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ABSTRACT

Removing reactive azo dyes from textile wastewater is a significant challenge due 

to their color, non-biodegradability and toxicity. Although various treatment methods are 

available, it was hypothesized that reduction by zero-valent Fe followed by enzymatic 

treatment could be an environmentally friendly and cost effective approach. Zero-valent 

Fe cleaves the azo bond, reducing the dyes to aromatic amines, which are then oxidized 

and polymerized by enzymatic treatment. Finally, these polymers are removed by 

coagulant (PEI) aided sedimentation and filtration. The effectiveness o f zero-valent Fe 

and Arthromyces ramosus peroxidase (ARP) treatment in the proposed process were 

studied on two representative reactive azo dyes, Reactive Red 2 (RR2) and Reactive 

Black 5 (RB5). Over 97 % of the dyes and about 80% (for RB5) to 89% (for RR2) o f dye 

breakdown products were removed in 5.5 hours by these three steps. Optimum reaction 

conditions for the enzymatic treatment were determined to be neutral pH for RR2, pH 5.5 

to 6.5 for RB5, enzyme to substrate ratio o f 9 U/mL : 1 mM for both the dyes, and H2O2 

to substrate ratio o f 6  : 1 for RR2 and 9 : 1 for RB5. The optimum coagulation conditions 

were: pH 6.0 to 7.0 for RR2, pH 4.8 to 6.0 for RB5 and 200 to 250 mg/L PEI 

concentration with 100 mg/L alum. The final products were colourless, transparent 

solutions having low residual UV-vis absorbance. To gain insight into ARP action on 

these two dyes, two model compounds, diphenylamine (DPA) and 2-amino-8-naphthol- 

3,6-disulfonic acid (ANDSA) were studied. Fe° treatment was ineffective in breaking -  

NH- bond present in DP A, while ARP could oxidise the substituted napthol amine with -  

OH, and -NH2 functional groups and secondary amine with an -N H - bond in DPA. The 

optimum enzyme concentration was 4 U/mL for 1 mM of ANDSA and 2 U/mL for 1 mM

iii
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of DPA. H2O2 to substrate ratio for ANDSA was 2.4 : 1 and 1 : 1 for DPA. A comparison 

with other treatment methods asserted the superior advantage o f the proposed process in 

terms of actual pollutant and colour removal.

iv
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CHAPTER 1: INTRODUCTION

1.1 Background

Removal of reactive azo dyes from textile industry effluents is a significant 

challenge in industrial wastewater treatment. Even as low as 1 mg/L of dye renders 

visible color in the discharged water which is unacceptable for aesthetic reasons 

(O’Mahony et al., 2002). Colour also affects the photosynthetic activity and gas solubility 

o f the aquatic ecosystem (Robinson et al., 2002). Dyes are toxic to the aquatic 

environment, and dye degradation products, the aromatic amines, are carcinogenic and 

mutagenic to human beings (Van der Zee et al., 2002; Gottlieb et al., 2003). According to 

the Canadian Environmental Protection Act (CEPA), 1999, textile mill effluents are 

classified as toxic under “Second Priority Substance List ”, for which “risk management 

strategies have to be developed and implemented”. Environmental regulations o f other 

developed countries also require removal o f color and dye compounds from industrial 

effluents (EU directive 91/271) (Robinson et al., 2002).

Around 7 x 105 metric tons of synthetic dyes are being produced every year 

worldwide out o f which 5-10 % are discharged with the effluents (Yu, 2001). About 60- 

70% of all commercial dyes are azo dyes containing the azo (-N=N-) bond (O’Neill et al., 

2000). The textile industry is the largest consumer o f dyes and reactive azo dyes 

constitute 45% of the total textile dye consumption (Arslan-Alaton, 2003). With the 

increasing use o f cotton fiber (50% of total world fiber consumption), reactive azo dyes 

have become the fastest growing class of cellulose dyestuff. Their bright color, good 

fastness property, simple and less energy intensive application make them very popular

1
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(O’Mahony et al., 2002). However, these dyes require 10 times more water during the 

application process and are readily hydrolyzed without complete fixation. The fixation 

rate of reactive azo dyes is the lowest (less than 75 %) among the dyestuffs (Table A.2.4) 

(Arslan-Alaton, 2003). Consequently, a large quantity o f reactive azo dyes is discharged 

with effluents.

1.2 Current Color Removal Methods

The most commonly used color removal methods are physical (adsorption, 

filtration, flotation), chemical (coagulation, oxidation, reduction, electrolysis) and 

biological (aerobic, anaerobic) (Banat et al., 1996). These methods are not entirely 

satisfactory in terms of cost, efficiency and environmental impact (Robinson et al., 2001). 

A summary o f these processes is presented in Tables A. 1.1, A. 1.2 and A. 1.3.

Physical methods used in removing color are not satisfactory. Adsorption by 

activated carbon, a commonly used physical method, is expecnsive due to high cost o f the 

regeneration o f the media (Robinson et al., 2002). Nanofiltration and reverse osmosis 

can only be used as pretreatment of textile wastewater, whereas ultrafiltration and 

microfiltration can be used as selective pretreatment (Van der Zee, 2002). All these 

processes require post treatment of the effluent and the sludge and therefore, are not cost 

effective.

Chemical methods like coagulation and flocculation are often used for removing 

color (Nemerow, 1978). However, the large quantity o f sludge generated by this process 

is a serious drawback (Van der Zee, 2002). Though the color is removed from water, the 

unchanged dye molecule can still be present in the sludge. Organic polymers (cationic,

2
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anionic) can remove color effectively with lower amount o f sludge. However, these 

polymers present in the sludge are toxic to aquatic life even at very low concentrations 

(Van der Zee, 2002). Thus, disposal of the sludge remains an environmental problem. 

Therefore, these chemical methods are not very environmentally friendly.

Advanced oxidation processes (AOP) also have some limitations. Ozonation 

leads to complete decolorization; however, the reaction products, especially aldehydes, 

are toxic (Aarslan-Alaton, 2003). Fenton’s process requires low pH (2-5), which is not 

suitable for highly alkaline textile effluent (Van der Zee, 2002). Photocatalytic processes 

using UV are not successful for highly colored wastewater (Van der Zee, 2002). 

Photocatalytic processes using ZnO and TiC>2 result in total decolorization and 

mineralization (Peralta-Zamora et al., 1999). All, these AOP require high initial 

investment and input energy.

Biological treatment under aerobic conditions is not suitable to degrade stable 

and long lasting reactive azo dyes (Van der Zee et al., 2002; Robinson et al., 2001). Azo 

dyes are inherently resistant to aerobic treatment because oxygen is a more effective 

electron acceptor than azo dyes (Stolz, 2001).

However, azo bonds in these dyes are susceptible to reductive fission under 

anaerobic conditions (Beydilli et al., 1998). Such breakdown generates aromatic amines, 

which are carcinogenic; therefore, disposal of these by-products still remains an 

environmental problem. These amines can be degraded aerobically. Therefore a two-step 

process constituting anaerobic treatment of the dyes followed by an aerobic degradation 

o f amines can be a potential treatment process for azo dyes. Studies demonstrated that 

anaerobic treatment could remove up to 97 % of color and 60 % of COD and a

3
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subsequent aerobic treatment can remove an additional 30 % COD by removing aromatic 

amines (Delee et al., 1998).

Zero-valent iron, Fe°, is an effective reducing agent for azo dyes (Nam and 

Tratnyek, 2000; Cao et al., 1999). It is abundant and inexpensive, making the treatment 

process cost effective and environmentally friendly. Zero-valent iron reduction is used 

widely for dechlorination o f contaminated groundwater. It has also been successfully 

used to initiate remediation o f more complex chemicals like pesticides (DDT, DDD, 

Alachlor, Metolachlor, etc) (Sayles et al., 1997).

Peroxidase enzymes can successfully catalyze removal of toxic compounds like 

phenols and anilines from wastewater (Klibanov et al., 1980; Karam and Nicell, 1997; 

Duran and Esposito, 2000). Horseradish peroxidase (HRP) in the presence of hydrogen 

peroxide can remove 90 % of various phenols, naphthols and aromatic amines from 

synthetic wastewater (Klibanov et al., 1980). In the presence of hydrogen peroxide and 

enzyme, phenols and amines form phenoxyl and anilinium cation radicals, respectively, 

which further dimerise and polymerize and precipitate. Several other peroxidases like 

Arthromyces ramosus peroxidase (ARP) (Ibrahim et al., 2001), Coprinus macrorhizus 

peroxidase (CMP) (Al-Kassim, et al., 1994), Soybean peroxidase (SBP) (Caza et al., 

1999; Mantha, 2001), Coprinus cinerus peroxidase (CiP), (Masuda et al., 2001) have 

shown good potential in removing different pollutants from real and synthetic 

wastewater. However, substituted phenols and anilines, which give colored products, may 

be difficult to remove from water by enzymatic treatment alone. Different coagulant aids, 

polycationic coagulant like chitosan and PEI, have been used for removal o f these 

products from water after enzymatic reaction (Wada et al., 1995).

4
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1.3 Proposed Treatment Process

A treatment process constituting anaerobic reduction o f azo dyes using zero- 

valent Fe followed by aerobic treatment o f aromatic amines using peroxidase enzyme 

was studied. The enzymatic reaction byproducts were removed by coagulation and 

filtration using a coagulant aid.

This work investigated the effectiveness o f Arthromyces ramosus peroxidase 

(ARP) in the proposed process. Two representative reactive azo dyes, Reactive Red 2 

(RR2) and Reactive Black 5 (RB5) were considered for this study. These two dyes are 

widely consumed in the textile industry and have been studied for various degradation 

processes (Table A1.2 and A1.3). The molecular structures o f these two dyes are 

presented in Table 1.1 and their physical properties are presented in Table A 3.1

Table 1.1 : Structures of Reactive Azo Dyes and Model Compounds

Reactive Red 2

Na03S . S0 3Na

NH OH \ = /  

N ^ N  

C I ^ N ^ C I

Reactive Black 5

°Na03S0CH2CH2-  S y—N=N S 0 3Na 

°  W

o
Na03S0CH3CH2— S \ - N = N  S 0 3Na 

o  \ = /

Model Compound :

2-amino-8-naphthol-3, 6 - 
disulfonic acid

o o
II II 

NaO -  S s  -  OH

° I £ X°
OH

Model Compound :

Diphenylamine

5
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1.4 Research Objectives

The primary objectives o f this research were, to:

• Establish the effectiveness of zero-valent Fe in reducing two representative 

reactive azo dyes, Reactive Red 2 (RR2) and Reactive Black 5 (RB5).

•  Evaluate the efficacy of Arthromyces ramosus peroxidase (ARP) to remove the 

Fe° reduction products, the aromatic amines.

•  Remove the enzymatic treatment end products by using a suitable coagulant.

• Determine the optimum process parameters (pH, enzyme concentration, hydrogen 

peroxide to substrate ratio and reaction time) at room temperature, for these steps.

1.5 Supporting Studies

Some additional studies were carried out to gain insight on ARP reactive 

properties on the zero-valent Fe breakdown products of RR2 and RB5, which are 

substituted napthol amines. An exploratory study was conducted with two model 

compounds: (1) 2-amino-8-naphthol-3,6-disulfonic acid (ANDSA) and (2)

diphenylamine (DPA) (refer Table 1.1), to get a better understanding on how ARP 

catalyzes the oxidation o f RR2 and RB5 breakdown products. ANDSA has a naphthalene 

ring with all three functional groups present, whereas DPA is a secondary amine with the 

-NH- bond as in RR2.

This investigation included the following studies to:

• Ascertain whether zero-valent Fe reduces the -NH- bond in RR2 to create smaller 

molecules where naphthalene and triazene rings get separated out. The effect of

6
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Fe on -N H - bond in diphenylamine (a model compound) was studied. This 

indicated that in the RR2 breakdown product, the triazine ring is still attached to 

the napthol group (by the -NH- bond) making it indeed a big molecule.

• Appraise the effect of ARP to oxidize the -NH- bond in the RR2 breakdown 

product.

• Determine whether substituted napthol amines with all three functional groups 

(-OH, -NH2 and -SO3') can be removed by ARP. The oxidation kinetics of 

ANDSA, having similar structure as the RR2, RB5 breakdown products, in 

presence o f ARP were studied.

1.6 Scope of Study

The scope o f study was:

• Preliminary evaluation o f the proposed two-step process on two dyes, 

Reactive Red 2 and Reactive Black 5 in laboratory scale batch reactors in 

synthetic wastewater. The synthetic wastewater constitutes of the dye solution 

only.

1.7 Organization of the Thesis

This thesis is organized as follows:

Chapter 2, Literature review provides the theoretical understanding of zero-valent Fe 

reduction, peroxidase enzymatic action and the critical process parameters that are 

involved. This chapter also anticipates some experimental results.

Chapter 3, Materials and Methods documents the materials used and analytical 

techniques adopted during various experimental studies.
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Chapter 4, Results and Discussion collates the observations, discusses the research 

findings.

Chapter 5, Conclusions and Recommendations summarizes the research findings 

indicates avenues for further explorations.

Chapter 6 , Engineering Implications, Comparative Study and Contributions discuss 

application related issues and the competitiveness o f the proposed process compared to 

other processes.
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CHAPTER 2 : LITERATURE REVIEW

The present work proposes dye removal from water in three steps. The first step involves 

reduction o f the dye molecules by anaerobic zero-valent iron treatment, the second step 

utilizes a peroxidase to treat the products formed during the iron treatment and the last 

step precipitates and separates out the enzymatic reaction products from water. This 

chapter presents the literature review on reaction mechanisms and process parameters for 

all three treatment steps involved. The discussion attempts to derive some insights on the 

expected outcomes o f these treatment processes for the two selected dyes, RR2 and RB5.

2.1 Zero-valent Iron Treatment

Zero-valent metals are strong reducing agents. They have been used for synthesis 

o f organic amines from nitroaromatic compounds. Application of zero-valent iron (Fe°) 

in the environmental remediation area started with organic dechlorination of 

contaminated groundwater under anaerobic conditions (Johnson et al., 1998). With 

increasing understanding of the process mechanism, more and more recalcitrant organic 

compounds such as, DDT, DDE, various pesticides and herbicides like alachlor, atrazine, 

etc, and azo dyes are being treated by zero-valent iron under anaerobic conditions (Sayles 

et al., 1997; Eykholt and Davenport, 1998; Nam and Tratnyek, 2000). Successful 

reduction o f a wide variety o f compounds by Fe° under anaerobic conditions has proved 

its effectiveness for wastewater treatment.

2.1.1 Mechanism

Fe° reduction under anaerobic conditions is a surface-mediated “electrochemical 

corrosion process, which takes place in several steps” (Choe et al., 2001; Weber, 1996).

9
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In the first step (mass transfer reaction) the target organic compound comes in contact 

with the Fe metal surface and gets adsorbed on it. In the next step (chemical reaction), the 

electron transfer takes place to oxidize the iron metal and reduce the substrate organic 

compound. The second step is followed by another mass transfer reaction where the 

reduced product gets desorbed from the metal surface. The anodic and cathodic half 

reactions takes the following pathway :

Fe° —» Fe 2+ + 2e ......................................................(2.1)

H2O —» Ff + + OH ' .................................................... (2.2)

RX + 2e + H  + —> RH + J T ...................................... (2.3)

Where “R” represents the aromatic group, and “X” represents halogen group.

The associated cathodic reaction may vary depending on the reactivity o f the 

electron acceptor and their redox potential. The oxidation potential o f Fe° -»  Fe2+ system 

is -0.44 V. The aqueous chemistry may affect the actual potential. If the reduction

potential of an organic compound is greater than -0.44 V, it will get reduced by the Fe

metal (Davenport, 1996).

The following alternate reaction path is also possible:

2 H2O + 2e —» OH + H2 ................................................(2.4)

where the H2 reduces the adsorbed substrate under catalytic presence of Fe surface in the 

Fe- H2O system (Choe et al., 2001).

Since Fe° oxidation is a surface-mediated process, it is suitable for reduction of 

water-soluble compounds. However, for the hydrophobic compounds like pesticides, 

herbicides, etc., electron mediators such as quinones, natural organic matter (NOM) and

10
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porphyrins can be used to mediate the reduction process (Weber, 1996; Tratnyek et al., 

2001).

The iron surface contains both reactive and non-reactive sites. Even for reactions 

with higher intrinsic rate, the observed rate may be lower because only a portion of the 

organic substrate molecules will get a chance to bind with the reactive sites (Gotpagar et 

al., 1999). Thus the rate o f reaction depends on fractional reactive site (ratio of reactive 

sites to total sites) available for the reaction. A freshly prepared and cleaned iron surface 

can reduce the reaction induction period (reaction time delay) (Lavine et al., 2001). 

Reactive sites and reduction rate can be increased by using ultra-fine, nano-scale metal 

particles (Choe et al., 2000), continuous surface cleaning and by acid pretreatment. 

Pretreatment using hydrochloric acid increases the iron surface by a factor of 7.6; 

however, there can be a loss o f 4.9 % of Fe during acid wash. Continuous mixing also 

showed better reaction rate (Agrawal and Tratnyek, 1996). Ultrasonic cleaning increased 

surface by 169 % (Geiger et al., 2002).

In the past, when Fe° was applied to treat contaminated ground water, it was 

observed that anaerobic conditions favored the reduction process. Anaerobic conditions 

can be maintained in the laboratory by degassing or by using oxygen scavengers like 

Na2S0 3  or FeSC>4 (Mantha, 2001). Under anaerobic conditions, zero-valent iron (Fe°) 

reduces nitroaromatic compounds to the corresponding amines. Formation of other 

intermediate compounds like nitroso or hydroxylamine is insignificant (Agrawal and 

Tratnyek, 1996). The overall reaction mechanism for nitroaromatic compound 

degradation takes place according to the following equation:

3Fe° + A rN 02 + 6 H+ -> 3Fe2+ + ArNH2 + 2H20 ......................... (2.5)

11
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where Ar represents the aromatic group.

Theoretically, 3 moles o f Fe are required for every mole o f aromatic compound 

since the reaction stoichiometry is 3:1. Oxidation of Fe is the major side reaction. Re

oxidation of intermediates can cause more Fe to be consumed. Hence 5 to 6  atoms of Fe 

may be required to reduce a nitro-group instead o f the stoichiometric requirement o f 3 

atoms (Lavine et al., 2001). Thus, to compensate for the iron loss due to acid wash and 

other side reactions, an excess of iron over the stoichiometric amount is required for the 

completion o f reaction.

Fe degradation of azo dyes by cleaving of azo bonds takes places in two steps, of 

which the first step is reversible (Cao et al., 1999). Hence, some o f the intermediate 

products (hydrazo, -NH-NH-) from the first step may return to the original compound.

2.1.2 Effect of pH and Choice of Buffer

The pH affects the reduction efficiency. A lower pH improves Fe reduction 

efficiency (higher yield and lower reaction time) as more H+ are available for the reaction 

(Deng et al., 2000). Reduction product (corresponding amines) recovery also depends on 

the pH. Some o f these reduction products (amines) are carcinogenic, requiring recovery 

followed by an appropriate removal / treatment process. When Fe° reduction was used to 

reduce nitrobenzene, complete conversion of nitrobenzene to aniline was observed at pH 

greater than 5.0. However below pH 5.0, no aniline was detected in the solution. This 

may be due to the protonation o f aniline (pKa = 4.6) which prevented desorption o f the 

product from metal surface (Agrawal and Tratnyek, 1996; Mantha et al., 2001). Therefore 

aniline adsorption must be avoided by operating at a higher pH range if possible.

12
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Carbonate and acetate anions present in the carbonate or acetate buffers compete 

with the substrate in a Fe° reduction process. Carbonate anions bind more strongly to the 

iron surface compared to acetate anions, therefore carbonate buffers slow down the 

substrate reduction when used to control the pH (Lavine et al., 2001). Therefore 

appropriate choice o f buffer is important for efficient reduction.

2.1.3 Effect of Substrate Structure

Structure o f the compound and the presence of various substituent groups affect 

the redox potential o f the compound, which determines the intrinsic Fe° reduction rate. 

Groups with higher electron affinity pose a greater barrier for the electron transfer to take 

place (Davenport, 1996). For example, though dechlorination o f substrate is expected 

during Fe treatment, not all compounds get dechlorinated. Such reaction depends on the 

structure of the compound. In s-chlorotriazine herbicides, the reduction potential o f the 

C-X bond (X is halogen group) is in the order o f -1 to -3 , which is far too negative for Fe 

to affect. As a result, these herbicides could not be dechlorinated by iron metal 

(Davenport, 1996). In case the CF ions are released due to dechlorination, these halide 

ions clean and enhance the pitting of the Fe surface by breaking the Fe-oxide layers. This 

cleaning and pitting increases the number o f Fe active sites and autocatalyses the 

reduction (Gotpagar et al., 1999). A similar situation might happen with RR2 dye. No 

good correlation was obtained between decolorization by Fe and the dye molecular 

structure (Nam and Tratnyek, 2000).

Sulfonated compounds when treated with Fe°, may get adsorbed on Fe° surface 

via the sulfonic group by forming a bridged bidentate complex (Bandara et al., 1999; Roy 

et al., 2003). The presence of a large number of bulky sulfonate groups may adversely

13
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affect the reduction potential o f the azo bond due to steric hindrance, thus preventing the 

dye molecule from approaching the Fe° surface closely. However larger amount o f Fe° 

with more active sites can compensate for this hindrance (Bandara et al., 1999). This 

means, higher amount of Fe° may be required for dye molecules with more sulfonate 

groups.

2.1.4 Reaction Products and Yield

The azo bond is cleaved when azo dyes are degraded by Fe°. Aromatic amine and 

amino-naphthol compounds are formed along with hydrazo (-NH-NH-) as an 

intermediate. Stoichiometric amounts of aromatic amines were detected for small dye 

molecules like Orange II (Nam and Tratnyek, 2000). Some dye molecules may also be 

adsorbed on the Fe° surface, which may result in an apparently incomplete mass balance. 

Product yield increases with the rate of mixing (Nam and Tratnyek, 2000). This is also 

consistent with the observation that the rate of dye degradation was proportional to the 

available Fe surface area (Cao et al., 1999). Similar results were also obtained when 

nitroaromatic compounds were treated with Fe° (Westerhoff and James, 2003). It was 

postulated that incomplete mass balance of nitroaromatic compounds to aniline might be 

due to sorption o f nitroaromatic compounds and ammonium ion on the iron surface, 

production of unmonitored nitrogen oxide gas species, like NO2, N2O and formation of 

unstable intermediates which may not be present in the solution phase.

2.1.5 Corrosion Products

Iron hydroxides are formed due to anodic reaction. The resulting Fe2+ and Fe3+ 

resides in three states -  (i) hydrated or complexed in solution, (ii) precipitated as solid or 

(iii) adsorbed in oxide layer. The green brown precipitate which is formed is a mixture of

14
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Fe (0H )2 and Fe(0H)3 but gradually they evolve to form Fe3C>4 and y-Fe2C>3 (Johnson et 

al., 1998). The presence of iron oxides and other oxides passivate the iron surfaces and 

slow down the reduction process.

2.1.6 Reaction Inhibitors

Inhibition o f the iron surface is a common hindrance during Fe° treatment. Other 

than the Fe-oxides (anodic side reaction products), there are different factors which may 

also inhibit the Fe surface. Non-reactive adsorbates commonly found in soil, such as 

catechol, ascorbate, acetate and EDTA, were observed to compete with the substrate for 

Fe reactive sites (Johnson et al., 1998). The presence of such compounds may slow down 

the reduction process.

Ethanol is often used to dissolve water insoluble compounds, during their 

remediation. The presence o f ethanol reduces the sorption of organic substrates on to 

metal surface and hence reduces the rate of Fe° reduction process (Clark II et al., 2002).

2.1.7 Zero-valent Iron Treatment Discussion Summary

Based on the above discussion, the following inferences can be drawn:

• Fe° treatment is suitable to reduce water soluble compounds; however, to reduce 

hydrophobic compounds, electron mediators will be required.

• Fe° reduction can cleave the azo bonds in anaerobic conditions giving rise to aromatic 

amines.

• Fe° pre-treatment, proper mixing, and solution pH are important for the reduction. 

Iron in excess iron over the stoichiometric requirement may be needed. More iron 

will be required to reduce compounds with more sulphonate groups.

15
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• Stoichiometric production o f aromatic amines may not be observed in the reaction

mixture due to sorption on the Fe surface.

• Reaction mixtures may contain Fe° corrosion products along with aromatic amines.

• The aromatic amines may re-oxidize to produce colored substances, which will

require further treatment.

2.2 Enzymatic Treatment

Enzymes are the key components used by microorganisms to degrade various 

chemical compounds when they are used to treat wastewater (biological processes). In 

enzymatic treatment, an isolated enzyme is used instead of the whole microorganism. 

Enzymes are highly specific biological catalysts. In recent years, considerable research 

has been carried out to apply enzymes for industrial wastewater treatment. The 

motivations behind this growing importance o f enzymatic treatment are: (i) conventional 

chemical and biological treatment processes are not successful in achieving the required 

degree o f pollutant removal; (ii) enzymes can remove specific pollutants; (iii) cheaper 

enzymes are available due to advances in biotechnology and cheaper purification and 

extraction processes (Karam and Nicell, 1997).

Significant advantages o f enzymatic treatment over conventional physical, 

chemical and biological treatment processes are (Taylor et al., 1998):

• Minimum environmental impact • Reduced sludge volume
• Application to a broad range (but specific • Simple process control

type) of compounds

• Operation under wider pH and temperature • Small footprint
range

• No delay associated with biomass • Less reaction time
acclimatization
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• Operation under mild and less corrosive • Low capital cost 
conditions

• Treatability o f very dilute concentration • Less energy consumption

The usual disadvantage associated with enzymes is inactivation but this can be improved 

by using the immobilized enzyme. Though enzymes are costly due to their production 

costs, however, bulk production of enzymes from a cheap source will certainly overcome 

this cost factor (Karam andNicell, 1997).

2.2.1 Choice of Peroxidase Enzyme

Peroxidases are oxidoreductases. They catalyse the oxidation o f a wide range of 

electron donors in the presence o f hydrogen peroxide. Peroxidase was chosen for the 

study because : (i) their success in oxidising large complex molecules has been well 

established; (ii) they have been researched extensively, hence their mechanisms and 

application processes are well understood and documented; (iii) there is a possibility of 

economy of scale in production, because they have variety of applications such as, pulp 

and paper bleaching, soil remediation, on-site waste destruction, wastewater treatment, 

biocatalysis, etc., and their wide presence among living organisms. Enzymatic treatment, 

using heme peroxidases, such as, HRP (horseradish peroxidase) ARP (Arthromyces 

ramosus peroxidase), SBP (soybean peroxidase) have been successful in removing toxic 

aromatic compounds such as, phenol, aniline, substituted phenols and anilines, naphthols, 

benzidines, biphenols and related heteroaromatic compounds from wastewater (Klibanov 

et al., 1980; Taylor et al., 1998).

Application of horseradish peroxidase (HRP) in wastewater treatment has been 

very well researched. Arthromyces ramosus Peroxidase (ARP) was selected for
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enzymatic treatment in the present work because o f certain advantages over other 

peroxidases. Ease o f production of ARP makes economic bulk production a possibility. 

Hypomycete Arthromyces ramosus (fungi imperfecti) produces large quantity of this 

extra-cellular enzyme. Also, treatment cost with ARP was found to be aboutone fourth of 

that with HRP for removal of 2 mM phenol from refinery wastewater (Ibrahim et al.,

2001). Other significant advantages are : higher turnover capacity similar to HRP while 

having broad substrate specificity for hydrogen donors as HRP (Villalobos and 

Buchanan, 2002). The structure of ARP also allows aromatic amines and naphthol amines 

to suitably bind to its active site. Aromatic amines and naphthol amines are expected Fe 

breakdown products o f azo dyes.

ARP is a monomeric glycoprotein with molecular mass o f 41 kilodalton. It shows 

the highest sequence similarities (43 % and 41%) with lignin peroxidase (LiP) and 

manganese peroxidase (MnP) enzymes from P. chrysosporium. The heme group occupies 

a crevice between two large domains very similar to LiP and MnP (Nakayama and 

Amachi, 1999). ARP has an exposed heme edge (Smith and Veitch, 1998; Tsukamoto et 

al., 1999), that makes it suitable for bigger molecules. Other properties of ARP are 

presented in Table A.4.
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2.2.2 Reaction Mechanism

The peroxidase reaction mechanism is given below (Nakayama and Amachi,

1999):

k

E [Fe(III)] + H20 2  *-> Compound I [Fe (IV)* ] + H20  .. .(2.6)

k

Compound I [Fe (IV) ] + AH2 -----2—>  Compound II [Fe (IV)] + AH ....(2.7)

k

Compound II [Fe (IV)] + AH2 -----*-> E [Fe (III)] + AH* + H20  .........(2.8)

k

2 AH*  A +A H 2 (or A2H2)  (2.9)

where “A” represents an aromatic compound and ' indicates a radical

This shows a generally accepted mechanism of peroxidase-catalyzed oxidation. 

Hydrogen peroxide removes two electrons from peroxidase, yielding a highly oxidized 

state, Compound I. Compound I then undergoes two successive one-electron reductions 

by AH2. First, it gets reduced to Compound II and a free radical after reacting with one 

aromatic molecule, AH2. Compound II and I differ only by one electron on the porphyrin 

ring. Another AH2 molecule subsequently reacts with Compound II by adding a second 

electron to it and yielding native peroxidase. The free radicals then combine to form AH2 

and an oxidation product A, or dimerisation of the free radicals leads to formation of 

A2H2 (Nakayama and Amachi, 1999).

When an amine phenol mixture is the substrate, along with the peroxidase 

catalysed co-oxidation, a non-enzymatic exchange reaction between phenoxy and aminyl 

radical also takes place, as:
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PhO* + AmNH2 o -  PhOH + AmNH* ........................... (2.10)

Where PhOH & PhO are phenol compound and phenoxyl radical, AmNH2 and

AmNH are amine compound and amine radical.

Depending on the reactivity o f phenol and amine with enzyme, the forward or backward 

reaction may be favoured and amine or phenol, the initial substrate, may be regenerated 

(Karasyova et al., 2001).

2.2.3 Effect of pH

Enzymes carry out the best substrate conversion at a certain pH. ARP showed 

better performance in the pH range 5.0 to 8.0 depending on the type o f hydrogen donor 

used, ki and fo, the rate constants for formation of Compound I and Compound II, 

depend on pH. ki remains constant in neutral and basic pH but decreases in acidic range. 

&2 and ki , the rates of reduction of Compounds I and II are maximum at pH 8.0 and 

decrease with higher pH. Usually, for peroxidases, k2 is at least 10 times bigger than ks 

but for ARP they are equal at pH 5.0 to 6.0. This may be because o f unusually high 

reduction potential o f Compound II. This indicates that ARP can be active even at lower 

pH as 5.0 (Nakayama and Amachi, 1999).

2.2.4 Reaction Stoichiometry

The enzyme gives better substrate removal performance at a certain optimum 

concentration o f hydrogen peroxide and enzyme. At higher enzyme concentration, 

catalase effect may be predominant and will stop the reaction by decomposing hydrogen 

peroxide. On the other hand, a relatively higher hydrogen peroxide concentration when

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



compared to enzyme may inactivate the enzyme (Nicell et al., 1995). Hence an optimum 

concentration for both the enzyme and hydrogen peroxide is required. According to the 

mechanism presented earlier, Eq.2.6-2.9, for every mole of peroxidase consumed, two 

moles o f aromatic compound are oxidized giving a stoichiometry o f 1:2. However, the 

stoichiometry of hydrogen peroxide to substrate reported in the literature is almost 1:1 

(Nicell, 1991; Al-Kassim et al., 1994; Masuda et al., 2001; Ibrahim et al., 2001; 

Villalobos and Buchanan, 2002). It is assumed that the peroxide is consumed in the side 

reaction for forming dimers and polymers and hence raises the hydrogen peroxide 

demand (Villalobos and Buchanan, 2002; Nicell, 1991). Similarly, in the case o f enzyme 

to substrate ratio, 1:1 stoichiometry has been found to be optimum though the mechanism 

shows a figure o f 1:2 (Masuda et al., 2001; Mantha, 2001). Both hydrogen peroxide to 

enzyme and enzyme to substrate ratios may depend on the enzyme preparation, 

polymerization and precipitation mechanisms (Masuda et al., 2001).

2.2.5 Reaction Temperature

In case o f phenol removal by HRP, the catalytic turnover was found to increase 

with the lowering of reaction temperature (Nicell, 1991). Similar results have also been 

observed with CiP (Masuda et al., 2001). A possible explanation is that certain amount of 

enzyme gets adsorbed on the polymeric end product, which reduces the catalytic lifetime 

and turnover of the enzyme. These polymers are less soluble at lower temperature, thus 

they precipitate without adsorbing the enzyme and thereby increasing the catalytic 

lifetime (Masuda et al., 2001, 2002). For ARP, the optimum temperature is reported to be 

40° C. Its thermal stability is 30 minutes up to 50° C at pH 7.0 (Nakayama and Amachi,
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1999). This means that enzymatic reaction should be carried out at temperature below 40° 

C. In the current study, all the experiments were carried out at room temperature.

2.2.6 Reaction Time

Two to three hours reaction time was sufficient to get 90% substrate removal for 

most of the phenols and aromatic amines by enzymatic treatment in batch operation 

(Nicell, 1991, Al-Kassim et al., 1994; Masuda et al., 2001). Similar order o f reaction time 

was used in the present study.

2.2.7 Reaction byproducts

RR2 and RB5 dye molecules have phenolic, amino and sulphonic groups attached 

to benzene and napthalene ring, which are expected to play critical roles to influence the 

type of enzymatic end products formed.

Fe reduction products for RR2 and RB5 are aromatic amines and amino-naphthol 

compounds. When phenol and aniline are the substrates, polyphenols and polyanilines are 

the major products formed after oxidative reaction by peroxidase. Variables such as: type 

o f enzyme, pH, substrate, etc. may significantly influence the type o f reaction byproducts 

(Nicell et al., 1995). For phenol as a substrate, the main reaction products are phenolic 

polymers and soluble dimers. When HRP reacts on phenol substrate, quinone is formed 

in addition to the polymers (Wagner and Nicell, 2002 b). Whereas, when aniline is the 

substrate, peroxidase forms quinone imines as the intermediate products which finally 

transform to polyanilies (Liu et al., 1999; Mantha, 2001). Substituted phenols and 

anilines seem to form colored end product on peroxidase treatment. Removal of these 

colored products required chitosan or other coagulant aids (Wada et al., 1995).
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Sulfonated substrate can give two different results. If the ortho position with 

respect to the phenolic or amine group is substituted, de-sulfonation is favored, as 

observed in case of 3,5-dimethyl-4-hydroxy and 3,5-dimethyl-4-amino benzene sulfonic 

oxidation by HRP, LiP and MnP. On the other hand, if  ortho position is not substituted, 

then oxidation o f this ortho position is favored compared to desulfonation, which was 

also observed when the same peroxidase enzymes oxidised 4-amino and 4-hydroxy 

benzenesulfonic acid as substrate (Muralikrishna and Renganathan, 1993).

Oxidation of amino-phenol compounds may take place through -OH or -NH2 

depending on their position in the aromatic ring. Polymerisation of ortho- and para- 

aminophenols takes place through -NH2 groups while -O H  is conserved. But for meta- 

aminophanols both -OH and -NH2 seem to take part in polymerisation, as observed in 

case of 2,3- and 4- aminophenol polymerisation by HRP (Shan et al., 2003). Oxidation of 

naphthol compounds with HRP seems to form more hydrophobic polymers as compared 

to phenol and amines (Klibanov et al., 1980). They seem to produce oligomers with 

coupling at various positions in the aromatic ring, for example - HRP catalyzed 

polymerization o f 2-naphthol (Premachran et al., 1996).

Though some researchers have attempted to co-relate substrate structure to the 

final end products, RR2 and RB5 structures are so complex that it is difficult to predict 

the enzymatic end products. Thus all the dynamics as discussed above may have a role to 

play.

2.2.8 Enzyme Inhibition

Different side reactions that take place during enzymatic oxidation o f aromatic 

compounds can render the enzyme inactive and thus limit its lifetime. Enzyme inhibition
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can take place by different ways (Masuda et al., 2002; Nicell and Wright, 1997): (i) 

temporary inhibition can take place in an excess o f peroxide, when the intermediates, 

Compound I and II react with hydrogen peroxide forming Compound III; (ii) terminal 

inactivation, where the free radicals irreversibly bind with the enzyme; (iii) permanent 

inactivation by adsorption, where the polymers formed during the enzymatic reaction 

adsorb the enzyme, thereby blocking the access to its active site.

The temporarily inactive form, Compound III, may come back to the native form 

depending on the reaction conditions. Recovery of initial enzyme activity or the return of 

Compound III to the native enzyme form depends on the initial concentration of 

hydrogen peroxide. For lower hydrogen peroxide concentration, such as 0.25 mM, ARP 

acting on phenol completely regained its activity. However, for higher hydrogen peroxide 

concentration, such as 4 mM, almost 20 % of the enzyme activity was lost permanently 

(Villalobos & Buchanan, 2002). The presence of excess hydrogen peroxide or absence of 

aromatic substrate is known to inactivate ARP more when compared to other peroxidase 

enzymes. Hence the amount and timing of hydrogen peroxide addition is critical for 

maintaining the ARP in active form. Keeping the instantaneous enzyme concentration 

low can control the second form of enzyme inhibition. This will lower the amount of free 

radicals and therefore minimise enzyme inactivation by these free radicals. The third 

form of inactivation can also be minimised. Higher substrate and hydrogen peroxide 

concentration in the presence of lower enzyme concentration will tend to favor the 

formation of dimers rather than larger polymer molecules (Villalobos & Buchanan, 

2002). Unlike polymers, dimers do not inhibit enzymes. Hence suitable timing for
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addition, concentration of enzyme and hydrogen peroxide are the key control variables to 

overcome enzyme inactivation.

2.2.9 Reactor Operation

Different methods to overcome enzyme inactivation by hydrogen peroxide are to 

(i) keep the free radical concentration low at any time by step addition o f enzyme and 

also hydrogen peroxide; (ii) reduce the amount o f enzyme available for inactivation by 

step addition of enzyme; (iii) reduce the amount o f hydrogen peroxide available at any 

time by step addition (Al-Kassim et al., 1994; Ibrahim et al., 2001; Villalobos and 

Buchanan, 2002). Step addition o f hydrogen peroxide also improves phenol removal with 

ARP, as observed by some researchers (Ibrahim et al., 2001; Villalobos and Buchanan,

2002). This may be because when sufficient reaction time is provided, Compound III, the 

temporary inactive form returns to its native enzyme form which removes more substrate.

Reactors can be operated in batch, semi-batch or continuous manner. 

Discontinuous semi-batch operation with CMP could remove more phenol as compared 

to batch operation (Al-Kassim et al., 1994). A continuous-flow reactor with HRP can 

improve the phenol removal as compared to batch reactor (Nicell, 1991). This is because 

instantaneous hydrogen peroxide and enzyme concentration remain low in continuous- 

flow reactors. In the present study, batch process reactors were used along with step 

addition of hydrogen peroxide to minimize enzyme inactivation.

2.2.10 Enzyme Turnover

The catalytic lifetime of an enzyme is often expressed in terms o f catalytic 

turnovers (Klibanov et al., 1980). Catalytic turnovers are defined as the number o f times 

the enzyme can perform its catalytic cycle before becoming inactive. In other words, it is
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the number o f substrate molecules converted by a single molecule of enzyme before it 

becomes permanently inactive. The presence of certain additives, such as polyethylene 

glycol (PEG), gelatin and polyelectrolytes, can improve the life o f the enzyme (Wu et al., 

1997, 1998; Caza et al., 1999; Buchanan and Nicell, 1998). PEG is reported to improve 

the turnover o f ARP for phenol removal by almost 40 % (Ibrahim et al., 2001). ARP was 

successful in removing 90-93% of phenol from both synthetic and refinery wastewater 

with a peak turnover capacity between 76,000 and 79,000 (Ibrahim et al., 2001; 

Villalobos and Buchanan, 2002).

2.2.11 Enzyme Treatment Discussion Summary

The following inferences can be made based on the above discussion:

• ARP can oxidize the aromatic compounds formed after the Fe° treatment o f the 

azo dyes.

• Optimization of H2O2, enzyme concentration and pH is required for getting 

maximum yield.

•  Enzymatic treatment should be carried out at temperatures below 40 0 C for at 

least 2 to 3 hours.

•  Resulting product could be a polymer or dimer, which may be water-soluble. In 

case it is water-soluble, a coagulant aid or any alternative process may be required 

to precipitate this product and finally remove it from water.

2.3 Expected Results

2.3.1: Reactive Red 2 (Trade name Procion Red MX 5B)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is a monoazo dye with chlorotriazine as reactive group. It is highly water- 

soluble. The dye is expected to be stable in water within pH range o f 4.0 to 10.0. 

Hydrolysis o f this dye does not occur by simple interaction with water but can occur if 

heated at high pH followed by returning the pH to neutral (dos Santos et al., 2003). 

Therefore it can be expected that only change of pH will not result in its hydrolysis. Zero- 

valent iron powder reduction of this dye followed by photo-oxidation resulted in 

hydrogenated structure (Ar-NH-NH-Ar), substituted benzene and naphthalene ring 

compounds (Feng et al., 1999). It was hypothesized that the ring structure o f substituted 

triazine might depart from dye molecule after Fe° reduction, however, no clear evidence 

was available. Hence the question about whether the triazine ring remains attached to the 

dye molecule or not after Fe° reduction is still open. The molecular structure of the Fe° 

treatment product will remain complex if the triazine ring remains appended. Such a 

complex structure might pose a hindrance to subsequent enzymatic treatment in Step 2. 

Therefore, this information about triazine ring is relevant to develop insights about ARP 

action on complex molecules. In RR2, the triazine ring remains attached to the naphthol 

moiety o f the dye molecule by a -NH- bond (Table 1.1). A model compound, 

diphenylamine has a similar secondary amine bond. Therefore, Fe treatment on this 

model compound, diphenylamine, was carried out to get an indication whether this -NH- 

bond gets cleaved under anaerobic Fe° treatment. This is discussed further in section 

2.4.5.

2.3.2 Reactive Black 5 (Trade name Ramazol Black B)

This is a bisazo dye containing sulfatoethylsulfone reactive groups. The Fe° 

treatment o f this dye was proposed to be carried out within the pH range 4.0 to 10.0. This
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dye is reasonably stable in water solution within pH range of 4.0 to 10.0. Basic pH above 

10.0 changes its absorbance spectrum, which indicates formation of some temporary 

intermediate compound in this basic pH (Alaton and Balcioglu, 2001). However the 

absorbance pattern returns to original one once the pH is brought back to normal, which 

indicates that the intermediate returns to original dye form (Alaton and Balcioglu, 2001). 

Auto-oxidation of anaerobic reaction (UASB reactor) products of RB5 resulted in partial 

re-colorization (Sponza et al., 2002; Van der Zee et al., 2000). Since the present study 

was carried out under anaerobic conditions, re-colorization of the Fe treatment products 

was expected upon exposure to aerobic conditions.

2.3.3 Intermediate Compounds from Zero-valent Iron Treatment

The reaction conditions proposed in the anaerobic stage o f the present work were 

the same as for the study by Mantha (2001), where nitrobenzene was reduced by Fe°. One 

mM sodium sulfite was found to be optimum concentration for deoxygenation in the 

above study. Therefore the similar condition was maintained in the current study. This 

was expected to reduce the azo bond in the dye molecule.

Anaerobic reduction o f the azo bonds results in multi-substituted benzene and 

naphthalene compounds (aromatic amines). The chemical structure of dyestuffs and 

reaction condition determines the quantity o f aromatic amines formed. The degree to 

which the azo group is reduced, depends on the electron density around the -N=N- bond. 

Electron donating groups, such as -N H 2 and -OH, increases electron density around the 

bond and facilitate the reduction and formation o f aromatic amines. However, electron 

withdrawing groups such as, -SO3 and -COO', may cause reduction by simply 

introducing hydrogen atoms in the azo group (Pielesz et al., 2002).
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Based on the RR2 and RB5 dye structures, the following compounds were 

expected to be formed after zero-valent iron reduction:

RR2 degradation

1. Aniline 2. Di-sulfonated amino-naphthol
compound

3. Hydrogenated azo bond without bond 4. Triazine group
breakage

5. Corrosion product and impurities such 
as, salts

RB5 Degradation

1. Aromatic amines 2. Di-sulfonated amino-naphthol
compound

3. Hydrogenated azo bond without bond 4. Corrosion products and
breakage impurities such as, salts

Since the Fe reaction product may be a mixture of different compounds as mentioned 

above, an analysis was required about the suitability of peroxidase to treat this mixture in 

the subsequent step. Aniline and naphthol compounds are good substrates of peroxidase 

(Klibanov et al., 1980; Mantha, 2001). As other Fe degradation products are substituted 

benzene and naphthalene compounds with -O H  and -N H 2 groups, their reaction 

behaviours with peroxidases were expected to be similar to that of aniline and naphthol 

compounds. Therefore it was expected that these compounds could also be treated by 

peroxidases. All these evidences suggested that peroxidases may be suitable for removing 

aromatic amines from the Fe reduction product obtained in the first step.

2.3.4 Impact of Impurities and other Substances

Wastewater may contain sodium salts o f sulfite (SO3 ’), iodide and nitrite 

(Wagner and Nicell, 2002a). Textile wastewater contains sodium salts because dyes and
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auxiliary chemicals usually carry sodium (Arslan and Balcioglu, 2000). Sodium salts of 

sulfite, iodide and nitrite are substrates of peroxidase, hence, they can compete with the 

aromatic amines for the enzyme. However the presence of inorganic anions, such as 

sulfite, has no negative impact on phenol removal by HRP (Wagner and Nicell, 2002a). 

In the presence of sodium chloride and ammonium chloride etc., the enzyme lost its 

catalytic stability faster. As the dye used in this study was impure (purity o f ~50%), 

hence such side reaction was expected.

The presence of metal ions, such as Fe(II), Zn, Ni, Cu, may have some effect on 

the enzymatic reaction. These metals can react with the oxygen containing ligands, such 

as carboxylic groups in the protein molecule, causing inactivation of the enzyme (Wagner 

and Nicell, 2002a). However, filtration after Fe treatment should eliminate presence of 

any metal from the solution. The enzymatic reaction for treatment o f phenol from 

foundry and craft pulping wastewater showed that peroxidase was able to selectively 

remove phenol even in the presence of different dissolved substances in wastewater 

(Cooper and Nicell, 1996; Wagner and Nicell, 2001).

2.3.5 Diphenylamine

This compound has a -NH- bond. Fe treatment of this compound is expected to 

indicate whether such -N H - bond also gets cleaved in case o f RR2. Besides this, the 

degradation o f this compound is also interesting as it is an identified pollutant according 

to EU and US EPA (Drzyzga, 2003; TRI data, 1995). It is used as a stabilizing agent in 

nitrocellulose-based explosives and as an anti-oxidant preservative for harvested apple 

and pear crops. The redox potential o f diphenylamine is 0.78V (Pankratov and 

Shchavlev, 2001). Since it is higher than the Fe° redox potential (-0.44V), it is probable
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that this compound can be degraded by breaking the -NH- bond, which is the only likely 

candidate. The degradation products would then be aniline and benzene.

2.3.6 2-amino-8-naphthol-3,6-disulfonic acid

2-amino-8-naphthol-3,6-disulfonic acid (ANDSA) is a sulfonated amino-naphthol 

compound. Action of ARP on this model compound was studied to gain insights about 

suitability of ARP to degrade complex sulfonated amino-naphthol compounds. The Fe 

treatment products of RR2 and RB5 in Step 1 was a mixture o f similar sulfonated amino- 

naphthol compounds. Besides this, ANDSA is a potential pollutant from the dye industry 

(Zhu et al., 2002; Stolz, 1999). ANDSA, which is commercially known as H-acid, is 

widely used as a dye intermediate. Since the compound has both -O H  and -NH2 groups, 

it was considered to be a possible substrate of enzyme.

From the above discussions it was concluded that Fe reduction of the two dyes 

followed by enzymatic removal o f aromatic amines held promise to remove the dye 

compounds from water. It was expected that the study on diphenylamine would give 

better insight into the Fe degradation process o f RR2 and RB5, whereas the study on 

ANDSA would yield insights into enzymatic removal o f substituted naphthalene 

compounds.

2.4 Coagulation and Precipitation

Coagulants are used for removing color and COD from wastewater (Nemerow, 1978). 

Alum is a common coagulant used in enzymatic wastewater treatment to remove the 

reaction byproducts (Mantha, 2001, Al-Kassim et al., 1994). For substituted phenol and 

anilines, cationic polymers, such as PEI (synthetic cationic coagulant aid), chitosan 

(natural cationic polymer) were effective (Wada et al., 1995). Presumably, because
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substituted phenols and anilines formed quinone type compounds, which were highly 

negatively charged, and alum was not sufficient to neutralise these charges. PEI and 

chitosan could remove more than 80% of color and total organic carbon (TOC) from 

paper and pulp industry wastewater (Ganjidoust et al., 1996, 1997). PEI and alum were 

used together in this present work.

2.4.1 Mechanism

PEI is a cationic coagulant. It has primary, secondary and tertiary amine groups 

and it is highly branched with a repeating chemical unit as -(CH2-CH2-NH)-. It becomes 

charged at low pH and weakly dissociated at higher pH range o f 8.0 to 9.0, which is the 

pKa of primary amine group (Andersson and Bergstrom, 2002). In presence of adequate 

amount o f H+, the amine groups undergo protonation to form positively charge N H /, 

which effectively binds with negatively charged substrate molecules to form large 

molecular complexes. Hence, at a pH level below 8.0, it performs better (Andersson and 

Bergstrom, 2002). However at lower pH the substrate molecules themselves may alter 

their charges in the presence of H+ that may work against the performance of the 

coagulant aid. Therefore, an optimum pH may be observed when the coagulation 

phenomenon is best manifested. Alum in water forms a gel which entraps these substrate- 

PEI complexes and precipitate them.

Total nitrogen content o f PEI is 32.5%. One manufacturer claimed PEI to be 

toxicologically benign and approved by FDA for indirect food contact application 

(www.polymerenterprise.com, Jan 2004). It has many interesting applications, such as: i) 

purification of protein from feed stock; ii) immobilization o f biocatalyst; iii) soluble 

carrier for enzymes and affinity legands; iv) retention o f inorganic pigments on papers,
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etc; v) color removal from wastewater (Andersson and Hatti-Kaul, 1999). The success of 

PEI to remove color has attracted researchers to explore its application in enzymatic 

wastewater treatment. The enzymatic reaction product o f the substituted phenols and 

anilines form negatively charged quinones. These quinones easily react with the nitrogen 

from the amino groups of the PEI polymer by cross coupling and the resulting product 

precipitate easily from water (Wada et al., 1995).

The structure o f the PEI can be expressed as (Anderson and Bergstrom, 2002)

NH^

NH2+̂ ^ ^  NH+x̂ \  NH+/ * \

n h 2+

The coagulant concentration is important. For anilines and p-chloroanilines 

(concentration 0.5 mM along with 1 mM phenol as co-substrate), optimum concentration 

o f PEI was found to be 40-90 mg/L resulting in 100 % substrate removal (Wada et al., 

1995). For removing color from paper and pulp industry wastewater, with pollutant 

content o f 300 mg/L, a PEI concentration o f 100-200 mg/L could achieve 80 % color and 

TOC removal (Ganjidoust et al., 1996, 1997). PEI also settled down along with the 

pollutant, therefore its addition did not increase TOC of the treated water.

Therefore it was inferred that:

• PEI and alum can remove colored products after the enzymatic reaction.

• Higher concentrations o f PEI may be required depending on the substrate structure.

• TOC content of the treated water may not rise due to PEI addition.
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CHAPTER 3 : MATERIALS AND METHODS

This chapter describes the experimental procedures and analytical techniques used in the 

study.

Experimental Studies

To achieve the objectives of the research, following experiments were carried out:

• Effect of pH on Fe° treatment of two dyes -  RR2 and RB5.

• Reaction rate for Fe° treatment o f RR2 and RB5.

• Effect of pH on ARP activity with RR2 and RB5 Fe° reduction products.

• Effect o f H2O2 concentration on ARP activity with RR2 and RB5 Fe° reduction 

products.

•  Effect o f ARP concentration on ARP activity with RR2 and RB5 Fe° reduction 

products.

•  Reaction rate for ARP action on RR2 and RB5 Fe° reduction products.

•  Effect o f pH on coagulation of RR2 and RB5 enzymatic reaction products by PEI.

• Effect of PEI concentration on coagulation of RR2 and RB5 enzymatic reaction 

products.

•  Fe° treatment o f model compound - DPA.

• Effect of pH on ARP activity with model compounds - DPA and ANDSA.

• Effect o f H2O2 concentration on ARP activity with DPA and ANDSA.

• Effect of ARP concentration on ARP activity with DPA and ANDSA.

• Reaction rate for ARP action on DPA and ANDSA.
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3.1 Zero-Valent Iron Treatment of RR2 and RB5

3.1.1 Materials

Two dyes, Reactive Red 2 (dye content- 50%), lot no. 12623DQ and Reactive 

Black 5 (dye content- 55%), lot no. 04906CR were purchased from Sigma Aldrich 

Chemicals, Milwaukee, WI. They were used as delivered. Iron metal was purchased from 

Fisher Chemicals, NJ, (FL-04-1102: lot no. 028418) as iron filings having size of 40 

mesh. Purity o f the metal was 99.98 % with major impurities being phosphorous, (16 

ppm), cobalt (14 ppm), nickel and manganese (10 ppm), as stated by the supplier. ACS 

grade cobaltous chloride and sodium sulphite were obtained from Fisher Scientific, 

Pittsburg, PA. Analytical grade trinitrobenzenesulfonic acid (TNBS) (picryl sulfonic 

acid) was obtained from Sigma Aldrich Chemicals, St Louis, MO. All acetate, phosphate 

and carbonate buffers were prepared as per Gomori (1955). Plastic Syringes (6 mL) were 

purchased from Becton Dickinson & Co, Clifton, NJ. Syringe filters (bulk, non-sterile, 

size 0.2 micrometer) were obtained from Pall Gelman Laboratories, Mississauga, ON. 

Disposable polystyrene semi-micro cuvettes were used to measure the absorbance o f the 

samples. They were purchased from Bio-RAD Laboratories, Mississauga, ON, Canada. 

Quartz cuvettes with path length 10 mm was purchased from Hellma (Canada) Limited, 

ON. Whatman No 42 filter papers were used along with vacuum system for filtering the 

Fe reaction products.

3.1.2 Equipment

Absorbance of the solutions was measured by using a Hewlett-Packard Diode 

Array Spectrophotometer, Model 8452A, with wavelength range between 190 to 820 nm 

and 2 mm resolution. The spectrophotometer was interfaced with a HP Vectra ES/12
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Computer. The batch reactor vials were shaken at maximum setting on a Burrel Model 75 

wrist action shaker by Burrel, Pitsburgh, PA. pH was measured by IQ 200 pH meter fitted 

with ISFET probe from IQ Scientific, London, ON.

3.1.3 Experimental Procedure

All reactions were conducted at room temperature, 18-22 0 C. All solutions were prepared 

in de-ionized water. All acetate, phosphate and carbonate buffers were prepared as per 

Gomori (1955).

Iron Pretreatment: Zero-valent iron was pretreated with HC1 as recommended by

Agrawal and Tratnyek (1996). This was done to remove any metal oxide present on the 

surface. The measured quantity o f Fe was taken in a glass vial and kept soaked in 10 mL 

o f 10 % HC1 for 20 minutes. Then, the iron particles were washed twice with de-ionized 

and de-oxygenated water to remove the metal oxides. The particles were then washed 

four times with 15 mM carbonate buffer (pH 9.5) to ensure removal of all chlorides from 

the surface. The buffer was previously made anaerobic by using sodium sulphite. This 

was followed by rinsing and maintaining in sodium sulphite solution to prevent any 

contact with oxygen. Sodium sulphite solution was prepared fresh each time the Fe 

treatment was done.

Batch Reactors: Batch reactor experiments were carried out in 30 mL vials sealed by 

screw caps. The vials were shaken on a wrist shaker on maximum setting of 10 for 

required period of time. This ensured proper mixing and sufficient contact with Fe 

particles. Solutions were made anaerobic by using sodium sulphite and 1% (w/w) 

cobaltous chloride. In general, all the vials received 1 g Fe, 1 mM dye solution, ImM 

sodium sulphite solution and 40 mM buffer. After the reaction, the batch reactors were
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kept on a magnet to allow the iron particles to settle at the bottom. The solutions were 

filtered afterwards by using filter paper and vacuum.

pH Optimisation: Different buffers, such as acetate (pH 3.2 to 5.6), phosphate (pH 6.5- 

7.5) and carbonate (pH 8.0-10.0), were used to determine the optimum pH for the Fe° 

reduction process.

3.1.4 Analytical Techniques

Estimating reduction of Azo bond: Percentage reduction of azo bond was determined by 

monitoring absorbance at A,max by spectrophotometer. Percent reduction at any point was 

calculated as :

%reduction = — ——— xl 00  (3.1)
A in

where Ajn is the absorbance before Fe treatment and Afln is the absorbance after 

adding Fe.

Precipitating Fe corrosion products : Aqueous corrosion products - Fe(OH)2 and 

magnetite Fe2C>3 were formed for both the dyes. The corrosion products were precipitated 

by bringing the pH from 5.6 to normal pH of 7.0 by adding phosphate buffer (0.5 M, pH 

7.4).

TNBS Test: Aromatic amines, the Fe reduction products were detected by using the 

TNBS test (Mantha, 2001). A reaction mixture o f 1 mL was made from 100 pL o f 10 

mM of TNBS, 100 pL o f 0.5 M phosphate buffer of pH 7.4 and 800 pL o f sample and 

water. Reaction was allowed to proceed for the required time and then the absorbance 

was measured at maximum absorbance wavelength (Lmax) for the corresponding aromatic 

amine-TNBS compound against a reagent blank. Aniline was one o f the Fe reduction
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products for RR2. A calibration curve was prepared for aniline with absorbance and 

concentration, which showed a linear relationship. Concentration was determined using a 

molar extinction coefficient o f 13200 M'Vcm"1. Sodium sulphite formed an adduct with 

aniline; hence, a new calibration curve was prepared by using aniline solution doped with 

sodium sulphite. The absorbance was measured at 398 nm ( A . m a x )  and a slightly higher 

extinction coefficient of 13400 M '1 cm '1 was obtained (Appendix B-3). In case o f RB5, 

similar calibration curve could not be made, as the aromatic amines, which were the Fe 

reduction products o f RB5, were not available as standards. Hence, the percentage 

removal were estimated from the ratio o f absorbance values measured before and after 

enzymatic treatment.

Table 3.1: Parameters for analysis of aromatic amines by TNBS test

Substrate Peak 
wavelength, nm

Peak time pH Extinction
coefficient

M '\ cm 1

aniline 398 30 min 7.4 13400

ANDSA 410 1 h 7.4 1100

RR2 Fe
breakdown
product

398 1 h 7.4 -8000-9000 

based on aniline

RB5 Fe
breakdown
product

400 1 h 7.4 -5400-6000 

based on aniline
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3.2 Enzymatic Reaction

3.2.1 Materials

Arthromyces ramosus peroxidase was a gift from Biotech Environmental Inc. and is a 

developmental preparation o f Novo Nordisk, Denmark. It has Rz value (optical purity 

index) o f -0.5. The specific activity o f the ARP stock solution was 2000 U/mL based on 

an assay using 4-aminoantipyrine (4-AAP) phenol and hydrogen peroxide as substrate 

(Ibrahim et al., 2001). One unit of activity is defined as the number o f micromoles of 

hydrogen peroxide converted per minute at pH 7.4 and at 25 °C temperature. The enzyme 

was stored at 4 °C. A sub-stock was prepared with activity 400 U/mL, which was used for 

the experiments. Hydrogen peroxide (30 % w/v), analytical grade monobasic and dibasic 

sodium phosphate was purchased from BDH, Toronto, ON. Peroxide solutions for the 

experiment was prepared weekly. Catalase (EC 1.11.1.6), lot no: 81H7146, was 

purchased from Sigma Aldrich Chemical Co, St Louis, MO. The normal activity of 

catalase was 1500 U/mg dry solid and 2000 U/mg protein. Polyethyleneimine (PEI), lot 

no:14520PR, was obtained from Sigma Aldrich, Milwaukee, WI. Alum, as aluminum 

sulphate ( Al2(S04)3,16 H2O), lot no: 14238, was obtained from BDH, Toronto, ON.

3.2.2 Experimental Procedure

Preparation of Fe reduction products: The reaction products after Fe° reduction were 

allowed to aerate for 30 minutes. During this time the pH was adjusted to neutral range 

(7.0) by adding phosphate buffer (pH 7.4, 0.5 M). The colloidal particles formed by this 

process were separated by filtration.

Batch reactors: Batch experiments were set up to study the various parameters like pH, 

H2O2 to substrate ratio, enzyme concentration, and reaction time. All batch experiments
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were conducted in 30 mL glass vials. Reaction mixture volume for RR2 and RB5 

enzymatic treatment was 10 mL, while for ANDSA and DPA it was 20 mL. Each batch 

reactor received specific amount of Fe° reaction product, various concentrations of H2O2 

and enzyme and required buffer. Since the reaction compounds contained different 

amounts o f -O H  and -NH2 groups, the stoichiometric amount o f H2O2 and proportional 

amount of enzyme were added. For all the experiments, H2O2 was added stepwise to 

avoid instant inactivation o f the enzyme. The contents of the vials were mixed thoroughly 

and continuously with teflon coated magnetic stirrer. The reactions were stopped after 3 h 

by adding catalase, which broke down H2O2 to water and oxygen. At the end of the 

reaction, the products were filtered and samples were withdrawn for colorimetric and 

absorbance test.

Coagulation: After enzymatic treatment, PEI was added to the reaction mixture followed 

by rapid and then slow mixing to form colloids with the reaction products. Finally, alum 

was added and pH was adjusted to neutral to help settle the colloidal particles. These 

particles were subsequently removed by filtration.

3.2.3 Analytical Techniques

Enzyme Activity Assay: Enzymes were measured by their catalytic activity. 4- 

aminoantipyrine (4-AAP)-phenol was used as color generating mixture, which generated 

colour when peroxidase and peroxide were added to it. The rate o f color generation was 

proportional to the enzyme activity. The assay mixture contained phenol, 4-AAP, and 

hydrogen peroxide where enzyme was used in limited quantity. The rate o f reaction was 

measured by measuring the rate of formation of colored products that absorbed light at a 

peak wavelength o f 510 nm with an extinction coefficient of 6000 M '1 cm based on
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peroxide. One unit of activity is defined as number o f micromoles o f H2O2 utilized in 

one minute at pH 7.4 and at temperature 25 °C in an assay mixture containing 10 mM 

phenol, 2.4 mM 4-AAP and 0.2 mM H2O2. The detailed description of this assay is 

presented in Appendix B -l.

Hydrogen Peroxide Assay: This colorimetric end point assay achieves the measurement 

o f hydrogen peroxide concentration using Arthromyces ramosus peroxidase (ARP) as 

catalyst and phenol and 4-AAP as color-generating substances. This assay was set up 

with hydrogen peroxide as the limiting substrate in the mixture. Thus, the intensity of 

color generated was proportional to the amount of peroxide present in the sample. The 

assay volume was kept as 1 mL. The detailed procedure is presented in Appendix B.2.

TNBS Test for Aromatic Amines: Remaining aromatic amines in a mixture were

measured by the TNBS test as mentioned in Section 3.1.4. In the case of RR2, one o f the 

products was aniline so the standard curve was used for measuring the concentration of 

the remaining aromatic amine. For RB5, the reaction products positively responded the 

TNBS test indicating formation o f aromatic amines. However, no exact standards for 

these aromatic amines were available. Hence, the difference between the UV absorbance 

values for the mixture, before and after the enzymatic reaction, gave the estimates of 

percentage aromatic amine removal.

Optimum Concentration of PEI: Optimum PEI concentration was determined by 

comparing reduction in absorbance of the reaction products before and after enzymatic 

treatment.
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3.3 Model Compounds

3.3.1 Materials

2-amino-8-naphthol-3,6-disulfonic acid, monosodium salt, (purity 80-90 %) was 

purchased from Sigma Aldrich rare chemical library, Milwaukee, WI. Diphenylamine 

(purity 99%), lot No: 07325EO was purchased from Sigma Aldrich Chemicals, 

Milwaukee, WI. Aniline was purchased from Fisher Scientific, NJ.

3.3.2 Equipment

HPLC was purchased from Waters Co, Milford, MA, USA. The Waters System had a 

model 2487 dual X absorbance detector, Waters Model 1525 Binary HPLC pump and 

Waters Model 717 Autosampler. The column was C l8 (5 pM, 4.6x150 mm) operated by 

Breeze software. The elution was isocratic using 80/20 % methanol and water. The UV- 

VIS detector was set in dual mode at 280 nm diphenylamine and aniline and at 254 nm 

for benzene.

3.3.3 Experimental Procedure

The enzymatic treatment of both DPA and ANDSA was carried out as discussed in 

Section 3.2. ANDSA also responded to the TNBS test. A reaction mixture o f 1 mL was 

made from 100 pL of 10 mM of TNBS, 100 pL of 0.5 M phosphate buffer o f pH 7.4 and 

800 pL o f ANDSA sample and water. Reaction was allowed to proceed for 60 minutes 

and then the absorbance was measured at 410 nm against a reagent blank. A calibration 

curve was prepared for ANDSA. Difference o f concentration between the before and 

after enzymatic treatment gave the % removal o f ANDSA by enzymatic treatment. DPA 

did not respond to the TNBS test under the present conditions, hence, absorbance and 

HPLC was used for measuring percentage removal.
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Fe° treatment of DPA was done by using the same method as described in Section 3.1. 

The breakdown products were identified by HPLC method. Standard curves for DPA and 

aniline are given in Appendix C.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Estimation and Minimization of Errors :

There could be two types of error in any analytical study - determinate and 

(systemic) and indeterminate (random) error. Determinate errors are introduced due to 

improper experimental design and they are inherent to a particular method. Quite often a 

significant portion o f these determinate errors can be controlled or minimised. These 

types o f errors can be minimized by strictly following the experimental protocols like - 

time, amount o f reactant, order or steps o f addition of the compounds and recalibrating 

the instruments on regular basis. Systemic errors can also be minimised by appropriate 

experimental design. For example, systemic error can occur when a very low reactant 

concentration is used in colorimetric assay; therefore, preferably all observations should 

be taken at a recommended concentration range.

Indeterminate errors are variations in experimental conditions, which cannot be 

controlled directly. However, impact o f these random errors can be estimated. 

Uncontrollable errors may be introduced due to equipment inaccuracies or due to human 

factors like - measurement errors, sampling errors etc. Variations in electronic equipment 

have strong correlation with time, due to drift and aging. Therefore, variation in 

observations noted within a short period, say within few hours, are predominantly due to 

human and other factor, whereas observations noted across a wider span o f time, say 

across the whole week or month, is due to both equipment variations and human factors. 

The following experiments can give estimates of variations due to these two factors, 

equipment variation and human factor in this atudy.
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3.4.1 Experiment design

Exneriment 1 : This was designed to estimate variance introduced due to human and 

miscellaneous factor, other than equipment variations. All observations were taken 

consecutively on the same day within a few hours, without resetting or re-calibrating the 

equipment (spectrophotometer is allowed 1 hour warm up time), with the same 

experimental batch reactors. The following template was used to record the sample 

observation data against the same parameter (e.g. UV-vis absorbance).

Equipment and experimental details: TNBS test for ANDSA (aromatic amine) done by 

spectrophotometer. For process details refer to Appendix B.3. ImM solution o f ANDSA 

was prepared by diluting 5 mM stock. 100 pL of 10 mM of TNBS reagent was added to 

100 pL of 0.5 M phosphate buffer (pH 7.4), 100 pL of ImM ANDSA and 700 pL of 

distilled water. This mixture was allowed for 1 hour of reaction time. Eight test tubes of 

this mixture were prepared. UV-vis absorbance for these 8 reactors were noted at 410 nm 

with the spectrophotometer. The spectrophotometer was set against a reagent blank 

containing 100 pL reagent, 100 pL buffer, 800 pL of distilled water.

Time, location of observation: Lab -B79, Dept. Chemistry and Biochemistry, University 

of Windsor.

Data Collected

Table 3.2 : Error Estimation due to Human Effect.

Sample No. 1 2 3 4 5 6 7 8

Time
Absorbance
observed.

X l X2 X3 x4 x5 x6 x7 xs
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Estimation: The estimation o f the average and variance is given by (Caulcutt and 

Boddy, 1983)

|ix — Siton Xi / n = average of xi toxs, where n -  8

where as, the estimated variance due to human and other factors is given by

g x — (n Z x i 2- ( S x i ) 2) / n ( n - l )

S' =  -\fo ~ x

s = standard deviation for samples xi to xg , where n = 8 

Presentation of data: The absorbance data can be presented in two alternate formats

As confidence interval (say at 95 % confidence): jux ± 2.364*-^=

1) As average and standard deviation: px and s

Experiment 2 : To estimate variance introduced due to spectrophotometer. All sample 

observations were taken on different days. Each sample reactor was prepared each day 

afresh before each observation,. Similar procedure as in Experiment 1 was followed, 

except each sample was a new batch prepared on the day of observation. The following 

template was used to record the sample observation data against the same parameter (e.g. 

UV-vis absorbance).

Time, location of observation: Jan to Mar 2004, Lab -B79, Dept. Chemistry and 

Biochemistry, University o f Windsor
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Equipment and experimental details: TNBS test for ANDSA (aromatic amine) by 

spectrophotometer.

Data Collected

Table 3.3 : Error Estimation due to Equipment Effect

Sample No. 1 2 3 4 5 6 7 8

Date
Parameter
observed

yi y2 ys y4 ys ye y 7 ys

Estimation: The estimation of the parameter and its standard deviation due to all factors 

(equipment, human and other factors) are given by: 

py = average of yi to yg

s = standard deviation for samples yi to yg, andn = 8

The “t” statistics with degree o f freedom = 7 was used to estimate the confidence 

intervals. For 95 % confidence interval, t = 2.364.
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CHAPTER 4: RESULTS AND DISCUSSION

This chapter presents the experimental observations and discussions.

4.1 Properties of the Dyes

4.1.1 UV-vis absorbance characteristics

The absorbance characteristics uniquely identify the presence and concentration o f the 

dye in a solution. Figures 4.1 and 4.2 present the absorbance spectra of the two dyes. The 

observed absorbance characteristics are:

Pure dye solution Peak wavelength ( X,max)
Reactive Red 2 ,25 pM 538 nm (extinction coefficient 15477 M '1. cm’1)
Reactive Black 5, 25 pM 596 nm (extinction coefficient 25742 M’1. cm’1)

before Fe treatment

0.00004
200 300 700 800

UMELFNGTH

Figure 4.1: UV-vis absorbance spectra of Reactive Red 2, 25 pM 
solution, pH 7.0, room temp.
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Figure 4.2: UV-vis absorbance spectra of Reactive Black 5 ,25  
pM solution, pH 7.0, room temp.

Figures 4.3 and 4.4 present the visual observations for the two dyes during the entire 

treatment process.

Fe treatment ARP treatment PEI addition

Initial solution 
Dark Red, 

538nm V

Brown,
258nm

V

Reddish Brown, 
small at 25 8 nm V 7

Colorless, 
plateau at 258nm

o' 60 min 24c! min 30C
w

min Time
Left idle for a 

day
No visible change, 

remains Brown, 258nm

Figure 4.3: Visual observations and absorbance characteristics 
during RR2 treatment
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Fe treatment ARP treatment PEI addition

Initial solution T 
Bluish Black, 

596nm v

Brown,
268nm

Chocolate brown,
\ /  small at 268nm V 7

Colorless, 
small peak at 268nm

0 N. 60 min 
3 0 \Left idle for 30 

minutes ► 630 nm
Blue,

Figure 4.4 :Visual observations and absorbance characteristics 
during RB5 treatment

Certain control experiments, as described below, were carried out to identify whether the 

reagents had any effects on the dyes.

4.1.2 Stability of the Dyes within pH Range of 4.0 to 10.0

Both dyes were found to be stable within the pH range of 4.0 to 10.0 in 40 mM buffer 

concentration. No significant changes were observed either in visible color, or the UV-vis 

absorbance characteristics for these dyes. All the subsequent stages of the proposed 

treatment process were carried out within this pH range. Textile effluents had basic pH, 

while a lower pH (around 4.0) favored the dye breakdown by Fe° reduction and 

enzymatic treatment was most effective around neutral pH.

4.1.3 Inadequate Impact of Coagulant (PEI) on Dye Color and Solution

For both the dyes, no significant effect was observed after addition of the coagulant 

polyethyleneimine (PEI), at a concentration o f 200 mg/L in 1 mM dye solution. The dye 

solutions lost their transparency and formed suspended particles. However, after filtering, 

the filtrate displayed absorbance characteristics similar to that o f the respective dyes.
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Only the peak absorbance at A,max were reduced by 30 %. This established that PEI alone 

was inadequate to remove the dye colour. Since RR2 and RB5 contain SO3' groups, they 

were expected to bind with a cationic coagulant, but depending on pH, the presence of 

cationic groups in the dye molecules, like -NH2 will hinder this binding. Hence, it was 

observed that PEI was not effective to remove the dyes.

4.1.4 Effect of Na2S0 3  on Dye

Less than 5 % reduction in peak absorbance (at Xmax) was observed for both the dyes at 1 

mM concentration when treated with 1 mM sodium sulphite (Na2SC>3). Also the 

absorbance characteristics remained the same as that o f the dye solution.

4.1.5 Effect of H2O2 and ARP on Dye

H2O2 and ARP, either individually or together at 1 mM and 1 U/mL concentration 

respectively, had no effect on both the dyes at 1 mM concentration. The peak and 

absorbance characteristics after addition of these reagents remained the same as that of 

the dye solution. Further, the enzyme activity test and H2O2 color test showed the 

presence of entire amounts of enzyme and H2O2. This proved that the colour of the dye 

could not be removed under this condition.
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4.2 Zero Valent Iron Treatment

4.2.1 Effect of pH

The Fe° reduction process was studied within a pH range of 2.5 to 10.0. One g Fe was 

used for 1 mM dye solutions with 40 mM buffer and ImM Na2S0 3  in 30 mL batch 

reactors. Figure 4.5 presents the percent of peak absorbances at A,max, remaining after 1 

hour under various pH conditions. The absorbance characteristics after Fe° reduction for 

both dyes are presented in Figures 4.6 and 4.7.

100 ^

M 80 -a
I  60

I 40 -M
N©
^  20 -  

0  -
2 4 6  pH 8 10 12

— KR2 — RB5

Figure 4.5: Effect of pH on dye reduction, after 1 hour with 
1 mM dye concentration and 1 g Fe°

Acidic pH range favors reduction for both dyes, as observed by previous 

researchers (Cao et al., 1999; Section 2.1). However, aniline adsorption on Fe surface 

takes place at lower pH below 5. Therefore to avoid problems related to adsorbtion of 

aniline to Fe surface a pH of 4.0-5.0 was considered suitable. For all subsequent studies, 

Fe° treatments were carried out at pH 4.8, which is also recommended as the optimum Fe 

treatment condition. Acetate buffer gave better removal compared to phosphate and 

carbonate buffers. This observation is consistent with the earlier findings (Lavine et al., 

2001).
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Figure 4.6: UV-vis absorbance spectra for RR2 after Fe reduction, 
with 1 mM dye solution, 1 mM Na2 SC>3 , 40 mM acetate buffer at pH 

4.8,1 g Fe°, room temp, 1 h reaction time, final pH 5.6.
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Figure 4.7: UV-vis absorbance for RB5, after Fe reduction 
with 1 mM dye solution, 3 mM Na2SC>3 , 60 mM acetate buffer at pH 

4.8,3 g Fe°, room temp, 1 h reaction time, final pH 6.0
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4.2.2 Reaction Time

The rate o f Fe° reduction with time for both dyes was studied and the results are 

presented in Figures 4.8 and 4.9.

100

80 

|  60- 
I  4 0 -

s? 20

0 10 20 30 40 50 60
Time, minutes

—«— RR2 remaining ■— formation of aniline —A— total mass balance

Figure 4.8: Fe° reduction rate for RR2 
at pH 4.8, ImM dye solution, 1 g Fe# and ImM Na2S(>3 .

RR2 reduction by Fe° was quite rapid and almost 95 % of dye was reduced in 30 minutes. 

One of the RR2 breakdown products was aniline, which was confirmed by TNBS test. 

The stoichiometric amount of aniline was not recovered, which was expected as some 

aniline was adsorbed on the iron surface as discussed in Section 2.1.4. However under 

similar conditions, RB5 required longer time to get reduced (Figure 4.9).

0 50 100 150 200 250 300
Time, minutes

4— 1 gFe, 1 mMNa2S03 —■— 2 g Fe, 2 mMNa2903

Figure 4.9: Fe° reduction rate for RB5 
at pH 4.8,1 mM dye solution.
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Only 80 % of RB5 was removed in 1 hour with 1 g Fe° with 1 g Fe° and it increased 

to 85% reduction after 2 hour reaction time. Over 90 % removal was observed when the 

reaction was allowed to run for 2 hours with a higher amount o f Fe (2 g) and Na2S0 3  (2 

mM). Allowing the process to continue for longer time to 5 hours improved the removal 

efficiency by another 5 %. When the reaction was run with 3 g Fe° and 3 mM sodium 

sulfite, the reduction rate was even better (95 % in 1 h). But high sodium sulfite required 

more enzyme and hydrogen peroxide in the next step and still the final color removal was 

not satisfactory. Hence, 2 g Fe° and 2 hours reaction time was considered for studying 

ARP and coagulation processes for RB5. Formation o f the aromatic amines could not be 

quantified as no ready standard was available for calibration by TNBS test.

The significant difference in reaction rates between RR2 and RB5 may be due to a 

complex interplay o f many factors. Both the dyes were impure (purity -50% ) and some 

impurities might have either accelerated or passivated the Fe° active sites and the reaction 

in case o f RB5. It might be also possible that 1 mM RB5 requires 3 gm Fe compared to 1 

gm Fe requirement in case of RR2. However the reaction mechanism as discussed below 

indicate that only 2 g Fe should be sufficient for 1 mM RB5.

Fe° reduction of reactive dye (R'N=NR2), which yields aromatic amines, can be 

expressed as follows :

4H20  = 4H+ + 40H '

2Fe° = 2Fe2+ + 4e'

R*N=NR2 + 4e' + 4H+ = R 'NH 2 + R2NH2

4H20  + 2Fe° + R!N=NR2 = 40H ' + 2Fe2+ + R'NHz + R2NH2  (2.11).

Hence, 2 moles o f Fe° are required to reduce every mole o f dye.
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For bisazo dye, these equations can be expressed as:

8H20  + 4Fe° + R’N=NR2-R 3N=NR4 = 80H ' + 4Fe2+ + R'NHa + R2NH2 + R3NH2 + R4NH2

 (2 .12)

Where R 1, R2, R3 and R4 are the different aromatic groups.

According to the above equation, twice the amount of Fe is required for bisazo 

dyes, as compared to monoazo dyes. RB5 is a bisazo dye; hence, it needs double the 

amount o f Fe° as compared to RR2. The hypothesis behind this explanation is that a 

reactive site (pits and cracks) of Fe° surface can take part in the reduction reaction only 

once. This is consistent with the fact that, once two electrons are released from an active 

site, the site is oxidized to Fe2+ and an oxide layer is formed. The redox potential o f Fe2+ 

is quite low; hence, the oxide layer acts as an effective barrier to further electron transfer 

and blocks subsequent reactions. Almost the entire 1 g Fe° was passivated after reacting 

with 1 mM dye solution in the first 1 hour when only 1 g Fe° was allowed to react with 

ImM of RB5 (Figure 4.8). This was evident as little improvement in reduction (5%) was 

observed in the next 4 hours. The redox potential of azo bonds in RR2 and RB5 are not 

significantly different. In both the cases, the azo bond is between benzene and a 

napthalene ring with sulphonate and hydroxyl groups in ortho positions (Table 1.1).

Therefore, it is expected that the lower rate o f reaction for RB5 was due to the 

relative inaccessibility to Fe° active sites, rather than due to difference in inherent 

reactivity. Such a difference in access to Fe sites may be due to: (i) steric hindrance, as 

molecular structures are significantly different; (ii) competition for sites with other 

impurity molecules or (iii) formation o f complex reversible composites with impurities or 

intermediates. Two experiments were conducted to establish which of these three
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possibilities were predominant. To check whether impurities in RB5 was competing with 

the dye molecules for Fe° sites, a mixture o f RR2 and RB5 was treated with 3 g Fe° 

(stoichiometric amount for 1 mM RR2 and RB5 as established earlier) and also with 5 g 

Fe° (higher amount). The results are presented in Figures 4.10 and 4.11 and compared 

with the results obtained separately for RR2 and RB5 solutions.

100

w>a
.5 60 -
C3

|  4 0 -
N®
°  20  -

A-A-A-
60 1800 120 240 300

time, min
—♦—  RR2 in mixture —m—  RB5 in mixture 

A only RR2 •  only RB5

Figure 4.10: Fe° reduction rate for RR2 and RB5 mixture 
at 4.8 pH, 1 mM R R 2,1 mM RB5 with 3 g Fe

The comparison between the reaction rates o f RR2 and RB5 in mixture and separate 

treatment in Figure 4.10 indicates that:

• The initial rate of reaction and the over all pattern for all the 4 lines were same, 

which indicates that the rate of reaction and mechanism remained unchanged even 

though RR2 and RB5 were mixed for Fe° treatment.

• In case of both the dyes, the percentage reduction decreased when treated in the 

mixture. The relative difference between the two trend lines for RR2 and RB5 

reduction remained the same and the rate o f reduction of RR2 was faster than 

RB5. This indicated that a third compound present in RB5 as impurity was 

competing for the Fe° surface with both the dyes. This third compound was
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reacting with the Fe° at a faster rate than the two dyes and there was not enough 

Fe° surface area remaining for RR2 and RB5 to complete the reduction.

•  The percent RB5 remaining in mixture was around 25 %, which indicates that it 

was starved of Fe surface by an amount o f 25 % or less.

In order to confirm this hypothesis about presence of an impurity compound in RB5, 

which consumed some Fe°, a similar experiment was carried out with excess of Fe so that 

the dyes were not starved of Fe°. 5 g of Fe was used which was enough to cover the 

additional 25 % requirement.

100

20 -

120 180 240 3000 60
time, min

—♦— 3 g Fe, RR2 in mixture — 3 g Fe, RB5 in mixture 
▲ 5 g Fe, RR2 in mixture 5 g Fe, RB5 in mixture

Figure 4.11: Fe reduction rate for RR2 and RB5 mixture 
at pH 4.8,1 mM R R 2,1 mM RB5 with 5 g Fe°

The results, as presented in Figure 4.11, confirm the hypothesis that there were 

impurities with RB5, which were consuming Fe° surface. With excess Fe°, a complete 

reduction of RR2 and RB5 could take place and resulted a dye conversion efficiency of 

around 96 to 98% for both RR2 and RB5. In real life situations, effluents will contain 

unknown quantities of compounds other than the dyes, which will compete for Fe°

surface. Hence excess amount o f Fe° will have to be used at the Fe° treatment stage.
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4.2.3 Comparison between RR2 and RB5 Fe° Reduction

There is a insignificant difference in the conversion efficiencies between RR2 and RB5 

under similar conditions. Both dyes were 1 mM each are in the same mixture and were 

treated with 5 g Fe°. The experimental data are presented in Table 4.1.

Table 4.1: Difference in RR2 and RB5 conversion efficiencies.

Time in min. % of RR2 
remaining 

(a)

% of RB5 
remaining 

(b)

Difference
(a-b)

15 7.66 7.48 Not considered
30 3.96 3.97 Not considered
45 2.96 3.37 -0.41
60 2.85 3.41 -0.56

1 2 0 2.98 3.65 -0.67
180 3.04 4.76 -1.72

The difference between RR2 and RB5 is considered once the reaction was completed 

after 45 minutes, and the % remaining values stabilizes. It can be concluded that the 

efficiency of conversion in the case of RR2 is slightly better than RB5. This might be due 

to the lower steric hindrance for RR2 to access the active Fe° sites compared to that for 

RB5. It may be noted that molecular diffusivity of RR2 (3.28 X 10' 6 cm2 /sec) is higher 

than that o f RB5 (2.77 X 10’6 cm2 /sec) (Table A.3.1). Therefore all the above discussion 

indicated that RR2 reduction rate was intrinsically better than RB5 reduction.

RR2 has a triazine reactive group. On reduction, organic dechlorination could 

take place and the Cl of the triazine group might be released in the solution as chloride 

(Monson et al., 1998). These Cl acted as Fe corrosion enhancer, which improved the 

availability of active Fe sites for reaction. Thus chloride had a catalytic effect on the 

reduction reaction (Johnson et al., 1998; Gotpagar et al., 1999). Therefore the reduction
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was faster in case of RR2 as compared to RB5. It may be noted that chloride pretreatment 

can improve availability of Fe° surface active sites by a factor of 7.6 (Section 2.1.1). 

However RB5 will also benefit from this effect if  it is in the same mixture.

Previous researchers did not observe this difference for a bisazo dye (Naphthol 

Blue Black), which may be because they had started with a high Fe° quantity, 144 mg/mL 

(Nam and Tratnyek, 2000). The present study provided only 33.3 mg/mL Fe for RR2 and 

6 6 .6  mg/mL Fe for RB5. Moreover, the surface area concentration, mixing rate, iron 

source and type were different for these two studies.

4.2.4 Reaction Products

It appears that Fe reduction did not reduce the -NH- bond in RR2 under the studied 

reaction conditions within 1 hour and the breakdown product possibly had both 

napthalene and triazene ring, held together by the -N H - bond. This was indicated by the 

results obtained with the study on diphenylamine (a model compound) reaction with Fe 

(Section 4.2.5).

On exposure to air for 1 hour after Fe° reduction, the RB5 reaction product turned 

into a deep blue colored solution and developed a new small absorbance peak at 630 nm. 

In case of RR2, on exposure to air, the Fe° reaction product did not change its color or the 

absorbance characteristics. For both the dyes, if  the reaction products were stored for a 

day, they responded poorly to the TNBS test for aromatic amines (20 % less response in a 

day). As shown later the performance in ARP treatment along with PEI aided coagulation 

also decreased. A possible explanation is that the di-sulfonated naphthol-amines, which 

were formed due to Fe° reduction (Section 2.3.3), were auto-oxidized in the presence of 

air to form some compounds, which did not respond to TNBS test. Di-sulfonated amino
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naphthol compounds are sensitive to oxygen and decompose readily in aerobic condition 

(Kudlich et al., 1999). Tri-aminohydroxy naphthalene di-sulfonic acid, a di-sulfonated 

amino- naphthol compound whose structure is very similar to the Fe° reduction product 

o f RB5, gets auto oxidized in presence o f oxygen to a naphthoquinoneimine which has 

blue colour (Kudlich et al., 1999).

This implies that storage time and exposure to air are critical for the Fe reaction 

products. However a maximum exposure o f 30 minutes can be tolerated before the 

enzymatic treatment, which is sufficient to carry out pH neutralization and filtration of 

the Fe reduction products.

4.2.5 Fe° Reduction of Diphenylamine

DP A reduction was carried out under the similar condition as the dyes. One of the Fe° 

treatment breakdown products o f DPA is aniline. Fe° treatment of DPA and resulting 

aniline was monitored by HPLC at two different channels, Channel 1 at 254 nm and 

channel 2 at 280 nm. Generation o f Aniline in the solution was also monitored by TNBS 

test. The HPLC chromatograms for DPA reduction are given in Appendix C.4, Figures 

C.4.1 to C 4.4. Chromatograms for Channel 1 are only presented here because it shows 

the presence of all three compounds. Fe° reduction results of diphenylamine (DPA) with 

time are presented in Figure 4.12.
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Figure 4.12: Fe° reduction for DPA 
0.2 mM solution, at pH 5.1,1 g Fe, 1 mM Na2S( > 3

From the results it is apparent that around 80% of the original DPA concentration was 

adsorbed on the Fe° surface. Only 12% DPA was reduced to aniline during 5 hours 

reaction time and no other compound was detected. It seems that the cleavage of the -  

NH- bond in DPA by Fe° reduction is a slow process. It is hypothesized that the mass 

transport to the iron surface was faster than the chemical reaction of DPA reduction to 

aniline. It is also presumed that DPA formed irreversible binding on the metal surface 

and, therefore, was not subjected to reduction reaction.

Based on these observations, it is expected that the similar -N H  -  bond of RR2 

was less likely to break during Fe° treatment under similar reaction conditions within 1 

hour. Moreover, the presence of the naphthol ring and bulky sulfonate groups in RR2 

likely prevented the -NH- bond to bind with the Fe° reactive sites.
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4.3 Enzymatic Treatment

The results about enzymatic action on two model compounds, 2-amino-8-naphthol-3,6- 

disulfonic acid (ANDSA) and diphenylamine (DPA), are presented and discussed first to 

gain insights into the enzymatic reaction on the Fe° reduction products o f the dyes.

4.3.1 Amino-naphthol di-sulfonic acid (ANDSA)

Control experiments demonstrated that ARP or H2O2 separately had no effect on 

ANDSA, whereas, ARP and H2O2 together effectively converted this naphthol amine to a 

brownish red colored transparent solution without any visible precipitate. It had new UV- 

Vis absorbance peak at 428 nm. Hydrogen peroxide concentration and enzyme activity 

were monitored to confirm that the reaction was indeed an enzymatic reaction. The 

TNBS test indicated more than 90% conversion of aromatic amine. Perhaps the dimers or 

polymers formed were water-soluble due to the presence o f sulfonate groups. The 

optimum reaction parameters are presented below.

4.3.1.1 Effect o f  pH: The effect of pH on enzymatic reaction of ANDSA was studied in 

the range of 3.0-9.0 under stringent conditions with 1 U/mL ARP, 1 mM substrate and 2 

mM hydrogen peroxide.

I  100I 80
.5 60
S
<  40
*3es 20&
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5? 2 4 6 8 10

PH
—♦— 1 U/mL enzyme

Figure 4.13 : Effect of pH, 
for 1 mM ANDSA, 2 mM H2O2 concentration, observed after 3 h.
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The results are presented in Figure 4.13. The optimum pH was between pH 5.8 and 7.0. 

At this lower enzyme concentration (lU/mL), 50 % of the aromatic amine was still 

remaining in the optimum pH range.

4.3.1.2 Effect o f  H2O2 to Substrate Ratio: The effect o f different concentrations o f H2O2 

on ARP treatment of ANDSA was studied in the range between 0.5 to 2.5. This range 

was selected based on the fact that ANDSA has two functional groups that can react with 

ARP (Table 1.1). The results are presented in Figures 4.14 and 4.15.
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—■—ANDSA — Hydrogen peroxide — Enzyme

Figure 4.14: Effect of H2O2 concentration, 
at pH 7.0 , for 1 mM ANDSA, 2 U/mL ARP, observed after 3 h.
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Figure 4.15: Effect of H2O2 concentration, 
at pH 7.0, for 1 mM ANDSA, 4 U/mL ARP, observed after 3 h.
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ANDSA has two active functional groups, -NH2- and -O H  per molecule, which react 

with ARP. Therefore, it was anticipated that, for every mM of ANDSA 2 mM of H2O2 

and 2 U/mL ARP might be required. On conducting an experiment with 2 U/mL ARP, it 

was observed that the ANDSA removal was still monotonically decreasing with H2O2 

concentration (Figure 4.14) and there was no remaining ARP at higher H2O2 

concentrations. On conducting another experiment with higher amount of ARP (4 U/mL) 

and H2O2 (2-4 mM), the ANDSA removal improved from 80% to 94% (compare Figures 

4.14 and 4.15). For this amount of ARP (4 U/mL), the optimum H2O2 concentration was 

observed to be 2.4, so the optimum H2O2 to substrate (per functional group) ratio was 

around 1.2. The observed H2O2 to substrate ratio is consistent with previous studies on 

phenol (between 0.9 and 1.0 : 1) and aniline with SBP (1.5 :1) (Villalobos and Buchanan, 

2002; Ibrahim et al., 2001; Mantha, 2001).

4.3.1.3 Effect o f  enzyme concentration : The effect of enzyme concentration for ANDSA 

was conducted at the pH of 7.0 and with 2.4 mM hydrogen peroxide and the results are 

presented in Figure 4.16. The optimum enzyme concentration was 4 U/mL, which
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0.5 1.5 2.5 3.5 4.5 5.5
Enzyme concentration U/mL

♦ A N D SA  —Hi— H ydrogen peroxide —A— ARP

Figure 4.16: Effect of enzyme concentration, 
at pH 7.0 , for 1 mM ANDSA, 2.4 mM H2O2 , observed after 3 h.
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resulted in over 94 % conversion of ANDSA. No further improvement in percent removal 

o f aromatic was observed at higher enzyme concentrations. At these higher 

concentrations o f enzyme, there was no remaining hydrogen peroxide in the reaction 

mixture, which was the main reason for no further improvement in the removal rate. 

Previous studies reported the enzyme concentration to be 8  U/mL for aniline, 2 U/mL for 

p-chloroaniline and 30 U/mL for o-chloroaniline (Taylor et al., 1998) and around 1 for 

phenol (Villalobos and Buchanan, 2002; Ibrahim et al., 2001). For aniline, the position of 

substituents on benzene or naphthalene ring with respect to amine group determined how 

good was the substrate for ARP. Meta-substitution gave better results compared to para, 

ortho or un-substituted compounds. Since ANDSA has a group in meta position so it 

proved to be a good substrate for ARP.

4.3.1.4 Reaction Time: The ARP action on ANDSA against time was studied and the 

results are presented in Figures 4.17, 4.18, 4.19 and 4.20. The same experiment was 

carried out under two different conditions; in one, the entire amount of H2O2 was added at 

the beginning and in the other, H2O2 was added in three equal amounts at 0  minute, after 

30 and 60 minutes. It can be observed that 3 hours time was required to remove 94% of 

aromatic amines. A new product was formed which had peak absorbance at 428 nm.
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—♦— ANDSA ■ New product formed with absorbance 428 nm 

Figure 4.17 : Aromatic remaining and new product formation against time, 
at pH 7.0, for 1 mM ANDSA, 2.4 mM H2O2 added in steps at 0 ,3 0 ,6 0  min, 4 U/mL ARP
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Figure 4.18 compares the percentage of aromatic removal by both step and single 

addition o f hydrogen peroxide. When hydrogen peroxide was added once in the 

beginning, of the percentage o f aromatic removal was almost 1 0  % more as compared

100 *

80

* ----------- '♦--------- ♦
0

0 30 60 90 120 150 180 210 240 270
Hme in minutes

Hydrogen peroxide added in steps ■ ■ Hydrogen peroxide added once

Figure 4.18: Aromatic amine remaining against time, 
at pH 7 .0 , for 1 mM ANDSA, 2.4 mM H20 2, 4 U/mL ARP

to when it was added in steps. This may be because of formation of more radicals at this 

step, which were oxidized faster in the first case. But when the reactions were continued 

for longer time, say for 3 hours, the total aromatic removal was same for both the cases. 

The amount of hydrogen peroxide and enzyme remaining in the two modes of operation 

are given in Figures 4.19 and 4.20. It is observed that more enzyme was getting 

inactivated within the initial 60 minutes when the entire amount o f H20 2 was added at the 

beginning (Figure 4.20). During this period, the ANDSA conversion under these two 

conditions was not as high as the difference between the enzyme remaining. It was 

expected so because an excess hydrogen peroxide inactivated ARP. However, given 

sufficient time, ARP got activated again and returns back to the original form (Section 

2.2.9). This is consistent with other works (Villalobos and Buchanan, 2002). But the 

entire amount of inactivated ARP did not return to active state as a significant portion of
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ARP was lost when H2O2 is added at the beginning. When all the hydrogen peroxide was 

added at the beginning, there was no hydrogen peroxide remained after 90 minutes and 

thus there was very little improvement in aromatic removal after this point. Although, it 

may seem that both these operations had the same effect after sometime. But there can be 

at least 10-15 % savings in both enzyme and hydrogen peroxide concentration in step 

addition of hydrogen peroxide (Figures 4.19 and 4.20).
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Hydrogen peroxide added in steps — Hydrogen peroxide added once

Figure 4.19: H2O2 remaining against time, 
at pH 7 .0 , for 1 mM ANDSA, 2.4 mM H20 2, 4 U/mL ARP
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Figure 4.20: Enzyme remaining against time, 
at pH 7.0 , for 1 mM ANDSA, 2.4 mM H20 2, 4 U/mL ARP
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Taylor et al., 1998 reported similar enzyme savings to be around 15 to 20 %.

After 30 minutes, the TNBS response for aromatic amine displayed a small peak (Figures 

4.17 & 4.18). This may be due to some intermediates, which responded to TNBS test. 

This may be explained as follows by the following reaction equations where ANDSA is 

represented as PhOH-SA-AmNH2 ; E, E l and E2 are active enzyme, Compound 1 and 

Compound 2 respectively (Section 2.2.2) and PI and P2 are the reaction products.

E + H20 2 -»  E l + H20  ............................................... (4.1)

PhOH-SA-AmNH2 + E l -> E 2  + PhO ’ -SA-AmNH2 ............................. (4.2)

PhOH-SA-AmNH2+ E l -> E2 + PhOH -SA-AmNH * .............................. (4.3)

PhOH-SA-AmNI 12 + E2 -> E + PhO * -SA-AmNII2 ............................ (4.4)

PhOH-SA-AmNH2 + E2 -> E + PhOH -SA-AmNH' ............................. (4.5)

PhO ’ -SA-AmNH2 + E l -> E2 + PhO * -SA- AmNH * ............................(4.6)

PhOH-SA- AmNH * + E2 -> E + PhO ‘ -SA-AmNH ' ............................. (4.7)

Non-enzymatic reactions can be expressed as :

2 PhO *-SA-AmNH2 = P I ................................................................................(4.8)

2 PhOH-SA- AmNH ' = P 2 .................................................................................. (4.9)

PhOH-SA-AmNH2 + PhO * -SA-AmNH2 <=> PhOH-SA-AmNH2 + PhOH -SA-AmNH *

...............(4-10)
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Double radicals are relatively unstable and hence Equations 4.6 and 4.7 can be ignored 

compared to other reactions.

It is known that a phenolic group tends to react better with ARP compared to amino 

group. (Optimum enzyme concentration for 1 mM phenol is 1 U/mL while that is 8  U/mL 

for 1 mM aniline as reported by Ibrahim et al., 2001; Taylor et al., 1998). The phenolic 

group in ANDSA is in the meta position with respect to amino group, therefore the 

phenolic group bound faster with ARP when compared to amino group to form phenoxyl 

radicals. This means, initially there were more phenoxyl radicals compared to aminyl 

radicals. Hence the forward direction was preferred and according to the equation (4.10), 

aminyl radicals were formed and the concentration o f amine decreased. After some time 

when phenoxyl radical concentration decreased, the backward reaction proceeded to form 

products by radical transfer and there was again a rise in amine concentration. At the 

same time the reaction (4.8) continued forming the products. These reactions proceeded 

until complete conversion of phenol occurred by forming product P I, after which gradual 

oxidation o f amine group occurred.

4.3.1.5 Possible Mechanism: The proposed mechanism for enzymatic oxidation of 

ANDSA is presented in Figure 4.21. In presence of ARP, free radicals are formed in the 

first step. Subsequently, there could be a different reaction depending on the reactivity of 

the free radicals and the reaction condition (Stiborava, 1996; Spadaro et al., 1994). These 

radicals can (Scheme I) polymerize by -O H  group or by -NH- groups (also refer section 

2.2.7). There can be nucleophilic attack by water on the free radicals and release o f a 

second electron to form quinone, which can further polymerize (Scheme II). The free 

radicals can also form quinone imines (Scheme III). Desulfonation can be another
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possibility (Scheme IV), where one electron oxidation o f ANDSA may produce anilinium 

cation radicals, which can be attacked by water resulting in elimination o f ammonium 

ion. This can get oxidized by another electron and subsequently again attack by water. As 

a result, partial desulfonation may take place resulting in quinone formation.
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Figure 4.21: Proposed mechanism for enzymatic oxidation of ANDSA
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4.3.1.6 Reaction Kinetics: The rate of ARP action on ANDSA was studied and the results 

are presented in Figure 4.22. Initial velocities were plotted against substrate 

concentrations along with the best fit curve. The procedure for estimating these figures is 

presented in Appendix D.
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Figure 4.22: ARP reaction kinetics for ANDSA 
at pH 7.2, for 2.4 mM H20 2 ,4  U/mL ARP

The Michaelis-Menten constant, Km is 1.25 ± 0.28 mM and the maximum velocity, 

Vmax is 0.302 ±0.016 mM / min.

Both the above values show the 95 % confidence interval.

The ARP reaction kinetics is given by :

0.302 S
V _  ..........................   4.11

1.25 +S

&Cat, the turnover number which is defined as the maximum number of substrate molecule 

that can be converted per molecule o f enzyme in unit time is given by (Palmer, 1995):

Vmax
*cat= ~  (4.12)E0 v '

where Eq is enzyme concentration.
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The conversion factor between mM and activity (Ca) for ARP is 5.15 * 10 -5 mM 

/(U/mL) (Ibrahim et al., 2001). The kinetics was studied with 4U/mL ARP; therefore the 

ARP concentration is given by 

Eo = U * Ca = 4 * 5.15 * 10“5 = 20.6 * 10“5 mM 

Therefore,

ha  _    = 24.5 / s
20.6 * 10“5 * 60

This can be compared with the kcat for ARP action on phenol, which is 977 /s and has a 

corresponding Michaelis-Menten constant, Km, equal to 9.45 mM. For o- 

phenylenediamine oxidation by ARP, kcat was found to be 910/s and Km was 0.5 mM 

(Kaniya and Nagamune, 2002). This shows that ANDSA is a less reactive substrate for 

ARP when compared to phenol and o-phenylenediamine. Also the catalytic efficiency 

(the relative rate o f reaction at low substrate concentration) k CJ Km in ndVT'.s'1, can be 

calculated from above values, which are -20  for ANDSA, -103 for phenol and -1800 for 

o-phenylenediamine.
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4.3.2 Diphenylamine

The Fe reduction process (Section 4.2.5) did not affect DPA. Therefore, it was decided to 

find out if  DPA was a substrate of ARP. This helped in understanding whether the similar 

secondary amine -NH- bond present in RR2 was affected by the enzymatic treatment. 

DPA was found to be a good substrate o f ARP. More than 90 % of DPA was removed 

under neutral pH, when the solution turned cloudy with faint yellow colour and a new 

UV-vis absorbance peak appeared at 440 nm. DPA did not respond in TNBS test, hence, 

the peak absorbance at 280 nm was monitored by both UV-Vis absorbance and HPLC for 

determining optimum reaction conditions. Control experiments with enzyme and 

hydrogen peroxide alone did not change the UV-absorbance spectra showing that these 

reagents had no affect on DPA when added individually. H2O2 color test confirmed that 

only 10% H2O2 was consumed after 3 h when H2O2 alone was added. The enzyme 

activity test confirmed that none o f the added enzyme was consumed in 3 h in the control 

experiment with only enzyme. Hence it was concluded that the oxidation of DPA was a 

combined action o f both H2O2 and enzyme. The optimum parameters for the DPA 

oxidation by ARP are discussed below.

4.3.2.1 Effect o f  pH: The effect of pH on enzymatic action of diphenylamine (DPA) is 

presented in Figure 4.23. The optimum pH range for ARP action on DPA was found to be 

between 5.5 and 7.4, which is a very broad range. At lower pH around 40 % of the 

enzyme was still active since ARP can have some lower pH activity, though there was 

little hydrogen peroxide remaining (5-10 %) at this pH. For pH higher than 7.5, the entire 

amount o f enzyme was inactivated and a large amount of DPA and hydrogen peroxide 

were still remaining.
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Figure 4.23: Effect of pH, 
for 0.2 mM DPA, 0.2 mM H2O2 , 0.1 U/ml ARP, observed after 3 h.

4.3.2.2 Effect ofH202 to substrate ratio: The effect o f H2O2 to substrate ratio is presented 

in Figure 4.24.

0 0.05 0.1 0.15 0.2 0.25 0.3
Hydrogen peroxide concentration, mM

Figure 4.24: Effect of H2O2 concentration, 
at pH 7.3 , for 0.2 mM DPA, 0.2 U/ml ARP, observed after 3 h.

The optimum H2O2 concentration was found to be 0.2 mM for 0.2 mM DPA. At higher 

hydrogen peroxide concentration, the removal efficiency decreased and the solution 

turned light yellow, perhaps due to formation of quinones. It is presumed that at lower 

peroxide concentration dimers were formed, while at higher concentration, these are 

further oxidized to produce quinones.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.2.3 Effect o f  enzyme concentration : The effect of enzyme concentration was studied 

at a pH o f 7.3 and the results are presented in Figure 4.25.

u  100

0.3 0.40 0.1 0.2 0.5

Ehzyme concentration, UmL

Figure 4.25: Effect of enzyme concentration, 
at pH 7.3, for 0.2 mM DPA, 0.2 mM H2O2 , observed after 3 h.

It may be noted that even at very low enzyme concentration there was around 70 % DPA 

removal. This shows that DPA is a very reactive compound. Presence of small amount of 

enzyme and hydrogen peroxide was enough to form the radicals and to subsequently 

form the dimers. However, at this low enzyme concentration (also at low hydrogen 

peroxide concentration) the reaction mixture remained colorless, indicating that there was 

no quinone formation at this stage. Almost 90 % DPA was removed in three hours at a 

enzyme concentration o f 0.4 U/mL. Hence, this was considered to be optimum enzyme 

concentration for 90 % DPA removal.

4.3.2.4 Reaction Time: The optimum reaction time for DPA oxidation was studied under 

optimum reaction conditions such as pH of 7.3, hydrogen peroxide concentration o f 0.2 

mM and enzyme concentration o f 0.4 U/mL. The results are presented in Figure 4.26.
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Figure 4.26: DPA remaining with time, 
at pH 7.3, for 0.2 mM DPA, 0.2 mM H2O2 , observed after 3 h.

The above figure shows that around 90 % of DPA was oxidised in one hour. Allowing 

the experiment to run for another 2 hours did not improve much in the removal rate. But 

after around 4 hours, 98 % removal was obtained. The above results show that DPA is a 

good substrate o f ARP. Therefore, it can be concluded that the -NH- bond present in RR2 

is also susceptible to enzymatic oxidation in the present study. This also indicates that in 

case of RR2, Fe reduction product 3 hours time was sufficient to oxidise the -NH- bond 

present in the RR2 molecule. The HPLC result (Figure 4.27) shows a new peak with 

retention time at 2.445 min, which elutes before DPA (retention time 3.669 min). This 

shows that DPA was oxidized to a product, which may be more polar compound than 

DPA. Oxidation o f DPA in acid (non enzymatic reaction) produced a diphenoquinone- 

diimine (Pankratov, 2001). The similar type o f product also may be expected in this case.
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4 2.455 526227 75.63 62660 74.63
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Figure 4.27: HPLC chromatogram of DPA oxidation at 254 nm, DPA concentration 0.2 
mM, hydrogen peroxide 0.2 mM, ARP 0.4 U/mL, 3 h reaction tim e, pH 7.3, new 

product peak at 2.455 min, DPA at 3.669 min.
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4.3.3 Reactive Red 2 Fe° Reduction Product

Fe° treatment reduced 98 % of RR2 to aromatic amines. The reaction products were 

aniline and a naphthol amine attached to a triazine ring by a -NH- bond. ANDSA, a 

naphthol amine and diphenylamine containing a similar -NH- bond proved to be 

substrates o f ARP (Sections 4.2 and 4.3). Therefore, the Fe reduction products of RR2 are 

also expected as substrates o f the enzyme. Since PEI was used finally to remove the 

enzymatic reaction products, a control experiment was done on Fe° reduction product of 

RR2 with PEI. The UV absorbance was reduced by 80 % (compare Figure 4.28 with 

Figure 4.6) but TNBS test detected 60% aromatic amine in the solution after PEI 

treatment. This established the requirement for enzymatic reaction. Enzymatic reaction 

was carried out with 0.5 mM RR2 Fe reduction product. There are four active functional 

groups in 1 molecule of RR2 breakdown products hence 0.5 mM contains half of the 

functional groups present in 1 mM RR2 that can react with ARP.
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Figure 4.28: UV-vis absorbance spectra of 1 mM RR2 Fe reduction 
product in control experiment after PEI addition, pH 7.0,3 h 

reaction time, PEI conc. 200 mg/L, 100 mg/L alum.
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On enzymatic treatment of Fe reduction products of RR2, no precipitate were observed 

except for formation o f slightly turbid reddish brown solution having color similar to that 

o f ANDSA enzymatic reaction product. On filtration the optical transparency of the 

reaction mixture improved. The terms “RR2” and “RB5” are used synonymously in place 

of Fe° reduction products o f RR2 and RB5 respectively.

4.3.3.1 Effect o f  pH: The effect o f pH on enzymatic action on Fe reduction product of 

RR2 was studied in the range 3.8 to 9.5 and the results are presented in Fig 4.29. The 

reaction was carried out under stringent condition with 1 U/mL ARP and 1.5 mM H2O2.
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Figure 4.29: Effect of pH, for 0.5 mM R R 2,1.5 mM H20 2 , 1 U/mL 
ARP, observed after 3 h.

The optimum pH range was between 6.0 and 7.4. This optimum range was found to be

similar to both ANDSA and DPA. There was no remaining hydrogen peroxide in the

whole range of pH while some enzyme was remaining in the range between 5.5 and 7.5.

From this figure, it seems that even though the enzyme was inactivated in slightly acidic

and basic pH, hydrogen peroxide was consumed by some other reaction. Also 1.5 mM

hydrogen peroxide was not enough to carry out more than 75 % removal o f aromatic in

presence of 1 U/mL enzyme. The first point may be possible as the RR2 Fe reduction
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products may contain some Fe2+ which can consume H2O2. Therefore, higher amounts of 

enzyme and hydrogen peroxide were required for further reaction.

4.3.3.2 Effect o f  H 2O2 to substrate ratio: The effect of different H2O2 concentrations on 

aromatic removal was studied at optimum pH of 7.2 and the results are presented in 

Figure 4.30 and 4.31.
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Figure 4.30: Effect of H2O2 concentration, 
at pH 7.2, for 0.5 mM RR2, observed after 3 h.
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Figure 4.31: Effect of H2O2 concentration, 
at pH 7.2, for 0.5 mM R R 2,4 U/mL ARP, observed after 3 h.
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Figure 4.30 indicates that when the reaction was conducted with 2 U/mL enzyme, the 

optimum ratio was between 1 and 1.5. But the aromatic removal was only 80 %. There 

was no hydrogen peroxide remaining after 3 h. This indicated that some more enzyme 

and hydrogen peroxide were required to further carry reaction. Experiments with a higher 

amount o f enzyme (4 U/mL) shifted the optimum range for hydrogen peroxide to 3 mM. 

In this range, 90 % aromatic removal was achieved. It may be noted that the remaining 

hydrogen peroxide was still low, 2% at 2 mM and 4 % at 3 mM. The enzyme remaining 

was also very low. Figures 4.30 and 4.31 indicate that the optimum H2O2 concentration 

was 3. Fe reduction products from 0.5 mM of RR2 contain 2 functional groups, so the 

optimum H2O2 to substrate ratio is 1.5.

4.3.3.3 Effect o f  enzyme concentration : This experiment was conducted at the optimum 

pH and at the optimum hydrogen peroxide concentration o f 3 mM. The effect o f enzyme 

concentration is presented in Figure 4.32. The observed optimum enzyme concentration 

was 4.5 U/mL, which resulted in 94 % removal of aromatic. At 4 U/mL enzyme 

concentration, 90 % removal of aromatic was obtained, but increasing the concentration 

by another 0.5 U/mL, 4 % improvement in aromatic removal was achieved.

100

0 * = -----■-----------■---------it.............. t r ~  —■------------■-----------
2.5 3 3.5 4 4.5 5 5.5 6

Enzyme concentration U/mL
Aromatic remaining ■ Hydrogen peroxide remaining

-a— Enzyme remaining

Figure 4.32: Effect o f enzyme concentration, 
at pH 7.2, for 0.5 mM R R 2,3 mM H2O2, observed after 3 h
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At concentration higher than this the aromatic removal decreased. This was probably due 

to the dissociation o f hydrogen peroxide to water due to catalase action o f the enzyme.

4.3.3.4 Reaction Time: The action of ARP on RR2 Fe reduction product against time was 

studied and the results are presented in Figure 4.33. This reaction was carried out under 

optimum condition i,e pH 7.2, 3 mM of hydrogen peroxide, and 4.5 U/mL of enzyme. 

After 2 hours 94 % removal of aromatic amine was observed. Continuing the reaction for 

another one hour did not improve the removal rate. Hence, two hours reaction time was 

considered to be sufficient for 94 % aromatic removal.

100 t

a 40 -a
g<u1m

0 50 100
Time, minutes

150 200

—♦—Aromatic Amine remaining

Figure 4.33: Aromatic amine conversion against time, 
at pH 7.2, for 0.5 mM R R 2,3 mM H20 2, 4.5 U/mL ARP

4.3.3.5 Possible Mechanism: The mechanism of Fe reduction and subsequent ARP 

facilitated oxidation o f RR2 is presented in Figure 4.34.

In case o f RR2, the visual observations after ARP treatment was very similar to 

that for ANDSA. Hence, it can be presumed that their reaction mechanism with ARP was 

be similar to some extent. Figure 4.21, for the proposed reaction mechanism for ANDSA, 

may be referred to understand the RR2 mechanism. The Fe treatment breakdown 

products for RR2 are multisubstituted naphthol (Compound A) and aniline (Compound
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B). In presence of ARP, aniline (Compound B) will form anilinium radical. Substituted 

naphthol (Compound A) will undergo one electron oxidation to form naphthalinium 

cation radical. These free radicals might behave in various manners depending on the 

reaction environment (Stiborova, 1996). They may either form dimers and polymers, 

oxidize further to give two electron oxidation product or combine with other compounds 

depending on reactivity.

Substituted naphthol (compound A) may undergo one electron oxidation to form 

naphthalinium cation radical. This radical is then attacked by water resulting in quinone 

and elimination o f amine group as ammonium ion. Quinone will further undergo another 

one electron oxidation to form a cation which is subsequently attacked by water at the 

carbon, bearing the sulfonic group and resulting in eliminating o f the sulfonic group as 

sulfite (Muralikrishna and Renganathan, 1993). Finally naphthoquinone (Compound C) 

may be formed.

The free anilinium and naphthalinium radicals may combine at possible locations 

of the aromatic ring to form polymers. These radicals may combine with radicals of 

similar type or may combine with each other (Stiborova, 1996). Anilinium radicals can 

combine with the naphthol moiety at two possible locations: at the -NH- bond between 

the triazine ring and naphthol moiety connection and at -N H 2 group in the naphthol 

moiety.

Fe reduction products o f RR2 were proven to be good substrates o f ARP and after 

enzymatic reaction they are expected to produce naphthoquinone and polymers. However 

identification of the end products should be carried out to elucidate the mechanism more 

accurately.
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Fig 4.34 : Proposed mechanism for RR2 Fe reduction and oxidation by ARP
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4.3.4 Reactive Black 5 Fe° Reduction Product

After Fe reduction o f RB5, multi-substituted aromatic and naphthol-amines were formed. 

On enzymatic treatment o f Fe reduction product o f RB5, no visible precipitate was 

observed except the formation of a transparent chocolate brown color. The Fe reduction 

products of RB5 have 6 functional groups, which can react with ARP. The enzymatic 

treatment was done with 0.5 mM RB5 Fe reduction product. Hence, there were half the 

number o f functional groups were present in 0.5 mM as compared to 1 mM of Fe 

reduction products. Control experiments were conducted with ARP and enzyme 

separately. Enzyme had no effect on RB5. However, around 20 % of hydrogen peroxide 

was consumed when it was added separately. This may be due to the presence of 

naphtholamines, which are prone to auto-oxidation. Hence some H2O2 was consumed for 

this auto-oxidation reaction. Similarly, control experiment was conducted with PEI to see 

if  PEI could remove the Fe reduction products. Even 200 mg/L PEI and slightly acidic 

pH of 5.6 was not enough to remove the aromatic amines from water, which was evident 

from the unaltered absorbance spectrum after PEI addition (compare Figure 4.35 with
0.81070

Figure 4.7

4  after Fe treatment and PEI addition0.64856-

0.16214-

500 600 700 800200 300
UflVELENGTH

Figure 4.35: UV-vis absorbance spectra for 1 mM RB5 Fe reduction product in control 
experiment after 200 mg/L PEI and lOOmg/L alum addition, at pH 5.6,3 h reaction time.
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4.3.4.1 Effect o f  pH: The ARP oxidation of RB5 was conducted in a pH range of 3.5 to

9.3 under two different enzyme concentrations: 2 U/mL which is less than the 

requirement o f 3 U/mL and 4 U/mL which is more than the requirement. The effect o f pH 

on enzymatic action on RB5 Fe reduction product is presented in Figure 4.36.
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-♦— 4 U/mL ARP ■ 2 U/mLARP

Figure 4.36: Effect of pH, for 0.5 mM R B 5,3 mM H2O2 , observed after 3 h.

The optimum pH range was between 5.4 and 6.0. One mM RB5 Fe reduction product has 

5 amino groups. At acidic pH, these amino groups may get protonated and help in the 

enzymatic reaction. It may also be noted that when sufficient amount of enzyme was 

added, around 20 % more removal of aromatic was obtained outside this optimum range.

4.3.4.2 H 2O2 to Substrate Ratio: The effect of different H2O2 concentrations was studied 

in the range of 2 and 5 mM because the stoichiometric H2O2 requirement was 3 mM. The 

pH was maintained at 5.4. The results are presented in Figures 4.37 and 4.38.
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Figure 4.37: Effect of H2O2 concentration, 
at pH 5.4 , for 0.5 mM RB5, observed after 3 h.
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Figure 4.38: Effect of H2O2 concentration, 
at pH 5.4, for 0.5 mM RB5,4U/mL ARP, observed after 3 h.

It may be noticed that at lower enzyme concentration only 50 % aromatic was removed. 

However, at higher enzyme concentration (4 U/mL), almost 91 % aromatic removal was 

achieved with 4.5 mM hydrogen peroxide concentration. Figure 4.37 shows that the 

optimum H2O2 concentration is 4.5 mM. Therefore the optimum hydrogen peroxide ratio 

per functional group is 1.5. At this optimum concentration only 10% hydrogen peroxide
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remained after 3 h, while there was no remaining enzyme (Figure 4.38). This shows that 

if  more enzyme was provided higher aromatic removal may have been achieved.

4.3.4.3 Effect o f  enzyme concentration : The effect o f enzyme concentration was studied 

at pH 5.4 , hydrogen peroxide concentration of 4.5 mM and enzyme concentration in a 

range of

100

on 80 a
|  60 A
|  40

^  20 

0
0 1 2 3 4 5 6 7

ARP concentration in U/mL
—♦— Aromatic Amine —±— ARP

Figure 4.39: Effect of enzyme concentration, 
at pH 5 .4 , for 0.5 mM R B 5,4.5 mM H2O2 , observed after 3 h.

2 to 6 U/mL. The results are presented in Figure 4.39. At enzyme concentration of 4.5 

U/mL, 92 % conversion of aromatic was observed. This shows around 1% improvement 

in aromatic removal at 4.5 U/mL as compared to the same at 4 U/mL. The observed 

optimum enzyme concentration was in the range o f 4 - 4.5 U/mL. There was less than 5 

% of enzyme and hydrogen peroxide remaining for this optimum range after 3 h of 

reaction time, showing maximum utilization o f both the reagents in this optimum range. 

Hence the optimum enzyme concentration was between 4 and 4.5 U/mL and the optimum 

enzyme concentration per functional group is 1.5 U/mL. This is similar to the optimum 

ratio in case o f ANDSA.
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4.3.4.4 Reaction Time: ARP action on RB5 Fe reduction product against time was studied 

under the optimum pH, enzyme and hydrogen peroxide concentrations and the results are 

presented in Figure 4.40. After 2 hours, around 92 % removal of RB5 was observed and 

by continuing the reaction for another one hour the aromatic removal improves by only 

1%, hence 2 hours reaction time was sufficient for 92 % removal. After 15 minutes, the 

TNBS response for aromatic amine went up (Figure 4.40) as was noticed for RR2 and 

ANDSA also possibly due to formation of an intermediate, which responded to TNBS 

test.
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Figure 4.40: Aromatic amine conversion against time, 
at pH 5.4 , for 0.5 mM R B 5,4.5 mM H20 2, 4.5 U/mL ARP.

4.3.4.5 Proposed mechanism: The mechanism of Fe reduction and subsequent ARP 

facilitated oxidation of RB5 is presented in Figure 4.41. This is similar to RR2.

For RB5, substituted amine (Compound X) and naphthalamine (Compound Y) are 

formed after Fe treatment. In presence of ARP and H20 2, these compounds will form 

anilinium and naphthalinium radicals. The amine (Compound X) will undergo two- 

electron oxidation to form a quinone (Compound X2). The naphthalamine (Compound Y) 

will similarly be oxidised to form naphthoquinone (Compound Y2).
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The anilinium and naphthalinium free radicals may also combine with each other at 

possible locations to form complex polymers. Due to presence of sulfonic groups, the 

polymers are water-soluble as discussed earlier. So the Fe treatment end products o f RB5 

proved to be good substrates of ARP and enzymatic reaction produced colored products, 

which probably were quinone and naphthoquinone. These colored products were 

removed from water by further treatment.
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Figure 4.41: Proposed mechanism for RB5 Fe reduction and oxidation by ARP.
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4.3.5 ARP Treatment Reaction Products

No precipitation was observed after ARP treatment on RB5 Fe reduction products. 

However in case RR2 there might be some precipitate, as the solution was slightly turbid. 

The transparency improved on filtration. In general it is expected that the ARP treatment 

will result some polymers, which may precipitate.

In case of RR2 these anilinium-naphthol polymers inherit the sulfonate groups 

from the naphthol moiety, which makes them water soluble. On the other hand, when 

anilinium radicals combine with each other to form polymers/ dimers, a little visible 

precipitate may be observed. Perhaps this is happening in case of RR2. Naphthoquinone, 

the other RR2 end product, has a sulphonate group, hence it is water soluble. In case of 

RB5 all the Fe reduction and enzymatic treatment products contain sulfonate groups, 

which makes them water soluble. Hence no precipitation is also observed after ARP 

treatment. These colored products were removed by adding a coagulant aid, PEI along 

with alum, in the final stage.

Figures 4.42 and 4.43 show the absorbance spectra after enzymatic treatment on 

0.5 mM Fe treated RR2 and RB5. These may be compared with the Figures 4.6 and 4.7, 

which are the Fe° reduction products o f 1 mM RR2 and RB5. After enzymatic treatment, 

UV absorbance reduction for RR2 was 22 % (at 258 nm) and 33 % (at 266 nm) for RB5 

were observed. The absorbance peaks only reduced but stayed at the same Xmax as for the 

parent dyes.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.50000

ui
o

a  0.30000
oa
C£
a

a  0.20000 
a

after enzynatic treatnent

0.00004

200 300 400 500 800 700 800
UBUE-LENGTH

Figure 4.42: UV-vis absorbance of enzymatic reaction product of 0.5 mM 
Fe treated R R 2,3 mM H2O2 , 4.5 U/mL ARP, pH 7.0,3 h reaction time.
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Figure 4.43: UV-vis absorbance of enzymatic reaction product of 0.5 mM 
Fe treated R B 5,4.5 mM H2O2 , 4.5 U/mL ARP, pH 5 .4 ,3  h reaction time.
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4.4 Coagulation

Since the products of the enzymatic treatment still rendered colour, a coagulant aid, 

polyethyleneimine (PEI), was used to precipitate the products. Alum alone was not 

effective to remove the colored products. In all the cases after adding PEI, alum was 

added at a concentration o f 100 mg/L and pH was adjusted to neutral range to help settle 

the floes. Alum made the floes settle faster. After this PEI-aided coagulation, there was 

no residual color in the water except some smaller absorbance in the UV region. Around 

2 h reaction time was sufficient for effective color removal. It is assumed that some 

chemical reaction is also involved (Schiff s base formation) along with the physical 

coagulation process. Hence, PEI may have acted as a “chemical complexing agent” rather 

than just a coagulant. Experiments were carried out to identify the optimum parameters 

for effective removal o f the colored products. The results are presented in the following 

sub-sections.

4.4.1 Reactive Red 2 Reaction Product

4.4.1.1 Optimum pH: The effect o f pH on coagulation process is presented in Figure 4.44.

4 5 6 pH 7 8

Figure 4.44 : Removal efficiency at different pH, 
for 0.5 mM RR2, in presence of 100 mg/L PEI, 100 mg/L alum.
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The optimum pH was determined under stringent condition where the coagulant 

concentration was kept 100 mg/L so that only pH had the effect on the removal. The peak 

absorbance at 258 nm was monitored for determining the removal efficiency. The 

coagulation process was found to be most effective within a pH range o f 6.0 to 7.4 for 

RR2. This is consistent with the fact that PEI is more effective at pH less than 8 which 

helps in protonation o f the amine groups. These positively charged ammonium ions bind 

with the negatively charged quinones, the enzymatic reaction products, and remove them 

from water (Section 2.4).

4.4.1.2 Optimum Coagulant Concentration: The effect of coagulant concentration at the 

optimum pH (neutral) is presented in Figure 4.45. The observed optimum PEI 

concentration was between 200 to 250 mg/L for RR2, which resulted in 91 % compound 

removal. The resulting water was colorless. Previous researchers have found an optimum 

concentration of 100 mg/L for removal of enzymatic reaction product of chloroanilines 

with tyrosinase (another enzyme) (Wada et al., 1995). Hence, further work is needed to 

find a suitable coagulant with lower concentration.
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Figure 4.45 : Removal efficiency at different PEI concentration, 
at pH 7.0,100 mg/L alum, for 0.5 mM RR2.
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4.4.2 Reactive Black 5 Reaction Product

4.4.2.1 Optimum pH: Similar experiments were conducted with RB5 enzymatic treatment 

product with 100 mg/L PEI. The UV absorbance at 266 nm was monitored for measuring 

removal efficiency. Acidic pH, around 5.0 was found to give better result for RB5 

coagulation process (Figure 4.46).

100

3 4 5 6 pH 7 8 9

Figure 4.46 : Removal efficiency at different pH,
for 0.5 mM R B 5,100 ms/L PEI, 100 me/L alum.

This is lower than the optimum pH observed in case of RR2 (optimum at neutral pH).

Such difference can be attributed to the presence o f more amino groups in RB5

breakdown products, which introduced an additional factor in the coagulation 

mechanism.

4.4.2.2 Optimum Coagulant Concentration : The effect o f coagulant concentration under 

optimum pH (5.4) is presented in Figure 4.47. The observed optimum PEI concentration 

was around 200-250 mg/L for RB5. It can be observed that even with the optimum PEI 

concentration, 18% of RB5 enzymatic reaction product was still remained in solution. 

Since PEI has amine groups in the molecule, it may have hindered the binding of RB5 

enzymatic reaction product with PEI.
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Figure 4.47 : Removal effciency at different PEI concentration, 
at pH 5.6,100 mg/L alum, for 0.5 mM RB5

4.4.3 ANDSA Reaction Product

4.4.3.1 Optimum p H : The effect o f pH on coagulation process is presented in Figure 4.48 

The coagulation process was found to be most effective within a pH range of 6.0 to 7.0 

for ANDSA.

100

Figure 4.48 : Removal efficiency at different pH, 
for 1 mM ANDSA, 100 mg/L PEI, 100 mg/L alum.
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4.4.3.2 Optimum Coagulant Concentration'. The effect of coagulant concentration at the 

optimum pH of 6.8 is presented in Figure 4.49. The observed optimum PEI concentration 

is at 250 mg/L for ANDSA which gave 91 % color removal. Therefore the real cause 

behind its apparent poor performance in case o f RB5 needs to be investigated.

100
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Figure 4.49 : Removal efficiency at different PEI concentration, 
at pH 6.8,100 mg/L alum, for 1 mM ANDSA.

The extent of actual removal of the ARP oxidation products by the coagulation process is 

indicated by the absorbance spectra of the solution after PEI aided coagulation and 

precipitation. Figures 4.50 and 4.51 present absorbance spectra after PEI-aided 

coagulation and precipitation. This may be compared with the absorbance spectra of the 

initial dye solutions, before and after Fe and ARP treatment (Figure 4.1, 4.2, 4.6, 4.7, 

4.42 and 4.43. The comparison shows that the both the UV and Vis absorbance are 

removed after the final treatment stage and hence both the dye and the compounds are 

actually removed from water.
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Figure 4.50 : UV-vis absorbance spectra after PEI treatment for Reactive 
Red 2, 240 mg/L PEI, 100 mg/L alum, pH 7.0, 2 h reaction time.
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Figure 4.51 : UV-vis absorbance spectra after PEI treatment for Reactive 
Black 5,240 mg/L PEI, 100 mg/L alum, pH 5.6 ,2  h reaction time.
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4.4.4 Effective Removal of Dye and Color

To determine the maximum possible removal of the dye breakdown products, a set of 

experiments were carried out with RR2 and RB5 with excess Fe, followed by ARP 

treatment and subsequently PEI aided coagulation and precipitation. A higher amount of 

hydrogen peroxide and enzyme were used to compensate for the consumption o f peroxide 

by sodium sulfite. The Table 4.2 presents the observations and experimental conditions.

Table 4.2: Maximum possible removal.

Treatment steps Fe treatment ARP treatment PEI-aided
coagulation

RR2 Reaction
Condition

1 mM dye conc., 1.5 g 
Fe, 1.5 mM ofN a2SC>3, 
pH 4.8, 60 mM acetate 

buffer for 1 h.

5 U/ml ARP, 5 mM 
H2O2 added in 

steps, pH 7.0, for
2 h.

200 mg/L PEI, 
100 mg/L alum, 

pH 7.0 
for 2 h

Results 98 % dye breakdown, 
estimated from 

reduction of absorbance 
at 538 nm.

94 % amine 
removal (by TNBS 

test)

91 % reduction in 
absorbance of 
peak at 258nm

RB5 Reaction
Condition

1 mM dye conc., 5 g 
Fe, 5 mM of Na2SC>3, 

pH 4.8, 60 mM acetate 
buffer for 1 h.

5 U/ml ARP, 
5.5mM H2O2 added 
in steps, pH 5.64,

2 h

250 mg/L PEI 
100 mg/L alum, 

pH 5.4 
for 2 h

Results 97 % dye breakdown, 
estimated from 

reduction of absorbance 
at 596 nm.

92 % amine 
removal (by TNBS 

test)

82 % reduction in 
absorbance of 
single peak at 

268nm

The results show that Fe treatment efficiency improves for RB5, but the enzymatic 

removal efficiency and PEI treatment efficiency remained the same.

Fe treatment products of both dyes are aromatic amines. The ARP oxidation product of 

these aromatic amine are quinones. In similar situations, phenol was oxidised by HRP to
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form quinones which could be removed by a natural cationic coagulant, Chitosan 

(Wagner and Nicell, 2002b). PEI is a very similar cationic coagulant as Chitosan (Wada 

et al, 1995). Though quinones are toxic (Wagner and Nicell, 2002b), but they are 

similarly removed by PEI. PEI also removes the polymers, the other enzymatic treatment 

end products. Hence it can be presumed that a large portion of dye breakdown products 

are removed by PEI-alum and the treated water has lower level o f toxicity.

Experimental observations also confirm the same. On Fe treatment the primary 

peak absorbances at kmax for the RR2 and RB5 (538 and 596 nm) were reduced by 97 to 

98%. However, new absorbance peaks appeared (primary ones at 258 nm for RR2 and 

268 nm for RB5, refer Figures 4.6, 4.7) due to formation of new molecules. ARP 

treatment followed by PEI aided coagulation removed all these new peaks. This indicates 

that the breakdown products were indeed removed.

From Figures 4.50 and 4.51, it is evident that in both the cases, only a single small 

peak or plateau remained, therefore the extent of removal of these compounds can be 

estimated from the ratio o f peak absorbance before and after ARP and PEI treatment. It is 

estimated that around 91 % (for RR2) and 82 % (for RB5) removal o f the dye breakdown 

products have been achieved by the ARP and PEI treatment. Therefore it can be 

concluded that this three-step process is quite effective in removing not only the color but 

also the end products from water. However some background absorbance remained at 

around 190 nm. Spectra presented by other researchers also had similar residual 

absorbance (Deng et al.,1996; Vinodgopal et al.,1998)
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4.5 Error Estimation

Two statistical experiments (refer Section 3.4.1) were carried out to estimate errors due to 

human, equipment and other factors. The results are presented below in Table 4.3 

(Experiment 1) and Table 4.4 (Experiment 2).

Table 4.3 : Errors due to human and other factors for ANDSA in TNBS test.

Sample no. 1 2 3 4 5 6 7 8
Time 9:40 9:41 9:42 9:43 9:44 9:45 9:46 9:47

Absorbance 0.11432 0.10901 0.10709 0.10718 0.11136 0.11513 0.11101 0.11227

The data in Table 4.3 were collected within short interval of time and therefore the 

variations due to spectrophotometer were negligible. The standard deviation due to 

human and other factors (other than spectrophotometer) was estimated as 0.003015, 

which is a small 2.71% of the observed mean value. The 95% confidence interval is 

0.1109211 0.00252 (“t” statistics with degree of freedom =7) of the observed value.

Table 4.4 : Errors due to spectrophotometer for ANDSA in TNBS test..

Sample no. 1 2 3 4 5 6 7 8
Date Jan Jan Jan Feb Feb Mar Mar Mar
Absorbance 0.11428 0.11266 0.11853 0.11003 0.11343 0.10954 0.12816 0.10954

The data in Table 4.4, collected over a large span of time, included the variations due to 

spectrophotometer also. Standard deviation due to all factors, including 

spectrophotometer was estimated as 0.006283, which is, 5.49% of the observed mean 

value of 0.114525. The 95% confidence interval is within 0.114525 ± 0.00526 (“t” 

statistics with degree o f freedom =7) of the observed value.
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The study results established the followings:

• Zero-valent Fe effectively reduced the two dyes -  RR2 (removal efficiency 98 %) and 

RB5 (removal efficiency 95-97 %) to aromatic amines under anaerobic conditions at 

acidic pH 4.8, which could be further treated.

• Fe breakdown products for these dyes were substituted anilines and naphthol amines. 

RR2 was reduced to an aromatic naphthol amine, which had both the naphthalene and 

triazine rings attached together.

• The aromatic amines generated by Fe° reduction was removed by ARP under 

optimum pH, H2O2 to substrate ratio, enzyme concentration and reaction time at room 

temperature. The removal efficiency obtained and the optimum parameters are 

presented in Table 5.1.

Table 5.1 : Removal efficiency and optimum parameters for ARP treatment.

For 0.5 mM RR2 
breakdown products

For 0.5 mM RB5 
breakdown products

Removal efficiency 94 % as amine removal. 92 % as amine removal.

Optimum pH 6.0 to 7.5 5.5 to 6.5
H2O2 to substrate ratio 3 : 1 4.5 : 1
Enzyme concentration 4.5 U/mL : 1 mM 4.5 U/mL : 1 mM
Reaction time 2 h 2 h

• The aromatic amines with functional groups ( -OH, -NH2, -SO 3' ) in the naphthalene 

ring proved to be substrates of ARP.
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• Michelis-Menten constant (Km) and the turnover number (kcat) for ARP reaction on a 

model substrate (A N D SA ) indicated that A N D SA  which is an aromatic amine with 

naphthalene ring and -OH, -NH 2 , -SO 3' groups, was a less reactive substrate for ARP 

as compared to phenol. This may indicate that substituted anilines bound with ARP 

before naphthol amines when present in a mixture.

• The -NH- bond between benzene rings in DP A was not affected by Fe treatment but 

it was readily oxidised by ARP treatment.

• Polyethyleneimine (PEI) was required as a chemical complexing agent to remove the 

colored enzyme treatment products. An optimum PEI concentration of 200 to 250 

mg/L with 100 mg/L of alum was effective to remove most of the color and pollutants 

(82% for RB5, 91% for RR2) from the water. The optimum pH for RR2 was between 

6.0 and 7.0, and it was between 4.8 and 6.0 for RB5.

5.2 Recommendations

Any further work in this area will have to address the three key concerns: (i) cost, (ii) 

effectiveness and (iii) feasibility of logistics in treating real effluents. This will require 

further study and analysis of real effluent contents and their impact on the proposed 

process, followed by a study to identify possible best processes, enzymes, reagents, 

process conditions and operations that can complement, modify and improve the three 

stage process to make it suitable for real textile/ dye manufacturing plant effluents. 

Typical composition of textile industry effluents is presented in Appendix- A.2. However 

before this, the effectiveness of Fe and ARP treatment needs to be studied and established 

on a wide variety o f reactive azo dyes. It may be worthwhile to explore why PEI was not
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as effective in case of RB5, whether this can be improved upon, or whether alternative 

coagulants have to be used for RB5. The final reaction products may be identified to get a 

better understanding about the reaction mechanisms. The study may be extended to find 

any useful application o f the final polymeric end products.
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CHAPTER 6: ENGINEERING IMPLICATION, COMPARATIVE STUDY AND 

CONTRIBUTIONS

6.1 Engineering Implications

The research findings have the following possible implications in treatment p lan t:

Fe Treatment

• Zero-valent iron or enzyme treatment alone cannot remove both color and the two 

reactive dyes -  RR2, RB5. A three stage process comprising of anaerobic Fe 

treatment, ARP treatment and PEI aided coagulation are required.

• Fe treatment efficiency improves in acidic pH (below 5.0) and pH 4.8 is 

recommended. However, textile effluents have higher pH (9.0 to 11.0) (Delee et al., 

1998). This implies the need for pretreatment of the effluents to bring down the pH.

• The Fe treatment process removal efficiency is sensitive to iron surface area, surface 

cleaning, mixing rate, presence o f impurities. An excess quantity o f iron, finer mesh 

size iron particles, rapid mixing, frequent cleaning, may be essential for complete 

degradation o f azo bond.

• Some compounds compete with dye molecules for the Fe active sites or hinder the 

surface-mediated reaction mechanism and thus deteriorate the dye degradation 

efficiency and reaction rate. Potential sources of such compounds are - buffers, 

additives used in the reaction and various compounds present in the textile effluent 

itself. Hence, in real situation, the dye effluent may be treated at the point of source 

before they get mixed with other effluents.
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• The Fe reduction products of the azo dyes rapidly get oxidized in presence of air. This 

phenomenon decreases ARP treatment efficiency. Therefore, the Fe reduction 

products need to be promptly fed to the next stage for enzymatic treatment. Excess 

oxygen scavengers may slow down such oxidation, but they are likely to increase the 

hydrogen peroxide and enzyme demand in the subsequent ARP treatment.

ARP Treatment

• Fe° breakdown products of other similar reactive azo dyes having -OH, -NH2 groups 

and -N H - bond may be similarly oxidised by ARP.

• The ARP treatment efficiency of the RR2 and RB5 Fe° reduction products were 

observed to be optimum at neutral pH range of 6.0 to 7.4 for RR2 and pH 5.0-6.0 for 

RB5. This implies that after Fe° treatment, an additional step may be required to 

adjust the pH before ARP treatment. A normal room temperature around 22-25° C is 

sufficient to have better performance of the enzymatic treatment.

• Step addition o f hydrogen peroxide can prolong the catalytic life of the enzyme. Such 

incremental addition can bring economy in enzyme consumption of 10 to 20%.

• Two to three hour reaction time is required to get over 90% removal efficiency 

Sufficient reaction time allows all the temporarily inactivated ARP to return to the 

active form and take part in catalytic activity.

• Specific salts and metals can inhibit the enzyme. Such contaminants can come via 

water, buffers, additives or the effluent itself. These can increase or decrease the 

enzyme and peroxide demand. Appropriate measures should be taken to minimize 

their adverse impact, to achieve economy on enzyme consumption.
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• The enzyme reaction products for RR2 and RB5 are colored and water-soluble 

Therefore, coagulant aids are required to remove them.

Coagulation and Precipitation

• PEI with alum was effective in removing colored products from the solution in case 

of RR2 but not as effective in case of RB5. Therefore, an alternative or an additional 

coagulant such as chitosan may be used to remove RB5.

• PEI is non-toxic and gets removed along with the precipitates. Therefore, its addition 

is not hazardous. However, the effect o f its high nitrogen content on the environment 

needs to be studied.

• PEI performs better at pH below 8.0, hence can be directly used after enzymatic 

treatment, which is carried out at the neutral range between for RR2 and slightly 

acidic range for RB5.

6.2 Comparison with other Treatment Processes

Table 6.1 presents a comparison between the results obtained in the present work 

and the best o f the class results obtained by various other removal techniques. The best of 

class processes are selected on the basis of reported dye colour removal percentage alone, 

which were based on the UV-vis peak absorbance reduction at A.max for these dyes. Since 

reduction of A,max does not necessarily mean removal o f the whole compound; therefore, 

the removal figures reported for these best of class processes do not represent the actual 

pollutant removal effectiveness. These best of class processes are selected from Tables 

A. 1.1 to A 1.3, which present the studies on different color removal methods and studies 

on the same two reactive dyes -  RR2 and RB5.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6.1 : A comparison with other best of class processes on the same two dyes.

Dye Dye 
removal in 

Fe
treatment

Amine 
removal in 

ARP 
treatment

Absorbance 
reduction 
after PEI 

aided 
coagulation

End to 
end 

effective 
removal

Removal by best of the class process

Best removals Best times

Reactive 
Red 2

9 8 % (1) 

in 1 h

94% (1) 

in 2 h

91 % (1) 

in 2 h

89%  

in 5.5 h

100% (2) in 20 min

100% (3) in 90 min

100% (4) in 1 h 
100% (5)

95 % (6) in 10 h 
87.3%  (7) in 83 h

In 20m in,
100%(2) In 1 h, 

100%(4)

In 2 h, 100%(3)

In 2.5 h, 64.6% (8)

Reactive 
Black 5

97% (1) 

in 1 h

92% (1) 

in 2 h

82% (1) 

in 2 h

80%  

in 5.5 h

100 % (9) in 90 min 
100 % (10) in 2 h 

99% (5)
98% (U) in 1 h 

96% (12) in 6-26  
days 

94.6 % (13) in 48 h 
84 .1 -87 .6% (14) in 

205days 
77.8% (7) in 83 h

In 1 h, 98% (11)

In 90m in,100
%(9)

In 2 h, 100 % (10) 

In 6 h, 40% (15)

Reference ( Table A. 1.1-A. 1.3 for details)

(1) The present study, from Table 4.2.
(2) Total decolorisation in 20 min by photocatalytic UV/Ti02 & H20 2 by So et al., 2002.
(3) Total decolorisation in 90 min, by photodegradation on aqueous Fe (III) by Deng et al., 1996.
(4) Total disappearance o f absorbance at 538 nm in 1 hour by Feng et al., 1999.
(5) 100 % colour for RR2, 99% colour for RB5 by activated Sludge UASB by Van der zee et al.,

2002. (Time not mentioned for RB5).
(6 ) 95 % decolorisation by thermophilic EGSB reactor by dos Santos et al., 2003.
(7) 87.3 % decolorisation for RR2, 77.8% for RB5 by biological, anaerobic suspended growth

culture by Beydilli et al.,1998.
(8 ) 64.6 % decolorisation in 2.5 hour by UV / Fe° system by Deng et al., 2000.

(9) 100 % decolorisation, 60 % mineralisation by ultrasonic treatment by 
Vinodgopal et al., 1998.

(10) 100 % color, 75 % TOC removal by photocatalytic H20 2/UV by Alaton and Balcioglu, 2001.
(11) 97 to 98 % reduction in absorbance in visible region by photocatalysis by T i0 2 by Arslan et

al., 2 0 0 0 .
(12) 96 % COD removal in 6  to 26 days by Sponza and Isik, 2002.
(13) 94.6 % decolorisation by biological process by Yu et al., 2001.
(14) 84.1 to 87.6 % color removal by biological process by Gottleib et al., 2003.
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(15) 40 % COD removal in 6 hour by Wang et al., 2003.

The observed dye conversions in the three stages o f the proposed process were observed 

under optimum conditions and minimum treatment time. The data is taken from Table 

4.2.

End to end effective removal is calculated as

= removal in Fe treatment stage * removal recorded after coagulation.

Total treatment time include the treatment times for three stages and the filtration time of 

30 minutes, done between Fe and ARP treatment.

The removal percentages indicated for the Fe treatment stage are based on the peak 

absorbance reduction at A ,m a x  for RR2 and RB5 at 538 and 596 nm respectively. The 

removal after PEI-aided coagulation is based on peak UV-vis absorbance reductions at 

258 nm for RR2 and 268 nm for RB5, where as the amine removal percentage after ARP 

treatment is based on the TNBS assay.

The high dye breakdown percentage (98, 97%) as a result o f Fe treatment is 

comparable with similar figures reported by other researchers (presented under the 

column -“Removal by best of class processes” in Table 6.1). Amine removal percentage 

(92 to 94 %) and the absorbance characteristics (as presented in Figures 4.50 and 4.51) 

after coagulation stage indicate the extent of removal of end products, and are also 

significant. On the other hand the “end to end effective removal” figures indicate the 

extent o f effective visible color and also breakdown product removal. The end to end 

conversion removal efficiency is lower in case of RB5. The lower conversion for RB5 is 

predominantly due to relatively poor performance of PEI and lower conversion by ARP.
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Table 6.2 exhibits a comparison between the results from present work and those 

from other multi stage treatment processes selected from Table A. 1.1 o f Appendix A.I.

Table 6.2 : A comparison with other multi stage processes.

Treatment process Dye Removal % Reference

Anaerobic - aerobic 
biotreatment. UASB 
and Aerobic reactor

Reactive 
procion dyes,

150-750 mg/L 
conc.

77% color removal, 
88% COD removal

in 19 h

O’Neill et 
al., 1999

Biological process. 
SBR (anerobic 
followed by aerobic)

Reactive red 
3.1,

40-400 mg/L 
dye conc.

93% dye removal, 

92% COD removal, 

in 24 + 27 h

Bromley- 
Challenor et 
al., 2000

Biological process. 
SBBR (anaerobic 
followed by aerobic)

Same as above 90% dye removal, 

85% COD removal, 

in 24 + 27 h
Biological process. 
Activated Sludge STR 
(aerobic followed by 
aerobic)

Same as above 5% dye removal, 

90% COD removal, 

in total time 42 h

Proposed three stage 
process (Fe, ARP, PEI)

Reactive Red  2, 
1230 mg/L 
(50% pure)

98 % dye removal 
(reduction of peak 

absorbance),

94 % amine removal,

89% end product removal,

in total time 5.5 h

Present
work

Same as above Reactive Black
5,

1876 mg/L 
(55% pure)

97 % dye removal 
(reduction of peak 

absorbance),

92 % amine removal,

80% end product removal,

in total time 5.5 h

Same as 
above

On analysis o f the other studies the following observations were made :
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• Other researchers have reported the decolorization / removal percentage based on 

reduction in absorbance at A,max. Thus these reported removal figures indicates the extent 

o f dye breakdown, not the extent o f actual pollutant removal from water. The end product 

sometimes have colour, even though there is no absorbance at the corresponding A.max. 

Van der zee et al., 2002 reported a yellow coloured end product for RR2, though at 538 

nm there was no absorbance.

Even though the absorbance at A,max for the dyes were reduced to a great extent 

(between 77 to 100%) after treatment, many researchers (Deng et al., 1996; Feng et al., 

1999; Van der zee et al., 2001; So et al., 2002; dos Santos et al., 2003; Beydilli et al., 

1998; Vionodgopal et al. 1998; Yu et al., 2001) have acknowledged that either some 

absorbance was present in the UV-vis range or some end products remained in the treated 

water.

Again, most o f the above mentioned work were conducted with very dilute dye 

solutions (5 to 300 mg/ L). It is known that the colour removal by any process decreases 

with the increase in dye concentration (Deng et al., 1996; Van der zee et al., 2002; dos 

Santos et al., 2003). Dye concentration in an actual dye bath can reach 800 mg/L for 

reactive dyes (O’Neill et al., 1999). Researchers who created synthetic effluents also used 

higher dye concentration (76 to 583 mg/ L) (Arslan et al., 2000). RB5 concentration is 

usually in the range o f 0.8-2.6 g/L in real exhausted dye bath effluent (Arslan and 

Balcioglu, 2000). In general, dye concentration in real effluent varies between 10-250 

mg/L and in simulated wastewater is between 10- 7000 mg/L (O’Neill et al., 1999). As 

these studies reported work with lower dye concentration, so the real performance of
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these processes in worst case and actual treatment conditions cannot be judged from these 

figures alone.

In contrast, in addition of being environmentally friendly, the proposed process in 

the present work demonstrates the following positive points:

• Clear, transparent solution without any colour by visual observation at the end of 

the third step.

• Good dye removal effectiveness (97%, 98%), satisfactory colour and end product 

removal effectiveness (80 % for RB5, 89 % for RR2) in 5.5 hours.

• Significant reduction o f the entire absorbance spectra.

• Satisfactory removal under high dye concentration (1230 mg/L for RR2 and 1876 

mg/L for RB5). In this aspect the proposed process is sufficiently robust and 

therefore, it has a good potential in real wastewater treatment.

COD, TOC removal in the present study were not explicitly measured, as the comparison 

of the absorbance spectra before and after the treatment gave the required estimates about 

pollutant removal. After considering all these dimensions, it can be asserted that the end- 

to-end removal efficiency o f the proposed three-stage process is quite competitive when 

effectiveness, cost, time and other logistics are considered in totality.
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6.3 Contributions

This thesis proposed a novel three-stage treatment process to remove both color and dye 

from water. A combination of three stages: (i) Zero- valent iron treatment under 

anaerobic condition, (ii) followed by a enzymatic treatment and (iii) finally coagulant- 

aided precipitation was able to achieve more effective removal of coloured dye 

compound. Arthromyces ramosus peroxidase (ARP) was proven to be an effective 

enzyme for this process.

Experimental data were presented to establish the effectiveness of the proposed 

process for two common reactive azo dyes : Reactive Red 2 (RR2) and Reactive Black 5 

(RB5). The key optimum process parameters like pH, reagent quantity, reagent 

preparation, operation temperature, reactor operations, etc. for the proposed process were 

identified for these two dyes. The process shows an optimism that this three step process 

has a potential to treat other reactive azo dyes as well.

A comparative study of the available literature related to textile wastewater 

treatment was summarized. The conversion effectiveness and time performance of the 

proposed process was compared against the same metrics from the best processes. The 

proposed process was found to be competitive on basis of its ability to remove both 

visible colour and pollutants.

To gain insight about the ARP mechanism, the action o f ARP on two model 

compounds: diphenylamine (DPA) and 2-amino-8-naphthol-3, 6-disulfonic acid 

(ANDSA) was also studied. These two compounds are known water and soil pollutants. 

ARP treatment on these two additional pollutants was studied for the first time.
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APPENDIX A. 1: Comparative Study of Decolorisation /Removal Techniques.

Table A. 1.1: Comparison of various water treatment processes for dye removal (Azo dyes are in italics)

Process Process condition Type of dyes Colour removal 
(% )

Remark Reference

B iological by 
w hole culture 
having HRP, 
LiP, MnP.

0.8  pM  dye conc. 
in 4 8 h

Disperse yellow 3, 
Naphthol analog
of
Disperse yellow 3

100%

Quinone and
dimersideatified by HPLC

Spadaro and
Renganathan,
1994

Enzymatic, by 
Laccase from P. 
cinnabarinus 
pure culture

25 m g/L dye conc. in 
25 h

Chicago sky blue 100 % Color disappeared but new  
intermediate formed.

Schliephake et 
a l ,  2000

B io lo g ic a l, by 
Pseudomonous 
strain

100 m g/L dye conc. 

A noxic, 

in 48 h

A cid  V iolet 7 99.6 Only reported 
decolorisation in terms o f  
reduction in absorbance in 
visible spectra.

Nitrate, an ubiquitous salt 
was observed as an 
inhibitor.

Y u et al., 
2001Acid red 151 98.9

Reactive black 5 94.6

Acid yellow 34 89.5

Indigo carmine 87.9
A cid  green 27 60.5

A cid  red 183 26.7

Reactive blue 2 24.3

B io lo g ic a l, by 
Pseudomonous 
strain in 
municipal 
sludge

100 m g/L dye conc. 

A noxic, 

in 48 h

Acid Violet 7 96.5 N eglig ib le color removal 
(less than 5%) by  
municipal sludge alone,

Y u et al., 
2001Reactive blue 2 77.2

A cid green 27 80.5

A cid red 183 57.3

Indigo carmine 73.1
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Process Process condition Type of dyes Colour 
removal (%)

Remark Reference

Enzymatic, by MnP 
from Bjerkendera sp.

100 m g/L dye conc. 
pH 4.8  
in  1 h

Orange II 95% Absorbance in the 
visib le range 
disappears. But 
absorbance in U V  
range remains.

M ielgo et 
al., 2003

B iological process. 
Activated Sludge 
U A SB

100-300 m g/L dye conc. 
30° C

RR2 in 6 days, time not 
m entioned for other dyes.

20 different azo dyes 
including RR2, RB5

73-100% Recolorisation on  
exposure to air. 
Triazine dye had 
slow est rate o f  
degradation

Van der zee  
et al., 2001

Reactive red 2 99%

Reactive black 5 100%

B iological process. PBR  
(anerobic followed by 
aerobic)

40-400 m g/L dye conc. 

24  & 27 h

Reactive red 3.1

93% o f  dye 

92%  o f  COD

Recolorisation o f  end 
product takes place 
after anaerobic stage

Brom ley- 
Challenor et 
al., 2000.

B iological process. 
SB B R  (anaerobic 
fo llow ed by aerobic)

40-400 m g/L dye conc. 
24  & 27 h

90% o f  dye 
85 % o f  COD

B iological process. 
Activated Sludge 
STR (aerobic followed  

by aerobic)

40-400 m g/L dye conc. 
in total tim e o f  42 h

5 % o f  dye. 
90 % o f  COD
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Process Process condition T ype o f  dyes C olour rem oval 
(% )

R em ark R eference

Enzymatic, by pure 
HRP

0.15 mM dye conc. 

pH 4.7

4-amino azobenzene 90.2 Stiborave et 
al., 1996

0.15 mM dye conc. 
pH 8.4

Sudan 1 85%

0.15 mM dye conc. 
pH 4.7-8.4

Sudan II 0

0.15 mM dye conc. 
pH 4.7-8.4

Sudan III 0

0.15 mM dye conc. 

pH 4.7-8 .4

Orange II 0

B io lo g ica l, by  
anaerobic suspended 
growth culture

50-2000 mg/L dye conc.
35° C, neutral pH, 

methanogenic condition, 
in 83 h

Reactive red 2 87.3% Aromatic am ines are 
formed. Higher dye 
concentration o f  500- 
2000 m g/L  is toxic for 
m ethanogenic bacteria

B eydilli et 
al., 1998

Reactive black 5 77.8%

Biosorption on wheat 
straw and apple 
pomac

Mixture o f  5 dyes 
10-200 mg/L dye conc. 

Particle size 600 pm

Ramazol and 
Cibacron dyes

81-91%  color Robinson et 
al., 2001

B iological by White 
rot fungi Laccase, 
LiP, MnP

199 m g/L dye conc. 

in 16-20 h

Cibacron and 
Ramazol mixture

(Ramazol black B)

73.9-85 .7  % Nitrogen rich m edia is 
better. Organisms 
requires more nutrient to 
functions better.

Robinson et 
al., 2001
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Process Process condition Type of dyes Colour removal (%) Remark Reference
Anaerobic / 
aerobic 
biotreatment 
UASB and 
Aerobic reactor

150 -750 mg/L dye 
concentration 

in 19 h

Reactive procion 
dyes

77% color removal., 
88% COD removal

Maximum removal 
was observed when 
dye concentration 
was low.

O’Neill et 
al.1999

Enzymatic by 
pure HRP, LiP, 
MnP.

0.8 pM dye conc. 

in 2 h

Naphthol analog 
ofDisperse 
yellow 3

70% by HRP 

60% by LiP 

10% by MnP

From HPLC and 
GC MS the 
products were 
identified as 
acetanilide and 
naphthoquinone.

Spadaro
and
Renganatha 
n, 1994

Biological, by 
Laccase from 
T. versicolor
Fungal culture

100 mg/L dye conc. 
in 16 days

Acid Violet 7 160 mg dye/l/h Azo dyes are not 
substrate
Anthraquinone dye 
is a good substrate.

Yu et al., 
1999Acid green 27 40 mg dye/l/h

Indigo carmine 40 mg dye/l/h

Enzymatic, by 
crude HRP

15 mg/L dye conc. 
pH 2.5,
25° C, 
in 9 h

Crystal violet 0.02 mM /L/min Dye degradation 
was 17 times 
slower compared to 
phenol as the 
substrate

Bhunia et 
al., 2001Ramazol blue 0.017 mM /L/min

Cibacron red 0.0028 mM /L/min
Cibacron Blue 0.0018 mM /L/min
Ramazol violet 0.0006 mM/L/min
Ramazol Black nil

Biosorption by 
Fungi Rhizopus 
arrhinus

0-400 mg/L dye conc. 
pH 2, Particle size > 600 pm, 

1 g biomass per L 
in 20 h o f contact time

Reactive Dye 
mixture

Max. 200 mg/g 
adsorbent

Low pH
requirement may be 
problem

O ’ Mahony 
et al., 2002
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Table A.1.2 : A Comparative Study of Various Treatment Processes to Remove Reactive Red 2

Process Process condition Extent of removal & remark Reference

Advanced oxidation 
process (AOP),
Photodegradation on 
aqueous Fe (III)

5-25 mg/L dye conc. 
U V / F e  3+ 

pH 3 
in 0-90 min

Total decolorisation by reduction o f absorbance 
measured at 539 nm. Absorbance in UV range remains 
after decolorisation . Degradation rate decreases with 
increasing dye concentration.

Deng et al., 
1996

AOP, Fe reduction and 
photooxidation

100 mg/L dye conc. 
High temp Hg lamp 

pH 2
30 min Fe reduction 
followed by 30 min 

irradiation

Decolorisation measured by total disappearance of 
absorbance at 538 nm after Fe reduction.

Subsequent photooxidation causes only 0.01% 
mineralisation. Formation of substituted benzene and 
naphthalene rings which stays in the solution

Feng et al., 
2000

Biological process. 
Activated Sludge

UASB reactor

100-300 mg/L dye conc. 

30° C, 

in 6 days

100 % removal o f absorbance measured at A,max 539 
nm. But yellow colour reaction product remains, 
decolorisation rate is slower compared to other azo 
dyes.

Absorbance spectra in the UV region remains as 
aromatic amines remains, which requires further 
aerobic treatment

Van der zee 
et al., 2001

AOP, Photocatalytic 
UV/Ti02, & H20 2

40 mg/L dye conc. 
Dye in suspension with 

Ti02. 
pH 4.5, 

in 80 min

Total decolorisation in 20 min, 90 % mineralization in 
80 min (measured by TOC loss), measured by 
absorbance

Alkaline condition favors, cyanuric acid may be end 
product.

So et al., 
2002
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Process Process condition Extent of removal & remark Reference

Biological thermophilic 
EGSB reactor with redox 
mediator, AQDS

Hydrolysed dye, 
100-170 mg/L dye conc. 

55°C
Hydraulic retention time in 

reactor- 10 h

95% decolorisation with AQDS, 91% 
decolorisation without AQDS.
Aniline is formed in the process, no mention 
about further treatment.

dos Santos et al., 
2003

Biological., by Anaerobic 
suspended growth culture 
from municipal sewage 
sludge

300 mg/L dye conc. 
35° C, neutral pH, 

methanogenic condition, 
in 83 h

77.8% decolorisation 
breakdown products are Aromatic amines.

Beydilli et al., 1998

AOP, UV / Fe° system 10-50 mg/L dye conc.
pH 3.4 

Fe° less than 100 mesh 
Fe conc. 0.5-5 g/L, 

in 2.5 h

64.6% decolorisation 
absorbance is reduced in the whole UV-Vis 

range.

Deng et al., 1999
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Table A.1.3 : A Comparative Study of Various Treatment Processes to Remove Reactive Black 5.

Process Process condition Extent of removal & remark Reference

Physical treatment, 
by Ultrasonic waves

33 pM dye solution 
640 kHz, 
in 90 min

100 % decolorisation measured by disappearance o f visible 
absorbance peak

60 % mineralisation , formation of oxalate, sulfate and nitrate ions.

Vinodgopal 
et al„ 1998

AOP, Photocatalytic 

H20 2/UV

Hydrolysed dye 
75 mg/L dye cone., 

in 2 h

100 % color rem oval, 
62% COD rem oval, 

75% removal

Alaton et 
al„ 2001

Biological process, 

Activated Sludge 

UASB

100-300 mg/L dye 
cone.

30° C, Time not 
mentioned

99% colour removal 
Absorbance in UV region remains as aromatic amines remains, 

which requires further aerobic treatment.

Van der 
zee et al., 
2002

AOP,
Photocatalysis by 
Ti02

583 mg/L dye conc. 
Simulated dye bath, 

in 1 h

97-98 % reduction in absorbance in visible region. 
30-37 % TOC rem oval, 

removal decreases with increase in effluent concentration

Arslan et 
al., 2000

Biological, 
Anaerobic /aerobic 
sequencial batch 
reactor UASB/CSTR

100 mg/L dye conc. 
in 6 to 26 days

96 % total COD rem oval, 
84 % color removal in 6 days

Sponza and 
Isik, 2002

Biological, by 
Pseudomonous 
strain

lOOmg/L dye conc. 
Anoxic, 
in 48 h

94.6 % decolorisation, no minerilization or disappearance o f 
absorbance in UV range will take place, because biological process 
do not work well for stable azo dyes. Nitrate, an ubiquitous salt in 

textile waste has severe inhibitory effect on decolorisation. Extent of 
decolorisation depends on dye concentration and biomass 

concentration. Higher dye concentration will give lower removal.

Yu et al., 
2001
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Process Process condition Extent o f removal & remark Reference

Biological., Anaerobic 
suspended growth culture

300 mg/L dye conc. 
35° C, neutral pH 

methanogenic ondition 
in 10 h

87.3% color removal Beydilli et 
al., 1998

Biological., by E. 
faecalis and C.butyricum 
strain.

Laboratory baffled 
reactor, sequential 
anaerobic and aerobic

500mg/L dye conc. 

in 205 days

84.1-87.6% color removal

Intermediate produced after anaerobic stage is toxic but 
final effluent product after aerobic stage is non toxic.

Gottleib et 
al., 2002

AOP, Ozonation 2 g/L dye 
in 6 h

40 % COD removal, 25 % TOC removal. Wang et 
al., 2003
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A.2 Typical Composition of Textile Effluents

The chemical content for a simulated exhausted dye bath is presented below to give an 

idea of typical composition of textile dye effluent. The recipe o f the simulated effluent 

was made to match the actual textile industry effluent.

Table A.2.1: Simulation recipe for effluent from an integrated plant.

Dye Concentration Function Reference
Ramazol Black B 
(Reactive Black 5)

538 mg/L Dye Arslan et 
al., 2000

Other dyes 92-84 mg/L Dye
Assisting chemicals

Urea 3 g/L Increase solubility of the dyestuff
NaCl 70 g/L Transfer dyestuffs to fabric

Na2C03 5 g/L (pH buffer) Produces covalent bond 
between dyestuff and fabric

NaOH 4 g/L Produces covalent bond between 
dyestuff and fabric

Table A.2.2: Simulation recipe for effluent from a dyehouse mill.

Dye Concentration Function Reference
Procion dyes 6-86 mg/L Dye Alaton et
Assisting chemicals al., 2002

Aacetic acid 0.79 g/L Neutralizes wash water
NaCl 41 g/L Transfer dyestuffs to fabric

Na2C03 13 g/L (pH buffer) Produces covalent 
bond between dyestuff and fabric

NaOH 0.51 g/L Produces covalent bond between 
dyestuff and fabric

Polyether based co
polymer, micro 
dispersion

1.20 g/L Anti-creasing agent

Acryl-co-polymer- 
phosphor mixture

0.85 g/L Sequestering agent

Alcyl phenol poly 
glycol ether

0.50 g/L Detergent
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Table A.2.3: Characteristics of a 15-fold diluted reactive dyebath effluent

Parameter Value

TOC (mg/L) 46.8

BOD 5 (mg/L) Below 
detection limit

AOX (Halogenated compound) (mg/L) 0.102

C 0 3‘ (mg/L) 490.6

Cl ’(mg/L) 1659.0

pH 10.9

(Source: Alaton et al., 2002)

Table A.2.4: Fixation rate of different dyestuffs

Dye application 
class

Fibre Degree of 
fixation (% )

Loss to 
effluent (%)

Reactive Cellulose 50-90 10-50

Sulfur Cellulose 60-90 10-40

Direct Cellulose 70-95 5-30

Vat Cellulose 80-95 5-20

Acid Polyamide 89-95 5-20
Metal Complex Wool 90-98 2-10

Disperse Polyester 90-100 0-10

Basic Acrylic 95-100

lOiO

(Source: O ’Neill et al., 1999)

Reactive azo dyes like RR2 and RB5 have lower fixation rate therefore a larger portion of 

those are discharged as effluents.
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A.3: Properties of RR2, RB5 and model compounds

Table A.3.1: Chemical properties of the dyes and model compounds

Compound Reactive Red 2 Reactive Black 5 2-amino-8- 
naphthol-3,6- 
disulfonic acid

Diphenylamine

CAS number 17804-49-8 17095-24-8 - 122-39-4
Chemical
formula

Ci9H13Cl2N6Na07S2 C26H26N5N a019S6 CioH9N0 7 S2 c ,2h un

Molecular
weight

595.4 927.9 169.2

-̂max 538 nm 596 nm - -
Melting 
Point, °C

>300 °C >300 °C - 52.5-54 °C

Purity 50% 55% 80-90 % 99%
Molecular
*Diffusivity

3.28 X 10-6 cm2/sec 2.77 X 10-6 cm2/sec. - -

(*Calculated by reference Tucker and Nelkhen, 1982)

Table A.3.2: Toxicity of reactive azo dyes and some of their degradation products

Dye Toxicity (EC50), mg/L Biodegradability Reference
Reactive Black 5 Parent dye : 27.5 ± 4.01 

Hydrolyzed dye : 11.4 +3.68
Bacteria reduced form:
0.7 ± 0.09

Not totally 
biodegradable
(BOD28/COD,= 1.4%)

Wang et a l , 
2003

Procion Crimson 
(Similar to RR2)

Parent: 34.7 ± 0.27 
Hydrolyzed: 37.7 ± 1.72

- Gottlieb et al., 
2003

Procion Navy 
(Similar to RR2)

Parent: 18.9 ± 5.65 
Hydrolyzed: 27.9 ± 3.28

-

ANDSA
(H-Acid)

48.6 ±2.68 - Gottlieb et al., 
2003

Sulfanilic acid 
(Similar to RB5 
breakdown 
products)

21.5 ± 6.72 Gottlieb et al., 
2003

EC 50 is the sample concentration that inhibits 50 % of the light output after a 5 min

exposure period.
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A.4 Properties of Arthromyces ramosus Peroxidase (ARP)

Property Value

Molecular wt. 41,000 KD

Nuumber of subunits 1

Amino acid per sub unit 344

Number o f disulfide bond 4

Optimum pH 5-9

Optimum Temperature , 0 C 40

pH stability 5-9 at 3 0 0 C for 16 h

Thermal stability Upto 50 0 C (at pH 7 for 30 min)

Co factor 1 protoheme IX per enzyme

RZ value 2.7

Cellular localization Extra-cellular

Metal ion requirement 2 endogenous Ca+ ion

(Source: Nakayama and Aamachi, 1999)
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APPENDIX B: ANALYTICAL TESTS 1

B .l ARP Activity Assay 

B .l.l  General

ARP enzyme activity assay is carried out to determine the amount o f active 

enzyme present in a sample. This assay uses saturation concentrations o f phenol, 4- 

aminoantipyrine (4-AAP) and an appropriate concentration of hydrogen peroxide such 

that the initial reaction rate is proportional to the enzyme activity. The rate is measured 

by observing the rate o f color formation in a reacting solution, in which ARP catalyses 

the reaction between phenol and H2O2. The end products formed react with 4-AAP to 

form a pink color solution which shows peak absorbance at 510 nm and has extinction 

coefficient of 6000 M '1 cm -1, based on peroxide.

One unit of activity is defined as number o f micromoles o f H2O2 utilized in one 

minute at pH 7.4 and at 25 °C in an assay mixture containing 10 mM phenol, 2.4 mM 4- 

AAP and 0.2 mM H2O2.

B. 1.2 Preparation of Reagents

B .l.2.1 Phosphate Buffer (0.5 M, pH 7.4)

In a 1000 mL volumetric flask, add the following reagents:

13.796 g monobasic sodium phosphate ( N a^PCL, H2O)

56.78 g o f dibasic sodium phosphate ( Na2HPC>4)

Distilled water to make a 1000 mL solution.

1 Source: Lab Manual, Enzymology lab, Room B79 and Mantha, 2001.
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B .l.2.2 Phenol (0.1 M) in Phosphate Buffer (0.5 M, pH 7.4)

Dissolve 9.411 g o f phenol in 1000 mL of 0.5 M phosphate buffer solutions.

B.l.2.3 Hydrogen Peroxide (100 mM)

Dilute 567 pL of 30 % (w/v) hydrogen peroxide to 50 mL with distilled water. 

This is to be freshly prepared each time an activity assay is carried out.

B .l.2.4 Assay Mixture

In a beaker add the following in the given order:

25 mg AAP

42.4 mL water

100 pL of 100 mM H20 2

5 mL of 0.1 M phenol in 0.5 M phosphate buffer

B .l.3 Procedure

The assay volume is 1 mL and the assay should be conducted before the 

substrate depletion becomes significant. In a semi-micro cuvette, place the followings 

according to the given order:

950 pL of assay mixture

50 pL of solution containing ARP enzyme.

B .l.4 Estimation of ARP activity

One unit of activity is defined as number of micromoles of H2O2 utilized in one 

minute at pH 7.4 and at temperature 25 °C in an assay mixture containing 10 mM phenol,

2.4 mM 4-AAP and 0.2 mM H2O2. The activity o f ARP in the cuvette is obtained from
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the average slope o f the curve (absorbance per minute) within the linear range. Therefore,

the activity within the cuvette, in units of U/mL is calculated as:

Slope (AU/minute) 106pmol 1L
Activity (U/m L)=----------------------------x   x---------------

6000 AU L/mol mol 1000 mL

Here AU represents absorbance units and 6000 AU L/mol is the factor that relates color 

development to peroxide consumption.

Activity of the sample is estimated as:

1000
Sample activity (U/mL) = Activity in cuvette (U/mL) x ------------------

Sample volume

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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B.2 Hydrogen Peroxide Assay 

B2.1 General

This endpoint colorimetric assay is used to determine the concentration of 

hydrogen peroxide in a sample. The assay uses Arthromyces ramosus peroxidase as a 

catalyst and 4-aminoantipyrine and phenol as a color-generating co-substrates. In this 

assay the amount o f H2O2 introduced into the assay sample is the only limiting reactant; 

therefore, the degree of the color development in the reaction is proportional to the 

amount o f peroxide in the sample. Once the maximum amount o f color has been 

developed, the absorbance (at 510 nm) is measured in UV-VIS spectrometer and the 

concentration o f H2O2 in the cuvette is measured by means o f a calibration curve. H2O2 

concentration in the sample is calculated by taking into consideration of the dilution 

factor of the sample in the cuvette.

B.2.2 Preparation of Reagent 

B.2.2.1 Phosphate Buffer (0.5 M, pH 7.4)

In a 1000 mL volumetric flask, add the following reagents:

13.796 g monobasic sodium phosphate ( Na^PCL, H2O)

56.78 g of dibasic sodium phosphate ( Na2HP0 4 )

Distilled water added to make a 1000 mL solution.

B.2.2.2 Phenol (0.1 M) in Phosphate Buffer (0.5 M, pH 7.4)

Dissolve 9.411 g of phenol in 1000 mL of 0.5 M phosphate buffer solutions.

B.2.2.3 Assay Mixture

In a beaker add the following in the given order:
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41 mg AAP

10 mL of phenol (0.1 M) in phosphate buffer (0.5 M, pH 7.4)

200 pL o f ARP stock solution

9.8 mL distilled water

The final total volume of the assay reagent is made to 20 mL.

B.2.3 Calibration Procedure

Make a stock solution of H2O2 with a concentration of 1.0 mM. From this stock 

solution prepare a standard ranging from 0 to 1.0 mM. In a test tube place the following 

solutions in the given order:

200 pL of assay reagent 

750 pL of distilled water 

50 pL o f standard sample

The total volume o f the assay mixture must be 1 mL and hydrogen peroxide 

concentration in the assay mixture must be below 50 pM. Immediately after the adding 

the H2O2 standard, shake the tube and then wait until the color is fully developed 

(approx. 10 minutes). Put the assay in a semi-micro cuvette and read the peak absorbance 

at 510 nm. Repeat the procedure for all the standards, taking three measurements for 

each. Make a plot o f absorbance vs. H2O2 concentration in the cuvette, and determine the 

slope of the line using a linear regression. A typical calibration curve is presented in the 

figure B.2.1.
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B.2.4 Estimation of Hydrogen Peroxide concentration

In a semi-micro cuvette, place the following reactants in the given order:

200 pL o f assay reagent 

0-750 pL of distilled water 

50-800 pL of sample

The total volume in the cuvette must be 1 mL.

Immediately after addition of the sample, shake the cuvette and then wait for 10 minutes. 

Read the absorbance at the peak wavelength of 510 nm. Determine the cuvette H2O2 

concentration from the calibration curve presented in Fig. B.2.1. From this cuvette H2O2 

concentration, determine the sample hydrogen peroxide concentration o f the sample as :

1000 pL
[H2O2 ] s a m p l e  [H2O2 ] c u v e t t e  X

Sample volume, pL

0.35
y=0.0058x+0.0026 

R2 = 0.99970.3

E
e  0.25
o

0.2

a 0.15

I . ,
<

0.05

10 20 30 40 50 600

Concentration in cuvette, micromolar 

Figure B.2.1 Calibration curve for hydrogen peroxide at 510 nm
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B.3 TNBS Assay for Aromatic Amines 

B.3.1 General

The purpose of this assay is to determine aromatic amines present in a sample. 

The assay employs 2,4,6 -trinitrobenzenesulfonic acid (TNBS) to produce color after 

reacting with amines present in the aqueous solutions. The sample solutions are buffered 

at pH 7.5 and the amount of aromatic amine is the only limiting substance in the solution. 

Therefore the intensity o f color generated is proportional to the amount of aromatic 

amine present in the sample. Each colored solution o f amine absorbs light at a distinct 

wavelength with a unique extinction coefficient. Standard calibration curve for only 

aniline is generally available.

B.3.2 Preparation of Reagent 

B.3.2.1 Phosphate Buffer (0.5 M, pH 7.4)

In a 1000 mL volumetric flask, add the following reagents :

13.796 g monobasic sodium phosphate ( Na^PCL, H2O)

56.78 g of dibasic sodium phosphate ( Na2HPC>4)

Add distilled water to make a 1000 mL solution.

B.3.2.2 TNBS Solution (10 mM)

In a 10 mL flask, add 29 mg of TNBS.

Add distilled water to make a 10 mL solution.

Fresh solutions are to be prepared each time the test is carried out.
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B.3.3 Calibration procedure

Make a stock solution of aromatic amine with a concentration of 1 mM. From the 

stock solution, make sub-stock solutions o f concentrations ranging from 0-500 pM. In a 

final volume o f 1.0 mL, add the solutions in the following order:

100 pL of assay reagent

100 pL of phosphate Buffer (0.5 M, pH 7.4)

0-800 pL o f sample plus water

Keep the aromatic amine concentration in the cuvette below 50 pM. Samples are allowed 

to stand for 30 minutes for color development and then absorbance is measured at the 

peak wavelength against a reagent blank. Repeat the procedure for all the standards, 

taking three measurements for each. Make a plot o f absorbance vs. aromatic amine 

concentration in the cuvette, and determine the slope of the line using a linear regression. 

A typical calibration curve for aniline is presented in the figure B.3.1.

B.3.4 Estimation of Aromatic Amines

In a semi-micro cuvette place the following in the order given:

100 pL of assay reagent

100 pL of phosphate buffer (0.5 M, pH 7.4)

50-800 pL of sample plus water 

Shake the cuvette, allow some time for colour formation (1 h for ANDSA), then note the 

absorbance, and estimate the cuvette aromatic amine concentration from the calibration 

curve. For aniline use the calibration curve as presented in Fig. B.3.1.

Calculate the aromatic amine concentration in the sample from the following equation :
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1000 pL
[Amine] s a m p l e  = [Amine ] c u v e t t e  x

Sample volume, pL 

Where, [Amine ] cuvette is determined from the calibration curve.

0.7
0.013x+0.0127 
R2 = 0.99520.6

0.5 

i  0.4

1 0.3 x
0.2

0.1

0 10 20 30 40 50 60

concentration, uM

Figure B.3.1: Calibration curve for Aniline (with lm M  sodium sulphite) for TNBS test
at 398 nm

0.12
y = 0.0011X- 0.0015 

R2 = 0.9993SB
O
5  0.08

g 0.06
B
05
■g 0.04 
©

 ̂ 0.02

0 20 40 60 80 100 120

ANDSA conc, micromolar

Figure B.3.2: Calibration curve for ANDSA (H-Acid) for TNBS test at 410 nm
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APPENDIX C: HPLC STANDARD CURVES

HPLC was used to identify and quantify the Fe reduction products in case o f DPA. The 

products were speculated to be benzene and aniline. First a standard curve was prepared 

to which can be used to determine the concentration o f DPA, Aniline or Benzene in the 

Fe reduction product.

Preparation o f HPLC standard curves : Different known concentration of DPA, aniline 

and benzene varying from 0.05 to 0.2 mM was prepared after proper dilution. Since the 

Fe reduction was done with sodium sulfite as scavanger, these standard solutions were 

doped with 1 mM sodium sulfite. The samples were run in HPLC for some period (~10 

min). The peak area vs. concentration was plotted to get the standard curve for DPA, 

aniline and benzene. Methanol was used for extracting DPA from Fe particles after 

reaction. DPA in methanol shows different peak area in HPLC. So another standard curve 

was prepared for DPA in methanol. A similar standard curve for aniline was also 

prepared. Since no benzene could be detected after the Fe treatment o f DPA, a standard 

curve for benzene is not presented.
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C .l DPA

2500000

2000000

«  1500000
4>S.
^  1000000 y = 3B06x-6445.9 

F? = 0.9974
500000

concentralion, mM
0 0.05 0.15 0.2

♦ channel 1- 254 nm ■ channel 2- 280 nm
— linear (channel 1- 254 nm)  Linear (channel 2- 280 nm)

Figure C.1.1 : HPLC Standard curve for DPA with sodium sulphite in water 

C.2 DPA in Methanol

7000000
y = 2EK)7x + 136883 

RP = 0.99826000000

5000000

£  4000000
U
<  3000000

2000000

1000000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
conc.mM

♦ 254nm ■ 280nm-----Linear(254nm) — linear(280nm)

Figure C.2.1 : HPLC standard curve for DPA with methanol
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C.3 Aniline

160000 
140000 
120000 

100000 

|  80000 
60000 
40000 
20000 

0

0 O.Q5 0.1 0.15 0.2 0.25
concentratiayriVI

♦ channel 2-280nm ■ channel 1-254nm

 linear (channel 2- 280nm) —  linear (channel 1-254nm)

Figure C.3.1 : HPLC standard curve for anilne with sodium sulphite

y =687300*-2727.6 
F? =0.9968
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C.4 HPLC Chromatogram for DPA Fe treatment

S A M P L E I N F O R M A T I O N

Sarrple Name: 1s Acquired By: System
SartpieType: Uhkncwn Date Acquired: 5/8/04 5:23:03 PM
Vial: 2 Acq. Method: 80%A 20%B DUAL
Section#: 1 Date Recessed: 5/8/04 8:46:35 PM
Irpction Volume: 10.00 ul Channel Name: 2487Charmel1
RunTime: 10.00 Mnutes Sample Set Name: m

0.012 ( i( I

0.010

0.008

<  0.006

0.004-

0.000-

2.001.00 3.00 4.00 5.00
Minutes

1,00 r.oo l.OO 10.00

RT
(trin)

Area
(pV*sec) %Area Height

m
%

Height

1 1.548 11462 7.95 1963 11.89

2 1.687 831 0.58 278 1.68

3 1.886 11429 7.93 1220 7.39

4 2.590 947 0.66 180 1.09

5 2.769 4063 2.82 339 2.05

6 3.905 115400 80.07 12526 75.89

Figure C.4.1: Chromatogram of DPA observed at 254 nm after being 
treated with 1 g Fe, 1 g Na2 S(>3 , at 7.0 pH, after 1 hour reaction time.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S A M P L E I N F O R M A T I O N

Sample Name: Ss Acquired By : System
Sample Type: Unknown Date Acquired: 5/8/048:30:18 PM
Vial: 6 Acq. Method: 80%A20%BDUAL
Injection#: 1 Date R-ocessed: 5/8/04 8:55:02 PM
Injection Volume: 10.00 ul Channel Name: 2487Channel 1
RjnTime; 10.00 Mnutes Sample Set Name: m

0 .0 0 9

0.004-

0.003-

O.O02-

0.001

0.000

00 
Minutes

RT
(rrin)

Area
(pV*sec) % Area Height

m
%

Haight

1 1.531 10552 13.52 1830 19.72

2 1.675 1270 1.63 359 3.87

3 1.876 12247 15.70 1286 13.85

4 2.748 2661 3.41 219 2.36

5 3.887 51289 65.74 5588 60.20

Figure C.4.2: Chromatogram of DPA observed at 254 nm after being treated with 
1 g Fe, 1 g Na2SC>3 , at 7.0 pH and 4 hour reaction time.
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S A M P L E I N F O R M A T I O N

Sample Name: e4 AcqUredBy: System
Sample Type: LMflwri Date Acquired: 5/8/04 7:54:25 PM
Vtal: 11 Acq. MbBxxJ: 80%A 20%B DLAL
Section#: 1 Date Rocessed 5/8/04 8:58:32 FM
injection volume: 10.00 id Owtnel Name: 2487Channel 1
RjnTime: 10.00 Mnutes Sample Set NarrB: m

0.050

0.040

=»<
0.030

0 .020-

0.010

0.000
* cm cm

ZrTTo A -
1.00 zoo 3.00 4.00 5.00

Minutes
6.00 r.oo 8.00 9.00 10.00

RT
(rrin)

Area
(pV*sec) % Area Height

m
%

Haight
1 1.642 2053 0.36 319 0.52
2 1.906 2136 0.37 291 0.47
3 Z217 10006 1.76 1418 2.31
4 2.652 10060 176 1449 2.36
5 3.887 518393 90.90 55381 90.37
6 5.146 27070 4.75 2424 3.96

Figure C.4.3: Chromatogram of DPA extracted from iron surface, after Fe 
treatment with 1 g Fe, 4 hour run, at pH 7.0, observed at 254 nm.
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SAMPLE INFORMATION

a * *  n«w Un %IM
awpfcTfi* IHmwn MAaptwt MKH»:3H04FM
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Uoclon Vt*JTK taaw ChmniMmr
An Urate 1000MrtjhW SavpiaSatttm m

1D*J

RT
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HlljW

i 1.TM 308 fttt
2 1 3 2 m Jim 1T8DZ? w
3 1343 a o s * 1445 38<88 15.18
4 3«1 MtrtM 12JM asm *184

Figure C.4.4: Chromatogram of DPA (3.821 min), aniline (2.055 min) and benzene 
( 3.243 min) in mixture observed at 254 nm
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APPENDIX D: 

Estimation of Kinetics Rate Constants for ANDSA reaction with ARP 

D .l Procedure

Determination of initial velocity: ARP reaction on ANDSA was carried out for different 

substrate concentration (1- 25 mM) with 4U/mL ARP, 2.4 mM hydrogen peroxide 

concentration at pH 7.02 and at room temperature. The amount o f aromatic amine 

(ANDSA) remaining was measured by TNBS test at 2 minutes interval for the first 10 

minutes. Remaining ANDSA concentration vs. time was plotted and a polynomial curve 

was fitted to this data sets for each ANDSA concentration. The order of polynomial was 

chosen to obtain the best fitting curve (maximise R2 to nearly 1) whose Y intercept is 

equal to the absorbance value for TNBS test at initial ANDSA concentration. The first 

order coefficient of each best-fit curve was taken as the initial velocity for the particular 

substrate concentration. This generated the initial velocity data set for various substrate 

concentrations as presented in Table D .l.

Determination of rate constants: Initial velocities were plotted against substrate 

concentrations. A non linear regression of this data was carried out for the Michaelis -  

Menten equation using software application : NLREG ver 6.1, evaluation copy available 

from the internet.

T/ Vmax * [ S ]
Michaelis-Menten equation: V = —------ ——

+ I s  ]

Where S is substrate concentration, V = velocity, Vmax = maximum velocity, Km = 

Michaelis-Menten constant (Palmer, 1995).

On feeding the data and script the application computed the rate constants: Vmax and Km.
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D.2 Observed Data

Table D .l Initial rate of reaction vs. substrate concentration for ANDSA

ANDSA conc., 
mM

1 1.5 2 2.5 3 3.5

Initial rate of 
reaction, mM / 
min

0.090426 0.15824 0.17056 0.24014 0.25771 0.24351

ANDSA conc., 
mM

4 4.5 10 15 20 25

Initial rate of 
reaction, mM / 
min

0.21612 0.23748 0.24728 0.27257 0.28289 0.28662
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D.3 A software program written to estimate non linear regression parameters to fit
first order kinetics equation.

Software used : Evaluation copy, NLREG version 6.1 
Copyright (c) 1992-2004 Phillip H. Sherrod.

Title "Kinetics";
Variables x,y;
Parameters p,q;
Function y = (p*x)/(q+x);
plot;
data;
0 0
1 0.090426
1.5 0.15824
2 0.17056
2.5 0.24014
3 0.25771
3.5 0.24351
4 0.21612
4.5 0.23748
10 0.24728
15 0.27257
20 0.28289
25 0.28662

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158



D.4 Nonlinear regression results obtained using the software

—  Final Results —

NLREG version 6.1
Copyright (c) 1992-2004 Phillip H. Sherrod.

Kinetics
Number of observations =13 
Maximum allowed number of iterations = 500 
Convergence tolerance factor = 1.000000E-010 
Stopped due to: Relative function convergence.
Number of iterations performed = 6
Final sum of squared deviations = 6.8068337E-003
Final sum of deviations = -9.0025657E-003
Standard error of estimate = 0.0248758
Average deviation = 0.0166315
Maximum deviation for any observation = 0.0442197
Proportion of variance explained (RA2) = 0.9191 (91.91%)
Adjusted coefficient of multiple determination (RaA2) = 0.9118 (91.18%)
Durbin-Watson test for autocorrelation = 1.341
Analysis completed 6-Jun-2004 23:48. Runtime = 0.16 seconds.

—  Descriptive Statistics for Variables —

Variable Minimum value Maximum value Mean value Standard dev.

x 0 25 7.076923 8.01001
y 0 0.28662 0.2079651 0.08374927

—  Calculated Parameter Values —

Parameter Initial guess Final estimate Standard error t Prob(t)

p 1 0.302336009 0.01627929 18.57 0.00001
q 1 1.24541882 0.2842399 4.38 0.00110

—  Analysis of Variance —

Source DF Sum of Squares Mean Square F value Prob(F)

Regression 1 0.07736046 0.07736046 125.02 0.00001
Error 11 0.006806834 0.0006188031
Total 12 0.08416729

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

Name: Mousumi Mani Biswas 

Education:

• Master o f Applied Science in Environmental Engineering, 2004.
Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, 
Canada.

•  Bachelor o f Technology in Chemical Engineering, 1995.
Indian Institute of Technology, Kharagpur, India.

Work Experience:

• Graduate Assistant and Research Assistant, since 2002.
Civil and Environmental Engineering, University of Windsor, Ontario, Canada,

• Assistant Manager (Technical services), 1999- 2002.
Indian Oil Corporation Ltd. India

• Engineer, 1995-1999, Indian Oil Corporation Ltd., India,

Awards:

Graduate Tuition Scholarship, University o f Windsor, Summer, 2004

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Removal of reactive azo dyes from water by zero-valent iron reduction followed by peroxidase-catalyzed polymerization.
	Recommended Citation

	tmp.1618579148.pdf.xh7JD

