

number of regions in the same row with similar textures or comparable architecture,

and the matching pixel may lie in any of these regions. This increases the uncertainty

in finding correct matches. The process has already been shown in Figure 2.4. The

search area chosen in the first resolution is broadened as the resolution increases.

The second advantage of using curvelets lies in its orientation flexibility. Fig-

ure 4.1 shows four different curvelet coefficients as images and their corresponding

disparity maps as obtained using the proposed method. A close observation of the

disparity maps reveals that the disparity is more prominent along the horizontal

edges for coefficient {2,1}, and along the vertical edges for coefficient {2,4}. If the

better matches are taken from the two disparity maps, the resulting map will have

prominent disparity difference along both horizontal and vertical directions. Other

subbands generally follow the same trend. This experimentally proved fact is used in

the proposed method to seek optimal disparity. Also, for scale 3 there are eight ori-

entations that yield sufficient orientation flexibility. From the figures, it is clear that

the disparity shown for coefficient {3,1} resembles the original disparity to a good

extent. Using higher numbers of scales and orientations does not produce significant

improvement on the disparity. Thus, the proposed method is limited to third scale

only.

The advantages of using curvelets make it a better choice in comparison to other

multiresolution methods like the pyramid method and wavelet decomposition. The

advantages also come with a burden of traversing a number of subbands for a reason-

ably good disparity map. In the case of wavelets, the number of subbands is limited

to four for a single level and the height/width ratio remains equal. The same is not

true for curvelets. But, this problem is well compensated with the improvement of

quality.
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4.2 Modified Adaptive Support Weights

While computing the correspondences between two pixels in left and right images,

the support from neighboring pixels is used for similarity measurements. The Gestalt

principles of similarity and proximity are used for computation of support weights.

The adaptive support weight measurements have been proposed in Ref. [44]. The

support weight is written as

w(p, q) = k.fs(∆cpq)fp(∆gpq), (4.1)

where ∆cpq and ∆gpq represent the color difference and spatial distance between

pixels p and q. k is a proportionality constant. fs() and fp() represent the strength

of grouping by similarity and proximity, respectively. The color space is chosen to be

CIELab because of the ease of 3-D representation of color. In the color space, ∆cpq

is expressed as

∆cpq = [(Lp − Lq)
2 + (ap − aq)

2 + (bp − bq)
2]1/2, (4.2)

where (Lp, ap, bp) are the three color components of pixel p. The strength of grouping

by similarity is expressed as

fs(∆cpq) = exp

(
−∆cpq

γc

)
, (4.3)

where γc is a constant. Similarly, the strength of grouping by proximity has the

expression

fp(∆gpq) = exp

(
−∆gpq

γp

)
, (4.4)

where ∆gpq can be computed using a simple euclidean distance measure between

p(xp, yp) and q(xq, yq) as follows.

∆gpq = [(xp − xq)
2 + (yp − yq)

2]1/2. (4.5)

By combining Eqs. (4.3) and (4.4), Eq. (4.1) becomes

w(p, q) = k exp

[(
−

(
∆cpq

γc

+
∆gpq

γp

))]
. (4.6)
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In our implementation, the curvelets basically provide a group of 2-D matrices that

are treated as gray-level images. Thus, color information cannot be used to compute

∆cpq as in Eq. (4.2). As a replacement, the support weights (MASW) are modified

by including the gray-level difference value

∆cpq =| mp −mq |, (4.7)

where mp represents the gray-level value of pixel p. Using only gray-level information,

the accuracy decreases, but it is balanced by the accuracy improvement due to the

search operation in multiple resolution and using curvelet coefficients. For original

images, the color values can be used. But, to make the process similar in each

resolution, the norm of the CIELab color data is used

mp =
(
Lp

2 + ap
2 + bp

2
)1/2

. (4.8)

This gives a reasonably good approximation of the color data and is equivalent to the

gray-level values.

The correspondence matching part is similar to any local method using cost func-

tion minimization. The support weights are computed in support windows around

the pixel under consideration and its corresponding pixel in the other image. Then,

the dissimilarity of the two pixels is computed by aggregating a raw matching cost

with the support weights. Dissimilarity between a pixel p in the left image and a

pixel p′ in the right image D(p, p′) is expressed as

D(p, p′) =

∑
q∈Np,q′∈Np′

w(p, q)w(p′, q′)e(q, q′)
∑

q∈Np,q′∈Np′
w(p, q)w(p′, q′)

(4.9)

where Np and Np′ represent support windows used for computing the support weights

that belong to p and p′, respectively, and, e(p, q) represents the raw matching cost

between pixel p and q. For the experiment, this raw matching cost has been taken as

the SAD of gray values. For Eq. 4.9, w(p, q) represents the support weight between

pixel p and its neighbor q inside the support window of Np, as described in Eq. 4.6.
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The final disparity of the pixel p corresponds to the pixel p′ for which D(p, p′) is

minimized,

dfinal = arg min
p′

D(p, p′) (4.10)

4.3 Algorithm

The implementation steps in this section describe the disparity estimation using

Curv+MASW. The steps are as follows.

1. Perform curvelet transform of the grayscale stereo pairs.

2. Compute the correspondence match in the lowest approximate scale of curvelets

by Eq. (4.7) and (4.6).

3. Shift to the next scale, first orientation.

4. Compute scale factor = (size of current scale image)/(size of previous scale

image).

5. For each pixel, divide the coordinate of the pixel by scale factor to get the

coordinates in the previous scale. Then, compute the initial curr disparity =

scale factor * disparity in the previous scale.

6. Take a range of search around the initial curr disparity.

7. Find the best match using MASW from Eq. (4.6).

8. If this is the last orientation, go to step 10.

9. Shift to the next orientation. Go to step 5.

10. For each pixel, there is a match in each orientation at the current scale. Best

match can be found by a normal correlation value check or a left-to-right and

right-to-left disparity consistency check.
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11. If this is the last curvelet scale, go to step 12, else go to step 3.

12. compute final disparity map using MASW for the original image.

Here, a brief description of step 10 is necessary to describe the left-to-right and

right-to-left disparity consistency check. For the process, the left (reference) image

disparity map is computed by matching with right (target) image. Next, the reference

and target images are interchanged and disparity is again computed for right (new

reference) image by matching with left (new target) image. Then, the two disparity

maps are checked against each other to examine whether, a disparity is consistent for

a pair of image points in both the disparity maps. Any inconsistency corresponds to

a ill-matched pixel pair and can be removed.

The implementation does not depend on any initial disparity estimation provided

externally. The initial estimation is already performed in the lowermost scale, i.e.,

the approximation. The approximated disparity map is then improved in each scale

using different orientations of curvelets.

The initial disparity map is not totally correct due to the approximated scale but

can define the range of search, and also has the limit of maximum search. With the

curvelet coefficients obtained at scale = 3, orientation = 8, the approximated image

for Tsukuba pair has a dimension of 97 × 129. In this dimension, using the window

size 21 × 21, the maximum disparity obtained is 5. If this is multiplied by a scale

factor equal to the ratio of the original image size and approximated image size, the

disparity in the original image size has a maximum range of 15. This reduces the

search area at the border regions, even if the approximate disparity map does not

have any disparity value in these areas, as shown in Figure 4.2(a) and 4.2(c).

The support weights reduce the fattening effect by a considerable amount. Com-

parisons have been done for the results of the initial disparity maps with support

weights [as shown in Figure 4.2(a) and 4.2(c)] and with NCC [shown in Figure 4.2(b)

and 4.2(d)]. The Cones and Aloe disparity maps for the approximated image created
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(a) (b)

(c) (d)

Figure 4.2: Comparison of initial disparity map generated with support weight and
NCC. Figure (a) Cones - with support weights, (b) Cones - with nor-
malized cross correlation. Similarly, (c) Aloe - with support weights
and (d) Aloe - with normalized cross correlation.

with support weight are clearer and have sharp disparity changes along the edges.

The disparity maps with NCC show poor results along the edges and occluding areas.

The reason for the reduction of the fattening effect is well explained in the paper by

Yoon and Kweon [44].

The discontinuities in the images at the occlusion boundaries are not properly

recovered in the disparity map using local methods due to inaccurate support window

size selection. Using support weights, this limitation is largely removed. The support

weights are based on the color similarity and distance information of the neighbouring

pixels and they can well predict the disparity in the discontinuities, even in a fixed
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window size. It is further improved with the use of unique curvelet coefficients, which

add the edge and orientation information to the pixels. Thus, by combining the

methods, the disparity maps have been highly improved and are comparable to the

results of global methods.

4.4 Experimental Results

The experiments have been carried out on the Middlebury 2001, 2003, 2005 and 2006

datasets [16, 30, 31, 32]. The comparison has been divided into three different parts.

1. A comparison has been done with the state of the arts methods in literature

for the four datasets in the Middlebury website namely Tsukuba, Venus, Teddy

and Cones. These four image pairs have been used by all other algorithms as

a common platform to compare the performances. Thus, these pairs have been

obvious choices for the comparison.

2. A comparison with Adaptive Support Weights (adaptWeight) has been done to

show the relative improvement due to the curvelet decomposition.

3. Finally, four of the complex image pairs namely, Teddy, Cones, Sawtooth and

Map have been chosen for a comparison with stereo-matching based on Wavelet

with Modified Adaptive Support Weights (Wave+MASW) to show the relative

improvement of curvelets over wavelets.

4.4.1 Comparison with State of the arts Methods

In this section, the experimental results and comparisons are presented for the four

image pairs from Middlebury 2001 and 2003 datasets. The parameters in the tests are

specified as follows: Size of support window = 33× 33, γp = 36, γc = 7 and k = 1.5.

For the smallest approximation, window size has been taken as 21 × 21. The search
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area for higher scales has ±10 pixels deviation from the original disparity position of

the initial disparity map and reduces to ±5 pixels for the original size image pairs.

The experimental results are shown in Figure 4.3. The comparison results with

other methods are tabulated in Table 4.1. The numbers in the table represent the

percentage of bad pixels compared to the groundtruth: for all pixels “all,” pixels in the

non-occluded regions “nonocc,” and pixels near depth discontinuities “disc.” These

results have been evaluated with the formula for percentage of bad pixels defined as

1

N

∑
x,y

(| dc(x, y)− dt(x, y) |) > δthresh,

where N is the total number of pixels in the image, dc and dt represent the computed

and groundtruth disparity maps, respectively, and δthresh is the threshold for bad

pixels (usually equal to 1.0). Thus, Lower number indicates higher accuracy. As

can be seen from the table, proposed method outperforms most of the local methods

for stereo-matching. It it also better than some of the global-based methods like

RegionTreeDP, RealtimeBP, GC+occ, etc. Of course there are still some local and

global methods better than Curv+MASW. That compels for more improvements

that are presented in Chapter 5.

4.4.2 Comparison with Adaptive Support Weights

In this section, the main concern is to show the improvement using curvelets. Thus,

more results have been provided with other datasets from the Middlebury 2005 and

2006 database in Figure 4.4, along with the results using the adaptWeight. The

results are shown column wise with each column representing the left image of a

stereo pair, its disparity map generated with Curv+MASW, adaptWeight, and the

corresponding groundtruth. The estimated percentage of bad pixels are tabulated in

Table 4.2. From the table, it is evident that Curv+MASW has lower amount of error.

From the comparison result in Table 4.1, it is clear that Curv+MASW has better

performance than the adaptWeight, RegionTreeDP,RealtimeBP, etc. methods. In
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(a) (b) (c) (d)

(e)

(i)

(m)

(f)

(j)

(n)

(g)

(k)

(o)

(h)

(l)

(p)

Figure 4.3: Dense disparity maps for the Middlebury images using Curv+MASW
and their corresponding ground truths. (a) Tsukuba - left image, (b)
Corresponding Curv+MASW, (b) Ground truth, (d) Bad pixels, (e)
Venus - left image, (f) Corresponding Curv+MASW, (g) Ground truth,
(h) Bad pixels, (i) Teddy - left image, (j) Corresponding Curv+MASW,
(k) Ground truth, (l) Bad pixels, (m) Cones - left image, (n) Corre-
sponding Curv+MASW, (o) Ground truth, (p) Bad pixels.
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Table 4.2: Comparisons of Curv+MASW with adaptWeight
PPPPPPPPPPPPPP
Methods

Images Map Sawtooth Aloe Baby Dolls Cloth

% of bad pixels

Curv+MASW 0.8212 0.5382 0.1666 0.2692 0.3595 0.2103

adaptWeight 0.8554 0.5472 0.2114 0.3960 0.4494 0.2926

comparison to adaptWeight, the Tsukuba and Venus pairs do not show considerable

improvements, while the Cones and Teddy pairs are significantly improved. The rea-

son for this lies in the initial disparity map creation. For Tsukuba and Venus, the

maximum disparity is much smaller compared to Cones and Teddy. For smaller dis-

parities, the initial disparity map creation process does not produce effectively better

results than the other methods. Nevertheless, with increasing amount of disparity,

the method performs better than others due to the uniqueness of the curvelet coef-

ficients in lower resolutions. This difference is prominent in Cones and Teddy. The

Cones pair has been listed in the top two in the Middlebury evaluation for all match-

ing regions. The time complexity does not change too much with the variation of

image size, because the main searching operation is performed in lowest scales, and

higher scale operations have fixed search areas. The time complexity can be reduced

greatly if some of the higher order scales and orientations are omitted, e.g., for third

scales, some orientations have repetitive textures and can be omitted with a small

decrease in accuracy. An experiment on time complexity analysis of different mul-

tiresolution based correspondence methods have been performed and experimental

results are shown in Chapter 6. The results shown before can be further improved by

using a higher number of scales and angles or using better outlier removal methods

in combination. The simple combination of curvelets and support weights is fast and

can produce disparity maps suitable for applications that do not need highly accurate

disparity maps. An example would be a preprocessing step for a global method.
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Table 4.3: Comparison of Curv+MASW and Wave+MASW for Middlebury
datasetsPPPPPPPPPPPPPP

Methods

Images Teddy Cones Map Sawtooth

% of bad pixels

Curv+MASW 0.3523 0.3357 0.8212 0.5382

Wave+MASW 0.3824 0.3802 0.9711 0.5442

4.4.3 Comparison with Wavelets

An extra comparison has been included in the research to visualize the improvement in

performance with the inclusion of curvelets over the inclusion of wavelets. The results

are shown for Teddy, Cones, Map and Sawtooth image pairs because the image pairs

include the following properties - left and right half occlusions, sharp structures (scope

for fattening effect), repetitive and non-textured regions. The results are shown in

Figure 4.5 and quantitative analysis in terms of percentage of bad pixels matched, is

shown in Table 4.3. As it was claimed before, the results for Curv+MASW are better

than those of Wave+MASW.
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(g) (h) (i)

(j) (k) (l)

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Disparity maps for Teddy, Cones, Sawtooth and Map pairs produced
by Curv+MASW and Wave+MASW. Each row shows the result of
Wave+MASW followed by the result of Curv+MASW and the corre-
sponding ground truth.
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Chapter 5

Stereo Correspondence based on Curvelet

Decomposition, Support Weights and

Disparity Calibration

The proposed method Curv+MASW is better than most of the local methods but still

not comparable to top global methods. This fact acted as a motivation to improve

the method. Curv+MASW does not take advantages of the continuity constraint

discussed in Section 2.2 which states that disparity smoothly varies on object surfaces

and discontinuities occur at the object boundaries. The results of Curv+MASW, if

carefully observed, are poor at the object boundaries and continuous surfaces with

narrow edges. These parts can be improved considering the continuity constraint.

The current section proposes the use of Disparity Calibration (DC) with the pro-

cess of stereo-matching based on Curvelet Decomposition with Modified Adaptive

Support Weights (Curv+MASW). The overview of the method is given in Sec-

tion 5.1.DC is based on disparity voting that effectively uses the continuity constraint

and is explained in the Section 5.2. This is followed by the description of the algorithm

in Section 5.3. Finally the experimental results to support the claims are provided in

Section 5.4.
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5.1 Overview

This chapter proposes a novel method for highly accurate correspondence estimation

termed Stereo Matching based on Curvelet Decomposition with Modified Adaptive

Support Weights and Disparity Calibration (curv+MASW+DC). The method is an

extension of Curv+MASW and merges the use of continuity constraint to improve

the results.

5.2 Disparity Calibration

Disparity calibration is based on the assumption that points with similar color or

short spatial distance have similar disparity. For any point in the image, a calibration

window is chosen around it. The size of the window is optimized according to the

criteria that the pixels in the window have similar color or short distance. Then, the

occurrence number or frequency of every possible disparity is checked in the window.

The disparity with the highest occurrence number is assigned to the point. The

process of disparity calibration can be summarized as follows:

1. Find the maximum and minimum disparities (dmax, dmin).

2. For each disparity d in [dmax, dmin], define zero matrix Cd with the same size as

the image. There will be a series of matrices.

3. In the original disparity map D, find the pixels with disparity d, assign 1 to the

corresponding elements in Cd.

4. Result disparity D(i, j) for pixel (i, j) is expressed as

D(i, j) = arg max
d





x= 1
2
(Wx−1)∑

x=− 1
2
(Wx−1)

y= 1
2
(Wy−1)∑

y=− 1
2
(Wy−1)

×w((i, j), (i + x, j + y))× Cd(i + x, j + y)} (5.1)
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(a) (b)

Figure 5.1: Improvement with application of DC.(a) Tsukuba disparity map using
SAD, (b) Tsukuba disparity map using SAD+DC.

where Wx and Wy represent the width and height of the calibration window,

respectively, and w(x, y) = exp
[
−

(
∆cpq

γi
+ ∆gpq

γp

)]
represent the Modified Adap-

tive Support Weights (MASW) of pixel (x,y) with γi < γc to make the color

constraint stricter.

The disparity range (dmax, dmin) is already estimated from the initial and final dispar-

ity calibration. Thus, the implementation of disparity calibration is straightforward.

The main contribution of DC to the algorithm lies in the voting principle of

disparity assignment in step 4 that consists of multiplication of the cost function

with Cd. This implicitly uses the continuity constraint because, a voting based on

neighboring pixels’ disparity assignment implies the use of their dependencies. An

improvement using DC is shown in Figure 5.1. The increase in accuracy is clear from

the figures.

5.3 Algorithm

The implementation steps of curv+MASW+DC are quite similar to that of Curv+MASW

and described as follows.

1. Perform curvelet transform of the grayscale stereo pairs.
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2. Compute the correspondence match in the lowest approximate scale of curvelets

by Eq. (4.9).

3. Shift to the next scale, first orientation.

4. Compute scale factor = (size of current scale image)/(size of previous scale

image).

5. For each pixel, divide the coordinate of the pixel by scale factor to get the

coordinates in the previous scale. Then, compute the initial curr disparity =

scale factor * disparity in the previous scale.

6. Take a range of search around the initial curr disparity.

7. Find the best match using MASW from Eq. (4.9).

8. If this is the last orientation, go to step 10.

9. Shift to the next orientation and go to step 5.

10. For each pixel, there is a match in each orientation at the current scale. Best

match can be found by a normal correlation value check or a left-to-right and

right-to-left disparity consistency check.

11. Smooth the initial curr disparity using disparity calibration.

12. If this is the last curvelet scale, go to step 13, else go to step 3.

13. For original image pair, use the norm of CIELab color images using Eq. (4.8)

and Eq. (4.9) and compute the final disparity map using MASW.

Compared to the algorithm in Section 4.3, step 11 is the addition. After the

enhanced matching in curvelet subbands using modified support weights, the

disparity map is further smoothed by DC by assigning disparity to the pixels

with wrong disparity or without disparity.
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5.4 Experimental Results

Curv+MASW in combination with DC has been carried out on the Middlebury

dataset, and results have been compared with other methods. The results are shown

in Figure 5.2 and comparisons with some of the best global and local methods are

tabulated in Table 5.1, where curv+MASW+DC stands for the proposed method,

and Local Stereo Matching with Adaptive Support-Weight, Rank Transform and

Disparity Calibration (AdaptDispCalib) denotes the original Disparity Calibration.

Currently, curv+MASW+DC performs best among the local area based methods.

As seen from the results, curv+MASW+DC significantly improved the Cones and

Teddy disparity maps. The improvement is due to the early disparity estimation

at the lower resolutions, the uniqueness of the curvelet coefficients, and smoothing

of the disparity map using DC. For AdaptDispCalib, the disparity range has to

be provided for a smaller search range and reduction of disparity ambiguity. For

curv+MASW+DC, this range is readily provided by lower resolution data. The re-

sults are better compared to all of the existing local methods proving to be comparable

to top global methods.

The results also confirm the previous conclusion that the proposed algorithm

performs better with an increased amount of disparity. The improvements on Cones

and Teddy images scored the highest rank in the Middlebury evaluation for all region

matching.

curv+MASW+DC itself produces highly accurate disparity maps and involves a

relatively lower number of parameters dependent on image size and type, in compar-

ison to other methods. Thus, the proposed method can be thought of as a complete

stereo-matching process, unlike Curv+MASW.
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(a) (b) (c) (d)

(e)

(i) 

(m)

(f)

(j)

(n)

(g)

(k)

(o)

(h)

(l)

(p)

Figure 5.2: Dense disparity maps for the Middlebury images using
curv+MASW+DC, the corresponding ground truths and the bad
pixels matched. (a) Tsukuba - left image, (b) Corresponding
curv+MASW+DC, (b) Ground truth, (d) Bad pixels, (e) Venus
- left image, (f) Corresponding curv+MASW+DC, (g) Ground
truth, (h) Bad pixels, (i) Teddy - left image, (j) Corresponding
curv+MASW+DC, (k) Ground truth, (l) Bad pixels, (m) Cones - left
image, (n) Corresponding curv+MASW+DC, (o) Ground truth, (p)
Bad pixels.
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Chapter 6

A Comprehensive Comparison Framework

A brief discussion of multiresolution methods and their application is stereo-matching

has already been discussed in Chapter 2 and 3. Studies reveal that the multiresolu-

tion based stereo-matching methods existing in literature are relatively independent.

Presently, they do not relate to a continuous progress in the research. Relatively less

research has been carried out to compare different multiresolution methods and how

detail subbands contribute to enhance the performance of the matching process. As

a result, the relative advantages and disadvantages of a particular multiresolution

method in disparity estimation are quite incomprehensible.

The goal of the present work is to provide a comparative study of different mul-

tiresolution methods for disparity estimation to highlight their expediency and suit-

ability for the process and their relative performances. The primary reason for such a

study is to highlight the progress in a relatively less popular domain and motivate the

researchers to make more advancements. Also, it allows to analyze each algorithm

and improve their performances. Finally, it highlights the limitations of a method

with respect to the others and facilitate the choice of an appropriate multiresolution

method for specific needs.

This chapter is divided into three sections. Section 6.1 gives a brief overview

of the work followed by the description of the proposed comparison framework in
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Section 6.2. Finally, Section 6.3 provides the qualitative and quantitative comparison

results.

6.1 Overview

A comparison framework has been proposed in this chapter to evaluate the perfor-

mances of different multiresolution methods. The framework is divided into three

parts viz. fixWin, segWin and segWinApprox. To the best of our knowledge, this

work is the first attempt to explore and evaluate the performances of different mul-

tiresolution methods in disparity estimation by the above mentioned framework.

For the study, four different multiresolution methods are chosen - Daubechies

Wavelet Transform (WT) from the wavelet family, Curvelet Transform (CT), Mul-

tiresolution Form of Singular Value Decomposition (MRSVD) and Contourlet Transform

(CONT). The comparison has been done on well-known Middlebury stereo datasets.

6.2 Proposed Framework

In order to evaluate performances, three different frameworks are used for a number

of reasons. A comparison among methods does not only rely on the performance

of the methods but also on the comparison framework used. Using three different

frameworks, a better knowledge on the performance of the methods can be obtained.

Also, the results in Section 6.3 show that by using better cost functions, the results

can be greatly improved. In Section 6.2.1, the support window is kept as fixed size

and include all subbands of multiresolution method. Next, segmented window based

cost function is used for more accurate disparity estimation in Section 6.2.2. Finally,

in Section 6.2.3, the classical approximate band based disparity estimation is used to

highlight the effects of simple multiple resolution searching. In all the cases, SAD is

used as the cost function. Further, in order to keep an equivalent level of WT and
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MRSVD decomposition, single level is used in Section 6.2.1 and 6.2.2 whereas 2-level

is used in sub-section 6.2.3. As per as CT and CONT are concerned, one cannot

use level of decomposition because they are decomposed into scales and orientations.

Hence, scale 2 and orientation 8 are used for Section 6.2.1 and 6.2.2 whereas scale 3

and orientation 8 are used for Section 6.2.3.

6.2.1 Fixed Window SAD

Fixed Window based Sum of Absolute Differences (fixWin) uses SAD as cost function

and refines disparity in multiple subbands over a fixed size window in the following

algorithm:

1. Perform multiresolution analysis of the grayscale stereo pairs.

2. Compute the correspondence match in the approximate image using SAD.

3. Shift to the subband.

4. Compute scale factor = (size of current subband image)/(size of previous sub-

band image).

5. For each pixel, divide the coordinate of the pixel by scale factor to get the coordi-

nates in previous scale. Then, compute the initial curr disparity = scale factor

* disparity in previous scale.

6. Take a range of search around the

initial curr disparity.

7. Find the best match using SAD.

8. If this is the last subband, go to step 10.

9. Shift to the next subband. Go to step 5.
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10. Take a range of search in final image based on the refined disparity map recov-

ered after step 9.

11. Find the final disparity map using SAD.

For WT and MRSVD, only four subbands are obtained while CT and CONT yield

a number of subbands in different scales and orientations. In the algorithm, it is

assumed that if current subband is at scale s and orientation o, then next subband

will be at scale s and orientation o + 1, if orientation o + 1 exists, else it will be the

first orientation in next scale. The algorithm implicitly mentions two parameters - the

search range for refinement and the fixed support window size. To keep consistency

in quality of estimated disparity, both are kept constant for each comparison.

6.2.2 Segmented Window SAD

The major disadvantage of fixed window is the fattening effect in depth discontinuities

which has already been mentioned in Section 4.3. As all points in a support window

are considered to be of similar depth, the regions with discontinuity in depth are

poorly matched. If the pixels in the window are kept to same region, the results can

be improved. Based on This idea, this section describes Segmented Window based

Sum of Absolute Differences (segWin) that works particularly better in these regions

and can largely remove fattening effect. For this method, color images are used to

produce multiresolution output of each color band separately. Each color band yields

a set of multiresolution subbands. In another way, each subband has three gray

value components each corresponding to a color. These tricolor subbands are used

to segment the image into different regions by simple thresholding. The pseudo code

below shows the procedure for the same.

1. SAD = 0;

2. For i IN −W TO W

57



3. For j IN −W TO W

4. IF dist(sBL(x + i, y + j, :), sbL(x, y, :)) < thresh

5. SAD = SAD + (|sBL(x + i, y + j, :)− sBR(x + i + d, y + j, :)|)

6. END IF

7. END FOR

8. END FOR

Where sBL(·) and sBR(·) denote the tricolor subbands with sBL(x, y, :) denoting

three components of pixel (x, y), dist is a function that returns the euclidean distance

between the two component vectors of two pixels, d denotes the disparity, (2∗W +1)

is the support window size and thresh is the threshold for segmentation. Only the

pixels that meet the criteria in IF condition are chosen for SAD computation.

The extra parameter involved in this method is the threshold value. This value

needs to be kept at minimum range to remove the interregional interference.

6.2.3 Approximate Band based Matching

The study is concluded with classical approximate band searching that ignores detail

subbands and searches in approximate bands progressively till it reaches the original

image resolution. The search region is projected into higher resolutions and searching

is limited only to this region. This work is an effort to highlight the effect of low fil-

tered approximate band for stereo-matching. The method Segmented Window based

Sum of Absolute Differences on Approximate Band (segWinApprox) uses segWin for

approximate band matching and the comparison has been done in single and double

level of decomposition as already described before.
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Table 6.1: Comparisons of methods based on fixWin
PPPPPPPPPPPPPP
Images

Methods WT CT MRSVD CONT OrigSAD

% of bad pixels

Tsukuba 10.44 9.38 10.53 10.57 11.82

Cones 21.79 20.81 20.41 21.69 21.55

6.3 Comparison Results

The results are divided into three sections based on the framework used. The sec-

tions are - Fixed Window based Results, Segmented Window based Results and Ap-

proximate Band Results. The well-known Middlebury datasets Tsukuba [31] and

Cones [32] are used for generating comparative results. The window size has been

kept 9× 9 in original scale, 7× 7 for level 1 of decomposition for fixWin and 33× 33

in original scale and all subbands for segWin and segWinApprox.

6.3.1 Fixed Window based Results

In Table 6.1, the comparison of different methods is provided for fixWin. The results

are also compared with Original SAD based Stereo Matching (OrigSAD) result in

terms of percentage of bad pixels.

In Table 6.2, the execution times of different methods are compared for fixWin in

terms of seconds. For time complexity, it is important to mention that all methods

were run in a Pentium 4, 2 GHz machine with MATLAB. It is evident from the results

that multiresolution methods provide comparative results in faster computations. The

qualitative results can be seen from Figure 6.1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.1: Disparity maps generated using fixWin. (a),(g) ground truth, (b),(h)
WT, (c),(i) CT, (d),(j) MRSVD, (e),(k) CONT and (f),(l) OrigSAD.

Table 6.2: Comparison execution time of different methods based on fixWin
PPPPPPPPPPPPPP
Images

Methods
WT CT MRSVD CONT OrigSAD

Tsukuba 13.9313 19.3346 14.1931 17.3685 25.0329

Cones 28.2972 44.7665 28.5641 28.7104 130.3596
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Table 6.3: Comparison of methods based on segWin
PPPPPPPPPPPPPP
Images

Methods WT CT MRSVD CONT

% of bad pixels

Tsukuba 6.23 5.72 6.35 6.63

Cones 19.31 17.69 17.64 19.68

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Disparity maps generated using segWin. (a),(e) WT, (b),(f) CT, (c),(g)
MRSVD and (d),(h) CONT.

6.3.2 Segmented Window based Results

Table 6.3 shows the comparison among different multiresolution methods based for

segWin. The results, as can be seen from Figure 6.2, are much better than fixWin

and are quite immune to the fattening effect. As segWin is much slower compared

to fixed window based method, time complexity analysis is not provided. Of course,

the execution time depends on the platform and can be improved.
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Table 6.4: Comparisons of methods based on segWinApprox

PPPPPPPPPPPPPP
Images

Methods
WT CT MRSVD CONT

% of bad pixels

L1 L2 L1 L2 L1 L2 L1 L2

Tsukuba 8.73 9 8.42 8.33 9.2 9.4 8.78 8.85

Cones 23.59 27.27 22.72 25.4 21.24 22.61 23.51 27.54

6.3.3 Approximate Band based Results

Table 6.4 shows the quantitative comparison for segWinApprox and the qualitative

results are provided in Figure 6.3. The results are not as good as segWin due to the

unavailability of other subbands.

6.3.4 Analysis of Results

Comparison results reveal that CT and MRSVD generally give better results than

those of CONT and WT. Moreover, the results of CT are better in lower search range

as in Tsukuba pairs and MRSVD provides better results in higher search ranges as

in Cones pairs. This can be attributed to the fact that same level decomposition of

CT generates more subbands than those of MRSVD. Multiple subband searching,

although effective for accuracy improvement, may lead to more choice for disparity

as the search range goes higher. This apparent ambiguity results in relatively less

accurate disparity estimation in higher disparity ranges for CT.

The results of segWinApprox are quite close to segWin results with improper

edge restoration and reduction in minute details because approximate bands do not

contain the detail parts and the edge or minute details of an image are lost. As the

level of decomposition increases, the result deteriorates due to the higher resolution

approximate that progressive reduce information. As the initial disparity estimation
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6.3: Disparity maps generated using segWinApprox. (a)-(h) represent level
1 and ( i)-(p) represent level 2 decomposition. (a),(e),(i),(m) WT,
(b),(f),(j),(n) CT, (c),(g),(k),(o) MRSVD and (d),(h),(l),(p) CONT.
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is done in the smallest approximate band at highest level of decomposition, the initial

map loses detailed information. The refinements in lower level approximations are

unable to provide details. Thus, higher level of decomposition normally reveals less

accurate disparity maps.
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Chapter 7

Conclusion

The thesis is concluded with a summary of the works, the contributions and a scope

for future works.

7.1 Summary of the work

The thesis begins with an introductory description of stereo vision with the related

challenges involved in disparity estimation, the motivation of the work, the problem

statement, the objective of the thesis and the scope of this work. The description

is followed by the related literature review consisting of the general workflow of the

process, the classification of stereo correspondence, the advantages and disadvantages

of the different methods and the introduction of multiresolution in stereo correspon-

dence. A brief introduction to the multiresolution analysis methods used in the work

is presented next. Then, two methods have been proposed for correspondence estima-

tion using multiresolution analysis. The first method involves curvelet decomposition

with modified adaptive support weights for disparity estimation. The second method

is an enhancement to the first method using curvelet decomposition, support weights

and disparity calibration. The proposed methods are followed by a novel comparison

framework. The comparison framework is proposed to evaluate and compare different

multiresolution analysis methods for stereo correspondence.
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7.2 Contributions of the Research

The contribution of the work can be divided into three distinct parts.

A novel local method for stereo-matching has been provided that uses Curvelet

Transform and Modified Adaptive Support Weights for progressive improvement of

disparities in multiple scales and orientations. Extensive results show that the output

is better than other local methods. The method can also be used as a preprocessing

step for a global method.

A highly accurate extension of the aforesaid method is provided that includes Dis-

parity Calibration to smooth the initial disparity map using the continuity constraint.

Results show that the method is comparable to the top global methods in literatures,

and it can be used as a complete correspondence searching algorithm.

Finally, a comprehensive comparison framework has been proposed for evaluation

of multiresolution methods in stereo-matching. Four different multiresolution meth-

ods have been evaluated and compared with extensive qualitative and quantitative

results.

7.3 Future Works

The next step can be an effort to merge multiresolution to global methods to increase

the performance further. Another good approach would be to include the other

constraints in the proposed methods to prevent false matches.

The future work for comparison should include other multiresolution methods that

are not covered in the limited scope of work. It would be a good idea to include more

datasets to understand the variation in the performances of different methods and to

help select methods for specific needs.
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