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Abstract 

            Disequilibrium between coagulation and fibrinolysis can lead to severe 

haemostatic disorders such as thrombosis and hemophilia. Thrombin-activable 

fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once 

activated, attenuates fibrinolysis. TAFI may also mediate connections between 

coagulation and inflammation. Studies have associated high plasma TAFI levels with a 

risk for thrombotic diseases. TAFI plasma concentrations vary substantially within human 

population, and various hormonal factors and disease states have been shown to have an 

impact.  Regulation of expression of the gene encoding TAFI, CBP2, is likely an 

important determinant of the role of the TAFI pathway in vivo; this concept motivated the 

investigations described in this thesis.  

          Our first set of studies lead to the identification of key cis-acting sequences within 

the 3’-untranslated region (3’-UTR) of the TAFI mRNA that specify transcript stability. 

Specifically, we described the presence of one stability element, followed by three 

instability elements. Furthermore, we identified the trans-acting factor binding to the last 

instability element. Tristetraprolin (TTP) is capable of binding this sequence, promoting 

mRNA destabilization and degradation. We also observed that another trans-acting 

protein factor, HuR, binds the TAFI 3’-UTR. 

          We found that TTP and HuR play a crucial role in post-transcriptional regulation of 

CPB2 transcript. Pro-inflammatory mediators exerted their TAFI protein-lowering effects 

via TTP-mediated mRNA destabilization in human hepatocellular carcinoma (HepG2) 

cells. On the other hand, CPB2 mRNA and TAFI protein abundance and transcript 

stability were increased in THP-1 macrophages in the presence of inflammatory 
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mediators, suggesting the possibility of tissue-specific regulation for CPB2 gene 

expression. 

         We also obtained preliminary evidence that miR-124, miR-506 and miR-708 

decrease endogenous TAFI mRNA and protein in HepG2 cells. Moreover, the recognition 

site of miR-143 includes the region containing a commonly occurring single nucleotide 

polymorphism that is associated with lower plasma TAFI concentrations, providing a 

plausible mechanistic basis for such effect. 

         Taken together, our results provide new knowledge about the crucial role of post-

transcriptional regulation in mediating TAFI protein levels. Factors that act in trans to 

mediate these effects include both proteins (TTP and HuR) and miRNAs (miR-124, miR-

143, miR-506 and miR-708). 
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Chapter 1: General Introduction 

The balance between the coagulation and fibrinolytic systems is crucial for normal 

haemostasis. The respective activities of the two systems are responsible for deposition 

and removal of fibrin, which is the major structural component of a blood clot. 

Haemostasis is essential to maintain fluidity of the blood within the vasculature while 

protecting against excessive blood loss following vascular injury. Thrombin activatable 

fibrinolysis inhibitor (TAFI) is a plasma zymogen that once activated by thrombin [1], 

thrombin in complex with thrombomodulin [2] or plasmin [3], regulates the balance 

between the coagulation and fibrinolytic systems, and also mediates molecular 

connections between haemostasis and inflammation. TAFI can modulate the 

inflammatory response through control of pericellular plasminogen activation and 

modification of inflammatory mediators [4, 5]. Plasma TAFI concentrations vary within 

the human population, ranging between  50% and  200% of the mean value [6], and the 

elevated concentrations have been associated with an increased risk for various 

thrombotic and atherotrombotic disorders, including venous thrombosis [7, 8], acute 

coronary syndromes [9], myocardial infarction [10] and ischemic stroke [11, 12]. 

Moreover, several sequence polymorphisms (SNPs) have been identified throughout 

CPB2, the gene encoding TAFI [13, 14]. However, subsequent genetic studies have 

established that the genetic factors account for only about a quarter of the plasma TAFI 

variability within the human population [6, 15]. Therefore, the majority of this variation 

appears to be attributable to transcriptional and post-transcriptional regulatory events that 

control CPB2 expression. Moreover, it has been reported that plasma TAFI antigen levels 

vary as a consequence of age, gender, pregnancy, various disease states and inflammation 

[16], suggesting a role for hormonal factors and inflammatory mediators in regulating 
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CPB2 expression. Therefore, the regulation of CPB2 expression appears to be a crucial 

mode by which the haemostatic and inflammatory systems respond to the environmental, 

physiological and pathological challenges. 

1.1 Coagulation and Fibrinolysis 

The respective activities of deposition and removal of fibrin are mediated by the 

action of coagulation and fibrinolysis. Upon vascular injury, the first haemostatic 

structure to form is the platelet plug. Platelets from the circulating blood begin binding to 

exposed sub-endothelial components of the vessel wall, such as collagen, and a cycle of 

platelet adhesion, activation, and aggregation ensues, culminating in formation of the 

platelet plug. The role of the coagulation cascade is to consolidate the clot via formation 

of fibrin, which is the main structural component of a blood clot. The various reactions of 

the coagulation cascade are localized to the site of injury by several mechanisms, 

principally the formation of coagulation cascade complexes on the surface of activated 

platelets. Proper and precise regulation of coagulation and fibrinolysis cascades, as well 

as the communication between the cascades is necessary for the development of the 

haemostatic response at the site of injury, while maintaining the fluidity of the blood 

throughout the rest of the vasculature. Thrombin (IIa) is the main enzyme product of the 

coagulation cascade, and is generated by cleavage of prothrombin (Factor II) by the 

prothrombinase complex. During the initiation phase, small amount of IIa is generated 

through the extrinsic pathway (tissue-factor dependent pathway), resulting in fibrin 

formation, but the resultant fibrin is unstable until large amounts of IIa are generated via 

the intrinsic pathway  through activation of the zymogen Factor XI (FXIa) and the 

cofactors Factor V (FVa) and Factor VIII (FVIIIa)  [17]. Once the concentration of IIa 

reaches 25nM, propagation phase and full activation of the intrinsic pathway ensue, 
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leading to generation of significant amounts of IIa (reaching up to  850 nM) in a short 

amount of time [17]. The main substrate of IIa is soluble fibrinogen, which when cleaved 

by IIa becomes insoluble fibrin. The role of the intrinsic pathway is to generate large 

amounts of IIa and to stabilize the clot, partly through activation of Factor XIII, which 

acts as a transglutaminase and  introduces covalent crosslinks between fibrin monomers 

[18], and partly through activation of TAFI [17], which attenuates fibrinolysis and 

dissolution of the clot.  

Another important function of IIa is to activate various anticoagulant mechanisms 

that stop the deposition of fibrin and attenuate the growth of the clot. The anticoagulant 

protein C pathway is designed to regulate coagulation, maintain the fluidity of the blood 

within vasculature, and prevent thrombosis [19-21]. This pathway is activated by 

proteolytic activation of protein C by IIa at the surface of endothelial cells, and involves 

two membrane receptors, thrombomodulin (TM) and endothelial protein C receptor 

(EPCR) [22, 23]. The interaction between IIa and TM shields the procoagulant exosite I 

of IIa, thus diverting the specificity of IIa from procoagulant substrates (such as 

fibrinogen) to anticoagulant ones (such as protein C) [24]. Activated protein C (APC) acts 

as an anticoagulant enzyme by proteolytic inactivation of FVa and FVIIIa, which in turn 

represents the negative feedback for IIa generation. The APC pathway also confers 

cytoprotective effects, through binding to EPCR and mediating anti-inflammatory and 

anti-apoptotic activities, alteration of gene expression and protection of endothelial 

barrier [25].        
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Figure 1.1 TAFI Links the Coagulation and Fibrinolytic Cascades. The role of the 
extrinsic pathway  of coagulation is to generate small amonts of thrombin that promotes 
fibrin formation, and leads to activation of the intrinsic pathwaym which has evolved to 
generate large amounts of thrombin and to consolidate  the clot, partly through activation 
of TAFI. The substrate specificitity of thrombin once in complex with thrombomodulin is 
diverted from fibrinogen and towrds Protein C and TAFI. The dissolution of the clot is 
executed by the action of plasmin, that is activated from plasminogen by tPA or uPA and 
fibrin surface plays an essential role in this process.  Limited digestion of fibrin by 
plasmin generates modified fibrin (fibrin’) that contains exposed carboxy-terminal lysine 
residues which make fibrin’ a more effective cofactor for plasminogen activation than 
unmodified fibrin.TAFIa attenuates fibrinolysis by interfering with this positive feedback, 
by removing carboxy-tereminal lysine residues, thus further modifying fibrin which now 
exhibits cofactor activity for plasminogen activation that is far lower than even that of 
inact fibrin. TAFIa thus interferes with plasminogen activation and attenuates fibrinolysis. 
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Binding of IIa to TM also enhances the substrate specificity of TM towards TAFI, thus 

also acting as an antifibrinolytic complex. Proteolytic cleavage of TAFI by IIa yields 

TAFIa, which has basic carboxypeptidase activity that cleaves carboxy-terminal lysine 

residues from partially degraded fibrin within the clot, acting as a negative regulator of 

fibrinolysis [26]. This stabilizes the fibrin clot and ensures its localization to the site of 

injury. The anticoagulant effects of the APC pathway and the antifibrinolytic activity of 

the TAFI pathway are the two mechanisms that limit the size and growth of the fibrin clot 

and prevent premature lysis, respectively, and likely precisely regulate the maintenance of 

the clot. It has been demonstrated that respective concentrations of IIa and TM at 

different locations dictate the substrate specificity of the complex, and that this specificity 

is directed towards TAFI  at low TM concentrations, and that high TM concentrations 

promote APC formation, which in turn acts as negative feedback for TAFI activation 

through inhibition of IIa formation [27]. 

Dissolution of the clot is effected by the fibrinolytic cascade. Plasmin is the 

terminal product of the fibrinolytic cascade and is activated through proteolytic cleavage 

of plasminogen by plasminogen activators such as tissue-type plasminogen activator 

(tPA) or urokinase-type plasminogen activator (uPA), although the former can only bind 

fibrin, which suggests that tPA is the major activator of plasminogen in the fibrinolysis 

cascade [28]. The ability of tPA to bind to fibrin ensures that fibrinolysis is localized in 

the vicinity of the fibrin clot where its activity is physiologically required. Fibrin thus acts 

as a cofactor for conversion of plasminogen to plasmin by tPA. Plasmin degrades fibrin 

into soluble fibrin degradation products (FDPs) and in the process leaves behind partially 

degraded fibrin, with exposed carboxyl-terminal lysine residues, which play a central role 

in a multifaceted positive feedback in the fibrinolysis cascade.  
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Firstly, the significance of the ability of plasminogen to bind to the carboxy-

terminal lysine residues lies in the conversion of plasminogen from a closed from to an 

opened form, which facilitates its cleavage by tPA [29], generating plasmin. In fact, it has 

been demonstrated that the modified fibrin serves as a better cofactor for tPA-mediated 

plasminogen cleavage than the intact counterpart [29-33]. Carboxyl-terminal lysine 

residues on partially modified fibrin thus mediate positive feedback mechanism in the 

fibrinolytic cascade. Secondly, modified fibrin  also acts as a cofactor for the plasmin-

mediated conversion of native Glu-plasminogen to Lys-plasminogen, which is a 20-fold 

better substrate for activation by tPA [28].  Fibrinolysis can be downregulated by the 

inhibitors of plasminogen activators or directly by inhibition of plasmin. Plasminogen 

activator inhibitor type 1 (PAI-1) acts to inhibit tPA, while α2-antiplasmin (α2-AP) exerts 

its inhibitory effects directly on plasmin. Finally, carboxy-terminal lysine residues reduce 

the rate of plasmin inhibition by protection of the bound plasmin from inhibition by  

α2-AP [34, 35].  

     1.2 The TAFI Pathway as a Link between Coagulation and Fibrinolysis   

In keeping with the central role of carboxy-terminal lysine residues in regulation 

of fibrinolysis, their removal and thus interruption of the positive feedback is also tightly 

controlled. This control consists of enzymatic cleavage of carboxy-terminal lysine 

residues by a basic carboxypeptidase, TAFIa. In fact, coagulation and fibrinolytic 

cascades are interconnected and balanced in such a way that the ultimate product of the 

coagulation cascade is a pre-requisite for the formation of the ultimate product of the 

fibrinolytic cascade. Both thrombin and plasmin mediate the links between the two 

systems [36]. Plasmin proteolytically inactivates FXa [37], thus attenuating the intrinsic 

pathway of coagulation, and also modifies FVa [38], which can assist in tPA-mediated 
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plasminogen activation.  Thrombin is known to stimulate tPA release by the endothelial 

cells [39], and it also cleaves TAFI, generating an active form of the enzyme [40]. 

Activation of TAFI by thrombin is accelerated 1200-fold in the presence of TM [2].  

Plasmin can also activate TAFI, albeit with catalytic efficiency well below that of IIa/TM 

[41], thus making the latter a more likely physiological activator of TAFI. TAFIa cleaves 

carboxy-terminal lysine residues that are key mediators of the positive feedback in the 

fibrinolysis cascade, thus protecting the clot and attenuating fibrinolysis. Since TAFI can 

be activated by thrombin, where thrombin is the end product of the coagulation cascade, 

and it then acts on partially degraded fibrin to attenuate fibrinolysis, the TAFI pathway 

represents a direct molecular link between the two cascades.  
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Figure 1.2 TAFIa affects inflammation and plasminogen activation. Activation of 
TAFI following vascular injury results in alterations in fibrin deposition, pericellular 
plasminogen activation, deposition of extracellular matrix, and the activity of 
inflammatory mediators. Inhibition of plasminogen activation on the fibrin surface, 
through cleavage of carboxy-terminal lysine residues on partially modified fibrin 
attenuates fibrinolysis. Plasminogen activation is also inhibited on the surface of cells, 
through cleavage of carboxy-terminal lysine residues on cell surface receptors, which in 
turn has pleotropic effects in the vasculature. Finally, TAFIa acts as an anti-inflammatory 
factor via proteolytic inactivation of pro-inflammatory peptides C5a, C3a, bradykinin, 
and via activation of anti-inflammatory peptide plasmin-cleaved chemerin. 
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     1.3 The TAFI Pathway as a Link between Coagulation and Inflammation 

Since protein C and TAFI both act as physiological substrates for the IIa/TM 

complex, it is not surprising that they also play complementary roles in haemostasis. APC 

at the site of vascular injury dampens the coagulation cascade, preventing excessive 

formation of fibrin, while TAFIa serves as an antifibrinolytic factor, stabilizing the clot 

and preventing premature clot lysis. Additionally, protein C and TAFI also play 

complementary roles in inflammation. In keeping with the role of thrombin in initiating 

various pro-inflammatory events, including expression of adhesion molecules, like P-

selectin, and activating the NF-κB pathway [42], the regulation of inflammation is 

achieved by the anti-inflammatory effects of APC and TAFIa. APC is known to inhibit 

leukocyte adhesion and trafficking, to decrease the synthesis of NF-κB components and 

cytokine production, and to increase endothelial barrier function [43]. Besides carboxyl-

terminal lysine residues on the fibrin surface, additional substrates of TAFIa include 

various pro-inflammatory mediators, such as bradykinin [44], members of the 

complement system C3a and C5a [45], thrombin-cleaved osteopontin and plasmin-

cleaved chemerin [46].  

TAFI has also been shown to remove carboxyl-terminal lysines from cell surface 

receptors, which would result in attenuation of pericellular plasminogen activation [5]. 

The proteolytic activity of plasmin is tightly regulated through activation of plasminogen 

only at specific times and in defined locales, as well as through direct inhibition of 

plasmin by its natural inhibitors. Plasmin either directly or indirectly, through the 

activation of certain pro-MMPs, is presumed to hydrolyze many extracellular proteins 

(the most notable of which is fibrin), proteins of the extracellular matrix and growth 

factors (such as transforming growth factor β, TGF-β). Generation of plasmin on the cell 
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surface leads to activation of TGF-β, which in turn results in activation of MMPs and 

increased cell migration. Attenuation of pericellular plasminogen activation by TAFIa is 

expected to result in prothrombotic effects in the context of the vascular wall, in keeping 

with the role of TAFIa as an antifibrinolytic agent. Studies conducted in TAFI knockout 

mice with hemizygous plasminogen background  demonstrated the role of TAFI in 

modulating pericellular plasminogen activation outside the vascular bed [47]. TAFI 

deficiency resulted in increased leukocyte migration to the peritoneum following 

peritoneal thioglycollate injection.  

      1.4 Properties of TAFI protein 

Hendriks and coworkers initially identified an unstable carboxypeptidase in 

human plasma that was different from the pancreatic carboxypeptidase, and they named it 

CPU (for “unstable”) [48, 49]. Several other groups have thereafter isolated the zymogen 

form of TAFI, and named it pro-CPR [41] (due to apparent preference for arginine 

residues in synthetic peptides) or pro-CPB [50]  (due to its resemblance to the pancreatic 

carboxypeptidase B). A few years later, in 1995, Bajzar and coworkers described a human 

plasma protein capable of attenuating fibrin clot lysis in response to the activation of the 

intrinsic pathway of coagulation, which they named thrombin activatable fibrinolysis 

inhibitor, or TAFI [1]. The plasma pool of TAFI is mainly accounted for by the 

expression of the gene encoding it, CPB2, in the liver. TAFI zymogen has an apparent 

molecular weight of 60 kDa and is glycosylated at four sites on the N-terminal activation 

peptide (Asn22, Asn51, Asn63, and Asn86) [41, 51].  Upon cleavage of TAFI at Arg92 

by IIa [1], IIa in complex with TM [2], or plasmin [3], an active enzyme, TAFIa, is 

formed, that possesses basic carboxypeptidase activity, with molecular weight of 35 kDa. 

TAFIa is thermally labile, with half-life of 10 min at body temperature (370 C) [51]. 
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Spontaneous conformational change of TAFIa generates an inactive enzyme, TAFIai, that 

is further cleaved to generate two fragments.  There are no known physiological inhibitors 

of TAFIa, and in fact, intrinsic thermal instability of TAFIa and subsequent cleavage of 

TAFIai likely represent the physiological mechanisms of its inactivation [52].  

Several studies demonstrated that increased TAFI concentrations lead to increased 

clot lysis time in vitro [29, 53, 54], and in fact the kinetic parameters of TAFI activation 

suggest that the amount of TAFIa generated is directly dependent on TAFI zymogen 

concentrations. Km for TAFI activation by IIa/TM complex is approximately 1 µM, well 

above the physiological concentrations of TAFI in the plasma, which are in the 

nanomolar range [55-57]. Elevated plasma TAFI concentrations might contribute to 

hypofibrinolytic state, and several clinical studies have subsequently established a link 

between plasma TAFI levels and cardiovascular disease, as described below. 

      1.5 Potential Biological Roles of TAFI 

Two independent research groups have established that TAFIa attenuates 

fibrinolysis via a threshold-dependent mechanism [58, 59]. According to this mechanism, 

fibrinolytic rate remains in its initial phase as long as the concentration of TAFIa remains 

at or above a key threshold value, and accelerates when TAFIa levels fall below this 

threshold value [58-61]. Therefore, the factors that influence the time interval over which 

the concentrations of TAFIa remain above the threshold include the concentration of 

TAFI zymogen, the rate of its activation by the coagulation cascade, and most 

importantly by its intrinsic thermal instability. The last factor can be influenced by a 

naturally occurring variant of TAFI in which Thr325 is replaced by Ile (Thr325Ile), which 

has a 2-fold longer half-life, and correspondingly greater antifibrinolytic potential [62]. It 

is likely because of these mechanisms that the extent to which TAFIa can inhibit fibrin 
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clot lysis is limited, even though it increases with increasing TAFIa concentrations, as 

demonstrated by several studies.  

In vivo studies have also demonstrated the antifibrinolytic potential of TAFIa. 

Using a rabbit model of tPA-induced thrombolysis, Klement and coworkers demonstrated 

that inhibition of TAFIa by potato carboxypeptidase inhibitor (PCI) increased clot lysis 

time, leading to 89% of clot lysis compared to 54% in the absence of PCI [63]. 

Additionally, the endpoint clot mass decreased only when PCI and t-PA were co-

administered, suggesting that the efficacy of thrombolytic therapy may be improved with 

co-treatment consisting of t-PA and TAFIa inhibitors. Examples of other studies that 

describe the ability of TAFIa to influence fibrinolysis were conducted in TAFI knockout 

mice (TAFI-/-) [5]. Of note, TAFI -/- mice develop, grow and reproduce normally, and 

display no overt bleeding tendency [64].  In one study using batroxobin-induced 

pulmonary embolism model, TAFI -/- mice displayed lower retention of fibrin in the lungs 

compared to their wild-type counterparts, suggesting enhanced endogenous fibrinolysis in 

the absence of TAFIa activity [65]. In another study, using arterial thrombolysis model, a 

specific inhibitor of TAFIa, potato tuber carboxypeptidase inhibitor (PTCI), was shown to 

accelerate endogenous fibrinolysis [66].  

Subsequent studies in TAFI -/- mice have provided valuable insights into the 

potential biological roles of the TAFI pathway, not only in regulation of fibrinolysis but 

also in inflammation. These studies have demonstrated that pro-inflammatory mediators 

bradykinin, the anaphylatoxins, and thrombin-cleaved osteopontin are all substrates for 

TAFIa in vivo [4, 67]. Bradykinin plays a role in regulation of pulmonary and systemic 

arterial blood pressure, and in vascular permeability. The anaphylatoxins C3a and C5a are 

members of the complement system that mediate inflammatory response by inducing 
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release of histamine and cytokines from mast cells. Additionally, they mediate smooth 

muscle contraction, platelet activation and aggregation [45]. That the anaphylatoxins are a 

substrate of TAFIa in vivo was demonstrated by a study conducted in TAFI -/- mice 

primed with lipopolysaccharide (LPS); these mice were more susceptible to complement-

induced lethality compared to mice expressing TAFI [68]. In an E.coli-induced 

abdominal sepsis mouse model, C5a-mediated neutrophil recruitment into the peritoneum 

was exaggerated in TAFI -/- mice, while there was no effect on the hemostatic response in 

these animals [69]. Finally, in an autoimmune arthritis mouse model, injection of anti-

collagen antibodies notably increased the severity of arthritis in TAFI -/- animals [70], 

consistent with the effects of C5a levels.  

Indeed, the role of TAFI in regulating inflammation is multifaceted, and consists 

of both regulation of pro-inflammatory factors described above by TAFIa, as well as the 

regulation of TAFI expression by various inflammatory mediators. Plasma TAFI  levels 

have been shown to be altered in several inflammatory conditions, including Behcet’s 

disease, inflammatory bowel disease, acute pancreatitis, sepsis and meningococcal 

disease (reviewed in [16]). Studies in mice have demonstrated that plasma TAFI levels 

and the abundance of hepatic CPB2 mRNA were increased during acute phase of 

inflammation upon injection of LPS into animals [71]. In vitro studies conducted in our 

laboratory have shown that inflammatory mediators modulate CPB2 expression. Acute 

phase mediators of inflammation reduced CPB2 mRNA abundance in HepG2 (human 

hepatocellular carcinoma) cells, owing to a 2-fold reduction in CPB2 mRNA half-life, 

while treatment with glucocorticoids, which exert anti-inflammatory effects, increased 

CPB2 mRNA abundance, owing to a 2-fold increase in promoter activity [72].  
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TAFI -/- mice also display wound healing defects. Excisional cutaneous wounds 

healed between 89% and 100% in wild-type mice on days 4 and 7 after wounding, 

respectively. Healing was only accomplished between 38% and 63% in TAFI -/- mice on 

the same days [73]. This effect is speculated to result from decreased fibrin deposition in 

cutaneous wounds in the absence of TAFIa activity, which would cause aberrant 

migration of cells through the matrix, supporting the role of TAFI in regulation of 

pericellular plasminogen activation. Plasmin generated from activated plasminogen in the 

context of extracellular matrix mediates fibrin degradation, and fibrin is an essential 

element of the provisional matrix that allows fibroblasts to migrate into the wound site 

[74]. Healing of colonic anastomoses in TAFI -/- mice was also impaired. TAFI -/- mice 

that were subjected to colonic anastomosis surgery displayed decreased strength of the 

tissue at the site of the suture, and also demonstrated increased weight loss, increased 

mortality, peritonitis, mesenterial thrombosis and ischemia. The effects of impaired 

healing of colonic anastomoses are mechanistically less clear than cutaneous wounds, but 

can likely be explained by defects in plasmin-mediated mechanisms, such as 

angiogenesis, extracellular matrix remodeling and cell migration, as well as defects in 

control of inflammation [64]. Another study that supports the role of TAFI in pericellular 

plasminogen activation investigated the effects of bleomycin-induced lung fibrosis in 

TAFI -/- mice [75]. Deposition of fibrin in the lungs occurs due to increased proliferation 

of fibroblasts and collagen-containing cells, as well as excessive accumulation of 

extracellular matrix in the lung. In keeping with the role of plasmin in mediating 

degradation of various extracellular matrix components, attenuation of plasminogen 

activation is expected to have antifibrinolytic consequences. In fact, in this study, TAFI-/- 
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mice were protected from bleomycin-induced lung fibrosis, compared to the heterozygous 

and wild-type counterparts. 

      1.6 Association of TAFI with Cardiovascular Disease  

Several clinical studies have demonstrated that elevated plasma TAFI 

concentrations constitute a risk factor for various thrombotic disorders. The Leiden 

Thrombophilia Study (LETS), a case-control population-based study published two 

decades ago was the first to demonstrate that elevated TAFI levels are associated with 

nearly 2-fold increased risk of deep vein thrombosis (DVT) (odds ratio 1.7, P<0.05)[76] . 

It consisted of 474 DVT patients and 474 healthy age- and sex-matched control subjects, 

and the TAFI plasma levels were measured with electroimmunodiffusion assay using a 

monoclonal antibody specific for TAFI. In another study, 600 patients were evaluated for 

a risk of recurrent venous thromboembolism (VTE) with elevated TAFI plasma levels 

[77]. The patients with first VTE event were selected from the Austrian Study on 

Recurrent venous Thromboembolism (AUREC), which is an ongoing, prospective, 

multicenter cohort study designed to evaluate the risk factors for recurrent VTE. This 

study found that patients with elevated TAFI plasma levels (over 75th percentile in 

thrombosis patients) are at a 2-fold higher risk for recurrent VTE compared to patients 

with lover TAFI levels. Moreover, elevated concentrations of TAFI in plasma have been 

associated with an increased risk of ischemic stroke. A study conducted on 124 patients 

with a recent ischemic stroke and 125 control subjects matched for age and sex revealed 

that functional TAFI levels were higher in patients compared to controls (19.5 ± 4.2 vs. 

17.7 ± 3.7 min, P < 0.005) [78]. Functional TAFI levels were assessed as TAFI-related 

differences in clot lysis time in the absence or presence of the specific TAFIa inhibitor 
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(PCI). Patients with TAFI concentrations in the 75th percentile were at a 4-fold higher risk 

of ischemic stroke (P < 0.05) compared to those in the lowest quartile.  

While elevated plasma TAFI concentrations are clearly implicated in the 

development of venous thrombotic events, association of TAFI levels with arterial 

vascular disease remains obscure. Several clinical studies evaluated the link between 

TAFI levels and acute coronary artery disease (CAD), and reported contradictory results. 

One study was conducted at the Coronary Care Unit at the University of Florence, which 

evaluated 44 consecutively administered patients compared to 44 age- and sex-matched 

controls and established no difference in plasma TAFI levels in patients compared to 

controls [79]. On the contrary, another study conducted on 174 patients diagnosed with 

acute CAD admitted to the Cardiology Unit and 211 healthy controls showed that 

functional TAFI plasma levels above the 90th percentile are associated with a 4-fold 

elevated risk of acute CAD [78]. The non-concordant results of these two studies may 

arise from the different methods used to quantitate TAFI levels, whereby the first study 

used ELISA detection kit and the second one used an assay that measures TAFI activity, 

as well as from differences in sample collection and handling. In a large prospective study 

conducted in France and Northern Ireland, no association between plasma TAFI 

concentrations and incidence of coronary events was found. Interestingly, a CPB2 

polymorphism associated with higher TAFI concentrations were more frequent in cases in 

France, but more frequent in controls in Northern Ireland [80].  

Subsequently, other studies were conducted to further delineate the role of TAFI 

in arterial vascular disease. The AtheroGene study was conducted on 1668 individuals 

with angiographically proven CAD, as part of the prospective AtheroGene cohort [81]. 

Elevated levels of functional TAFI as measured by the ratio of TAFIa to TAFIai were 
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associated with increased risk of cardiovascular death (HR = 1.69, P = 0.01). Another 

study sought to investigate whether Thr325Ile polymorphism and TAFI levels could 

constitute a risk marker of myocardial infarction (MI) in Egyptian patients [82].  The 

study included 46 patients with acute MI and 54 age- and sex-matched healthy volunteers. 

The CT and TT alleles  (Thr/Ile and  Ile/Ile , respectively) were significantly more 

frequent in patients compared with controls (54.4% and 32.6% vs. 51.8% and 5.6%, 

respectively) and were also associated with an increased risk of MI (OR = 4.95; P = 

0.0001). Additionally, Ile325 allele was more frequent in patients compared to controls 

(60.0% vs. 31.5%) (OR = 3.26; P = 0.001). Interestingly, this study also found that TAFI 

levels were lower in carriers of the TT genotype compared to the CC genotype.  No 

statistically significant relationship was found between Thr325Ile polymorphism and 

either the type or the site of MI. 

A study conducted in the Netherlands was aimed at assessing the role of TAFI in 

young patients with peripheral arterial disease (PAD) [83]. A total of 47 PAD patients 

and 141 controls were included and the total plasma TAFI levels were significantly 

higher in patients (112.4±21.1%) compared to controls (104.9±19.9%, p=0.03). 

Moreover, the study found that the risk of PAD increased by18% for every 10% increase 

in TAFI concentration (OR 1.18). Patients with highest functional TAFI levels, above the 

90th percentile, were found to be at a 3-fold higher risk for PAD.  

The Ludwigshafen Risk and Cardiovascular Health (LURIC) study investigated 

the influence of TAFI polymorphisms on cardiovascular and thrombotic events [84]. The 

LURIC study is a prospective cohort study comprising more than 3,300 patients, which 

demonstrated that the Ile/Ile genotype at position 325 is associated with the incidence of 

stroke and the age at onset of first stroke in patients with predisposing risk factors for 
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thrombotic events such as diabetes mellitus, myocardial infarction or hypertension, alone 

or in combination. In contrast, no significant association was identified for another 

naturally occurring variant of TAFI, Ala147Thr polymorphism.  

A recent study conducted in the Han Chinese population investigated a potential 

link between atherosclerotic cerebral infarction (ACI) and TAFI levels or SNPs that 

increase TAFI levels, namely -2345 2G/1G, -1690 A/G, -438 A/G and +1583 A/T [85]. 

The leading etiological factor for ACI is atherosclerosis. The study was conducted on 225 

patients and 184 age-matched healthy controls, and the authors provided preliminary 

evidence that -2345 2G/1G and  -1690 A/G polymorphisms are associated with ACI 

susceptibility in Han Chinese population. Development of atherosclerotic plaques is also 

observed as a complication of gouty arthritis (GA). Most recently, a study conducted in 

Turkey evaluated a potential link between the levels of TAFI and the presence of 

subclinical atherosclerosis in GA patients [86]. Interestingly, TAFI levels were decreased 

in GA patients with atherosclerosis compared to GA patients without the complications.  

Development and growth of atherosclerotic plaques in the vessel wall is 

accompanied by secretion of growth factors and cytokines by macrophages and 

macrophages engorged with surrounding lipid (foam cells) in the plaque. This in turn 

leads to stimulation of vascular smooth muscle cell growth and synthesis of interstitial 

collagen [87]. Various pro-atherogenic molecules, such as lipoprotein(a) (Lp(a)), enhance 

the expression of adhesion molecules (such as ICAM-1) [88]. Additionally, nitric oxide 

(NO) bioavailability decreases, leading to activation of MMP-2 and MMP-9 [89, 90], and 

further this reduces inhibition of platelet aggregation [91]. Thus, endothelial dysfunction 

with reduced NO bioavailability, increased oxidant excess, and expression of adhesion 

molecules is a major contributor to not only  initiation but also to the progression of 
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atherosclerotic plaque formation and triggering of cardiovascular events. Moreover, 

activation of plasminogen on the surface of cells is impaired. In vitro studies suggest that 

Lp(a) stimulates the synthesis of PAI-1 by the endothelium, leading to impaired 

fibrinolysis and pro-thrombotic events [92]. Additionally, reduction of activation of latent 

transforming growth factor-  (TGF- ) also occurs, possibly mediated by Lp(a), which in 

turn results in cytokine production and smooth muscle cell proliferation as well as the 

transformation of these cells into a more atherogenic cellular phenotype [93, 94]. Since 

the etiology of atherosclerosis involves deregulation of both thrombosis and 

inflammation, TAFI is a plausible candidate for modulation by or of atherosclerosis. 

Two subsequent studies have shown that elevated TAFI levels or CPB2 

polymorphism associated with higher TAFI levels are associated with increased risk of 

restenosis after percutaneous coronary interventions [95, 96], arguing in favor for the role 

of TAFI as a regulator of pericellular plasminogen activation and the associated 

pleotropic effects within the vasculature, such as migration and proliferation of vascular 

smooth muscle cells and  synthesis of extracellular matrix. One study included 159 

patients with stable angina who had undergone percutaneous transluminal coronary 

angioplasty (PTCA) or stenting of the coronary artery and found that pre-procedural 

TAFI levels were indeed higher in patients with restenosis, up to 2-fold for the patients in 

the upper tertile, compared to patients in the lower tertile [95]. TAFI levels were in this 

study measured by commercially available ELISA kit. The second study was a follow-up 

of the first [96], and its goal was to evaluate the link between the Thr325Ile variant and 

restenosis rate on the same group of patients. The study found that the T/T allele (Ile/Ile) 

was associated with lower plasma TAFI levels and lower restenosis rate, despite the 

increased antifibrinolytic potential of this variant of TAFI. The role of TAFI pathway in 
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restenosis may therefore be related to the effects on tissue remodeling and cell migration 

that would be evoked by modulation of pericellular plasminogen activation. 

It is clear that additional studies are required to more precisely define the role of 

TAFI in cardiovascular disease. However, the available data on par suggest a clear 

pathophysiological relevance for modulation of plasma TAFI concentrations. The exact 

mechanisms governing these processes also remain obscure, and likely involve the 

regulation of both fibrinolysis and pericellular plasminogen activation by TAFIa. 

     1.7 Genotypic and phenotypic variation in TAFI 

Plasma TAFI levels vary significantly within the human population, and 

according to the most recent estimate the extent of the variation ranges between 50% and 

200% of the mean value [6]. Subsequent genetic studies have established that only 15-

25% of this variability can be attributed to genetic factors [6, 15]. In fact, since the 

isolation and characterization of CPB2 in 1999, many SNPs have been identified 

throughout the gene [13, 14]. Moreover, traditional risk factors for cardiovascular disease 

have been shown to have insignificant impact on variation in plasma TAFI levels [97]. 

For example, one study found that age and hypercholesterolemia were both associated 

with small differences in TAFI levels in women, while no other significant contributors to 

the variation of TAFI levels were found in both genders [98]. In another study, age was 

found to be associated with differences in TAFI levels in women but not in men 

(explained 3% of the variation), and that only in men waist-to-hip ratio was a mild 

contributor to this variation (explained 2% of the variation) [97]. Therefore, it is tempting 

to speculate that the remainder of the 75% of the variation in plasma TAFI levels in the 

human population likely arises from gene regulatory events in CPB2. While the identity 

of these regulatory events remains enigmatic at this point, many disease states and 
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hormonal factors have been implicated to play a role [16].  These include insulin 

resistance, glucose intolerance, obesity, thyroid dysfunction, renal disease, gastric cancer, 

lung cancer, multiple myeloma, various types of inflammatory conditions, such as 

Behcet’s disease, inflammatory bowel disease, and acute pancreatitis. In women, they 

also extend to include age, pregnancy, pre-eclampsia, use of oral contraceptives and 

hormone replacement therapy. It is plausible that steroid hormones and inflammatory 

mediators modulate CPB2 expression.  In fact, our group has recently delineated the 

mechanistic basis for the post-menopausal rise in plasma TAFI levels and the TAFI-

lowering effect of hormone replacement therapy, through suppression of TAFI promoter 

activity by estrogen and progesterone [99]. To date, however, the mechanisms of 

regulation of CPB2 expression by other hormone factors and disease states remain largely 

unexplored. 

      1.8 Structure of CPB2 and Regulation of Expression 

The human CPB2 gene is located on chromosome 13q14.11, and consists of 11 

exons spanning approximately 4 kilobases (kb) of genomic DNA [100, 101]. The genes 

encoding several carboxypeptidases, including rat carboxypeptidases A1, A2, and B and 

the human mast cell pro-carboxypeptidase A [28], are very similar in  exon sizes and the 

location of the exon-intron boundaries, suggesting that these genes all arose from a 

common evolutionary ancestor. The +1 position corresponds to the first nucleotide of the 

cDNA reported by Eaton and coworkers (GenBank accession number AF080222) [41]. 

The initiator methionine codon is located 18 nucleotides downstream of the +1 nucleotide 

[100]. Transcription of CPB2 is initiated at TATA-less promoter, and can begin at several 

different sites, resulting in 5’-untranslated regions (-UTRs) of different lengths, ranging 

from 9 to 46 nucleotides [100].  The characterization of CPB2 gene began in 1999; since 
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then many new insights into its regulation of expression have been obtained and our 

group has participated importantly in the process. Initial work from our laboratory 

mapped the region of the promoter crucial for activity in hepatic cells to about 140 

basepairs (bp) upstream of the cluster of transcription start sites, and the key region for 

basal promoter activity within nucleotides -80 and -73 [100]. Following this report, and 

using DNaseI footprint analysis, we identified 10 potential transcription factor binding 

sites, including the ones involved in liver-specific gene transcription: hepatic nuclear 

factor-1 (HNF-1), nuclear factor Y (NF-Y) and CCAAT/enhancer binding protein 

(C/EBP). Additionally, we mapped the glucocorticoid responsive element (GRE) between 

nucleotides -92 and -78 responsible for mediating stimulation of promoter activity by the 

synthetic glucocorticoid dexamethasone. We also identified the presence of 11 SNPs 

within the 5’-UTR and found that they have no effect on promoter activity in vitro, likely 

because they are located in the regions that fall between transcription factor binding sites 

[102]. Therefore, the 5’-UTR SNPs likely do not contribute to the underlying cause of 

variation in plasma TAFI levels in the human population. 

In addition to having 5’-UTR of different lengths, the CPB2 transcript can also 

have 3’-UTRs of varying lengths, owing to the existence of 3 potential polyadenylation 

(polyA) sites. These polyA sites are located at positions +1660, +1693, and +1819, 

resulting in 3’-UTRs of 390 bp, 423 bp, and 549 bp in length. The relatively long length 

and the alternative polyadenylation of CPB2 mRNA argue in favor of the importance of 

this region in regulation of mRNA stability and abundance. The work conducted in our 

laboratory previously had contributed a large body of data describing the regulatory role 

of the 3’-UTR in mediating mRNA stability and the abundance of the transcript [103]. 

Using a β-globin reporter system, we demonstrated that the 3’-UTR specifically 
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destabilizes the fusion transcript, and that the coding region plays no role in this process. 

Additionally, we discovered that the length of the 3’-UTR also plays a role in dictating 

transcript stability and that longer 3’-UTRs are progressively less stable [103].  

We identified three SNPs that occur in the regions common to all 3 polyA forms, 

+1344 G/A ,+1542 C/G, and +1583 A/T, and  we found that they altered the stability of 

the transcript, contributing to the variation in plasma TAFI concentrations through an 

effect on hepatic CPB2 mRNA abundance [13]. Two of the SNPs, +1542 C/G and +1583 

A/T have been shown to be associated with plasma TAFI concentrations, while the SNP 

+1344 G/A has not been studied with respect to association with TAFI antigen 

concentrations. Nucleotides corresponding to SNPs were introduced either alone or in 

combination in the context of the β-globin reporter fusion constructs, and based on the 

pattern of the major haplotypes reported by Henry and coworkers [14]. On balance, the 

results of this study suggest a causal link between the occurrences of the 3’-UTR SNPs 

and changes in CPB2 expression and TAFI protein levels, but are unlikely to be a major 

contributor to the plasma TAFI concentration variability.  

The liver likely represents the major source of TAFI in the plasma, as suggested 

by reduction in plasma TAFI levels observed in liver diseases [104]. That CPB2 is 

expressed at sites other than the liver was initially recognized a decade ago, with a report 

identifying TAFI protein in human platelets[105]. Using immunofluorescence on 

permeabilized platelets, Mosnier and colleagues detected a spotted-staining pattern 

distribution of the TAFI protein within platelets, suggesting its presence in the α granules. 

They also ruled out the possibility that the platelet TAFI is taken up from the plasma 

compartment by observing the absence of staining in non-permeabilized platelets. 

Additional evidence for this comes from the fact that they detected TAFI mRNA in 
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megakaryocytic cell lines representing the more mature stages of megakaryocytopoiesis, 

as well as the different glycosylation pattern of platelet-derived TAFI (appeared de-

glycosylated, compared to the plasma-derived, glycosylated counterpart). The authors 

also gained some insights into the properties of the platelet-derived plasma TAFI: its 

enzymatic activity, activation by thrombin, stimulation of activation by thrombomodulin, 

inhibition by carboxypeptidase inhibitors, and the thermal instability of TAFIa at 37oC 

resembled that of TAFI purified from plasma. Recent work from our laboratory has 

demonstrated that platelet- and plasma-derived TAFI in fact, differ only slightly in 

molecular mass, certainly to a smaller extent than reported previously [106]. We ascribed 

this discrepancy to the method of platelet handling and preparation of releasates, mainly 

due to BSA-mediated effects. It is also possible that subtle differences in the composition 

of N-linked glycans exist between the two pools of TAFI protein, which may in turn give 

rise to functional differences. Although the platelet-pool of TAFI comprises only about 

0.1% of the plasma pool [105], the dense arrangement and the close contact of platelets at 

areas of vascular injury could generate appreciable amounts of TAFI within the thrombus 

microenvironment. Indeed, quantification studies conducted in our laboratory revealed 

that the intraplatelet concentration of activatable TAFI protein is approximately 40 nM, 

and increases in TAFIa activity in the nanomolar range have been reported to prolong clot 

lysis time, platelet-derived TAFI may in fact act as an auxiliary source that could affect 

thrombolysis. These speculations are in line with the observation of Mutch and colleagues  

who detected TAFI both along the fibrin fibers and within the platelet-rich areas of 

thrombi [107], suggesting that the latter might represent platelet-derived TAFI. In 

keeping with the essential role that platelets play in preventing premature hemostatic plug 

lysis, such as initiation of clot retraction and secretion of the inhibitors of the 
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plasminogen system (PAI-1 and α2-antiplasmin), the notion that TAFI may also be 

released from platelets represents an additional antifibrinolytic strategy upon activation of 

platelets at regions of vascular damage.  

The next line of evidence for extra-hepatic TAFI expression has come from the 

most recent work in our laboratory. Using RT-PCR, we detected CPB2 mRNA in the 

monocytoid cell line THP-1, in macrophages obtained from PMA-induced differentiation 

of THP-1 monocytes, and in peripheral blood mononuclear cells isolated from human 

blood; we detected TAFI protein however, only in THP-1 macrophages [108]. The 

expression of TAFI outside the liver and in cell types directly involved in atherosclerosis, 

adds another dimension to our understanding of the functions of the TAFI pathway. Since 

monocytes can differentiate into macrophages within thrombi [109], their contribution of 

TAFI protein is expected to affect the plasminogen-plasmin system, leading to alterations 

in both thrombolysis as well as in local cell migration, degradation of the extracellular 

matrix, activation and secretion of growth factors and cytokines and angiogenesis.   

      1.9 CPB2 3’-UTR as a Crucial Nexus for Regulation of TAFI Expression  

Previous work from our laboratory demonstrated that the 3’-UTR of  CPB2 

mRNA is capable of mediating regulated changes in mRNA abundance in the presence of 

pro-inflammatory cytokines [72]. Treatment of HepG2 cells with combination of 

interleukin-6 (IL-6) and IL-1β resulted in an mRNA abundance-lowering effect. The 

mechanistic basis for this effect lies in the preferential formation of the longest transcript 

with the lowest mRNA half-life which is also selectively further destabilized 2-fold in the 

presence of these pro-inflammatory cytokines.  In fact, the TAFI-lowering effect has been 

observed in experimental endotoxemia patients [110], and may in part be explained by 

these mechanisms. Other investigators have explored effects of various factors on CPB2 
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mRNA stability. Notably, Ishii and coworkers have demonstrated that forskolin, which 

increases intracellular cAMP levels, increased CPB2 mRNA half-life by a factor of 2 

[111]. They investigated the possibility that insulin acts as a modulator of cAMP levels 

that could alter CPB2 gene expression regulation and found it not to be the case. They 

have also subsequently demonstrated that WY14643, a PPARα agonist, decreased CBP2 

expression via destabilization of the transcript [112]. This finding is in keeping with the 

ability of fenofibrate, a hypolipidemic drug and PPARα agonist, to lower TAFI plasma 

levels in hyperlipidemic patients [113]. Most recently, this group has reported that 

nobiletin, a polymethoxyflavone found in citrus fruit, reduces TAFI protein secretion by 

HepG2 cells through effects on promoter activity, without affecting mRNA half-life 

[114]. They proposed with this study that nobiletin-induced repression of CPB2 

transcription might involve AP-1 inhibition and/or blockage of its binding to the region of 

the promoter between -119 bp and -99 bp. Therefore, the work of our laboratory and that 

of others clearly portray CPB2 3’-UTR as a crucial nexus in mediating changes in mRNA 

abundance and thus the amount of TAFI protein produced.  

 

 

 

 

 

 

 

 

 



27 
 

 

 

 

 

 

 

 
Figure 1.3  Role of the 3’-UTR in modulation of CPB2 gene expression. Three 
different polyA sites are used in CPB2 mRNA processing, leading to 3’-UTR lengths of 
549, 393 and 360 nucleotides, respectively. Each polyA site is preceded by a consensus 
polyA signal sequence. The intrinsic stability of the three differentially polyadenylated 
forms is different, both under steady-state conditions and in the presence of pro-
inflammatory cytokines IL-6 and IL1β. Combination treatment in HepG2 cells results in 
decrease in CPB2 mRNA stability and abundance, due to the preferential formation of the 
longest transcript that is further destabilized by a factor of 2.  Shown by blue spheres is 
the location of the three SNPs in the 3’-UTR. Each of these SNPs influences CPB2 
mRNA stability in a pattern partially consistent with their association with plasma TAFI 
levels. The 3’-UTR SNPs may directly influence plasma TAFI levels through an effect on 
CPB2 mRNA stability. 
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  The importance of the 3’-UTR of transcripts can be appreciated from the fact that 

they serve as platforms for binding of various cytoplasmic factors that play numerous 

roles, ranging from protection of degradation, to shuttling among different cellular 

compartments, and finally to degradation. The latter is effected by a deadenylase 

complex, CCR4-NOT, which is recruited to the 3’-UTR of target mRNAs by the bound 

trans-acting factors, such as tristetraprolin (TTP) and NANOS2, and mediates 

deadenylation and subsequent degradation and/or translational repression [115].  The 

protein factors binding to 3’-UTRs of target mRNAs are referred to as AU-rich element 

(ARE) binding proteins, and they play regulatory roles in various cellular processes, such 

as germ cell development in case of NANOS2 [116] and the regulation of inflammatory 

response, in case of TTP [117]. In addition to the regulatory aspect of controlling the half-

life of various transcripts, CCR4-NOT-mediated degradation is also an important part of 

the cytoplasmic mRNA surveillance system [118]. Nonsense-mediated decay (NMD) is a 

eukaryotic quality control mechanism that detects aberrant mRNAs containing premature 

termination codon and induces their rapid degradation. In eukaryotic cells, NMD is 

mediated by SMG5 and SMG7 proteins, which recruit CCR4-NOT to the target mRNA 

[119].  

  In addition to protein factors binding to 3’-UTRs of target transcripts, it has 

become clear that a class of small non-coding regulatory RNAs, referred to as 

microRNAs (miRNAs) is capable of targeting mRNAs. The miRNA pathway has been 

implicated in regulation of many key aspects of gene expression regulation. Most recent 

evidence suggests that miRNAs are expressed in a tissue-specific manner, that is tightly 

regulated during embryogenesis and often dysregulated in various pathologies, including 

cardiovascular diseases [120, 121]. This in turn leads to overexpression or 
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underexpression of certain miRNAs, consequently affecting abundance of target mRNAs 

and the protein products they encode. Not surprisingly, most studies are presently aimed 

at identifying individual miRNAs or miRNA networks involved in pathogenesis of 

diseases that could potentially serve as biomarkers, and therapeutic strategies to 

counteract such dysregulation. 

MicroRNAs are a class of short, non-coding RNAs that participate in gene 

expression regulation at the post-transcriptional level. These small, single-stranded 

polynucleotides, averaging about 20-25 nucleotides in length, are endogenously 

expressed in animals, plants, and certain viruses, either from  the genes encoding them 

present as clusters or from introns. They regulate physiological cellular processes ranging 

from proliferation, apoptosis, differentiation, metabolism, and development, as well as 

pathophysiological processes leading to oncogenesis, cardiovascular diseases and 

neurodegenerative disorders [122-125].  

MiRNA biogenesis can occur either through a canonical or a non-canonical 

pathway. In the canonical, or classical pathway, miRNAs are transcribed as polycistronic 

primary transcripts of several hundred nucleotides in length [126] (named pri-miRNAs) 

by RNA polymerase II [127, 128], although a small group of miRNAs is also transcribed 

by RNA polymerase III[128, 129]. Pri-miRNAs are processed by a microprocessor 

enzyme complex consisting of RNAse III enzyme Drosha and its cofactor DiGeorge 

syndrome critical gene 8 (DGCR8) into precursor miRNAs (pre-miRNAs), approximately 

70 nucleotides in length [130]. Once in the pre-miRNA form, they are exported out of the 

nucleus and into the cytoplasm by exportin 5, and are further cleaved to mature miRNAs 

20-25 nucleotides in length, by another RNAse III endonuclease complex, consisting of 

an enzyme  Dicer and its double-stranded RNA binding cofactor TAR RNA binding 
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protein (TRBP) [131]. Mature miRNA duplexes are separated in the cytoplasm, yielding 

the guide strand (which becomes the effector miRNA strand) and a passenger strand 

(miRNA*) that is often degraded [131]. The action of the miRNA strand is effected by 

formation of the miRNA-induced silencing complex (miRISC) from association of the 

miRNA strand with RNA-induced silencing complex (RISC) containing argonaute (Ago) 

proteins [132, 133]. The miRNAs recognize their target mRNAs by complimentary base-

pairing with sequences contained most often within the 3’-untranslated region (3’-UTR), 

and these sequences are designated miRNA recognition elements (MREs) [130]. 

Depending on the degree of complementarity between miRNAs and MREs, miRNAs 

repress gene expression by inducing mRNA degradation (in case of perfect base-pairing) 

or translational repression (in case of imperfect base-pairing). In some cases, MREs are 

present in the 5’-UTR or the open reading frame, albeit much less frequently than in the 

3’-UTR [134]. Degradation of the target mRNA is achieved by deadenylation, followed 

by 5’ to 3’ degradation by Xrn1 nuclease. Translational repression can occur by several 

mechanisms, including deadenylation, blockage of translation elongation,  interference by 

the Ago-RISC complex of binding of translation initiation factors, promotion of 

premature dissociation of ribosomes and the nascent polypeptide degradation [135, 136].  

The non-canonical pathway for miRNA biogenesis is often referred to as the 

mirtron pathway and includes a group of short introns, called mirtrons, which exist in 

invertebrates and mammals [137]. The mirtron pathway is microprocessor-independent, 

and instead involves the splicing machinery. Splicing and debranching of introns 

generates pre-miRNA hairpins that are suitable substrates for Dicer. In fact, the intron-

deriver miRNAs have been identified in  fish, chicken embryos and mice, in addition to 
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mammalian cells, suggesting  evolutionary conservation of this  mechanism  for gene 

regulation in vivo [138, 139].  

Abundance of specific miRNA is dictated by the rates of their transcription, 

processing and decay. Transcription rate is dependent on the methylation status of their 

promoters, in similar manner to many protein coding genes [131, 140]. Processing of 

miRNAs can be affected at multiple steps during biogenesis, including availability of Ago 

proteins, uridylation of the miRNA 3’ ends, which could enhance or inhibit Drosha-

DGCR8 and Dicer-TRBP processing steps, while miRNA editing can change 

complementarity to target mRNA sequences [141-143]. Since the mechanisms that 

control the miRNA turnover are not yet fully understood, other modifications that 

stabilize or destabilize miRNAs may also exist. Interestingly, miRNAs are unusually 

stable in plasma and are resistant to many harsh conditions, such as boiling, low and high 

pH, repeated freezing and thawing cycles and long storage [144-147]. They have been 

found to exist in various body fluids, such as tears, saliva, urine and breast milk. The 

stability of miRNAs in the circulation can be attributed to their association with lipid-

based carriers, either associated or nonassociated to vesicles. The latter accounts for 80-

90% of circulating miRNAs, that associate with RNA-binding proteins such as Ago2 and 

nuclephosmine 1(NPM1) in very stable complexes, or with lipoprotein complexes, such 

as high-density lipoprotein (HDL) [146-148]. The vesicular forms of miRNAs are 

incorporated into exosomes and microvesicles derived from multivesicular bodies, which 

are then released from the cell and participate in cell-cell communication and transfer of 

genetic material [146, 147, 149]. As such, they participate in regulation of immunity, 

angiogenesis and cell migration. Aberrant regulation of miRNA processing and 

trafficking can have deleterious consequences in normal cellular function. 
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    1.10 Rationale, Hypothesis and Objectives 

Significant variation in plasma TAFI concentration exists in the human population 

and genetic factors explain only 15-25% of this variability. The remaining 75% of the 

variation likely arises from differences in gene regulatory events, such as those mediated 

at the levels of post-transcriptional regulation. The relatively long length and the presence 

of three alternative polyadenylation sites within the CPB2 3’-UTR suggests the role of 

this region in regulation of CPB2 mRNA abundance through modulation of mRNA 

stability and/or polyadenylation pattern. The identity of factors that act in trans, and the 

cis-sequences they recognize are still enigmatic. Regulation of CPB2 expression might 

have considerable implications for haemostasis, inflammation, and other processes in 

both health and disease. Additionally, new knowledge describing extra-hepatic TAFI 

expression suggests that the TAFI pathway may be involved in processes beyond clot 

lysis, such as those that take place in the vessel wall in atherosclerosis. Understanding the 

molecular mechanisms underlying regulation of CPB2 expression, both in hepatic and 

extra-hepatic tissues, will aid in deciphering results of numerous clinical studies that 

reported modulation of plasma TAFI levels in various disease states and pathologies. For 

these reasons, analysis of the mechanisms underlying regulation of tissue-specific CPB2 

expression, both constitutive and regulated, represents a crucial piece of a puzzle 

revealing the full spectrum of TAFI pathway functions. 

Therefore, the specific hypotheses to be tested are: 1) CPB2 3’-UTR harbours 

(in)stability determinants in form of cis-acting sequences which are recognized by 

specific trans-acting factors, 2) trans-acting regulatory factors exert their effects post-

transcriptionally, affecting mRNA abundance through modulation of mRNA stability and 

polyadenylation site selection, and 3) in addition to protein factors acting on CPB2 
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mRNA in trans, small regulatory RNA molecules, such as microRNAs, also mediate 

constitutive and regulated post-transcriptional regulation. 

The first main objective of this thesis is aimed at characterization of CPB2 3’-

UTR with respect to regulatory sequences that mediate binding of trans-acting protein 

factors that exert stabilizing and/or destabilizing effects. The second main objective is 

centered on elucidating the post-transcriptional mechanisms mediated by various trans-

acting factors in modulating mRNA abundance and thus TAFI protein levels in both 

HepG2 cells and THP-1 macrophages in the presence of various inflammatory stimuli. 

The third main objective is to investigate the regulatory mechanisms of microRNA 

pathway in constitutive and regulated CPB2 gene expression regulation. 
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Chapter 2: Identification of tristetraprolin (TTP) as a factor that modulates the 

stability of CPB2 transcript via binding to the 3’-untranslated region a 

       2.1 Introduction 

  Appropriate regulation of the balance between coagulation and fibrinolysis is 

crucial for normal hemostasis [1,2]. Derangement of this balance can result in 

pathological bleeding or thrombosis. Coagulation and fibrinolysis are tightly regulated at 

the level of function through modulation and localization of enzyme activity. Both the 

coagulation and fibrinolytic cascades are a series of zymogen to enzyme conversions that 

feature positive and negative feedback. Moreover, enzymatic reactions are confined to 

precise locations though the formation of catalytic complexes on the surface of platelets 

and fibrin and the presence of high concentrations of fast-acting serpin inhibitors in 

plasma. A more global form of regulation is achieved through modulation of the 

expression of genes encoding coagulation and fibrinolytic factors. The genes encoding 

several coagulation factors, fibrinogen chains, and fibrinolytic inhibitors have been shown 

to be modulated by inflammatory cytokines as part of the acute phase response [3,4]. Our 

own work has focused on regulation of the gene encoding thrombin-activatable 

fibrinolysis inhibitor (TAFI), a plasma protein that may provide mechanistic links 

between coagulation and fibrinolysis and between coagulation and inflammation [5,6]. 

Proteolytic cleavage of TAFI by thrombin, the thrombin-thrombomodulin 

complex, or plasmin results in the formation of an enzyme (TAFIa) with basic 

carboxypeptidase activity [7-9]. TAFIa downregulates fibrinolysis by removing the 

carboxyl-terminal lysine residues from partially degraded fibrin that mediate positive 

feedback in the fibrinolytic cascade [10]. TAFIa also inactivates several pro-

inflammatory peptides and proteins containing carboxyl-terminal basic residues including 

a This is the outcome of joint research 
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bradykinin, the anaphylatoxins C3a and C5a, thrombin-cleaved osteopontin, and plasmin-

cleaved chemerin [11,12]. Substantial variation in plasma TAFI concentrations has been 

observed [5]. Elevated plasma TAFI concentrations have been associated with risk for 

both arterial and venous thrombotic events [13-21]. Approximately 25% of the total 

variation in plasma TAFI concentrations has been attributed to genetic factors, and many 

single nucleotide polymorphisms (SNPs)  in CPB2, the gene encoding TAFI, have been 

identified [22,23]. The three SNPs in the 3’-untranslated region (3’-UTR) of the CPB2 

mRNA have been shown to affect mRNA stability, indicating a potential role for these 

SNPs in influencing CPB2 mRNA abundance and hence TAFI synthesis by the liver [24]. 

In accordance with these findings, we have previously determined a key role for the 3’-

UTR in mediating CPB2 mRNA stability both in the steady state and in response to 

inflammatory cytokines [25]. In the current study, we set out to identify the sequences in 

the 3’-UTR that mediate this control of mRNA stability and to identify protein factors 

that may bind to these sequences. 

      2.2 Experimental Procedures 

2.2.1.Plasmid Constructions 

 Restriction and modifying enzymes were purchased from Stratagene, New 

England Biolabs, or Invitrogen. Fusion mRNA reporter plasmids were constructed using 

the expression vector pC7βG described by Wilson and Deeley [26]. A series of 5’-

deletions of the CPB2 3’-UTR (see Fig. 1), each approximately 50 nucleotides long 

starting from the stop codon, were constructed by PCR. The 3’ boundary of each PCR 

product was the 5’-most polyadenylation site at nucleotide +1660 [27]. The primers 

contained cryptic PacI sites for insertion of the PCR products into the PacI site of 

pC7βG. Two different internal deletions in the 3’-UTR (see Fig. 1) were also constructed 
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by overlap PCR. The deletions removed nucleotides +1541 to +1668 (ΔP1) or +1667 to 

+1801 (ΔP2). The 3’ boundary of both internal deletions was the 3’-most polyadenylation 

site at +1819. The outside primers for the respective overlap PCR schemes contained 

cryptic PacI sites for insertion of the PCR products into pC7βG. In all cases, PCR 

products were first cloned into pBluescript II SK+ (Stratagene) for sequence analysis, and 

were then excised with PacI digestion for insertion into pC7βG. 

Site-directed mutagenesis of the parental plasmid βG-CPB2/1273-1819 [25] was 

accomplished using the QuikChange XL kit (Stratagene). The sense mutagenic primer 

was as follows: 5’ – GAT TTC TGC TCC AAA TTT TCA AGA AAG GGC TGC TTG 

TGC CTT TAG AAA TAC – 3’. The underlined bases are mutations from T to G aimed 

at abolishing the putative tristetraprolin (TTP) binding site. The presence of the mutation 

was verified by DNA sequence analysis. 

            2.2.2 Cell Culture  

HepG2 (human hepatocellular carcinoma) cells were grown in minimum essential 

medium (MEM) (Invitrogen) containing 10% fetal bovine serum (FBS; American Type 

Culture Collection) and 1% (v/v) penicillin-streptomycin-Fungizone (PSF; Invitrogen). 

The cells were maintained at 37°C in a humidified atmosphere consisting of 95% room 

air/5% CO2. Cells were stably transfected with β-globin fusion plasmids as previously 

described [25] and were thereafter maintained in the presence of 300 μg/mL hygromycin 

B (Roche). 

 2.2.3 mRNA Decay Assay and RNA Isolation 

Stably transfected HepG2 cell lines were seeded in 6-well plates or 100 mm plates 

and grown to 90% confluence. Actinomycin D (Unites States Biochemical or Sigma-

Aldrich) was added to each well at a final concentration of 5 µg/mL. Total RNA was 
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harvested 0, 1, 2, 4, 6 or 8 hours after the addition of actinomycin D using TriZOL 

reagent (Invitrogen) or RNeasy Mini Kits (QIAGEN) as directed by the manufacturer. 

2.2.4 Northern Blot Analysis 

Northern blot analysis was performed, using 10 μg/lane total RNA, as previously 

described [25]. Detection of the β-globin fusion transcripts or glyceraldehyde-6-

phosphate dehydrogenase (GAPDH) transcripts (as a control for RNA loading and 

transfer) was performed with by hybridization with 32P-labeled DNA probes followed by 

exposure to a phosphor screen or with digoxigenin-labeled antisense RNA probes 

followed by detection using anti-digoxigenin antibodies and chemiluminescence (kit from 

Roche). The fraction of β-globin signal remaining at each time point was determined 

following correction for the amount of GAPDH transcript present, which was itself 

corrected by taking into account the half-life of GAPDH mRNA (8 hours) [25]. 

2.2.5 RNA Electrophoretic Mobility Shift Assay 

The RNA probes employed are depicted in Table 1. A mutant version of probe 

RNA-3a was made by substituting the underlined nucleotides with G nucleotides. The 

corresponding DNA sequences were purchased as overlapping oligonucleotides that were 

annealed and then extended using T4 DNA polymerase. The resulting fragments were 

inserted into pBluescript II SK+ at the EcoRV site. The plasmids were then linearized 

with HindIII prior to in vitro transcription in the presence of [α-32P]-CTP (Perkin Elmer) 

using T3 polymerase and the Riboprobe In Vitro Transcription kit (Promega).                

Cytoplasmic extracts were prepared from confluent HepG2 cells by sonication of scraped 

cells for 1 min in 10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, containing 

protease inhibitor cocktail (Sigma) followed by pelleting of cell debris for 5 min at 

12,000 × g. Approximately 2 × 105 cpm of RNA probe was incubated with or without 10 
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μg of cytoplasmic protein extract in incubation buffer (5 mM HEPES pH 7.9, 0.5 mM 

MgCl2, 7.5 mM KCl, 0.5 mM DTT, 0.12 mM EDTA) in a final volume of 20 μL for 30 

min at room temperature. In some cases, 0.2 μg of goat polyclonal anti-TTP antibodies 

(Santa Cruz Biotechnology) were added to some of the reaction mixtures and incubation 

of all reactions was continues for a further 1 hour on ice. Reactions were then treated with 

1 μg/mL RNase A for 10 minutes at 37°C prior to electrophoresis on non-denaturing 6% 

polyacylamide gels in a buffer system consisting of 22 mM Tris-HCl pH 8.0, 22 mM 

borate, 5 mM EDTA. Gels were dried and exposed to Kodak X-OMAT film. 

      2.3 Results  

2.3.1 Identification of instability elements in the CPB2 3’-UTR 

A β-globin fusion mRNA reporter system was used to identify cis-acting elements 

in the CPB2 3’-UTR that modulate CPB2 mRNA stability. The results of our previous 

study using this system clearly imply the presence of cis-acting elements in the CPB2 3’-

UTR that control the stability and thus abundance of this transcript. In order to identify 

these elements, CPB2 3’-UTR sequences were inserted downstream of the rabbit β-globin 

sequence in the pC7βG plasmid (see Fig. 2.2) that ended at the 5’-most polyadenylation 

site and that represented progressive 5’-deletions starting approximately 100 nucleotides 

downstream of the stop codon (see Fig. 2.1). HepG2 cell lines stably expressing the 

respective fusion mRNAs were treated with actinomycin D to arrest transcription and 

total RNA was harvested at different time points. The amount of fusion transcript 

remaining at each time point was measured by Northern blot analysis using a β-globin 

cDNA probe and the half-life of the respective fusion transcripts was determined from the 

resultant decay curves (Fig. 2.2 and Table 2.2). The data indicate that deletion of the first 

150 nucleotides of the 3’-UTR has no effect on the stability of the fusion transcripts, as 
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they are very similar to that of the parental fusion transcript containing the entire 3’-UTR 

up to the first polyadenylation site. Deletion of a further 50 nucleotides (Δ208 construct) 

results in a fusion mRNA with reduced stability, indicating that the sequence between 

+1424 and +1482 harbors a stability element. Conversely, deletion of a further 50 

nucleotides (Δ250 construct) results in a fusion mRNA with an enhanced stability, 

indicating that the sequence between +1481 and +1523 harbors an instability element.  

 There are three possible polyadenylation sites in the CPB2 3’-UTR; inclusion of 

sequences downstream of the first and second sites results in a progressive destabilization 

of the CPB2 mRNA, indicating the presence of cis-acting instability elements in these 

regions. Accordingly, we constructed β-globin fusion plasmids containing deletions of 

sequences upstream of the second and third polyadenylation sites (ΔP1 and ΔP2, 

respectively; Figs. 2.1 and 2.3). The stabilities of the respective transcripts were 

substantially increased relative to their parental constructs (Fig. 2.3 and Table 2.2) 

indicating the presence of instability elements in both of these regions.  
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Figure. 2.1 Topology of human CPB2 3’-UTR and location of deletion mutants. 
Shown is the cDNA sequence between the stop codon (double-underlined) and including 
all three potential polyadenylation sites (curved arrows). Putative polyadenylation signal 
sequences are boxed. The 5’-boundaries of the 5’ deletion variants are indicated with the 
bent arrows; the 3’-boundary of these variants is the first polyadenylation site at +1660. 
The sequences deleted in the ΔP1 and ΔP2 variants are indicated with the dashed and 
dotted lines, respectively; the 3’-boundary of these variants is the last polyadenylation site 
at +1819. All cDNA fragments contained PacI sites on either end for insertion into the 
episomal β-globin fusion mRNA vector pC7βG. 
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Figure 2.2  5’-deletion analysis of the CPB2 3’-UTR. Panel A. Schematic 
representation of the β-globin reporter plasmid constructs expressing fusion mRNA 
species. All variants contained the cytomegalovirus promoter (PCMV), a segment of rabbit 
β-globin cDNA, a translation termination cassette (TTC), and the SV40 polyadenylation 
signal sequence. Boundaries of the CPB2 insert are indicated, with nucleotide numbering 
corresponding to that in ref. 25. Fusion transcripts contained β-globin and CPB2 3’-UTR 
segments. Panel B. HepG2 cells stably transfected with the β-globin reporter plasmids 
were treated with actinomycin D (5 μg/mL); RNA was harvested at various times after 
the addition of the drug. The amounts of the respective fusion transcripts were determined 
by Northern blot analysis using a probe specific for rabbit β-globin cDNA and using a 
probe specific for the GAPDH mRNA as an internal standard to account for differences in 
RNA loading and transfer. Fusion mRNA abundance after addition of actinomycin D is 
shown relative to the amount present immediately before addition of the drug. The data 
are the means of three independent experiments; data for βG and βG-CPB2/1273-1660 
are from ref. 25. 
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Figure 2.3  Internal deletion analysis of the CPB2 3’-UTR. Panel A. Schematic 
representation of the β-globin reporter plasmid constructs expressing fusion mRNA 
species. Features of the respective constructs are as described in the Legend to Fig. 2.2 
Panel B. The intrinsic stabilities of each mRNA species were determined as described in 
the Legend to Fig. 2. The data are the means of three independent experiments; data for 
βG-CPB2/1273-1819 are from ref. 25. 
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2.3.2 Detection of trans-acting factors binding to instability elements 

The presence of cis-acting elements in the CPB2 3’-UTR suggests that trans-

acting factors such as cytoplasmic proteins associate with these elements to modulate 

CPB2 mRNA stability. Accordingly, a series of radiolabeled single stranded RNA probes 

were prepared (Table 2.1) corresponding to (i) the instability element located between 

+1482 and +1523 (RNA-1); (ii) the instability element located between the first and 

second polyadenylation sites (RNA-2); and (iii) the instability element located between 

the second and third polyadenylation sites. Owing to the long length of this last region, 

three overlapping RNA probes were synthesized (RNA-3a,b,c). The probes were 

incubated with HepG2 cytoplasmic protein extracts and the mixtures were then subjected 

to RNase A treatment followed by non-denaturing polyacrylamide gel electrophoresis to 

identify protein-RNA complexes.  

 No detectable protein-RNA complexes were observed for probes RNA-1, RNA-

3b, or RNA-3c (data not shown). However, a clearly detectable band of reduced 

electrophoretic mobility was observed after RNase A treatment for probes RNA-2 and 

RNA-3a (Figs. 2.4 and 2.5). A search of the database of protein-binding sequences in 

RNA revealed the presence of a putative binding site for tristetraprolin (TTP) [28] within 

the RNA-3a sequence (Table 2.1). Accordingly, we performed an RNA mobility shift 

assay in the presence of RNA-3a, cytoplasmic extract, and an antibody specific for human 

TTP. Under these conditions, an additional band of lower mobility is observed (open 

arrow, Fig. 2.5) which presumably corresponds to a ternary complex between the probe, 

TTP, and the antibody.  

To verify the role of the putative TTP binding site in RNA-3a in binding to 

cytoplasmic factors, we prepared a radiolabeled RNA probe in which nucleotides within 
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the consensus TTP binding site were mutated (Table 2.1). This probe failed to bind to 

cytoplasmic proteins (Fig. 2.6). Taken together, the data in Figs. 2.5 and 2.6 strongly 

indicate that nucleotides +1668 to +1677 are capable of binding to TTP. 

In order to directly assess the role of TTP in modulating CPB2 mRNA stability, 

the mutation in the putative TTP binding site was introduced into the β-globin fusion 

mRNA reporter plasmid βG-CPB2/1273-1819; we then examined the stability of the 

resultant transcript using actinomycin D treatment of stably expressing HepG2 cells and 

Northern blot analysis using a DIG-labeled riboprobe. Mutation of the putative TTP 

binding site resulted in a substantial increase in fusion transcript stability (Fig. 2.7 and 

Table 2.2), in keeping with the role of TTP as an mRNA instability factor. 
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Table 2.1  Sequences of probes used in RNA mobility shift assays 

RNA Nucleotides Sequence (5’ – 3’) 

1 +1470 to +1529 AAAAAAAUUG UAAAAGUCUA GUUACCUACU 
UUUUCUUUGA UUUUCGACGU UUGACUAGCC 

2 +1641 to +1667 AUUAAAGAUU UCUGCUCCAA AUUUUC 

3 +1660 to +1719 a) AAAUUUUCAA UAAAUUUCUG CUUGUGCCUU 
UAGAAAUACA ACCAUGCAUU CCGUUUGCUCa 

 +1700 to +1759 b) ACCAUGCAUU CCGUUUGCUC CACGGUAAUU 
AGGCGAUGGC CCAGAAAGGG GAGGGGUGUC  

 +1740 to +1800 c) CCAGAAAGGG GAGGGGUGUC AAAAACGACA 
AACAUAGCCU CUCAUUCCAG CUCAGCUGCU C 

a the consensus TTP binding site is shown in boldface type; the underlined nucleotides in 
probe RNA-3a were mutated to G in probe RNA-3aΔTTP  
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Figure 2.4 Detection of a cytoplasmic protein bound to an RNA sequence 
corresponding to the region between the first and second polyadenylation sites. A 
radiolabeled probe encompassing this region (designated RNA 2 in Table 2.1) was 
synthesized by in vitro transcription from a plasmid template. The probe was incubated in 
the presence of cytoplasmic extract prepared from HepG2 cells, followed by treatment of 
the binding reaction with RNase A. A control reaction lacked both cytoplasmic extract 
and RNase A treatment. Reactions were subjected to non-denaturing polyacrylamide gel 
electrophoresis and radiolabeled RNA complexes were visualized by autoradiography. 
The positions of migration of free RNA 2 probe and the protein/RNA complex of lower 
mobility (arrow) are indicated. 
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Figure 2.5   Detection of binding of TTP to an RNA sequence within a region 
between the second and third polyadenylation sites. A radiolabeled probe 
encompassing the first third of this region (designated RNA 3a in Table 2.1) was 
synthesized by in vitro transcription from a plasmid template. The probe was incubated in 
the presence of cytoplasmic extract prepared from HepG2 cells either in the presence or 
absence of a polyclonal anti-TTP antibody, followed by treatment of the binding reaction 
with RNase A. A control reaction lacked cytoplasmic extract. Reactions were subjected to 
non-denaturing polyacrylamide gel electrophoresis and radiolabeled RNA complexes 
were visualized by autoradiography. The positions of migration of free RNA 3a probe, a 
protein/RNA complex of lower mobility (filled arrow), and a supershifted complex 
observed in the presence of antibody (open arrow) are indicated. 
 

 

 

 



57 
 

 

 

 

 
Figure 2.6  Mutagenesis of the putative TTP binding site in RNA 3a abolishes TTP 
binding. Radiolabeled RNA 3a probe or a mutant version in which nucleotides necessary 
for TTP binding were mutated as indicated in Table 2.1 was incubated with cytoplasmic 
extract prepared from HepG2 cells, followed by treatment of the binding reaction with 
RNase A. A control reaction lacked cytoplasmic extract. Reactions were subjected to non-
denaturing polyacrylamide gel electrophoresis and radiolabeled RNA complexes were 
visualized by autoradiography. The positions of migration of free RNA 3a probe and a 
protein/RNA complex of lower mobility (arrow) are indicated. 
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Figure 2.7  Mutagenesis of the putative TTP site in the CPB2 3’-UTR stabilizes a β-
globin fusion transcript. The ΔTTP mutations indicated in Table 1 were introduced into 
the βG-CPB2/1273-1819 fusion mRNA reporter plasmid. The intrinsic stabilities of the 
wild-type and mutant fusion mRNA species were determined as described in the Legend 
to Fig. 2.2. The data are the means of three independent experiments. 
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Table 2.2 Half-lives of fusion transcripts 

Fusion mRNA construct t1/2 (hrs)a 

βG ~7.5b 

βG-CPB2/1273-1660 ~5.0a 

Δ114 5.5 ± 0.3 

Δ150 5.2 ± 0.4 

Δ208 3.6 ± 0.2 

Δ249 7.4 ± 0.8 

βG-CPB2/1273-1819 ~2.6b 

ΔP1 5.2 ± 0.2 

ΔP2 6.7 ± 0.4 

ΔTTP 6.4 ± 0.2 
a Data shown are the means ± s.e.m. of three independent experiments 
b Data are from ref. 25 
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2.4 Discussion 

In this study we sought to identify cis-elements within CPB2 transcript 3’UTR 

and trans-acting factors that bind to the respective sequences and participate in 

modulation of CPB2 transcript stability. We have identified one stability element and 

three stability elements within the 3’-UTR; two of the stability elements were shown to 

bind to cytoplasmic proteins using RNA gel mobility shift analyses, and one of these 

binding factors was identified as TTP. Our data are the first to explore the factors 

modulating CPB2 mRNA stability, and have implications for the determination of steady-

state CPB2 mRNA levels as well as for the regulation of CPB2 mRNA stability by 

inflammatory mediators. 

 The role of TTP in modulation of mRNA stability was uncovered more than a 

decade ago by studies in TTP knockout mice that exhibited generalized inflammation as a 

result of overproduction and accumulation of the pro-inflammatory cytokine TNFα [29]. 

TTP was found to specifically bind the AU-rich element (ARE) in the 3’-UTR of TNFα 

transcript causing rapid degradation via ARE-mediated decay (AMD) [30,31]. Targets of 

TTP uncovered so far include mainly cytokines and proto-oncogenes, but also include 

plasminogen activator inhibitor-2 [32,33]. However, mRNAs associate with many RNA-

binding proteins thus creating an mRNP (messenger ribonucleoprotein); as such, the 

regulatory role of TTP with some of these targets may be influenced by some other 

factor(s) in the mRNP and thus are difficult to predict from the mere presence of TTP.  

  Of the many targets that have been identified for TTP so far, most code for 

proteins involved in inflammation. We have now identified TTP as a key regulator of 

CPB2 mRNA stability, thereby expanding the pool of transcripts regulated by TTP 

outside of the cytokine family. Our own work has previously shown that CPB2 transcript 
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stability is modulated by inflammatory cytokines IL-1β and IL-6 [25]. Therefore, 

cytokines/TTP/TAFI mRNA axis may be instrumental in integration of TAFI within the 

inflammatory response, as it appears to undergo regulation by factors common to other 

cytokines, such as TNFα and GM-CSF. Although it is tempting to speculate that TAFI 

levels would be elevated in TTP-/- mice, we observed that TNFα treatment of cultured 

HepG2 cells had a destabilizing effect on the CPB2 transcripts (data not shown).  

In the present study we have identified a stability element residing upstream of the 

first polyadenylation site of the CPB2 3’UTR. However, the identity of the trans-acting 

factor binding to it is presently unknown, as well as that  of the factor(s) binding to the 

two other  instability Identification of these trans-acting factors is necessary, as they do 

not function in isolation. It would be intriguing to discover whether these RNA binding 

factors are shared with those of cytokines, which would further support the role of TAFI 

as an integral part of the inflammatory response. Additionally, we have previously shown 

that polyadenylation site selection within the CPB2 transcript is modulated by cytokines, 

whereby the longest transcript is preferentially formed over the other two in the presence 

of IL-1β and IL-6 and is the least stable [25]. Curiously, it is the only form that contains 

the TTP binding site. The sequences that modulate polyadenylation site selection within 

the CPB2 3’-UTR have not been identified so far. It has been observed for other 

transcripts containing tandem signals like the CPB2 transcript that the most upstream 

signal is the most frequently used [36-39]. In addition, the distance between the signals 

also plays a role, whereby a stronger downstream signal can out-compete a weaker 

upstream signal if the two signals are less than 400 base pairs apart [35]. Therefore, 

preferential formation of the longest transcript that has the lowest half-life in the presence 

of acute phase mediators points to the role of TTP as a very potent modulator of CPB2 
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mRNA stability under inflammatory conditions, not only as an instability factor but as a 

factor involved in polyadenylation site selection. Future work is required to identify other 

RNA proteins that bind to the stability/instability cis-elements we discovered in the 

current study in order to derive a mechanism of CPB2 transcript regulation. More 

importantly, these studies would uncover major players in the maintenance of the steady 

state abundance of the CPB2 transcripts and scenarios in which their imbalance would 

lead to the pathological phenotypes. 
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Chapter 3: Inflammatory cytokines reduce thrombin activatable fibrinolysis 

inhibitor (TAFI) expression via tristetraprolin-mediated mRNA destabilization 

      3.1 Introduction 

Transcription was long considered to be the deciding factor in regulation of gene 

expression, but the importance of post-transcriptional regulation continues to gain 

recognition. Sub-cellular sorting of de novo synthesized messenger RNAs (mRNAs) is a 

well-orchestrated process, and one that is susceptible to regulation at multiple steps. 

Specific RNA sequences contained primarily in the 3’-untranslated region (3’-UTR) of 

mRNAs are crucial in determining the fate of the message through the recruitment of 

trans-acting factors that recognize them. The stability of mRNAs harbouring adenylate-

uridylate rich elements (AREs) in their 3’- UTRs and thus the level of expression of their 

protein products is dictated by the effect that ARE-binding proteins exert. Sustained 

mRNA stabilization can be caused by increased activity of mRNA stabilizing factors, 

such as human antigen R (HuR, ELAVL1) or by reduced activity of mRNA decay-

promoting factors, such as tristetraprolin (TTP, ZFP36) [1-3]. 

Thrombin-activatable fibrinolysis inhibitor (TAFI) is a human plasma zymogen 

that regulates the balance between coagulation and fibrinolysis and that also mediates 

molecular connections between hemostasis and inflammation [4,5]. The major 

contribution to the plasma pool of TAFI is accounted for by the expression of the gene 

encoding it, CPB2, in the liver [6,7]. TAFI can be activated by thrombin [8] and plasmin 

[9], but most efficiently by thrombin in complex with the cofactor thrombomodulin [10]. 

The activated form of TAFI (TAFIa) acts as a basic carboxypeptidase, targeting 

substrates such as partially degraded fibrin and carboxyl-terminal lysine residues from 

cell surface receptors [11], pro-inflammatory modulators (anaphylatoxins C3a and C5a) 
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[12] , bradykinin [13], thrombin-cleaved osteopontin [14], and the anti-inflammatory 

modulator, plasmin-cleaved chemerin [15]. The role of TAFI in inflammatory disease is 

multifaceted and involves both recognition of specific pro-inflammatory substrates by 

TAFIa [12-15], and the regulation of TAFI gene expression by inflammatory mediators 

[16]. We have also discovered that macrophages produced by differentiation of the 

monocytoid cell line THP-1 produce TAFI protein [17], which provides new insights into 

the extra-vascular, non-fibrinolytic functions of TAFI that take place in the arterial wall, 

wound fields and the peritoneum. 

Our group has published a series of studies characterizing the regulation of 

expression of the CPB2 [16-22]. The CPB2 transcript contains three potential 

polyadenylation (polyA) sites resulting in transcripts with 3’-UTRs of different lengths 

[6] and intrinsic stabilities [18]. Additionally, interleukins (IL)-6 and -1β, when 

administered in combination to HepG2 (human hepatoma) cells, lead to preferential 

formation of the longest transcript that is further destabilized by a factor of two [16]. This 

suggests the presence of inducible instability elements, possibly contained within the 

region between the last two polyA sites. 

Most recently, we published a study identifying cis-sequences in the CPB2 3’-

UTR that mediate transcript stability, as well as documenting the effects of trans-acting 

factors binding to them [21]. These studies revealed that TTP binds between the second 

and the third polyA sites and acts to destabilize CPB2 mRNA. The aim of the present 

investigation was two-fold: to determine the identities of other trans-acting factors 

binding to the CPB2 3’-UTR and the modulatory effects they put forth on transcriptional 

and post-transcriptional regulation of CPB2 gene expression in the presence of 

inflammatory stimuli.  
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      3.2 Experimental procedures  

            3.2.1 Plasmid constructions 

The β-globin reporter fusion mRNA expression plasmids βG-CPB2/3’UTR and 

βG-CPB2/3’UTRΔTTP were derived from previously described plasmids [21] as follows. 

The pC7βG plasmid that we used was modified by the replacement of the existing 

cytomegalovirus promoter (CMV) with a doxycycline responsive version of the promoter 

derived from pTET-BBB [23], which was the kind gift of Dr. Robert Medcalf (Australian 

Centre for Blood Diseases, Monash University). The promoter and tet operon were 

excised from pTET-BBB using XhoI and BbsI, the ends were made blunt using T4 DNA 

polymerase and the fragment was inserted into EcoRV site of pBluescript II SK+ 

(Stratagene). The fragment was then excised by digesting with XhoI and BamHI, and 

inserted into pC7βG pre-digested with the same enzyme combination to remove the CMV 

promoter. Note that this doxycycline-responsive promoter is active in the absence of 

doxycycline. 

A segment of the CPB2 3’-flanking region beginning at the stop codon and 

extending for 1 kb downstream was amplified from human genomic DNA. The segment 

was inserted into pC7βG digested with PacI (just downstream of the translation 

termination cassette) and SalI. In utilizing this downstream SalI site in pC7βG, the SV40 

polyA signal was removed prior to insertion of the genomic DNA segment. Our previous 

work showed that the SV40 polyA sequence suppresses the utilization of the native polyA 

signals in the CPB2 3’-UTR [18]. Therefore, in this new generation of fusion mRNA 

expression plasmids expressed transcripts that utilize these native polyA signals and 

generate three different polyadenylated species (data not shown). The TTP binding site in 
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the 3’-flanking region was mutated as previously described [21]. CPB2 promoter 

constructs were described previously [6,18]. 

             3.2.2 Mammalian cell culture and transfections 

Cells were maintained in a humidified incubator at 37°C under a 95% room 

air/5% CO2 atmosphere. HepG2 cells were cultured as previously described [21]. 

Inflammatory mediators were added, where indicated, at the following concentrations: 

TNFα (50 pg/mL), combination of IL-6 (10 ng/mL) and IL-1β (1 ng/mL), IL-8 (30 

ng/mL), LPS (1 μg/mL), IL-10 (1 ng/mL) or IL-13 (10 ng/mL).The concentrations used 

for TNFα and IL-8 were as per manufacturer’s suggestion for ED50; the concentrations for 

IL-6 and IL-1β  were obtained from ref.16, for LPS from ref.28, and for IL-10 and IL-13 

from ref.45   The cells were incubated for up to 48 hours thereafter prior to isolation of 

conditioned media and total cellular lysates in lysis buffer (50 mM Tris-HCl pH 7.4, 1% 

NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA) or extraction of RNA. 

Transfections of HepG2 cells were performed with Lipofectamine 2000 (Invitrogen) 

reagent as per the manufacturer’s protocol, and in the presence of 100 ng/mL doxycycline 

(Clontech). After 48 hours, doxycycline was removed to induce transcription of the 

plasmid, the cells were seeded into 24-well plates and cultured for 16 hours. The next 

day, treatments were added, as indicated. After 24hrs of treatment, transcription was 

arrested by addition of doxycycline at 1 µg/mL, and RNA extracted at various time points 

thereafter. RNA isolation and real-time qRT-PCR were carried out as described 

previously [21].  

             3.2.3 TAFI activation and TAFIa assay 

A highly sensitive functional assay for TAFIa was implemented as previously 

described [24]. Briefly, the assay is performed by mixing soluble fibrin degradation 
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products (FDPs) covalently attached to a quencher (QSY) with fluorescein-labeled 

plasminogen. The sample containing TAFIa is then added, and the rate of fluorescence 

increase due to removal of carboxyl-terminal lysine from FDPs and subsequent loss of 

plasminogen binding is measured with a fluorescence plate reader. The first step is 

quantitative activation of all TAFI present in the sample, which was carried out as 

described previously [25]. TAFIa concentrations measured by the TAFIa assay in each 

sample were divided by the respective total cellular protein values obtained using the 

BCA assay (Pierce Chemical) to account for the differences in cell numbers. Results were 

then normalized to the untreated medium sample for each time point, expressed as 

fraction per mg of total cellular protein.  

            3.2.4 RNA-binding protein purification and identification (RaPID) 

The RaPID procedure relies on the use of two main constructs as previously 

described [26]. pN-RFPx24 and pUG34-MS2-CP-GFP-SBP, which were the kind gift 

from Dr. Jeffrey Gerst (Department of Molecular Genetics, Weizmann Institute of 

Science, Rehovot, Israel). Since pUG34-MS2-CP-GFP-SBP is a yeast plasmid, we first 

removed the sequence encoding the fusion protein CP-GFP-SBP by digestion with XbaI, 

and then inserted it into pcDNA-4B plasmid pre-digested with XbaI. The CPB2 3’ 

flanking region was inserted into pN-RFPx24 plasmid by excising this segment from βG-

CPB2/3’UTR (see above) with XhoI and SalI , making the ends blunt with T4 DNA 

polymerase and inserting into pN-RFPx24 digested with BamHI and blunted. HepG2 cells 

were transfected in 100-mm dishes with pcDNA4B-CP-GFP-SBP and pN-RFPx24-

CPB2/3’UTR simultaneously using Lipofectamine 2000 reagent for 48 hours. Collection 

and lysis of cells was carried out as previously described [26], with a modification for 

cross-linking, which was done in phosphate-buffered saline (PBS) containing 0.5% (v/v) 
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formaldehyde for 10 min at 24°C with slow shaking. The pulldown assay was performed 

as previously described [26]. For western blot analyses, experiments were performed 

using SDS-PAGE on 4-15% polyacrylamide gradient gels under non-reducing conditions. 

The blots were incubated with HRP-linked polyclonal goat anti-human TTP or goat-anti 

human HuR antibody (Santa Cruz Biotechnology; both at 1:1000 dilution) in blocking 

buffer containing 3% (w/v) non-fat milk in 1× NET (150 mM NaCl, 5 mM EDTA, 50 

mM Tris pH 7.4, 0.5% Triton X-100) and incubated at 4°C overnight. Immunoreactive 

bands were visualised using SuperSignal West Femto Maximum Sensitivity Substrate 

(Thermo Scientific) and a FluorChem Q Gel Imaging System (Alpha Innotech).  

            3.2.5 RNA Immunoprecipitation 

HepG2 cells were transfected in 100-mm dishes with βG-CPB2/3’UTR or βG-

CPB2/3’UTRΔTTP plasmids for 48 hours, followed by crosslinking and lysis as 

described above for the RaPID procedure. Immunoprecipitation was carried out as 

described previously [27] using 1 mg of goat anti-human HuR antibody (Santa Cruz 

Biotechnology). All lysate samples were in parallel incubated with 1 mg of irrelevant 

antibody of the same isotype (goat-anti-donkey (Santa Cruz Biotechnology)). Mock IP 

reactions were also carried out, containing the lysis buffer and anti-HuR antibody. After 

the final wash, the supernatant was aspirated and 1 mL of TriZol (Invitrogen) was added 

to the beads. RNA was extracted, treated with DNase I for 1 hour and phenol/chloroform 

extracted. The amounts of β-globin fusion transcripts were quantified with real time qRT-

PCR using primer and probe sets specific for rabbit β-globin and human GAPDH, as 

described above. 
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 3.3 Results 

           3.3.1 Pro-inflammatory mediators decrease TAFI protein levels 

In order to evaluate the effects of inflammatory mediators on the expression of 

TAFI in liver cells, we utilized a HepG2 (human hepatocellular carcinoma) cell model 

system – in which TAFI is expressed endogenously – and a recently-developed assay 

specific for TAFIa [24]. HepG2 cells were treated with various pro-inflammatory 

cytokines, namely TNFα, IL-6 in combination with IL-1β, and IL-8, as well as LPS which 

induces expression of pro-inflammatory cytokines in HepG2 cells [28]. Conditioned 

medium was collected at various time points for quantification of TAFI secretion using 

the TAFIa assay. After 24 hours, TAFI protein levels decreased by 60% in the presence 

of TNFα and LPS compared to the untreated control (Fig.3.1). The capacity of these 

mediators to decrease TAFI protein was maximal at this point, since the decrement 

remained at 60% after 48 hours of treatment. Combination treatment with IL-6 and IL1-β 

resulted in 45% decrease in TAFI levels at 24 hours compared to non-treated control, and 

culminated at 60% decrease in TAFI levels after 48 hours. Interestingly, treatment of cells 

with IL-8 caused only a modest decrease that was observable after 48 hours and which 

was not statistically significant.  

We then hypothesized that treatments with anti-inflammatory cytokines may 

cause the opposite effects on TAFI levels. IL-10 and IL-13 have been recognized to 

down-regulate pro-inflammatory cytokine and chemokine production after the appropriate 

inflammatory response had occurred, in order to down-regulate inflammation. IL-13 did 

not significantly affect TAFI protein levels in HepG2 cells (data not shown), whereas the 

treatment of cells with IL-10 caused a 2-fold increase in TAFI protein levels after 48 

hours (Fig.3.1).  
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Figure 3.1 Inflammatory mediators modulate  TAFI protein levels in HepG2 cells.  
HepG2 cells were grown in 6-well plates and treated with  pro-inflammatory cytokines  
TNFα (50 pg/ml), IL-8 (30ng/ml) , IL-6 (10ng/ml) in combination with IL-1β (1ng/ml), 
LPS (1µg/ml) or the anti-inflammatory cytokine IL-10 (1ng/ml). Conditioned media was 
collected at various time points and TAFI was quantitatively activated with thrombin-
thrombomodulin prior to a functional assay specific for TAFIa. TAFIa amounts in each 
sample are corrected to their corresponding total cellular protein content and expressed 
relative to the TAFIa amount present in the untreated samples at the respective time 
points.  The data shown are the mean ±s.e.m.of three independent experiments. †: p < 
0.05; *: p < 0.01; ** p < 0.001 versus untreated control by Student’s t-test. 
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 3.3.2 Effects of pro- and anti-inflammatory cytokines and mediators on CPB2  

           mRNA abundance and promoter activity 

The effects of inflammatory mediators on endogenous TAFI protein levels in 

HepG2 cells prompted us to investigate regulation of CPB2 gene expression to determine 

the mechanisms underlying these effects. We first measured endogenous CPB2 mRNA 

levels with real-time qRT-PCR following 24-hour incubation.  Inflammatory cytokines 

modulate CPB2 mRNA levels in a way that is reflective of TAFI protein levels for each 

treatment group (Fig. 3.2). CPB2 mRNA abundance was reduced in cells treated with 

TNFα, IL-6/IL-1β, and LPS; it remained unchanged in the cells treated with IL-8 and was 

increased in IL-10 treated cells. 

Next, we studied the effects of the inflammatory mediators on CPB2 promoter 

activity using luciferase reporter gene constructs whose expression is under the control of 

the human CPB2 5’-flanking region. The constructs contain systematic 5’-deletions of 

genomic DNA to allow for the localization of any cis-acting elements. HepG2 cells were 

transiently transfected with the constructs, followed by the addition of inflammatory 

mediators. The treatments were maintained for 24 hours and luciferase activity was 

measured. None of the constructs appeared to be affected by either pro- or anti-

inflammatory mediators (Fig. 3.3). As expected, the -73 and empty (pGL3 Basic) 

constructs showed vastly reduced luciferase activity. Therefore, the observed changes in 

mRNA levels are not attributable to changes in CPB2 promoter activity.  
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Figure 3.2  Inflammatory mediators modulate abundance of  endogenous CPB2 
mRNA. HepG2 cells were treated with indicated inflammatory mediators for 24 hours, 
followed by isolation of total RNA and DNase I digestion. Endogenous CPB2 mRNA 
was quantitated with real-time qRT-PCR using Taq-based chemistry in a multiplex 
reaction containing primer and probe sets specific for human TAFI and GAPDH. The 
relative abundance of TAFI mRNA for each sample was then normalized to untreated 
control. The data shown are the mean ± s.e.m.of three independent experiments.   
*: p < 0.01 versus untreated control by Student’s t-test. 
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Figure 3.3  Inflammatory mediators do not influence transcription of the CPB2 
promoter. Firefly luciferase reporter plasmids containing systematic deletions of the 
CPB2 5’-flanking region were used to assess the effect of inflammatory mediators on 
TAFI promoter activity.  HepG2 cells were transiently transfected with luciferase fusion 
constructs, followed by the addition of inflammatory mediators. The treatments were 
maintained for 24 hours and relative luciferase activity was measured, using Renilla 
luciferase as an internal control. Values are expressed relative to the -2699 construct in 
the absence of cytokine treatment. The data shown are the mean ± s.e.m. of three 
independent experiments. 
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3.3.4 Effects of pro- and anti-inflammatory cytokines and mediators on CPB2 

mRNA stability 

We next sought to determine whether their regulatory effects are exerted through 

changes in mRNA stability mediated by the 3’-UTR. We used our β-globin reporter 

mRNA system for these studies, as previously reported [21], improved by several 

modifications. The βG-CPB2/3’-UTR plasmid utilized in these experiments contains a 

460 bp sequence of rabbit β-globin cDNA whose expression in this system is driven by a 

doxycycline-responsive promoter. We conducted the experiments in HepG2 cells that 

stably express the transactivator protein necessary for the activity of this promoter. Upon 

addition of doxycycline, the binding of the transactivator protein is impeded, resulting in 

transcriptional shut-off, allowing for the subsequent measurement of mRNA half-life. 

This system allows us to selectively inhibit the transcription of our constructs only, 

without affecting the cellular transcription machinery, a consequence that is encountered 

when other drugs are used to stop transcription (i.e. actinomycin D). We then cloned a 1-

kb segment of the CPB2 3’-flanking region downstream of the β-globin cDNA sequence, 

encompassing the native polyA signals and the surrounding regulatory elements 

(approximately 450 bp downstream of the 3’-most polyA site). By including these 

elements and deleting the SV40 polyA signal present in the original pC7βG plasmid, 

utilization of binding sites on fusion transcripts by the various trans-acting factors is 

expected to be reflective of what occurs on the endogenous CPB2 counterparts.  

HepG2 cells were treated with the inflammatory mediators under study for 24 

hours, and doxycycline was added in the absence of the treatments. The cell lysates were 

collected at various time points thereafter, up to 8 hours. RNA was extracted and 

subjected to multiplex real-time qRT-PCR analysis, using primers and probes specific for 
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rabbit β-globin and GAPDH, which was used for normalization. Linear regression 

analysis was performed and fusion transcript mRNA half-lives were determined (Table 

1). Treatments with TNFα, LPS and IL-6 together with IL-1β resulted in 30% 

destabilization of the fusion mRNA, while IL-8 treatment did not cause significant 

change in mRNA half-life (Table 3.1; Fig. 3.4A). Interestingly, treatment of cells with IL-

10 produced a stabilizing effect, resulting in a 37% increase in fusion mRNA half-life 

(Table 3.1; Fig. 3.4A). These results are in line with the observations of TAFI protein 

secretion and CPB2 mRNA abundance, and suggest that the observed effects of the anti- 

and pro-inflammatory mediators and cytokines are, at least in part, attributable to changes 

in mRNA stability.  

Our most recent work demonstrated that TTP is capable of binding to the CPB2 

3’-UTR, exerting destabilizing effects [21]. TTP has been shown to cause similar effects 

on mRNAs encoding many cytokines, transcription factors, and oncogenes [2]. Moreover, 

binding of TTP to the TNFα 3’-UTR is modulated during inflammatory response [29]. 

Initially, in order to allow rapid synthesis and production, the binding of TTP to the TNFα 

3’-UTR is decreased. After the proper inflammatory response has ensued, TTP rapidly 

targets TNFα mRNA for degradation, to prevent exaggerated inflammation and delays in 

its downregulation. To assess the potential role of TTP in mediating the destabilizing 

effects of the pro-inflammatory mediators we observed on the fusion mRNA containing 

CPB2 3’-UTR, we introduced mutations in the TTP binding site within the CPB2 3’-

flanking region in the context of our β-globin fusion mRNA constructs (βG-CPB2/3’-

UTRΔTTP). These mutations abolish TTP binding and stabilize the fusion transcripts by 

67% [21]. Treatments of cells expressing the fusion mRNAs containing the TTP mutation 

with pro-inflammatory mediators under study did not result in significant changes in half-
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lives compared to the untreated control (Table 3.1; Fig. 3.4B). However, treatment of 

cells expressing the mutant fusion transcript with IL-10 resulted in further stabilization of 

the mRNAs (56% increase in half-life). Therefore, modulation of CPB2 mRNA stability 

in the presence of pro-inflammatory mediators is mediated by TTP, while modulation by 

the anti-inflammatory IL-10 is not. 

    3.3.5 Identification of HuR as a trans-acting protein binding to the CPB2 3’-UTR  

Our previous report describes the presence of one stability element upstream of 

the first polyA site within the CPB2 3’-UTR, followed by two instability elements 

upstream of the second and third polyA sites, respectively [21]. We identified TTP as the 

trans-acting factor binding to the 3’-most instability element. Here we set out to identify 

other ARE-binding proteins (ABPs) acting on these cis-elements. To conduct this 

analysis, we adapted a recently described aptamer-based mRNA affinity purification 

technique for the identification of RNA and protein factors present in ribonucleoprotein 

complexes, called RNA purification and identification (RaPID) [26]. This method 

exploits the high affinity interaction between MS2 aptamer sequences and bacteriophage 

coat- binding protein, as well as high affinity interaction between streptavidin and 

streptavidin-binding protein for the affinity chromatography purification step. We 

inserted the 1 kb segment of the CPB2 3’-flanking region downstream of the 24 repeats of 

MS2 aptamer sequences in one construct. Therefore, any protein factors bound to the 3’-

UTR will be captured with this transcript (bait construct). The second construct encodes a 

fusion protein consisting of bacteriophage coat protein for high affinity binding to the 

MS2 aptamers on one end, and streptavidin-binding protein on the other end for binding 

to streptavidin-coated beads, with green fluorescence protein in the middle of the fusion 

protein. HepG2 cells were co-transfected with both plasmids and lysates were subjected 
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to affinity chromatography. The associated proteins were eluted off the beads; to verify 

occupancy of the 3’-UTR by TTP, the eluate was subjected to Western blot analysis with 

an anti-TTP antibody. Immunoreactive bands specific for TTP were only present in the 

lane containing lysate from cells transfected with the CPB2/3’-UTR-containing bait 

plasmid, and not in the lane corresponding to the 3’UTR-less bait (Fig. 3.5A).  

An intriguing candidate for a trans-acting factor binding to the CPB2 3’-UTR is 

HuR. Bioinformatic analysis of the sequence upstream of the first polyA site revealed its 

U-richness (a requirement for HuR binding) and this region also contains a cis-acting 

stability element [21]. We therefore performed the RaPID experiment, followed by 

immunoblotting with an anti-HuR antibody. The immunoreactive band in the lane 

corresponding to the sample containing the CPB2 3’-UTR indicates that HuR is indeed 

capable of binding (Fig. 3.5B). 

    3.3.6 Effects of pro- and anti-inflammatory cytokines and mediators on HuR  

             binding to the CPB2 3’-UTR 

TTP and HuR exert opposing effects on target transcript stability. Moreover, it has 

been shown that the binding may be competitive (i.e. mutually exclusive) [30]. In fact, 

regulation of the chief inflammatory cytokine TNFα has been shown to be controlled by 

the p38/MAPK-activated protein kinases; MK2-driven exchange between TTP and HuR 

at the TNFα 3’-UTR in macrophages allows the development of prompt inflammatory 

response, followed by appropriate downregulation [30]. We sought to investigate whether 

the same paradigm extends to the regulation of CPB2 mRNA in hepatic cells.  

HepG2 cells were transfected with β-globin fusion constructs and treated with the 

same schedule of pro- and anti-inflammatory mediators as described above. Cellular 

lysates were then subjected to immunoprecipitation using antibody specific for HuR. The 
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immunoprecipitates were extensively washed and the associated transcripts were eluted 

off the beads with TriZol reagent. RNA was extracted, treated with DNase I, and 

subjected to real-time qRT- PCR using a primer and probe set specific for rabbit β-globin 

cDNA. In parallel, control immunoprecipitation reactions were carried out for each 

treatment sample using an irrelevant antibody of the same isotype. Immunoprecipitates 

from cells treated with pro-inflammatory mediators were depleted of the βG-fusion 

mRNA compared to the untreated sample (Fig. 3.6A), indicating reduced occupancy of 

the CPB2 3’-UTR by HuR. Conversely, immunoprecipitates from cells treated with the 

anti-inflammatory cytokine IL-10 were significantly enriched with the βG-fusion 

transcript (Fig. 6A).  

Next we examined whether HuR and TTP may share the binding site within the 

CPB2 3’-UTR by performing immunoprecipitation experiments using our ΔTTP mutant 

β-globin fusion constructs. TTP and HuR appear to contact discrete sites within CPB2 3’-

UTR as there was no difference in the occupancy of HuR between the wild-type and 

ΔTTP mutant fusion mRNA’s (Fig. 3.6B, inset). However, cytokine treatment of cells 

transfected with the ΔTTP mutant plasmid increased occupancy of the fusion transcripts 

with HuR, with the exception of IL-8 (Fig. 3.6B), indicating that the absence of TTP 

bound to the transcript promotes HuR binding in the presence of both pro- and anti-

inflammatory stimuli. This may suggest that the binding of TTP and HuR are mutually 

exclusive despite the recognition of distinct sites on the CPB2 3’-UTR. 
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Figure 3.4  CPB2 mRNA stability is modulated by inflammatory mediators. The effects 
of inflammatory mediators on mRNA stability were assessed using our  β-globin fusion 
constructs  whose expression is under the control of doxycycline-repressible promoter, 
containing 1kb of the CPB2 3’-flanking region, either with intact TTP binding site (β-globin-
CPB2 3’-UTR) (Panel A) or with TTP binding site mutation (β-globin-ΔTTP 3’-UTR) (Panel 
B). Transfected HepG2 cells were treated with inflammatory mediators for 24 hours, and 
doxycycline was added to the final concentration of 1µg/ml in the absence of the treatments. 
The cell lysates were collected at various time points thereafter, up to 8 hours. RNA was 
extracted and subjected to multiplex real-time qRT- PCR analysis, using primer and probe 
sets specific for rabbit β-globin and human GAPDH. Linear regression analysis was 
performed and fusion transcript half-lives were determined (Table 3.1). The data shown are 
the mean ± s.e.m. of three independent experiments. 
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Table 3.1 Stabilities of fusion mRNAs after cytokine treatment 

Treatment 
β-globin-TAFI3’-
UTR  t(1/2) (hrs) 

β-globin-ΔTTP 3’-
UTR  t(1/2) (hrs) 

Untreated 3.9 ± 0.4 6.7 ± 0.5 

+TNFα 2.8 ± 0.1* 6.4 ± 0.8 

+IL-8 3.8 ± 0.2 5.5 ± 0.1* 

+IL-6/IL-1β 2.9 ± 0.2* 6.0 ± 0.4 

+LPS 2.9 ± 0.1* 6.9 ± 0.8 

+IL-10 5.4 ± 0.1* 10.5 ± 0.5* 

*: p < 0.01 versus untreated control by Student’s t-test 

 

Figure 3.5  Identification of trans-acting factors binding to the CPB2 3’-UTR. We 
adapted an aptamer-based mRNA affinity purification technique for the identification of 
RNA and protein factors present in ribonucleoprotein complexes. HepG2 cells were co-
transfected with the ‘bait’ construct encoding the aptamer repeats and the CPB2 3’-UTR 
and the ‘hunter’ construct encoding the aptamer-binding protein and lysates were 
subjected to affinity chromatography. The input, supernatant, wash and elution fractions 
from the chromatography were subjected to Western blot analysis using an anti-TTP 
antibody (Panel A) or anti-HuR antibody (Panel B). Control experiments were performed 
using a ‘bait’ construct lacking the CPB2 3’-UTR and the elution fraction was also 
included on the Western blots (No 3’-UTR). 
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Figure 3.6  Inflammatory mediators modulate HuR binding to the CPB2 3’-UTR.  
HepG2 cells were transfected with plasmids encoding β-globin- CPB2 3’-UTR fusion 
mRNA (Panel A) or β-globin-ΔTTP 3’-UTR fusion mRNA (Panel B), and treated for 24 
hours with the indicated inflammatory mediators. RNA immunoprecipitation experiments 
were carried using anti-HuR antibody and protein A agarose beads. RNA was extracted 
from immunoprecipitates with TriZol, and quantitated with real-time qRT-PCR. Parallel 
reactions were carried out using non-specific antibody of the same isotype (control). 
Inset: Direct comparison of the qRT-PCR signal from the respective fusion transcripts 
after immunopreciptation The data shown are the mean ± s.e.m. of three independent 
experiments. †: p < 0.05; *: p < 0.01; ** p < 0.001 versus untreated control by Student’s 
t-test. 
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      3.4 Discussion 

Plasma TAFI concentrations vary considerably in the human population, with the 

most recent estimate ranging from 50% to greater than 200% of the mean value [31]. The 

majority of this variation appears to be attributable to gene regulatory events, since 

traditional risk factors for cardiovascular disease were shown to have little impact on 

TAFI levels and genetic factors account for about a quarter of the variation [32]. Many 

hormonal factors and disease states have been shown to affect TAFI concentrations [33, 

34], including pregnancy; pre-eclampsia; use of oral contraceptive or hormone 

replacement therapy in women; renal disease; multiple myeloma; thyroid status, and 

various forms of inflammatory conditions such as Behçet’s disease, inflammatory bowel 

disease; sepsis; and complications of sepsis including disseminated intravascular 

coagulation (DIC) and multiple organ dysfunction syndrome (MODS). In the present 

study we set out to gain further insights into the transcriptional and post-transcriptional 

regulatory mechanisms governing TAFI expression, focusing on the role of inflammatory 

mediators. Changes in plasma TAFI concentrations in the setting of inflammation may 

alter the host defense response in terms of both hemostasis/fibrinolysis and inflammation 

itself, as TAFI has been shown to influence both of these pathways. 

We investigated the effects of pro-inflammatory cytokines and modulators on 

TAFI protein levels in HepG2 cells using a sensitive and quantitative functional assay for 

TAFIa. TNFα, IL-6 plus IL-1β and LPS decreased TAFI protein levels in conditioned 

medium of HepG2 cells, while IL-8 had no significant effect. Interestingly, treatment of 

HepG2 cells with the anti-inflammatory cytokine IL-10 resulted in increased TAFI 

protein levels, whereas IL-13 had no effect. 
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Since our initial report on the role of CPB2 3’-UTR in dictating mRNA stability 

and the effect of IL-6 and IL-1β on both abundance and mRNA stability [16,18], we have 

continued to investigate the mechanistic basis of these observations. Here we identified a 

regulatory role of TTP in modulating CPB2 mRNA stability in the presence of 

inflammatory cytokines and mediators. TTP binds to mRNAs and destabilizes them by 

promoting their deadenylation and subsequent degradation [2,29]. TTP is present in the 

liver, and certainly in hepatocytes, as evidenced by the presence in HepG2 cells, and its 

expression is induced by TNFα and bacterial LPS. Therefore, TTP is a plausible 

candidate for mediating both constitutive and regulated CPB2 mRNA stability in HepG2 

cells. 

To examine the role of TTP in these events, we selectively mutated the TTP 

binding site in CPB2 3’UTR and studied the effects on mRNA stability. To do this, we 

constructed “second generation” β-globin fusion plasmids in which the strong SV40 

polyA signal was removed from the plasmid backbone and a total of 1 kb of 3’-flanking 

sequence from the CPB2 gene inserted. Using these constructs we would expect that the 

stability and polyadenylation of the resultant fusion transcript would faithfully 

recapitulate that seen in the endogenous CPB2 mRNA in HepG2 cells; preliminary 

studies indicate that this is the case (data not shown). In addition, we replaced the 

cytomegalovirus promoter in the original plasmid with a doxycycline-repressible 

promoter to allow selective transcriptional shut-off of the fusion constructs only, 

circumventing the need for other transcriptional inhibitor drugs, such as actinomycin D, 

which affects global transcription, including that of genes encoding short-lived mRNA 

species whose protein products have potentially important regulatory roles. The ability of 

these inflammatory mediators to modulate endogenous CPB2 mRNA abundance as 



87 
 

shown in Fig. 2, prompted us to investigate whether the modulation occurs at the 

transcriptional or post-transcriptional level, or both. Using our luciferase CPB2 promoter 

constructs we detected no difference in promoter activity in the presence of inflammatory 

mediators under study (Fig. 3.3). A recent report showed that a hypolipidaemic drug, 

PPARα agonist WY14643, mediated reduction of TAFI protein levels in HepG2 cells 

caused by a decrease in CPB2 mRNA stability, without affecting transcriptional aspect of 

CPB2 gene expression [35]. Here, we uncovered that inflammatory mediators utilize a 

similar mechanism to reduce TAFI protein expression through exclusively post-

transcriptional effects, although they classically operate through transcriptional 

mechanisms, via induction of NFκB, its translocation into the nucleus and subsequent 

activation of  transcription of genes encoding acute phase proteins [36]. In fact, we 

recently reported transcriptional activation of the mouse CPB2 gene following TNFα 

treatment of mouse hepatocytes and demonstrated that this effect is indeed NFκB-

dependent [37]. However, this report also demonstrated that the consensus NFκB binding 

site is absent from the human CPB2 promoter, which may explain the reason behind post-

transcriptional modulation of CPB2 mRNA stability as the chief operating mechanism in 

human hepatocytes.  

The present work indicates that the stability of the β-globin fusion transcripts in 

HepG2 cells was reduced by one third compared to  untreated control cells, when TNFα, 

IL-6 plus IL-1β or LPS treatments were administered (Table 3.1; Fig. 3.4A). IL-8 did not 

alter the fusion mRNA stability, consistent with the observations on TAFI protein and 

endogenous CPB2 mRNA levels in the presence of this cytokine. In our laboratory we 

have observed that IL-8 plays a role in modulating the levels of TAFI protein produced 

by THP-1 macrophages (unpublished data). In fact, IL-8 signaling is the chief pathway 
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operating during vascular inflammation, and in light of our observation on macrophage-

secreted TAFI, may be involved in modulation of extra-hepatic pool of TAFI in the 

vasculature, which may have pleiotropic effects on thrombus formation and lysis, 

leukocyte adhesion and plaque formation, all of which are contributing events to 

atherosclerosis. The destabilization of the β-globin fusion transcripts by pro-inflammatory 

cytokines was abolished by mutations in the TTP binding site (Table 3.1; Fig. 3.4B). 

These results suggest that TNFα, IL-6 in combination with IL-1β, and LPS-induced 

down-regulation of TAFI protein and mRNA levels is mediated through TTP-induced 

destabilization. The IL-10-mediated increase in TAFI protein levels is clearly attributable 

to the increase in mRNA abundance (Fig. 3.2A) due to increased mRNA stability (Fig. 

3.3A). However, TTP does not appear to play a role in this event, as the mutant fusion 

mRNA was equally stabilized upon IL-10 treatment (Table 3.1; Fig. 3.4B).  

In addition to TTP, another ABP that is a candidate to contact CPB2 cis-sequences 

within the 3’-UTR is HuR. We adapted the RaPID technique to isolate proteins associated 

with the CPB2 3-’UTR using affinity chromatography, and the presence of the 

immunoreactive band in the lane corresponding to the elution step (Fig. 3.5B) confirms 

the association between HuR and the CPB2 3’-UTR. Transcripts of many cytokines 

destabilized by TTP, such as TNFα, IL-8 and COX-2, have been shown to possess a 

binding site for HuR which acts to stabilize them [38-40]. These two ABPs play opposing 

roles and together dictate the abundance of target transcript. In fact, TTP and HuR have 

also been shown to bind to the transcripts encoding themselves as well as each other, and 

these events are coordinated by microRNAs [41]. Indeed, HuR is often referred to as the 

“regulator of regulators’, much like TNFα is often referred to as the master cytokine in 

inflammation [30]. In the current report, we investigated whether the reduced CPB2 
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mRNA stability in the presence of pro-inflammatory mediators is also accompanied by a 

decrease in HuR binding to the 3’-UTR. RNA-immunoprecipitation experiments were 

performed with anti-HuR antibody and the amount of associated β-globin fusion 

transcript was decreased in immunoprecipitates from cells treated with pro-inflammatory 

cytokines, while it increased in immunoprecipitates from cells treated with IL-10, 

strongly supporting the role for both TTP and HuR in dictating CPB2 mRNA abundance, 

exerting opposite effects. It is easy to envision that TTP and HuR, as functional 

competitors in determining CPB2 mRNA stability, may be sharing the binding site and 

that the binding of one impedes the binding of the other. However, RNA-IP experiments 

with the HuR antibody showed that the absence of TTP binding site did not alter the 

binding of HuR (Fig. 3.6B, inset). Therefore, TTP and HuR contact discrete sites within 

CPB2 3’-UTR.  

It has been also been reported that in situations where even if TTP and HuR bind 

discrete sites, the binding of one excludes the binding of the other, possibly through 

mRNA secondary structure perturbations or steric hindrance [40,42]. In fact, 

immunoprecipitates from cells expressing β-globin-ΔTTP 3’-UTR (which cannot bind 

TTP) in the presence of inflammatory mediators were enriched in the fusion mRNAs 

compared to untreated control, indicating that binding of TTP and HuR may be mutually 

exclusive in the presence of inflammatory cytokines, despite their preference for different 

binding sites. Therefore, the decrease in TAFI protein levels upon treatment of HepG2 

cells with TNFα, or IL6 plus IL1β, or LPS can be attributed to decreased mRNA stability 

mediated by TTP with decreased binding of HuR, and thus decreased availability of 

translatable transcripts.  
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Anti-inflammatory cytokine IL-10 caused an increase of TAFI protein levels in 

conditioned medium of HepG2 cells by two-fold, owing to an increase in mRNA 

stability. Although the mechanisms underlying these effects of IL-10 remain unknown, 

they do not appear to be TTP-mediated. Perhaps the anti-inflammatory treatment employs 

mechanisms that act through the microRNA pathway, as was recently demonstrated for 

miR-155 in murine macrophages [43]. MiR-155 enhances the expression of pro-

inflammatory cytokines, such as TNFα, and suppresses expression of anti-inflammatory 

molecules, such as SOCS1.  Interleukin-10 treatment did not affect the transcription of 

the miR-155 host gene nor the nuclear export of pre-miR-155, but rather destabilized both 

pri-miR-155 and pre-miR-155 transcripts, as well as interfered with the final maturation 

of miR-155. Therefore, the orchestration of factors involved in the post-transcriptional 

regulation of the CPB2 mRNA, both cis- and trans-, appears to be multifaceted and this 

report supports the roles of TTP and HuR in this process.  

In conclusion, certain pro-inflammatory mediators decrease TAFI protein levels 

through mechanisms acting at the level of post-transcriptional regulation. TTP appears to 

be the master mediator of these effects in hepatocytes. Additionally, this report is to our 

knowledge the first to identify HuR as ABP acting on CPB2 3’-UTR, which may 

contribute to the modulation of stability of the CPB2 transcripts in an inflammatory 

environment. The cytokine involved in coordinating anti-inflammatory processes, IL-10, 

increased TAFI levels in HepG2 cells, and this effect can be attributed to increased 

stability of the transcript. Deregulated balance between TTP and HuR observed in cancer 

[42], endothelial dysfunction and vascular inflammation [44], may represent at least one 

of the underlying mechanisms for variation in plasma TAFI concentrations observed in 

patients with these pathologies. 
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Chapter 4: Regulation of CPB2 expression in THP-1 macrophages 

      4.1 Introduction 

Normal haemostasis is characterized by the appropriate regulation of coagulation 

and fibrinolysis, preventing excessive blood loss following vascular injury while 

maintaining the fluidity of the blood at sites remote from the injury. The role of the 

coagulation cascade is to generate fibrin, the major structural component of the blood 

clot, which is converted from soluble fibrinogen to insoluble fibrin. The goal of the 

fibrinolysis cascade is to convert insoluble fibrin to soluble fibrin degradation products, 

leading to the dissolution of the clot. Thrombin-activatable fibrinolysis inhibitor (TAFI, 

Human Genome Organization gene name carboxypeptidase B2, symbol CPB2), is a 

plasma protein that has been demonstrated to play key roles in controlling this balance 

through attenuation of fibrinolysis [1]. TAFI is a plasma zymogen that upon activation by 

thrombin [2], the thrombin-thrombomodulin complex [3] or plasmin [4], becomes an 

enzyme TAFIa, with basic carboxypeptidase activity. TAFIa cleaves carboxy-terminal 

arginine and lysine residues from various protein and peptide substrates. The discovery of 

TAFI by several independent groups led to the variation in nomenclature, such that TAFI 

is also known as plasma procarboxypeptidase B [5], procarboxypeptidase R (for arginine) 

[6], or procarboxypeptidase U (for unstable) [7]. TAFIa attenuates fibrinolysis by 

removing carboxy-terminal lysine residues from partially degraded fibrin, leading to 

interruption of multiple positive feedback mechanisms in the fibrinolysis cascade [1, 8-

10].  

Plasma TAFI levels vary substantially in the human population, ranging from 100 

to 300 nM [11]. The significance of this variability lies in the fact that the Km for 

activation of TAFI by thrombin is 1µM [3], which is well above the physiological 



95 
 

concentrations of TAFI. An individual with higher TAFI zymogen levels would thus 

produce more TAFIa enzyme for any given thrombogenic stimulus. Accordingly, several 

clinical studies have established that elevated TAFI levels  or markers of its activation 

have been associated with increased risk for the development of various thrombotic and 

atherothrombotic disorders, such as venous thrombosis [12, 13], recurrent venous 

thromboembolism [14], ischaemic stroke [15-17] and coronary heart disease [18], as well 

as the risk of cardiovascular death [19].  

In addition to acting as a molecular link between coagulation and fibrinolysis, the 

TAFI pathway may also mediate molecular connections between coagulation and 

inflammation. Undoubtedly, coagulation and inflammation are intimately connected in 

the sense that vascular injury leads to the activation of both. TAFIa mediates the interplay 

between coagulation and inflammation by inactivating several pro-inflammatory peptides, 

such as the anaphylatoxins C3a and C5a [20], osteopontin [21] and bradykinin [22, 23], 

and by activating anti-inflammatory mediators, such as the adipokine chemerin [24]. 

Recent evidence suggests that TAFIa is capable of modulating the plasminogen-plasmin 

system by attenuating pericellular plasminogen activation [25, 26]. Activation of 

plasminogen to plasmin is achieved by plasminogen activators such as t-PA and u-PA, 

and the precise spatial and temporal control for the generation of plasmin is carefully 

orchestrated by the balance between plasminogen activation and plasmin inhibition. The 

latter can occur either directly, by α2-antiplasmin, or indirectly, by inactivation of 

plasminogen activators, t-PA and u-PA. Binding of plasminogen to cell surface receptors 

is an example of a mechanism for the spatial control of plasmin generation. Plasmin 

generated at the surface of cells activates matrix metalloproteinases (MMPs), hydrolyzing 

extracellular proteins (such as fibrin), proteins of the extracellular matrix (ECM), and 
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activating growth factors (such as the latent transforming growth factor β, TGF-β). TAFIa 

can cleave carboxy-terminal lysine residues from cell surface receptors, thus attenuating 

generation of plasmin at the cell surface. Attenuation of pericellular plasminogen 

activation by TAFIa is expected to have pro-thrombotic consequences in the context of 

the vascular wall, in keeping with the role of TAFIa as an anti-fibrinolytic agent. 

Additionally, this action of TAFIa would result in the reduction of activation of TGF-β, in 

the absence of which cytokines might induce smooth muscle cell proliferation and the 

transformation of these cells to a more atherogenic cellular phenotype [27, 28].  

During atherogenesis, the plaque progression is accompanied by secretion of 

growth factors and cytokines by macrophages. Additionally, plaque-resident macrophages 

uptake the surrounding lipid molecules via scavenger receptors, leading to formation of 

foam cells, which in turn stimulate vascular smooth muscle cell growth and interstitial 

collagen synthesis [29]. Various atherogenic factors, such as Lp(a), induce the expression 

of adhesion molecules, ICAM-1 and Mac-1 integrin, contributing to endothelial 

dysfunction by  promoting adhesion of inflammatory cells and differentiation of 

monocytes into macrophages, increasing the pool of foam cells. Endothelial dysfunction is 

also accompanied by reduced NO bioavailability and increased oxidant excess [30], 

which contribute not only to initiation but also to progression of atherosclerotic plaque 

formation and triggering of cardiovascular events. The plasminogen-plasmin system also 

becomes deranged, through stimulation of PAI-1 production by endothelial cells by 

Lp(a), thus  decreasing plasmin formation, consequence of which may also be attributed 

by the action of TAFIa in this context. The events that occur in the vessel wall during 

atherogenesis also have a pro-inflammatory component, namely the production of 

cytokines by vascular cells, and through various autocrine and paracrine mechanisms, 
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expression of adhesion molecules by the endothelium and the accompanying monocyte 

chemotaxis, and the proliferation of smooth muscle cells.  

That TAFIa can modulate pericellular plasminogen activation in vivo has been 

demonstrated in TAFI-deficient (TAFI-/-) mice with hemizygous plasminogen 

background (thus possessing half the amount of plasminogen compared to their wild-type 

counterparts). Following peritoneal thioglycollate injection, TAFI-deficient mice 

demonstrated increased leukocyte migration to the peritoneum, in keeping with the role of 

TAFIa in attenuation of pericellular plasminogen activation [25].  

Expression of CPB2 in the liver is the major contributor to the plasma pool of 

TAFI. However, recently evidence suggests that CPB2 is expressed at sites outside the 

liver. The initial report for this phenomenon described the existence of a platelet pool of 

TAFI that can be released upon platelet activation [31]. The data generated by our 

laboratory contributed significantly to this field of TAFI research. We identified 

expression of CPB2 in vascular and inflammatory cell types, and found CPB2 mRNA in 

the human megakaryoblastic cell lines MEG-01 and Dami, the human monocytoid cell 

line THP-1 as well as THP-1 cells differentiated into a macrophage-like phenotype, and 

in primary human umbilical vein and coronary artery endothelial cells [32]. CPB2 mRNA 

abundance in MEG-01, Dami, and THP-1 cells was modulated by the state of 

differentiation of these cells. While CPB2 mRNA abundance was higher in differentiated 

Dami and differentiated MEG-01 cells, in case of THP-1 cells differentiation was 

accompanied by a decrease in CPB2 mRNA abundance. The significance for the 

modulation of mRNA abundance in these cell types is presently unknown, but 

nonetheless warrants further investigation. In fact, the regulatory mechanisms of CPB2 

expression that operate in extra-hepatic tissues still remain elusive. Since  macrophages 
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infiltrate diseased vessel walls and are subject to stimulation by inflammatory mediators, 

it is expected that the regulation of CPB2 expression could impact regulation of the 

plasminogen system locally, with all the attendant downstream effects. In the current 

investigation we set out to examine the regulatory mechanisms of CPB2 expression in 

THP-1 macrophages, as they are a cell type that contributes importantly to the 

physiological and pathological processes of vascular biology, in order to gain further 

insights into the novel roles of the TAFI pathway beyond clot lysis.  

       4.2 Experimental procedures  

            4.2.1 Mammalian cell culture  

Cells were maintained in a humidified incubator at 37°C under a 95% room 

air/5% CO2 atmosphere. THP-1 monocytes were cultured as previously described [32]. 

For TAFIa assay experiments, THP-1 monocytes were seeded in 60-mm culture dishes 

and differentiated into macrophages by incubation with PMA (1 nM final concentration) 

for 72 hours. PMA was removed and normal growth media was added lacking serum. 

Cells were incubated in serum-deficient media with  pro-inflammatory cytokines  TNFα 

(50 pg/ml), IL-8 (30ng/ml) , IL-6 (10ng/ml) in combination with IL-1β (1ng/ml), LPS 

(1µg/ml) and  IL-10 (1ng/ml), for up to 48 hours. Conditioned media was collected as 

well as the total cellular lysates in lysis buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 

0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA). TAFI was quantitatively 

activated with thrombin-thrombomodulin prior to a functional assay specific for TAFIa 

(described below).  

            4.2.2 RNA isolation and qRT-PCR 

  THP-1 monocytes were seeded in 12-well plates and differentiated by incubation 

with PMA (1 nM final concentration) for 72 hrs. PMA was removed and the cells were 



99 
 

maintained in normal growth media thereafter. Inflammatory mediators were added, 

where appropriate, at the following concentrations: TNFα (50 pg/mL), combination of IL-

6 (10 ng/mL) and IL-1β (1 ng/mL), IL-8 (30 ng/mL), LPS (1 μg/mL), IL-10 (1 ng/mL) or 

IL-13 (10 ng/mL). For CPB2 mRNA quantitation experiments, the cells were incubated 

with treatments for 24 hours. For mRNA stability experiments, Actinomycin D was added 

to arrest transcription, to a final concentration of 1µM, and RNA was harvested at various 

time points thereafter, up to 6 hours. RNA was extracted with TriZol reagent (Invitrogen) 

and genomic DNA was removed by incubation with DNaseI (Promega) for 2 hours at 

370C. Endogenous CPB2 mRNA was quantitated using absolute qRT-PCR with 

appropriate primer and probe sets, using Brilliant III qRT-PCR kit (Agilent 

Technologies), with 2 µg of total RNA per each qRT-PCR reaction. For endogenous 

CPB2 mRNA quantitation, primer and probe set that recognizes the region common to all 

three polyadenylated forms (named 1660) was used, forward primer: 5'-GAC CAC CCT 

TCC TTT TGT TGA GT-3'; reverse primer :  5'-GGGTGGTCA GAA GTA CAT TAA 

AGATTT-3'; probe sequence:  5'-/56-FAM/TGT GCCTTT /ZEN/AGA AAT ACA ACC 

ATG CAT TCC G/3IABkFQ/-3' (where 6-FAM is the fluorescent dye and ZEN and Iowa 

Black FQ [3IaBkFQ] are quenchers). This primer and probe set was used to quantitate 

CPB2 transcript for mRNA stability experiments as well. A set of appropriate standards 

were included with each qRT-PCR run, and the amount of transcript was determined 

using the equation of the standard curve. To determine the amounts of each of the three 

polyadenylated forms of CPB2 mRNA, two more primer-probe sets were designed. The 

1693 primer-probe set recognizes the region common to the intermediate and the longest 

polyA species, forward primer:  5'-CTG GGC CAT CGC CTA ATT AC-3'; reverse 

primer: 5'-GGGTGGTCA GAA GTA CAT TAA AGATTT-3'; probe sequence: 5'-/56-
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FAM/TGT GCCTTT /ZEN/AGA AAT ACA ACC ATG CAT TCC G/3IABkFQ/-3'. The 

last prime- probe set, 1819 was designed to only recognize the longest polyA species, 

forward primer: 5'-TAC AAC CAT GCATTC CGT TTG-3'; reverse primer: 5'-TTG 

ACA CCC CTC CCCTTT C-3'; probe sequence: 5'-/56-FAM/TCC ACG GTA 

/ZEN/ATT AGG CGATGG CCC /3IABkFQ/-3'. The amount of each polyA form was 

therefore determined by subtracting the 1693 and 1819 signals from the 1660 signal (for 

the amount of the shortest form), by subtracting the 1819 signal from the 1693 signal (for 

the amount of the intermediate form) and the amount of the longest polyA form was 

obtained directly from the 1819 signal. The number of transcripts were then expressed as 

percentage of total.  

            4.2.3 TAFI activation and TAFIa assay 

A highly sensitive functional assay for TAFIa was implemented as previously 

described [33]. The first step is quantitative activation of all TAFI present in the sample, 

which was carried out as described previously [34]. TAFIa concentrations measured by 

the TAFIa assay in each sample were divided by the respective total cellular protein 

values obtained using the BCA assay (Pierce Chemical) to account for the differences in 

cell numbers. Results were then normalized to the untreated medium sample for each time 

point, expressed as fraction per mg of total cellular protein. 

      4.3 Results  

           4.3.1 Pro-inflammatory mediators increase TAFI protein levels 

  The effects of inflammatory mediators on the expression of TAFI in human 

macrophages were examined using differentiated THP-1 cells as a model system, with a 

recently developed assay specific for TAFIa [33] . The cells were treated with pro-

inflammatory cytokines and mediators: TNFα, IL-6 in combination with IL-1β, and IL-8, 
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LPS, as well as the anti-inflammatory cytokine, IL-10. THP-1 monocytes were 

differentiated using phorbol-12-myristate-13-acetate (PMA) for 72 hours, the 

inflammatory mediators were added to the culture medium, and the conditioned medium 

was collected thereafter at various time points for quantification of TAFI protein using 

the TAFIa assay. The increase in TAFI protein levels was observable as early as 12 hours 

post-treatment, albeit to an extent that was not statistically significant. Statistically 

significant elevation of TAFI levels occurred at later time points. After 24 hours, the 

increase ranged from less than 10% in case of TNFα and IL-10, 14% for IL-6 and IL-1β 

combination and for IL-8, and up to 64% for LPS-treated cells (Figure 4.1). The capacity 

of these mediators to modulate TAFI protein continued even after 24 hours of treatment, 

and the increase in TAFI levels culminated at 44% for TNFα, 63% for IL-8 and 69% IL-6 

and IL-1β -treated cells. The maximal effect was observed with LPS, with an increase of 

109% and IL-10 treatment resulted in 90% increase in TAFI protein.  
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Figure 4.1  Inflammatory mediators modulate TAFI protein levels in THP-1 
macrophages.  THP-1 monocytes were seeded in 60-mm culture dishes and 
differentiated into macrophages by incubation with PMA (1 nM final concentration) for 
72 hours. PMA was removed and normal growth media was added lacking serum. Cells 
were incubated in serum-deficient media with   pro-inflammatory cytokines  TNFα (50 
pg/ml), IL-8 (30ng/ml) , IL-6 (10ng/ml) in combination with IL-1β (1ng/ml), LPS 
(1µg/ml) and  IL-10 (1ng/ml). Conditioned media was collected at various time points 
and TAFI was quantitatively activated with thrombin-thrombomodulin prior to a 
functional assay specific for TAFIa. TAFIa amounts in each sample are corrected to their 
corresponding total cellular protein content and expressed relative to the TAFIa amount 
present in the untreated samples at the respective time points. The data shown are the 
mean ± s.e.m. of three independent experiments. *: p < 0.05; ** p < 0.01 versus untreated 
control by Student’s t-test. 
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 4.3.2 Effects of pro- and anti-inflammatory cytokines and mediators on CPB2 

          mRNA abundance  

We next set out to determine whether the changes observed at the protein levels 

are reflected on CPB2 mRNA levels upon treatment of THP-1 macrophages with the 

inflammatory mediators. We measured endogenous CPB2 mRNA levels with real-time 

qRT-PCR following 24-hour incubation with the inflammatory mediators. All 

inflammatory cytokines under study modulated CPB2 mRNA levels in a way that is 

reflective of modulation for TAFI protein levels. CPB2 mRNA abundance was increased 

in cells treated with TNFα and LPS by 13%, IL-6/IL-1β 33%, IL-8 by 37%, and  IL-10 by 

21% (Figure 4.2). However, the results did not reach statistical significance for TNFα and 

IL-6/IL-1β treatments. 

    4.3.3 Effects of pro- and anti-inflammatory cytokines and mediators on CPB2 

             mRNA stability 

In a recently published report by our laboratory we described the expression of 

CPB2 in vascular and inflammatory cell types, including THP-1 macrophages [32]. We 

observed that CPB2 mRNA abundance is 5000-fold lower than that in HepG2 cells. 

Moreover, we also quantitated the amount of TAFI protein and found that THP-1 

macrophages produce seven times less TAFI protein per million cells compared to HepG2 

cells. In the present study, we measured endogenous CPB2 mRNA half-life in THP-1 

macrophages, and found it to be significantly lower than that in HepG2 cells. Endogenous 

CPB2 mRNA half-life in HepG2 cells is 3.1 hours [35], and it is 33% lower in THP-1 

macrophages (2.1 hours). This is to our knowledge the first report measuring half-life of 

endogenous CPB2 mRNA in THP-1 macrophages.  
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The modulation of CPB2 mRNA abundance upon treatment of THP-1 

macrophages with the inflammatory mediators prompted us to examine whether 

concomitant changes also occur in mRNA stability. THP-1 monocytes were differentiated 

to macrophages with a 72-hour-long PMA treatment, and the cells were then incubated 

with the inflammatory mediators for 24 hours. Actinomycin D was then added to the 

culture medium in the absence of the inflammatory mediators to arrest transcription and 

cell lysates were harvested at various time points thereafter, up to 6 hours. RNA was 

extracted and subjected to real-time qRT-PCR analysis, using primers and probes specific 

for human TAFI. Linear regression analysis was performed and mRNA half-lives were 

determined (Figure 4.3). Treatments with IL-8, LPS and IL-6 together with IL-1β resulted 

in 30% stabilization of CPB2 mRNA, while TNFα treatment caused only a mild increase 

(17%) in mRNA half-life (Figure 3, Table 1). IL-10 treatment resulted in stabilization of 

CPB2 mRNA by 26% (Figure 4.3, Table 4.1). These changes in mRNA stability are in 

line with the observations of TAFI protein secretion and CPB2 mRNA abundance in 

THP-1 macrophages. However, the results did not reach statistical significance for TNFα 

and IL-6/IL-1β treatments. Therefore, the observed effects of TNFα, IL-8, IL6 in 

combination with IL1β, LPS and IL-10 on TAFI protein levels and CPB2 mRNA 

abundance in THP-1 macrophages appear to be, at least in part, attributable to 

concomitant changes in mRNA stability.  
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Figure 4.2   Inflammatory mediators modulate abundance of endogenous CPB2 
mRNA in THP-1 macrophages. THP-1 monocytes were seeded in 12-well plates and 
differentiated into macrophages by incubation with PMA (1 nM final concentration) for 
72 hours. PMA was removed and normal growth media was added. THP-1 macrophages 
were treated with indicated inflammatory mediators for 24 hours, followed by isolation of 
total RNA and DNase I digestion. Endogenous CPB2 mRNA was quantitated with real-
time qRT-PCR using Taq-based chemistry in a multiplex reaction containing primer and 
probe sets specific for human TAFI and GAPDH. The relative abundance of TAFI 
mRNA for each sample was then normalized to untreated control. The data represents the 
average of two independent experiments. *: p < 0.5; ** p < 0.02 versus untreated control 
by Student’s t-test. 
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Figure 4.3  Stability of endogenous CPB2 mRNA is modulated by inflammatory 
mediators in THP-1 macrophages. THP-1 monocytes were seeded in 12-well plates and 
differentiated into macrophages by incubation with PMA (1 nM final concentration) for 
72 hours. PMA was removed and normal growth media was added. Cells were then 
treated with inflammatory mediators for 24 hours. Actinomycin D was added to the final 
concentration of 5µg/ml in the absence of the treatments. The cell lysates were collected 
at various time points thereafter, up to 6 hours. RNA was extracted and subjected to 
absolute real-time qRT- PCR analysis, using primer and probe sets specific for human 
TAFI. Linear regression analysis was performed and CPB2 transcript half-lives were 
determined (Table 3.1). The data represents the average of two independent experiments. 
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Table 4.1   Stability of CPB2 mRNA in THP-1 macrophages after cytokine treatment 

Treatment t(1/2) (hrs) 

Untreated 2.1±0.2

+TNFα 3.7 ±1.2

+IL-8 2.8±0.2*

+IL-6/IL-1β 2.8±0.7

+LPS 2.7±0.1*

+IL-10 2.6±0.2*

*: p < 0.05 versus untreated control by Student’s t-test. 
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    4.3.4 Effects of inflammatory mediators on polyadenylation site selection in  

             THP- 1 macrophages 

  CPB2 3’-flanking region contains 3 possible polyadenylation (polyA) sites at 

positions +1660, +1693 and +1819 (from the stop codon), resulting in 3’-UTRs of 3 

different lengths. We have previously determined that polyadenylation site selection 

appears to be a mechanism that is involved in regulated changes in CPB2 mRNA 

abundance through modulation of CPB2 mRNA stability in HepG2 cells [36]. Treatment 

of HepG2 cells with a combination of IL-6 and IL-1β resulted in 60% decrease in CPB2 

mRNA abundance owing the preferential formation of the longest transcript that is further 

destabilized by a factor of two; stabilities of the intermediate and the shortest transcripts 

remained unchanged. Moreover, in the absence of inflammatory mediators the longest 

transcript only accounts for about 1% of the total pool of CPB2 transcripts, whereas the 

shortest transcript is the most abundant, followed by the intermediate-length transcript. 

Therefore, polyA site selection appears to be modulated in the presence of inflammatory 

mediators in HepG2 cells. Here we investigated whether the same paradigm extends to 

THP-1 macrophages. 

First we examined the distribution of the three differentially polyadenylated CPB2 

forms under normal conditions. Unlike HepG2 cells, in which the shortest form is the 

most abundant, the majority of the total pool of CPB2 transcripts is comprised of the 

longest polyA form in THP-1 macrophages (47%), followed by the shortest form (41%) 

and then the intermediate form (12%) (Figure 4.4). Upon treatment of THP-1 

macrophages with the combination of cytokines IL-6 and IL-1β, we observed a shift in 

the polyadenylation site selection, albeit to a much less dramatic extent. In HepG2 cells, 

this treatment resulted in almost exclusive production of the longest polyadenylation form 
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(98%) [36], while in THP-1 macrophages, the longest transcript now comprises 40% of 

the total pool of CPB2 transcripts (Figure 4.4). In addition, the shortest transcript was 

more favourably produced and comprised 60% of the total pool, while the intermediate 

form was virtually absent. Therefore, polyA site selection may also be modulated in THP-

1 macrophages, albeit to a lower extent than what we observed in HepG2 cells upon 

treatment of cells with IL-6 and IL-1β. We then examined the effect of other 

inflammatory mediators on polyadenylation site selection and observed a similar trend to 

that produced by IL6/IL1β.  Generally, inflammatory mediators caused a mild shift 

towards the production of the shortest polyadenylation form, and the longest polyA form 

seems to be less favourable produced in the presence of these treatments (Figure 4.5).  
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Figure 4.4  Distribution of three differentially polyadenylated forms is different in 
HepG2 cells and THP- macrophages. THP-1 monocytes were differentiated in  6-well 
plates with PMA for 72 hours, followed by addition of IL-6 (10 ng/ml) and IL-1β (1 
ng/ml) (where appropriate) for 24 hours. RNA was extracted and subjected to absolute 
real-time qRT-PCR using primer and probe sets specifically designed to detect the three 
differentially polyadenylated species of CPB2. Each polyadenylated form is expressed as 
percentage from total.  The data represents the average of two independent experiments. 
The data for HepG2 cells are from ref. 36. 
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Figure 4.5  Polyadenylation pattern is modulated in THP-1 macrophages by 
inflammatory mediators.  THP-1 monocytes were differentiated in  6-well plates with 
PMA for 72 hours, followed by addition of inflammatory mediators: TNFα (50 pg/ml), 
IL-8 (30ng/ml) , IL-6 (10ng/ml) in combination with IL-1β (1ng/ml), LPS (1µg/ml) and 
IL-10 (1ng/ml) (where appropriate) for 24 hours. RNA was extracted and subjected to 
absolute real-time qRT-PCR using primer and probe sets specifically designed to detect 
the three differentially polyadenylated species of CPB2. Each polyadenylated form is 
expressed as percentage from total. The data represents the average of two independent 
experiments.  
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      4.4 Discussion 

Human THP-1 cell line was established over 30 years ago [37]. These cells 

resemble primary monocytes in morphology and differentiation properties. After 

exposure to PMA, almost all THP-1 cells start to adhere to culture plates, accompanied by 

expression of macrophage-specific markers and the development of macrophage-like 

phenotype. Although the use of 25-dihydroxyvitamin D3 (1α,25(OH)2D3) has also been 

reported in the literature as an agent used to differentiate THP-1 cells into macrophages, 

PMA and 25-dihydroxyvitamin D3 regulate different signaling pathways [38]. PMA 

treatment results in a more mature phenotype with higher levels of adherence, 

accompanied by lower rate of proliferation and a higher rate of phagocytosis. THP-1 cells 

have been shown to resemble the primary monocytes isolated from healthy subjects and 

subjects with disease (such as diabetics [39] and chronic renal failure [40]), and these 

cells also mirror the in situ alteration of macrophages in adipose tissue from obese 

subjects [41] and in atherosclerotic lesions [42]. Therefore, PMA-differentiated THP-1 

monocytes are generally used as a model system to study macrophage function. Key 

regulatory mechanisms that operate in monocytes and macrophages include regulation of 

mRNA stability, transcriptional control, post-translational modifications and protein 

degradation. That the inflammatory mediators, such as bacterial LPS, modulate 

transcriptional and post-transcriptional profiles in macrophages has been described 

previously in the literature [43-45]. Additionally, the involvement of microRNA (miR) 

pathway in fine-tuning the immune response in THP-1 macrophages has also been 

described. Upon LPS challenge, a marked upregulation of several miRs has been 

reported, namely miR-146a/b, miR-155, and miR-132, miR-214, miR-195a and miR-16 

[40, 46-50]. We have recently discovered the expression of TAFI mRNA and secretion of 
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TAFI protein by THP-1 cells and the aim of the present investigation was to elucidate 

regulatory mechanisms that govern CPB2 expression both under steady state conditions, 

and in the presence of inflammatory mediators.  

Until the discovery of extra-hepatic TAFI expression by our group and others [31, 

32, 51], the liver was thought to be the primary contributor to the plasma pool of TAFI. 

Indeed, expression of CPB2 by the liver likely accounts for the primary source of plasma 

TAFI, as the levels of CPB2 mRNA and TAFI protein are the highest in hepatocytes, 

compared to other cell types. However, in the context of a thrombus microenvironment, 

the contribution of TAFI protein by platelets and macrophages may reach physiologically 

significance, given the cell density at these sites. Therefore, even the subtle changes in 

TAFI protein production by these cells within the thrombus or in the vessel wall might 

appreciably affect the fibrinolytic capacity.  

  We observed that the inflammatory mediators TNFα, IL-8, IL-6 in combination 

with IL-1β, LPS and IL-10 increased TAFI protein secretion by THP-1 macrophages, and 

this effect was also reflected in CPB2 mRNA abundance. Since the expression of CPB2 

mRNA is 5000-fold lower in THP-1 macrophages compared to HepG2 cells [32], we 

were unable to study the effects of these mediators on CPB2 promoter activity, as the 

basal activity is below the detection limit of commonly used assays (i.e. luciferase 

reporter assay). However, that the inflammatory mediators act through transcriptional 

mechanism is unlikely, since they classically employ the activation of NFκB pathway, 

followed by its binding to the NFκB binding site within the responsive promoters. 

Previous study within our laboratory was conducted to characterize the human CPB2 

promoter and to identify transcription factors that regulate promoter activity [52]. This 

study revealed that the consensus NFκB binding site is absent from the human CPB2 
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promoter. In fact, we identified the presence of this site in the CPB2 promoter encoding 

murine TAFI, whereas the human counterpart was found to contain substitutions of key 

nucleotides, thus altering the core consensus from GGGAC to GGGTT. Therefore, these 

substitutions likely render this site non-functional within the human promoter. The 

changes in CPB2 mRNA abundance therefore are likely consequence of changes in CPB2 

mRNA stability, as we have previously identified the key role of CPB2 3’-UTR in 

mediating mRNA stability under steady state conditions and in the presence of 

inflammatory mediators in hepatocytes. Therefore, this control of mRNA stability might 

extend to THP-1 macrophages as well.  

While inflammatory mediators were found to decrease CPB2 mRNA abundance 

and stability in HepG2 cells (unpublished data), they exert the opposite effect on mRNA 

stability in THP-1 macrophages, resulting in stabilization and an increase in total 

abundance of CPB2 mRNA upon 24 hour incubation with THP-1 macrophages. This 

stabilization ranged from a mild 17% in case of TNFα, to 26% in case of IL-10, and up to 

30% in the presence of IL-8, LPS and IL-6/IL-1β combination treatment. Therefore, 

CPB2 3’-UTR appears to mediate regulated changes in mRNA stability differently in 

hepatocytes and THP-macrophages. This difference likely arises from the difference in 

profiles of post-transcriptional proteome and microRNA-ome in these 2 cell types. RNA-

binding protein factors, such as tristetraprolin (TTP), AUF1, BRF1, and HuR may be 

subjected to different control mechanisms in different cell types [53]. Since macrophages 

are a cell type directly involved in inflammation, this specialized function is likely 

accompanied by a specific set of regulatory mechanisms that is different than that in 

hepatocytes. Liver certainly plays a role in inflammation, but is often the site of 

inflammation rather than the initiator of the inflammatory process. Macrophages are 
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known to infiltrate the sites of inflammation, and this results in a switch from an anti-

inflammatory to a pro-inflammatory function, followed by pro-inflammatory cytokine 

production by these cells.  

The gene encoding ATP binding cassette protein A1 (ABCA1) is subjected to 

differential regulation in expression in hepatocytes and macrophages [54]. ABCA1 gene 

was found to be regulated differently in these two cell types, and the authors concluded 

that this difference likely occurs at the post-transcriptional level. Niemann-Pick type C1 

(Npc1) protein inactivation results in lipid accumulation in late endosomes and 

lysosomes, leading to a defect of Abca1-mediated lipid efflux to apolipoprotein A-I 

(apoA-I) in macrophages and fibroblasts. Here the authors investigated the role of Npc1 

in ABCA1-mediated lipid efflux to apoA-I in hepatocytes, the major cell type 

contributing to HDL formation. They concluded that the increased ABCA1 levels are 

largely due to changes in post-transcriptional control in hepatocytes, mainly through 

increased translation rate, an event that was not observed in macrophages. This increase 

in translation rate was mediated by Cathepsin D, which was identified as a positive 

modulator of ABCA1. It was markedly increased at both mRNA and protein levels by 

Npc1 inactivation in hepatocytes but not in macrophages. Therefore, CPB2 gene 

expression regulation may also be subjected to tissue-specific regulatory mechanisms in 

hepatocytes and macrophages in the presence of a common stimulus.   

Unlike HepG2 cells in which the shortest form is the most abundant, the majority 

of the total pool of CPB2 transcripts is comprised of the longest polyadenylated form in 

THP-1 macrophages (47%), followed by the shortest form (41%) and then the 

intermediate form (12%). Upon treatment of THP-1 macrophages with the combination of 

cytokines IL-6 and IL-1β, we observed a mild shift in polyadenylation site selection, to a 
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much less dramatic extent compared to HepG2 cells. In HepG2 cells, this treatment 

resulted in almost exclusive production of the longest polyadenylation form (98%), while 

in THP-1 macrophages, the longest transcript comprises 40% of the total pool of CPB2 

transcripts. In addition, the shortest transcript was more favourably produced and now 

comprised 60% of the total pool, while the intermediate form was virtually absent. 

Therefore, polyA site selection also appears to be modulated in THP-1 macrophages, the 

extent of which is much milder than what we observed in HepG2 cells upon treatment of 

cells with IL-6 and IL-1β. We then examined the effect of other inflammatory mediators 

on polyA site selection and observed a similar trend to that produced by IL6/IL1β. 

Generally, inflammatory mediators cause a mild shift towards the production of the 

shortest polyA form, and the longest polyA form seems to be less favourably produced in 

the presence of these inflammatory mediators. 

The mechanism of 3’end processing of nascent transcripts in eukaryotic cells 

involves endonucleolytic cleavage and synthesis of a polyA tail, which are dictated by 

specific signals embedded in the transcript. (reviewed in [55]). Mutations affecting polyA 

site  usage have been implicated in several human diseases (reviewed in [56]), such as 

thrombophilia and some thalassemias, underlining the importance of proper 3′-end 

processing in gene expression regulation and its relevance to human health.  Numerous 

genomic studies have uncovered widespread occurrences of alternative polyadenylation 

in metazoan protein-coding mRNAs: 70–79% of mammalian genes [57, 58] and about 

half of the genes in flies [59], worm [60], and zebrafish [61] have been reported to be 

regulated by alternative polyadenylation. Due to differences in experimental conditions 

and bioinformatic methods, a consensus has not been reached as to the exact statistic of 

the extent of alternative polyadenylation. Nonetheless, it has become clear that a large 
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number of eukaryotic genes express isoforms that display significant differences in the 3’-

portion of the transcript. The functional significance of alternative polyadenylation can be 

appreciated from the fact that the 3′-UTR  plays a key role in regulating mRNA 

metabolism, mainly through the existence of the embedded cis elements,  including its 

localization, stability, and translation. Therefore, the transcript isoforms arising due to 

alternative polyadenylation have different 3′-UTR lengths and hence distinct properties. 

We have identified a role of alternative polyadenylation in mediating regulated 

changes in CPB2 mRNA abundance in HepG2 cells previously [36]. In the present study, 

we investigated whether the same regulatory paradigm extends to THP-1 macrophages. 

While the first polyA signal was found to be used most frequently used in HepG2 cells 

under normal conditions, such is not the case for THP-1 macrophages; in these cells, the 

most distal polyA site was found to be used most favourably, followed by the first and the 

second polyA sites.  Upon treatment of cells with the combination of inflammatory 

cytokines IL-6 and IL-1β, in HepG2 cells a dramatic shift towards the production of the 

longest transcript was observed, so as to almost exclusively result in the production of 

this polyadenylated form. However, a shift towards the production of the shortest polyA 

form was observed upon treatment of THP-1 macrophages with the same cytokine 

combination. Since the region between the second and the third polyA sites contains an 

instability element, it is tempting to speculate that the inclusion of this region (such as 

occurs in HepG2 cells) is the main driving mechanism behind destabilization of CBP2 

transcripts, resulting in reduction  of total abundance of CPB2 mRNA under these 

inflammatory conditions. Conversely, more favourable production of the shortest 

transcript in THP-1 macrophages is accompanied by exclusion of the last instability 

element, resulting in stabilization of the CPB2 mRNA and an increase in overall 
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abundance in the presence of IL-6 and IL-1β. Therefore, the same stimulus appears to 

produce different polyadenylation patterns in HepG2 cells and THP-1 macrophages, 

resulting in concomitant decrease or increase in TAFI protein produced, respectively.  

In summary, this investigation uncovered novel mechanisms of CPB2 gene 

expression regulation in THP-1 macrophages. We observed that the inflammatory 

mediators TNFα, IL-8, IL-6 in combination with IL-1β, LPS and IL-10 increased TAFI 

protein production by THP-1 macrophages, and this effect was also reflected in CPB2 

mRNA abundance, owing to stabilization of the transcript under these conditions. 

Additionally, we investigated the distribution of the three differentially polyadenylated 

species in THP1 macrophages and found that the longest form is most favourably 

produced, followed by the shortest and the intermediate forms. Moreover, the pattern of 

alternative polyadenylation was modified in the presence of inflammatory mediators, 

resulting in a preferential formation of the shortest transcript. This may account for the 

observed stabilization of CPB2 mRNA, and an increase in overall abundance in the 

presence of these inflammatory mediators. Taken together, these data suggest that CPB2 

gene expression regulation may be a subject to tissue specific control. Indeed, a growing 

number of RNA-binding proteins (RBPs) have been found to regulate cleavage and 

polyadenylation (reviewed in [62]). Given the tissue-specific expression of some RBPs, 

such proteins may play roles in defining tissue-specific alternative polyadenylation [53]. 

Therefore, it is of utmost importance to pinpoint the exact regulatory mechanisms that are 

subjected to different control in HepG2 cells and THP-1 macrophages to gain further 

insights into both gene expression regulation of CPB2 as well as the more fundamental 

mechanisms of mRNA metabolism that operate in mammalian cells.  
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Chapter 5: Post-transcriptional regulation by microRNA pathway 
 
      5.1 Introduction 
 

Haemostasis is achieved by maintenance of the fluidity of blood within the 

vasculature and protection against excessive blood loss after injury. The respective 

activities of the coagulation and fibrinolytic cascades are essential to maintain 

haemostasis.  In response to mechanical or chemical injury, the cardiovascular system 

activates the coagulation cascade to temporarily halt blood flow via formation of the 

fibrin clot at the site of injury, thus preventing catastrophic blood loss. The fibrinolytic 

system has evolved to degrade the fibrin clot once the repair to the damaged tissue has 

ensued. Imbalances between the coagulation and fibrinolytic system can result in a 

tendency to bleed, as is observed in haemophilia, or to thrombose, as occurs in heart 

attacks, strokes, and venous thrombosis. A properly functioning vascular system therefore 

necessitates a delicate balance between coagulation and fibrinolysis.  

Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen that 

regulates the balance between coagulation and fibrinolysis, and also mediates molecular 

connections between coagulation and inflammation [1, 2]. TAFI can be proteolytically 

activated by thrombin [3], the thrombin-thrombomodulin complex [4], or plasmin [5], 

resulting in the formation of an enzyme (TAFIa) with basic carboxypeptidase activity.  

The anti-fibrinolytic function of TAFIa is effected through removal of the carboxyl-

terminal lysine residues from partially degraded fibrin that drive the feed-forward loop in 

the fibrinolytic cascade [1, 6-8]. TAFIa also acts as an anti-inflammatory factor, by  

inactivating several pro-inflammatory peptides and proteins containing carboxyl-terminal 

basic residues including bradykinin, the anaphylatoxins C3a and C5a [9], thrombin-

cleaved osteopontin [2], bradykinin [10] and plasmin-cleaved chemerin [11].  Significant 
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variation in plasma TAFI concentrations exists in the human population [12], and several 

studies have established that elevated plasma TAFI concentrations constitute a risk factor 

for both arterial and venous thrombotic events [13-20]. It was initially postulated that 

genetic factors play a major role in influencing the variation in plasma TAFI 

concentrations.  Indeed, many single nucleotide polymorphisms (SNPs) have been 

identified within CPB2, the gene encoding TAFI. The three SNPs that occur in the 3’-

untranslated region (3’-UTR) of the CPB2 mRNA have been shown to affect CPB2 

mRNA stability [22], which may provide the mechanistic basis for lower plasma TAFI 

levels in individuals harbouring these SNPs. However, subsequent genetic studies have 

established that only 25% of the total variation in plasma TAFI concentrations can be 

attributed to polymorphisms in the gene [21] .  

  In accordance with these findings, we have previously determined a crucial role 

for the 3’-UTR in mediating both the steady state and regulated changes in CPB2 mRNA 

abundance, though modulation of CPB2 mRNA stability [23]. Additionally, acute phase 

mediators were found to significantly decrease CPB2 mRNA abundance in hepatocytes, 

due to a 2-fold reduction in mRNA half-life [24]. Most recent work in our laboratory has 

uncovered the presence of one stability and three instability cis-elements [36], as well as 

the ability of  trans-acting protein factors tristetraprolin (TTP) and HuR to bind to the 

CPB2 3’-UTR (unpublished data) . Numerous studies have established that in addition to 

protein factors acting on 3’-UTRs of transcripts in post-transcriptional regulation, small 

non-coding RNA molecules can also assume regulatory functions [25-28]. One example 

is a class of microRNAs (miRNAs, or miRs), which recognize their target transcripts 

through Watson-Crick base pairing mechanism (either perfect, or containing 

mismatches), leading to the recruitment of  miRNA induced silencing complex (miRISC), 
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which in turn recruits CCR4-NOT, resulting in degradation or translational repression of 

the target mRNA [25, 29-31]. Prior to degradation by the major cytoplasmic 5’-to-3’ 

exonuclease XRN1, mRNAs are first deadenylated and then decapped, which is effected 

by CCR4-NOT and the decapping complex (DCP1-DCP2), respectively [32]. The process 

of translational repression by ARE-binding proteins and/or miRISC still remains to be 

fully elucidated. A recent study proposed that activity of the DEAD-box RNA helicase, 

eIF4AII, is critical for miRNA-mediated gene silencing and that miRISC inhibits 

ribosome scanning by recruiting eIF4AII through interaction with the CCR4-NOT 

complex [33]. Another DEAD-box helicase implicated in this process in human cells is 

RCK/p54, which has been shown to interact with Ago1 and Ago2 components of miRISC 

in vivo [34]. RCK/p54 induces the formation of P-bodies, which are cytoplasmic foci that 

house mRNAs destined for translational repression and/or degradation. It is therefore easy 

to envision a complex regulatory network consisting of ARE-binding proteins, 

microRNAs and their mRNA targets engaging in molecular mechanisms that govern the 

regulation of diverse cellular processes.  

In order to enhance our understanding of the mechanisms of CPB2 gene 

expression regulation, we describe in the current study that CPB2 mRNA is  subject to 

miRNA-mediated control. This is to our knowledge the first report that describes the 

functional role of several miRNAs, namely miR-124, miR-143, miR-346, miR-431, miR-

506 and miR-708, in modulation of endogenous CPB2 mRNA and TAFI protein 

abundance as well as of  CPB2 3’-UTR reporter activity in HepG2 cells.  
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      5.2 Experimental procedures 

            5.2.1. Mammalian culture and transfections 

Cells were maintained in a humidified incubator at 37°C under a 95% room 

air/5% CO2 atmosphere. HepG2 cells and THP-1 monocytes were cultured as previously 

described [36].  THP-1 monocytes were differentiated into macrophages with phorbol-12-

myristate-13-acetate (PMA), as previously described [37]. Transfections of HepG2 cells 

with the luciferase reporters and miR mimics were performed with Megatran (OriGene), 

as per the manufacturer’s protocol. MiRNA inhibitors (anti-miRs) were purchased from 

Qiagen in the form of locked nucleic acids (LNAs), and transfection of anti-miRs were 

performed with Attractene (Qiagen), as per manufacturer’s protocol. The cells were 

incubated with transfection complexes for 48 hours. For endogenous CPB2 mRNA 

quantitation, RNA was extracted using Trizol reagent (Invitrogen), followed by genomic 

DNA removal using DNaseI (Promega). CPB2 mRNA was quantitated using qRT-PCR 

as previously described [36], using primer and probe set specific for human TAFI 

(forward primer: 5'-GGA TTT CTATGT TAT GCC GG-3'; reverse primer: 5'-GAT TGT 

TCG CAT AGA AAG AAC-3'; probe: 5'-/56-FAM/CCA CAT TCG /ZEN/ATT CTT 

TTT CCATGA GTA GTC ATA ACC GTC C/3IABkFQ/-3', where 6-FAM is the 

fluorescent dye and ZEN and Iowa Black FQ [3IaBkFQ] are quenchers), and human 

GAPDH (forward primer: 5'-TGT AGT TGA GGT CAATGA AGG G-3'; reverse primer: 

5'-ACATCG CTC AGA CAC CAT G-3'; probe: 5'-/5HEX/AAG GTC GGA /ZEN/GTC 

AAC GGATTT GGT C/3IABkFQ/-3', where HEX is the fluorescent dye and ZEN and 

Iowa Black FQ [3IaBkFQ] are quenchers)for normalization.  For studies on endogenous 

TAFI protein, after transfection of miRNA mimics, the cells were incubated in serum-

deficient media, and the conditioned media was collected 48 hour later for 
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immunoblotting. In parallel, cell lysates were collected in lysis buffer (50 mM Tris HCl 

pH 7.4, 1%  v/v NP-40, 0.25% w/v sodium deoxycholate, 150 mM NaCl, 1mM EDTA) 

and subjected to immunoblotting. For western blot analyses, experiments were performed 

using SDS-PAGE on 10% polyacrylamide gels under non-reducing conditions, and 

blotted onto PVDF membrane. The membrane with conditioned media samples was 

probed with sheep anti-human TAFI antibody (Affinity biologicals) in 3% (w/v) non-fat 

milk in 1× NET (150 mM NaCl, 5 mM EDTA, 50 mM Tris pH 7.4, 0.5% Triton X-100) 

while the membrane with the lysate samples was probed with mouse anti human-β-actin 

antibody (Sigma Aldrich) in 1 x TBST (0.15M NaCl, 20mM Tris-HCl, 0.1% Tween-20, 

pH 7.4). Immunoreactive bands were visualised using SuperSignal West Femto 

Maximum Sensitivity Substrate (Thermo Scientific) and a FluorChem Q Gel Imaging 

System (Alpha Innotech). 

             5.2.2 Synthesis of microRNA mimics 

Oligonucleotide primers encoding each strand of the miRNA duplex sequences 

and ending with the T7 priming sequence were obtained from Integrated DNA 

Technologies. The primers for the miRNAs used in this study were as follows:  

1. miR-124 guide: 5’-ATC AAG GTC CGC TGT GAA CAC GTT CCT ATA GTG AGT CGT ATT A-3’   

2. miR-124 passenger: 5’-GGC ATT CAC CGC GTG CCT TAT TCC TAT AGT GAG TCG TAT TA -3’ 

3. miR-133a guide: 5’- CAG CTG GTT GAA GGG GAC CAA ACCTAT AGT GAGTCG TAT TA -3’ 

4. miR-143 guide: 5’- GAG CTA CAGTGC TTC ATC TCA CCT ATA GTG AGT CGT ATT A -3’ 

5. miR-346 guide: 5’- ACA GGC AGG CAT GCG GGC AGA CAC CTATAGTGA GTC GTATTA -3’ 

6. miR-346 passenger 5’ CTG CAG GCC CAG CCC CTG CCT CCCTAT AGT GAGTCG TAT TA -3’ 

7. miR-431 guide: 5’- TGC ATG ACG GCCTGC AAG ACA CCT ATA GTG AGT CGT ATT A -3’ 

8. miR-431 passenger: 5’- AGA AGC CCT GCA AGA CGA CCT GCCTAT AGT GAGTCG TAT TA -3’ 
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9. miR-506 guide: 5’- TCT ACT CAG AAG GGT GCCTTA CCT ATA GTG AGT CGT ATT A -3’ 

10. miR-708 guide: 5’- CTA GAA GCT CAC AGT CTA GTT GCCTAT AGT GAGTCG TAT TA -3’ 

11. T7 primer sequence: 5’-TAA TAC GAC TCA CTA TAG G-3’ 

  To synthesize the miRNA duplexes, first the template was made by annealing 

equimolar amounts of the miRNA primer and the T7 primer.  In vitro transcription was 

then carried out overnight, using T7 High Yield RNA synthesis kit (New England 

Biolabs).  The samples were treated with DNase I (Promega) to remove the DNA 

template and miRNAs were extracted with phenol:chloroform: isoamyl alcohol (25:24:1) 

(ACP Chemicals Inc.). RNA concentrations were then measured using  the Nanodrop 

2000 Spectrophotometer (Thermo Fischer Scientific) and  the equimolar amounts of each 

guide strand was annealed to the corresponding passenger strand to form the miRNA 

duplex. In some cases, only the guide strand sequence was available from the miRNA 

database, in which case this was the only strand synthesized  and used for  transfection 

into HepG2 cells.  

            5.2.3 RNA-binding protein purification and identification (RaPID) 

  The RaPID procedure relies on the use of two main constructs as previously 

described [38]. pN-RFPx24 and pUG34-MS2-CP-GFP-SBP, which were the kind gift 

from Dr. Jeffrey Gerst (Department of Molecular Genetics, Weizmann Institute of 

Science, Rehovot, Israel). Since pUG34-MS2-CP-GFP-SBP is a yeast plasmid, we first 

removed the sequence encoding the fusion protein CP-GFP-SBP by digestion with XbaI, 

and then inserted it into pcDNA-4B plasmid pre-digested with XbaI. The CPB2 3’ 

flanking region was inserted into pN-RFPx24 plasmid by excising this segment from βG-

CPB2/3’UTR (see above) with XhoI and SalI , making the ends blunt with T4 DNA 



129 
 

polymerase and inserting into pN-RFPx24 digested with BamHI and blunted. HepG2 cells 

were transfected in 100-mm dishes with pcDNA4B-CP-GFP-SBP and pN-RFPx24-

CPB2/3’UTR simultaneously using Lipofectamine 2000 reagent for 48 hours. Collection 

and lysis of cells was carried out as previously described , with a modification for cross-

linking, which was done in phosphate-buffered saline (PBS) containing 0.5% (v/v) 

formaldehyde for 10 min at 24°C with slow shaking. The pulldown assay was performed 

as previously described [38]. For western blot analyses, experiments were performed 

using SDS-PAGE on 4-15% polyacrylamide gradient gels under non-reducing conditions. 

The blots were incubated with HRP-linked polyclonal goat anti-human Ago2, which was 

a kind gift of Dr. Sirinart Ananvoranich (University of Windsor, Windsor, Canada), in 

blocking buffer containing 3% (w/v) non-fat milk in 1× NET (150 mM NaCl, 5 mM 

EDTA, 50 mM Tris pH 7.4, 0.5% Triton X-100) and incubated at 4°C overnight. 

Immunoreactive bands were visualised using SuperSignal West Femto Maximum 

Sensitivity Substrate (Thermo Scientific) and a FluorChem Q Gel Imaging System (Alpha 

Innotech). 

           5.2.4 Luciferase reporter plasmid construction and luciferase assay 

  The pC7β-globin vector containing the CPB2 3’-flanking region was constructed 

first.  A segment of the CPB2 3’-flanking region beginning at the stop codon and 

extending for 1 kb downstream was amplified from human genomic DNA. The segment 

was inserted into pC7βG digested with PacI (just downstream of the translation 

termination cassette) and SalI. In utilizing this downstream SalI site in pC7βG, the SV40 

polyA signal was removed prior to insertion of the genomic DNA segment. CPB2/3’-

UTR-luc construct was made by inserting the luciferase gene digested from pGL3 basic 
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vector with NheI and XbaI. The ends were made blunt with T4 DNA polymerase and the 

blunt-end ligation was achieved by digestion of pC7β-globin-CPB2/3’-UTR vector with 

XhoI and T4 DNA polymerase blunting. The TTP binding site in the 3’-flanking region 

was mutated as previously described [36], for generation of the ΔTTP/3’UTR-luc 

construct. T+ 1583 site directed mutagenesis was carried out using QuickChange II Site-

directed mutagenesis kit (Agilent technologies), and mutagenic primers ( forward primer: 

5’- GAT CAG CGT GAG ATG ATC ATT GAT TAA ACT TGC TTG AGATG -3’;   

reverse primer:  5’- CAT CTC AAG CAA GTT TAATCA ATG ATC ATC TCA 

CGCTGA TC -3’ ), in the context of the CPB2/3’UTR-luc vector. The constructs were 

transfected into HepG2 cells using Megatran (OriGene), along with pRl-tk plasmid 

encoding Renilla luciferase under the control of thymidine kinase promoter. After 48 

hours, the cell lysates were collected in Passive Lysis Buffer (Promega). Reporter 

activities were measured using the dual luciferase reporter system. The firefly luciferase 

activity was measured by adding the firefly substrate  D-luciferin (Sigma Aldrich) in 

firefly buffer (20mM Tricine, 10mM MgSO4, 5mM DTT, 250μM Coenzyme A, 250μM 

ATP). Renilla luciferase was measured by adding renilla substrate coelentrazine (Sigma 

Aldrich) in the renilla buffer  (100mM KPO4 buffer pH 7, 500mM NaCl, 1mM EDTA, 

0.002% BSA).  The luciferase signals were measured with the Turner BioSystems 

Luminometer 20/20n  (Promega). 
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  5.3 Results 

   5.3.1 Endogenous expression levels of several miRNAs are different in HepG2  

            cells, THP-1 monocytes and THP-1 macrophages  

As an initial step, we performed bioinformatic analysis of CPB2 3’-UTR using 

miRNA prediction software (www.microRNA.org and www.miRBase.org ) and 

identified several miRNAs with high probability scores ( mirSVR score from -0.5193 to  

-1.1520) and that were conserved across species (Figure 5.1).  In order to examine the 

potential involvement of the microRNA pathway in CPB2 gene expression regulation, we 

performed a recently described technique that allows for identification for RNA and 

protein factors present in ribonucleoprotein complexes, called RNA-binding protein 

purification and identification (RaPID) [38]. Previously in our laboratory, we used the 

RaPID technique successfully to identify two protein factors that associate with CPB2 3’-

UTR, tristetraprolin (TTP) and HuR (unpublished data). In the present investigation, we 

sought to determine whether protein factors present in the RISC complex (such as Ago2) 

associate with the 3’-UTR of CPB2 transcript. We generated the CPB2 3’-UTR ‘bait’ 

construct by inserting the 3’-flanking region downstream of the aptamer sequences (MS2) 

repeated 24 times, that specifically and with high affinity associate with bacteriophage 

coat protein, which is encoded by the ‘hunter’ construct. In addition, the ‘hunter’ also 

contains streptavidin binding protein for affinity purification step using streptavidin 

beads. Both of the constructs were then transfected into HepG2 cells. Therefore, through 

specific interaction between streptavidin-binding protein and streptavidin beads, we were 

able to pull down the protein factors that associate with the CPB2 3’-UTR. This material 

was then probed with the anti-Ago2 antibody using immunoblotting.  Due to the presence 

of multiple immunoreactive bands present in input and eluate lanes, we were not able to 
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conclusively establish that Ago2 specifically associates with the CPB2 3’-UTR; 

nevertheless, a band of the size corresponding to Ago2 appears more prominent in the 

lane containing lysate from cells expressing the CPB2/3’UTR-contacting bait plasmid 

(Fig.5.2), suggesting that Ago2 may be associating with CPB2 3’-UTR in vitro in HepG2 

cells. This prompted us to investigate the potential roles for various candidate miRNAs, 

namely miR-124, miR-143, miR-506 and miR-708 in mediating CPB2 gene expression 

regulation.  

As the expression level of many miRNAs is deregulated in cancer [39], and 

HepG2 cells and  THP-1 monocytes are immortalized cell lines (human hepatocellular 

carcinoma and human monocytoid leukemia, respectively), we first examined the 

expression levels of individual miRNAs in these cells lines. We detected the expression 

of miR-124, miR-143, and miR-506 in both cells lines, while miR-708 was only 

detectable in HepG2 cells (Figure 5.3).  However, there was a dramatic difference in their 

levels of expression between the two cell lines. Namely, miR-124 is expressed at a 500-

fold higher level in THP-1 monocytes compared to HepG2 cells, while miR-143 

expression was found to be 15-fold higher in THP-1 monocytes than in HepG2 cells. The 

expression level of miR-506 was the same for these two cell lines, while miR-708 was 

expressed endogenously only by HepG2 cells. Moreover, since the components of the 

regulatory cellular machineries can differ depending on the state of differentiation of a 

particular cell [40-42], we investigated the possibility that the miRNA expression pattern 

differs between THP-1 monocytes and macrophages derived from differentiation of these 

cells. Indeed, miR-124 expression level was even higher in THP-1 macrophages 

compared to THP-1 monocytes and HepG2 cells (2-fold and 1000-fold, respectively). The 

same was observed for miR-143, which was expressed at a 30-fold higher level when 
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THP-1 cells were differentiated, and 500-fold higher compared to HepG2 cells (Figure 3). 

Additionally, while the expression of miR-506 is similar in HepG2 cells and THP-1 

monocytes, we observed a 15-fold higher expression in THP-1 macrophages. 

Differentiation of THP-1 cells however did not induce expression of miR-708, as it was 

undetectable in THP-1 macrophages.  
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Figure 5.1 Bioinformatic analysis of target predictions within CPB2 3’-UTR.    
Bioinformatic analysis was performed using microRNA database (www.microRNA.org) 
and miRBase (www.miRBase.org). The alignments shown here were obtained from the 
former.  
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Figure 5.2   Identification of  Ago2 as a trans-acting factors binding to the CPB2 3’-
UTR. We adapted an aptamer-based mRNA affinity purification technique for the 
identification of RNA and protein factors present in ribonucleoprotein complexes. HepG2 
cells were co-transfected with the ‘bait’ construct encoding the aptamer repeats and the 
CPB2 3’-UTR and the ‘hunter’ construct encoding the aptamer-binding protein and 
lysates were subjected to affinity chromatography. The input, elution and  wash fractions 
from the chromatography were subjected to Western blot analysis using an anti-Ago2 
antibody Control experiments were performed using a ‘bait’ construct lacking the CPB2 
3’-UTR and the elution fraction was also included on the Western blots (No 3’-UTR).  
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Figure 5.3  Quantitation of miRNAs endogenously produced by HepG2 cells, THP-1 
monocytes and THP-1 macrophages. RNA was extracted from the respective cell types 
and subjected to reverse transcription to generate cDNA. Individual miRs (miR-124, 
miR-143, miR-506 and miR-708) were detected by using miR-specific primers and 
miScript SYBR Green RT-PCR kit. In parallel, reactions containing primers specific for 
β-actin were carried out for normalization.  The relative abundance of each miR was 
calculated using the ΔCt method.  
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  5.3.2 Endogenous CPB2 mRNA and TAFI protein levels are modulated by 

            microRNAs 

  To determine whether CPB2 mRNA is a target for these miRNAs in vitro, we 

investigated the effect of their overexpression in HepG2 cells on the levels of 

endogenously expressed CPB2 transcript and TAFI protein. Here we also included three 

additional miRNA candidates, miR-133a, miR-346 and miR-431, which have also been 

predicted by the database, albeit with lower probability scores. Oligonucleotide mimics of 

miR-124, miR-133a, miR-143, miR-346, miR-431, miR-506, and miR-708 were 

introduced into HepG2 cells and total RNA was extracted for quantitation of CBP2 

mRNA with qRT-PCR. We observed that miR-124,  miR-506, and  miR-708 significantly 

reduced CPB2 mRNA levels, while miR-133a, miR-143, miR-431 and miR-346 had no 

significant effect (Figure 5.4).  Additionally, these effects were reversed in the presence 

of specific anti-miRs that antagonized the action of the corresponding miRNAs (Figure 

5.5). The anti-miRs effectively reversed the decrease in CPB2 mRNA abundance, both 

when they were transfected with miRNA mimics, and on their own (in the endogenous 

context). We then examined whether these changes in mRNA abundance are also 

reflected in the level of TAFI protein produced by these cells. Indeed, TAFI protein 

abundance was significantly reduced when we overexpressed miR-124, miR-506 and 

miR-708 (Figure 5.6). Interestingly, miR-346 overexpression did not significantly affect 

CPB2 mRNA levels, but resulted in a decrease in TAFI protein. It appears that miR-346 

possesses some capacity to modulate CPB2 gene expression, although its role may not be 

as prominent as those of miR-124, miR-506 and miR-708. 
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Figure 5.4  miR-124, miR-431, miR-506 and miR-708  modulate abundance of  
endogenous CPB2 mRNA. HepG2 cells were transfected with indicated miR mimics for 
48 hours, followed by isolation of total RNA and DNase I digestion. Endogenous CPB2 
mRNA was quantitated with real-time qRT-PCR using Taq-based chemistry in a 
multiplex reaction containing primer and probe sets specific for human TAFI and 
GAPDH. The relative abundance of TAFI mRNA for each sample was then normalized to 
negative control. The data shown are the mean ± s.e.m. of five independent experiments. 
*: p < 0.05; ** p < 0.001  versus no miR control by Student’s t-test.  
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Figure 5.5  miR-mediated decrease in CPB2 mRNA abundance is reversed by 
specific anti-miRs. HepG2 cells were grown in 12-well plates and transfected with 
indicated miR-mimics and specific miR inhibitors (anti-miRs), where appropriate, for 48 
hours, followed by isolation of total RNA and DNase I digestion. Endogenous CPB2 
mRNA was quantitated with real-time qRT-PCR using Taq-based chemistry in a 
multiplex reaction containing primer and probe sets specific for human TAFI and 
GAPDH. The relative abundance of TAFI mRNA for each sample was then normalized to 
negative control. The data represents the average of two independent experiments.  *: p < 
0.05; ** p < 0.001  versus no miR control by Student’s t-test. 
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Figure 5.6   miR-124, miR-346,  miR-506 and miR-708   modulate  TAFI protein 
levels in HepG2 cells.  HepG2 cells were grown in 6-well plates and transfected with 
indicated miR mimics. Conditioned media was collected at various time points and the 
amount of  TAFI protein was determined with immunoblotting using antibody specific for 
human TAFI. TAFI amounts in each sample were corrected to their corresponding total 
cellular protein content, by Western blotting of lysates with β-actin antibody and 
expressed relative to the TAFI amount present in the no miR sample. The data represents 
the average of two independent experiments. *: p < 0.05; ** p < 0.005 versus no miR 
control by Student’s t-test. 
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 5.3.4 CPB2 3’-UTR is a functional target of candidate microRNAs 

  To determine whether CPB2 mRNA is a functional target of miR-124, miR-346, 

miR-431, miR-506 and miR-708, 1 kilobase of CPB2 3’-flanking region was cloned into 

a luciferase reporter vector (CPB2/3’-UTR-luc). Additionally, a reporter vector was also 

constructed which lacked the CBP2 3’-UTR (NO 3’-UTR-luc), to ensure that any changes 

in reporter activity are attributable to changes mediated by the 3’-UTR. The data showed 

a significant decrease in luciferase activity in the presence of all candidate miRNAs 

compared to the negative control, while there was no change in the activity of the 3’UTR-

less reporter (Figure 5.7).  

    5.3.5 miR-124 target site overlaps with TTP binding site within CPB2 3’-UTR      

Bioinformatic analysis of the predicted miR-124 target sequence revealed that it 

overlaps proximally with the binding site of TTP, an mRNA destabilizing factor that we 

have previously characterized as an important regulator of CPB2 mRNA stability and 

abundance [36]. In order to investigate whether this is the case, we introduced a TTP 

binding site mutation (AATAAATTT AAGAAAGGG) in the context of CPB2/3’-UTR 

luciferase reporter vector. In this mutation, the two most distal nucleotides (TTGG) 

represent the change that would affect the most proximal two nucleotides of the predicted 

miR-124 target sequence. We transfected the wild-type CPB2/3’-UTR-luc (in which the 

binding site of TTP is intact) and the mutant (ΔTTP/3’-UTR-luc) luciferase constructs 

into HepG2 cell and measured the reporter activity in the presence of miR-124 mimic. 

The reporter activity of CPB2/3’-UTR-luc was decreased in the presence of miR-124, 

whereas the ΔTTP/3’-UTR-luc reporter was refractory to these changes (Figure 5.8A). 
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Figure 5.7  CPB2 3’-UTR is a functional target of candidate miRs. 
HepG2 cells were transfected with luciferase reporter constructs harbouring CPB2 3’-
flanking region (CPB2/3’-UTR-luc), or the 3’-UTR-less constructs (NO3’-UTR-luc), 
together with the indicated miR mimics for 48 hours. Reporter activity was measured 
with dual luciferase reporter system, by normalizing firefly luciferase signal with renilla 
luciferase signal, which were then normalized to no miR control. The data represents the 
average of two independent experiments. *: p < 0.05; ** p < 0.001 versus no miR control 
by Student’s t-test.     
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Figure 5.8   miR-124 decreases translation efficiency of CPB2 transcript and 
requires intact TTP binding site for efficient targeting.  HepG2 cells were transfected 
with luciferase reporter constructs harbouring CPB2 3’-flanking region and either intact 
TTP binding site (CPB2/3’-UTR-luc), or containing the TTP binding site mutation 
(ΔTTP/3’-UTR-luc) , together with miR-124 mimic, where appropriate,  48 hours. A) 
Reporter activity was measured with dual luciferase reporter system, by normalizing 
firefly luciferase signal with renilla luciferase signal, which were then normalized to no 
miR control. The data represents the average of two independent experiments. *: p < 
0.02; ** p < 0.001 versus no miR CPB2/3’-UTR-luc control by Student’s t-test. B) For 
translation efficiency determination, RNA was extracted in parallel to collection of 
lysates for luciferase assay and the amount of reporter transcript was determined with 
qRT-PCR in a multiplex reaction, using primer and probe sets specific for rabbit β-globin 
and human GAPDH sequences.  The normalized luciferase signal was divided by the 
abundance of the reporter transcript, thus indicating reporter activity per unit mRNA.  
The data represent the average of two independent experiments. *: p < 0.01 versus no 
miR CPB2/3’-UTR-luc control by Student’s t-test.    
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Of note, the reporter activity of ΔTTP/3’-UTR-luc in the absence of miR-124 mimic was 

significantly higher than that of the wild-type CPB2/3’-UTR-luc, in keeping with the role 

of TTP as an mRNA destabilizing factor. 

Next we sought to examine whether miR-124 affects translation efficiency. For 

this purpose, we determined luciferase reporter activity per unit CPB2 mRNA in the 

presence of miR-124 mimic. The results showed that in fact, translation efficiency is 

significantly reduced when miR-124 is overexpressed, compared to the negative control 

(Figure 8C). We also examined translation efficiency of the transcript lacking the 

functional TTP binding site and found no difference compared to the wild-type control 

(Figure 8B). Therefore, TTP does not seem to modulate translation efficiency of CPB2 

mRNA, whereas miR-124 appears to play a role in this process.   

    5.3.6 T+1583A SNP allele is selectively targeted by miR-143 

That inter-individual plasma TAFI variability arises due to genetic factors has 

been addressed in the past by genetic studies [21, 35]. Gene polymorphisms that occur in 

both the 5’- and the 3’-flanking region of CPB2 gene are in strong linkage disequilibrium 

with each other, and with the previously described Ala147Thr polymorphism [22]. Of the 

SNPs that occur in the 3’-UTR of CPB2 mRNA, the T+ 1583A has been associated with 

lower plasma TAFI levels in both homozygous and heterozygous individuals [35]. Here 

we investigated a potential mechanistic basis for the TAFI-lowering effect of this SNP. 

Namely, miR-143 was predicted to target the sequence encompassing the T+ 1583A SNP. 

In fact, miR-143 seed sequence is complementary to the T allele, and is predicted to 

perfectly base-pair with the allele bearing T at this position.  

In our initial studies on the effect of miRNAs on endogenous CPB2 mRNA and 

protein levels, we observed no change in mRNA and TAFI protein levels in the presence 
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of miR-143 mimic (Figure 5.6). This prompted us to investigate the genotype of HepG2 

cells. We synthesized cDNA from RNA extracted from HepG2 cells and performed 

sequencing analysis. Indeed, HepG2 cells harbour the A allele at this position. This may 

explain why miR-143 mimic caused no change in CPB2 mRNA levels. We then sought to 

determine the genotype of the luciferase reporter construct, as this construct was also 

refractory to miR-143 downregulation. As expected, the 3’-flanking region within the 

reporter construct also contains the A allele at position +1583. We then performed site 

directed mutagenesis to generate the AT mutant in the context of the luciferase reporter 

construct, that now harboured the T allele at position +1583. We predicted that by doing 

so, the luciferase reporter will be susceptible to miR-143 downregulatory effects. Indeed, 

we observed a 40% decrease in reporter activity for the T+ 1583 mutant in the presence of 

miR-143 mimic, whereas the  reporter bearing the A allele at this position was refractory 

to miR-143- mediated downregulation in activity (Figure 5.9). These results may, at least 

in part, explain the mechanistic basis for plasma TAFI-lowering effect of the T+ 1583A 

SNP.  

 

 

 

 

 

 

 

 

 



146 
 

 

 

 

 

 
 
Figure 5.9  T+1583 SNP is a functional target of miR-143 
HepG2 cells were transfected with luciferase reporter constructs harbouring CPB2 3’-
flanking region and either harbouring the A allele at position +1583 (1583 A) or the T 
allele (1583 T), together with miR-143 mimic for 48 hours. Reporter activity was 
measured with dual luciferase reporter system, by normalizing firefly luciferase signal 
with renilla luciferase signal, which were then normalized to no miR control. The data 
represent the average of three independent experiments. *: p < 0.01 versus no miR 1583 T 
control by Student’s t-test.       
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      5.4 Discussion 

Plasma TAFI levels vary substantially in the human population, and elevated 

plasma TAFI concentrations have been associated with various thrombotic and 

atherothrombotic disorders. Genetic studies have established that only about a quarter of 

this variability can be attributed to genetic factors, underscoring the potential prominent 

role for the gene regulatory component. Nonetheless, several SNPs that occur throughout 

the CPB2 gene have been strongly associated with plasma TAFI concentrations and 

contributed a significant component of plasma TAFI variability [21, 35].  Due to the 

relatively long length (390-549 nucleotides) of the 3’-UTR, it likely serves as a crucial 

nexus for regulation of CPB2 gene expression. Numerous studies on post-transcriptional 

regulation uncovered novel mechanisms that orchestrate the events at the 3’-UTR of 

protein coding mRNAs. It is becoming increasingly apparent that there is  significant 

crosstalk between these mechanisms [43]. For example, microRNAs and AU-rich element 

RNA (ARE)-binding proteins that possess binding sites within shared mRNAs often act 

simultaneously or in concert to exert their downregulatory effects. We have recently 

uncovered an important role for post-transcriptional regulation in mediating the effects of 

inflammatory mediators on CPB2 mRNA and TAFI protein abundance, in which TTP 

seems to play a crucial role through modulation of mRNA stability (unpublished data). 

The first line of evidence that CPB2 3’-UTR might be susceptible to microRNA-mediated 

control arose from our RaPID experiments, in which we were able to detect Ago2 in the 

eluate fraction of proteins that associated with the 3’-UTR of CPB2 (Figure 2). The 

binding of Ago2 was CPB2 3’-UTR-specific, as the Ago2 immunoreactive band was 

absent from the elution faction for the construct lacking the 3’-UTR of CPB2. In the 
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current study, we sought to further our understanding of CPB2 gene expression regulation 

at the post-transcriptional level mediated by the microRNA pathway.  

Initial bioinformatic analysis revealed that several miRNAs may potentially target 

CPB2 3’-UTR, and we selected those with high scores and conservation across species to 

begin our investigation (Figure 5.1). We first examined the levels of endogenous miR-

124, miR-143, miR-506 and miR-708 expressed by HepG2 cells, THP-1 monocytes and 

THP-1-macrophages. Although the expression of CPB2 in the liver is likely the primary 

contributor to the plasma pool of TAFI, extra-hepatic sites of TAFI expression have 

recently been described by our group and others [37, 44, 45]. We have, for the first time, 

reported the expression of CPB2 in THP-1 monocytes and macrophages derived from 

differentiation of monocytes, as well as TAFI protein production by THP-1 macrophages, 

but not THP-1 monocytes [37]. Here we examined whether the expression level of 

individual miRNAs varies in different cell types that CPB2 is expressed in (Figure 5.3). 

Interestingly, we found that the level of expression of miR-124 was 500-fold higher in 

THP-1 monocytes, and 1000-fold higher in THP-1 macrophages compared to HepG2 

cells. Additionally, miR-143 also displayed a prominent induction upon differentiation of 

THP-1 monocytes from 15-fold to 500-fold higher than in HepG2 cells. Curiously, 

quantitation of endogenous levels of CPB2 mRNA revealed that the number of transcripts 

present in THP-1 monocytes is approximately 1250-fold lower compared to HepG2 cells, 

and even lower (by approximately 5000-fold) in THP-1 macrophages [37]. It is tempting 

to speculate that CPB2 mRNA may be subjected to a more rigorous control by 

microRNAs in THP-1 monocytes and macrophages and that this control may, at least  in 

part be responsible for the lower abundance of the transcript in these cell types. Of note, 

miR-708 was detected in HepG2 cells, unlike THP-1 monocytes and macrophages, which 
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may imply the role of miR-708 in tissue-specific control of CPB2 gene expression 

regulation.  

In order to investigate the potential of candidate miRNAs to modulate CPB2 gene 

expression in vitro, we synthesized oligonucleotide mimics corresponding to miR-124, 

miR-143, miR-506 and miR-708, and also included miR-133a, miR-346 and miR-431, 

which were also predicted by the database, but had lower probability scores. When we 

introduced these miRNA mimics into HepG2 cells, we observed a decrease in CPB2 

mRNA abundance in the presence of miR-124,  miR-506 and miR-708, while miR-133a, 

miR-143 and miR-346 did not affect the transcript levels (Figure 5.4). We also confirmed 

that these effects are miRNA specific in case of miR-124, miR-506 and miR-708 by 

introduction of specific anti-miRs. MiR antagonism relieved the depression of CPB2 

mRNA levels, both on their own (when they are expected to antagonize the endogenous 

miRNA only) and when administered in combination with the corresponding miRNA 

(when they are expected to antagonize both the mimic and the endogenous miRNA) 

(Figure 5.5). In fact, this effect was the highest in the presence of the anti-miR alone, 

whereas it occurred to a slightly lower extent when the corresponding miRNA was 

administered simultaneously. The reason for this difference may arise due to the depletion 

of anti-miR molecules in the presence of both the mimic and the endogenous miRNA. 

Importantly, the expression level was increased in the presence of anti-miRs alone 

compared to the basal CPB2 abundance, suggesting that the antagonism of specific 

endogenous miRNAs leads to an increase in abundance of endogenous CPB2 mRNA. 

In order to confirm that CPB2 3’-UTR is a direct functional target of these 

miRNAs, we performed luciferase reporter assay. For this purpose, we constructed 

luciferase reporter constructs by inserting a 1 kb of the CPB2 3’-flanking region, thus 
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anticipating that the construct would harbour  the important regulatory cis-elements and 

would faithfully recapitulate the regulation of the endogenous counterpart. Furthermore, 

we included a 3’-UTR-less constructs in these experiments as a negative control for the 

3’UTR-mediated effects. Indeed, when we transfected these constructs into HepG2 cells, 

we observed a significant decrease in reporter activity in the presence of miR-124, miR-

346, miR-431, miR-506, and miR-708 (Figure 5.7). These data strongly suggest that  the 

decrease in CPB2 mRNA abundance and TAFI protein levels observed in the presence of 

miRNA mimics likely arises due to direct targeting of the CPB2 3’-UTR. 

In our bioinformatic analysis we discovered that the target site for miR-124 is in 

close proximity to the TTP binding site. In fact, it overlaps with it proximally, such that 

the first two nucleotides of the miR-124 seed sequence are the last two nucleotides of the 

TTP binding site. In order to further investigate this, we introduced mutations in this 

region, changing the core consensus TTP binding site from AATAAATTT to 

AAGAAAGGG (ΔTTP/3’-UTR construct). We have previously established that this 

mutation is sufficient to abolish TTP binding [36]. Of note, the activity of the ΔTTP/3’-

UTR reporter was significantly higher compared to the CPB2/3’-UTR reporter, in which 

the binding site for TTP remained intact. In the presence of miR-124 mimic, we observed 

a significant decrease in reporter activity of the wild-type CPB2/3’UTR reporter, while 

the ΔTTP/3’-UTR reporter was refractory to this decrease (Figure 8A). Therefore, the 

TTP binding site mutation was sufficient to abolish miR-124 binding as well. 

Additionally, we also determined reporter activity per unit mRNA and found it to be 

decreased in the presence of miR-124 mimic for the CPB2/3’-UTR reporter, but not the 

ΔTTP/3’-UTR reporter, thus indicating that miR-124 decreased translation efficiency of 

the CPB2 transcript (Figure 5.8 B and C).  These data also suggest a possible functional 



151 
 

interplay between TTP and miR-124. The interaction and co-operativity between trans-

acting factors has been described previously, and in case of the mRNA encoding tumor 

necrosis factor alpha (TNFα), it involves TTP and miR-16 [46]. Interestingly, the 

interaction between TTP and miR-16 is not a direct one, but rather involves formation of 

a complex between TTP and Ago/eiF2C family proteins that associate with miR-16. 

Thus, TTP appears to assist miR-16 in targeting the 3’-UTR of TNFα. In case of CPB2 

3’UTR and miR-124, this may also be the case. Since the overlap between the binding 

sites of miR-124 and TTP is quite small (only 2 nucleotides) it seems unlikely that the 

binding of one would obstruct the binding of another through steric hindrance. It is easy 

to envision that the binding of TTP and miR-124 may be cooperative, unless the binding 

induces secondary structure perturbations, as has been described previously [47]. In an 

event that binding of TTP induces RNA secondary structure changes; this may serve as a 

mechanism to block miR-124 binding, and vice versa, such as occurs in case of HuR and 

miR-122 in human liver cancer cells [48]. In case of HuR this is expected to be a 

competitive mechanism, in keeping with the role of HuR as an mRNA stabilizing protein 

and that of miRNA as an mRNA degrading factor. Due to functional redundancy of TTP 

and miR-124, it is unlikely that these two factors would act in a competitive manner. TTP 

binds to the ARE sequences within target mRNAs via its zinc finger [49], and recruits the 

components of the exosomes, which are also associated with helicase proteins ( such as 

DexH box) that facilitate mRNA deadenylation and decay in mammalian cells [50, 51]. 

TTP also associates with the eiF2C/Ago family proteins [46], which are a component of 

the RISC complex. Therefore, it appears that ARE-binding proteins, miRNAs, 

deadenylase and the exosomes act cooperatively to regulate mRNA degradation.  Our 

data and the evidence from the literature are suggestive of a model in which binding of 
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TTP is the initial event, followed by a transient interaction with the RISC complexes that 

scan the 3’-UTR. Such a two-pronged mechanism would ensure the specific targeting of 

miR-124 to the 3’-UTR of CPB2: 1) interaction between TTP and the components of 

RISC (serving as a docking mechanism), and 2) Watson-Crick base pairing between miR-

124 and its recognition sequence within CPB2 3’-UTR. 

Another interesting observation that arose during our bioinformatic analysis of 

CPB2 3’UTR was that the recognition sequence of miR-143 was predicted to encompass 

the position +1583, which was previously identified as a location of an A/T 

polymorphism that is present in the population [35]. Moreover, the T SNP at this position 

was found to be associated with decreased plasma TAFI concentrations. Previously our 

group conducted a functional analysis of the effects of 3’-UTR SNPs on expression of 

CPB2, investigating the effects on mRNA stability [22]. The +1583 T SNP was found to 

result in increased mRNA stability in one haplotype (+1344G /+1542 C/ +1583 T) 

compared to +1344G /+1542 C/ +1583 A haplotype, whereas it decreased mRNA half-

life by 2-fold when combined with + 1542 G SNP ( +1344 G/+1542 G/ +1583 T 

haplotype). Therefore, it is clear that other factors, in addition to the effects mediated by 

3’-UTR SNPs, must contribute to modulation of mRNA stability, since the +1583 T SNP 

does not always alter the stability but is associated with decreased TAFI plasma 

concentrations. Perhaps some of the additional effects are executed by miR-143, which 

may alter translation efficiency of the CPB2 transcript without affecting stability and 

abundance. MicroRNAs can exert their downregulatory effects either through mRNA 

degradation or by affecting translation efficiency. The latter likely arises when miRNA-

mRNA base pairing contains mismatches, such as the case with miR-143 and its 

recognition site within CPB2 3’-UTR (Figure 5.1). We observed no effect of miR-143 
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mimic on the endogenous CPB2 mRNA and TAFI protein levels, as well as on luciferase 

reporter activity. DNA sequencing revealed that HepG2 cells and the reporter construct 

contain the A allele at +1583 position. We then performed site directed mutagenesis and 

introduced T+ 1583 change in the context of the luciferase reporter construct. This 

resulted in a significant decrease in reporter activity (Figure 5.9), suggesting that indeed 

the T+ 1583 is required for targeting by miR-143. This may arise due to the position of 

the SNP within the miR-143 recognition sequence. It is flanked by two mismatches, and 

if the A+ 1583 mismatch is present as well, the interaction between the miR-143 and its 

binding site may be very weak and possibly unlikely [27]. Taken together, our data 

provide preliminary evidence that T +1583 SNP may be the determining factor in making 

CPB2 3’-UTR susceptible to miR-143 targeting, providing novel insights into the 

mechanistic basis for decreased TAFI plasma concentrations associated with this SNP.   

In summary, our data demonstrate that CPB2 mRNA is susceptible to regulation 

by the microRNA pathway in HepG2 cells. The ability of Ago2 to specifically associate 

with CPB2 3’-UTR strongly supports this idea. We observed that miR-124, miR-506 and 

miR-708 decrease TAFI protein levels, owing to a concomitant decrease in CPB2 

transcript abundance. That this effect is mediated by CPB2 3’-UTR was also confirmed 

using luciferase reporter constructs, whose activity was specifically decreased in the 

presence of miRNA mimics.  Moreover, we uncovered a potential interplay between miR-

124 and TTP and found that miR-124 decreases translation efficiency whereas TTP likely 

only affects mRNA stability, without having a prominent effect on translation rate. This 

study also revealed a plausible mechanistic basis behind plasma TAFI-lowering effect of 

T+ 1583 SNP, via selective targeting by miR-143. Since the levels of expression of 

various microRNAs varies across different tissues- and we can certainly attest to this, as 
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we observed this difference among HepG2 cells, THP-1 monocytes and THP-

macrophages - it remains to be explored whether this difference has any functional 

consequences in terms of tissue-specific CPB2 gene expression regulation and the amount 

of TAFI protein produced by different cell types. Moreover, since the levels of expression 

of many miRNAs can be altered in certain pathologies, ranging from inflammation [52], 

to various forms of liver [53] and cardiovascular diseases [54], it is plausible that this 

dysregulation could contribute to changes in TAFI levels, with potential deleterious 

effects on the fibrinolytic system.  
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Chapter 6: General Discussion 

          The collection of studies presented here was aimed at elucidating the mechanisms 

of gene expression regulation of CPB2, the gene encoding human TAFI, with a particular 

focus on post-transcription control. In Chapter Two, we identified the presence of cis-

regulatory elements within the 3’-UTR of CPB2 mRNA, and found that this region 

harbours one stability element located upstream of the first polyA site, followed by three 

instability elements, located upstream of the first, second and third polyA sites, 

respectively.  Furthermore, we uncovered a novel mechanism for regulation of CPB2 

mRNA stability by the trans-acting protein factor TTP, which recognizes a binding site 

within the most distal instability element, between the last two polyA sites. TTP is an 

mRNA destabilizing factor that dictates the stabilities and abundances of many 

transcripts, including those encoding inflammatory mediators, oncogenes and 

transcription factors [1]. The role for TAFI in mediating molecular connections between 

coagulation and inflammation has been suggested previously [2], and we sought to further 

characterize it through assessment of regulation of CPB2 expression by inflammatory 

mediators. It appears that the role of TAFI in these processes is multifaceted, since TAFIa 

acts on pro-inflammatory factors to inactivate them (C3a, C5a, bradykinin) [3, 4], on anti-

inflammatory factors to activate them (plasmin-cleaved chemerin) [5]. Moreover, TAFI 

expression is itself modulated by the inflammatory mediators, as we described in Chapter 

Three. We uncovered that pro-inflammatory cytokines and mediators TNFα, IL-6 in 

combination with IL-1β and LPS decreased TAFI protein production, owing to a 

reduction in mRNA stability, using our in vitro system in HepG2 cells. Furthermore, we 

delineated the role for TTP in mediating transcript destabilization in the presence of pro-

inflammatory mediators. Anti-inflammatory cytokine IL-10 increased both TAFI protein 
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and CPB2 mRNA abundance levels, owing to a 2-fold increase in mRNA half-life. These 

effects however do not appear to be TTP mediated, and may involve other components of 

the ribonucleoprotein complex that populates the 3’-UTR of CPB2 mRNA. We also 

identified HuR as a novel component of this interactome (Figure 6.1). HuR is an RNA-

binding protein that acts in antagonistic manner to TTP, and competition between HuR 

and TTP at the 3’-UTR of TNFα transcript has been identified [6]. This might be a 

commonly occurring phenomenon, and may operate in the case of CPB2 mRNA in the 

context of the inflammatory environment, since we found that the occupancy of the 3’-

UTR by HuR was decreased in the presence of inflammatory mediators.  

One of the most intriguing findings that originated from our laboratory has been 

the discovery of CPB2 expression in THP-monocytes and in THP-1 macrophages derived 

from differentiation of monocytes [7]. However, little is known about CPB2 gene 

expression regulation in cell types other than hepatocytes. In Chapter Four, we initiated 

the investigation of the regulatory mechanisms that operate in THP-1 macrophages on 

CPB2 expression. Interestingly, we found that inflammatory mediators have the opposite 

effect on CPB2 mRNA stability, abundance, and TAFI protein levels compared to the one 

produced in HepG2 cells. These findings may be indicative of tissue-specific CPB2 

expression regulation. Moreover, we observed that polyA site selection is also differently 

regulated in HepG2 cells and THP-1 macrophages, further supporting this hypothesis. 

We found another component of the post-transcriptional regulation machinery to 

be playing a role in regulation of CPB2 expression. In Chapter Five, a novel role for 

microRNA pathway was described in modulating CPB2 mRNA abundance and TAFI 

protein levels in HepG2 cells. This study also uncovered preliminary evidence for 

potential functional interplay between the components of the post-transcriptional 
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microRNA-ome and proteome, namely for miR-124 and TTP, as well as a potential 

mechanistic basis for the association between a polymorphism that occurs in the 3’-UTR 

in the human population, T+ 1583A, with lower plasma TAFI concentrations in 

individuals bearing the T allele [8] (Figure 6.1).   

Taken together, our analyses of regulation of CPB2 expression at the post-

transcriptional level in liver cells and THP-1 macrophages have provided important 

fundamental, mechanistic insights into how expression of this important haemostatic 

factor is modulated. This new knowledge is  relevant not only to rationalizing the clinical 

studies on variation of plasma TAFI concentrations in the human population,  but also to 

understanding how gene regulatory events may be an essential component of the TAFI 

system. These analyses provide a solid platform for studies of the role of TAFI pathway 

in health and disease, and in cell types that may be involved in deranged haemostasis and 

inflammation. 

       6.1 Post-transcriptional control: crucial regulator of CPB2 gene expression 

Translation of mRNA into proteins can be specifically regulated by a 

combinatorial action of RNA-binding factors (proteins and antisense RNAs), that can 

affect mRNA stability, localization, translation initiation and elongation. Untranslated 

regions at the 3’ end (3’-UTRs) of mRNAs are involved in precise orchestration of these 

events by virtue of specific sequences, called cis-elements that serve as sites of interaction 

with the various trans-acting factors. The importance of 3’-UTRs was largely 

underestimated until the discovery of ARE-binding proteins, and even more so, until the 

discovery of microRNAs. Moreover, it is becoming increasingly apparent that the 3’-

UTR binding factors do not act separately, but rather in cooperation, and this crosstalk is 

mediated by binding sequences or direct protein-protein, or protein-miRNA interactions. 
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Accumulating evidence suggests that many RNA binding factors share common target 3’-

UTRs, and can bind to non-overlapping sites, or to common sequences in a competitive 

fashion [6]. The outcome of the cooperative function of the factors bound to the common 

3’-UTR depends on several circumstances, such as the levels of their expression, their 

localization, and their affinity towards and availability of their binding site. The situation 

becomes further complicated by the fact that these circumstances can be modulated by 

physiological and pathological processes.  

One of the best characterized cis-elements is the cytoplasmic polyadenylation 

element (CPE) located in close proximity to the canonical polyA hexanuclotide 

AAUAAA [9]. CPE-binding protein (CPEB) is an ARE-binding protein that binds CPE 

and regulates specific target mRNAs, directly controlling physiological processes in 

mammalian cells, such as cell cycle progression, particularly during senescence, 

suggesting a role in cancer and aging. Other well characterized ARE-binding protein 

factors include Hu/ELAV family of proteins, HuR (which is ubiquitously expressed), and 

HuB, -C and –D, which have evolved to acquire specialized functions, and are primarily 

neuronal. HuR mainly acts on target 3’-UTRs and enhances transcript stability or 

translation rate, although in some instances acts as an mRNA destabilizer [10-12]. AU-

binding factor 1 (AUF1), belongs to a big family of hnRNPs that includes hnRNP A, B, 

C, D, E, F, H, I, K, L, M, Q and R. AUF1 primarily targets mRNAs for degradation, most 

likely by recruiting them to exosomes for degradation [13, 14]. However, it was found to 

cause the opposite effect – enhancing stability and translation – in the case of some 

mRNAs [15].  It is evident from these examples that cooperation and crosstalk among the 

components of the 3’-UTR interactome decide the final fate of the transcript. 
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In the case of CPB2 3’-UTR, we identified TTP, as the trans-acting protein factor 

that dictates transcript stability, and is involved in mediating  regulated changes in CPB2 

mRNA and TAFI protein abundance in the presence of inflammatory mediators. TTP 

exerts these effects through control of CPB2 mRNA stability. TTP has been characterized 

as an important regulator of initiation and resolution of inflammatory responses, through 

its rigorous control of mRNA stability of transcripts encoding many cytokines, including 

COX-2 [16, 17] and the master cytokine TNFα [18]. The fact that CPB2 mRNA belongs 

to the pool of transcripts regulated by TTP underscores the involvement of TAFI in 

regulation of inflammation. In fact, TAFI appears to play a multidimensional role in 

regulation of inflammation: TAFI downregulates inflammation by virtue of inactivation 

of pro-inflammatory peptides and TAFI expression is itself downregulated by the 

inflammatory cytokines, as we described Chapter Three. Additionally, we found that the 

functional antagonist of TTP, HuR, may also assist in this process, and may serve as a 

supplementary mechanism to downregulate CPB2 transcript and TAFI protein levels in 

an inflammatory environment. Therefore, this TTP-HuR regulatory axis serves as an 

example of cooperation among RNA-binding factors that ultimately determines the fate 

of CPB2 mRNA.  

Although we initially speculated that the binding of TTP and HuR may be 

competitive, this does not appear to be the case. In keeping with the role of HuR as an 

mRNA stabilizing factor, we speculate that it likely contacts the stability cis-element that 

is located upstream of the last instability element that TTP binds, a hypothesis that would 

be in line with the observed data.     
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   6.2  CPB2 gene expression regulation in THP-1 macrophages: evidence for  

           existence of   tissue-specific regulatory mechanisms 

  Another particularly interesting characteristic of the CPB2 3’-UTR is that is 

possesses three possible polyA signals. All of these are in fact utilized, as we previously 

determined for HepG2 cells, albeit with different frequencies [19].  It appears that 

alternative polyadenylation is a widespread phenomenon, and can affect tissue specific 

expression, mRNA localization, mRNA decay and translation efficiency [20-24], and 

may play a role in disease states [25]. Here we uncovered a different polyadenylation 

pattern of CPB2 mRNA in THP-1 macrophages, compared to that in HepG2 cells. The 

regulatory function of alternative polyadenylation lies in formation of RNA-binding 

factor-deficient or -proficient 3’-UTR, serving as a module to promote or prevent 

association of the particular RNA-binding factor and its target site. Approximately half of 

the pool of CPB2 transcripts in THP-1 macrophages consists of the longest polyA form, 

that harbours the TTP binding site, which is in contrast to HepG2 cells that under basal 

conditions rarely utilize the last polyA site and the longest polyA form only accounts for 

2% of the total CPB2 transcripts [19]. In keeping with our previous finding that the 

longest transcript is the least stable, we speculate that such high concentration of this 

longest form contributes to the shorter half-life of CPB2 mRNA endogenously expressed 

by THP-1 macrophages (2.1 hour, compared to 3.1 hour in HepG2 cells). A notable 

example from the literature is COX-2 mRNA, that contains two alternative polyA sites, 

and the use of the more distal site is more frequent and results in inclusion of the TTP 

binding site [16]. This pattern of alternative polyadenylation is deranged in cancer, such 

that the first polyA site is favoured, resulting in exclusion of the TTP binding site and 

increased COX-2 expression [17].  
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In Chapter Four, we investigated the influence of inflammatory mediators on the 

frequency of usage of the three polyA sites in THP-1 macrophages. We have previously 

shown that when IL-6 and IL-1β are administered in combination to HepG2 cells this 

results in preferential formation of the longest transcript that is further destabilized by 

50% [19]. With the discovery of the functional TTP binding site between the last two 

polyA sites, it is tempting to speculate that increased frequency of the usage of the last 

polyA site in the presence of this stimulus is the operating mechanism behind this 

destabilization. In THP-1 macrophages however, we found that the usage of this last 

polyA site decreases in the presence of the inflammatory mediators, which may at least in 

part account for increased mRNA stability of the endogenous CPB2 transcript. Also, this 

effect appears to be much less dramatic in THP-1 macrophages compared to HepG2 cells. 

Preferential formation of the shortest transcript in the presence of inflammatory mediators 

would result in the enrichment of TTP-binding site-deficient transcripts which have 

longer half-lives. In addition to TTP, HuR may also play a role in exerting this effect. As 

we demonstrated for HepG2 cells in Chapter Three, the absence of TTP binding site 

increases the HuR occupancy of fusion transcripts containing the TAFI 3’-UTR in the 

presence of inflammatory mediators. In keeping with the stabilizing effect of the first cis-

element we described in Chapter Two, it is tempting to speculate that this region also 

constitutes the HuR binding site. Therefore the increased production of HuR-proficient, 

TTP-deficient transcripts by THP-1 macrophages in the presence of inflammatory 

mediators is expected to result in increased overall abundance of the TAFI mRNAs and 

subsequent increase in TAFI protein levels, as we described in Chapter Four. 

In case of inflammation, macrophages can assume either an inflammatory or an 

anti-inflammatory role. Inflammatory macrophages, referred to as M1 macrophages, are 
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known to react strongly to invading pathogen components (such as LPS) or other danger 

signals (IFN-γ and TNFα) by producing pro-inflammatory cytokines, inducible nitric 

oxide synthases and reactive oxygen species (ROS) [26]. M1 macrophages are 

predominantly active in the initial stages of acute inflammation (such as upon bacterial 

infection) or in the later phase of chronic inflammation (as occurs in the vessel wall in 

atherosclerosis) [27]. While they exert most of their functions locally, the secreted pro-

inflammatory cytokines act as chemoattractants for T cells and natural killer cells, 

recruited to aid in the inflammatory process [28]. In situations when M1 macrophages are 

unable to cease their production of inflammatory mediators, uncontrolled inflammation 

ensues, followed by tissue damage as a result of excessive ROS production and 

recruitment of other immune cells, a hallmark of many autoimmune diseases.  

Similarly, in atherosclerosis, activated M1 macrophages engulf the surrounding 

lipid molecules, becoming foam cells that contribute substantially to atherosclerotic 

plaque formation through potentiation of pro-inflammatory environment in the immediate 

vicinity of the plaque. The regulation of CPB2 gene expression in this milieu argues in 

favour for the role of TAFI as pro-atherogenic factor. In this context, enhanced 

expression of TAFI through the usage of the more proximal polyA site is expected to 

increase the TAFI load within and around the atherosclerotic plaque, resulting in 

attenuation of pericellular plasminogen activation, increased extracellular matrix 

deposition and increased smooth muscle cell migration. Therefore, the role of 

macrophage-secreted TAFI in the context of the vessel wall might be centered primarily 

on regulation of the plasminogen system. Since the primary role of liver-produced TAFI 

is in fibrinolysis, it is not surprising that gene expression regulation at these two locales is 

different, and these changes appear to occur at the level of post-transcriptional regulation. 
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Regulation at this level is possibly most efficient and energetically favourable for the cell, 

since the factors involved are present in the same compartment as the transcript (or are 

easily transported), compared to changes at the transcriptional level, which would involve 

much more complex organization of the transcription machinery and the events thereafter. 

Taken together, our studies of post-transcriptional regulation of CPB2 expression in THP-

1 macrophages, both constitutive and regulated, will provide important context for further 

studies of tissue-specific gene expression regulation of CPB2. 

     

     6.3 ‘Micro-management’ of CPB2 gene expression regulation: evidence for the  

            role of  the microRNA pathway 

MicroRNAs are a class of small non-coding regulatory RNA molecules that 

represent one of the major breakthroughs in cellular and molecular biology. MiRNAs 

originate from RNA polymerase II-transcribed precursors, which are processed by Drosha 

enzyme in the nucleus, generating pre-miRNA precursors [29]. Further processing occurs 

in the cytoplasm after export of pre-miRNAs, and is executed mainly by Dicer, that is 

responsible for formation of ~22nt miRNA duplexes [30]. The functional unit of a 

miRNA is the guide strand, that associates with the RISC complex, and that possesses 

complimentary sequence to its target sequence in the 3’-UTR of protein-coding mRNAs, 

whereas the other strand (passenger strand) is degraded .  At only about 22 nt in length, 

these tiny molecules play key roles in almost all cellular processes [30-32]. Since a single 

miRNA molecule can target many different mRNAs, alterations of miRNA levels 

expressed by the cell  may essentially influence cellular homeostasis, and in most extreme 

cases result in pathological consequences, such as malignant transformation or cell death 

[33, 34]. In fact, the evidence for the involvement of miRNAs in tumorogenesis emerged 
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over a decade ago [33]. Since then, multiple pathophysiological effects have been 

observed when miRNA expression levels are deregulated [35-37].  

           In support of our findings of tissue-specific CPB2 gene expression regulation, we 

also observed that the expression levels of several candidate miRNAs differ between 

THP-1 macrophages and HepG2 cells. In Chapter Five, we described the potential of 

these candidate miRNAs, miR-124, miR-346, miR-431, miR-506 and miR-708, to 

downregulate CBP2 mRNA and TAFI protein levels in HepG2 cells. Furthermore, we 

confirmed that the 3’-UTR of CPB2 transcript is a functional target for these miRNAs 

with our luciferase reporter system. These studies will be particularly informative for 

future studies of miRNA involvement in other cell types where CPB2 is expressed, such 

as in THP-1 monocytes, THP-1 macrophages, megakaryocytes and platelets.  

Further evidence of cooperativity between RNA regulatory factors, namely RNA-

binding proteins and miRNAs, also arose from the data we presented in Chapter Five. The 

target site for miR-124 was of particular interest to us, as we discovered that it lies in 

close vicinity to the TTP binding site within CBP2 3’-UTR. Upon closer inspection, we 

established that the two sites overlap by two nucleotides, where the TTP binding site is 

located proximally to the miR-124 target site. We employed our luciferase reporter 

system to further confirm this, and found that when the TTP binding site is mutated, miR-

124 targeting of the CPB2 3’-UTR is also abolished. Furthermore, we found that miR-124 

decreases translation efficiency, whereas TTP does not seem to play a role in this process. 

Therefore, the combinatorial action of these two RNA binding factors may be at play in 

determination of CPB2 mRNA fate. It is remains to be elucidated whether increased 

targeting of TTP, such as occurs in the presence of inflammatory mediators, also results 

in increased miR-124 targeting of the CPB2 3’-UTR. It is also presently unknown 
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whether the same regulatory paradigm extends to other cell types where CPB2 is 

expressed. 

Multiple studies have shown that plasma concentrations of TAFI vary 

significantly in the population [38]. There are a number of SNPs throughout the CPB2 

and altogether account for 25 % of the variation in plasma TAFI levels [39]. Of the SNPs 

that occur in the 3’-UTR, of particular interest to us was T+ 1583A SNP, mainly because 

we discovered that it is encompassed within the target site of miR-143. Furthermore, 

miR-143 complementary base pairing was predicted to occur when the T allele was 

present at this position. The T+ 1583A SNP has been associated with lower TAFI plasma 

concentrations [39], and when present in certain haplotype combinations, but not on its 

own, it resulted in destabilization of CPB2 mRNA [40]. We hypothesized that the 

selective targeting by miR-143 may at least in part account for the mechanism behind 

these effects. After genotyping HepG2 cells and the 3’-flanking region of our luciferase 

reporter system, we discovered that they contain the A allele at +1583 position, which 

may explain why our initial studies demonstrated miR-143 ineffective in downregulation 

of CPB2 mRNA and TAFI protein levels. We selectively introduced the T SNP at this 

position with site directed mutagenesis in the context of the luciferase reporter constructs, 

and observed decrease in reporter activity in the presence of miR-143 mimic, while the A 

allele-bearing construct was refractory to this downregulation. This study was particularly 

informative in delineating new mechanisms for CPB2 gene expression regulation by both 

genetic and gene-regulatory factors. More fundamentally, it also provides evidence for 

the involvement of the miRNA in regulation of gene expression by single nucleotide 

polymorphisms, and this may be widely occurring phenomenon in regulation of other 

genes.  
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6.4 Implications for further research  

The activity of TAFIa in the plasma compartment reduces fibrin clot lysis and 

contributes to clot stability. Therapeutic thrombolysis consists of pharmacological 

dissolution of the clot by injection of plasminogen activators (such as tPA) that activate 

the fibrinolytic system. This intervention is commonly used for patients with myocardial 

infarction and ischemic stroke with great clinical benefit. However, the thrombolytic 

agents currently used all have significant shortcomings, ranging from the need for large 

doses and limited specificity, to associated bleeding complications and reocclusions [41]. 

Therefore, adjunctive therapy that would potentiate the tPA-mediated fibrinolysis would 

have a tremendous benefit in erasing some of the shortcomings, such as reducing the dose 

of plasminogen activators and the associated bleeding tendencies. Indeed, the potential 

for TAFIa inhibition as adjuvant therapy has been investigated in a rabbit model of 

arterial thrombolysis in which TAFIa-specific inhibitor, PTCI, was used. The study 

demonstrated enhancement of several parameters associated with improved thrombolysis 

when PTCI and tPA were co-administered [42].  

Additional avenues for modulation of TAFIa activity can also occur at the level of 

gene expression regulation. Antisense oligonucleotides, small interfering RNAs 

(siRNAs), and microRNAs (miRNAs) are emerging as important therapeutic modalities 

for the treatment of cardiovascular diseases (reviewed in [43]). Two strategies have 

evolved to alter miRNA activity, the first using synthetic mimicry of naturally occurring 

miRNAs, while the second blocks activity via complementary antisense oligonucleotide 

inhibitors [44]. In Chapter Five, we described that CPB2 transcript is a target of several 

miRNAs. Therefore, the alteration of the activities of the specific miRNAs is a plausible 

therapeutic strategy to modulate TAFI protein levels.  
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Evaluation of the in vivo efficacy of such microRNA-based therapy would require 

the use of an appropriate animal model. Mice are the mainstay of in vivo experimentation 

and in many respects their biology is remarkably similar to that of the human.  

Sequencing of the human and mice genomes revealed that only approximately 300 genes 

appear unique to one species or the other [45]. Despite such high degree of conservation, 

significant differences exist for many biological systems. One such example is the 

immune system, which in mice and humans differs in many respects, including 

development, activation, and response to challenge [46]. This should not come as a 

surprise, provided that not only mice and humans differ significantly in size and lifespan, 

these two species have also been presented with widely different pathogenic challenges 

during evolution in their respective ecological niches.  

Regulation of CPB2 expression in mice and humans also appears to be different. 

A recent report from our laboratory revealed that gene expression regulation of CPB2 

differs substantially in the presence of inflammatory mediators [47]. We observed an 

increase in CPB2 mRNA abundance upon treatment of primary mouse hepatocytes or the 

mouse hepatic cell line FL83B with TNFα, and we revealed that the mechanistic basis for 

this increase lies in NFκB-mediated upregulation of promoter activity. In Chapter Three 

we described the opposite effect on both mRNA and TAFI protein abundance in human 

hepatic cell line, mediated by TTP-induced destabilization of the transcript and 

subsequent decrease in TAFI protein levels. Therefore, the same stimulus appears to 

regulate CPB2 expression in different ways and via different mechanisms in the two 

species. More fundamentally, this finding also reflects the fact that key regulatory 

sequences involved in transcription are not conserved between the mouse and the human, 

as the human promoter lacks the consensus NFκB binding site responsible for cytokine 
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induction of the mouse CPB2 promoter. In further support of this notion, unpublished 

data from our laboratory revealed that the 3’-UTR of the mouse CPB2 transcript shares 

homology woth the human counterpart only in the first 100 nucleotides. The mouse 3’-

UTR contains only two alternative polyA sites, compared to the three in the human 

counterpart, and these occur within 120 nucleotides of the stop codon. It is therefore not 

unexpected that there is differential regulation at both the transcriptional and post-

transcriptional levels, particularly pertaining to the inflammatory milieu. It appears that 

evolutionarily challenges presented to humans resulted in the acquirement of additional 

cis-regulatory elements within CPB2 3’-UTR, and the loss of transcription factor binding 

sites within the CPB2 promoter. Perhaps this evolved as a more sophisticated strategy to 

fine-tune CPB2 gene expression in response to inflammatory stimuli. Alternatively, the 

divergence in the regulatory regions of CPB2 may attest to the differences between 

primates and rodents with respect to the role of TAFI in host defense. Therefore, a mouse 

model may not be most suitable to use in studies elucidating the function of the TAFI 

pathway in inflammation.  
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Figure 6.1. Putative components of the miRNA-ribonucleoprotein complex involved 
in metabolism of CPB2 mRNA.  3’-UTR of CPB2 mRNA with three potential polyA 
sites and the respective transcripts. Location of SNPs is shown by blue spheres. Intrinsic 
stabilities and abundances of the three polyA forms in HepG2 cells under basal conditions 
and in the presence of IL-6 and IL-1β are indicated in purple boxes.  Question mark 
emphasizes the unknown nature of the particular interaction.  
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 6.5 Concluding remarks 

  The impact of the mechanistic studies of gene expression regulation is at least 

three-fold. Firstly, these studies delineate key regulatory mechanisms that are employed 

for both constitutive and regulated expression of the gene under study. Secondly, they 

pinpoint the key factors and players that act together to orchestrate this regulation. This is 

particularly important for complex regulatory environments, such as the case with 

inflammation. Lastly, in the pathological milieu, they illuminate the possible 

mechanisms/factors that may be involved and a detailed understanding of these 

mechanisms may aid in development of new tools for diagnostics and treatment 

strategies. Ultimately, elucidation of these mechanisms and events may lead to discovery 

of new roles for the gene product in question, and more importantly reveal key 

evolutionarily insights that may apply to other genes. 

 With the studies described here, we have gained new insights into the regulation 

of CPB2 expression in HepG2 cells and THP-1 macrophages that particularly underscore 

the key role for post-transcriptional events. Of the specific RNA-regulatory factors, we 

described the roles for TTP, HuR, miR-124, miR-143, miR-346, miR-506 and miR-708 in 

hepatic cells (Figure 6.1). Whether the same regulatory network operates in other cell 

types where CPB2 is expressed (i.e. monocytes, macrophages, megakaryocytes and 

platelets) still remains to be elucidated. The work described in this dissertation thus 

provides a solid platform for the design of similar studies aimed at elucidating gene 

regulatory events of CPB2 at these sites. Such studies are essential in understanding the 

full capacity of the TAFI pathway functions in health and disease. More fundamentally, 

new knowledge gained from these studies would provide key insights into the gene 
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regulatory mechanisms that operate at tissue-specific level to fine-tune the levels of the 

protein product and/or uncover its novel roles.  
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