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ABSTRACT

Plasma electrolytic oxidizing (PEO) of aluminium alloys is an advanced 

technique to deposit a thick and hard ceramic coating on a number o f low Si content 

aluminium alloys. The rapid growth in the tribological applications o f high Si cast Al-Si 

alloys has been motivating this study, i.e., development o f a PEO coating with high wear 

resistance and low friction for high Si content cast Al-Si alloys.

In this research, the effect o f substrate materials (i.e., silicon contents, Chapter 4) 

and process parameters (Chapter 5) on the PEO coating formation, microstructure, and 

composition were investigated in details. An oxide/graphite composite coating with low 

friction and high wear resistance was particularly developed and studied (Chapter 6 ).

Based on the observations o f coating surface morphology change during the 

treatment, a coating growth model on the Si region was developed in Chapter 4. The PEO 

process had four stages where each stage was corresponding to different coating surface 

morphology, composition, and phase structure, characterized by different coating growth 

mechanisms. In the first three stages, the duration time and morphology o f each stage 

were considerably affected by the silicon content in Al-Si alloys. The higher silicon 

content caused a rougher coating surface. After the process entered stage IV, the 

compositions o f the oxide coatings for the A1 alloys with different Si contents were 

similar.

Comparing study of coating depositions at different process parameters indicates 

that the coating produced in the high concentration electrolyte has larger thickness, 

rougher surface, a continuous dense layer in the between of outer porous layer and inner

III
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dense layer, and more amounts o f AhCb-SiCh compound and a-A^Ch phase. Current 

density effect on coating structure and coating hardness was not found to be significant.

The last part of study focuses on development of an oxide-graphite composite 

coating with improved tribological properties. The composite coating has a structure 

similar to a typical PEO coating except for having an oxide-graphite outer top layer. The 

composite layer in the oxide-graphite coating can supply graphite continuously, which 

results in formation of a solid lubricant layer at the interface during the sliding. Thus, the 

oxide-graphite composite coating has not only high wear resistance and low friction but 

also good compatibility to the steel counterface.
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CHAPTER 1 INTRODUCTION

The need to improve fuel economy and safety performance, reduce exhaust 

emissions and provide customers with new features have lead to new challenges in 

components design including reduced weight, reduced friction, and higher engine 

operating temperatures. Aluminium alloys are noted for their unique combination o f 

desirable characteristics including their high strength-to-weight-ratio, good castability, 

low thermal expansion and high corrosion resistance. These properties have led to their 

substantial increase in the use o f automotive and aircraft and aerospace industry. [1 , 2 ]

3xx.O series cast aluminium-silicon alloys have been increasingly applied as 

lightweight components especially using for all types o f internal combustion engines as 

pistons, cylinder blocks and cylinder heads. In these alloys, silicon is added to aluminium 

to form a second phase in order to improve wear resistance for tribological applications. 

However, compared with iron and steel, aluminium alloys are relatively soft and have 

poor wear properties especially against scuffing wear under conditions o f poor lubrication 

such as those which exist during starting or warming-up o f engines. It is one o f the main 

failure mechanisms affecting the life o f engines. [3-5]

There are two main methods to improve the friction and wear properties of 

aluminium alloys. One is the application of Al-Matrix Composites (AMC), the other is 

achieved by surface coatings on aluminium alloys.

The AMCs have been widely considered for automotive and aerospace application. 

They exist in forms o f fiber (C, SiC, B and AI2O3) reinforcement in particulate and 

whisker (SiC and AI2O3) as well as in layered laminated structures (sandwich structure of 

aluminum and aramid or glass/epoxy for high performance fatigue critical applications)

1
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[6 ]. Processes for fabrication of AMCs include liquid state methods (sorted into 

infiltration process, dispersion process, spraying process, and in-situ fabrication process) 

and solid state methods (powder metallurgy, roll bonding and coextrusion) [7]. Among 

those, powder metallurgy (PM), molten metal processes and spray casting are the main 

processes applied for the fabrication o f Al-Matrix Composites (AMC) [5, 8 , 9].

The other method is involved in surface coating to eliminate the possibility of 

sever wear by hardening the surface and lowing friction. Various coatings have been 

developed to improve surface hardness and wear properties of the alloys. Titanium nitride 

and diamond-like carbon (DLC) coatings are deposited by vacuum vapour deposition 

(PVD and CVD) methods which require high vacuum in vacuum chambers [10,11]. 

Electroplating and electroless plating-Nickel based ceramic composite coatings (NCC) 

can increase the wear resistance but may be corroded if  sulphur-contained fuel is used 

[10-12]. Thermal spraying technology can produce Fe-based or stainless steel-Ni-BN 

coatings. However, thermal spraying only produce mechanical adhesion o f coatings to 

base materials, and precise process control (including surface pre-treatment) is vital for 

provision of good adhesion between coating and Al baselines [10,11,13]. Operating 

challenges still exist in producing spraying-coated Al cylinder interior surfaces in terms 

of economical manufacturing process, reproducible and reliable processing. Hard 

anodizing is an effective and equipment simple method used to produce hard ceramic 

coatings on aluminium alloys. Since alloying elements such as copper and silicon do not 

anodize during the process, leaving microscopic voids in the aluminum oxide coating, the 

coating exhibits a high friction coefficient and low peeling resistance. In general case, 

hard anodic coatings can not be applied to high Si (containing >8 % silicon) alloys. 

[10,11,14]

2
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Electrolytic plasma processing (EPP) is a relatively new plasma-assisted 

electrochemical treatment. It is considered as a cost-effective and environmentally 

friendly surface engineering technique and can be broadly applied to metal surface 

cleaning, metal-coating [15], carburizing, nitriding [16], and oxidizing [17-20],

The EPP for anodic oxidising process, called plasma electrolytic oxidation (PEO), 

in a silicate solution can produce Al-Si-0 ceramic coatings with a high adhesion, 

hardness, and thickness on Al-based materials. Moreover, PEO process combining with 

other processes such as CVD [21] and electrophoretic deposition (EPD) [22] can be used 

in producing superhard, low friction, and/or biomedical compatible coatings.

Several studies have been involved in the coating formation mechanisms [20, 23, 

24], characteristics o f the coating deposition as well as tribological properties [18-20] of 

the ceramic oxide coatings deposited using PEO on various Al alloy substrates. Most of 

those works only dealed with 2xxx and 6 xxx series, i.e., low silicon (<1.5% Si) content 

Al alloys, and characterized thick oxide coating (i.e., >100 pm in thickness). Little studies 

focus on the initial stage o f the PEO coating formation and properties o f the thin PEO 

coatings. Due to the rapid growth in applications o f high silicon cast Al-Si alloys, the 

applications o f the PEO on the cast Al-Si alloys have been paid more attention since 

recently. However, to our knowledge, a detailed investigation o f the effects o f silicon 

content in Al-Si alloys on the PEO coating formation and morphology has not been 

conducted yet.

Moreover, to produce a thick PEO coating the voltage required would be up to 

600V-1000V and the treatment time over 60 mins. The process time is too long and
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energy consumption is too high to be economically viable for treatments of most 

powertrain components.

Finally, like most of other ceramic coatings, PEO coatings have high hardness and 

wear resistance, but high friction and poor compatibility with many counterface materials.

Thus, in this research, low voltages (<500V) were adopted to produce thin PEO 

coating with thickness less than 30 pm. The PEO process on high Si aluminium alloys 

was investigated in terms o f the effect o f Si content, electrical and electrolytic parameters 

on formation, morphology, composition of the PEO coatings. A ceramic-graphite 

composite coating was developed to improve its tribological and wear properties and 

compatibility with steel counterface.

This thesis consists o f seven chapters. Following this introduction, the related 

literatures regarding PEO coating technology on Al alloys and the previous work on the 

PEO coating formation and properties are reviewed in Chapter 2. Chapter 3 describes the 

experimental procedures. Chapter 4 reports investigation results o f silicon effects on 

formation of thin PEO oxide coatings on hypereutectic and hypoeutectic Al-Si alloys. 

Surface morphology, composition, microstructure and surface roughness of those 

coatings prepared at low current density and low electrolyte concentration are 

investigated. According to the results o f this part of experiment, the growth model in the 

Si region is developed.

Chapter 5 presents the results and discussion o f the effect o f electrical and 

electrolytic parameters on the formation and properties o f coatings. Herein, two 

electrolyte concentration (4g/l and 8 g/l Na2SiC>3) and three current densities (0.05A/cm2,
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0 *)

0.1 A/cm and 0.2A/cm ) are used to systematically study the formation and properties of 

coatings.

In Chapter 6 , a new oxide-graphite composite coating was developed. The 

composite coating structure and mechanical and tribological properties are investigated. 

To study effect o f testing conditions on wear properties, uncoated substrates and two 

oxide PEO coatings with different thickness were tested with dry and lube wear.

Finally, conclusions o f the present study are summarized in Chapter 7.

5
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CHAPTER 2 LITERATURE REVIEW

In the mid-1970’s, an advanced anodizing process was developed by two Russian 

scientists, G.A. Markov and G.V. Markova [25, 26]. They investigated wear resistant 

property o f coatings for lightweight metals. The technology has later come to be known 

as ‘micro-arc-oxidation’ (MAO) process [27]. In the 1980s, ‘micro-arc’ or ‘electrical 

discharges’ in the oxide deposition process were attempted to apply on various metals in 

Russia by Snezhko [28-33], Markov [34-36], Fyedorow [37], Gordienko, [38-40] and 

their coworkers. In Germany early industrial applications were introduced by Kurze and 

cowcorkers [41-49]. In the past years, researchers in both USA and China were also 

involved in this field. Owing to the relatively sparse information on process 

phenomenology and, sometimes, a lack o f understanding, different (and not always 

physically correct) terminology has been used in much of the above studies for that is, 

essentially, the same technique: ‘micro-plasma oxidation’, ‘anode spark electrolysis’, 

‘plasma electrolytic anode treatment’ (anode oxidation under spark discharge), being 

typical examples o f descriptions common to ‘plasma electrolytic oxidation’ (PEO).

The process yields fully dense, extremely hard-nearly as hard as corundum- 

tenacious coatings on aluminum and aluminum alloy surface. An important characteristic 

of this coating is that the hard oxide layer actually grows inward from the aluminum 

substrate surface. Thus, good adhesion and dimensional stability o f the part is possible 

and the parts in the nearly finished, machined condition can be coated. Unlike other 

superhard coatings (PVD, CVD coatings or hard anodizing alumina coatings), the coating 

is compliant for thicknesses up to 100pm. In view of the attractive properties, recently the

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PEO coatings were investigated for component applications, in particular, powertrain 

parts.

This chapter overviews the previous studies on the characteristic phenomena 

during the PEO process, physical and chemical fundamentals o f coating formation and 

the coating properties including mechanical, tribological and corrosion-protection. Finally, 

the industrial applications and challenges are described in this chapter.

2.1 The PEO equipment

The equipment used for PEO is relatively simple which is similar to that o f 

conventional electroplating except for the need o f much higher voltage power supply. Fig. 

2.1(a) is the schematic o f a typical treatment unit [50]. The treatment unit consists of an 

electrolyser (Fig. 2.1(b)) and a high power electrical source. The electrolyser is usually a 

water-cooler bath placed on a dielectric base and confined in a grounded steel frame, 

which has an insulated current supply and a window to observe the process in operation. 

In the bath, a stainless steel plate is immerged served as the counter-electrode. In some 

case, the electrolyser incorporates electrolyte mixing, recycling, and gas exhausting 

arrangements, as well as electrical interlocks.

Various types o f power source can be used for the PEO process. According to the 

applied electrical regime they can be classified into DC sources, pulsed DC sources, 

unbalanced AC sources and heteropolar pulsed current sources.

To produce the PEO coatings on aluminium alloys, alkaline electrolytes are 

widely used, containing silicates, aluminates, polyphosphates, etc. which can promote 

strong metal passivation due to the formation o f near-surface gels or insoluble compounds.

7
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(b)

Cooling

Air agitation

Work (profile) 

(Anode)

Counter electrode 

(Cathode)

Fig. 2.1 (a) Typical arrangement o f the equipment used for PEO treatment (1. window, 2. 

mixer, 3. connecting wires, 4. exhaust/ventilation system, 5. grounded case, 6 . power 

supply unit, 7. workpiece, 8 . cooling system, 9. bath, 10 insulating plate), (b) Electrolyte 

bath [50].

2.2 Deposition procedure

After simple pre-treatment consisting o f cleaning and degreasing, the samples are 

attached to the current supply of the unit and typically immersed in the bath at a depth of 

30mm to 50mm beneath the electrolyte surface. After the electrolyte cooling, mixing and 

gas exhaust are activated, the working voltage can be applied to the electrolyser terminal

8
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and adjusted at the power supply in accordance with the selected treatment regime. 

Depending on the purpose, the PEO treatment is typically carried out for between 5 and 

180min at current densities of 500-2000Am'2 and voltages o f up to 1000V.

2.3 Phenomena during the PEO process

HA) +

Arcing
region

Micro
arcing
regionSparking

region
Porous 

oxide film
Passive film

Electrode potential (V)

Fig. 2.2 Current-voltage diagram for the processes o f plasma electrolysis: discharge 

phenomena are developed in the dielectric film on the electrode surface [50].

A.L. Yerokhin and X. Nie (1999) et. al. [50] overviewed electrical plasma process 

and described the current-voltage characteristics during the PEO process. Fig. 2.2 

represents the current-voltage characteristics o f  a system where oxide film formation 

occurs during the PEO process. Firstly, the passive film previously formed begins to 

dissolve at point U 4 ,  which, in practice, corresponds to the corrosion potential o f the 

material. Then, in the region of repassivation U 4 - U 5  a porous oxide film grows, across

9
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which most o f the voltage drop now occurs. At point U5, the electric field strength in the 

oxide film reaches a critical value beyond which the film is broken through due to impact 

or tunnelling ionisation. At point U6, the mechanism of impact ionisation is supported by 

the onset o f thermal ionisation processes and slower, larger arc-discharges arise. In the 

region U6-U7, thermal ionisation is partially blocked by negative charge build-up in the 

bulk of the thickening oxide film, resulting in discharge-decay shorting o f the substrate. 

Above the point U7, the arc micro-discharges occurring throughout the film penetrate 

through to the substrate and (since negative charge blocking effects can no longer occur) 

transform into powerful arcs, which may cause destructive effects such as thermal 

cracking o f the film.

A.L. Yerokhin et. al. (2003 and 2004) [51, 52] studied microdischarge using real 

time imaging o f the plasma electrolytic oxidation process. By digital video imaging study 

of AC PEO o f an aluminium alloy, both the spatial characteristics o f individual micro­

discharges and their collective behaviour throughout the oxidation process are analyzed. 

The typical evolution o f microdischarge is shown in Fig. 2.3 from which four consecutive 

stages o f the PEO process can be distinguished. During stage I, intense gas evolution is 

clearly observed, along with some luminescence at the surface (Fig. 2.3(a)), which is 

eventually replaced by the onset o f a bluish glow discharge around the sample. In stage II, 

the discharge tends to contract at the areas o f the surface with maximum electric field 

intensity and appears, therefore, in the form o f moving discrete white microdischarges 

(Fig. 2.3(b)), though a uniform glow background remains visible for some time. After 

about 10-12 min o f treatment, the process gradually enters stage III, where the appearance 

of the microdischarges becomes more pronounced (Fig. 2.3(c)). Further PEO processing

10
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makes some of the microdischarges yellow, larger and slower moving, which becomes a 

major feature o f the process in stage IV (Fig. 2.3(d)).

Fig. 2.3 Sample surface appearance at various stages of the coating formation process: (a) 

0.5 min; (b) lOmin; (c) 35min, and (d) 65min [51, 52],

2.4 Coating formation mechanism

2.4.1 Electrochemistry of plasma electrolytic oxidation (PEO)

With ionic current o f the layer growth passing through oxide layer, there are two 

parallel processes for PEO coating growth: the electrochemical and the plasma chemical 

mechanisms [23].

11
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The electrochemical formation of surface oxide layers can occur through different 

mechanisms. Unfortunately, there are few studies o f the electrochemical formation of 

surface oxide layers in the electrolyte used for PEO such as aqueous solutions of 

inorganic polymers-silicates, aluminates, phosphates, etc. It has been proposed in early 

studies [53] that these layers are formed by the polycondensation o f adsorbed anionic 

complexes o f an electrolyte due to dehydration under the action o f an electric field. 

Therefore, the processes associated with ionic diffusion can be ignored, so the coating 

composition can be formed only from the anionic complexes o f an electrolyte when 

considering the electrochemical formation o f oxides in such electrolytes.

In recent decade, several works [20, 23,24] report on systematic investigation into 

the effects o f process parameters on the growth kinetics and thermodynamics and 

associated changes in the structure, phase composition and mechanical properties of 

surface layers by the PEO treatment. However, existing data in the literature on the 

energy efficiency o f PEO are quite controversial.

For revealing the basic electrochemical processes, a series o f experiments on 

plasma electrolytic oxidation has been performed by A.L. Yerokhin et. al. In their early 

experiments [54], they attempted to develop a PEO process for deposition o f aluminium 

titanate coatings on Ti. However, the process parameters chosen for that work 

(application o f AC PEO mode and a complex aluminate-base electrolyte) allowed only 

qualitative consideration o f current distribution (Fig. 2.4). According to the Fig. 2.4, 

oxide layer formation is induced both by the ionic component o f the current which is 

transmitted via surface discharges and by the anodizing current passing across the surface 

which is free o f discharges. Other components o f the current cause secondary 

electrochemical processes which lead to liberation of electrode gases (e.g. H2 and O2),
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accumulation o f H2O2 in the electrolyte, anodic dissolution o f the titanium metal and 

electrothermally induced metallurgical processes in the surface layer. The anodizing 

current is supported by electrolyte anions which (in alkaline aluminate solutions) are 

predominantly OH' and AIO2'. Since the aluminate ions in particular are relatively 

unstable, they can in alkaline media partly interact with water and/or create complex 

anions between themselves, forming either mono- or poly-hydroxyanions, e.g. Al(OH)4_ 

or Aln(OH)4n+2(n+2̂ . On the surface o f the Ti electrode, the above anions can take part in 

the following anodic processes [54]:

In their subsequent works [24, 55], a quantitative evaluation of the rates of the 

major anodic processes is performed in a different approach, in which a simplified model 

situation should first be considered for the rate evaluation of partial processes during PEO. 

The experimental facility developed for this purpose comprises the following functions: (i) 

recording and analysis o f the main electrical characteristics o f the process, (ii) 

determination o f the oxide layer thickness, (iii) anodic gas collection and composition 

analysis and (iv) electrolyte analysis to determine anodically dissolved metal. The 

experiments were performed on aluminium anodes oxidized in a model dilute alkaline 

solution (0.5 to 2 g I' 1 KOH) under conditions o f galvanostatic DC PEO, for which basic 

electrochemical processes were considered, such as oxide film growth, anodic dissolution 

and oxygen liberation. Four different stages o f the PEO process were identified, 

characterized by various rate proportions o f the partial anodic processes, i.e. (i) anodizing, 

(ii) anodizing with anodic dissolution, (iii) anodizing, dissolution and oxygen liberation

Ti4++20H'+2H 20=Ti02+2H 30 +

Ti4++ 4 A102=T i0 2+2 A120 3 

Ti4++ 4A l(0H )4 '=Ti02+Al203+2Al(0H)3+5H20 (2.3)

(2 .1)

(2.2)
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and (iv) plasma electrolysis (Fig. 2.5).
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Fig. 2.4 Schematic diagram of current distribution during the PEO treatment o f metals in 

AC mode [54].
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Dynamic equilibrium of partial processes o f oxide formation, dissolution and 

oxygen evolution is quite common of aluminum anodizing in alkaline solutions, where 

the following general reactions normally occur:

• Metal-oxide interface:

(i) anodic processes:

2AI + 30*jid —> Al20 3 + 6e~ (2.4)

A l ^ A l % u + 3e~ (2.5)

• Oxide-electrolyte interface

(i) anodic process

4OH~ 0 2 1 +2H20  + 4c- (2.6)

(ii) alumina chemical dissolution and oxidation of ejected Al:

Al20 3 + 2(jc -  3 )OH~ + 3 H 20  -»  2[A l{O H )j;d (2.7)

A?;ected + xO H - -> [A l(O H )J -  (2.8)

[A l(O H )Jg- -> Al(OH%  4- +(x -  3)0/7- (2.9)

The overall current efficiency of the oxide film formation was estimated to be in 

the 10 to 30% range (depending on the process conditions). It was also found that the film 

growth rate decreased significantly with increasing electrolyte concentration, since the 

rate of anodic dissolution increased. Oxygen evolution was shown to be the main 

electrochemical process at the potentials corresponding to the plasma stages of the 

electrolysis (oxygen current yields 60 to 80%). Estimations of the process efficiency were 

carried out, assuming that the partial processes o f oxide film growth, dissolution and gas 

evolution on the surface are governed by the Faraday’s law. The overall rate o f oxygen
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liberation at the anode exceeds the Faraday yield, which is probably due to the radiolytic 

effect o f the plasma discharge on the adjacent electrolyte volume. The processes 

associated with this effect were considered and reaction routes leading to non-Faradic 

formation o f gaseous products quantified, including (a) generation o f free electrons with 

corresponding H2 0 + vacancy formation, (b) quadratic recombination of the vacancies 

with the electrolyte anions and water molecules resulted in formation of free OH* 

radicals followed by (c) their annihilation due to either acceptor trapping or 

recombination processes, resulting in the formation o f excessive gaseous products [24],

2.4.2 Plasma discharge models and plasma chemistry

Apart from the electrochemical, the plasma chemical processes were discussed 

[20, 23, 24, 53]. The plasma chemistry o f the surface discharges is quite complex in 

nature, involving, on one hand, reactions between electrons, molecules o f water and 

electrolyte anions and on the other, atoms and ions o f the metal electrode. An important 

consequence o f the occurrence o f surface discharges is the development o f metallurgical 

processes in the growing oxide layer, which are induced by the heat liberated in discharge 

channels from electron avalanches. Cycles o f instantaneous local heating and cooling of 

the areas o f the oxide layer in close proximity to a discharge channel lead to the melting, 

quenching and recrystallisation of the substances deposited onto the surface. As a result, 

decomposition o f aluminium hydroxide to alumina, formation o f complex compounds 

based on the Al-O system, as well as high-temperature transformations of alumina, can 

occur. The direction and intensity o f these processes depend on the density and power of 

the discharges which are known to be defined by thickness of the oxide layer, so that the 

thicker the layer the less frequent yet more powerful and extended the discharges become.
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In the plasma reaction, the key is the formation o f microdischarge. Several 

microdischarge formation models have been proposed. For the first model [23, 56, 57], 

the microdischarges appear as a result o f oxide film dielectric breakdown in a strong 

electric field (Fig. 2.6(a)). The breakdown is treated as a ‘streamer propagation’ due to 

the electron avalanche effects induced by film dopants and structural defects. Three main 

steps can be discerned in the breakdown process. In the first step, the discharge channel is 

formed in the oxide layer as a result o f the loss of its dielectric stability in a region of 

elevated conductivity. This region is heated by generated electron avalanches up to 

temperatures o f ~104 K. Due to the strong electric field (of the order o f ~106 V^m'1), the 

anionic components o f the electrolyte are drawn into the channel. Concurrently, owing to 

the high temperature, aluminium and alloying elements are melted out o f the substrate 

and enter the channel. Thus, a plasma column (plasmoid) is formed as a result of these 

processes. In the second step, plasma chemical reactions take place in the channel. These 

lead to an increase in pressure inside the channel. So the plasmoid expands to balance it. 

At the same time, separation of oppositely charged ions occurs in the channel due to the 

presence of the electric field. The cations are ejected from the channel into the electrolyte 

by electrostatic forces. In the last step, the discharge cannel is cooled and the reaction 

products are deposited on to its walls.

The second group o f models [51] considers each microdischarge as a gas discharge 

occurring in a micropore o f the oxide film (Fig. 2.6(b)). The formation o f a gas phase in 

the pore (and discharge ignition in it) is believed to be induced by an initial dielectric 

breakdown of a barrier layer in the bottom of the micropore.

An alternative model o f microdischarge formation was proposed (Fig 2.6(c)) based 

on analogy with the contact glow discharge electrolysis originally studied by Hickling
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and Ingram [58]. In their work, a glow discharge was observed at the interface o f the 

electrolyte and a thin vapour sheath was formed at the surface o f a platinum wire anode at 

U+>420V. In the case o f an aluminium anode, however, the role of the vapour sheath is 

played by the gas bubbles accompanying the oxidation process and the discharge; 

therefore, it seems as if  it is disintegrated into a number o f microdischarges. Nevertheless, 

it is important to recognize that the common condition o f discharge initiation in both 

cases appears to be electron emission from the electrolyte surface (partial cathode) into a 

gaseous phase, rather than dielectric breakdown of the growing oxide film. It should also 

be noted that free electrons might appear initially at the oxide-electrolyte interface in 

strong electric fields, regardless of the presence of any gas/vapour phase, due to the 

ionization of anions and molecules o f water. The free electrons would then immediately 

participate in a series o f reactions with water, resulting in the formation of gaseous 

products (H2 and O2), thus providing the necessary conditions for maintenance of a stable 

plasma discharge environment.

Another model worthy o f consideration for AC PEO discharge is the dielectric 

barrier discharge, which has recently been reviewed by Wagner et al [59]. Similar to PEO, 

the barrier discharge operates under AC polarization and atmospheric pressure conditions, 

with one electrode covered by a thin dielectric film. The barrier discharge usually 

operates in a filamentary mode, for which the phenomenology is similar in appearance to 

a microdischarge in PEO, except that the barrier discharge occurs during both positive 

and negative half-cycles. Furthermore, unlike the discharge in PEO, dielectric barrier 

discharges cannot be produced using simple DC polarization.

A.L. Yerokhin et. al found that the above models do not fit the spatial, temporal and 

electrical characteristics o f microdischarge phenomena which were observed in their
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investigations [51-52]. A new model is suggested based on the analogy with contact glow 

discharge electrolysis. The model assumes the possibility of free electron generation and 

glow discharge ignition in the gaseous media at the oxide-electrolyte interface, which 

leads to heating, melting and quenching of the underlying oxide layer.

electrolyte

dopants and 
/  vdefects

electrolyte

structural
.defects

Al

electrolyte

Al

Fig. 2.6. Schematic illustration of models describing the appearance o f surface discharge 

during anodic oxidation o f Al: (a) model o f the oxide film dielectric breakdown, (b) 

discharge-in-pore model and (c) model o f contact glow discharge electrolysis adapted for 

the presence o f an oxide film on the metal surface [51].
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2.5 PEO coating structure

Fig. 2.7 illustrates the structure of the PEO coating [60], SEM investigations 

demonstrate that alumina coatings, produced on Al alloys by the PEO technique, tend to 

consist o f  three layers, i.e. a porous outer layer, intermediate dense layer and thin inner 

dense layer. The porous outer region consists predominantly o f the low temperature 

modification o f AI2O3 (Y-AI2O3/T1-AI2O3) and X-ray amorphous phases. A dense inner 

region is formed by mixture high temperature a, Y-AI2O3 modifications o f AI2O3 and 

complex A l-X -0 phases (X is the element from electrolytes), whereas complex phases o f 

the substrate alloying elements are observed in a thin, interfacial region below the dense 

layer. The relative sizes of the regions, their structure and composition are substantially 

influenced by substrate composition, electrolyte composition and treatment regime. 

Comprehensive studies o f these effects have been carried out for the treatment o f Al- 

alloys in silicate solution [17, 50, 61]. In these studies, different treatment time, current 

density and concentrations o f Na2SiC>3 (2-20g/l) with addition o f 2-3 g/1 of KOH solution 

were used to produce coatings with different ratios o f AI2O3 and SiC>2 fractions. It has 

been observed that the increase of the silicon content in the electrolyte results in a higher 

growth rate by the formation of composite coatings and an extension of the inner dense 

layer. The relative proportion o f the harder a-alumina is increased by raising the current 

density.
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Al substrate

Fig. 2.7 Structure model o f PEO coating [60].

X. Nie (2002) in reference 18 studied microstructure in the inner layer of the coating 

using cross-sectional TEM. Fig. 2.8 shows cross-sectional TEM images o f a 

representative microstructure near the coating/substrate interface. The thin inner layer of 

the coatings exhibits a number of (predominately amorphous) sublayers, whilst the lower 

portion o f the intermediate layer has a nanoscaled polycrystalline microstructure. Some 

occluded porosity o f nanoscale dimensions was observed in the inner and intermediate 

layers, but not adjacent to the interface between the coating and the substrate. The 

characteristics o f the coating near the interface with the Al-alloy substrate can be divided 

into three sublayers (1, 2 and 3 in Fig. 2.8(a)). Sublayer 1 shows a dense amorphous 

structure which has a thickness o f -140 nm constant over the entire sample, whereas the 

thickness o f sublayer 2  varies, sublayer 2  shows a porous structure that is composed of 

amorphous and nanocrystalline regions with porosity o f a size in the range of
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approximately 10-100nm. Fig. 2.8(b) is an enlarged TEM image o f the microstructure of 

sublayer 3. This layer was found to be composed o f nanocrystalline structures whose 

grain size is in the range o f 50-80nm. According to the TEM investigations, no porosity 

was observed at the interface between the substrate and the coating (sublayer 1 ) and the 

porosity in sublayer 2  was occluded, rather than interconnected.

Fig. 2.8 Cross-section TEM images o f (a) the inner layer near coating/substrate interface 

and (b) the intermediate layer, and SAED patterns taken from (c) sublayer 2 and (d) 

sublayer 3, respectively [18].
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2.6 Properties of the PEO coatings

2.6.1 Coating mechanical properties

The PEO alumina (01-AI2O3/Y-AI2O3) coatings exhibit a high hardness. The formation 

of the A l-Si-0 phase decreased Vickers hardness values (Indentation areas were on the 

order o f 103-104 pm2). However, when nanoindentation tests were performed (indentation 

areas were on the order o f 1 0 - 1 0 2 pm2), two characteristic values response to the 

indentation, representing two different phases. One phase had hardnesses between 18 and 

25GPa, Young’s moduli between 120 and 240 GPa. Another phase had hardnesses 

between 2 and 6  GPa, Young’s moduli between 40 and 120 GPa. The relative number of 

indentations corresponding to the softer phase increased with the increase o f the Si 

content in the coating [17]. Cross-sectional hardness is relative with the total coating 

thickness and dense (inner) layer thickness. The position o f the maximum hardness (up to 

2400HV) moved away from the interface with increasing coating thickness [62].

The effective adhesion o f the oxide layer, as evaluated by microindentation tests, 

trends to increase with coating thickness. In 200 to 250 pm thick coatings the adhesion 

strength can reach 350 to 380 GPa, i.e., comparable to the tensile limit o f the substrate in 

case of aluminum [50]. One explanation o f the adhesion increase lies in a structural 

change in the coating’s inner region due to diffusion processes. It is also likely that a 

thicker coating gives better load support, and that the interfacial region is, therefore, less 

stresses under the applied load [50, 62].
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2.6.2 Corrosion resistance

The corrosion resistance of the PEO coatings on aluminum alloys was studied by 

X. Nie and coworkers [18]. Fig. 2.9 shows the polarization curves o f the alumina coated 

alloy (with coating thickness o f 250pm) and the untreated Al alloy substrate. Both types 

o f sample were immersed in 0.5M NaCl solution for lh, lday and 2 days before corrosion 

tests. A stainless steel AISI 316L sample was also used in the corrosion test for 

comparison. The poor corrosion protection property of the uncoated Al substrate resulted 

from the fact that the corrosion resistance considerably decreased after the thin protective 

oxide film on the uncoated aluminium substrate surface was broken down by the 

corrosion processes. The PEO-coated Al alloys possessed excellent corrosion resistance 

in the solution-considerably better even than the stainless steel. The dense, amorphous 

sublayer 1 and the predominately amorphous sublayer 2  in the inner layer described in 

section 2.5 (Fig. 2.8) may serve as diffusion barriers to enhance the corrosion resistance 

and may in part explain the excellent anti-corrosion performance exhibited in the above 

corrosion test.
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Fig. 2.9 Potentiodynamic polarization curves o f untreated substrate materials and PEO

alumina coatings in 0.5M NaCl solution after different immersion times [18].

2.6.3 Tribological properties of PEO coatings

The PEO technology can produce superhard and thick ceramic coatings which 

generally have excellent load-support characteristics. Thus, its tribological applications 

have attracted a lot o f attention. Several studies have been reported on the tribological 

properties of the PEO coatings.

In reference 17, the tribological properties o f the coatings produced by different 

current density and electrolyte concentrations were investigated in ball-on-disk sliding 

tests against 440C steel and sapphire balls. Tests were performed in air with relative 

humidity (RH) controlled in the range from 5-90% RH, and in vacuum of 10' 3 Pa. Wear 

resistant properties o f PEO coatings were estimated in ring-on-block sliding tests. Tests 

were run in an ambient environment with about 30-40% RH, sliding speed o f 0.2m/s, and
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load of 980N to provide contact pressures about lGPa. Weight losses of friction pairs 

after 5000 ring revolutions were measured with microbalance to calculate mg/rev. wear 

rates. The results o f above tests showed that friction of A l-Si-0 composite coatings 

appeared to depend on the coating stoichiometry, counterpart material, relative humidity, 

and the formation of the transfer film. The lowest friction coefficient was found for the 

Al0.26Si0.08O0.66 coating in sliding against itself and a sapphire ball, and varied from 0.15 

to 0.25 depending on RH. The application of the Alo.26Sio.o80o.66 coating to a block-on- 

ring friction pair manufactured from an Al-based alloy reduced friction from 0.65 to 0.17, 

decreased wear rate by four orders o f magnitude, and prevented micro-cutting and/or 

adhesive wear o f the friction pair at contact loads o f lGPa.

X. Nie (1999 in ref. 62) reported the effect o f coating thickness on the tribological 

properties. The properties o f the coatings with thickness from 100pm to 250pm were 

tested using a “ball-on-plate” reciprocating-sliding test with a load o f 10N over 5000 

cycles, at a frequency o f 2Hz. The length o f sliding path was 10mm with temperature and 

humidity controlled to 23±1°C and 50±5%. The friction coefficients o f the PEO coating 

against bearing steel (BS) and tungsten carbide (WC) balls lay in the ranges 0.64-0.68 and 

0.68-0.86, respectively, which is higher than the steady-state values for the untreated 

substrate, however the coatings all had excellent wear resistance. The dry wear rates were 

in the range 10'8-10'9mm3/Nm, which compares favourably with the untreated alloy 

substrate at ~10'4mm3/Nm. It was found that the PEO coatings o f intermediate thickness 

(150pm) showed relatively poor wear resistance relative to their thicker and thinner 

counterparts. In addition, for the intermediate thickness samples the wear rate against the 

BS counterface was larger than that against WC. The reason may be that the wear
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mechanism changed from adhesive and fatigue wear to abrasive wear as well as adhesive 

and fatigue.

Rubber Nozzle 
Lined Wheel \

Rubber 
Lined Wheel Sample

Rubber
Lined
Wheel

Fig. 2.10 Schematic o f (a) dry and (b) wet rubber wheel abrasive wear tests [18].

In Ref. 18, dry and wet rubber wheel abrasive tests (Fig. 2.10) were carried out 

with dry silica sand with a size o f ~50pm or wet slurry for the PEO-coated Al alloy 

samples. The results indicated that the PEO coated aluminium alloy samples possessed a 

much higher abrasive wear resistance than the uncoated aluminium alloy.

The coated aluminium alloy exhibited abrasive wear resistance which was nearly 

an order o f magnitude lower than the untreated substrate, and approximately five times 

lower than that o f the stainless steel. In comparing abrasion performance o f the coated 

samples with thicknesses 150pm and 250pm, the weight loss o f the ‘thick’ coating in the 

first 1 0 0 0  revolutions was found to be larger than that o f the ‘thin’ one due to the thicker 

porous top layer. A similar dry-sand rubber-wheel abrasive wear test, a solid-particle 

erosive wear test (ASTM G76-83) and a pin-on-disc sliding wear test (ASTM G99) were 

conducted in Ref. 63. The PEO coating in the study exhibited excellent performance
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under abrasion and sliding wear modes in comparison with detonation spray AI2O3 

coating and uncoated Al substrate.
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Fig. 2.11 Segmented Ring/Bore Liner test rig is an apparatus for accurate and direct 

comparative friction measurements between cast iron and coated bore and ring samples 

and oil viscosity at speeds from 100 to 600rpm [64].

In Ref. 64, PEO were applied in SAE 6061 aluminum alloy cylinder liners o f a 

4.6L-V8 aluminum block engine. The coating surface was honed and material removal 

during honing to obtain finished bore diameter specified. Friction properties o f the PEO 

coatings along with a production engine cast-iron liner were evaluated in a cylinder 

bore/piston ring test rig (Fig. 2.11) capable o f testing cast iron and the PEO specimens 

simultaneously under low speed-maximum load engine operating condition which
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represents the most severe boundary friction condition that the cylinder bores are 

subjected to. PEO coatings yielded much lower friction than the cast-iron liner, and with 

high density PEO coatings, much lower wear. There are, however, attributable to 

smoother finish.

Although the PEO coatings have excellent wear resistance, for sliding wear 

applications, such alumina coating often exhibit relatively high friction coefficients 

against many counterface materials. Thus, there are also many prospects for the 

improvement of the PEO coatings with low friction and high counterface compatibility.

X. Nie, et. al (2000) in Ref. 21 investigated a duplex treatment, combining a load- 

supporting PEO alumina layer with a low friction diamond-like carbon (DLC) coating, 

produced by a modified plasma-immersion ion implantation (PI3) process. The DLC- 

coated samples provided a low and stable friction coefficient (<0.2). An intermediate 

alumina layer is obviously beneficial in providing the load support essential to 

withstanding sliding wear at high contact loads and can also be beneficial in controlling 

impact wear damage.

X. Nie, et. al (2004) in Ref. 65 produce oxide/graphite composite coating. The 

graphite embedded into the porous outer layer o f the PEO coating during the PEO 

treatment, which resulted in a low friction ( - 0 .2 2 ) and exhibited good compatibility with 

the steel counterface during dry tribological testing.

2.7 Some challenges on PEO coatings

Plasma electrolytic oxidation (PEO) is a cost-effective and environment friendly 

process, which can be used to improve the wear resistance o f aluminium alloy parts by
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creating a hard, thick alumina coating on the component surface. However, there are still 

some challenges on the way to component applications.

Firstly, in most of previous works, 2xxx and 6 xxx series, i.e., low silicon (<1.5% 

Si) content Al alloys were applied to produce thick oxide coating (i.e., >100 pm in 

thickness). Due to the rapid growth in applications o f high silicon cast Al-Si alloys, the 

applications o f PEO on the cast Al-Si alloys have been paid more attention since recently.

The study in Ref. 6 6  investigated the EPO coating formation on hypoeutectic Al- 

Si alloys (6 .5-7.5% Si) and showed that silicon particles in the hypoeutectic Al-Si alloy 

substrate were able to be oxidized and mixed into the coating and silicon element in the 

Al-Si alloy had enhanced formation of a mullite coating. However, to our knowledge a 

detailed and systematic investigation o f the effects o f silicon content in Al-Si alloys on 

the PEO coating formation and morphology has not been reported yet.

Secondly, previous PEO processes were carried out at much higher voltages 

(normally over 600V) for longer duration (from several tens minutes to several hours) and 

therefore higher energy input. The porous outer layer made the as-deposited coating 

surface very rough and post-machining is necessary for industry application. Thus, the 

current PEO technology is not economically viable for applications o f cost-sensitive 

component such as automotive parts.

Finally, although the PEO coating have excellent wear resistance, the hard 

ceramic coatings tend to hurt the counterface material during the sliding wear, due to hard 

ceramic phase in the wear interface. Therefore, severe abrasive wear and high friction 

coefficient occur during the sliding wear.
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Therefore, a systematic investigation o f the PEO coatings on high Si content Al-Si 

alloy (Si>7%) is needed. Development of a novel PEO coating which not only have low 

friction and high wear resistance but also good compatibility with most of counterface 

materials has been maintained as a challenge.

2.8 Summary of the review and objectives of the thesis

Plasma electrolytic oxidation (PEO) o f metals is a complex process combining 

concurrent partial processes o f oxide film formation, dissolution and dielectric breakdown. 

The probability o f dominance for any o f these partial processes in the overall process 

depends on the nature of both the metal and the electrolyte, as well as on the current 

regime employed. The ultimate stage o f the PEO treatment is a quasi-stationary stage of 

persistent anodic microdischarges, which exhibit a progressive change in characteristics 

during the electrolysis. At high discharge temperatures and pressures (reaching about 

2 x l 0 3 to 3><103 °C and ~102 MPa, respectively), solid products o f electrolysis and 

adsorbed gel layers are deposited on the metal surface in the form o f high-temperature 

oxide phases or glassy ceramic coatings. The electrolysis is always accompanied by 

intensive gas evolution and localised metal evaporation due to the plasma 

thermochemical reactions in the microdischarges [24].

Four different stages of the PEO process have been identified, characterised by 

various formation mechanisms: (i) anodizing, (ii) anodizing film melted and broken down,

(iii) micro-arc discharge and oxide coating formation, and (iv) coating composition fused 

and re-crystallized.

The PEO coating has a three layers structure, i.e., porous outer layer, dense layer 

and very thin inner dense layer.
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The PEO coatings are very hard ceramic coatings with good wear resistance and 

adhesion. Thus, its tribological applications have attracted a lot o f attentions, especially 

the application on Al-Si alloy components. But the high energy input, long treatment 

duration and post-machining make it not economical for many industrial applications. 

Moreover, the high friction and poor compatibility with most metal counterface limit the 

application span of these ceramic coatings. Therefore, a systematic investigation o f PEO 

process on Al-Si alloys and development o f a composite coating o f a low friction with 

good counterface compatibility are the main objectives of this project.
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CHAPTER 3 EXPERIMENTAL DETAIL

In this chapter, the experimental procedures are described. There are three main 

parts of experiments in this project.

3.1 Part A -Effect of Si contents in substrate materials on the PEO coatings

In this part o f work, in order to best understand the growth mechanisms of the 

PEO coating on the Si phase regions in the substrate, the coatings on two Al-Si alloys are 

examined with special attention focussed on the effect of different Si contents in the 

aluminium alloys on the coating formation and properties.

3.1.1 Preparation of substrates

Two kinds o f Al-Si alloys, i.e., hypoeutectic Al-Si alloy 319 (-7%  Si) and 

hypereutectic Al 390 alloys (-17%  Si) were chosen as substrate materials. The 

compositions o f these two alloys are presented in Table 3.1.

Table 3.1 Nominal compositions o f the Al-Si alloys

Alloys
Composition, wt%

Si Fe Cu Mg Mn Other Al

Hypoeutectic alloy 319 5.5-7.5 1 3-4 0 .1 0.5
0.35 Ni, 

1 Zn
The

Hypereutectic alloy 390 16-18 1.3 4.5 0.45-0.65 0.5 1.5 Zn
balance

A number o f square coupons (25x25><5 mm3) were cut from commercial cast Al- 

Si alloys (Al 319 and Al 390 alloys). All the coupons were polished to obtain a similar
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surface roughness o f 0 .1  ± 0 . 0 2  pm then degreased with solvent, flushed and cleaned with 

distilled water, finally dried by hot air.

3.1.2 Preparation of coatings

The treatment unit for PEO in this project consists of an electrolyser and a high 

power electrical source. A DC power supply (Magna Rack mount DC power supplies 

SQD500-26) (Fig. 3.1) has been used. The maximum output voltage used for this part of 

experiment is 500V. The electrolyser is a glass bath with a stainless steel frame inside 

which also serves as the counter-electrode. The schematic of treatment cell for the PEO 

coating preparations is shown in Fig. 3.2.

Fig 3.1 Magna Rack mount DC power supply SQD500-26 used for the PEO process

Sample 4.

lectrolyte

Counter electrode

Fig 3.2 Schematic of the PEO treatment unit
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To distinguish the individual process stages clearly with a wide investigation 

window, low current density (0.05 A/cm ) and electrolyte concentration were selected to 

slow down the coating formation process. An alkali-silicate solution (4 g/1 Na2SiC>3 and 

0.4g/l KOH) was used as an electrolyte. A constant current density of 0.05 A/cm was set 

during the coating process, and the voltage increased gradually with process time so as to 

maintain the preset current density as the coating thickness gradually increased. Voltage 

variation vs. treatment time was recorded for both the A1 319 and A1 390 alloys. All 

samples for each o f the alloys were treated and the treatments were stopped at certain 

voltages. The treated samples were taken out from electrolyte, then flushed by distilled 

water and dried by hot air, finally ready to subsequent tests.

3.1.3 Characteristics of coating formation process and coating property tests

(i) Metallurgical analyses of the Al-Si alloy substrates

An optical digital image analyzer (Buehler Optical Microscope, max 1000 times) 

with an image analysis software (Fig. 3.3) was used to carry out the metallographic 

observation o f A1 alloy substrates.
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Fig. 3.3 Buehler optical microscope

(ii) Coating morphology and composition characterization

A JEOL Scanning Electron Microscope (SEM) with Kevex 5100C energy 

dispersive X-ray analysis (EDX) (Figure 3.4) was employed for study on the coating 

surface morphology and composition. SEM was operated at an accelerating voltage 15KV.

The cross-sectional morphology o f the coatings treated to the 500Y on both A1 

alloys was also studied by SEM observation. Before examination o f the cross-sections, 

the cross-sectional samples were mounted with resin and polished first with a SiC 

abrasive paper o f gradually decreasing grit size, then with an alumina suspension for the 

final polishing. Because of low electrical conductivity o f the oxide coatings, the samples 

were sputter-coated with gold prior to SEM examination.
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Fig. 3.4 A JEOL Scanning Electron Microscope (SEM) with Kevex 5100C energy 

dispersive X-ray analysis (EDX)

(iii) Surface roughness

Mitutoyo SJ-201P surface roughness tester (Fig. 3.5(a)) with a data acquisition 

system (Fig. 3.5(b)) equipped with SJ201 Serial Communication Ver. 2.20 software was 

used for surface roughness (Ra) measurements.

(iv) Phase identification of the coatings

The phase structures o f the coatings were investigated using a Siemens D5000 X-ray 

diffractometer (Cu Ka radiation) (Fig. 3.6) with a glancing angle attachment. A glancing 

angle of 2 ° was used for the study in this section.
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Fig. 3.5 Mitutoyo SJ-201P surface profilometer. (a) Surface roughness tester and (b) the 

data acquisition system
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Fig. 3.6 Siemens D5000 X-ray diffractometer

3.2 Part B-Effect of electrical and electrolytic parameters on the PEO coatings

As described in Chapter 2, the previous study on the PEO coatings is mainly on low 

Si content (<1.5% Si) A1 alloy (2xxx and 6 xxx alloys) and the thickness o f these coatings 

are usually over 100pm. In this part o f experiment, a systematic investigation into the 

PEO coatings with thickness less than 30 pm on high Si content Al-Si alloy (~7% Si) 

were performed.
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3.2.1 Coating formation process

A number o f A1 319 square coupons (25x25x5 mm3) were prepared as the 

description in the section 3.1.1. Two alkali-silicate solutions (4g/l Na2Si0 3  with 0.4g/l 

KOH and 8  g/1 Na2Si0 3  with 0.8g/l KOH) and three constant current densities o f 0.05 

A/cm2, 0.1 A/cm2 and 0.2A/cm2 were adjusted to deposit the PEO coatings using the 

treatment unit in section 3.1.2. Samples treated by different electrolytic and electrical 

parameters are listed in Table 3.2.

Table 3.2 Samples treated with various process parameters

Samples code
Process parameters

Electrolyte concentration (g/1) Current density (A/cm2)

A ll 4 0.05

A12 4 0 .1

A13 4 0 . 2

A21 8 0.05

A22 8 0 .1

A23 8 0 . 2

Constant current mode was used during the process. With the treatment time, the 

voltage firstly increased to maximum value 500V. Then, the voltage being constant, the 

current was decreasing due to the coating thickness growing. When the current density 

declined to 0.003A/cm the treatment was stopped. The voltage and current density 

variation are recorded during the PEO treatment processes. After cleaned and dried, PEO- 

treated samples were ready to be measured and analysed.
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3.2.2 Characteristics of coating formation process and coating property tests

(i) Surface morphology

The JEOL Scanning Electron Microscope (SEM) used for section 3.1.3 was also 

used to observe surface morphology o f the coatings deposited by the various treatment 

parameters described as above. The surface roughness (Ra) was measured using the 

Mitutoyo SJ-201P surface profilometer (Fig. 3.5). The average size of surface oxide 

projections was estimated by determining the average length o f peaks in profile plots. 

Fig.3.7 illustrates this method. Fig. 3.7(a) is the schematic o f detector unit o f surface 

profilometer. During the test, the stylus slides on the workpiece surface and the travel 

length is 3mm. Five travels were randomly taken on each sample. Fig. 3.7 (b) shows a 

profile plot obtained by intersecting a surface with a plane normal to the nominal surface. 

It is a representation o f the real profile (a profile o f the real surface) obtained by a surface 

roughness measuring instrument. The mean line (X axle in Fig. 3.7(b)) may be calculated 

to the position shifted from the position where it is supposed to be for surface roughness 

evaluation. In the profile plot, the peaks and valleys are correspond to projections and 

pores on the real coating surface as shown in SEM micrograph Fig. 3.7(c). The following 

equation is used to estimate the average size of oxide projections.

(3-Dn ,=i

Where, DAverage - the average size o f oxide projection;

Di- the single projection length in sliding way.
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irojection pore projection pore projection

Fig. 3.7 Illustration o f estimating the size of oxide projections on coating surface 

by profile plots, (a) The schematic of detector unit o f surface profilometer, (b) a surface 

profile plot, and (c) an SEM micrograph showing the coating surface morphology.

(ii) Coating structure

The coating structure was studied by SEM observation o f sample cross-section. 

The thicknesses o f coatings and individual layers o f coatings also were determined by 

cross-section investigation. The preparation of cross-sectional samples was described in 

section 3.1.3

(iii) Microhardness

A Buehler hardness tester (Figure 3.8) was utilized to measure Vickers hardness 

values of the coatings under 1 Og normal load.
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Fig. 3.8 Buehler microhardness tester

(iv)Phase structure of coatings

The phase structures o f coatings were investigated using a Rigaku D/max 1200 

XRD ( Cu Ka) with scans acquired from 20° to 100° ( in 20°). The XRD patterns were 

used to determine the phase structures.

3.3 Part C -Oxide-graphite composite coatings

Oxide coatings by using PEO have excellent wear resistance but poor 

compatibility with most o f wear counterface. In this experiment section, we intend to 

produce oxide-graphite composite coatings to produce low friction and high wear 

resistance coating on an Al-Si alloy by using the PEO method in the selected aqueous 

silicate-based electrolytes.

3.3.1 Deposition process of oxide-graphite composite coatings
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Cast Al-Si alloys 319 were used as sample substrates (rectangular coupons: 

25x25x5 mm3). The sample preparation procedure is similar to that o f in section 3.1.1. 

The DC power source provided a constant current density O.lA/cm and maximium 

voltage o f 500V.

Fig. 3.9 shows the schematic o f treatment procedure o f composite coatings. Firstly, 

two groups o f oxide coatings were deposited in two electrolytes (4g/l NaSi0 3  with 0.4g/l 

KOH and 8 g/l NaSi0 3  with 0.8g/l KOH in distilled water separately). The electrolyte 

temperature was controlled to remain lower than 60°C. When the applied voltage reached 

480V, graphite was rubbed on these two group oxide layers, and then the samples were 

treated by the PEO process for around 1 minute. This process was repeated for 10-15 

times, while the voltage gradually increased to 500V. The process parameters of the 

coating preparations were listed in Table 3.3.

Table 3.3 Process parameters o f oxide and oxide-graphite composite coatings

Sample code

Process parameters

Electrolyte concentration 

(g/1)

Current density 

(A/cm2)

Graphite rubbing

A12 4 0 .1 -

A22 8 0 .1 -

AG12 4 0 .1 10-15 times

AG22 8 0 .1 10-15 times
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Fig.3.9 Schematic o f treatment process o f composite coatings.

3.3.2 Coating characterization and coating property tests

(i) The surface and cross-section of the oxide-graphite composite coatings

Scanning Electron Microscope (SEM) with energy dispersive X-ray analysis 

system (EDX) was employed for study surface morphology, coating composition and 

coatings thickness by cross-section investigation.

(ii) Roughness and microhardness

Roughness measurement and microhardness tests were performed using the 

instruments as the description in section 3.2.2.

(iii) Tribological properties

The tribological properties were tested by use o f pin-on-disc tribometer (Sciland 

Pin/Disk Tribometer PCD-300A shown in Fig. 3.10) under dry and lube test conditions. 

Tribological tests on the uncoated, PEO oxide-coated, and oxide-graphite composite- 

coated A1 alloy substrates were performed under room temperature (20 °C), ~50% 

humidity, a IN normal load, O.lm/s sliding speed with bearing steel balls (5.5mm in

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



diameter) as the counterface materials. Before the tests, all sample surfaces were slightly 

polished to have a similar surface roughness (2±0.2pm). During the wet tribological test, 

small amount of 3W10-30 engine oil was applied on the testing sample surfaces to 

simulate a boundary lubricant condition. The tribometer gave the coefficient of friction 

during the tests. The SEM with EDX was employed for study o f wear mechanism and 

wear loss o f counterface material. The wear volume loss o f counterface steel balls 

illustrated in Fig. 3.11 was calculated by partially filled sphere equation (Eq. 3.2).

V = ^ Y 2(3 R - Y )  (3.2)

Where Y = y/R2- r 2 +R

Fig. 3.10 Sciland Pin/Disk Tribometer PCD-300A
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Fig. 3.11 Schematic of the worn counter pin/ball and its volume loss.
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CHAPTER 4

EXPERIMENT RESULTS AND DISCUSSION

PART A -  SILICON EFFECT ON PEO COATINGS ON
Al-Si ALLOYS

4.1 Results

4.1.1 Metallurgical analyses of the Al-Si alloy substrates

Metallurgical analyses were conducted by optical microscopy. Optical 

photographs o f the A1 319 and 390 alloys are given in Figs. 4.1(a-d). Fig. 4.1(a) shows a 

typical hypoeutectic Al-Si 319 alloy microstructure. Coarse Al-dendrites were separated 

by fine Al-Si eutectic. Fig. 4.1(b) shows the refined silicon crystal morphology in Al-Si 

eutectic. In Figs. 4.1(c, d), optical photographs o f the 390 A1 alloy exhibit a typical 

hypereutectic Al-Si alloy microstructure with a non-uniform distribution o f needle-like 

and limited primary Si particles in the matrix o f a-Al.

4.1.2 Voltage variation during the PEO process

Figs. 4.2(a) and 4.2(b) show the voltage change during the PEO treatment on A1 

319 and A1 390, respectively. Four consecutive stages can be distinguished approximately 

by changes in voltage variation, surface morphology, and the mechanisms o f coating 

formation during the whole anodic oxidizing process. Insets in Figs. 4.2(a) and 4.2(b) 

particularly show the difference between the regions III and IV in the voltage increasing 

slope.
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Fig. 4.1 Optical micrographs o f as-cast aluminium alloys after polishing and etching, 

showing Si phase distributions in (a, b) 319 and (c, d) 390 aluminium alloys at low and 

high magnification, respectively.
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Fig. 4.2 Plots o f voltages vs. treatment time during the PEO treatments (a) on the 319 

aluminium alloy and (b) on the 390 aluminium alloy with the insets showing the 

difference in the voltage increasing slope between the regions III and IV.

The first stage started with a conventional anodic oxidation on the sample surface. 

A rapid linear increase in voltage was observed. For the 319 alloy the voltage jumped to 

390 V in the first 1 minute, while the duration o f stage I (from 0 to 400 V) for the 390
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alloy was about 5 minutes. The difference in the voltage increasing rates indicated that 

the oxide film more readily formed on the 319 alloy than on the 390 alloy in the first 

stage.

In the second stage, the voltage increasing rate slackened and the curves in this 

stage were not linear anymore. Micro-arc discharges could be observed by naked eyes at 

this stage and beyond. The stage II ranging from 390 V to 440 V lasted about 1.5 minutes 

for the 319 alloy, whereas for the 390 alloy this stage (from 400 V to 465 V) extended 

about 5 minutes.
i

With the voltage increasing, the process entered stage III. The voltage biased on 

the 319 alloy gradually climbed up from 440 V to 480 V with the average voltage 

increase rate o f about 2.79 V/min, while the coating process on the 390 alloy caused the 

voltage increase from 465 V to 480 V at the voltage increase o f 1.65 V/min.

Beyond 480V, both o f the coating processes on the 319 and 390 alloys were 

engaged into stage IV, and the voltage increasing slopes in this stage were similar.

4.1.3 Surface morphology and composition characterization in the four stages

Figs. 4.3(a-f) illustrate the surface changes o f the PEO-treated 319 and 390 

samples at the stages II-IV. Higher magnification SEM micrographs o f those coated 

surfaces with EDX analysis are presented in Figs. 4.4-4.9.
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Fig. 4.3(a, b)
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Fig. 4.3(c, d)
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Fig. 4.3 SEM micrographs o f coating surface morphology (a-c) on the 319 aluminium 

alloy and (d-f) on the 390 aluminium alloy at (a, d) stage II, (b, e) stage III, and (c, f) 

stage IV.
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Figs. 4.4 and 4.5 are the surface morphology and EDX spectra detected from the 

treated 319 and 390 alloy samples at the stage II. While Figs. 4.4(a) and 4.5(a) show the 

surface morphology o f the A1 matrix regions, Figs. 4.4(b) and 4.5(b) present the surface 

morphology of Si phase regions on treated 319 samples and 390 alloy. Figs. 4.4(c) and 

4.5(c) are EDX spectra for the corresponding region i and region ii on the two samples. 

Figs. 4.4(d) and 4.5(d) are the micrographs of a magnified Si particle at stage II, on 319 

alloy and 390 alloy respectively. In the A1 matrix region (region / in Figs. 4.4(a) and 

4.5(a)), anodized aluminium oxide film was partially fused because o f the tiny micro-arc 

discharges initiated in the stage II. In the Si rich region (Figs. 4.4(b) and 4.5 (b)), 

relatively large melting Si cells can be observed and main chemical compositions in these 

cells are Si-Al-0 compounds which can be detected by EDX (Figs. 4.4(c) and 4.5 (c)). At 

this stage, the sizes o f these Si cells are determined by the original sizes and shape of Si 

phases in the substrates. The micrographs o f the magnified silicon cells (Figs. 4.4(d) and 

4.5(d)) show that the edge o f silicon particle has been melted and the boundary of Si 

particles became blurred. But some core parts o f the silicon particle are not melted. Thus, 

it can be implied that at stage II, a stronger micro-arc discharge readily formed on the 

surface spots where the interface o f A1 matrix and silicon grain existed due to the 

tip/comer effect o f electrical field concentration. Consequently, a large melted cell 

formed during the plasma discharge and then the solidified oxide surrounded the silicon 

particle surface after the discharge was extinguished at the current spot and moved to 

another location. The silicon surface was melted, and the silicon was mixed with the 

aluminium oxide during the formation and extinguishing o f micro-arc discharge. Thus, 

amount o f Si-A l-0 compounds (Figs. 4.4(c) and 4.5(c)) with voids and bubble-like 

cavities were observed in the silicon region (Figs. 4.4(b) and 4.5(b)). The silicon mixture
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to the aluminium oxide would reduce the melting temperature o f the oxide compound, 

and lead to a larger melted cell that finally covered the whole exposed surfaces of original 

silicon grains.

M-0 Anodizing film fused by 
:iny micro-arc discharges

Large melted cells in Si region
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Fig. 4.4 SEM micrographs showing morphology of coating surfaces in stage II on the 319 

alloy: (a) in A1 matrix region and (b) the Al-Si eutectic region; (c) the corresponding 

EDX spectra for region i and ii; (d) a silicon particle at the stage II.
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Fig. 4.5(a, b)
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Fig. 4.5 SEM micrographs showing morphology o f coating surfaces in stage II on the 390 

alloy: (a) in A1 matrix region and (b) the Al-Si eutectic region; (c) the corresponding 

EDX spectra for region i and ii; (d) a silicon particle at the stage II.
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Figs. 4.6 and 4.7 are the surface morphologies and EDX spectra detected from the 

treated 319 and 390 alloy samples at the stage III respectively. Figs. 4.6(a) and 4.7(a) 

show the surface morphologies o f samples treated at stage III on 319 and 390 alloy 

respectively. Figs.4.6 (b) and 4.7(b) are EDX spectra for the corresponding region i and 

region ii on the two samples respectively. On the 319 alloy sample, the coating surface is 

inhomogeneous and presents a granular meshwork aspect revealing two kinds o f zones. 

The zone i (Fig. 4.6(a)) is made o f small particles between which small circle pores 

existed. From EDX analysis, the chemical composition o f the particles is main A1 and O. 

EDX spectrum indicated the zone ii (Fig. 4.6(a)) is made o f Si rich compound. The Si-Al- 

O compounds appear to have larger projections between which are elliptical pores. On the 

390 alloy, porous silicon rich compounds (region ii in Fig. 4.7(a)) piled up from the base 

background where a much denser aluminium rich oxide formed (region i in Fig. 4.7(a)). 

The silicon rich compound regions were more readily fused, resulting in a preferential 

coating growth and large coating porosity.

The surface morphology of the 319 and 390 alloys treated at stage IV is shown in 

Figs. 4.8(a) and 4.9(a) respectively. A similar coating morphology could be observed on 

the coated 319 and 390 surfaces. It was also found that the coated 319 and 390 alloy 

surfaces had a similar EDX spectrum (Figs. 4.8(b) and 4.9(b) respectively). In this stage, 

the coatings on both o f the alloys exhibited fairly even composition coverage, and the 

original aluminium region and silicon region could not be distinguished from the EDX 

composition analysis. Thus, the coatings on both alloys were A l-Si-0 compounds with a 

uniform distribution in composition. It should be mentioned that at the maximum output 

500V, the continuous dense layer o f coating has not been formed yet.
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Fig. 4.6 (a) A SEM micrograph showing morphology o f coating surfaces in stage III on 

the 319 alloy and (b) the corresponding EDX spectra for region i and ii.
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Fig. 4.7 (a) A SEM micrograph showing morphology o f coating surfaces in stage III on 

the 390 alloy and (b) the corresponding EDX spectra for region i and ii.
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Fig. 4.8 (a) A SEM micrograph showing morphology o f the coating surface in stage IV 

on the 319 alloy and (b) the corresponding EDX spectrum.
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Fig. 4.9 (a) A SEM micrograph showing morphology o f coating surfaces in stage IV on 

the 390 alloy and (b) the corresponding EDX spectrum.

A W v h  n \  ■

Energy (KeV)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1.4 Surface roughness

Surface roughness vs. treatment time is plotted in Fig. 4.10. A nearly linear 

increase in coating roughness was observed at the first 3 stages for the low silicon 319 

alloy; whereas the high silicon 390 alloy behaved quite differently at various process 

stages. At the stage II, the coating on the 390 alloy had a much higher surface roughness 

compared with the coating on the A1 319. Then, the surface roughness increase slop 

descended in the stage III as shown in Fig. 4.10. At the stage IV, the surface roughness on 

the coated 390 was still higher than that o f the coated 319 alloy; however, the roughness 

increase rate for the treated 390 alloy significantly declined.
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Fig. 4.10 Surface roughness Ra vs. treatment time on (a) the 319 alloy and (b) the 390 

alloy.

The highest voltage applied in this research was 500V due to the power supply 

limitation. According to previous research on a thick Al-Si-0 oxide coating [17, 21], the 

oxide coating has three layers, i.e., porous top layer, dense intermediate layer, and dense 

inner layer. When the voltage is increased to more than 600V and the coating thickness
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reaches up to over 50 pm [51, 6 6 ], thickness o f dense layer in the coating can be 

significantly increased. Thus, if  the applied voltage in this research was higher, the 

density o f the coating could be considerably improved due to the further sintering at the 

higher voltage and the coating surface roughness on both of the substrates could finally 

become similar. The effect o f Si content on coating roughness and morphology might not 

be significant when a thick coating was deposited; for a thin coating, its effect was 

obvious.

4.1.5 XRD analysis

Figs. 4.1 l(a-f) show XRD patterns of the samples treated at four individual stages 

on the 319 alloy and the 390 alloy, respectively. The aluminium (Al) and silicon (Si) 

peaks in Fig. 4.11 were detected from the Al-Si alloy substrates. An AI2O3 phase was 

found in the coatings on both 319 and 390 alloys prepared at the stage II (circles in Figs. 

4.11(a) and 4.11(d)). VAI2O3 phase started to form in the coatings from the stage III 

(Figs. 4.11(b) and 4.11(e)), and the coatings were composed o f Y-AI2O3 and very little 

amount of mullite. At the stage IV, the Y-AI2O3 was still the dominate phase in the 

coating (Figs. 4.11(c) and 4.11(f)), however, the amount of mullite phase was increased 

compared to the stage III, suggested that silicon element from the silicate electrolyte was 

incorporated into the coatings at the stage IV. Compared with the XRD patterns o f those 

two coated samples treated at the same individual stage, the phase structures on the 

coatings were similar.
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Fig. 4.11 XRD patterns o f the PEO coatings on the 319 and 390 alloy at (a, d) stage II, (b, 

e) stage III, and (c, f) stage IV. Note: the numbers in brackets are the intensity o f the 

peaks.
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4.1.6 Cross-sectional structure of coatings

Figs. 4.12 (a) and 4.12(b) are the micrographs o f cross-sections o f the coated 319 

and 390 alloys respectively. The coatings treated to 500V on both alloys are about 10pm 

in thick. The cross-section micrograph exhibits the typical PEO coating structure, i.e. 

porous outer layer, dense layer and continuous inner dense layer. In the coating on the 

319 alloy, the dense layer is not continuous, the thickness is from 0-3 pm, while the dense 

layer on the 390 alloy is more continuous and thicker with a thickness 3-5 pm. Fig. 4.12(a) 

shows that at the regions Si phase, some pores deducted by discharge and some porous 

spheroidal projection aspects existed. The discharge channels go through the entire 

coatings from inner dense layer to outer layer. However, these phenomena become not so 

on the cross-section of coated 390 alloy surface. It could be implied that with a 

continuous dense layer forming, Si particles in the aluminum alloy were oxidised and 

sintered into the dense layer. Thus, with the growth o f dense layer, the effect o f Si content 

o f the substrates on surface properties becomes weak.
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Fig. 4.12 SEM micrographs showing the cross-sectional morphology of the coated (a) 319 

alloy and (b) 390 alloy (current density: 0.05A/cm2, maximum voltage 500V).
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4.2 Discussion

Investigation of the voltage variation with treatment time and corresponding 

surface morphology and EDX analysis on the PEO-coated Al-Si alloys has revealed four 

stages o f the process, characterised by different mechanisms. Figs. 4.13(a-d) 

schematically illustrate the coating growth model o f the PEO coating at the region o f Si 

phase.

m S m m

Fig. 4.13 Schematic o f coating growth model around the Si regions at (a) stage I, (b) stage 

II, (c) stage III, and (d) stage IV.

The coating process started with a conventional anodic oxidation o f the sample 

surface in Stage I (shown in Fig. 4.13(a)) where a rapid linear voltage increase was 

observed. The silicon precipitates, present in commercial aluminum-silicon alloys, are 

almost pure, faceted silicon crystals [67]. During this stage, the anodizing process 

occurred on the aluminium matrix regions, forming a conventional anodic oxidation film.
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Silicon particles have low electrical conductivity (-lO -4 (Q tu ) '1), a passivation layer 

covered on silicon crystals only via chemisorption proceeds. This layer tends to be 6-20 

nm thick [6 8 ]. Figs. 4.2(a) and 4.2(b) show that the voltage increase for the 319 alloy is 

much more rapid than that o f 390 in this stage. Aluminium content is relatively higher in 

the 319 alloy than that o f in the 390 alloy. Compared to silicon, aluminium is liable to be 

passivated. Thus, the 319 alloy has a higher oxide film growth rate than the 390 alloy. As 

a result, the voltage increasing slope for the former is larger than that for the latter in the 

first stage.

Whilst the aluminium oxide film growth, the electric potential (electric field 

strength) in the oxide film was increasing as shown in the stage II. (Figs. 4.4, 4.5 and 

4.13(b)). Due to the tip/comer effect o f electrical concentration on the localized surface 

where the interface of A1 matrix and silicon grain existed, it was most likely that a large 

micro-arc discharge firstly formed at the Al-Si boundary when the voltage (electric field 

strength) in the coating with thickness in nano/micron-meter-scales reached a critical 

value (above dielectric strength o f the oxides ~104 V/mm). During the process, a number 

o f small sparks could also be observed at the region o f the anodized A1 matrix (Fig. 

4.13(b)). The region o f discharge was heated by generated electron avalanches up to 

temperatures o f 103~104K [23,24] which is higher than the melting point o f Si (-1410 °C) 

and SiOx (<1800 °C), causing the silicon crystal surface to melt and be mixed with the 

aluminium oxide. Thus, Si-Al-0 compounds firstly started to form in the silicon regions 

(Fig. 4.13(b)).

The Si-Al-0 compound formed at the silicon region had a lower melting point 

than the aluminium oxide formed at the aluminium matrix region. The discharge would 

cause a large melted cell at the silicon region, and spheroidal projections were formed
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after quenching by the electrolyte (Figs. 4.4, 4.5and 4.13(b)). The quenched projections 

contained a number o f voids and bubble-like cavities. Due to its higher silicon content, 

the 390 alloy had larger coverage o f the projections which caused a rougher surface on 

the 390 alloy than on the 319 alloy (Fig. 4.10). Again due to larger amounts o f silicon in 

the 390 substrate, the number o f discharge sites on the 390 alloy surface was larger than 

that on the 319 alloy surface. Thus, higher electrical quantities and electrical potential 

were needed, which can explain why the longer duration and higher final voltage for 390 

alloy than for 319 alloy were observed in stage II (Fig. 4.2).

Fig. 4.13(c) illustrates the growth model o f stage III. In this stage, micro-arc 

discharges are generated. Owing to this “micro-arcing”, the film is gradually growing by 

mainly plasma oxidation and fuse o f the substrate material. The roughness increase rate 

on the 390 alloy surface began to decrease (Fig. 4.10). Since the coating was still thin and 

the Si-Al-0 compounds in the Si-rich regions had a lower melting point and more 

porosity than the aluminium oxide region, more discharge spots occurred at the silicon- 

rich regions which resulted in piling up of the Si-Al-0 compounds. This feature could be 

observed in SEM and EDX analysis (Figs. 4.6 and 4.7). Due to more amount o f less dense 

coating microstructure on the high silicon 390 alloy, the voltage increase rate required to 

breakdown the coating on the 390 alloy was lower than that o f the 319 alloy as depicted 

in Figs. 4.2(a) and 4.2(b).

In the final stage, the coating was fused at the discharge spots and reacted further 

with the chemical element containing in the electrolyte, causing a more uniform mixture 

in composition. During the process, coating composite was mainly influenced by 

electrolyte instead o f by substrate underneath the coating. Thus, voltage properties in this 

stage on both o f the alloys were similar as shown in Figs. 4.2(a, b). Small differences in
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composition and electrical properties between silicon and aluminium region were 

exhibited in the stage IV (Figs. 4.8 and 4.9). The coating composition and morphology 

became even and uniform gradually, which suggested that the silicon content would not 

have a significant effect at and after the stage IV. Due to the limited maximum voltage 

500V, the composition and structure mixing has not achieved completely. From the cross- 

section microstructure (Fig. 4.12), the localized spheroidal projections and discharge 

channels occurred at the region of Si phase still can be observed. Nevertheless, the 

phenomena will not be found at the coatings with thickness more than 50pm produced by 

a higher voltage (600V), in which the dense layer exhibited a better continuity. Thus, with 

the growth o f dense layer, the effect o f Si content o f the substrates on surface properties 

becomes insignificant.

4.3 Summary

The effect o f silicon content on the coating process and surface morphology and 

composition were investigated. With low current density, electrolyte concentration and 

the maximum 500V voltage, thin PEO coatings (about 10pm in thickness) were produced 

on the 319 and 390 Al-Si alloys. The coating process was found to have four 

distinguished stages. In the first three stages, the duration time and morphology o f each 

stage were considerably affected by the silicon content in Al-Si alloys. The micro-arc 

discharge started to appear at Al-Si interfaces on the alloy surface when the electrical 

potential reached up to the critical voltage o f -390V  for the 319 alloy and -400 V for the 

390 alloy. At the silicon-rich region in the alloys, an Al-Si-0 compound with a relatively 

low melting point formed and it exhibited a porous microstructure comparing with the 

aluminium rich matrix. The higher silicon content resulted in a rougher coating surface on
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the PEO-treated 390 alloy than on the PEO-treated 319 alloy. After the applied voltage 

was higher than 480V and the process entered stage IV, the composition o f the oxide 

coating for the 319 and 390 alloys were similar. The main phases were Y-AI2O3 and a 

small amount o f mullite for both coated alloys. Although the coating on the 390 alloy 

exhibited a higher surface roughness than the coating on the 319 alloy, the coating surface 

morphology and roughness are expected to be similar for both alloys when the voltage 

increases to a higher level (e.g., 600V). The effect o f silicon content in a thicker coating 

(e.g., >50 pm) might not be significant.
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CHAPTER 5

EXPERIMENT RESULTS AND DISCUSSION

PART B -  EFFECT OF ELECTROLYTIC AND ELECTRICAL 

PARAMETERS ON PEO COATINGS ON Al-Si ALLOYS

5.1 Results and discussion

5.1.1 Voltage and current variation during the PEO process

The dependencies o f anode voltage and current density on PEO treatment time 

obtained at various preset current densities and electrolyte concentrations (see table 3.2) 

are shown in Figs. 5.1 and 5.2, respectively. Figs. 5.1(a) and 5.1(b) are the plots o f 

voltage vs. PEO treatment time at the conditions o f two electrolyte concentrations (4g/l 

and 8 g/l Na2Si0 3 ), respectively; As discussion in chapter 4, the voltage variation was 

distinguished as four characteristic areas, according to the evidencing changes in the 

voltage increase gradient, discharge characterization, and surface morphology, which are 

illustrated by the schematic in Fig. 5.1(c). These regions are characterized as follows. 

Region I represents the maximum voltage change rate, corresponding to a conventional 

aluminium anodizing process. In Region II, the rate o f voltage increase slackens, 

indicating a decrease in the oxide film growth rate. In this region, the oxide films are 

broken down and Si phases were melted partially by high temperature o f discharge 

occurrence. In Region III, micro-arc discharges are generated. Owing to this “micro­

arcing”, the film is gradually growing by mainly plasma oxidation and fuse o f the
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substrate material. In final Region IV, the coating was fused at the discharge spots and 

reacted further with the chemical element containing in the electrolyte, causing a more 

uniform mixture in composition. In Fig. 5.1(c), the points a, b, c are the critical points 

between two regions, beyond which the process entered the next stage. At point d, the 

voltage increased to 500V, this voltage will be constant until the end o f the treatment 

(poin e). Ta, Tb, Tc, and Td are corresponding treatment time at voltages o f a, b, c, and d. 

Generally, a higher current density would supply a higher electrical field strength and 

more electric charges within the unit time. Thus, in the same electrolyte the total 

treatment time is shortened when the current density increases. At the same current 

density, the process in a higher concentration electrolyte exhibits a lower voltage increase 

rate than that in a lower concentration electrolyte.

Table 5.1 summarizes the values o f critical voltages between two regions and 

duration time o f each region o f these processes. In comparison o f critical voltage between 

Region I and Region II (point a at Fig. 5.1(c)), and duration o f Region I, in the process 

treated in the 8 g/l Na2Si0 3  electrolyte the critical voltage increased from 385V to 412V 

when the current density increases from 0.05A/cm to 0.2A/cm ; with 8 g/l Na2Si0 3  

electrolyte, the value o f point a changed from 384V to 413 V with the variation o f current 

densities. While, at the same current density, the effect of electrolytes on the critical 

values o f point a is neglectable. Thus, it indicates that the critical voltage between Region 

I and Region II is mainly affected by the current density. In 4g/l Na2SiC>3 electrolyte, the 

duration o f Region I is decreasing proportionally from 60 seconds to 15 seconds with the 

current density increase from 0.05A/cm to 0.2 A/cm . It reveals that under low 

electrolyte concentration (i.e., 4g/l Na2Si0 3 ), the durations o f region I with various
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current density are followed Faraday’s law, which indicates that the oxide film growth 

rate can be evaluated in the framework of a conventional electrochemical approach. In 

the high electrolytes (i.e. 8 g/l Na2SiC>3), the durations o f Region I are changed from 90 

seconds to 30 seconds with the increase o f current density but the relation between 

current density and duration time becomes complex, which implied that film growth is 

not conventional anodizing but a complex process with dissolution and chemical 

combination. Point b is the critical point between Region II and Region III (Fig. 5.1 (c)), 

at low electrolyte concentration (4g/l Na2SiC>3), the value o f b is about 440V, which is 

only slightly higher than that o f at high electrolyte concentration (8 g/l Na2SiC>3) (~435V). 

Thus, the effect o f electrolyte and current density on the critical voltage between Region 

II and Region III are weak. According to the conclusions reached from chapter 4, the 

oxide films, formed in region I, were broken down and Si phases were melted and 

oxidized partially by high temperature o f discharge. Thus, Region II is mainly controlled 

by substrate material and anodized oxide film characterization formed during region I. A 

higher current density can supply a higher voltage increase rate, and shortened the 

duration o f region II. However, in higher concentration of electrolyte, dissolution and 

complex electrochemical combination could lower the efficiency o f oxide layer formation 

and make the duration o f region II longer. In the electrolyte o f 4g/l Na2SiC>3, the duration 

of region II is reduced from 100 seconds to 12 seconds, while in 8 g/l Na2Si0 3 , the 

duration is from 270 seconds to 40 seconds when the current density increases from 

0.05A/cm2 to 0.2A/cm2. From Table 5.1 and Fig. 5.1, it can be noticed that the critical 

voltage between region III and region IV (point c) is strongly affected by electrolyte 

concentration. The effect o f current density can be neglectable. For 4g/l Na2Si0 3
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electrolyte, value o f point c is about 470V; for 8 g/l Na2SiC>3 electrolyte, it is about 450V. 

Like the region II, the duration o f Regions III, and IV increase with the increase of 

electrolyte concentration and decrease with the increase o f current density.

Figs. 5.2(a) and 5.2(b) show the current density variation during the PEO process 

in the two electrolytes, respectively. In this experiment, after the voltage reach the 

maximum (500V), the current density will decrease gradually until the system becomes 

insulated when no more discharge occurs. According Ohm law, under the same voltage, 

the current density are determined by coating resistance which in some degree can reflect 

the change o f coating material. Fig. 5.2(c) is the schematic o f current density variation for 

different samples. The variation o f current density can be roughly distinguished as two 

stages: rapid changing stage f-g and slow changing stage g-h (Fig. 5.2(c)). While the 

point/indicates the originally preset current density, the point g  is given with a value o f 

0.033A/cm for the endings o f all the processes carried out at different treatment 

parameters. According to the investigation of experiment phenomena, we find that the 

variation of current density is sensitive to many factors such as the electrolyte 

temperature, single localized discharge occurrence, current density, and electrolyte.
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Fig. 5.1 Plots o f voltages vs. treatment time during the PEO treatments with electrolyte 

concentrations (a) 4g/l, and (b) 8 g/l; (c) The schematic illustrates the four resolved 

regions o f voltage variation during the PEO process.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) 0.25
A130.2

0.15

■o A12

0.05

0 10 20 30 40 50
Treatment time (min)

0.25

0.2

25* 0.15

2  0.1

R  0.05

0

0 20 40 60 80

Treatment time (min)

<nc.
< u

T3

3
o

Treatment time

Fig. 5.2 Plots of current density vs. treatment time during the PEO treatments with 

electrolyte concentrations o f (a) 4g/l, and (b) 8 g/l. (c) Schematic o f current density 

variation trend.
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Table 5.1 Summary o f voltage variation characterization

A ll A12 A13 A21 A22 A23

Stage I
a (V) 385 392 412 384 398 413

T .(S ) 60 30 15 90 80 30

b(V) 441 440 443 433 436 436

Stage II Tb-Ta(s) 1 0 0 35 1 2 270 140 40

A U 
AT

0.56 1.37 2.58 0.18 0.27 0.575

c(V) 470 472 471 450 455 452

Stage III Tc-Tb(s) 480 225 48 350 170 70

A U 
AT

0.06 0.14 0.58 0.048 0 .1 1 0.56

d(V) 500 500 500 500 500 500

Stage IV

Td-Tc(s) 1450 625 250 4130 2016 962

A U 
AT

0 . 0 2 1 0.0448 0.116 0 . 0 1 2 0 . 0 2 2 0.050

Td (mins) 34.8 15.3 5.4 80.6 40.1 18.3
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5.1.2 Coating structure

Figs. 5.3(a, b, c) are the micrographs of cross-section o f coatings produced in 4g/l 

Na2SiC>3 electrolyte and at current densities o f 0.05A/cm2 (A ll) , 0.1 A/cm2 (A12), and 

0.2A/cm2 (A13), respectively. Fig. 5.3(d) is the magnified micrograph o f A 11 to show the 

subtle detail o f coating structure. All the coatings have a similar structure, i.e. outer layer 

and inner dense layer at the interface of substrate and coatings. At some regions, the 

intermediate dense layer is emerged but it is not continuous. The maximum thickness of 

the dense layer we observed is about 3 pm. The out layer is typically porous aspects and 

about 4pm in thick and some discharge channels go all the way through the outer layer. 

The inner dense layer is basically uniformed with thickness about 0.8-1 pm.

Figs. 5.4(a, b, c) show the cross-section structure of samples A21, A22 and A23 

and Fig. 5.4(d) is the magnified cross-section micrograph o f sample A21. Compared with 

Fig. 5.3, a thicker PEO coating can be produced using a high electrolyte concentration at 

the same maximum voltage. The high concentration electrolyte supplied more Si and O, 

which accelerates the combination o f A l-0  in coatings with S i-0  in the electrolyte. 

Compared with AI2O3 , the A l-Si-0 compound has a low electrical resistance and low 

breakdown voltage. Thus, at relatively low voltage, plasma reaction can still perform, 

which in turn enhances the compound formation. The thickness o f outer layers of A21, 

A22 and A23 are all similar about 10-15pm. At the 0.05A/cm2 current density, a 

relatively thick (thickness: l-5pm), dense layer can be observed in the cross-section 

structure (Fig. 5.4(a)). But at a higher current density, the denser layer becomes thinner 

and somewhere incontinuous. The mechanism of formation of dense layer is known that
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with coating thickness increasing, thermal conductivity decreases, which provokes the y- 

AI2O3 transformation to 0AI2O3. At high current density, the discharges are more 

intensive than that at low current density and could deduct that more oxidized aluminium 

is ejected from the discharging channels towards the coating surface in touch with the 

electrolyte. The process at condition of high current density allows the outer layer to 

grow fast and only thin intermediate dense layer formed. It is interesting to notice that the 

thickness of inner dense layer is still about 0 .8 - 1  pm.

ischarge channel

Fig. 5.3(a)
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ischarge channel

ischarge channel

Fig. 5.3(b, c)
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TAInner dense layer
Porous outlayer

Dense layer

Fig. 5.3 SEM micrographs o f cross-section structures o f samples (a) A 11, (b) A12, (c) 

A13, and (d) the magnified cross-section micrograph o f A 11.

Fig. 5.4(a)
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Fig. 5.4(b, c)
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Porous outer layer

Inner dense layer

Fig. 5.4 SEM micrographs o f cross-section structures o f samples (a) A21, (b) A22, (c) 

A23, and (d) the magnified cross-section micrograph of A21.

5.1.3 Surface morphology

Fig. 5.5 shows the surface morphology o f coatings deposited in 4g/l Na2SiC>3 

electrolyte with different current densities. Figs. 5.5 (a, c, e) show the surface 

morphology o f coatings A l l ,  A12 and A13, respectively. To show surface morphology 

o f oxide coatings in detail, magnified micrographs o f the corresponding samples 

presented in Figs. 5.3(b, d, f). Qualitatively, the three coatings have the similar surface 

morphology, i.e., oxide coatings with circle or elliptical pores.
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Fig. 5.5 Micrographs o f surface morphology o f sample A 11: (a) x200 and (b) xlOOO.
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Fig. 5.5 Micrographs o f surface morphology o f sample A12: (c) x200 and (d) xlOOO.
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Fig. 5.5 Micrographs o f surface morphology o f sample A13: (e) x200 and (f) xlOOO.
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Fig. 5.6 shows the surface morphology o f coatings deposited in the 8 g/l Na2SiC>3 

electrolyte with different current densities. The low magnification micrographs (Figs. 

5.4(a, c, e)) show the surface morphology of coatings A21, A22, and A23. Figs. 5.4 (b, d, 

f) are the corresponding high magnification micrographs. Compared with the coatings 

deposited in the low concentration electrolyte (4g/l Na2Si0 3 ), the surface projections are 

coarse and the size o f projections is much larger. Obviously, the number o f pores (i.e., 

porosity) is less than that o f the coating produced in the 4g/l Na2Si0 3  electrolyte, and the 

pores are mainly circular.

Figs. 5.5 and 5.6 indicate that coatings deposited in the same electrolyte but 

different current densities, still have a similar surface morphology. To identify the surface 

distinction quantitatively, the surface profiles o f coatings produced by various electrolyte 

and electrical parameters were analyzed and compared. Figs. 5.7(a-f) present the typical 

surface profiles o f coatings A l l ,  A 12, A13, A21, A22, and A23. At the methods 

described in chapter 3, the size o f projections is calculated and summarized in Table 5.2. 

Table 5.2 Size o f projections and roughness of coating surfaces

Samples Average size o f projection (mm) Roughness (Ra) (pm)

A ll 0.014523 1.79

A12 0.015392 1.82

A13 0.016734 1 .8 8

A21 0.035836 5.87

A22 0.038346 6.06

A23 0.045522 6.35
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Fig. 5.6 Micrographs o f surface morphology o f sample A21: (a) x200 and (b) xlOOO.
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Fig. 5.6 Micrographs of surface morphology of sample A22: (c) x200 and (d) xlOOO.
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Fig. 5.6 Micrographs o f surface morphology o f sample A23: (e) x200 and (f) xlOOO.
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Fig. 5.7 The plots o f typical surface profiles o f samples: (a) A l l ,  (b) A12, and (c) A13.
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Fig. 5.7 The plots o f  typical surface profiles o f samples: (d) A21, (e) A22, and (f) A23.
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Fig. 5.8 Relationships o f surface morphology vs. electrolyte concentration and current 

density, (a) Surface projection size vs. current density and (b) surface roughness vs. 

current density.

Figs. 5.8(a, b) show relationships o f surface morphology vs. electrolyte 

concentration and current density. In those plots, line 1 and line 2 are corresponded to the
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coatings prepared by 4g/l and 8 g/l Na2SiC>3 electrolyte and the equations, and reliability 

of the trend lines are shown in the insets in Figs. 5.8(a, b). Figs. 5.8(a) illustrates the 

relationship o f projection size vs. electrolyte concentration and current density. The data 

in Table 5.2 and Fig. 5.8(a) indicate that the oxide projection size on thick coating 

surfaces (A21, A22 and A23) linearly increased with current density from 35 pm to 

45 pm. The thin coatings (A11, A12 and A 13) have a much smaller feature size and with 

the current density change from 0.05A/cm to 0.2A/cm , the size only linearly increases 

from 14pm to 16pm.

The surface roughness o f the coatings is also listed in Table 5.2. Fig. 5.8(b) 

presents the relationships o f surface roughness vs. electrolyte concentration and current 

density. Fig. 5.8(b) indicates that the coatings produced using the high electrolyte 

concentration have much rougher surfaces than those by use o f low electrolyte 

concentration. The roughness o f former is around 6 pm and latter is about 1.8 pm. For 

coatings prepared in 4g/l electrolyte, the surface roughness linearly increased from 

1.79pm to 1.88pm with current densities from 0.05A/cm to 0.2A/cm . However, surface 

roughness o f coatings treated in 8 g/l electrolyte linearly increased from 5.87 to 6.35 for 

the same range o f current density increasing. Thus, the electrolyte concentration has a 

significant effect on surface roughness. However, the current density does not appear to 

have a strong effect on the roughness and projection size when the coatings are prepared 

in a given electrolyte.
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5.1.4 Hardness

The hardness o f the coatings was measured on the coating cross-sections by a 

Vickers hardness tester. The results are shown in Fig. 5.9. The coating hardness is at the 

range o f 800-1000. The coatings produced in the high Si electrolyte have a lower 

hardness than those o f in the low concentration electrolyte. The current density has a 

slight effect on coating hardness.

1200 
1000 
800 

j :  600
400 
200 

0

A11 A12 A13 A21 A22 A23
Sample

Fig. 5.9 Hardness o f cross-section

5.1.5 XRD

Figs. 5.10 (a, b, c) are XRD-pattems o f samples A l l ,  A12 and A13. The main 

phases are y-AbOa plus a little amount o f 01-AI2O3 and some A l-Si-0 phases. Figs. 5.11 

(a, b, c) show XRD-pattems of samples A21, A22 and A23. Compared with the XRD 

patterns o f coatings A l l ,  A12 and A13 (shown in Fig. 5.10), besides Y-AI2O3 and a- 

AI2O3, Al203-SiC>2 phases can be detected. Moreover, from 10-30 degrees, a lot o f 

unidentified peaks with a wide shoulder exist, which could result from an amorphous Al- 

S i-0 glassy phase in the coatings.

1 0 2

957.9U 842 876.4 804.9 7 7 2  3

l l l l l
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Fig. 5.10 XRD-pattems o f samples: (a) A l l ,  (b) A12, and (c) A13.
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5.2 Summary

The PEO process using a higher concentration electrolyte can produce a thicker oxide 

coating. The thickness o f coatings deposited in 4g/l Na2SiC>3 with the maximum 500V 

voltage is about 1 0 pm and the coatings is composed of an outer layer, non-continuous 

dense layer and inner dense layer. The phase composition o f the thin PEO coating is 

mainly Y-AI2O3 . The PEO coating prepared in an 8 g/l Na2Si0 3  electrolyte has a larger 

thickness (20-25 |Jm) and the coating appears to have a continuous dense layer in the 

between o f outer porous layer and inner dense layer. It was also found that the coating 

deposited in the high concentration electrolyte has more amounts o f Al2 0 3 -Si0 2  

compound phases, and also a-AhOs phase. Although the coating phase composition is 

different, the hardness o f the coatings deposited by different parameters is all in the range 

of 800-1000 HV. The coatings treated by the higher concentration electrolyte have 

slightly lower hardness than that o f in low concentration electrolyte. The current density 

effect on coating structure, and coating hardness was not found to be significant. 

However, with the current density increase, the surface morphology change increased due 

to the oxide projection size increase, which could result from intensive discharge 

occurrence under higher current density.
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CHAPTER 6 EXPERIMENT RESULTS AND DISCUSSION

PART C -  OXIDE-GRAPHITE COMPOSITE COATING

6.1 Results

6.1.1 Morphology of oxide-graphite composite coatings

Fig. 6.1 is SEM micrographs o f surface morphology o f composite coatings: AG12 

(Fig. 6.1(a)) and AG22 (Fig. 6.1(b)). Fig. 6.1(c) is the EDX spectra corresponding to 

regions i and ii on AG 12 surface which show element compositions o f a typical oxide- 

graphite composite coating. Graphite (region if) was embedded into the pores (region i) 

on the PEO outer layer. Graphite covers about 60% and 70% surface areas o f samples 

AG 12 and AG22, respectively. The rough surface profile o f the PEO coating with pores is 

believed to provide the graphite with anchors, and then graphite were embedded in the 

top layer o f the composite coating during the subsequent localized plasma discharge. The 

size o f oxide projections and pores on the AG22 sample is much larger than that o f on 

sample AG 12, which provides the graphite with more preferential anchor sites. Thus, a 

more graphite coverage appears on the surface o f sample AG22 than sample AG 12.

Fig. 6.2 shows cross-sectional structures o f composite coatings AG12 (Fig. 6.2(a)) 

and AG22 (Fig. 6.2 (b)). The composite coating has a cross-sectional morphology similar 

to a typical PEO coating structure, i.e. porous outer layer, intermediate dense layer and 

inner dense layer. It is believed that graphite-oxide mixture occurs mostly in the top 

outerlayer. The graphite may be peeled off at the polishing process during the cross- 

section sample preparation. The cross-section structure in Fig. 6.2(a) shows that the
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average thickness o f this composite coating AG 12 is about 12pm, among which outlayer 

is about 9 pm thick i.e., 75% of total coating thickness. Within the outerlayer, the 

thickness o f oxide-graphite composite toplayer is about l-2pm. Fig. 6.2 (b) is the cross- 

section micrograph o f composite coating AG22, which indicates that the average 

thickness o f this composite coating AG22 is about 25 pm. The outer layer with about 5 pm 

oxide-graphite composite layer as its top layer is approximately 15 pm thick, i.e., 60% of 

total coating thickness.

Fig. 6.1(a)
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Fig. 6.1 SEM micrographs o f surface morphology and EDX spectra o f oxide-graphite 

composite coatings. The typical surface morphology o f composite coatings: (a) AG 12 and 

(b) AG22. (c) EDX spectra o f corresponding regions i and ii on the AG 12 surface.
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Fig. 6.2 SEM micrographs o f cross-section structures o f oxide-graphite composite 

coatings, (a) AG 12 and (b) AG22.
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Table 6 .1 Roughness and microhardness (Vickers hardness) o f the PEO oxide and oxide- 

graphite composition coatings

Samples Roughness (pm)
Hardness o f top layer 

(from cross-section)

A12 2 .0 1 842.0

AG12 1.82 876.0

A22 6.06 (polished to 2 .1 0 ) 772.3

AG22 2.80(polished to 2 .1 0 ) 839.0

Surface roughness of the PEO oxide (A 12 and A22) and composite (AG 12 and 

AG22) coatings is listed in Table 6.1. The as-deposit surfaces o f composite coatings have 

lower surface roughness than that o f oxide coatings; especially for thick coatings A22 and 

AG22, the roughness o f as-deposit surfaces reduced from 6 pm to less than 3pm. As 

described in chapter 5, the rough surface o f A22 resulted from the coarse Al-Si-0 

projections, which is produced by reaction between coating material and high 

concentration electrolyte. The rubbing o f graphite during preparation o f the composite 

coatings can also rub off the loosen oxide particles and graphite fills into the pores, 

making the coating surface smoother. Thus, the composite coatings have a much lower 

roughness than the corresponding oxide PEO coatings.

6.1.2 Hardness of the coatings

Table 6.1 also lists microhardness of the PEO oxide coatings (A12 and A22) and 

composite coatings (AG12 and AG22). The Vickers hardness o f  coatings is in the range 

from 700 to 900. The hardness o f the thin coatings (A12 and AG12) is slightly higher 

than that o f thick coatings (A22 and AG22). Table 6.1 shows that the composite coatings
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(AG 12 and AG22) have a higher hardness than the corresponding oxide coatings (A 12 

and A22). The increased hardness for AG12 and AG22 may result from their thicker and 

denser top layers compared with A12 and A22.

6.1.3 Tribological properties

6.1.3.1 Tribological behaviors under dry sliding tests

The pin-on-disc tribological tests were conducted for investigation o f tribological 

behaviors o f the composite coatings. Before the pin-on-disc test, the coated sample 

surfaces were polished to roughness 2±0.2 pm (see Table 6.1). For comparison, uncoated 

A1 alloy and the PEO oxide coatings were also tested.

Fig. 6.3 presents the variation of the coefficient o f friction o f uncoated 319 Al-Si 

alloy substrate under dry sliding condition. At the beginning, i.e., a break-in stage [69], 

the coefficient o f friction (C.O.F) was high, above 1.2. With increase in sliding distance, 

the C.O.F reduced gradually with localized fluctuation. After 4000 revolutions, the C.O.F 

is reduced to 0.8. Then from 4000 revolutions to 6000 revolutions, the C.O.F increase to 

0.9 and finally enters a stable stage.

I l l
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Fig. 6.3 Tribological behaviour o f uncoated 319 Al-Si alloy substrate under dry sliding 

condition.

Fig. 6.4(a)
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Fig. 6.4 SEM micrographs o f wear tracks on the uncoated aluminum alloy under dry 

sliding condition, (a) Morphology of wear track, (b) the magnified micrograph o f wear 

track showing the debris in the wear track, and (c) EDX spectrum collected from 

agglomerates o f  small particles region in the wear track.
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The wear track on the uncoated sample is shown in Fig. 6.4. Fig. 6.4(a) is the 

micrograph of morphology o f the wear track where large amounts o f deformation and 

adhesive wear can be observed. In the wear track (the magnified micrograph of wear 

track Fig. 6.4(b)), there are two types o f debris, i.e., agglomerates o f small particles and 

relatively large laminated debris. From the EDX spectrum (Fig. 6.4(c)) collected from 

wear tracks, the presence o f oxygen can only be detected on the agglomerates of small 

particles. From the C.O.F curve and SEM investigation o f wear tracks, it could be 

deduced that after the break-in stage, the contact surface temperature rise during the 

sliding test, which results in thermal softening processes and then formation of the oxide 

film. As a result, the C.O.F reduced. With the increase in surface contact conformity, 

deformation spreads laterally and downwards into the material, the material transferred 

from relatively soft substrate is laminated and a compact press layer formed by 

workharening near the sliding surface. The friction behaviour entered the stable stage, at 

which the C.O.F is relative high.

Fig. 6.5 presents the variation o f the coefficient o f friction o f thin oxide PEO 

(curve A12) and oxide-graphite composite coatings (curve AG12). During the sliding 

(10,000 revolutions), the C.O.F o f thin oxide coating (A12) increased from 0.2 to 0.5. The 

coating was not penetrated during the entire duration o f the pin-on-disc tests, i.e., 1 0 , 0 0 0  

revolutions. Curve AG12 in Fig. 6.5 shows an improved tribological behaviour provided 

by the oxide-graphite composite coating (sample AG12). The composite coating 

exhibited an average coefficient o f friction o f 0 . 2  in the steady state wear region that was 

almost two times lower than that o f the oxide PEO coating (A 12) and four times lower 

than that o f the uncoated aluminum alloy. Fig. 6 .6 (a) shows the wear tracks morphology 

on samples A12 and Fig. 6 .6 (b) is the corresponding magnified micrograph. Fig. 6 .6 (c) is
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an EDX spectrum collected from the wear track. The wear track o f thin oxide PEO 

coating (Fig. 6 .6 (a)) shows a smooth aspects and large amount o f iron element can be 

detected by EDX (Fig. 6 .6 (c)), which indicated that the wear track are covered by iron 

mix. From its magnified micrograph (Fig. 6 .6 (b)), ceramic particles existed in the iron 

mix and abrasive wear can be observed. It suggests that during the sliding the ceramic 

particles abraded the steel pin counter surface. The steel material was transferred to the 

wear track and then was pressed into the wear track in the subsequent sliding.

For the thin oxide-graphite composite coating (Figs. 6.7(a, b)), slightly abrasive 

wear still can be observed in the wear track. The EXD spectrum (Fig 6.7(c)) shows that 

the wear track is covered by oxide mix with relatively low amount o f carbon and iron 

element, which indicates that the graphite in the surface layer can improve the wear 

behaviour.

Fig. 6 . 8  shows tribological testing results o f thicker oxide (sample A22) and 

oxide-graphite composite coatings (sample AG22). In Fig. 6 .8 , Curve A22 shows that the 

coefficient o f friction increased from 0.2 to 0.7 in the first 5000 sliding revolutions and 

stabilized at 0.7. Compared with the C.O.F curve of A12 sample, the curve A22 is much 

fluctuated and the range of fluctuation is about ± 0 .1 . However, the curve AG22, 

showing the variation of the coefficients o f friction of the thicker oxide-graphite 

composite coatings (sample AG22), is relatively smooth and the average coefficient o f 

friction is about 0.16, much lower than oxide PEO coating. The morphology o f wear 

tracks on sample A22 (Figs. 6.9(a, b)) shows that abrasive wear occurs on the wear track 

and during the sliding, the surface was polished. On the polished wear track surface (Fig. 

6.9(b)), the mix o f oxide and iron is laminated. Fig. 6.10 is the micrographs o f wear track
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on AG22. Only a small wear scar can be observed on the composite coating surface. The 

coating surface is polished and no abrasive wear is observed.

The worn surfaces o f counterfaces are shown in Fig. 6 .11. Except that the pin 

against the uncoated aluminum alloy is covered by adhesion material transferred from 

relative soft aluminium alloy, all the counterface pins are wore off. Fig. 6.12 is the 

summary o f wear rate o f counterface material. From Figs. 6.11 and 6 .12, it can be seen 

that the composite coatings (AG 12 and AG22) only cause a low wear loss to the pin 

counterfaces. Sample AG22 has slightly better counterface compatibility than AG 12, 

which may result from the more graphite coverage on the latter surface than the former.
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Fig. 6.5 Tribological behaviour of thin PEO oxide (A 12) and oxide-graphite composite 

coatings (AG 12) under dry sliding conditions.
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lumina particles
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Fig. 6 . 6  SEM micrographs and EDX spectrum of wear tracks on samples A12. (a) the 

wear track morphology, (b) magnified micrograph o f (a), (c) EDX spectrum o f the wear 

track.

Fig. 6.7(a)
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Fig. 6.7 SEM micrographs and EDX spectrum o f wear tracks on sample AG 12. (a) 

morphology o f wear track, (b) magnified micrographs o f (a), (c) EDX spectrum of the 

wear track.
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Fig. 6 . 8  Tribological behaviour of the thick oxide PEO (A22) and oxide-graphite 

composite coatings (AG22) under dry sliding conditions.

Fig. 6.9(a)
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Fig. 6.9 SEM micrographs and EDX spectrum o f wear track on sample A22. (a) 

morphology o f wear track, (b) magnified micrographs o f (a), (c) EDX spectrum of the 

wear track.
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Fig. 6.10(a, b)
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Fig. 6.10 SEM micrographs of wear tracks and EDX spectrum on sample AG22. (a) 

morphology o f wear track (b) magnified micrographs of (a), (c) EDX spectrum of the 

wear track.

Fig. 6.11(a)
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Fig. 6.11(b, c)
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Fig. 6.11 SEM micrographs of the worn counterface pins against samples (a) uncoated A1 

alloy, (b) A12, (c) AG12, (d) A22 and (e) AG22.
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Fig. 6.12 Wear loss o f counterface pins after sling wear tests under dry condition.

6.1.3.2 Tribological tests with lubricant

Fig. 6.13 shows the coefficient of friction of samples during sliding wear test 

under lube condition. Fig. 6.13(a) shows the tribological behaviour o f the uncoated A1 

alloy under lube sliding condition. During the whole wear test, the friction coefficient is 

stable and the value is about 0.1. In Fig. 6.13(b), the plotted curves A12 and AG12 are 

overlapped, which indicates that under lube sliding the two coated samples A12 and 

AG 12 have similar wear behaviour. The friction coefficients o f both coatings are about 

0.14. Fig. 6.13(c) shows the C.O.F variation of samples A22 (curve A22) and AG22 

(curve AG22). Like Fig. 6.13(b), the two coatings have similar wear behaviour during the 

wear test, and average value o f C.O.F is about 0.16. The wear track on uncoated A1 alloy 

after sliding test with lube and its magnified micrograph are respectively shown in Fig. 

6.14(a) and Fig. 6.14(b). Slightly abrasive wear can be observed in the wear track, where 

the soft A1 matrix material is abraded. At the given lube testing condition, the wear tracks
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on the coated samples are too shallow and blurred to have a good image. Thus, no SEM 

micrograph is shown for the coatings.

Fig. 6.15 shows the worn counterface pins against different samples: (a) uncoated 

A1 alloy, (b) sample A 12, (c) sample AG 12, (d) sample A22, and (e) sample AG22. By 

investigating the worn area on pins, the wear rate o f pins can be calculated. The 

calculated results are plotted in Fig. 6.16, showing that the volume loss o f counterface 

pins against the oxide-graphite composite coatings is much lower than that against the 

oxide coatings. The sample AG22, which has higher graphite content in the composite 

coating than the sample AG 12, causes the lowest wear loss to a steel counter pin. Thus, 

the sample AG22 has the best compatibility with steel counterface.
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Fig. 6.13(a)
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Fig. 6.13 Tribological behaviour o f (a) uncoated substrate, (b) samples A12 and AG12, 

and (c) samples A22 and AG22 under lube sliding condition.
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Fig. 6.14 SEM micrographs o f the wear track on uncoated A1 alloy at lube sliding test, (a) 

wear track morphology, and (b) magnified micrograph o f the wear track.
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Fig. 6.15(a, b)
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Fig. 6.15 SEM micrographs o f worn counterface pins after sliding wear test with lube 

against (a) uncoated A1 alloy sample, (b) sample A 12, (c) sample AG 12, (d) sample A22, 

and (e) AG22.
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Fig. 6.16 Wear volume loss of counterface pins after sliding wear test with lube.
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6.2 Discussion

Fig. 6.17 schematically illustrates the structure o f an oxide-graphite composite 

coating. At the final stage o f the PEO treatment, coating fusing, mixing and quenching 

occur. Pores in the outer layer provide graphite particles with anchors. The graphite after 

rubbing is embedded into the porous top layer. During the subsequent treatment, though 

some graphite may be oxidized or ejected away from coating surface by discharges, part 

of the graphite still can be integrated into the oxide coatings. As a result, an oxide- 

graphite composite coating forms, which has been observed in SEM investigation (Fig. 

6.1). In the composite coating, graphite particles are scattered in distribution which is 

similar to that o f graphite in the metal matrix-graphite composites [70]. Since the rough 

surface can enhance the graphite coverage ratio on the surface, the thicker composite 

coating (sample AG22) has higher graphite coverage due to its relatively rougher surface 

and larger oxide projections and valleys. The tribological testing results o f A1 alloy 

substrate (Fig. 6 .3-6.4) indicate that the wear mechanism o f Al-Si alloy under the dry 

sliding test in this part o f experiment is mainly adhesive wear and under lube sliding test 

(Fig. 6.13(a) and Fig. 6.14), it turns out to be a slight abrasive wear. The sliding test 

results show that all the PEO coatings can protect substrate from severe adhesive and 

abrasive wear. While, under dry sliding test, the oxide PEO coatings have much high 

C.O.F, i.e., the value is about 0.8. The wear mechanism of oxide coatings is mainly two 

body abrasion (ceramic particles and steel) or three body abrasive wear due to fine oxide 

particle transferred to contact interface. The abrasive wear severely hurt the counterface 

material, thus large material loss occurs on the worn steel pins. Because the oxide 

projection size on the thick A22 coating is larger than that of A 12, as described in chapter
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5, the C.O.F curve of A22 (Fig. 6 .8 ) fluctuated a lot during the sliding. The C.O.F curve 

o f the coating A12 is smoother (Fig. 6.5).

Graphite particles Alumina particles

Porous outer layer with graphite 

Dense layer

Substrate

Fig. 6.17 Schematic o f the structure o f oxide-graphite composite coating

The oxide-graphite composite coatings exhibit a significantly reduced friction 

coefficient (Figs. 6.5 and 6 .8 ) and wear loss o f counterface pins (Fig. 6.11), compared 

with those o f uncoated substrate and oxide PEO coatings. The C.O.F is about 0.2 under 

dry sliding condition. This is an indication o f effective intervention of a thin film of 

graphite existed between the coating and counterface. During the sliding, the film of 

graphite forms gradually and continuously as a result o f graphite supplied from the 

composite coating surface and subsurface. Fig. 6.18 illustrates the formation o f graphite 

film during the sliding process. The graphite is held by oxide projections. During the 

sliding, the composite layer not only can supply graphite continuously but also can bear a 

high load. Moreover, due to continuous graphite film formed at the interface, the coating 

has good compatibility with counterface. Unlike the hard composite ceramic coating 

synthesized in this study, conventional polymer-base solid film lubricant (SFL) coatings 

[71] on treated or untreated aluminum surfaces can not withstand a large contact load.
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The SFL topcoat is subject to remove by plowing under normal load, which is illustrated 

in Fig. 6.19. The topcoat will lose its lubricated function after a short sliding distance 

under high load applications.

Under the lubricant, all the coatings have similar wear behaviour. Their values of 

C.O.F are about 0.15. The wear loss of counterface pins is much lower under lube tests 

than under dry tests. For the lube tests, the composite coatings AG 12 and AG22 cause 

lower wear loss on pins than the oxide coatings A12 and A22. The coating AG22 gives 

the lowest wear loss to steel pin.

6.3 Summary

In this chapter, we attempt to develop an oxide-graphite composite coating with 

excellent tribological properties including low friction, high wear resistance but also 

excellent compatibility with counterface materials. The composite coatings have a 

structure similar to the PEO coating except for an oxide-graphite outer top layer, in which 

graphite is embedded in the pores between the oxide projections. The oxide PEO coating 

improved the wear resistance of the Al-Si alloy substrate; however, it caused a severe 

abrasive wear on the steel counterface. The composite layer in the oxide-graphite coating 

can supply graphite gradually and continuously, which results in formation o f a lubricant 

layer at the interface during the sliding. Thus, incorporation o f lubricant graphite into the 

top oxide layer, forming an oxide-graphite composite coating provided not only high 

wear resistance and low friction to the coated Al-Si alloy but also good compatibility to 

the steel counterface.
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Fig. 6.18 Schematic o f wear behaviour o f oxide-graphite composite coatings.
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Fig. 6.19 Schematic o f polymer-base solid film lubricant (SFL) on hard coatings. The 

painted SFL coating may readily be removed under a high contact load.
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CHAPTER 7 CONCLUSIONS

In this thesis, investigations into the effect o f Si content and process (electrolytic 

and electrical) parameters on the PEO coating formation and properties were conducted. 

A PEO oxide-graphite composite coating with high wear resistance, low friction, and 

friendly compatibility to pin steel counterface was particularly developed for the 

tribological application. The thesis includes three parts o f study, and the research results 

are summarized as follows.

The effect of silicon content on the PEO coatings

Effect o f silicon content on the coating process, morphology, and composition 

were investigated in the first part o f study. Using low current density and low electrolyte 

concentration, thin PEO coatings (about 10 pm in thickness) were produced on 319 and 

390 Al-Si alloys. The coating process was found to have four distinguished stages. In the 

first three stages, the duration time and morphology o f each stage were considerably 

affected by the silicon content in Al-Si alloys. The micro-arc discharge started to appear 

at Al-Si interfaces on the alloy surface when the electrical potential reached up to the 

critical voltage o f -390V  for the 319 alloy and -400  V for the 390 alloy. At the silicon- 

rich region in the alloys, an A l-Si-0 compound with a relatively low melting point 

formed and it exhibited a porous microstructure comparing with the aluminium rich 

matrix. The higher silicon content in 390 alloy resulted in a rougher coating surface on 

the PEO-treated 390 alloy than on the PEO-treated 319 alloy. After the applied voltage 

was higher than 480V and the process entered stage IV, the composition o f the oxide 

coating for the 319 and 390 alloys were similar. The main phases were Y-AI2O3 and a
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small amount o f Al2C>3-SiC)2 compound for both coated alloys. Although the thin coating 

on the 390 alloy exhibited a higher surface roughness than the thin coating on the 319 

alloy, the coating surface morphology and roughness are expected to be similar for both 

alloys when the voltage increases to a higher level (e.g., 600V). The effect o f silicon 

content in a thicker coating (e.g., >50 pm) might not be significant.

The effect of electrolytic and electrical parameters on the PEO coatings

The second part o f study has investigated the effect o f electrolytic and electrical 

parameters, where various electrolytic and electrical parameters were selected to prepare 

the PEO coatings on the 319 alloy. The thickness o f coatings deposited in 4g/l Na2Si0 3  

with the maximum 500V voltage is about 10pm and the coatings is composed of an outer 

layer, non-continuous dense layer and inner dense layer. The phase composition of the 

thin PEO coating is mainly Y-AI2O3 . The PEO coating prepared in an 8 g/l Na2Si0 3  

electrolyte has a larger thickness (20-25pm) and the coating appears to have a continuous 

dense layer in the between o f outer porous layer and inner dense layer. It was also found 

that the coating deposited in the high concentration electrolyte has more amounts of 

Al2 0 3 -Si0 2  compound phases, and also a-A l2 0 3  phase. Although the coating phase 

compositions are different, the hardness o f the coatings deposited by different parameters 

is all in the range o f 800-1000 HV. The current density effect on coating structure, and 

coating hardness was not found to be significant. However, with the increase in current 

density, the surface morphology change increased due to the oxide projection size 

increase, which could result from intensive discharge occurrence under the higher current 

density.
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Oxide-graphite composite coating

In the final part o f study, an oxide-graphite composite coating with an improved 

tribological property was developed. The composite coating has a structure similar to a 

PEO coating except for an oxide-graphite outer top layer, in which graphite is embedded 

into the pores between the oxide projections. The oxide PEO coating improved the wear 

resistance o f the Al-Si alloy substrate; however, it caused a severe abrasive wear on the 

steel counterface. The composite layer in the oxide-graphite coating can supply graphite 

continuously to form a solid lubricant layer at the contact interface during the sliding. 

Thus, incorporation o f solid lubricant graphite into the top oxide layer, forming the 

oxide-graphite composite coatings, provided not only high wear resistance and low 

friction to the coated Al-Si alloy but also good compatibility to the steel counterface.
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