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ABSTRACT : S
f’ e , -

A thporetié&l expréssiom is dzrived to dett_am_;!.ne‘-’the ground -
state interstomfc potential between a peir of closed-shell atoms,
The total int tion is a sum of terms representin;elect':rostatic |
ion, a.m:isymnctry "arthogona.l‘lty re;nlsion, interatmic

and long-range (van der Waals) pol&rization (intemtcmic

on). The theory is successfully a.ppJ_‘l.ed to the following
systems: He-Ne, Ke-Ar, Ne-Xr, Ar-.Ar Ar-Kr and Kr-Kr' that is,

‘the well pa.ramters(Gand r ) determined for each of {he sbove
paira fall vithin the a.ccep:ed range of values. Since the theory
uses electron densities in tlbula.ted rather than analytical form,
there is no extra ccmp}lcation 'for heavier atoms, hmj calculations
also ;xrovide the core-core :Lntemction for the compatation of

interatomic potentinla between atans with unclosed electron shells,
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I lIH'rthII:TIQH
A detailed knovledge o:r the interatclnic potentia.l 13 essentia.il
to the solntionofamberofpmblezns ari.singinthestmhofthe
salld, I1iquid apd gaseous stateas, There 18 considerable interest in
the 1ntezatanic repulsive potentials because of ‘their importance in f’
snchtopics as the atudy of transport phenomena, gas scat’cering and
" electrode sputtering,

In recent years, mich attention has been focused on the
determination of .noble-gas pair potentialsy The availability of
information about equilibrium and trans whs of rgpses and
crystals aver‘ude teuperaftm ranges makes it possible to c&lcula;:e
interatamic potentials which will glve the best agreement with these

e::ied bulk pzropertiea. Besearchers have ancceasrnl]q fitted .
multiparenmeter potentials in the short and intermediste ranges to
second virm-coerricicnt data.l and to the fallowing d.unte—m
equilibrium and transport properties: ;:oerﬁ.éient of viscosity,
coefficient of thermal condnctivity,%hml—diffnsidn factor and
diffusion coei‘ric:lem;sa 20.

kperimnt&uy, same imvestigatars have made use of the
technique or molecular beam sca.tteri.ng Using crossed-beam
differential elastic acatter:l.ng measurements, the interatamic
potentials of Ne-Ar, Ne-Kr, and He-Xeal, Ar-Kr, and Ar-)(eez,

He-He and He-No - and Ardr- have been caleulated.

Other methods for the experimental determination of Lhteratomic

{
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potentials exist and are diverse indeed., For example, Jonah has

made & ddirect determination of the pair potential far argon from
fIuid X-ray-scattering data, and, by measuring the absorption
spectrum of diatomic argon in the ultraviolet, Takana and Ioshi.noat-s
evaluated the ve]_l depth of the ground state AraAr potential,

meomticai methods for calculating interatomic potentials have
baen developed vhich, unfortunately for the most part, are wvalid on]:
over certain ms of intermuclear aep&ration.

In the short-range region, mlticoni‘igura.tion gelf-consistent-
fleld caleulations are useful but possess the drawback that they are
v:lrtunlh' unmna.geable in length and complexity as one’ considers atoms
hea.vier than helium gor perhaps neon. )

Previocus atiempts at writing a simplified expression for 'thé
short-range interaction have been mumercus, One of the earliest .

general expressions is the Bprﬁ-!hyer potential

2. ) ° -
" Vr)=2zZzZe rlexp(-r/B) : (1-1)

: 12
This potemtial represents the Coulomb interaction betweén two mclel
of charges Z e and Z e being screened by the surrounding electron

1 2 .
&loud, The factor 8 » called the sereening length, is given by

Bohr as -t
2/3  2/3 -1/2 |
Bna(z/+z/ )l/ . (1=2)

o 1 2
T . . .
vhere & ( = 0,529 angstrams } is the rirst Bohr radius in hydrogen,
, o ‘

The negative exponential factor simlates the progressive screening,

vith increasing r, of the interacting melei by their electrom clouds,
_ T, .
and gives the correct limits of Z Z e /r for small r and zero for

12 .



. large r, T

28
Another theoretica.l expression, given by Firsov and ba.sed on

-

the Thomas-Ferm{ statistical model of the atcxn, is

. 2 '-l I ’
_V(r) =232 e‘r_' ¢ (X) o (1-3)
1o .
' =31
The Thomas-Fermi, acreeni.ng function qS(X) bas been bath tabu.].a.ted
3@ -
and appzmimted ama,yticam vhere X 1s defined as
3 4 2/3 : ‘
X = (, z + z ) r/0.8853a. - C (1)

\..___W.O e
. >

However since the shc:rt mnge repulsive forces arise by way of
the crverlnp of the electron clouds, a correct theoretic&l trea:tment
mst take into account exchange n.nd possible correlation er?:cts
‘mvolvingallormst of the electrcmorbcthatcms._ It isforthis '
reason that the &rorementioned mlticonﬁgumtion-aelf—consistent

fielad calcul.a.tions are favoured,

n

One who dealt extenaive]s in these short-ra.nge cn.lcu]ntionn was
Ahrahmon who approached the pro'ble:n ‘of the detemimtion of
short-range repulsive potentia.ln by tha a.ppl:lca:t:ion of a variational

minimization-and-maximization principle to the !Ehm.s-l“emi Dirac
('.!FD) statistical model of the atun33. He' proceeded to determine
the re;mluive intemtion potem‘;inla between no‘ble-gns hmonnclearBh
and he't:em:mm:lear35 two-centre mtm. Uaing the 'I'DF model be
‘alsc determined potentials between closed-shell 1&3?6./

In recent years, additional themtich.i work on the Bhort-range

part of the ground state pote.nt:l.al for ‘He-He and athcr noble-gas

37143
pnimhiabeenmﬂedoutuaingvm@sabmuomthods . 7

Since potentials cmptrted by the above methods, used to describe



_ . : y
stricthr short-range intemctions, are repalsive :anturé ( as they

mst be ), they cannct be used in the iotermediate region where the
intere.tcnic potexrbinl ninimm 1ies aince it is in this region that
attra.ction exists. In this intermediste range, ﬁ:emtical potentm
calculations havebeendmebylhrreuandsimw 45 and by
Bertoncini and Wahlks Experinental investigations in this reglon-
have been ca.rried oat by the groups ot Leeal_ah, Scoleaw and others.

Gordon and Kith described the Memtmic pctentinl 'bctween . '
‘two. noble-gas atcms { a1 canbinations of helium, neon, argon and.
krypton ) in the short a.nd intermediate renges by,a single "a.priori™ -
expression f‘inmlving a Coulambic part plns kinetic-energy, exchange
mmhn cozrt:ributions calculated in the atatisticnl
approyimation, Adcpting Goninn and Kin's method, Schneidcrhg added

the grou.mi gtate intemtdntlc potenti&la of Xq—Eg, -Xe—He, Xe-Ar, Xe-Xr

and Xe-Xe, ‘

. In the region of large intem.clea.r sep&ra.tion, calculation of
the’ wea.k, 1ong-range attmctive interaction can 'be handled in variocus.

50
ways, one of vhich is many-body perturbation th.eory « Convergence,

y 15 slcnr anpd the ca.lcu]ntioh tedious, .
Z Other mcth.oda which bave been used to describe the long-range
a.gtra.ct:lmz, particularly far He-He, inilade variational calculstions
and time-dependent Hartree-Fock theo:rysa. Many semdempirical
ca.lcnlaxions have been made of :lnteractila_f.,coerﬂcients, chesa
" using sum ruleja and Padi a.pprorxim.nta fo;-inier'pol.a:tion. Purtions.‘or
the potential curves calculated by different ncthod.a ha.ve been
pieced together as one potential carve, appa-oprntaly mtched(at ‘t’hn :

joining points ( -plecewise’ dgﬁ:g.ed potential ). This has been done -

g_,mp



‘quite recently for He-Ke, He-Ar, He;;]!e 3 ﬁe-Ar, Ar-Ar, Ar-l;r', Er-Kr
. and Xe-Xé by Konowalow amd Zokhetn . |
In this thes_i:.z. nnthzoret:_!.c&l exyession for the gx‘cﬁ*state
interatomic potential between pairs of closed-shell atoms is
" developed. The total potential consists of the sum of four separate
tems - electrostatic interaction, antisymetry “orthogonality”
repalsion interaction, interstomic exchange interaction and long-range
van der Waals ( interatomic can‘el&tion') interaction,
A major motivatidn for this work is the need for core-core
interactions for two-centre systems 1nm1ﬂ.ng' one or more valence
“electropa,’ §eh interactions can provide the fotndation for
calculn.tions of interatmdc potentin.ls of both grozmd and excited -
: sta.tes of arbltrary din:tanic syxtens, B
Sectichs IT; I.‘II,'IV and V, respectively, deal with each of the
‘/ above 11-:rte;‘a.ci:ions.cxplicit:|3. Section VI scriﬁes some dethils of
the euemuon inelnding the mmerical (alculation of integrals and
1:.ha form of the electron_ density;
Section VIT presents the results of the calculation including
- \comparisons with results, both theoretical and experimental; by
| other 1mstigetem.
Section VIII contains conclusions and suggestions for poasible

iuprovmeut in t .
8 he cﬂW sighgistions for future \rork

T
o —
] —~ —
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* IT m.maémnc IRTERACTION

> . .,

The term design.ated the electrostatic interaction is derived
from a common expression of electrodynamics: Eif a point charge g
i
isbrought from infinity to a paint x in a region where the scalar
i
potential O ( which vanishes at inﬁ.nity) is prodncedbyanarra.y
of {n-1) charges q ( 3-1,2,...,::-1 ) at position.s x , the work
J !
done on the charge. ( and hence its potentinl energy ) is given by
. n- -1 . -
W o= g 'q‘z-gl-qcb.- (2-1)
i i = i J i .
The total potential energy of all the charges due to all the forces
acting between them is . _ ‘
. ‘ -1 ' ‘.
3 z aq |x- x l o (2-2)
i 3 13t 1 o

J

-
3

For a contimuious charge distribution of density -‘—ep, the potential
energy becomes

W = X ")y d d x' -
e {p P X b & x o 2

|x-x'

In the present investigation the “charge distrivution® consista
of two closed-ghell atoms. These form weakly bound ( van der Waals )
diatomic molecules in which the distortion of the separate atomic
densities 1s relatively small - small encugh that coe can, to a good

N

a.p;n-oximtion use undistorted densities to calculate the electro-

_ static, a.nt:lsymtry and exchnngu interactions { polarization effects
6



are considered separstely in Section V ). O gcurse at very small
intermiclear separations, consmenble distortion must occur and
here an independent check of the interstomic potential is caJ_Led
for ( see below ). Hcvever in the range of intermuclear sepa.ration ‘
on vhich we conccn‘.;ra.te, this a.sstmption should be valld, ﬁms the
density of the molecule is expressed a.s-tlixe sum of Ahe individual
undistorted atomic densities: '

’ atanic atomic , .
*p ‘ (2-4)
B

With this relation, W becomes

2 .atomlc stomic

3 3
Jf pA (x) pA (x) dx'd/.x'.

njo

2 - atomic atomic | 3 -3 o
+ gﬂ pB (x) pB g') d x d,x’
x - x|
- atomic atcmic 3 3
te ” P, @ P @Naxzax (29)

x-x'l

vhere the first two terms represent the electrostatic interaction

of an atomic charge distribution \d.th itself and the thind term

_reprencnts the electrosta.tic 1nteraction bctveen the two atomic \

charge distributions, It is this third term alone that is considered.
The mclear density is included in the expression faor the

atomic density by means of a delta function &
1

—
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stomic - .
P @ pW@- 2801 (2-6)
A A A -
‘ ) El \“h
This representation is'a valid one since thé "radius"” of the mucleus

=5 : :
is of the order of 10 that of the radius of the first Bohr orbit.

Thus the expression for the electrostatic interaction takes the form

2( 3 (3 | ’ - : -
WR) =, e fdmrfd r'( P(x).-2 S(z) X pP") -z Sz ) (2-7)
A A B !

|z"+R-x

vhere e is the charge on the electron; o (x) ( P (r") ) is the
- i B

A .
electron density of atacm A ( B ); Z ( Z ) is the atomic rumber of
A B ) :

atom A ( B }; R is a vector whose magnitude is the intermuclear
separation and whose direction is from A to B; r and r" are defined
as shown in fip;ure 1.

The electron c.lensitie__s uséd in the present investigation are
of course ground state densities., Excitatlon to higher states is
ignored. This mod®l is appropriate when the two atoms approach each
other slowly, 1.e, "thermal” encounters where the kinetic energy |
i3 much smaller than the atomic excitatian energy ( 210 e.v. for
cloaed-s_heiil atoms ). The resulting theoretical interaction energles
are independent of collision energy and are called "adiabatic
potentials”, -‘ , .

Equ.nsion of expression (2-7) shows three typés of interactions
which are present; nmm:ly the repulsive mclear-nuelear interaction

2 -1 o “

ZZeR s
AB



Figure 1: Electron density position vectars r and r" for the
spherically symoetric closed-shell atoms A and B
respectively, R is the Intermiclear separation

vectorands'nz-ﬁ.
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) . 10
the attractive electron-miclear interaction

and 'the repulsive electron-electron interaction

r r -
e r ' p r p o | ]

An impartant aseumpticn made in this investigation and previcusly
mentioned is that the atoms ace "closed-shelled", By this term is
meant that all the (n, ) orbitals of the atom are filled, e.g. He,
Ne, Ar, Kr, Xe, ... By restricting the study to this class of
atoms, the electron density is therefore spherically symﬁefbric .
( Unscld's theoremss ) and the angnlar integration over the
azimathal angle ¢ ( taken around the intermuclear axis ) results
simply in 27T, -

Simple manipulation of the above equation yields

2 -1 2

2
V(R) =zzeR -2e X (R)-ze X (R)
AB A B B A

3
+e2jd r &(E)XB(I') | (27{3)

o

where z ( z )'istheionicityora'.tc_nk(B).Bythetam. _
"1onic1:y“ 12 meant the difference between the atomlc mmber of the
reutral atom and the mmber of electrons. Obvicusly for the neutral
atam z = 0; for the singly charged ion z = 1, The function X(R) 1s

t

-
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11
R) = b7 ar* r" (1 -" ") 2-9)
X{R) L} r _;; ){3(1‘ -(
How
’ 3 -1 ) R 2 -1
Jdrp(z)l_n-_{] o WJ_drr p(r)R
- . B 0 ‘ w Y
' 2 . =1
+ WIr dr r
f}z r f)(r)r
: @ 2@‘ r
-Z-z-*-lﬂderr p(r)(;-l)
d R R r R
= 2-z + X(R) '  (2-10)
. R

ay

Thus -eX{R) can be thought of as the electrostatic potential at

R due to.a positive mc:_u;;_&; of charge (Z - z) at the origin and the
electron distribution p(r)The mmerical ealculation of X(R) and
the integral '

-

3 -
d T
f F PEX )

is discussed in Section VI and in Appendix C, h



IIT ARTISYMMETRY BEPULSICHN

The effect of the Pauli exclusion principle - that the total
vavefunction mst be a.ntisymtrics.? - manifests 1tse5_f_1q the '
antisymmetry "orthogonality™ repulsion. This repulsio‘r.x‘is represented
mathematically by a pseudopctem:ia.l

The development of the term for the antisymmetry repulsion
begins vith the assumption that the electrons of the closed-shell
atoms can be treated statistically, as in a‘ free electron gas, The
Ferml energy ( 1.e. the epergy below which all states are occupied

at absolute zero accarding to Fermi statistics ) for this gaa is

2 -~
: E =p _+ ¥(r) (3-1)
Ty F o b
’ Zn

e

5

“iere p 15 the Ferni momentum and m 15 the mass of the electron. =
How theovnlnne h3/2 vhich one electrgcn occupies in phase space
( the factor %a.rises.rran spin degeneracy ) m;lltiplied by the
mumber of electrons must equal the vulme‘inmmspace that
all the electmﬁs.ocg:py mltiplied by the volume in co-ordinate
space, Dividing through by the volume yield.n

| 3 3

= LWyp - (3-2)

h X
2 v 3 o



| L3 23 . '
E - (2m) (3 p /8. + ¥(x) (3-3)

b4

" Thus if the density p 1s increased, the additional states occupied

-1 3 2/3

must have an energy of at least (2m) (3hpj8‘17) above the
% C .

potential energy V(r). This term, as Baylis points out, can be

identified as the " ,..Paunli-exclusion pseu.d.apoteub?;b\ar the

I:'repulsive] :Lntera.c_tion of a single electron with & state
electron distribution of density p e
. 3 otal
The integral dp over the pscudopoteuhia.l yields
0

the total energy arising rra:\the pseudointeraction of an electron
aistribution With 1t5elf, namely |

2/3 5/3
W(R) = 3;i (mm ) (3'1T ) d rp (x) | (3-4)

As ebove the density for the electron distribution of the pair is

taken to be the sum of the separete electron densities,

pPix = p@+ plx') (3-5)
- A B

Thus the antisymmetry repulsion between the two atoms becomes the

psendointeraction: energy of p mima the pseundointeractions of p

and p sepa.rately:

' -1 2/3 3 ) 5/3
W(R) = 3# (10m) (37T) jd r(( %(E) + PB(z') )/
5/3 |

5/3 .
-p (2 -p &)) | (3-6)

A B

The mumerical calculation of W(R) is discussed in Section VI.

L



IV INTRA-ATOMIC AND INTERATOMIC EXCHARGRE IRTERACTION

A
v y

The electrostatic potemtial energy of a group of electrons and

m:tclei can be written as an ;Lntegra.l

3
%f P{x)dMAx) 4 x (h-1)

vhere [ is the charge density and () is the electrostatic potential
arising from (5. This, however, incorrectly inclndes the electrostatic
interaction of each electron with itself ( self-interaction ): cp
shonld represent; the potential exerted by all cther electrans except
the one under consideration, Due to the Pauli exclusion pringiplesvr,
other electrons of like spin tend to avold this electron, The effect
of the exclusion principle, or of exchange, on the distribution of
the other electrons of the same 3pin surrounding the given one is
that this distribution approaches a constant density at lnrge
distances from the given electran but as it 15 approached, the
density decreases to zero, Thus it can. be sald that surrounding any

¢ electron, the other electrons of the same spin avoid a "holc" ‘
centred on the electron in question and lmr,ge enough to inclnde one
_electron, The radius r of this hole can be estimted as follows: if
one electron 1is to be included ‘in 1t, and if the demity of Ii,ke Bpin
electrons is N/2V electrons per unit volume

Py

1 -%ﬂrs[__%] | - ‘(h—a), -

1k
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or .

-1/3 : ‘
S r X (5/V) o (4-3)

Since the potential is proportional to the imverse of r, this leads
to an exchange potential of the form
: - 58
4 1/3 ' -
U oxx P

x

(b-4)
s '
O being the density of the charge distribution.

This is the effect on the distribution of el;':ctmns of the same
spin; there will be no effect at all on the distribution of electrans
of the opposite spin as long as only the exclusion principle is
considered, though, of course, electrostatic repulsion will tend to
keep these electrons away as well, ‘

: . & 58
= The exact form of the exchange potential U 1is given as
1/3 .
Uo =~ g (4-5)
x xp'
" where . ' Coo <
ysz2,
K =3(3/m) e ' (4-6)
-x k&

-

Frem this, one can determine the exchangd® potential energy to be

3 [Pt ' '3 4/3
o jar U =-K dr 0 (1) (4-7)

X
0

Agnin p is the sum of the electron densities of the two atoms

poe pE+ pEn S

' | i
80 the exchange interaction between the two atams becomes

LS
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X X

(R) 3-(.( (r) ( ))WB
R) = - dr + r'
v 124 f p T p

W3 w3
P, @ -p ) _([“9)

. '\(_' B9
Hote that the exchange interaction is attractive ( hence the negative
sign ), 'If exchange effects did not exist, elec‘t;rons of the same spin
would be free to approach each other more closely, the potential
between them governed only by the simple law of electrostatics

2 -1 :
. V(r) =er (4-20)

“hg

ere r 13" the inter-electron separation, However because of the
existente of exchange, lixe-spin electrons tend to avoid each other, A
hence the repulsive potential between them i3 less, So the added
exchange interaction mst be negative,
The mmeerical calculation of.f:he interatomic exchange |
interaction is explained ip Section VI;

a



V LONG-BANGE ATTRACTIVE INTERACTION ﬂ‘

- . )
The attractive interaction between two atoms ma.y be u.su&lly

characterized either by a weak van der Waals inmteraction or by'a
strong chemical interaction. Weak dispersion or dynamic polarization
( mn der Waals interaction );>gene_.'r&11y may dominate u one or both
of the atoms are n.oble gases, if the electron spina in the two atoms
are parallel ( e.g, H E } or if for same other reason chemica.l
bonding is not possible.

Quantum mechanically, electrons in an atonm cannot be "at rest”
since by the uncertainty principle’

DNeNx > F - (5-1)

Although in an atom with a spherical charge distribution there is
nomaa.nangularorlinearmutmordipolemnt,nmiom
fluctua.tio.né in the electron distribution create instantanecus
‘mmltipoles .( their average is zero ) which are able to ixrodnce
trangient fields, 'mes‘t-: fields polarize the cother atom creating
attrg.ct:l;ve rorcés. That is, 1f the one atom is consldered, say, to
be an instastaneois dipole ( aeparat:l;on of the centre of negative

. charge fram the cenmtre of positive charge ) then it will indnce a
dipole moment perallel or utiMQ to itself in the other atom.
This aligment glves rise to an attractive potenti&l termed a

59,60
dispersion 1ntemction by London ~ | of the form

-

17
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. -6 ' -
V(r)oc - r ) (5-2)
Thus it is the mutual perturbation of the electrons in the two atcadc
systems that creates th.t;; potentip.l.

This interaction can be considered t_o represent the interatamic
correlation since, due to this interaction, the electron cloud of
one atom a.s;\mes a certain orientation with respect to that of the
other atom and vice versa, ( The sbsence of a term representing
‘iutm-a.tcmic correlation is ;}nsti.t‘ied since this does not change
dnring the encounter. ). | Car

The ca:iplete form of the interaction can ‘be fonnd by expa.nding
the total Conlanbic pOtEIIti&l energy Of the memting pad..r of

Py ——

atoms in a mltipole series . ; one. gets in second-order
perturbation theory the asymptotic seriea : ' K

: , 6 -8 - -10 '

wWR) =-CR -CR -C.R -.,,  (5.3)

van der Waals 6 8 10 - :

The terms in the expansion represent, r-ési)er;tively, the dipole-dipole,
dipole-quadrupole, quadrupole-quadrupole plus dipoleéoctupolé,

' This van der Waals :Lutemtion, dominated asymptotical]y of
course, by the inverse aixth pover interaction, can yield a mxinm
attractive energ of 0,001 - 0.05 e.v,; it extends to d:lsta.ncea
greater than ten angstroms which is large compared with the sim
of the atams, This attraction can give rise, at low tempexuturea,
to dimers sm:h as Ar and (0 ) - ’

An early expreaiion ror the dispersion constant C was
developed using & variational calculstion by Slater ang Kirkwood63. '

L4
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It took the form

¢ = c = 3k 4% (5-4)

] % v
am (Q/E) +(a/8)
11z 2:2

e .

where m ig the electron mss, and (1 and a‘z" are the electric
e s
d.ipole poln.rizabilities of atom 1 and atcxn 2 respectively and § and
1
‘H are the mmber of outer she]_l electrons for atcn 1l and atam 2
2 64 65
_respectively. Ha.vroyannis and Stephen and Salem reinterpreted

the Slater-Kirkvood o from their result, it faollowed that

the tot&l mmber of.electmns in the atom should be used for § and
&,% .l
« A good approximte formla developed by London and
2 61 , )
Hargenan is

N

¢ = 3(ER/E + E))a Q- (5-5)
dsp 2 .12 -1 2 1 2

The energies E and E were found to be close to the ionization
1 2

energies E and E of thc a.toms. S:h::i.lm-62 exnressions along this

. 1 12

‘line were &lso developed for c and C 3 more recent treatments
8 10 63,64 . -

. have been given by Hirschfelder and -Léwdin + Recently determined °

65 71" 50351,75376 '

vnlucs of the C and C coerficients utilizing

6 8
_ various thecretical methods, are a.milable in the literature,

If the asymptotic van der Waals formula (5-3) 1s extended to
' 6

the short-renge region, U (B) d.i\.re:.‘-ges as R Ohe therefore seeks
an analytical expression to represent the polarization interaction

vhich has the appropriate beha\rior at large and mmall distances -

that is, one which rem:ln:{{ r:l.nite a3 r goes to zero and possesses

)

the asymptotic fom ./f ' ; .

-~



-6 -8
~ —CR -CB - eses '
. 6 8
The higher.crdzr terms
: A}

-10 - =12%

- c B bt C B ’;,..-

10 12 . . i

\.,
A&reg_enerallyxmllinccmp&risontothe‘ﬁ:sttmimdwﬂlbé _
citted, . o <

The construction of this analytical expression is 'equivalent to .
the use of a “cutoff". The concept ofacutofftnsbeenusedbyctizers.
" such as Ba.tesw in & study of the effect or'?olmution on the
distribution of intensity in & contimucus spectrum beyond the serdes
1imit and by Bigmnn'ra to examine 'polu.riza:tio’n effects on the energy .,

L

lewhafthetermsorvariamopticalspectn.

o

The form constructed for the palarization 1ntera.ction in the
present investigation is

2 2 2.4 4 2 26
v(n)=-c6n(a +R ) -AR(R +R ) (5-6)
o o]

" where R is the cutoff length and A iz a comstant to be determined.
[ 2
The above form vanishes as R as R approaches zero, By expanding

v (R) far:the case of large R-and camparing this expansion to the
P . a
‘van der Waals long-range expression (5-3), A is found to be
2 . .
A=(C +Lkon (5-7)
8 . 6o ' .
Al that remains 1s to determine R , But many different amalytical
‘ ) 6
formulne exist which displna' the required behavior st large and

small R values, Only one of these has been chosen for the present

v
1)
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investigation, Therefore R , which must have units of length, cannot

o]
be expected to correspomd exactly to anything physiceal, However it P
is logical to assume that it should somebow depend equally cn the

- .
L
two atams considered, The choice of R 1is discussed below ( Section
o ~
vI ).



VI METHOD OF QALCULATICN
%

3

The expression for the total imterstomic potential between two
closed-shell atoms ( heving, of course, spherically symnetric charge |
distributions ) is |

2 -1 2

2
v R) = R -z R) - (r
cotal ( z z e e XB( ) zBe XA )

3
Jd r p (r) X (r'
2 22/32 3 5/3
+ Zi_(BTT) J‘dr( ( plz)+ px))
2m a - I'p

\J1]Lu

5/3 5/3 '
-pA (_r)-pB (z*) )

- d + r!
'TT. e r p (x p

4/3 L/3 '
LR @-p )
2 2 2%2-1; 2 &
-e( CR(R +R ) +(C +hR )R X
6 o 8 6o .
2 2 -6 {
S ‘ (R +R ) ) (6-1)

Q

Ca.lcu]ntt.on of the first and seventh terms preaer:ta no dirﬁculty
as it is very mmgrtfmd The three integ,rals can be handled
callectively utilizing Gmwa-Legemire and Gauss-lagunerre integration

22
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methods to carry cut the integral over thé volume. By changing to

elliptical’ co-ardinates, the details -of which are explained in
Appendix A, the integral over the volume element can be re-written as
3 3 Jm fl 2 2 - _
d r =TIR dx Gy ((x+1) -y ) (6-2)
J L 0 -1 ' ‘
where the integral over '5:" from zero to infinity is handled using
the Ganss-~Laguerre method a.nd the integral over "y" from mimis ons
* to plus one by the Gauss-Legendre method, A 15-point Gauss-La.gnerreTg
integration coupled with a 32-point Gauss-IegémireBo integration
;n-dves to be a g‘ood compromise between speed and accuracy,

In the éeusa-Le.gnefre integration over x ( see Appendix A (4i) )
the integrand is essentially fitted to a polynomial in x ( of 29'th
order for a 15-point integration ) times an exponential factor |
exp( -x/K ). The optimm value of the parameter K is differemt for
the three integrations performed ( .tcm'th, £ifth and sixth terms on
the right hand side of equation (6-1) ). A single value of K was
however found which would work satisfactorily with all imtegrations.
It is ( see Appendix A (11) for details ) |

-1 1/2 1f2  1f2
K =2 (I +I )R

(6-3)
A b

wvhere I (I ) is t;hc ionization energy in a.u. of atom A ( B ).
Ihia alf three integrals can be evaluated at once, yielding a
_savﬁgs of pearly a factor of three in a:aups;{;i caleulation time and
& significant increa.sg in accuracy, The latter ariaes because the
integrals largely cancel one ancther at same valﬁes of R, and

considerable error is eliminated by subtracting the integrands,

-
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_1h

vd:ichhaveammeric&lerrorofonlya.boutlo s rather than the
5

integrals, whose error may be as high as 10 . 8
In the early stages of this mrk; the Gmba?a ' form of the

electron‘density was used since itbpossessed a convenient form with

which to work. However it is not as accurste as the one selected

Tor use in the final canputations&?. Using the Roothan-Hartree-Fock

method, 01mnt183"8h1m calculated vavefunctions for atomic orbitals

which can be used to derdve electron densiti;:a’fcr the atom, The

determination of the densities is done in the following manner:

i) 85 .
Slater-type basis funetions X(; for each orbital are defined
- ndm
(i)
(00 »P) = R (r)r (9 ) o (6-h)

where Y (@qb)mnmmlmaaphemalhumnicaand

f .
(r) =( (2n )J (2(; )E'nf iif'nﬂ pr( g (6-5)

Y.

The wavefunction of a particular orbital is then defined as

_ (1)
= B . 6-6
qsnf i; :l.Xn L ( )

For the first thirty-six elements ( H to Kr ) Clementi has tabulated
values of n and g ( orbital exponent ) for each basis functicn and
a set of a ( weight factors ) for each orbital,

1 .
The electron dsnaity\ of_the atom is' glven by

podlv wl e e

”
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where 7, is the occupstion mumber of the s'th orbital. Since the
class orsntms under consideration { closed-shell atoms ) possess
spherically symetric charge dixtributians the contribution made
to ]qS]a by the factor |YFH(Q,¢)| vill alvays be (577) t : Therefore

the "Clementl™ wavefunctions simplify to
T g e ﬁ Dy (6-8)
. = - a r
'qsnf ' - i nf . :

The qb's are already sppropristely normalized, that is, the integral
* over all space of [qﬁfis ore,
Because (6-7) proves to be progressively more time-conshming
as heavier and heavier atoms are considered, a more efficient means
of determining the "Clementi"™ electron density at a point is to
define the density as a set of points spaced at certain intervals
rather than as an amalytical formmla. This will algo allow the use.
of electroz; densities which are available only in tabular form.,
If the electron density is to be ac.cumtely described by a set of
points, more points mast .be specified 11'1Athe repidly-varying region
( small r ) than in the slowly-varying region { large r ). This is
: coniren.‘legtly handled by utilizing a log grid or mesh, that is, by
derining the electron density not as a function of r but as o
f\xnctionory\merer=erp(y).1hnsrcanmngerrmzerotopl;15
infinity by varying y from mims infinity to plus infinity ( Fagure 2 ). .
Very few, if any, of the actual read-in podnts will be called
for in'the potential calculation. This necessitates the construction
of an interpalation procedure to deten:ix;e the electron density at
the required points, A variation of the Lagrange three-point

( parebolic f£it ) :Lnterpola.tion method 43 used, the details of which
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—

ph

—_— -

(1-p)n

(1~g)n

\

Figure 2: X integrand calculated at evenly spaced imtervals on

the log grid
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errars in the required density points for z:peed of calculsation, -

The remd.ning two terms in the tcta.l i.nteraction are

-Z-GX(R)—ze X(R) .
A B B A )
As shown previously "
o)
X() = 7 f ar® =% (1 - x/r )P(") (6-9)
r

a -

Using the Gomba’s densities
Qs
- -2 : 6-
(=) Z Y r e 2fr) (6-20)
5

g

it 1z possible to evalunate X(R) analytically. However since a
mmerical form of the electron density}.s being used, X (R) mst bde
done mumerically, Using the log grid -

can be written an ' ?

27

reexp(y) ar = expl 7)oy (6-11)
.t_he 1n§egral ‘
. R [ o] - -1 _l - .
X(R). = j dr {r) (r -R ) (6-12)
) . J
where '
¥ 2 -
XMr) = krr p(x) | (6-13)
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X(R) = J ay y) (1-exp{ y)/R) (6-14)

In R

-

Equation (6-14) is evalunated by the "double quadratic integration
‘method” ( Appendix B ({1) ) over the range of equally spaced density
values and by an an;a.lytic approximation ( Appendix C (1) ) outside
this range,

At this point, the three inmteractions - electrostatic,
antisymefry and interatomic exchange - can be calculsted at any
' intermlclem; separation. The fourth intera.ction—,/nmly the long-range
pola.riza.tion,‘ i1s completely defined except ré the cholce .af the
cutoff R . As mentioned previously, it is knola that R mst have -

o] 0

units of length and it is assumed to deir.nd on esch of the

two interacting atoms, The possible forms for R tonsidered were’

__0
n 1/n n 1/n ‘
R =a(<r > +<z5 ) T (6-15)
“ [} : A (’/ B ) .
n n n

where <r > (<r > ) 1s the average value of r for atom A.( B )
A B )

and A is a real multinplicative constant. Using the "Clementi™

electron densities and the parameters in Table 1, the simple form
| T - 1/6 ~
R =<r > +<r> ' (6-16)
0 A B -
* was found to reproduce satisfactorily experimental well depths € -and

positions r of diatomic neon, argon and l:r,ypton cambinations,
. n |



TABLE 1

2 87
ETEMERT <r >
ﬁeon ) 0.9372
Argon 1.4k6
Erypton ‘ 1,098
7
NOUHRLE-GAS C
T PAIR 6
He-Fe 6.3
He-Ar 19.5
He-Er , v 27
. Z
Ar-Kr 91

Kr-Xr 178

—

.
a,u. used ( energy in hartrees, lengths in bohr )

-

i

L 87
<r >

2.719
8.0u44
6.828

88

54.83
247.6
369.4

1085
1608
2388

6 87
<r D>

16.36
83.h5
84,11

.3.187
3,68k
3.686
L.a81
k180
4,186

. , *
PARAMETERS FOR THE LONG-RANGE POLARTZATICN INTERACTION
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VII RESULTS

The results of tﬁe-calculntions using densities constructed

84 - T
from Clementi's H&rtree-?oc.k wavefunctions, Dalgarno's C values,
i 6

76
Starkschall and Gordon's C formmla, and a cutoff of the form

S 6 1/6 o ys(

R=r>7 +

o A 3 o

are presented in the following manner. Tables 2 tnyé@ 7 contatn
valnes of the total ground state interatcmic potential at
internnclea.r separations r&nglngrrmo.?bohrtom bohra, Figures
3 through' 8 show the data from Tables b-7 plotted along with the
results of other mvestimarq-. Tables 8 through 13 compare the well
perameters from the present investigation with those determined by
ofhers, ' 1 : - : - Y

-t
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TAELE 2

Ne-Ke GROUND STATE POTERTIAL

bohrs
0.2

0.4

0.6 .

0.8

l.0

1.2 7~
1.k
1.6
1.8
2,0
2,2

2.\1&

2.6

T 2.8

3.0

3.2

3.4
3;6
3.8
k.0
k.2
4,4
4,6
L.8

TOTAL POTENTIAL (e.v.)
0.731#2'D1+'
0.2282D4
0.9892D3
0.4924D3 |

0,2713D3
0.1613D3
0.1004D3
0.6378p2 ... -
o.h079né‘
0.2696D2
0.165702 ) -
0.1047D2
. 0.657101
0.4o96p1
' 0.,2533D1
" 0.1553D1
0.9435D0
" o..56651)0'
043352D0
0,1945D0 . ‘ .
0.1098D0
0.5958D-1 |
0.3023D-1
: Q:ISI%BD-I - R
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R (bohrs)

. z}\‘\
C\

L W

5.0
5.2
5.k
5.6
5.8
6.0
6.2
6.k
6.6
6.8
7.0
T2
7.4
6
22
8.0 .
.950
10.0

11.0

12,0

10

13.0
14,0 ¢

15.0°

D-y? =

TABLE 2

10

TOTAL POTENTIAL (e.v.) “

Ne-Ne GROUND STATE POTERTIAL (cont'd)

0.h2LoD-2
-0.5973D-3
-0.2904D-2
-0.3796D-2
-0,3934D-2
-0.3697D-2
Qo.3300n-2
~0.2858D-2

-0.2432p-2°
(

' -0,2048D-2

~0.1715D-2
-0,1433p-2
-0.1198p-2 .
-0,1003D-2
-o.8h3hn-3.

- 20.7118D-3 -
‘\Ko.3283n-3'

-b.mgén-s |
~0.9562D-l
~0.5700D-4
-0,'351;7/D-h
~0.2284D-4

-0,1515D-4
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Figure 3: Ne-Ne ground state interatamlc potential, - - - Gordon and

Kim ( Reference 48 ); -.-.~ Siska et al. ( Reference 23 );
- Pregent Investigatlon
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TABLE 3
He-ArGRCIIHDS!AIEPU’IKEI‘IAL

'R (bohrs) TOTAL POTERTIAL (e.v.)
0.1 0.33'51D5_
0.2 - 0,1232D5
' 0.3 0.6251D4
R I ‘ 0.365104
05 0.231204

. 0.6 \ . 0.1550Dk
0.7 I{J 0.1083D%
0.8 y 0.7785D3
0.9 0.570003
1.0 0.4231D3
11 0.3177D3
1.2 0.2416D3
1.3 \ 0.186103

1. 0.1455D3
1.5 o 6.1.15&133
1.6 0.9271D2
1.7 0.7539D2
1.8 \ 0.619112
1.9 0.512202

‘ 2.0 6.142601)2
2.1 0.35-56132
2,2 ' 0.297502
2.3 © o.2ugape

co2h 0,2084D2



TAHLE 3

He-Ar GROUND STATE POTERTIAL (contd)

R

bohrs

2.5

3.6
3.8
b0
be
bk
4.6
4.8
5.0
5.2
5.4
5.6
5.8

6.0

6.2
6.4

TOTAL POTENTIAL (e.v.)

0174312
0.1k56D2
0.121k4p2
0.1011D2
0.8395D1,
0.6960D1
o.Sf%Bnl
0.4753D1
0.3227D1 -
. 0,2158D1
0.1433D1
0.9412p0
0.6196D0
0.3902D0
0.2449Dp0
~0.150100
0.8895D-1
0.5021D-1
0.2611D-1
N 0.1149D-1
0.2942D-2
-0.,1802p-2
-0,4204D-2

-0.5205D-2

35



TABLE 3

Ne-Ar GROUND STATE POTENTIAL (comt'd)

R (bohrs TOTAL POTERTIAL (e.v.)
6.6 -0,5401D-2
6.8 -0,5161D-2
7.0 ‘ -0.4711D-2
7.2 -0,4182p-2
Tb -0.3649D-2
7.6 -0.3150D-2
7.8 -0,2702D-2
8.0 -0.2311D-2
9.0 "’ -0.1072D-2

10,0 -0,5414D-3
11.0 | -q.2989D43
12,0 © ' -0,1765D-3
13.0 -0,1094D-3
1k,0 ~0,7040D-k
15.0 ‘-o.héaan-h i
—

0
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INTERNUCLEAR SEPARATION tA)

Figure 4: Ne-Ar ground state interatomic potential, - - - Gordon and
Eim ( Reference L8 ); — ‘Present Investigation
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TABLE 4

Ne-Kr GROUND STATE POTERTIAL

beohrs
0.2
0.k
0.6
0.8
1.0
1.2
1.4
1.6
1;8'

2.0

2.4
2.6
2.8
3.0
3.2

3.4

3.6

3.8
4.0
b2
L.k
4.6
4.8

1

TOTAL POTERTIAL (e,v.)

0.2271D5
0,642k
0.2588D4
0.12kgpy
0.6753D3

" 0.3864D3

0.2283D3
0.1394D3
0.88L6m2
0.5834D2
0.3965D2
0,2756D2
0.19342
0.1362p2
0.9580D1
0.6709D1
0.4670D1
0.322801
0.2214D1
0.1506D1
0,1014D1.
0.6757D0
0.4445D0

0.2880D0
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TARLE 4
He-Kr GROURD STATE POTENTIAL (cont'd)

B (bohrs) TOTAL POTENTIAL (e.v.)
5.0 0.182900 7
52 S 0.1132D0
5.4 0.6749D-1
5.6 T 0.3799D-1"

5.8 | 0:1932D-1
6.0 O.TBSJD-Q
",,6.'2 0.9707D-3
,'. 6.4 -0.2866D-2
_I 6.6 -0,481kp-2
6.8L -0.5604D-2
7.0 . -0.5TL1D-2
7.2 ' -0.5438D-2
T4 ~ -0.k977D-2
7.6 -0.5441D-2
7.8 -0.3898p-2
8.0 -0‘83}860-2
9.0 -0.15§on.2
10.0 -0,7803D-3
11.0 | -0,4203D-3
22,0 | _ ~0.2453D.3
13.0 -0,1516D-3 | _ o ‘
1%.0 / ~0.9758D-4

15.0  -0.6480-k
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»

R (bohrs)
0.2
0.k
0.6
0.8
1.0
1.2
1.k
1.6
1.8

2.2
2.
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
bk -
4.6
L.8

TABIE 5

Ar-Ar GROUND STATE POTENTIAL
TOTAL POTENTIAL (e,v.)

[

0.2124D5
0.6120D4%
0.2557Dk
0.1261Dh

_ 0.69%7D3

0.4114D3

0.2515D3

0.,1558D3 - |

0.98082
0.6345D2

o.k250m0 -

0.294612
0.2099D2

0.152112 '

o.111102

0.8128Dp1

0.592301
0.4288D1
0.3080m
0.2190D),
0.1541D1
0.1071D2
0.7345D0
0.195300

5



TABLE 5
" Ar-Ar GROUND STATE POTERTIAL (cont'd)

R (bohrs} . . TOTAL POTERTIAL (e.v.)
5:0 | 0.3272D0
5.2 | 0.2106D0 .

. Selt ' ‘ 0.1309D0
5.6 ' 0.7714D-1
5.8 0.4167D-1
.6.0 0.1882D-1
6.1 0.1083D-1
6.2 - 0.4586p-2
6.3 0.2234D-3
6.1 -0,3868D-2
6.5 ~0.6571D-2
‘6.6 ‘ -0.8518p-2
6.7 _ -0.9860D-2
6.8 -0,1072D-1 /
6.9 ~=0.1121D-1
7.0 -0,1141D-1
7.1 -0,1139D~-1
7.2 | ~0,1120D-1
7.3 -0.1089D-1
7.4 -0,1049D-1
7.5 " - -0,1003D-1
7.6 : -0.9536D-2
7.7 ) ‘ -0.9024D-2

7.8 ~0.8506D-2
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. TABLE 5
Ar-Ar GROUND sr;x:m POTERTIAL (cont'd)
R (bohrs ’ mm (\e.v.)
B 4 ~0,7992D-2
8.0 -0.7hg0D-2
9.0 -0.3688D-2
. 10.0 -0.1852D-2 -
11.0 : -0.1006D-2 | i
- 12,0  -0.587hD-3
13.0 ' _0.36230-3
14,0 " -0,2329D-3
15.0 -0.15k46D-3

/0




10}~ . -
[ A
0 7
>-
(V8]
— l -
4
<
-
w
5 s
s 10
=4
=
[®]
}_
<
T
w)
£ 6t _
- J
rz
}_
o
’_
-3'
10
Q
o 7 ]
m ]
]
o 1)
.9 -0 “
.
R b —
| !

! 1
1.0 2.0 . . 30 4.0 . 50
INTERNUCLEAR SEPARATION (A) '

¥

Figure 6:‘Ar-Ar ground state interatomic potential. = ~ = Gordon and
Kim ( Reference 48 ); ... Parson et al. ( Reference 89 ) ;

~e-«- Barker and Pompe ( Reference 12 }; ___ Presgent
Investigation : ' .

6.0

“



TARIE 6

Ar-Er GROURD STATE POTENTIAL

R (bohrs) -
0.2
0.h
0.6
0.8
1.0
1.2

1.4

1.6
1.8
2.0
7 2.2
2'.h
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4,0
4.2
g
‘ 4.6
| b8

TOTAL POIEBTIAI. (e.v.)

0.3940D5
0,1076D5
0527104

0.2028D4

0.1066D4
0.6107D3
0.3745D3
0 23791)3

.1531D3

.99!+9'172’
jﬁshsne |

o h3981:2

0.2124D2

0.1517b2 -

0,109712

- 0.302302

0.7970D1

0,5795D1
0.4203D1
0.303201

© 0.2172D1

0.1541p1
0.1081D1
0.7495D0

.~

-

L5
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Ar-Er GROUHRD STATE POTENTIAL (cont'd)

R !bohrs}

5.0
5.2
5k
5.6
5.8
6.0
| 6.2
6.4

6.6

6.8

7%

7.2
T4
7.6
7.8
8.0
9.0

10,0
11.0
12.0

‘13.0

1k.0

15,0

L
TABLE 6

TOTAL- POTENTIAL (e,v.)

0.5114D0
0.3422D0
0,223200
0.1406D0
0.8409D-1
0.4617D-1
0.2126D-1

 0,5393D-2

-0,4280D-2
-0.9782D-2

-0 olasl-FD—_].

-0.1351+n-i
~0,1347D-1
-0,1276D-1
i;o,.llTED-l

-0.1057D-1

-0.5453D-2
~0,2718D-2
-0,1446D-2

~-0.8315D-3
.'00509D-3 ‘

-o.3ésl+n-3
-0,2166D-3

I:,I(‘
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TABLE 7

Er-Kr GROUND STATZ FOTENTIAL

R!bohrs)

0.2
0.k
0.6

X:
1.0
1.2
1.k
1.6
1.8
2.0
2.2
2.5
2.6
2.8 -
3.0
3.2
3.4
3.6
3.8
k0
L2

bk
4.6
4.8

TOTAL POTERTIAL (e,.v.)

. 0.737hD5
0,1945D5
0.7391D%
0.3380p4
0.1725D4
0.941303
0.5505D3
0.3431D3
0,2224D3
0,1470D3
0.9808D2
0.659902
O.lLhg1ne

- 0,31p102
0,2174D2
0.1545p2
0,1110D2
0.801901
0.5814p1
0.k21401
0.304LD1
0.2188p1
0.1560D1

0,1102D1,



TABLE 7
Kr-Kr GROUND STATE POTERTIAL (cont'd)

R (bchrs TOTAL POTEETIAL (e.v.) ;
5.0 0.7680D0 ‘
5.2 . 0,5276D0
5.l 0.3553DQ, - N
5.6 " 0.233300 A
5.8 0.1477D0
6,0 0.88L4g9p-1
6.2 - 0.4833D-1
6.4 ‘ 0.2163b-1

6.6 - o.hﬁggh;e :

6.8 . -0,6235D-2

;‘ 7.0 ‘ , -0.1238D-1
7.2 -0.1552D-1 ‘
T4 ) -0.,1669D-1
7.6 ) ~0.1663D-1
7.8 . -0,1583p-1
8.0 -0,1463D-1
9.0 -0.8031D-2,

10,0 -0.4023p-2 .
1.0 ~0.2104D-2
12.0 -0,1189D-2
13.0 ; -0.7205D-3
14,0 n h—O.h601D-3
15.0 -0.3050D-3

o
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The effect on the short-range potential due to the distortion

of the electron distributions must be smell since in this region the

potentials of Tables 2-7 .approach the short-range Thomas-Fermi TN
potential, Hem_:e these potentials should be able to reproduce data fi
such as high-energy scattering cross-sectlons, !\
Resulti.s have not been presented fgr xeno;x or helimm, In the
.case of xenon, accurate Hartree-Fock-type defé:éities were not readily /
ami]n.blegl at the time that the research uﬁs completed., As for
belium, the cutoff, which worked so well for homomuclear and
hﬁmmclear distomic molecules-of neon, argon and krypton, was not
satihfactory. For He-He, the vell depth vas over three times larger
than the accepted value, It may well be that the tﬁeory presented
here \d.th‘.itﬂ particular form for the cutoff will produce accurate
well parm:ctera for the He-Ne, He-Ar and He-Kr pairs, but this was
not attempted due to the results of the He-He calculation.
One shounld not judge the present calculation by thé graphs
alone,. For the hzteronﬁaclea.r pairs, t‘hz: cnly ms%‘ available - o
were by Gordon and Kinm and for the homomiclear pairs, the curves
available :{or plotting92 happened to have ciee'per potential wells,
A truer test of these calculations ccm;:a in the comparison df the

well parameters as shown in Tebles 8 through 13,
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TABLE 8
WELL PARAMETERS FOR THE Ne-Ne POTENTIAL

o -15
€E/xk (K) €(x10 erg)
33.0 5.25
38.0 5.25
35.7 L.93
k2 5.8 -
36.3 5.01
L4o.6 - 5.60
Ly = 6a
36.3 - 5.01 -
37.1 5.12
66.6 - 9.19
k5.9 6.33
-%?.7 4.93
27.5 3.80
50.918 7.0292
50,634 6.9900

. 52.658 7.269%
k9.049 €.T712
L8.987 6.7626
55.00% T.6057
53.064 7.3254
564552 | 7.8070
58.948 8.1377
52,162 7.2009
55.106

7.6073

r (&

=
3.347
3.7
2,789

3.00-3.16
3.16
3,13
2,98

\ 3.16

!

!3.16

L o6
03

3

3
3
3.5661
3.5676
3.5572
3.0447
3.0450
3:0183
2.9529 ,
2.939%
2,9306
2.9629
2.9511

o

**
T (k) Reference

- . 93

- 94

- 95

- 2

- 2 (12:6)

- .97
2,69 7

- 98 (12:6)

- 98

- 99
2,73 23
2,789 95 (12:6)
2.858 95 (12:6)
4.1993 54
3.2007 Sk
3.1904 54
2.7295 Sh
2,7298 54
2,7031 54
2.6584 54
2,64kg 54
2.6361 54
2.6650 5k
2.6532 Sk

52



" TARLE 8: WELL PARAMETERS FOR THE Fe-Ne POTENTIAL (cont*d)

0 -15
€E/k{K) €{x10 erg

58.194
51.636

54.199

S7.751
LS}
k6,0

*#*  distance between miclear centres vhere potential iz zero

8.0336
7.1283
7.4823
7.9725
5.6
6.35

E¢9)

2,9393
2.9698
2.9593
29456
2.99
3.03

O (&) Reference

2,615
2.6698
2,6593
26456

. 2.TL

2,74

5k
Sk
54
Sk
ke

present

53



TARIE 9

5

WELL PARAMETERS FOR THE Ne-Ar POTENTIAL

€/x LOK ) €(x 10-15erg) |

63.8 8.81

63,79 - 8.806
T3.7 10.2
8.2 9.1ks5
64,60 8.918
56.59 7.812
k2.8 5591
k9.8 6.87
55.1 7.61
60.9 8.1
64.5 8.90
69.5 ' 9.59
67.6 9.33
66,6 ~9.19

5.3 10,4
70.3 9.7
6.5 8.9

' 81.929 11.310
‘81.014 11.18%
88.936 12.278
69,478 9.5914

70,090  9.61%9
79.854 11,024
74458 10,279

z (&)
n

3.638
3.638
3443 |
3.491 -~

3.83
3.68
3.58
3.50

3.18

3.k8

3.8

3.6193
3.6223
3.5971
3.3981
3.3958
3.3611
3.5u44

O(2)  Reference
- 100
- 101
- 93
- ol
3.092 - 90
3157 90
- 102
- 102
- 102
- 102
3.098 ‘ 103
3.067 103
3.079 103
3.10% 103
- 21
- 21
- 21 (12:6)

3.2h48 5k
3.2h7;_ 5k
3.2227 54
| ‘3.029%4 51;
3.0270 54
.2.992!4 sk
3.1629 © 54



| TARLE 9: WELL PARAMETERS FOR THE He-Ar POTENTTAL (comt'd)

. o _15
€/ (K) €(x10 erg) r (1) a(k) Reference
. m

73,462 10.141 3.5481  3.1666 5k
82,382 11.373 3.5166  3.1351 sk
56.9 7.85 . 3.9 . 48
62,7 8.66 ~ 3.48 3.13 present

'

b

.
L

25



TAELE 10

‘€/k-(01=: ) Elx lO-lSerg) r(A)
L m
95.3 13.2 3.449
71.7h 9.904 3.701
52,8 7.29 3.9k
60,5 8.35 - 3.80
6518 9.08 3.7
2.0 9.9k 3.62
67.5 9.32° -
63.5 8.77 -
6h9 8.96 -
82.4 1.4 -
78.2 10.8 3.60
73.2 10.1 3.60
59 8.1 3.60
66.5 ~ 9,18 3.67

WELL PARAMETERS FOR THE Ne-Kr POTENTTAL

Reference

O(R)
-7 e
- 9%
- 102
- 102
- 102
- 102
3.257 103
3.201  -103
3.287 103
3.200 103
- a2
- 21
3.27 48
3.31 present

56
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TABRIE 11

&

WELL PARAMETERS FOR THE Ar-Ar POTERTIAL

3.7(7)

_Ejk (OK )  €(x 10-15erg) r() o Ref;mﬁce
=
) 123,2 +17.01 3.866 - 93
123.2 17.01 3.866 - 9l
oura 16.25 3.933 3.508 3 (12:6)
152.0 20.98 3.644 3.3 3
147.2 28.32 3677 . 3.3k 3
137.5 18.98 3.812 - 97
40,1 193k 3.801 - 101
142,9 19.73 3.735° 3.36 4
138.0 19.05 3.761 - 105
149 " 20.6 3.67 3.3 7
| 146.8 | 20,27 3.793 3.28 6
147.7 20.39 3.756 - 12
176 24,3 3.535 - 106
123,2 17.01 3.87 - 98
148,0 P 20,43 3.68 - 99
1240 17,12 3,118 . 99 (12:6)
124,0 17.12 3.1418 - 95 (12:6) |
14k 19.9 3.70-3.90 - 2
138 9.1 3,81 -y 97
. 119 TR 3.87 - 2 (12:6)
149 20,6 3.67 3.3 7
19 - 16,4 3.87 - 98 (12:6)
119.8 6.5 - 3,505 20 (12:6)
145(2) 20.0(7). - 20
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TABLE 11: WELL PARAMETERS FOR THE Ar-Ar POTENTIAL (cont'd)

) =15 ’ ‘
€/k (X)) €{x10 erg) "r (&) (&) ~ Reference
n

ne.s3 . 16s01 - 3owg 8
132,64 . 18,311 - 345540 8
132.59 18.304 - 3.5477 8
128,11 - 17.685 - 3.14751 8
kg 19.990 - 3,386 © . 8
i 19.5 3.70 3.3 89
bk L 19.94 wg.ns - 24
1407  19.83 3.760 - 2y
124 17.1 - 3.8 95 (12:6)
116 16,0 - - 3.465 95 (12:6)
163.92 22,6200  3.6186  3.2323  Sh
164,97 22.77%  3.6128  3.2305° 5k
174,87 2h.ako6 T 3.5967-  3,2145 54
142,06 19.6113  3.7783 3333 sk
141,18 19.4898 3.7803  3.3363 - 5k
150.95 | 20.8385 - 3.7589  3.3148 Sk
151.51 . - 20,9158 3.8261  3.1179 Sk
150,76 20,8123 3.8276  3.h19% 54 -
160,58 22,1679 3.8090  3.4008 sh
14,78 Y 19,5726 3.9200 3,481k 54
141,06 194732 3.9216  3.4830 54
149.19 20,5955 3.9039 34653 sk
146,43 - 20,215 - T 3,321 | 5
163.7 | 2260 . - 3.15 107

132 ) 18,2 - - | 26
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TABLE 11: WELL PARAMETERS FOR THE Ar-Ar POTERTTAL (cont'd)

N ~15 .
(€/x (OK ) €(x10 exg) r (k) ag(X) Reference

7 17.5 3.63  3.28 L8

132. 18,3 371 3.33 ' present
R >
- 3
- o
0
1
1 \“\(_



WELL PARAMETERS FOR THE Ar-Kr POTENTIAL

TAELE 12

€/k '(OK ) G(X.lp-lserg)-ln r (&)
- m -
13 19.7 3.9li7
129.2 17.8% 4,099
169.79 - 23,439 .
T L7167 23.699 -
120 - 166 "h22
133 18,k 4220
2k 199 ko1
153 21.1 3.93
155.(_11_ P 21.ko -
162 22,36 -
153.2 1,15 -
‘12l‘ 16.7 -
N 23.8 3.80
194,97 ° 26.915 347490
496,02 27.960 3.7475
207.83 28,691 3.7312 |
16458 22,720 3.9260
163.37 22,553 3.9285
174,20 2k,048 " 3.9070
147 . 20:3. 3,78
158 , il.BN 3.85

\

3443
3.508

93

8

102
102
102,
102
103
103

103

present

-9 (R)  Reference .



THEE 13 .

WELL PARAMETERS FOR THE Kr-Kr FOTERTTIAL

1

. : =15 ‘
. €/x (OK) €{x 10 erg) r (&) ° g(&) ' Reference=
T ;. .

el

158.3 21.85 4,056 - 93

135,5 1871 B3u1 - 9k
164,0 22,6 - 3.827 3 (12:6)
| as.6 29.76 - 3520 3
213.9 29.53 - 3.551 3.
203 . 28,0 3.95-k17 . = 2
159 21.9 b0k - L 2 (12:6)
191 . 264 | 4,08 ’ - a7
210 | 29.0 - 3.93 357
210.3  29.03 - 30q 6
159 ' 21.9 © Loy - 98 (1216)
190 , 2.2 - 3.61 95 (12:6)
192, 2k 26.539 - 3.6257 8
199.59 27.553 - 3.5609 8
199.33 27.517 - 3.5625 8
i82.7 25,22 i  3.510 8
236.10 _ 3é.593 3.8816 3.h904 5L
236,94 32,709 3.8806  3..894 54
218,47 JW301 38672 34759 sk
196.58 27.138 BOTTL  3.5906 54
| 26,954 L0795  3.5930 - 54
28,361 4,0616 3.5751 5k

29.197 - - 3.550 5




TAELE 13: WEL§ PARAMETERS FOR THE Kr-Kr POTENTTAL (cont'd)

o R
€/k (KE) &(x10

er‘g) pa _@l ok K! Reference
n .

213.9 29.53 - 3.2 107
180 2.8 3,89 3.48 18

195 26.9 3.95 3.53 present
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The well parameters determined in this investigation compare
favourably with those derived by other methods. The € and r
barameters presented here are cansistently greater than thos: of
Gordon and Kim but this can attributed to the fact that Gordon and
Kim did not include any long-range polarization interaction in their
theoretical expression for the potential and used a statistical
approximation for interatomic carrelation. It is)gg)r this reason
that their potential, in the reglon of the cuter wvall, tends to
zero faster than those derived experimentally and, in particui&r,
the one given here, In the repulsive region of the interaction,
where the ‘present method and that of Gordon and Kim are quite similar
( but mumerical techniques are dif;femnt ), the re.'mits are in good

agreement,



VIII CONCLUSICNS

An expmgq}on bas been developed to detenn_ine ground state
intemta;tic potentials for homomiclear and heteromuclear pairs of
closed-shell atoms, It successfully determines accurate well parameters
for the following diatomic molecules: Ne-Ne, Ne-Ar, Ne-Kr, Ar-Ar,
Ar-Kr and Kr-K?. The calculation does not become more complicated as -
heavlier and heavier systems are considered since the electron
-densities used are in & tabulated form rather than an analytical
ex}_ix‘ession.

-'Ehe{e are a few areas in which the results of the interatomlc
potential calculations could be improved. These include the obvlous
one'of increasing the mumber of steps in the Geuss-Legendre and |
Gauss-Laguerre integratlions and using more density pointa apa.x‘:_ed
closer téi\gether. However the Imge increase in computer®calculation
time would probably not be worth the small improvement in the results
thich are probably already at the limit of a.ccuracy ‘inherent in the

method,

Another would be to try forms of the cutoff other than those
investigated for the long-range correlation. It is indeed possible

that ancther form of R may exist which would improve on the-well
o LT
parameters or the shape of the well,

The C 6 values used in this investigation are those due to

71 N 66:67’69:72;(3
Dalgarno . Using C values of other Investigators
6

coupled with a cimnge in the form of R might somawhat improve the
.0 .

S
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results glven here, |

The théqry outlined here opens up cother averues for future work.
There are mpany closed-gshell pairs which can also be’ considered such
as xeron interactions and combinations of , for example, mercury with
the noble gases, It is hoped that the form of R given here will
contime to provide accurate ?e]_l parameters fo; these new calculations,

One could try ming_t;:se potentials to geperate Beccnd virial
coefficient data, scattering c.ross-sections_? etc, and compare the
results with that obtained experimentally. This would provide
additional tests for the accuracy of the whole potential.

With a tz.'ivia.l modifica'tion of the polarization interaction
term, the theory developed he;'e can also be used to determine the
interaction between ; closed-she%{ ion and a closed-shell atom,
Investigations in this area would prove to be useful in themselves
and as a sta.rt:.ing polnt in alkali-noble-gas and alkaline-earth-lon-

noble-gas potentinls,



APPENDIX A
MATHEMATTCAYL, DETATLS FOR RUMERICAL IRTEGRATION
(1) TRANSFORMATION OF THE INTEGRAL OVER THE VOLUME ELEMENT

(A-1)

g
3 2 (1 '
dr = 27| drr dgf‘
. 0 -1
where f is the cosine of the angle between r and R. How
' 2 2 3 )
£t = (r +R -2rRE)" ( See Figure 1) (a-2)
rtdr = - rR ag. (A-3)
Therefore .
o~ F 21 * r+R
AT 2| "dr r df = 277 | dxr dr® rt (A-k)
j o -1 R Jo Ir-R{ ) -
N '
If the variables r are defined ag
- +
r =r' + r = -(A~5)
at
Then o @O .
- ® (R : R
27T | ar de' = 7| dr dr (A-6)
R Jo JIr-R] R +/-R -
i - \
Further definitions
x= r /R --1 y = r/R (A-7)

+ - -

convert the double integral into the form
66

iy

s
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rt

]

Figure 9: Co-ordinate sysien, Hatched region iz the damain of
integration,



o
2 1
L
0 -1
With the integrand rr' written in terms of x and y as

2 2 2
rr! .= {%( fx+1) -y ) | (A-8)

the integral over the volume element can be written as
dr = TR dx dy ( {(x+1) -y ) (A-9)
In 0 ) -1 : _

( The co-ordinate systen is shown in Figure 9, )
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(11) GAUSS-IAGUEREE PARAMETER K

A definite integi*al can be approaximeted by

b N
fa w{x)f(x)dx » & Aif(x;) i ' (A-~10)

where w(x) 18 & function for which the noments

b k
I = { ‘(I)x dx ( k = 1, 2, “s e ) (A-ll) !
k a o

are defined and finite and ¢ =50,
0 o
A quadrature formmla has degree of precision” 'm' if it is

exact whenever f{x) is a polynomial of degree < n ( ar equivalently,

o} ‘ o+l
vhenever £(x) = 1, x, veu, x ) and it is not exact faor £{x) = x

The x are called:the "polnts” of the formila and the A are called
"weigtj;ts". If w(x) 1s non-negative in [ ,bjl » then n poixxts a.nd
\.._—'/

we:!.ghta can be found to make (A-lO_)emct for all polynomials of
degree < (2n - 1); this is the highest degree of precision which ‘
can be obtained using n points, Such formlas are n'suaa_hr’ca.]_led
Ge.ussiapzﬁuadrature formulas,

The Gauss-Laguerre qna.dra.tur_é formila is for the special case: /

(s8]
: L exp{-x)r(;f)dx 2 1&1 Ait(xi) \ (A-12)

%

In the present theory, the electrostatic, antisymmetry and

interatamlc exchange integrands are ﬁtted,\to a polynomial of the
4 '
69
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291th order ( N = 15 ) times an exponential factor_exp( -x/K ). The
particular form of the exponential factor can derived by considering,
for example, the exchange {erm integrand

#/3() ( )W3 V3 ) )
: 1l+x -1-x : -
pﬁ& r % ( _ \ (h-13

- PG/ p ) (a-28)

It is approximated by th{e;_exp:ession

/3 ' “4/3
PA (r) Al + ,}) /

which\_holds true for small and large x. Substitution for x and
rearrangement of the resulting expresslion yields
L/3

3 3
p,(fr.) P (r*) /3  1/3
A: 'B ( PA (r) PB (x7) )

ks 1 1
2F(r) + 2(!“)
pA pB
2/3 2/3
which can be shown to be less than P (r) PB (r'%}B'lhus 273
, * A
exchange term integrand is bounded from above by pA () pB (x').
In the asymptotic reglon - ‘ , | Py
P v el 2 ) | ( (-15)
PB(r') n expl -2 Bﬁr') (A-16)

r = R(x-y+1) (A-17)
2 ,

’t}'



r* = R x+y+1) ) (A-18)

n

vhereupon - d

3y 2 ( )
pA (r)pB(r)m:xp(-%RBA BBX- . o
' %n(( @ + BB) + ( @*BB)ZY )) (A-19)

Ths : : , : i * )
T ( 2x( ‘))‘l-:“ (A-20)
K= + oo -
B |
 Similarly in the electrostatic calculation,
4 | | -1 | ' :
K = + 2)) : Aa-21
( R(-fgi\ BB A )

A and in the a.n!_:isymetry repalsion calculation
=1 .
K= ( 5K + 83) ) . (A-22)
A=A -
So the inmtegrals used in the calculstion have the general for@

; (o 0} —
K L'ax_ £(x) exp{ -x/i< )
By letting X = x/K , the integral beccmes

/ @ B - I
K{ aX £(KX) exp{-X) = K ﬁ A f(KX) (A-23)
, 0 . i=] 1 i -

D{ Because all three integrafnds approach the sams form in the
asymptotic region with similar exponentinl coefficients, one

~



expression for K can be used for all three integrals wyithout

signj_t‘ica.nt ETTOT .
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was that due to Gombas - namely a sum over all N electron
orbitals

In initial calculations, the form of the electron density used

pG(r) = Sg‘ijg r exp -egﬂr) (A-24}

vhere y represents the normalization factor
s )

LG5 + 3
== 2 :
’)p/s Vs ( Bs)
b (g +2)1
24

(A-25)

I/ being the occupation mumber of the s'th orbital. For amy orbital
5

of atoms A and B, the expression for K which produced the least

amount of error when used in the_aeci;roatatic, antisymmetry and

exchange interactions 1is

T . o -] .
E K= ( R ' -2
o ( (;3; + ng) ) (} 6)

Now from W,K,B. theory 7

Yo el -Kr) © e
where

2 ,2 -1 '
Bk (2m) = T ~ (a-28)

LY
LN

and T is the lonization potential of the atom, Since (A-27) 1s true,

“- the density P mst be

E



0

{
the atomic electron density.

- -

. T3
p o~ expf - ek'r) o (A-29)
Locking back at the Gombas expression for the electron density of
. the s'th orbital .
. (s) .
‘ ,p.-(r) \f\exp(-ZBr) ‘ (A-30)
G * B

a comparison of (A-29) and (A-30) shows that 8-, o parameter for & .

specific, chosen form for the electron.density, can Jexpressed, in
' i

"atomic units, as a function of an atomic propeff:.y, ly

K=ty - - (a-31)

Thus K can be written as ‘ ' | e
K_((I%”%)z-%/ 2 A
o ) A B QR\)\A\ T el

and it retains the same form regardless of the expression used for
: {

, ©

-

(7



.problenm iS‘tO find a pclynominl

APPENDIX B
IRTERPOLATION PROCEDURES
(1) LAGRANGE . INTERPOLATION
Suppose that x y x , ..., , X &are ( o+l ) distinct points and

o 1 n
that the v&lues of & function f(x) are known at these points. The

n .
Fx) =28 +ax+ax +>5F x’ (B-1)
- 1 2 3 | 1
with the property that
Px)=f(x) ~ ~ 1=0,1,2, «s. , 1 (B-2)
i i ) *

The ;-esuj.ting polynomial, called the Lagrange interpolating

polynamial to f(x)_, is given by

Hx) =L (x)f(x ) +L (x)e({x ) + vee + L (x)8(x ) (B-3)
o 0 1 1 n n
where the functions L (x)":*',/;:a..‘l_led the Lagrange coefficient g
1 : ' : : ) r

polynomials, are defined by | -8 _ i

SL(x) = {x-x }(x-x )...(x-x )(x-x Yeeu{x~x )}
1 o ., 1 1+1 . n (B-L)

Cxex Mx ex Jes(x ex Nx ex Dau(x -x)
i'_:o i1 1 4i-1 1 1+1 i n

In the present investigation, the function f,(x) "1s the electron

Lo TN .
7‘. '\?\‘ 6,
T ' :
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density O(y). Linear interpolation ( n = 1 ) is simple but too

crude, Therefore & polynomial of higher degree must be used, However

if the degree chosen 1s too high, incor;'rect "interpola’cions can result, |

For example, as shown in Figure 10, the polynomial P (y ) incorrectly .

3 o
determines the value of the function at the point y .
: o
This problem can be partially solved by using the "double

parabolic interpclation™ method. As shown in 'Figure 11, the method
makes use of four polnts, two on either side of the required point.

Firét 8 pé.rabolic'intel‘po_lation P. using the points y , y and y

yields the 1nterpola.ted. value P (; ) at y . Sixniln.r:Lv{ a iecomi .

parabolic interpolation P msin; tge poin:s ¥,y and y ylelds

P (y ) at y . Since they aeu-e meant to represeit tge Bamhthing

P (yo) and P (y ) are used in a weighted average to determine the

fin&cl) resmltzf_(; ).
A simple a.v:rage

)

2y)=( P(y)+P(y) )2 (B-5)
) Fe) 1 o 2 o . '

cou.].d lead to erronecus results as iJ_lustrated in Figure 12. To
safegna.rd against lnrge errors be.tng generated in the u.vemging

procedure, a welghted average

Ky)=QP(y)+(1-a)p(y) (8-6)
o l o . 2 o : s

a - P(y)-P(y)| |
L o - 2 o {(B-7).

P(Y)-P(Y) + P{y)-P{y)
_20 L o 1l o

iz used. P (y ) 15 the linear interpolation fo¥ f at y using one
o L o o ‘
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, & polynomial of the

3 . v
~ third degree

P(y) Y S
3 0
|
I
fy)y |\ T —:
L ] |
: |
e : | -
, , . S ‘

(o]

Figure 10: Cubic fit to four electron density points, -

f?
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Figure 12: Double parabolic 1nterpola.t‘ion method. -

P (y ) first parabolic interpolation for f(y )
o)

P (y ) second parabolic interpolation for f(y )

o

P (y ) linear interpolation for f{y )
. L o 0

f(y ) is the true value of the function at y
o o
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polnt on either side of y ,
f(y +pu yk{(1-p)t, +pf | (B-8)
1 . h] 2 _ :

Tt will always be a little greafj/ than the correct value f)(y ) in
o
regions of positive curvature of the function F)(y) Ir

P(y)=P(y)" S (B-9)
1l o . 2 o . )

then (1 = 3 and P (y ) and P (y ) share equally 1n their contributions
1 2 o
to P(y Yo If P(y ) is mich too large, then (L — O making
1l o
P(Y ) 2 P(y). SimilarLy it P (y ) is too arge, My ) < P (y ).
2 o 2 o o l o
Obviously a problem vill exist if there are not two read-in

n}

.polnts on one side or the other of the required point., If there is

only one read-in point to the left of the required one, a single
parabolic interpolation is done using this point and two points
immediately.to the right. If no read-in points exist to the left, a
single parabolic interpolation is carried out using the value of the
density at the‘originlog and the two immediately to the right of the
required one, 7

It is posaible that either none or ‘'only one read-in poinmt will.
be to the 1mmediate right of” the required one, This will occur only in

asy??tctic reglon ( large r ) since enough points are read-in

to ensure the presence of a few'points theré. In this reglon the

'densify can be written as a function of r ( the log mesh is adandoned

in thls situation )

plx) = pexpl -ar ) (30
e}



: T9
f) and *a' can be determined by considering the value of the density
o

at the last two read-in points f)(r ) and F)(r )
i =1 n

e= (Pl VP - ) @)
] n- o )

n - n-1

p = P(r Jexp( ar ) (B-12)
[a] n n

So in this situation, the density at & required point r in the

— o
asymptotic reglon is calculated from the analytical formula

Plx) v pexl -ar ) ' (3-13)

One realizes that the above asymptotic form is exactly correct
only for helium; for larger stoms, it should be

- .2 '
P (P pre pr ¢ e -br) (3-14)

since for these larger atoms, the electron densities do not fall off
as a simple exponential,. Hovever F) 18 so small in this reglon that -

any differences between (B-13) and (B-14) would have negligible

. effect on the final result at the expense of 1ncrea5é§ commriter

calculation time, It is for this reason that (B-13) is used.



(i1) DOUBLE QUADRATIC IRTEGRATION FORMULA

In Figure 13, f(x) can be written, using the Lagrange three

point interpolation formmla as

A R : '
£(x) = & (x)f (x) (B-15)
3 ' —
where § = 3 and ' _ R
) - ( ) ) (26)
a (x) = X -x X =-X ‘ B-1
i ]—;1- J i J
JFL
]
If x is uritteﬁ a3
i
x =(41-2)n '131,2,3 " (B-17)
1 )
then
2 : -1 ’ S
f(x) = Ux/h) (£ -2 +f£)+x(2h) (£ -¢£) +¢ (B-18)
2 Col 2 3 3 1 2 .
B : 2 -1 3 3 - | |
[ f(x)ax = (6h ) (£ -2¢ +f£ )}B -A)
A . 1 2 3 —
-1 - 2. 2 _
+ () (£ -£)B -A)+2f(B-aA) (B-19)
3 1 2 . »
Extending this scheme for use with 'n' polnts, P
-h/2. S C o
j f(x)ax =h ( 2f /3 + 5¢ /12 - £ /12) (B-20)
-h 2 1 2 3

ki

. -

O
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Figare 13: Electron density points used in thé dcﬁﬁle parabolic

interpolation method,
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(v/2 :
f(x)dx =h (£ +22¢ +r ) : (B-21)
- ) -n/2 2 1 2 3 /
(n , :
fx)ax =h (£ +22¢ +r ) . (B-22)
Jn/2 ( .25 2 3 Ty o

o~ - -
4

hi

. The integral from point 1 to point n can be found by summing the

%

individual sections :

point n :
I= f(x)dx =h ( 8¢ +5¢ - ¢
point 1 . 2 1 2 3

+ £ +22¢ + ¢
1 2 3

+ £ +22¢ + ¢
2 3 L

=h( (£ +¢£) +7(¢r + ¢ }
8 1 n 6 2 a-1 -

n-3
*+23(f +£ )+ S2 ) - {B-23)
2k 3 -2 %ﬁ' m '

-
Similar theory.can be used to evaluate the integral from "a" to ™"

asg in Figu.fe 2,

b : '
I = T = hi - + + +
I f (y)ay .( ’ %_E( £+ )+t r )

a o n .2 mtl  n-1
\ on-
e + _gg( t +r ) + f
24 o2 n-2 am+3 1
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2
+q( £(2q+3)g/12+2 (1-q/3)+2 (2q- 3)q/12)
m m+l o2

ot 2(25- 3)p/12 + ¢

n-

.2
1(1 ~p/3) + £ (2p+ 3)pf12) ) (B-24) .
n - . rd

For the case of p = q -‘1,‘this formnla.reduces to the expression
for I,

e

The factors involving q and p are derived using the formla for
B .
f(x)dxs

0 2 -1 33
j f(x)dx = (6h ) ( f - 2r +f .)gh

-gh m . omtl o2
-1 22

-(th) (£ ‘-fqh +f gqn

m2 m m+l

3 ) 2 -
=h( £ - 2f +f Ja. - h( £t ~-f )q

8 n m+], m+2 - T m2 . m

+f qh ’ | (B-25)

m+l
Rearrangement ylelds

0 2
I f(x)dx = qh{ £ (29 + 3)g/12 + £ (1 - q /3)
-qh oom o+l

N
Lo

s+t (2q - 3)q/12 ) (B-26) - -
o+2

A Eimilnr integral results in the expression involving p.

N
A

Z\JI&
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APPENDIX C

CALCULATION OF X(R)

(1) ARALYTICAL FORMULA FOR THE ASYMPTOTIC CONTRIBUTIOR

(o]

: : -1 -1
¢ (R)=[ ar D(r) (r -R ) (c-1)
‘asym r N :
Since .
. 2 .
D{r) = WTTr P(r) (c-2)

X (R) becomes
m :

asym

' o s TS S |
X (Rabm | ar p@(r -8 ) (€3
by ..

n
But the asymptotic form for p(r) is

Pr) v poxp( -ar ) | - (c-b)

Therefore
. ® 2 -1 -1
X (R):-h’}TPJ dr rexp{ ~ar ){(r ~-R )
asym o-r . .
. : n
= l+‘I‘I‘p( \f dl‘lr'r exp( -‘P-l' )
: o r |
n

N et 2
- R J dr r exp( -ar ) ) (C-5)

n

af

84
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Integrating the second term by parts once ylelds

X (R).-h"rfp( fdrrexp(-ar)(l-2/aﬂ)_
Casym o r
n
-1 2 ' .
- (aR) r exp( -ar ) ) (c-6)

The remaining integral can be evaluated simply and, after some

rearrangement ,
) 2.1
X (R)=1+’rrp(‘-rR + (1-2/aR)(r +1/a) ) X
asym o n . n
exp( -ar ) (c-7)

n

-
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(ii) NUGMERICAL CALCULATION
% o r . .
1 : : 1 '
I =§ dr D{r)( L -1) = 4T f dr r p(r)( 1-1) (c-8)
R R.

R r R
R

The integrand can be approximated by

o,

) 2
f(x) =x(ax +ax+a )(1-x/R) - (c-9)
: 3 2 1 -7

if the electron density in this reglon is approximated by & parabola.

To solve fora , a a.nd'a

; three simltaneocus équations are used:
1 2 . :

3

o
2 ‘
ax + ax + & = p(x) (c-10)
d 11 21 1 1 ‘
2 Yoo :
ax + ax + a .= p(x )} (c-11)
32 2 2 1 ; 2
3
2 .
ax + ax + a = p(x ) N (c-12)
33 23 1 3
where the P's and the x 's are defined as in Figure 13. , -
, 1 . ' S
Manipalation of (C-10)}, (C-11) and (C-12) ylelds ’
. 2
a = p(x ) -~ ax - ax ' (c-13)
1l 1 31 21
2 2
a = (x) - (x) - a(x -x) (c-14)
2 P, P 1 3 2 1 |
x -x

86




b}

e = ). - .plx) = (x - x)}px) - Plx) ). (c-15)
A A A
- - 2 T
2 2 . . 2. 2
x o~ x - (x - x¥x - x)(x - x) :
3« 1 3 1 2 1 02 1 )
Ther;efore'-- . ‘ ‘
1 s 5 - @y
I = 4by( - 2(58) (r - R) + (& - a/R)}{(r - R)
. ) . 3. 1 3 2 o
+ (a - a/R(r - R)+ a(r - R) ) (C-16)
2 I S 11 IR
3 2 N
:
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