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ABSTRACT 

ASSESSING THE ACCURACY OF PEAK AND CUMULATIVE LOW BACK 
ANALYSES WHEN HUMAN ANTHROPOMETRY IS SCALED IN A VIRTUAL 
ENVIRONMENT

Christina Godin 
University o f Windsor

This study addressed the effect o f scaling subjects in a virtual reality environment when 

performing ergonomic evaluations for assembly automotive tasks. Ten male and ten 

female automotive employees participated in this study. Subjects were selected to fit into 

one of 4 anthropometric groups (n=5/group); 5th percentile female (5F), 50th percentile 

female (50F), 50th percentile male (50M), or 95th percentile male (95M). Each subject 

was asked to perform 3 automotive assembly tasks while interacting with a digital 

rendering of a vehicle in virtual reality. The subjects were represented in virtual reality 

as a human manikin (Classic Jack, UGS) whose actions were driven by their actual 

motions captured via motion tracking (EvaRT, MotionAnalysis). Each subject performed 

the tasks under 4 different conditions; in one condition, the subject appeared as their true 

size, and in the three other conditions, they were scaled to appear as the size o f the other 

three subject groups. Peak and cumulative low back loads, joint angles at the point of 

peak compression and peak and cumulative resultant shoulder moments were output from 

the Task Analysis Tool Kit within Classic Jack. A Repeated Measures ANOVA with a 

Tukey’s significance post hoc test were used to identify differences within the data 

(p<0.05). Results show that, for virtual assessments of peak and cumulative low back 

compression, scaling subjects between the range of the 50F to the 95M was deemed an 

acceptable practice. In terms of ergonomic assessments related to the shoulder, if  limits 

are to be based on 5F or 50F individuals, subjects can be scaled anywhere within the

iii
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range of 5 F to 50F, without affecting the accuracy of the results and subsequent 

ergonomic decisions. If results will be based on 50M or 95M, it is acceptable to select 

subjects that fall within this range and scale them to the desired size. These 

recommendations are based on tasks typical of automotive assembly type tasks and are 

intended to act as a guideline when selecting subjects for ergonomic studies performed 

with motion capture and virtual reality integration.
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I . I N T R O D U C T I O N

BACKGROUND

Several large manufacturing companies, in particular those producing vehicles of 

transport, such as automotive, aviation, and agricultural equipment have migrated 

towards the use of digitally created environments to test new vehicle design. This is 

particularly common in the field of ergonomics where, simulated humans can perform 

tasks in a computer environment to predict the risk of injury. The use of computer 

simulation is believed to reduce cost to a company as fewer physical prototypes are 

required, thereby saving money in terms of time, materials and manpower. In the field of 

ergonomics, virtual environments have been used to assess vehicle design from the 

occupant's (driver’s) perspective (Rigel, Assmann & Bubb, 2003; Dai, Teng, & Oriet, 

2003; Blome, Dukic, Hanson & Hogberg, 2003), however very little has been done in 

terms of assessing the worker who must assemble the product. From an ergonomic point 

of view, the opportunity to assess a job virtually, in order to determine the risk of injury, 

is a great advantage. The risk of injury can be assessed and eliminated, or reduced, 

before ever requiring a true human to perform the task. The limitation of this approach, 

however, is that a digital human cannot always accurately predict the movement patterns 

of a true human and, therefore, the strategy used by a virtual human may not truly 

represent what is done in real life (Doi & Haslegrave, 2003; Reed, Parkinson, & 

Klinkenberger, 2003). In order to combat this problem, companies are beginning to 

invest in Motion Capture equipment. This allows a real human to perform a task while 

viewing a virtual environment through a head mounted visual display unit or wall 

projected image. This approach allows the cost savings of creating a digital environment

1
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rather then a physical prototype, but also ensures the task is executed realistically by a 

true human.

Typically, engineers will design a product or workstation to accommodate the 

extremes o f a population, being the smallest female to the largest male (Feyen, Liu, 

Chaffin, Jimmerson & Joseph, 2000). In a virtual environment, you have the option of 

taking a person of any stature and scaling the environment around them such that they 

appear to match the anthropometry that is desired for testing. For example, a large male 

could be scaled to represent a small female while performing an activity. While it is 

common practice, among manufacturers currently employing motion capture analyses, to 

alter the anthropometric measures of their subjects, it remains unknown if this practice 

produces the same results as would be obtained from using a person who is truly the 

desired size. O f particular interest, is the effect that human scaling has on estimating the 

risk of low back injury, as this has been one of the most common and significant 

occupational problems experienced by workforces worldwide (Hagen & Thune, 1998; 

Clemon, 2002; Punnett, Fine, Keyserling, Herrin & Chaffin, 1991; Kumar, 1990; 

Norman, Wells, Frank, Shannon & Kerr, 1998). For example, European workers affected 

by back pain had a median value of 43 work absences over a 1 year period (Hagen & 

Thune, 1998). In the United States’ manufacturing industry, 23% of all injuries occurring 

in 1995 affected the low back (Mital, Pennathur & Kansal, 1999a). Furthermore, 

compensation costs were highest for the back compared with all other regions of the body 

and 26% of all those injured lost 21 days or more of work (Mital, Pennathur & Kansal,, 

1999b). Ontario statistics reveal that back injuries result in the greatest number of lost 

time claims relative to any other affected area o f the body, at 29.6% (WSIB Statistical

2
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Supplement, 2002). Overexertion was reported as a primary cause, which includes 

activities such as lifting, pushing and pulling objects.

The alarming occurrence, and resultant costs, of low back pain (LBP) among 

workers demonstrates the necessity o f reducing risk factors associated with this disorder. 

Considerable research has been dedicated to reducing occupational back pain, and 

numerous risk factors are cited in the literature highlighting the multifactorical etiology 

of this disorder. Psychosocial factors, such as job satisfaction, coworker support, and 

workplace social environment prove to be significant when assessing occupational low 

back pain (Kerr, Frank, Shannon, Norman, Wells, Neumann, Bombardier & the Ontario 

Back Pain Study Group, 2001, Bigos, Battie, Spengler, Fisher, Fordyce, Hansson, 

Nachemson & Wortley, 1991). Recent research has shown that it is not only time spent 

on the job, but also non-occupational activities (ex: cooking, cleaning) that can affect an 

individual during their work hours (Godin, Andrews & Callaghan, 2003; Azar, Andrews 

& Callaghan, 2003; Lauder, Andrews & Callaghan, 2002). For example, peak spine 

loads produced during non-occupational tasks have been shown to exceed the NIOSH 

(National Institute o f Occupational Safety and Health) Action Limit (AL) o f 3400 N 

(Godin et ah, 2003).

Biomechanical factors, such as peak and cumulative loads, along with the postural 

considerations of a task, have also been identified as risk factors for work-related low 

back pain. Punnett et al. (1991) showed that trunk posture, independent of the force 

characteristics of a task, was associated with reporting of low back pain in an automotive 

industrial setting. The National Institute of Occupational Safety and Health (NIOSH) 

assessed the effects of peak loads on the spinal structures, and suggested that any lifting

3
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scenario causing a peak spine compression greater then 3400 N is associated with 

negative implications for the lifter (NIOSH, 1981). Other thresholds have also been 

suggested, for example, by Mital, Nicholson & Ayoub (1993) (2700 N for females, 3900 

N for males), however, the common goal of all current limits is to reduce the risk of 

injury resulting from peak spinal loads. Such threshold values are commonly used to 

assess biomechanical risk factors in occupational settings. Despite this, low pack pain 

continues to persist.

Recent efforts have shown that cumulative loads are associated with low back 

disorders in work settings (Kumar, 1990; Norman, et al., 1998; Jager, Jordan, Luttmann 

& Laurig, 2000; Daynard, Yassi, Cooper, Tate, Norman & Wells, 2001, Seilder, Bolm- 

Audorff, Heiskel, Henkel, Roth-Kuver, Kaiser, Bickeboller, Willingstorfer, Beck, & 

Eisner, 2001). Evidence from an epidemiological perspective has been reported by 

Kumar (1990), Norman et al. (1998) and Siedler et al. (2001). Kumar (1990) found that 

cumulative compression and shear forces were significantly higher in institutional aides 

with pain compared to those without pain. Automobile assembly workers who 

experienced pain have also been shown to have higher cumulative load values when 

compared with their pain free counterparts (Norman, et al., 1998). These studies suggest 

that exposure to cumulative load predisposes the spine to pain and/or injury and thus is a 

risk factor for low back disorders. Furthermore, using a blinded case-control design, 

German researchers Seidler et al. (2001) identified a link between cumulative physical 

work and lumbar spine disease, in particular osteochondrosis and spondylosis. While 

there is no current threshold value for cumulative low back loads, the above evidence
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suggests that it is an important occupational risk factor and should be considered during 

the design or assessment of a job.

Virtual ergonomics is a rapidly emerging technology that is used to make 

proactive workplace decisions and correct potentially injurious products while they are 

still being designed. Given the impact of low back pain among today’s workforce, the 

opportunity to address injury risk during the design phase offers a promising solution to 

one of the most pressing ergonomic concerns in industry. However, in order to be truly 

effective, it is imperative that a virtual assessment closely reflects the true life scenario. 

One of the greatest advances in making virtual ergonomics more representative of the 

actual job or task being analyzed, was incorporating the use o f motion capture in order to 

simulate true human actions. Thus, low back assessments can be generated using the 

postural information o f an actual person, rather than a human model. The typical 

protocol employed in motion capture labs today is to scale the dimensions of a test 

subject in order to represent a specific set o f anthropometries (for example, a small 

female) while that individual interacts in the virtual environment. The movements of this 

person are then utilized to assess the moments and forces acting on the low back and, 

ultimately, allow for a decision to be made about the associated injury risk. This 

procedure is quite sophisticated, when contrasted with the typical reactive video-based or 

observational methods of generating postural information for entry into assessment tools. 

It is even more advanced when compared to relying on user’s predictions of a human 

model’s movements or posture. What remains unknown, however, is whether or not it is 

valid to make the person performing in motion capture appear larger or smaller than they 

truly are in order to represent a desired population (for example a small female) when

5
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generating a low back assessment. Thus, the question remains, can humans be scaled 

using motion capture to appear differently in a virtual environment and be expected to act 

or move the same as the size of person that they have been scaled to represent? In order 

to ensure an accurate measure of the peak and cumulative loads on the low back during a 

virtual assessment, it is imperative that sound procedures are available for scaling 

subjects during a motion capture session to ensure valid results.

STATEMENT OF THE PURPOSE

The primary goal o f this study was to define the parameters for scaling human 

anthropometry in a virtual environment. More specifically, this study addressed the 

validity of using different sized subjects in a virtual environment when the 

anthropometric criteria in question are different than that of the subject performing the 

task(s). For example, the study was designed to determine if a 5th percentile female 

would produce similar peak and cumulative low back compression as a larger subject that 

was scaled to appear as a 5th percentile female. There were four groups of subjects in this 

study, 5th percentile females, 50th percentile females, 50th percentile males, and 95th 

percentile males. Each subject was asked to perform a series of tasks in a motion capture 

lab. One time, the subject appeared as their true size, and the three additional times, they 

were scaled to appear as the size of the other three subject groups. Prior to this study, it 

is assumed that similar results would be obtained with any sized person being scaled to 

any particular size of interest and expensive decisions were made based on this 

assumption. Subjects were asked to perform a series of tasks in a motion capture lab and 

these motions were linked to a computer software to produce a frame-by-frame analysis 

of the peak and cumulative compression values for each task.

6
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HYPOTHESES

1. When a small female is scaled to represent a large male, significant differences 
(p<0.05) will exist in the results o f  a peak and cumulative low back compression 
assessment. The same will hold true when a large male is scaled to represent a small 
female.

Given the large inherent differences in terms of muscle size, overall body mass and 

height between a true 5th percentile female and a 95th percentile male scaled down to a 

tiny woman, the large male is expected to utilize a different movement strategy than a 

small woman. Since the larger male will automatically generate higher absolute 

compressive forces on the low back, due to the internal forces generated by body weight 

and longer moment arms, his movements are expected to reflect a strategy that generates 

the least demands on the body, regardless of external factors. Thus, where the small 

female may choose to use one of several possible strategies to achieve a goal, the large 

male, scaled down in size, may be limited by his true body dimensions (due to the greater 

strength demand of the higher segment masses), and therefore may not be as flexible in 

adopting new or variable movement strategies as may be expected for the smaller female, 

regardless of how small he appears in the virtual environment.

2. No significant differences (p<0.05) will be observed in the results o f  a low back 
assessment o f  peak and cumulative compression between the 5th percentile female and the 
50th percentile female when they are scaled to represent one another. The same is 
expected fo r  the 50th percentile male and the 95th percentile male.

Given all possible scaling scenarios, the difference in body size is least when scaling 

between an average male or female and a small female or large male. Thus, for example, 

it is anticipated that during conditions where the environment of the 50th percentile 

person is being utilized, scaled subjects (5th female and 95th male) will choose movement 

patterns that are similar to the un-scaled 50th percentile person. This is because the

7
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changes made to the environment when scaling between the average person and the 5th 

female or 95th male are less than when scaling between the extremes of a population 

(small female to large male). Therefore, it is more likely that smaller adjustments in 

anthropometry (for example; 5th to 50th rather than 5th to 95th) will result in subjects 

performing similar to how they would in their un-scaled environment.

3. Differences between conditions and subjects will be lower fo r  low back cumulative 
compressive forces than fo r  peak forces.

Rectangular integration incorporates all frames of data across a time period, which 

includes both high and low compressive forces at any particular moment. Peak forces, on 

the other hand are based on one instant in time, where the highest compressive load is 

seen, and this value reflects what is happening at one frame within several thousands of 

frames collected during a trial. It is anticipated that calculating the sum of several frames 

will not be as sensitive to variability within the data, given that one subject may 

experience one high compressive loading instant followed by two low instants, while 

another may experience three instants of moderate-loading and both scenarios could 

potentially add up to the same magnitude.
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II. LITERATURE REVIEW 

THE AUTOMOTIVE INDUSTRY

In Canada alone, the manufacturing industry employs over six hundred thousand 

individuals which is the third largest employing sector, after health care and specialized 

trades (Statistics Canada, 2002). Manually laborious and repetitive tasks are common in 

automotive manufacturing and consist of non-neutral trunk postures such as bending, 

twisting, and manual material handling. These risk factors result in frequent and large 

cumulative and peak forces on the spine, which can ultimately lead to tissue injury 

(Punnett, et al., 1991; Norman et al., 1998). In fact, the automotive industry accounted 

for 9.6% of all injury claims in Canada in 2002, with the back being the most problematic 

area (WSIB Statistical Supplement, 2002). An effort to reduce the number of injuries is 

imperative, not only for the health and safety of the individual, but also due to the 

alarming cost associated with such injuries. In the United States, it is estimated that one 

quarter o f the working population experiences low back pain, translating to an annual 

medical cost of 24 billion dollars (Frymoyer and Cats-Baril, 1991). Clearly, the low back 

remains an area of concern for both automotive workers and employers and requires 

further investigation in order to reduce the risk associated with this type of employment.

Numerous efforts have been made in the past to reduce the risk of low back injury 

among this workforce. In 1981, the risk associated with lifting was addressed by the 

National Institute for Occupational Health and Safety (NIOSH), who proposed a 

threshold for peak compression of 3400 N (NIOSH, 1981). The development o f this 

guideline has led to subsequent threshold values (for examples see Mital et al., 1993;

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Jager & Luttmann, 1991), which can be employed by Ergonomists in manufacturing 

environments to reduce the risk factors that contribute to high spinal compressive forces.

Norman et al. (1998) identified that both peak and cumulative forces were greater 

for auto workers who reported low back pain than for those who did not. In addition to 

studying the kinetic risk factors associated with work activities, others have looked at 

postural requirements in the automotive industry. Punnett et al. (1991) assessed the 

frequency of assuming non-neutral trunk postures for assembly employees and found 

that bending and twisting of the trunk is common in this environment. Specifically, 

workers who reported pain were found to spend a significantly greater percentage of their 

work cycle with the trunk in mild flexion (12.8 % versus 9.7%) and severe flexion (7.4% 

versus 4.1%) than workers who did not report back pain. As well, it was identified that 

the risk of injury, resulting from postural stresses, such as trunk flexion, axial twist and 

lateral bending, is 4 times greater than for tasks that require lifting a 44.5 N load once per 

minute, in any posture.

RECOMMENDED THRESHOLD LIMIT VALUES FOR PEAK SPINAL 
COMPRESSION

Peak spine compression has been consistently used as a criterion variable when assessing 

injury risk to the low back. Considerable research has been dedicated to determining 

threshold limit values (TLV) and developing tools to assess this risk factor. In 1981 the 

National Institute of Occupational Health and Safety (NIOSH) proposed lifting guidelines 

that were derived by integrating the principles of biomechanics, psychophysics and 

physiology. The biomechanical criterion is based on 2 compression limits; an Action 

Limit (AL) of 3400 N of peak spinal compression was proposed as the value that lifting
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tasks should not exceed if injury risk is to be minimized and 6400 N of peak compression 

was determined to be the value at which the risk of low back injury is significantly 

increased. The 1981 NIOSH lifting equation is limited, however, in that it only permits 

the analysis o f sagittal plane lifting tasks. In order to broaden the scope of this equation, 

NIOSH assembled a team of experts to review the literature and re-evaluate the original 

lifting equation. The result of this effort was a revised formula which utilizes a Lifting 

Index (LI) to define the risk of injury. For lifts limited by the biomechanical criterion 

(low frequency lifting), the LI is still based around the 3400N peak compression 

threshold, and is a ratio of the load lifted relative to the recommended limit. However, 

the revised 1991 equation provides a method to assess lifting outside o f the sagittal plane, 

and is believed to protect a greater number of workers from the risk o f low back pain. At 

the time, the literature related to asymmetrical lifting was limited, however, it all 

supported a decrease in capacity when lifting outside of the sagittal plane. For example, 

when synthesizing the psychophysical evidence a decrease in maximum lifting capacity 

between 8 and 22% was noted, as well as a decrease in maximum isometric strength of 

39%. Using this information, the NIOSH committee recommended a 30% decrease in 

the allowable weight o f a lift where axial twisting of 90 degrees is observed. The degree 

of asymmetry can be calculated as the angle between the sagittal plane and the plane of 

asymmetry (which is the vertical plane intersecting the center of the ankles and the center 

of the hands) The NIOSH lifting equation remains a popular risk assessment tool for 

Ergonomists and is used in a variety of industrial settings.

In their guide to Manual Material Handling, Mital, Nicholson & Ayoub (1993) 

also suggest peak compression limits for the spine. It is suggested that peak low back

11
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compressive forces should not exceed 3930 N for males and 2689 N for females. The

rational used to derive these values is based on injury statistics for low back disorders and

a job severity index (JSI) that had been previously reported in the literature. In 1983,

Ayoub proposed a lifting index which accounts for the size of a load, lifting frequency,

and duration o f work (as cited in Mital et al 1993). It was found that a JSI score >1.5

substantially increased low back injury rates. The maximum load that could be lifted by

males at a JSI value o f 1.5 was 27 kg, which translates to a peak compressive force of

3 93 ON on the low back (Mital et al, 1993). This value represents approximately 70% of

the maximum compressive strength of the spine (3900 N for females, 5700 N for males),

proposed by Jager and Luttmann (1991). If the same rational is applied to females, then a

maximum lifting load o f 20 kg, or 2689 N, is permissible (Mital et al, 1993).

THE INTERACTIONS OF PEAK AND CUMULATIVE COMPRESSIVE LOW 
BACK LOADS IN THE WORK SETTINGS

The availability of guidelines for peak low back loading has allowed Ergonomists in a 

variety of work settings to reduce the risk factors which contribute to high peak 

compressive forces on the spine. Typically, this would include redesigning a workstation 

to improve postures, limiting the frequency of lifting, as well as reducing the weight of 

loads that are manipulated. A method for lowering the peak compressive demands on the 

low back was tested in a health care setting where patients must be handled manually 

(Daynard et al., 2001). A group of researchers assessed the effects of installing 

mechanical hoists and other lift assists for use during patient transfers. A number of 

patient handling activities, both with and without assists, and using various transfer 

methods, including 1 and 2 person manual lifts, transfer belts and mechanical hoists, were
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observed among nursing assistant personnel. Peak spine loads at L4/L5 were generally 

quite low (for example; bed to wheelchair transfer with device, 20ION), particularly with 

the use of assistive equipment, however, cumulative loads were found to increase under 

these conditions.

The use o f a lift assist is generally known to increase the time requirements of a 

task, as the patient or item being maneuvered has to be placed securely into the device 

and the time needed to navigate the device from a start point to the end point is greater 

than with manual lifting. Given that the current method for calculating loads is through a 

linear summation over the entire time period, cumulative loads will become greater in 

magnitude as the length of a task increases. Thus, even though high peak low back loads 

can be remedied in this fashion, the potential of introducing other risk factors that can 

impact cumulative loading must be considered. This type of scenario offers a possible 

explanation for why low back disorders continue to persist despite efforts to reduce peak 

loading.

EVIDENCE OF CUMULATIVE LOADS AS A RISK FACTOR FOR LOW BACK 
PAIN AND INJURY

Epidemiological studies in occupational settings are particularly valuable when 

developing exposure guidelines. One such effort has addressed spinal injuries and the 

cumulative physical work for several occupations, including those found in the service 

and technology industries, a breadth of production related fields, as well as agriculture 

and mining (Seidler et al., 2001). The study was conducted in Germany and included 229 

cases and 197 controls. Interviews were conducted to obtain estimates of physical work

load, assessing variables such as lifting, carrying, trunk posture, exposure to vibration, as 

well as non-occupational factors. Spine injures reported by cases in this study were
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osteochondrosis, spondylosis, and lumbar disc herniation, The Mainz-Dortmund dose 

model was used to calculate lumbar disc compression force by means of a 2-dimensional 

regression-based equation. When the sum of the forces on the lumbar spine was 

calculated for both cases and controls, it was clearly shown that cumulative compressive 

exposure is linked with lumbar spine disease.

Epidemiological research conducted among the North American working 

population has also shown a positive association between cumulative loads and low back 

pain (Kumar, 1990, Norman et al., 1998). In 1990, the prevalence of back pain and 

cumulative loading was observed among Canadian institutional aides (Kumar, 1990). A 

total of 161 participants completed a pain profile and questionnaire to collect information 

on both personal and work histories as well as current on-the-job risk factors such as 

type, intensity and duration of various work tasks. Participants were asked to describe 

the postural requirements o f the job by manipulating a 3D manikin or by acting out the 

job. These postures, along with any associated hand loads, were recorded by the 

investigator and later input to a static biomechanical model. Static or sustained postures 

were calculated by multiplying the compressive and shear forces by the length o f time the 

posture was sustained. For dynamic actions, a start and end posture were identified and 

the movements in between were assumed to be smooth and continuous. A compressive 

and shear force was calculated every 200 msec. (5Hz) for dynamic tasks and summed to 

determine the cumulative load for that activity. Results showed an average of 15.6 MN*s 

of cumulative compression and 2.5 MN*s of cumulative shear for the male group with 

pain, versus 6.6 MN*s of cumulative compression and 1.0 MN*s of cumulative shear for 

males without pain. Thus, the pain group had cumulative compression and shear forces
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that were an average of 136% and 150% higher, respectively, than the group without 

pain. These results, however, must be considered with caution, as the loads calculated 

were heavily dependant on the subject’s ability to recall and communicate the demands 

of his or her job to the researcher. Furthermore, the researcher’s interpretation o f the 

postures described would have also had an impact on the results. In addition, the use of a 

paper and pencil method of data collection forced the researcher to make assumptions 

and interpolate data between the start and end points of dynamic activities, as opposed to 

knowing the true postural information throughout the entire activity.

Using a case-control design, Norman et al. (1998) looked at how various risk 

factors (peak and cumulative spine loads, trunk kinematics and hand loads) were related 

to the reporting o f low back pain in the automotive industry. Participants (cases=104, 

controls=130) completed a detailed interview, providing relevant demographic, 

psychosocial and clinical information. As well, biomechanical measures were taken over 

a two-year period using a video-based posture analysis system and a 2D, quasi-dynamic 

biomechanical model. Cumulative loads of interest in this study were L4/L5 cumulative 

compression and shear forces as well as moments. These quantities were calculated by 

multiplying each o f the task peaks by the duration of exposure for each task, and then 

multiplying the number of times the task was performed over a work shift. The total, or 

integrated exposure, was determined by summing together the exposure for each of the 

separate tasks. The shift exposure (dose) was higher for cases than controls on all 

cumulative variables. For example, the cumulative compression for cases and controls 

was 21 MN*s and 19.5 MN*s, respectively. Perhaps more importantly, is the fact that 

two cumulative variables: 1) integrated lumbar moment over the duration of the shift (OR
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for Inter-quartile spread = 1.4) and 2) the time averaged hand force (OR for Inter-quartile 

spread = 1.7), emerged as independent risk factors for low back pain reporting. Two 

other variables were also identified as independent risk factors in this study: 1) peak 

lumbar shear force and 2) peak torso flexion velocity. However this finding is not 

intriguing, given that peak low back loading has long since been established as a risk 

factor for low back pain and injury. Perhaps one of the most significant findings in this 

study is that cumulative variables, independent of all other factors, can be associated with 

low back pain. This affirms the need to consider cumulative risk factors in addition to 

the traditional variables addressed in a biomechanical or ergonomic assessment. 

According to the authors, this study was limited in terms of the reportedly weak criteria 

used to classify cases and controls, the use of 2D versus a more accurate 3D 

biomechanical model, and using a quasi-dynamic approach rather than full dynamics. As 

well, the methods used to calculate cumulative low back loads have been shown to result 

in an overestimation of exposure, given that the cumulative sum is based on the peak 

loads observed for each sub-task, rather than a point by point estimation of loading 

throughout an activity (Callaghan, Salewytsch & Andrews, 2001). Despite these 

limitations, Norman et al. (1998) demonstrated that cumulative loading was an 

independent risk factor for reporting low back pain.

CALCULATING CUMULATIVE LOAD

Data of an epidemiological nature is particularly important for addressing 

cumulative spine loads and their relationship with low back pain. However, this type of 

study requires a sizeable commitment on behalf of the research team, as efforts to gather 

and process large amounts of data can be daunting. While current endeavors continue to
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pursue optimal methods for the collection and processing of cumulative load data, 

considerable progress has been made, offering practical options for studying the effects 

of cumulative spine loads in work settings.

Cumulative load documentation presents the challenge of recording and 

quantifying a variation of spinal loads (ex. compression and shear forces as well as 

moments) with respect to time. To date, studies that have assessed cumulative low back 

loading have all used different assessment techniques. This hinders comparison of values 

between studies and ultimately limits progression towards a threshold limit value. 

METHODS FOR ESTIMATING CUMULATIVE SPINAL LOADING 

As noted, the methods used to calculate cumulative load have varied in the past. Norman 

et al. (1998) and Daynard et al. (2001) both used peak static loads calculated for a task 

and multiplied this value by the task time. This “square method” is particularly useful in 

reducing the time requirements of data processing. Alternatively, rectangular integration 

of the load time-histories has been frequently employed for quantifying cumulative low 

back loads (Kumar, 1990; Godin et al., 2003; Azar et al., 2003). Callaghan et al. (2001) 

compared five commonly used cumulative loading quantification methods to the ‘gold 

standard’ (rectangular integration of 30 Hz video) and determined the relative error for 

each method. The 5 methods tested were; 1) rectangular integration with a reduced 

sampling rate of 5 Hz, 2) multiplication of the spinal loads at the initiation of the lift by 

the duration of the task (square), 3) division of the cycle into work and rest where: a) 

during work time the forces and moments at the beginning of the lift were multiplied by 

the time of the lift and b) during rest, the moments and forces associated with upright 

standing were multiplied by the length of the rest time. 4) accounting only for the work
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portion of the cycle, where rest time is not factored into the total cumulative load and 5) 

each cycle was divided into four main actions (get, lift, place, return load), and a 

cumulative load for each was determined by multiplying the loads for a representative 

posture in each action by the time of the action and then summing the results of all four 

actions together. It was found that even when reducing the sampling rate to 5 Hz for 

integration, the error associated with this method was considerably lower than for all 

other techniques. In fact, the average error reported for a 5Hz analysis was no greater 

than 6% for any trial. With error as high as 70%, the square method proved to be the 

least accurate estimate o f cumulative loads relative to the 30 Hz analysis (Callaghan, et 

al., 2001). These results call into question the results of past studies which have 

employed a representative posture to quantify cumulative loads. As well, it highlights the 

difficulty in comparing quantities from study to study as the range of error between 

methods is so great. While the analysis by Callaghan et al. (2001) only incorporated 

sagittal plane lifting tasks, and thus may not reflect the true nature o f some occupational 

activities, it nevertheless identifies an important methodological concern in the 

documentation of cumulative loads.

DOCUMENTATION TECHNIQUES AND DATA REDUCTION EFFORTS

Video has been the primary tool used to document cumulative loads, but it is very time 

consuming for both data collection and analysis. Godin et al. (2003) estimated that, even 

by reducing the sampling rate to 3Hz and using short video clips to represent longer time 

periods, 2 hours of video required approximately 25-30 hours of analysis. Research 

efforts have addressed this concern by reducing the time requirements for cumulative 

load documentation. Posture sampling approaches (ex. Kumar, 1990; Callaghan,
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Jackson, Albert, Andrews & Potvin, 2003) eliminate the need for video digitization. As 

well, in an analysis of sagittal plane, static lifting tasks Andrews and Callaghan (2003) 

showed that using a 3 Hz analysis o f video provided estimates of cumulative low back 

loads (compression, reaction and joint shear forces as well as moments) with less than 

5% error in the majority of cases relative to those estimated at 60 frames/second. A 

reduction in the time requirements and ultimately the cost of cumulative load 

documentation makes such endeavors more attractive for researchers. Given that 

considerable data are required for the development of a guideline for cumulative load 

exposure, data reduction efforts are paramount.

Azar et al. (2003) looked at using 2 types of self-report questionnaires, a logbook 

and a 2-hour recall, as an alternative to video documentation. Type, frequency and 

duration information was reported by participants while they performed two hours of 

simulated non-occupational tasks. Cumulative loads were generated from an estimated 

load for each activity multiplied by the time and frequency reported by each subject. 

This data was compared against joint coordinate data collected using an ARIEL (ARIEL 

Technologies Inc.) motion capture system that was input into a 2-dimensional, quasi

static biomechanical model, GOBER (University o f Guelph, Guelph, Ontario, Canada). 

Results suggest that the logbook is a promising and simple method for documenting low 

back cumulative loads, as the estimated and actual cumulative moments were highly 

correlated (r=0.989, p< 0.001). However, before such a tool can be used widespread, it 

must be tested in occupational settings for further validation.

Using a magnetic tracking device, Agnew, Andrews, Potvin & Callaghan (2003) 

developed a method to instantaneously estimate cumulative loads without video. Real-
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time documentation using the magnetic tracking device provided extremely accurate 

results compared with a traditional 2D Static Biomechanical Model (GOBER, University 

of Waterloo, Waterloo, Ontario, Canada). The use of magnetic tracking devices requires 

an environment free of magnetic interference, thus making most industrial settings 

unsuitable. Nevertheless, in an effort to reduce the risk of injury before a job is ever 

performed on the plant floor, several companies are migrating towards a proactive 

approach for ergonomics, where the testing of a product or workstation occurs in a lab 

setting before ever bringing it to the factory. As such, the use of magnetic and also 

optical motion capture devices offers an accurate and efficient collection method for such 

applications.

ERGONOMICS AND VIRTUAL REALITY

The field of ergonomics has gained considerable momentum in recent years, to the point 

where ergonomists are playing less of a reactive role and migrating into the design 

process. One of the key criteria for proactive ergonomics is efficiency during the product 

development process. In order to stay competitive in the consumer market, 

manufacturers are driven to shorten the development time for a new product, thereby 

responding to trends more quickly, as well as reducing cost and increasing the total 

number of products introduced in a given time period (Feyen et al, 2000). This goal has 

been accomplished largely due to the use of computer-aided design tools. The same 

holds true in ergonomics, where computer generated environments and digital humans 

allow analyses to be performed without ever requiring physical data or prototypes. This 

trend towards computer-aided ergonomics has been observed in the military as well as a 

number of manufacturing industries including; the automotive, clothing and aviation
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sectors (Yee & Nebel, 1999; Rigel et al, 2003; Dai et al, 2003; Blome et a;, 2003; Doi & 

Haslegrave, 2003). A variety of human modeling tools have been introduced for the 

purpose of ergonomic analyses, such as RAMSIS, SafeWork, and Jack (Reed et al, 2003). 

These software programs allow users to create virtual environments and generate human 

models within those environments. Once this is done, the user can manipulate their 

human model to interact with the surroundings as they predict would be the case in a true 

physical environment. A variety of virtual analyses can be performed to predict the 

success of a product or workstation layout. Most software tools allow for clearance, 

posture, reach, line o f sight and strength predictions (Blome et al, 2003). Thus, testing 

that would normally be performed in the physical world is now done without ever 

building a part or using a true human-being. In the automotive industry, this approach 

has been used frequently for occupant packaging to assess the drivers seated position, the 

view through the window, as well as driver and passenger access to various equipment 

and controls (Rigel et al, 2003; Dai et al, 2003; Reed et al, 2003).

Virtual reality has also been used to assess assembly line work within the 

automotive industry. For example, Dukic et al (2002) describe the process of using a 

digital human and computer generated vehicle to test a future car design at Volvo Cars 

Corporation. The authors suggest that approximately 1500 problems were identified and 

solved during the virtual verification. Some of the ergonomic problems addressed during 

this process included four scenarios where an operator could not horizontally reach the 

desired part, four instances of a part being too high to access, eight obstructions to an 

operators when assembling a part and five cases where the wrong tool was proposed for 

assembly. Despite the success of including virtual reality into the design process o f a
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new vehicle, the authors caution that the success of this process can be severely affected 

by the user’s knowledge and education, as well as communication between engineering 

teams.

In an effort to test the accuracy and usefulness of computer-aided ergonomic 

analyses, Ford Motor Company and the University o f Michigan assessed an assembly 

task both virtually and using the physical environment (Feyen et al, 2000). The virtual 

environment was developed using AutoCAD to mimic the true layout for assembling a 

converter into the transmission housing located on a conveyor. AutoCAD was linked to a 

commonly used biomechanical software package, the Three-Dimensional Static Strength 

Posture Prediction Program (3DSSPP). Assembly of the converter to transmission task 

was analyzed for a 95th percentile male within 3DSSPP for both the virtual and physical 

environments. Four independent postures were assessed for peak low back compression, 

torso strength, hip strength and shoulder strength. Results for both the physical and 

virtual assessments show similar results for the low back; the NIOSH limit of 3400 N of 

peak compression was exceeded in each case. Both analyses led independent assessors to 

draw the same conclusion that biomechanical stresses for this task were high and a 

redesign was required (Feyen et al, 2000). These findings lend support to the use of 

virtual environments and digitally generated humans as a valid approach for ergonomic 

assessments during the design of a new part or workstation.

Despite the many advantages of utilizing digital humans in virtual reality to aid 

ergonomics, there are a number of factors to be considered that can affect the success of 

this approach. A common fault is to over-generalize the results of a virtual analysis by 

concluding that a job is ‘good’ or ‘acceptable’. Ziolek & Nebel (2003) advise that virtual
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analyses will only assess those parameters that have been specified and that it is 

impossible for a software program to consider every possible factor. Perhaps one of the 

most important considerations is the difference between utilizing a digital human for an 

assessment and recruiting or observing a real human. While most software programs 

will, to some degree, limit the postures and range of motion obtained by a digital human, 

they do not account for the comfort of a given posture. Therefore, it is possible for the 

assessor to position a digital human in such a way that would never be chosen if a real 

human had been performing the task. This may lead to inaccurate results during the 

assessment of a job or activity if the postures analyzed do not reflect true human 

movement choices and strategies. Furthermore, digital humans do not account for all of 

the differences that may exist within a population. For example, an older, injured or 

disabled individual may perform very differently than a digitally generated human, which 

again would not be captured in a virtual simulation (Ziolek & Nebel, 2003). One method 

to overcome these limitations is the use of motion capture technologies. This allows a 

designer to capitalize on the benefits of a computer-generated environment, while also 

minimizing the errors which can result from employing a digital human during an 

ergonomic analysis. Furthermore, because the data collected from a real human in 

motion capture can be linked to a digital maniquin, the ability to analyze movement in an 

environment that does not yet exist has not been compromised.

MOTION CAPTURE TECHNOLOGY IN COMPUTER-AIDED ERGONOMICS 

As computer aided ergonomics becomes a regular part of the design process for a new 

product, the drive to improve the accuracy and validity o f this technology will increase. 

Some researchers and manufacturers have already been faced with this challenge and
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have sought ways to enhance their virtual reality laboratories. One of the major 

limitations o f simply manipulating digital humans is the inability to accurately predict the 

motion path o f a human being. Digital humans are capable of assuming both static and 

dynamic postures, with dynamics being the most difficult and time consuming to achieve. 

Predicting a motion path can be accomplished using a variety of software packages, but 

the user must manually program this. Motion paths are usually generated in one of two 

ways; by chaining together motion blocks, for example in walking, leg lifting can be 

programmed to occur repeatedly to create locomotion or alternatively, the user can 

indicate a start and end point and allow the software to predict the human’s actions (Yee 

& Nebel, 1999). Both techniques can be tedious, especially when a series of complex 

actions must occur together. Motion capture technology is an alternative option for 

generating dynamic human motion within a virtual environment. This method alleviates 

the time consuming task o f programming a motion series for a digital human and also 

ensures the movements will reflect true human actions.

A variety o f collection devices have been used to track motion data. For example, 

ShapeTape™ (Measurand, Fredricton, New Brunswick, Canada) has fiber optic sensing 

arrays that track bending and twisting within the tape to capture movement. This can be 

placed on the limbs, torso and head to sense human movement (Danisch & Lowery- 

Simpson, 2003). Optical systems utilize infrared cameras to locate an object or human in 

space. Reflective markers are placed on the human and positional data are captured via 

camera and stored in a PC. Optical systems do not require a tether to a central processor, 

however this may occasionally result in lost data if the actions of the human block a 

camera’s line of sight to a body marker (Yee & Nebel, 1999). This limitation can be
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avoided by ensuring the appropriate number of cameras is used. For example, when 

studying passengers entering and exiting a vehicle, Rigel et al (2003) found that quality 

motion data could not be obtained until the total number of cameras used in their study 

was increased to fourteen. This ensured that all 60 markers placed on the subject’s body 

were sufficiently visible to the cameras during data collection.

Another common method of capturing motion is through electromagnetic devices 

which are used to track positional data in real time. The instrumentation required for this 

system is a central transmitter, which is connected to a central processing unit. This unit 

can have one or more sensors that are tracked in space based on its orientation to the 

electromagnetic field surrounding the transmitter (Maiteh, 2003). Agnew et al. (2003) 

used the Fastrak™ (Fastrak Systems Inc., Toronto, Ontario, Canada) magnetic tracking 

device to measure cumulative spine loading during sagittal plane lifting. This study 

introduced a method of reducing the time requirements associated with more traditional 

video-based procedures used to estimate cumulative loads. Cumulative compression was 

calculated by rectangular integration and results showed no significant differences 

between data collected from video and the magnetic Fastrak™ system with the average 

error across all conditions being only 2.2 % (Agnew et al, 2003). The Fastrak™ used in 

that study was only equipped with four sensors, thereby limiting the number of landmarks 

tracked on the body. Given this constraint, Agnew et al (2003) were restricted to 

movements in the sagittal plane and a single-equivalent muscle biomechanical model to 

estimate low back loads. Nevertheless, a method of acquiring and processing cumulative 

load data in real time was proposed and confirmed. While magnetic tracking devices 

allow data to be concurrently processed and ensure a true representation o f the movement
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patterns of the subject, there are limits to its application. In most cases, electromagnetic 

tracking devices are limited to laboratory settings given that interference with metallic 

objects or power sources will distort data. The magnetic fields from ferrous metal objects 

distort the transmitter field of the motion capture system, which ultimately causes the 

positional data to drift, altering results (Agnew et al 2003; Jayaram & Repp, 2001; Yee & 

Nebel, 1999).

Using an Ascension (Ascension Technology Corporation, Burlington, Vermont, 

USA) electromagnetic motion capture system, integrated with the Jack human motion 

analysis software, Maiteh (2003) demonstrated how virtual ergonomic analyses can be 

performed in both proactive and reactive scenarios. When performed reactively, the 

author suggests that a video o f the operation in question should be taken and a virtual 

environment built to replicate the true setting. An operator can interact with this 

environment in a motion capture lab in order to identify critical movements. These 

movements can then be analyzed using a software package such as Jack. If a job is 

assessed proactively, the analyzer can review the virtual environment that is being 

proposed and determine which variables require ergonomic consideration. A digital 

human can be programmed to follow the anticipated motion paths or more desirably a 

motion capture system can be used to generate true motions for analysis in a software 

program (Maiteh, 2003). Using a motion capture facility and Jack software the author 

reviewed several scenarios for an automotive sub-assembly task and advocate the use of 

motion capture as a more accurate and time efficient method for job analyses.
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DEFINING HUMAN REACH AND ACCESS PARAMETERS USING MOTION 
CAPTURE TECHNOLOGY

Motion capture systems have frequently been used to study human reaches and 

accessibility in the automotive industry, however this has primarily been from an 

occupants (driver’s) perspective. A common variable of interest in these studies are 

human reach zones like, for example, a reach to the radio dials on an instrument panel or 

a reach to the glove box from the drivers seat. Furthermore, ingress and egress (vehicle 

entry and exit) have also been frequently studied as this is generally the first encounter 

and impression a customer will have with the vehicle. BMW Automotive manufacturers 

recognized the rise in customer demands when purchasing a new vehicle and, thus, have 

dedicated more resources to the study of occupant safety and comfort (Rigel et al, 2003). 

Using the Vicon 624 motion capture system with the RAMSIS human simulation model, 

BMW assessed the various methods of vehicle entry used by customers. A Variable 

Ingress and Egress Mock-up (VEMO) was used to simulate the vehicle geometry of all 

BMW models and can be adjusted to size through both manual and electric controls. The 

Vicon infra-red cameras passively tracked positional data from 60 markers on the human 

body. This data was collected for 210 subjects and results showed three different types of 

ingress methods; 1) slip-in, where the right leg contacts the floor pan on left side of 

steering column first; 2) threader, where the right leg is positioned immediately on the 

right side of steering column and 3) plumper, where the driver’s buttocks is first inside 

the vehicle and he/she ‘falls’ into the seat before bringing the legs into the car (Rigel et 

al, 2003). Through use of a motion capture and analysis laboratory, BMW was able to 

determine which methods of vehicle entry were used most frequently and by which
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customers. For example, it was found that entering with the buttocks first (plumper) was 

more common among those with a higher body weight. Overall, the motion patterns 

captured led the authors to conclude that the slip-in strategy was used by the majority of 

customers and future vehicle designs can account for this preference (Rigel et al, 2003).

The human body is capable of moving in an almost infinite number of ways, 

which is a challenge for computer-aided ergonomics. Even when given the same goal, 

subjects may utilize very different movement strategies based on their size, gender, age 

and physical comfort. The coordination of several body segments to execute a task can 

vary widely among different populations. This poses a problem when attempting to 

design a product that can suit the needs of multiple customers. It also touches on the 

limitation of utilizing digitally generated humans and pre-programmed motion patterns to 

assess a task or a product. One pre-determined reach strategy cannot be expected to 

account for the wide range o f movements seen among various human populations 

(Chaffin, 2002). To date, one of the best methods available to accurately determine 

human motion paths is to use motion capture technology. This has been employed by the 

University of Michigan in several studies, each of which has contributed to the 

understanding of human motion and enhancement of digital human motion databases 

(Chaffin, 2002; Park, Chaffin, Rider, & Martin, 2003; Chaffin & Faraway, 2000). Recent 

research has not only shown that digital humans are not the best predictors of human 

movement, but also that true humans can utilize several different strategies to accomplish 

the same goal. As such, it is important not only to include true humans in ergonomic 

analyses, but also to accurately reflect the population of interest. Chaffin & Faraway 

(2000) studied the right-arm reach motions of a diverse group of participants using a
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vehicle mock-up consisting o f the typical controls seen on an instrument panel, an 

adjustable driver’s seat and driving scene displayed on a large monitor. A total of 38 

reach targets were included in the vehicle mock-up and subjects were given audible cues 

when required to contact the target. The motion patterns of each subject were tracked 

using a four-camera MacReflex™ optoelectronic motion capture system (Qualisys. 

Gothenburg, Sweden) which resulted in a linkage of 18 joint angles to be analyzed for 

significant differences in reach patterns by age, stature and gender. Several inter-group 

differences were noted when subjects were asked to reach to the four main areas in the 

vehicle mock-up; console, radio, overhead and to the far right (Chaffin & Faraway, 

2000). For example, less severe segment angles were found among people of larger 

stature and when stature was held constant, older individuals tended to keep their arms 

closer to the body when possible. The differences seen between men and women may be 

largely attributable to stature but also impacted by inherent differences in factors such as 

strength and shoulder breadth (Chaffin & Faraway, 2000). Information presented in this 

study suggests that the digital humans found in ergonomic software packages may need 

to account for more than just anthropometries when assessing differences in movement 

strategies. Furthermore, research aimed at studying human reach capabilities cannot rely 

on a homogenous sample to accurately represent human motion as movement is 

dependant on a variety of factors.
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III. METHODS 

SUBJECTS

Approval for data collection was granted through the University o f Windsor Research 

and Ethics Board. Twenty employees of Ford Motor Company participated in this study. 

All those recruited were Operators within the Vehicle Operations Pilot Plant (VOPP) 

located in Dearborn Michigan. The Pilot Plant is where the first physical prototype of 

each new vehicle model is assembled. This subject sample included females and males 

with five subjects in each of four anthropometric height ranges (5th female or 5F, 50th 

female or 50F, 50th male or 50M and 95th male or 95M) (Table 1). The anthropometric 

measures o f this sample can be compared to the population values from the Jack Classic 

Human Simulation Software.

Table 1. The age, height and weight o f each subject with group averages and standard deviations. “Pop 
Value” represents the values used in the Jack Software (ANSUR 1988, US Army Natick Soldier Center).

Age (/ears) Height (cm) Mass (kg)
5F 50F 50M 95 M 5F 50 F 50 M 95M 5F 50F 50M 95 M

1 46 57 46 35 153 162 174 187 59.8 91.4 92.7 84.1
2 48 41 40 34 154 163 176 187 94.1 69.5 74.5 96.8
3 24 51 41 52 154 163 176 187 57.7 79.8 93.9 103.2
4 29 48 32 38 153 162 176 187 74.1 76.6 85.9 84.1
5 25 53 43 33 152 163 175 186 46.4 63.0 86.6 106.1

Mean 34.4 50.0 40.4 38.4 153.2 162.6 175.4 186.8 66.4 76.0 86.7 94.9
StDev 11.7 6.0 5.2 7.8 0.8 0.5 0.9 0.4 18.3 10.8 7.7 10.4

Pop Value ■ 151.4 162.2 175.9 187.1 47.7 62.5 78.9 103.2

The study was conducted within a motion capture lab at the Work Center for Human 

Simulation (WCHS) which is located adjacent to the VOPP. The WCHS has an 

agreement with the Plant Manager to allow workers to report for duty to the WCHS if 

they consent to participate in the research study being conducted. Therefore, the 

researcher was able to provide a list of required participants and a description of the study
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to the VOPP Health and Safety Coordinator, who then recruited 20 injury free and 

willing participants.

STUDY VARIABLES 

Dependant Measures

The variables that were measured in this study include: cumulative and peak low back 

compression at spinal level L4/L5 as well as peak and cumulative resultant shoulder 

moments for the left and right arms. Cumulative compression and moment were 

calculated by rectangular integration of the load time history for each task at a rate of 30 

frames per second. Peak compression was defined as the highest compressive force seen 

at the L4/L5 joint. Peak moment was determined to be the highest resultant moment seen 

for both the left and right shoulder

In addition, at the point o f peak compression, kinematic variables (measured in 

degrees) were recorded in order to evaluate the postures adopted by each subject. These 

included: spine flexion/extension, axial twist and lateral bend rotations, as well as 

shoulder abduction/adduction and elbow flexion angles.

Independent Measures

Three automotive assembly tasks were performed in sequence during one motion capture 

session. Data from the combination of all three tasks were used to assess cumulative 

loads. For determining peaks, the 3 tasks were individually parsed from the motion 

capture data. The three tasks that were simulated in the lab and evaluated were;

1) a reach across the front fender into the engine compartment to make a 2-handed 
hose insertion

2) reaching under the instrument panel to telescope the intermediate shaft, and
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3) reaching to the centerline radio antenna to make a one-handed electrical 
connection.

There were four groups of subjects (5th female, 50th female, 50th male, 95th male). This 

represented the True Anthropometry (TA) independent variable. All subjects performed 

each task under 4 different conditions; once when they were represented in motion 

capture as their actual body size, and three additional times when they were scaled in 

motion capture to represent another set of anthropometric measures. This represented the 

Scaled Anthropometry (SA) independent variable. Subjects repeated each condition a 

total of 5 times and data from 3 trials were used in the final assessment. Selection of the 

three trails was based on the quality of the motion capture data, thus trials requiring the 

least amount of post-processing (due to poor or missing data) were chosen. If the quality 

of all five trials was acceptable, the first 3 were selected for post processing. The three 

independent variables, and their levels, can be seen in Figure 1 below.

STUDY TASKS

The tasks performed in this study represented simulations o f real jobs seen within 

automotive assembly plants across the United States and in Canada. To study these tasks 

in a lab setting, a computer simulation software program was used to create a virtual 

environment where subjects, moving within a motion capture environment, were linked 

to a human manikin within the software and could simulate the tasks on a digital vehicle. 

The tasks were chosen to represent three different reaching scenarios which placed 

kinematic demands on the subject and could potentially be performed using a variety of 

movement strategies. The digital vehicle data for a 2005 Model Year Ford Focus was 

accessed from Ford’s database (Process Driven Visualization, PDV) and imported to a
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software package known as Jack Classic Version 4.1 (UGS, Plano, Texas, USA) (Figure

2). This created a virtual environment where the movements of the subject captured in the

50th M ale

50th Fem ale

5th Fem ale

T ask  1

Sub-tasks
T ask  2

Task 3

True Subject Anthropometry

Figure 1. The variable matrix above represents the three independent variables and their various levels.
The black dots indicate the conditions where subjects performed tasks scaled to real dimensions (ie, they 
were scaled to their true anthropometry)

lab were translated into a human model in Jack. This environment was projected onto the 

wall of the laboratory for the subject to view. As the subject moved through space, the 

human model acted as a mirror image and thus, by watching the projected picture, 

subjects could maneuver themselves around the vehicle. A number of physical props 

were used to provide tactile feedback to the subject in the lab. This will be described in 

more detail later in the Methods.

The real vehicle dimensions provided below reflect those that were used during 

trials where subject were tested with their True Anthropometry (TA). When subjects
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were scaled in virtual reality to represent the other three sets of anthropometric measures, 

the physical environment was manipulated (ie scaled) to reflect that body size. For

Isa? HJQj [̂2  ̂4* ./Sj ^ F«_|f fii [ Ji Hf  dSMe>

Figure 2. The interface of JACK software with the digital vehicle and tool renderings. This image depicts a 5th 
percentile female model securing a bolt in the center o f the floor pan o f the vehicle.

example, when a subject with a TA of a 95th percentile male was tested with a SA of a 5th 

percentile female, the dimensions of the virtual environment and vehicle were scaled 

such that objects were moved further way from the subject horizontally and the vertical 

height of physical props was increased (such as the front bumper or door sill). The 

physical environment was scaled based on the difference in height of the true and scaled 

anthropometry, for example if a 1.76 m person (TA = 95th male) was scaled to a 1.53 m 

person (SA = 5th female), all objects would have been scaled up in size by a factor o f 1.15 

(1.76/1.53). Specifically, if  an object is located 0.60 m horizontally from the 95th 

percentile male subject in the unsealed environment, it would be moved 0.60 x 1.15 = 

0.69 m horizontally from the subject when he was scaled to represent a 5th percentile 

female. In the virtual environment, the Jack human manikin was also scaled to appear as 

a 1.53 m tall female.

34

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



All tasks were performed in sequence to represent a true assembly process flow. 

While tasks were always performed in the same order, the order of presentation of the 

four scaled anthropometric conditions was randomized for each subject. The physical 

mock-up and task flow is described below.

Reaching to make a hose insertion in the engine compartment

For this task, when subject’s were scaled to their actual anthropometry, they were 

required to stand at the front of the vehicle and reach 0.91 m horizontally into the engine 

compartment to install a hose with both hands, using a power grip around the hose (see 

Figure 3). Subjects were asked to push down on a 4 cm diameter rubber hose which was 

wrapped around wood doweling and fixed to a sheet of plywood. The hose was raised 

1.02 m from the ground and placed 0.91 m horizontally from the subject’s body. On a 

real assembly line, the operator is able to lean over the front bumper during this type of 

task, so a supporting surface was also provided in the lab. A plastic block (0.075 m tall, 

0.60 m long and 0.20 m deep), with contoured edges, was placed on the table top near the 

edge so the operator was able to lean on this surface. When the environment was scaled 

to represent another anthropometric condition, the height of the table (including the 

height of the hose) was adjusted accordingly; however, the height of the block/leaning 

surface relative to the height of the table remained constant for all conditions. This 

decision was made because the block was only 7.5 cm in height, and the maximum 

adjustment that would have been made was 1.13cm, It was assumed that such a small 

adjustment would not affect the results. A vertical reach to the hose of 0.91 m was 

selected because this is the maximum forward reach of a 5th percentile female when 

supported at the pelvis (leaning) and using both hands to manipulate an object. This was
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determined using the Jack software. Given that tasks were to be performed by all 

subjects, it was imperative that the task demands did not exceed the capabilities of any 

subject group, and the 5th female is generally used as the limiting anthropometry for 

reaching activities.

When subjects had completed the hose insertion task, they were asked to stand 

upright and walk to the driver’s side door on the side of the vehicle to perform the next 

task.

Figure 3. The manakin in this picture can be seen reaching across the front bumper to make a hose 
insertion in the engine compartment.

Reaching under the instrument panel to telescope the intermediate shaft

Once in front of the driver’s side door opening, the subject was required to reach inside 

the vehicle to the left and locate the intermediate shaft which was found under the 

instrument panel (see Figure 4). The intermediate shaft connects the steering gear to the 

steering wheel. On an assembly line, the shaft is connected to the end of the steering

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



wheel and must be pulled in a downward direction to connect it to the gear. The portion 

of the shaft which is accessible to the operator’s hand is approximately 0.18 m in length 

and 0.025 m in diameter. Subjects were asked to simulate the secure of the shaft to the 

gear by grasping a metal pipe placed over wood doweling, with a one-handed power grip, 

and push downward. An adjustable table was used to represent the height of the vehicle 

floor pan and was placed at 0.84 m from the ground (unsealed environment). The 

horizontal reach to the intermediate shaft was 0.61 m which was measured from the left 

edge of the driver’s side door opening to the centre of the shaft. A plastic door frame was 

used to represent a real door opening and was placed on top o f the adjustable table with 

an aperture of 0.97 m high by 1.07 m wide. All dimensions represent the unsealed 

environment. For conditions where subjects were scaled to one of the three 

anthropometries different than their own, the dimensions were modified appropriately.

Subjects were not encouraged to perform the task in any particular way, however, 

one restriction was enforced; subjects were not permitted to climb onto the adjustable 

table, which would represent climbing onto the floor pan of the vehicle. This is a true 

restriction seen in the automotive assembly plants and thus was adhered to in this study. 

Once the subject had completed the action of securing the intermediate shaft, he/she was 

asked to stand upright and the task was considered complete.

When subjects had completed the intermediate shaft task, they were asked to walk 

away from the vehicle mock-up to a spot, identified by a tape marking on the ground, and 

stand upright and relaxed for 5 seconds. During this brief delay, the researcher intervened 

to place a 0.51 cm high platform in front of the driver’s side door opening in preparation
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for the next task. Once the 5 second delay was complete, the subject was able to begin 

their third and final task.

Figure 4. This picture shows a manikin leaning into the driver’s side door opening o f a vehicle to secure 
the intermediate shaft.

Making an electrical connection to the centerline antenna

To begin the final task, subjects were required to step up from ground level onto a 

platform that represented the true assembly line height for connecting a centerline 

antenna. Subjects were required to reach through a door opening (same prop as used for 

intermediate shaft connection) to the inside roof where the radio antenna prop was 

located. The horizontal location of the radio antenna was 0.53 m from the outside edge of 

the door frame and was represented by a household electrical light switch, oriented 

parallel with the ground. Using one hand, subjects were asked to simulate making an
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electrical connection, by pushing upward to flip the switch “on” (see Figure 5). The 

driver’s side door opening followed the same dimensions as for the previous task 

(reaching to the intermediate shaft), however, in order to simulate the roof, a wooden 

frame was constructed and secured to the top edge of the door frame. The electrical 

connection prop (light switch) was fixed to the wood frame and located 1.58 cm above 

the platform surface when unsealed. When this task was complete, the subject was asked 

to step down from the platform and stand relaxed, this signaled the end of one full trial. 

This cycle o f three tasks was repeated a total of 5 times for each of the scaled 

anthropometry conditions.

Figure 5. Virtual reality illustration of a digital human model making an electrical connection to the 
centerline antenna.
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DATA COLLECTION 

Motion Capture

A 10 camera passive optical motion capture system from MotionAnalysis (EvaRt 4.0, 

Santa Rosa, California, USA) was used to collect all motion data (see Figure 6). Cameras 

were mounted to an over head rail 3.0 m from ground level. A Dell Precision650 (Round 

Rock, Texas, USA) workstation with dual 2.4 Ghz Hyperthreaded Intel Xeon CPUs 

(Santa Clara, California, USA), 3.5 GB of RAM, 146.8 GB 4-disk SCSI RAID 0 Array 

hard drives, Nvidia Quadro FX 1000 Graphics card (Santa Clara, California, USA), and 

Windows XP Service pack 1 operating system (Microsoft, Redmond, Washington, USA) 

was used to store the data. Two 19 inch LCD monitors with 1280x1024x32 bit colour 

displayed data during collection and post processing. An LEC NT20 projector (Texas 

Instruments Technology) with XGA (1024 x 768) resolution was used to display the 

virtual environment on the wall during each trial. Data was collected at a rate of 100 

frames per second (fps) as it was found during pilot testing that the system did not track 

as well at less than lOOfps. The motion capture system/environment was calibrated daily 

using two methods, square and wand calibration. The square calibration used an L- 

shaped object that had a marker placed at the joint between the two sides, one marker 

placed on the shorter end of the L and two on the longer end. The joint of the L was 

placed at the origin (0, 0, 0) of the motion capture environment (centre o f room) so the 

exact location of these markers was known. Secondly, the wand calibration was 

completed. A wand with precisely located markers was waved throughout the entire 

motion capture volume by someone wearing no reflective material or markers. The wand 

calibration was completed to ensure that all cameras had measured an object of known
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size throughout the entire environment. Using data from both the square and wand 

calibration methods, a maximum calibration error of 1.0 mm was considered to be 

acceptable. If  this was not met initially, the calibration process was repeated until error 

measures of less than 1.0 mm were obtained.
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Figure 6. The user interface for MotionAnalysis, the motion capture software is shown.

The 38 markers were required for data transfer from MotionAnalysis to Jack 

Classic. Using the Motion Capture Toolkit within Jack, these markers are automatically 

registered and comiected to the human figure. Each of the 38 markers seen in figure 7 

represents a site where a constraint is drawn between the figure and a marker. These 

constraints are what drive segment motions of the human. Furthermore, there were 

certain ‘rules’ that needed to be followed for successful data transfer to occur. Positioning
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of the head, pelvis, and ankle on the Jack human mannequin depended on the markers 

being placed in the same horizontal plane as when the subject was in a standing posture. 

If the markers on these segments were not level in the standing posture, an offset in the 

orientation of these segments was seen in Jack. For example, if  the two markers on the 

back of Jack’s head were lower than the two front markers, Jack appeared to be looking 

up.

An additional 30 markers (total marker set = 68) were used for this study to ensure 

accurate motion tracking and reduce the amount of post-processing required (see Figure 8 

for all markers). Each marker name is included in Appendix A. Makers were named 

according to where they were placed on the body. Markers with a 10 mm diameter were 

applied to smaller segments o f the body, where placement was closer together, such as 

the hands or feet. Markers with a 20 mm diameter were used on larger segments such as 

the back and legs. Symmetry was avoided when positioning markers on the subjects 

because markers on a single segment oriented in an equilateral triangle, can easily be 

reversed within the MotionAnalysis system. The same holds true if the marker orientation 

is the same on both hands and the hands become close to one another. In such cases, the 

left hand may be recognized as the right and vise versa.

PARTICIPANT PROTOCOL AND PROCEDURES

Participants were asked to report to the WCHS once for a 2-hour period. 

Individuals were asked to dress in clothing that allowed free movement but was also not 

bulky or baggy, as this was important for accurate and consistent marker placement. Prior 

to collecting data, subjects were weighed, asked their age and measured for height, as 

well as asked to sign an informed consent sheet (Appendix B). Participants were then
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suited with the 68 markers which were placed over the clothing and secured using two- 

sided medical tape and elasticized material bands. Once the markers were secured, 

subjects were asked to move through a range of motion about the low back, shoulder, 

elbow, hip and knee joints to ensure proper tracking in MotionAnalysis. Once successful
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Figure 7. The marker placement required for data transfer into Jack Classic are shown above, 

tracking had been confirmed, a template was created for that subject by drawing a 

relationship between the markers that created a stick figure. Next, subjects were given 

instructions on how to perform each sub-task and a minimum of 2 practice trials were 

performed prior to recording data to ensure the subject was comfortable with the 

activities. The practice trials were also used to confirm that the markers were secure on 

the body and could be accurately tracked throughout the tasks. While the subjects were 

performing each task, they were able to view their actions in a virtual environment,
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through an image projected onto the wall of the laboratory. This image reflected a 

virtually generated 3-dimensional vehicle and the human mannequin which was 

mimicking the motions of the subject in real time. All tasks were set up to be performed 

so the wall mounted image was project directly in front of subject. Thus, subjects could

Figure 8. The full marker set used for motion tracking can be seen above. Each circle shows the location of 
one marker.

comfortably view the screen at all times and did not have to alter their posture in order to 

see the screen. To begin data collection, subjects were asked to stand upright with their 

shoulders flexed 90 degrees and held out to their sides, this allowed the researcher to 

briefly view the computer display screen hosting the MotionAnalysis interface and 

confirm that all markers were identified by the cameras. From this posture, subjects were
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given a verbal cue to initiate the trial. After each trial was complete, subjects were asked 

to return to the starting position, while the researcher briefly checked the markers to 

ensure tracking had been maintained before the next trial began. This cycle was 

continued until all 5 trials were complete for each anthropometric condition. The order in 

which anthropometric conditions were performed was randomized while the order of the 

tasks remained the same across all conditions (hose, followed by intermediate shaft, then 

electrical connection). Between conditions, the subject was given a few moments of rest 

and during this time, the researcher prepared the lab and the virtual environment for the 

next anthropometric condition. Props were scaled accordingly and the size of the virtual 

mannequin was changed. When all 20 trials had been collected, the markers were 

removed and subjects were asked to return to their regular duties in the VOPP.

DATA ANALYSIS 

Post Processing of Motion Capture Data

Once the motion data was collected, the raw 2-dimensional image data from each camera 

were saved (.vc format). Data in this format can be re-processed at any time if  required. 

‘Tracks’ files were also created (.trb format). This file contained the 3-dimensional 

motion data generated by the markers, and is the file format used during post-processing. 

Lastly, project files (.prj format) were created and contain all calibration information, 

camera orientation, frame rate, and the template for each subject.

Before transferring data to Jack, the project file and tracks file were opened 

together in MotionAnalysis for post processing. The tracks file is dependant on the data 

stored within the project file as it matches the motion data with the appropriate subject 

template and calibration information. Data was smoothed using a dual low-pass 4th order
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Butterworth filter with a cut-off frequency of 6 Hz, which is consistent with recent 

literature using motion capture to assess low back loads during lifting as well as cleaning 

activities (Agnew et al., 2003, Azar et al., 2003; Lauder et al., 2003). Lastly, the data was 

played back in MotionAnalysis to identify any missing marker information. There are 

two types o f corrections that can be made to address lost marker information. When the 

marker is visible, but not linked to surrounding markers (this is referred to as ‘unnamed’), 

its relationship to the marker set is lost, but the data itself still exists. If this is the case, 

the unnamed marker can be manually re-linked to the main marker set at the first frame in 

which it is lost. Once the marker is renamed, the motion data is processed again and the 

gaps are filled in. The second option for post processing is used when marker data is truly 

lost or no longer visible. This occurs when a marker can not be seen by at least three of 

the 10 cameras during data collection and thus does not exist in the main marker set for a 

period of time. If this occurs, data must be replaced by creating a relationship to the 

missing marker and three additional markers (referred to as joining markers virtually). A 

virtual motion path is created for the missing marker by orienting it to the motion paths of 

surrounding markers.

In this study, 5 trials were collected and only three were used for data analysis. 

Each trial was reviewed for the quality of the motion tracking data, and 3 trials were 

selected based on which files had the least amount o f missing data. Each trial was then 

post-processed according to the methods outlined above for correcting missing marker 

information. When all data had been smoothed and corrected, a new tracks file was 

created and this data was imported into Jack Classic.
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Data Transition into the Jack Classic Software

Using the marker names specified in MotionAnalysis, the Jack software creates 

constraints between the marker location and joint segments on a human mannequin, 

which means that each marker is now locked to a location on the mannequin. The motion 

data for each trial was linked to a human mannequin and played in the Jack Classic 

Animation module to create a channel set (.env format). A channel set is a record of what 

is seen within the Jack environment, and thus creates a movie or animation of the virtual 

human moving through the motions path captured in MotionAnalysis. At this stage, the 

data is automatically decimated to 30 fps, which is the maximum frame rate in Jack. 

Once an animation of the trial had been generated, it was reviewed to identify each point 

when a subject had a load in the hand(s). This included the load associated with 

performing a task (for example, pushing downward to mimic a hose insertion) as well as 

any leaning forces assumed by the subject during a trial. For example, if  the subject used 

the left hand to lean across the lift table towards the hose mock-up, this support load was 

accounted for. All hand load information was tracked using an excel spreadsheet which 

was converted to a text file and loaded into the Task Analysis Toolkit module in Jack 

Classic. See section entitled “Estimated Hand Forces” for more information on assumed 

hand forces.

The Task Analysis Toolkit (TAT) module in Jack Classic is a set of ergonomics 

analysis tools, including ‘The Low Back Spinal Force Analysis’ tool which evaluates 

spinal forces acting at the L4/L5 joint and the ‘Static Strength Prediction’ tool. This tool 

uses a link segment model developed at the University o f Michigan to evaluate the 

percentage of a population that is capable of performing a task, based on the strength
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demands of the task and the capacity of the person being assessed (University of 

Michigan, Ann Arbor, Michigan, USA). Several other tools are included in the TAT, 

however, for the purpose of this study, only the two mentioned above were used. Using 

the animation module in Jack Classic, and a feature known as the TAT Reporter, the 

animation (series o f movements performed by each subject), along with the hand load 

information, were processed through the TAT Reporter to generate a series of outputs 

from both the Low Back Spinal Force Analysis and Static Strength tools. The outputs 

provided information on a frame by frame basis (30 fps) for the following variables; low 

back (L4/L5) compression (peak and cumulative), shoulder moments about 3 axes 

(humeral rotation, adduction/abduction and anterior/posterior rotation) and joint angles of 

the elbow, shoulder, and low back at the point of peak compression.

Estimated Hand Forces

The following hand loads were used to represent each task within the study; For 

mimicking a two handed hose insertion, 43 N was placed in each hand (upward direction) 

for a duration of 0.5 seconds. A 60 N (upward direction) load applied for 1 second, was 

used to represent the task of installing the intermediate shaft (1-handed operation). These 

values were determined using the posture assumed during each task and assessing the 

strength capabilities for a 95th percentile female. The hand load that was considered 

acceptable to 75% of the population was chosen to represent each task. This criterion was 

based on the Ford protocol for safe job design. The hand load used for mimicking the 

electrical connection at the centerline antenna was based on the Ford specifications for 

designing safe installation of electrical connectors. This hand load was deemed to be 50.4 

N (downward direction) and it was applied across 0.25 seconds.
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Supporting hand forces were not collected originally. Given that subjects were 

not restricted in how they choose to perform the task, it was unknown apriori where 

individuals would choose to rest their hands. Therefore, it would not have been possible 

to position force plates within the vehicle mock up. Furthermore, if sites on the mock-up 

had been pre-selected for positioning force plates, subjects would have been biased 

towards leaning their hands at these specific sites, which may have impacted the results 

of the study. However, in order to provide an estimate of the leaning forces, a secondary 

study was conducted in the Occupational Biomechanics and Ergonomics Lab at the 

University o f Windsor. This sub-study was conducted immediately following initial data 

collection in the Ford WCHS Lab.

The study was designed to determine the average leaning forces, as a percentage 

of body weight for each o f the 4 anthropometric groups that participated in the main 

study (5th female, 50th female, 50th male, 95th male). Six male (height = 1.8± 0.05, mass = 

88.7±6.8 kg) and six females (height = 1.6±0.04, mass = 60.4±17.3 kg) participated and 

all were faculty, students or staff at the University of Windsor. Each subject performed 

the tasks as a 5th percentile female and again as a 95th percentile male.

The original data collection were reviewed to determine all sites where subjects 

choose to place a supporting hand. These locations served as the four conditions to be 

tested in the sub-study, including; 1) leaning on the lift table while bending towards the 

hose, 2) leaning on the lift table while bending inside the door frame to access the 

intermediate shaft, 3) leaning on the side of the door frame when reaching towards the 

antenna electrical connector and 4) leaning on the top edge of the door frame when 

reaching towards the antenna electrical connector. Two locations were tested for the
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electrical connector task because subjects were observed using two different leaning 

locations during the initial data collection, therefore it was necessary to provide an 

estimate for both. A vehicle mock-up was designed to replicate the set-up described 

previously for primary data collection. The only difference in this study was that a 

virtual environment was not used. The physical environment was scaled to mimic the 

reach o f a 5th female or 95th male and subjects were asked to reach for the physical props. 

Hand force data were collected using a 2.2 KN tri-axial load cell (XYZ Sensor, Sensor 

Development Inc, Lake Orion, MI, U.S.A.). Force signals were A/D converted using a 12 

bit analog to digital multifunction I/O board (National Instruments) that was attached to a 

PC-compatible computer. The signals were sampled at 1024 Hz and digitally filtered 

using a Butterworth filter with a cutoff of 2 Hz. Forces in all three dimensions were 

measured, however, only forces in the direction perpendicular to the plate surface (Z) 

were presented as the X and Y forces were observed to be negligible.

The results for each of the 4 leaning scenarios are presented in Table 2 This data 

was computed as a percentage of body weight and a Repeated Measures Analysis of 

Variance (ANOVA) (p<0.05) with a 4 x 2 x 2 factorial design was conducted to 

determine if significant differences existed within the data.
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Table 2. Data for each o f the 4 leaning scenarios have been averaged across TA and SA. Data are presented 
as a percentage (%) o f body weight.

Males as 
95th Male

Males as 
5th 

Female

Females 
as 95th 

Male

Females 
as 5th 

Female

Group
Average

Lean Across 
Engine 

Compartment

Mean 14.8 10.0 12.6 10.9 12.1

St. Dev. 5.9 4.6 9.5 7.1 6.8

Lean on Floor 
Pan

Mean 7.1 5.5 11.0 7.5 7.8

St. Dev. 4.4 3.0 6.0 4.4 4.5

Lean on Side of 
Door Frame

Mean 5.7 6.3 4.5 5.6 5.5

St. Dev. 1.5 1.6 3.7 2.8 2.4

Lean on Top 
edge of Door 

Frame

Mean 7.4 8.0 6.8 9.8 8.0

St. Dev. 2.4 1.9 3.8 2.2 2.6

There were no significant differences noted in the magnitude o f the hand support forces, 

as a percentage of body weight, for any of the SA or TA conditions. Therefore, the 

following hand support forces, as a percentage of body weight, were applied in the main 

study for all anthropometric conditions; 1) 12.1% for leaning to reach the hose, 2) 7.8% 

for leaning when reaching for the intermediate shaft, 3) 5.5% when leaning on the side of 

the door frame 4) 8.0% when leaning on the top edge of the door frame for the electrical 

connection. Supporting hand loads during the electrical connection task were input based 

on whether the subject was seen placing their hand on the side o f the door frame or on the 

top edge.

Determining Peak and Cumulative Loads

All reports generated using the ‘Low Back Spinal Force Analysis’ tool and the ‘Static 

Strength Prediction’ tool were further processed through a custom LabView program 

which was designed to extract the relevant data for this study. The peak compressive low
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back force was identified by finding the largest value within the data for each of the 3 

tasks, individually (Figure 9). Furthermore, the corresponding joint angles at the point of 

peak compression were also extracted.

Cumulative compressive low back loads at L4/L5 were determined by integrating 

the area under the force-time history curve across all three tasks. When assessing 

cumulative loading, one trial is referred to as the sum of all the three tasks combined. The 

duration of an activity is an integral part of assessing cumulative loads, as this metric is 

an integration of the load-time history. Therefore, all trials were assessed across a 

common time period, 30 seconds, as this was determined to be the maximum time it took 

for any subject to complete one full trial. For any trial less than 30 s, an extrapolation 

technique was used to ensure all trials could be compared using a common duration. 

Extrapolations were completed by determining the difference between the actual task 

duration and 30 s. The difference in time was considered to be a period o f rest, similar to 

finishing a job on the assembly line before the entire cycle time has elapsed. If a worker 

completes their duties before the next vehicle reaches their workstation, he/she is able to 

stand and relax. The period of ‘rest’ was multiplied by a resting low back compression 

value, which was based on a neutral standing posture with no load in the hands. These 

values were computed for each o f the 4 anthropometric groups using the Jack Classic 

Low Back Analysis Tool (5th female = 275 N, 50th female = 340 N, 50th male = 430 N 

and 95th male = 550 N). The cumulative load calculated for the rest period was added to 

the cumulative loading incurred during the trial, and this summed value was deemed to 

be the total cumulative compression across a 30 second trial (Figure 9). The cumulative
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loading incurred during the trials was calculated as the sum of each force multiplied by 

0.0333 s (1/3 0th of a second) across the duration of the trial.

T ask  1 T ask  2 T ask  3 R e s t
2000

P eak

1500 Peak

«  1000  -

P eak

275 N
500  -

1 39  77  115  153  191 229  267  305  343  381 419  457  495  533  571 609  647  685  723  761  799  837  875

T im e  ( F r a m e s )

Figure 9. The load-time history for one trial has been presented. The point o f peak compression for each
task has been identified. The first 679 frames o f data (22 sec.) represent the load from the 3 tasks. The 
data from frame 671 to 900 (22 to 30 sec) represents the period of ‘rest’ where the compression force of a 
5F in a neutral standing posture has been added to the task time. The entire load-time history shown above 
represents the sum o f the cumulative loading for one trial.

Peak and cumulative shoulder moments were also computed. Moments for 

humeral rotation (z’), forward/backward rotation (x’) and adduction/abduction (y’) were 

collected and a resultant moment was calculated from the three moments. The peak 

resultant moment for each trial was identified by finding the largest value within the data. 

Cumulative resultant shoulder moments were calculated using the same procedure as for 

cumulative low back compression. When extrapolating this data to reflect a time period 

of 30 seconds, the moment that would have accumulated during ‘rest’ was assumed to be 

zero because, in a neutral standing posture with the arms hanging freely at the sides, the 

moment about the shoulder is equal to zero.
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STATISTICAL ANALYSIS

Data from the three repeated trials, performed for each condition, were averaged to 

represent the data for each subject. These values were then entered into the statistical 

analysis.

Individual statistical analyses were conducted for all dependant variables; 1) 

cumulative low back compressive forces (N*s), 2) peak compressive force (N) at the low 

back and each o f the following joint angles (degrees) measured at the point o f peak 

compression; 1) spine flexion/extension, 2) axial twist and 3) lateral bend rotations, 4) 

shoulder abduction/adduction and 6) elbow flexion. Also included were; 7) left and right 

peak resultant shoulder moments and 8) left and right cumulative resultant shoulder 

moments.

The three independent variables were: 1) true anthropometries (TA, 5F, 50F, 50M 

and 95M), 2) scaled anthropometries (SA, 5F, 50F, 50M and 95M) and 3) task. (n=3). A 

4 x 4 x 3  mixed analysis o f variance (ANOVA) with repeated measures was conducted 

to test the null hypothesis that there are no significant main or interaction effects of the 

following independent variables; peak low back compression, peak resultant shoulder 

moment, trunk flexion/extension, lateral bend and axial twist angles, as well as left and 

right elbow flexion/extension and right and left shoulder adduction/abduction angle. The 

scaled anthropometries and task were within variables (repeated measures) and the true 

anthropometries was a between variable. It is important to note that, because data from all 

three tasks were combined and assessed as a complete 30 second process for cumulative 

low back loads and shoulder moment, a 4 x 4 factorial design was used to determine the 

effects of true and scaled anthropometries on cumulative loading. If statistically
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significant effects were observed among any of the data, a Tukey’s significant difference 

test was completed to explain where the variance occurred. All significance was 

evaluated at p<0.05.
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IV. RESULTS

The results o f this study are divided into three main sections. The data collected for 

cumulative low back compression are presented first. This is followed by the results for 

peak low back compressive forces and the associated segment angles observed at the 

point of peak compression. The third section focuses on the peak and cumulative 

resultant shoulder moments which were not a main focus of the study, but are reported 

and will be discussed from an exploratory point of view. These data were processed and 

analyzed identically to low back peak and compressive forces.

Statistically significant differences found for each independent variable have been 

summarized in Table 3. Post hoc analyses were completed in each case where 

significance was found.

PEAK AND CUMULATIVE LOW BACK COMPRESSION FORCES AT THE 
L4/L5 SPINAL LEVEL

There were no significant effects of TA for peak or cumulative low back 

compression, however, it is important to note that the 5F group tended to be different 

than the other groups (Figure 10 and 11). When the true 5F values are compared to that of 

the other three true anthropometries, the peak and cumulative compressive forces tended 

to always be lowest and this effect appeared to become more pronounced as scaled 

anthropometry increased from 5F to 95M.
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Table 3. Summary of the statistically significant main and interaction effects of each independent variable 
based on the results of Repeated Measures ANOVA tests (p<0.05)._______________________________

VARIABLE T rue S c a le d T ask
T ru e  x 
S c a le d

T ru e  x 
T ask

S c a le d  x 
T ask

T ru e  x 
S c a le d  x 

T ask

R ight C u m u la tiv e  S h o u ld e r <0.0001

Left C u m u la tiv e  S h o u ld e r <0.01 <0.0001

R ight P e a k  S h o u ld e r <0.05 <0.05

Left P e a k  S h o u ld e r <0.01

C u m u la tiv e  Low  B ack  L o ad s <0.0001

P e a k  Low  B ack  L o a d s <0.0001 <0.0001

T ru n k  F lex /E x t A ngle <0.05 <0.0001 <0.0001 <0.0001

T runk  L a te ra l B end  A ng le <0.001 <0.0001 <0.001

T runk  A x ia l T w ist A ng le

R ight E lbow  F lex /E x t A ng le <0.001 <0.0001 <0.01

Left E lbow  F lex /E x t A n g le <0.0001 <0.05 <0.0001 <0.05 <0.0001

R ight S h o u ld e r  A b/Ad A n g le <0.001 <0.001

Left S h o u ld e r  Ab/Ad A n g le <0.05 <0.0001

i/i
z
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90000 -

80000 -

70000 -

60000

50000

40000

30000 -

20000

10000

P ercen t Difference with Criterion TA
SA

TA 5F 50F 50M 95M
5F -15.5% -11.8% -8.1%
50F -1.4% -0.3% 5.5%
50M 11.8% -2.3% 5.6%
95M 7.6% -1.0% -2.3%

50F 50M

Scaled Anthropometry

95M

Figure 10. The average cumulative low back compression forces for each of the four SA scenarios. The 
black bars represent the criterion TA group (unsealed) group and the grey bars show each o f the other TA 
groups scaled to represent the criterion. The order of adjacent bars in each cluster are, from left to right; 
TA=5F, TA=50F, TA=50M, TA=95M.
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Percent Difference with Criterion TA

Scaled Anthropometry

Figure 11. The average peak low back compression forces for each of the four SA scenarios. The black 
bars represent the criterion TA group (unsealed) group and the grey bars show each of the other TA groups 
scaled to represent the criterion. The order o f adjacent bars in each cluster are, from left to right; TA=5F, 
TA=50F, TA=50M, TA=95M.

A main effect of SA was also observed for cumulative low back compression. This was a 

fairly linear effect, where differences were greatest between 5F and 95M (Figure 12). The 

progressive increase in cumulative load was 41% (from 5F to 5OF), 33% (5OF to 50M) 

and 53% (from 50M to 95M). Individual subject averages for cumulative low back 

loading can be found in Appendix C.

A main effect of SA was also observed for peak low back compressive forces, 

where magnitudes increased in a linear fashion from the 5F to the 95M (Figure 13). 

Significant differences were observed between all four SA conditions, where the lowest 

compression value was seen for the 5th percentile female group and increased in a step

wise fashion up to the 95M group. Individual subject data are presented in Appendix D.
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S ca led  A nthropom etry

5F < 50 F 
5F < 50IVI 
5F < 95M 
50F < 50M 
50F < 95M 
50M < 95 M

Figure 12. The main effect o f  SA for cumulative low back compression (p<0.0001). (n=20). Standard 
deviation bars are shown.

4000 •

5F < 50F
5F < 50M
5F < 95M

3422.6 5 0 F < 50M
5 0 F < 95M
50M < 95M

3500 -

2496.5
3000 -

u 2500 -
1785.4

«  2000  - 1420.0

1500

50F 50M

Scaled A nthropom etry

Figure 13. Main effect (p<0.0001) o f  SA for peak low back compression force. (n=60). Standard deviation 
bars are shown.
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A main effect of Task was found for peak low back compression force (Figure 

14). All tasks were found to be significantly different from each other, with Task 2 

(intermediate shaft install) demonstrating the lowest compressive force demands on the 

back (magnitude = 1875N) and Task 3 (electrical connection to centerline antenna) 

producing the largest (magnitude = 271 IN). The average of the peak compression values 

for all 3 tasks fell below the NIOSH Action Limit (ALA3400N). However, it can be seen 

that some individual subjects exceeded the AL (See Appendix D). This was only true for 

the two heaviest scaled groups (SA = 50M and 95M) and was most common for SA = 

95M during Task 3.

KINEMATICS: JOINT ANGLES AT THE POINT OF PEAK COMPRESSION 

Trunk Postures

A main effect of TA was found for trunk flexion/extension angle at peak compression 

force (p<0.05). Differences between groups only became significant as the gap in 

anthropometry increased. Significant differences were seen between TA=5F (7.3°) and 

both TA=50M (23.4°) and TA=95M (24.7°).

Figure 15 shows the significant interaction effects between SA and Task for trunk 

flexion/extension angle. In general, significant differences only existed when the 

difference in anthropometry became more extreme. The SA=95M trunk flexion angle was 

23%, 92% and 35% greater than for the SA=5F, for Tasks 1, 2 and 3, respectively. No 

differences were noted between the 2 female groups (5F and 50F) or between the 2 male 

groups (50M and 95M).
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Interaction effects of SA and Task were found for trunk lateral bend angle at the 

point of peak compression. Significant differences were only present for Task 3 (Figure 

16).

True Anthropom etry

5F = 50F 
5F < SOM 
5F < 95M 
50 F = 50M 
50 F = 95M 
50M = 95M

Figure 14. Main effect o f TA for trunk flexion/extension angle (p<0.05). 5F subjects were significantly 
lower than both 50M and 95M (n= 60). Standard deviation bars are shown.

Although there was not a significant main effect of TA, increases from 5F to 50F 

to 50M were observed.

There were no statistically significant effects o f the independent variables, on 

trunk axial twist angle, in any condition.

61

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



20.0  -

O 15.0 •

10.0 -

5.0 ■ A  Task 1
— □— Task 2 
— ♦— Task 3

50F 50M

Scaled Anthropometry

95M

Task 1
5F = 50F 
5F = 50M 
5F < 95M 

50F = 50M 
50F = 95M 
50M = 95M

Task 2
5F = 50F 
5F< 50M 
5F < 95M 

50F = 50M 
5 0 F < 95M 
50M < 95M

Task 3
5F = 50F 
5F< 50M 
5F < 95M 

50F = 50M 
5 0 F < 95M 
50M < 95M

Figure 15. Statistically significant interaction effects o f SA x Task for trunk flexion/extension angle 
(pO.OOOl) (n=20). Standard Error bars have been presented.

-A— Task 1
-Cl— Task 2 
A -  Task 3

Task 1
5F = 50F 
5F = 50M 
5F = 95M 
50F = 50M 
50 F = 95M 
SOM = 95M

Task 2
5F = 50 F 
5F = 50M 
5F = 95M 
50F = 50M 
50F = 95M 
50M = 95M

Task 3
5F = 50 F 
5F < 50M 
5F < 95M 
50F = 50M 
50F < 95M 
50M < 95M

60F SOM

Scaled A nthropom etries

Figure 16. Statistically significant interaction effects of SA x task for trunk lateral bend angle are shown in 
this figure (pO.OOl) (n=20). Significant differences were found for task 3 only. Standard Error bars have 
been presented.
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Upper Limb Postures

A significant interaction between TA and Task was found for the right elbow angle. This 

effect was present for Task 3 only. Differences appear to be fairly systematic, such that 

5F were similar to 50F, and 50M were similar to 95M, but all other comparisons were 

significantly different. The largest difference was noted between the TA=5F and TA=50 

M, with 5F being times higher (Figure 17).

For the left elbow, an interaction between TA and SA was found. Perhaps the most 

noteworthy differences were observed between TA=50F compared to TA = 5F, 50M or

Task 1 
Task 2 
Task 3

T ru e  A n th ro p o m e try

Task 1
5 F  =  5 0 F  
5 F  =  SOM 
5 F  =  9 5 M  
5 0 F  =  50M  
5 0 F  =  95M  
5 0 M  =  9 5 M

Task 2
5 F  =  5 0 F  
5 F  «  50M  
5 F  =  95M  
5 0 F  =  50M  
5 0 F  =  95M  
5 0 M  »  9 5 M

Task 3
5 F  =  5 0 F  
5 F  >  5 0 M  
5 F  >  95M  
5 0 F  > 50M  
5 0  F  >  9 5 M  
5 0 M  =  95M

Figure 17. The interaction effect of TA x Task for the right elbow angle (n=20). Significant differences 
were found for Task 3 only (p<0.01). Standard Error bars have been presented.

95M, when each was scaled to SA=50F. When scaling to SA = 5F, 50M or 95M,there

were no significant differences between adjacent true anthropometries (Figure 18).

However, as the gap in true anthropometry increased, differences became more apparent,

and there was a general tendency for elbow flexion to decrease as TA increased.
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A second interaction effect was found for the left elbow; between SA and Task. 

However, significant differences were noted only for Task 3 (Figure 19). The largest 

difference was between SA = 5F and 95M (85%) followed by that between SA = 5F and 

5OF (43%).

For the right shoulder adduction/abduction angle, a 3-way interaction between 

TA, SA and Task was found. For the most part, subjects performed the same during Task 

2, however a 42% significant difference was noted between the performances of TA=50F 

/ SA=5F compared to TA=5F / SA=5F (Figure 20).

In general, for Task 3, the 2 male groups do not differ and the 2 female groups do 

not differ when scaled in virtual reality, it is only when comparing groups with larger 

gaps in anthropometry, that significant differences are seen (Figure 21). Note, however, 

that this did not apply in two cases; a) for SA= 5F, TA=5F (unsealed) had right shoulder 

angles that were 27% smaller than TA=50F and, b) for SA=95, TA=50M had right 

shoulder angles that were 32% lower than TA=95M (unsealed).

A main effect o f TA was found for left shoulder adduction/abduction angle. 

Further post hoc testing was completed, but revealed no statistically significant 

differences. This is not surprising, however, given that the reported ‘p ’ value for this 

effect was 0.0447. Despite the fact that statistical significance was not found, differences 

can be clearly observed in Figure 22. The largest difference was found between the TA = 

5F and 95M conditions, such that adduction/abduction angles were 50% greater for 

TA=95M.
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There was also a main effect of Task for left shoulder adduction/abduction angle. 

Subjects were found to have significantly higher angles during Task 1 than when 

performing the other two tasks. Angles during the hose insertion (Taskl) were 96%

cnQ
Q 40 -

30 -

5F Scaled 
50F Scaled 
50M Scaled 
95M Scaled

5F

5F Scaled
5F = 5QF 
5F > 50M 
5F > 95M 

50F = 50M 
50F > 95M 
50M = 95M

50F Scaled
5F = 50 F 
5F = 50M 
5F = 95M 
50F > 50M 
50F > 95M 
50M = 95M

50M Scaled
5F = 50F 
5F = 50M 
5F > 95M 

50F = 50M 
50F > 95M 
50M = 95M

95M Scaled
5F = 50F 
5F = 50M 
5F > 95M 

50F = 50M 
50F = 95M 
50M = 95M

True Anthropom etry

Figure 18. Interaction effect o f TA x SA for the left elbow angle (p<0.05)(n=T5). Standard Error bars have 
been presented.

greater than for installing the intermediate shaft (Task2) and 60% greater than for the 

electrical connection to the centerline antenna (Task3) (Figure 23).

Resultant Peak and Cumulative Shoulder Moments

Moments for humeral rotation, anterior/posterior rotation and adduction/abduction have 

been combined and data are presented as a resultant shoulder moment.

Cumulative Shoulder Moments
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A main effect of TA was found for the cumulative resultant moment of the left 

shoulder joint (Figure 24). TA=50 M was 62% higher than TA=5F and 45% higher than 

TA=50F.

A main effect of SA was found for both left and right cumulative shoulder 

moments (Figure 25). This was a fairly linear effect such that, as SA increased, so did 

cumulative moment. When compared to SA=5F, shoulder moments for SA=95M were 

68% and 59% higher for the right and left shoulders, respectively. This finding mirrored 

the pattern observed for the main effect of cumulative low back loading.

80 -|
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O  4 0 -

Task 1
Task 1

5F = 50F 
5F = 50M 
5F = 95M 

50F = 50M 
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5F = 95M 

50F = 50M 
50F = 95M 
50M = 95M

Task 3 
5F > 50F 
5F = 50M 
5F > 95M 
50F = 50M 
50 F = 95M 
50M > 95M

5F 50F 50M

Scaled Anthropometry

Figure 19. Interaction effect between SA and Task for the Left Elbow Angle (p<0.0001). Differences were 
noted for task 3 only (n=20). Standard Error bars have been presented.
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Figure 20. A 3 way interaction between TA, SA and Task was found for right shoulder 
adduction/abduction angle. Post hoc results for task 2 are presented (p<0.001) (n=5). Standard Error bars 
have been presented.
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Figure 21. A 3 way interaction between TA, SA and task was found for right shoulder adduction/abduction 
angle) (p<0.001). Post hoc results for task 3 are presented (n=5). Standard Error bars have been presented.
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Figure 22. Main effects o f TA for left shoulder adduction/abduction (p<0.05). However, post hoc analyses 
revealed no differences between individual means. (n=60). Standard deviation bars are shown.

T h ree

Figure 23. Main effect o f Task was for left shoulder adduction/abduction angle
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Figure 24. The main effect o f TA for left cumulative shoulder moment is shown above (p<0.01) (n=20). 
Standard deviation bars are shown.

Peak Shoulder Moments

A main effect o f TA was found for peak left shoulder moment. TA=95M was found to be 

63% higher and TA=5F and 44% higher than TA=50F (Figure 26). A significant 

interaction was found between SA and Task for the right peak shoulder moment. There 

were significant differences for Task 3 only. Although significance was found for this 

interaction, it should be noted that no two groups varied by more than 18%.

A significant interaction was found between SA and Task for the right peak 

shoulder moment. There were significant differences for Task 3 only. Although 

significance was found for this interaction, it should be noted that no two groups varied 

by more than 18%.
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Figure 25. Main effect o f SA for left and right cumulative shoulder moment (p<0.0001) (n=20, for each 
shoulder). Standard deviation bars are shown.
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Figure 26. Main effect o f TA for left peak shoulder moment (p<0.01) (n=60). Standard deviation bars are 
shown.
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V. DISCUSSION

This study was designed to test the assumption that scaling subjects during virtual 

ergonomic analyses would lead to the same ergonomic decisions being made when using 

a subject scaled to a certain size versus using a larger or smaller subject and scaling them 

to represent that size. This assumption is put into practice on a daily basis within sectors 

of the North American automotive industry, even though no concrete evidence exists to 

prove that it is a sound practice. In an effort to provide direction to the automotive 

industry, a study was designed using motion capture technology and a virtual vehicle 

assembly environment. Automotive employees performed a series of assembly tasks in a 

virtual reality environment while data were recorded using a motion tracking system. 

These data were later assessed using the Jack Classic human simulation software. The 

main finding of the study was that a tendency to be different was noted for peak and 

cumulative low back loading when 5F subjects were scaled in virtual reality to represent 

a larger person. In general, true 5F subjects tended to have lower load magnitudes than 

did true 50F, 50M and 95M, irrespective of what size subjects they were scaled to 

represent. When assessing resultant peak and cumulative shoulder moments, the two 

female groups differed significantly from the two male groups.

PEAK AND CUMULATIVE LOW BACK COMPRESSION

The primary purpose o f the study was to determine how each of the true anthropometry 

groups performed across scaled conditions in virtual reality. Results show that, in terms 

of peak and cumulative low back loading, there were no significant differences between 

the groups when scaled to the four sizes. However, it was observed that TA=5F subjects
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tended to have lower peak and cumulative load magnitudes than did any other group. 

(Figures 10 and 11). Consider, for example, when subjects were scaled to SA=95M in 

virtual reality, the average peak compressive force of TA=5F was 3268N and for 

TA=95M it was 3409N. While this was statistically not significant, these results would 

have generated two different conclusions during an ergonomic assessment. The NIOSH 

Action Limit suggests that low back compressive forces exceeding 3400N are associated 

with an increased risk of injury (NIOSH, 1981). This guideline is used by Ford 

Ergonomists when assessing the feasibility of a workstation design. If a true 95M subject 

had been used in a virtual assessment, it would have caused the ergonomists to conclude 

that the task was potentially unacceptable and they would have requested a change be 

made. However, had a true 5F subject been scaled to a 95M, the compressive force 

observed would have been below the NIOSH action limit, and the task would have been 

considered acceptable. In this example, the ergonomists responsible for evaluating the 

task would have made an incorrect decision as a result of scaling, thereby putting true 

95M operators at risk when performing this job. It is important to note that if  a 5OF or 

50M had been scaled to represent the 95M, the compressive forces for these groups 

(3436N and 3578N, respectively), would have led an ergonomists to make the same 

decision as when the true 95M had performed the task.

These findings suggest that, if  an ergonomic assessment is being performed in 

virtual reality, 5F subjects should not be scaled to represent a larger person, as the 

potential to make incorrect ergonomic decisions about peak and cumulative forces on the 

low back is increased. Overall, 5F subjects almost always had lower compressive low 

back forces. In fact, there was only one scenario where the 5F did not have the lowest
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compression value. When both were scaled to SA=5F, the average cumulative load of the 

TA=50F subjects was slightly less than for TA=5F. However, in all other cases, peak 

and cumulative compression showed a tendency for the TA=5F to be lower than the other 

true anthropometry groups. This suggests that, when interested in the low back demands 

of a 5F, a true 5F should be used to conduct the virtual ergonomic assessment. Similarly, 

if  interested in the demands for a 50F, 50M or 95M, a 5F subject cannot be scaled in 

virtual reality and expected to generate the same results. It would however, be acceptable 

to scale anthropometry between the 50F, 50M and 95M groups and be confident that the 

same ergonomic decision would be made. While the results for peak and cumulative low 

back compression did not yield significant differences between groups, there was relevant 

information within the data could not be ignored. It is anticipated that, if  the study was 

increased to include a larger sample size, significant effects of TA might be expected.

There has been a significant amount of research dedicated to establishing 

threshold limit values for peak compressive forces on the low back. As mentioned above, 

the NIOSH Action Limit of 3400 N was adopted by Ford as an ergonomic guideline for 

ensuring assembly jobs fall within safe exposure limits for peak low back compression. 

The peak compressive forces resulting from tasks performed in this study varied 

considerably, depending on the scaled anthropometry. When subjects were scaled to a 5F, 

compression ranged from 815 N to 2197 N. For 50F a similar range was observed (873 N 

to 2875 N). When scaled to the 50M and 95M compressive forces were between 1382- 

3884 N and 2030-5265 N, respectively. This shows that tasks were not considered risky 

for either female group. However, as the size of the subject increased, the compressive 

forces also increased. Mital et al. (1993) also proposed guidelines for exposure to peak
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low back compression. It was suggested that female and male compression limits should 

be 2700N and 3900N, respectively. If tasks from the current study are compared with 

these guidelines, when scaled to a 5F or 50F, one subject exceeded the limit of 2700N 

and this was during the antenna electrical connection task. When scaled to represent 

95M, 12 of 20 subjects exceeded the 3900 N guideline when performing the antenna 

electrical connection.

Norman et al. (1998) calculated the compressive low back forces of automotive 

assembly workers. They found that those who were classified as a case-subject for low 

back pain had experienced 21.0 MN s of exposure over the period of one work shift. 

Control subjects experienced 19.5 MN s of cumulative low back compression. If data 

from the current study is averaged across all subjects and conditions and extrapolated out 

to represent a full work day (7 hours), cumulative compression was equal to 38.9 MN s. 

This is considerably higher than what was found by Norman et al (1998) however, the 

methods used to calculate cumulative compression were quite different, making a direct 

comparison difficult. The current study utilized the technique of rectangular integration 

where as the Norman study used peak static loads calculated for a task and multiplied this 

value by the task time.

PEAK AND CUMULATIVE RESULTANT SHOULDER MOMENTS

Results for left peak shoulder moment showed that SA = 5F and 50F had peak left 

shoulder moments that were significantly less than for SA=95M. With respect to 

cumulative shoulder moments, scaling to both female groups resulted in smaller moments 

than with SA=50M for the left shoulder. While not significant, the data for cumulative 

moment show that, compared to the SA=5F or SA=50F, loads for the SA=95M were 42%
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and 26% higher, respectively. It is likely that, if the sample size had been larger, these 

differences may have also become significant.

If the results of both peak and cumulative moments are considered together, the 

data suggest that, when scaling subjects in virtual reality, TA=5F and TA=50F subjects 

can be expected to yield the similar results. The same is true when comparing results 

from TA=50M and TA=95M, however, male and female groups differed too much from 

one another to conclude that scaling between them is acceptable. Based on this 

in form ation, it seems reasonable to suggest that if  interested in the outcome of a virtual 

assessment for someone who is a 5F or 50F, it is acceptable to scale subjects within that 

range. The same holds true when interested in the results o f a 50M or 95M, subjects 

within this range can be scaled in virtual reality. Scaling outside of these parameters 

presents the risk o f generating results that differ from what would be expected if the 

study was performed with an unsealed subject of the appropriate size.

The range of peak resultant shoulder moments observed in this study varied from 

3.4 Nm for TA=5F to 20.1 Nm for TA=95M. The average shoulder moment for all 3 

tasks (hose insertion, intermediate shaft and antenna electrical connection) was 9.4 Nm. 

The population strength data available in Jack shows that the maximum strength o f the 

male shoulder joint is 128 Nm for the right and 119 Nm for the left. Average female 

strength data indicate that the shoulder is capable of generating 66 Nm (right) and 61 Nm 

(left). If these values are compared to the demands o f the study tasks, it can be seen that 

all tasks were well below the maximum strength limits for both the male and female 

populations. In, fact, even the maximum observed resultant male shoulder moment (20.1
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Nm) was only 16% of the strength capability of the right male shoulder joint. The 

maximum moment observed among women was 18.9 Nm, or 29% of maximum. 

KINEMATIC DATA

Five of the 7 segment angles collected showed significant main effects of TA. Included 

are trunk flexion/extension angle, right and left elbow angles as well as right and left 

shoulder adduction/abduction angle. These findings will be discussed below.

The main effect o f TA for trunk flexion/extension showed that scaling between 5F 

and the other three groups did not yield the same results. This is not surprising given that 

the percent difference between the height of a 5F and the 50M or 95M was 15% and 

23%, respectively. Fifth females had lower flexion/extension angles than did either o f the 

male groups, regardless o f the size they were scaled to. With practice, humans become 

very good at minimizing their job demands to conserve energy, reduce pain, decrease 

unnecessary muscular activity, etc (Alexander, 1997). It is possible that, in an effort to 

minimize the compressive forces on the low back, small females opted to move their 

upper body closer to the end goal by rotating about the pelvis while maintaining a more 

neutral spinal posture, which would have accounted for the lower peak compressive 

forces and lower trunk flexion angles for 5F. Given that on the tme assembly line, small 

subjects are faced with greater reaching challenges than are taller subjects, it is plausible 

that shorter subjects have become very good at performing tasks in a manner that imposes 

the least physical demands on the body. When scaled to represent 5F or even the 50F, 

taller subjects would have had less opportunity, than the short subjects, to leam a 

reaching strategy that imposes minimal physical demands on the body. Shorter subjects, 

on the other hand, have had a wealth of experience and time to develop a conservative
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reaching strategy, which may be to move the pelvis as opposed to the spine. During the 

study, taller subjects would have been required to leave the reach zones, for which they 

are most accustomed, more often than short subjects. When shorter subjects were asked 

to perform as a 5F or 50F, the reaching demands would have been very similar to their 

real life working scenario and, therefore, were not likely to be perceived as a new 

challenge.

The results o f this study oniy allow for the above hypothesis about why different 

anthropometric groups performed differently in terms of trunk flexion angle. However, 

the most important finding is that small females and large males do perform differently in 

virtual reality even if  they have been scaled to the same size. Further investigation of 

additional outputs available through the Jack Task Analysis Tool Kit reports could assist 

in understanding if the hypothesis presented above accurately reflects the differences 

seen in trunk flexion/extension angles between short and tall subjects performing in 

virtual reality. In particular, the degree of pelvic rotation at the point of peak compression 

could be tested for significant differences. Furthermore, shear forces at the low back 

could also be reviewed. Presumably, if  shorter subjects had chosen to rotate about the 

pelvis, as opposed to flex at the spine, higher shear forces would have been observed for 

these subjects. Given that the L4/L5 spinal segments would not be as severely flexed, 

compression at this joint would be somewhat alleviated during pelvic rotation. 

Furthermore, due to the gravitational forces acting on the joints in an anterior direction, it 

would be expected that shear forces would be higher when the pelvis is rotated as 

opposed to when the trunk is flexed. It is important to emphasize that these postulations, 

to explain why subject groups may have used different postures for the same condition,
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are based on observations from the current study and cannot be confirmed without further 

investigation.

In general subjects tended to use their right hand to execute one handed tasks 

(Task 2; intermediate shaft install and Task 3; electrical connection to antenna), and those 

who chose to support portions of their body weight with a lean, typically did so with the 

left hand. The data for shoulder adduction/abduction angle shows that differences for TA 

were found for the right shoulder only. For installing the intermediate shaft (Task 2) a 

significant difference was found between the performances of 5F scaled to 5F, compared 

with 50F scaled to 5F. However, if  the data are further examined (Figure 20) it can be 

seen that all subjects performed Task 2 in a similar fashion and that even TA=50F group 

followed the same pattern as other subjects when scaled across the different sizes. Thus, 

although the significant findings for Task 2 should not be disregarded, it is possible that 

this one difference was, in part, due to the relatively small sample size of each group.

For Task 3, the right shoulder adduction/abduction angle seemed to be fairly 

sensitive to the effects o f scaling, where several differences were found between groups 

as close in size as the 5F and 50F or 50M and 95M. The same was true for right elbow 

angle during Task 3. However, in this case, the two shorter female groups were both 

different than the two taller male groups, but there were no differences within the 

genders. From an observational stand point, the most variability in performance was seen 

during Task 3 (electrical connection to the centerline antenna). There were multiple 

methods possible for performing this task; some ducked under the roof o f the car, others 

stayed outside the vehicle and reached in with their arms only. Regardless of technique, 

subjects could have also chosen to lean on the top edge of the door frame or on the side
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of the door, or not to lean at all. These findings suggest that, as the task becomes more 

complex or presents more options for execution, the ability to scale subjects in virtual 

reality is reduced. As mentioned, a potential explanation for this finding is that shorter 

subjects are more skilled, due to practice, with demanding reaches and have thus 

developed a more conservative reaching pattern as compared with larger, unpracticed 

subjects. This hypothesis is, in part, confirmed by the data that can be observed in Figure 

22 where, regardless of what size they were scaled to, true small females tended to have 

adduction/abduction angles that were closer to neutral than did the larger males. Again in 

Figure 18 it can be seen that elbow flexion was always higher for shorter subjects, which 

would have acted to decrease the moment arm of the upper limb (where 0 degrees is full 

extension and 180 degrees is fully bent). The taller males had their elbows closer to full 

extension, thereby increasing the length of the upper limb and, thus, the moment 

generated about the shoulder joint. This tendency, which points towards smaller females 

minimizing the demands at the shoulder joint, is similar to what was observed for the 

trunk flexion/extension angle.

Significant differences were also noted for the left elbow angle, across all three 

tasks. Regardless of how subjects were scaled, the TA=5F group was always more flexed 

at the elbow than the TA=95M group. Additional differences were observed between 

TA=50F and both 50M and 95M but, in general, it can be said that the likelihood of 

performance differences increased as the gap in true size increased. Given that the left 

arm was used primarily to lean during a task, this may suggest that leaning strategies 

cannot be replicated when considerable differences in true anthropometry exist.
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TASK SELECTION

A main effect o f task was observed for 8 of the 13 dependant variables, including peak 

low back loads, peak right shoulder load, trunk flexion/extension and lateral bend angles 

as well as the elbow and shoulder angles for both arms (Appendix E). When tasks for this 

study were originally selected, the researcher sought to select activities that would 

represent a range o f jobs performed on the plant floor as well as tasks that presented more 

than one potential execution strategy. The purpose of choosing tasks with multiple 

potential execution methods was to ensure unbiased results when assessing the variability 

in performance of multiple subject anthropometric groups in different conditions. The 

goal of selecting a range of tasks from the plant floor was to ensure the results o f this 

study were applicable to multiple processes and jobs within the automotive industry. The 

fact that significant differences were observed between tasks for more than 60% of the 

dependant measures, confirms that the researcher was successful in choosing a diverse set 

of tasks for this study. If all tasks had placed the same demands on subjects, it would be 

very difficult to apply these results with any level of confidence to tasks that were not as 

similar. This does not suggest that results can be generalized to processes outside of 

automotive assembly without caution. This would include cascading the results to 

automotive stamping applications, maintenance operations or tasks found within other 

industries. What can be stated, however, is that the present results do reflect a range of 

processes found in final vehicle assembly facilities. Given that the automotive partner for 

this research is responsible for assembly plants specifically, this data will fit their needs 

adequately.
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HYPOTHESES REVISITED

1. When a small female (5F) is scaled to represent a large male (95M), significant 
differences (p<0.05) will exist in the results o f  a peak and cumulative low back 
compression assessment. The same will hold true when a large male is scaled to 
represent a small female.

No significant differences were observed between the small females and large males for

peak or cumulative low back compressive forces, and therefore the alternative hypothesis

has been rejected. Although no significant differences were found for measures of peak

and cumulative forces, it should be noted that there was a tendency for 5F to have lower

peak and cumulative low back compression magnitudes than did any other subject group.

2. No significant differences (p<0.05) will be observed in the results o f a low back 
assessment o f  peak and cumulative compression between the 5th percentile female and 
the 50th percentile female when they are scaled to represent one another. The same is 
expected when comparing the 50th percentile male and the 95th percentile male.

No significant differences were found between 5F and 50F, or between 50M and 95M.

Thus, there was a failure to reject the null hypothesis. As mentioned previously,

differences for TA=5F and TA=50F were observed for both peak and cumulative low

back loading. It is possible that with further investigation and a larger sample size, the

research may have found significant differences, in particular between the 5F and 50F

groups.

3. Effects o f  the TA variable will be smaller fo r  low back cumulative compressive 
forces compared to peak forces.

There were no significant effects of true anthropometry for either peak or cumulative

compression when subjects were scaled in virtual reality. There was a significant effect of

both peak and cumulative compression. When increasing from the 5F to 95M, the

progressive increase in cumulative load was 41% (from 5F to 50F), 33% (50F to 50M)
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and 53% (from 50M to 95M). For peak loads it was 26% (from 5F to 50F), 40% (50F to 

50M) and 37% (from 50M to 95M). The data did not support the hypothesis. 

LIMITATIONS AND ASSUMPTIONS

Subjects used in this study were employees of the Ford pilot plant, which is where the 

first physical prototype of each new vehicle is produced. Because the volume of vehicles 

exiting this facility is much lower than a normal full production assembly plant, there are 

some differences in the way operators interact with the vehicle. For example, as opposed 

to a traditional moving assembly line, the vehicles in the pilot plant are placed on 

stationary skids and the operators must move from workstation to workstation to get to 

each vehicle. In a normal assembly plant, the vehicle travels on a pulley or conveyor 

system to the operator. Workers in the pilot plant may be responsible for performing 10 

or 20 different assembly processes on the same vehicle as opposed to the same process on 

multiple cars, thus a work cycle duration in the pilot plant is usually much longer than in 

a typical assembly facility. These differences suggest that, although workers in the pilot 

plant are involved with assembly operations, their typical work day is structured 

differently than the majority o f vehicle assembly operators. Despite these differences, the 

current study assumed that results derived from pilot plant assembly workers can be 

generalized to workers in other assembly plants. In an attempt to minimize any potential 

differences between pilot plant workers and normal assembly plant workers, all subjects 

were recruited from the shop floor within the pilot plant, meaning that office workers, 

maintenance crews and tradesmen were excluded. Therefore, it was guaranteed that all 

subjects had been exposed to assembly activities. Furthermore, workers in the pilot plant
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are generally recruited internally from full production assembly plants. Therefore, all 

subjects in the study had past experience with regular production facilities.

In this study, the researcher chose to use a wall mounted projection to display the 

virtual environment during data collection. The other alternative, which is often 

employed in virtual reality and human simulation labs, is the use of a head mounted 

display unit. This apparatus is worn by the subject during data collection and the 

environment is viewed in first person. Alternatively, in this study, subjects were asked to 

focus on the wall image during data collection. This image was also projected in first 

person but was located at a distance away from the subject’s eyes. While both options 

were available to the researcher, certain limitations were associated with each method. 

For example, comfort and picture resolution were the two main concerns associated with 

using a head mounted display unit. The Work Center for Human Simulation has rarely 

used their head mounted display unit because the quality o f its image is poor relative to 

what can be projected on a wall. Also, there had been considerable complaints from past 

subjects that the head mounted display unit was uncomfortable and they often had to hold 

it in place with their hand. Given the time period that the current subjects were immersed 

in virtual reality (1 to 1.5 hours), it did not seem reasonable to ask subjects to wear an 

uncomfortable piece o f equipment. Furthermore, there was a fear that subjects may alter 

their usual movement patterns in an attempt to reduce sliding and shifting of the unit on 

their head, which could have potentially had an effect on the final results. For these 

reasons, a wall projected image was chosen. While this was considered the best option for 

this study, and subjects were encouraged repeatedly to watch the image on the screen,
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there may have been a tendency to rely more on the physical props than if a head 

mounted display was used.

During data collection, it was observed that subjects tended to support part of the 

body weight by leaning on a surface while executing the three tasks. However, because 

they were encouraged to perform tasks in the most comfortable and natural way possible 

it was not possible to collect leaning hand forces. There were multiple locations that 

subjects could have chosen to lean, and placing a force gauge at each location was not 

practical or feasible. To counteract this gap in the data collection, the researcher reviewed 

all data post-collection to determine where subjects tended to rest their hands. Based on 

this information, a sub-study was conducted, where a mock up of the original props was 

built and subjects were asked to generate the same postures while the loads in the 

supporting hands were recorded using a force plate. These data were very consistent 

across SA and TA as a percentage of body weight. In fact, given that no significant 

differences were observed between the groups, the same percentage of body weight could 

be applied for 5F, 50F, 50M and 95M subjects. These measures were used to estimate 

the forces seen at the supporting hand during original data collection. In the absence of 

true hand load measures, data collected from the sub-study are believed to be the best 

estimate of the forces observed at the hands for the three tasks studied.

IMPACT TO INDUSTRY

The Assembly Ergonomics division of Ford Motor Company has recently expressed a 

need to review tasks from the perspective o f cumulative loading. This interest was 

generated based on a gap in the assessment tools available to the company. Jobs existed 

on the plant floor that intuitively appeared to be unsafe, but none of the ergonomic
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assessment methods could clearly identify the risks. For example, processes that involved 

sustained awkward trunk postures were being flagged by ergonomists based on operator 

complaints, but the assessment tools available at Ford did not seem sufficient to review 

such tasks. Cumulative low back loading seemed to be a logical variable to review, 

however there is very little published literature to support a guideline for acceptable 

exposure. In fact, to date, there is one study that is directly applicable to the automotive 

industry. Norman et al (1998) collected data from a large sample of North American 

automotive assembly workers and subsequently published a tool that could be used to 

assess cumulative loads and that provided feedback (odds ratios) about the exposure 

levels. While the subjects and the job types used during Norman’s study are ideal for the 

auto industry, it has been shown that their method of calculating cumulative loads may 

not be as accurate as other proposed methods (Callaghan et al, 2001). Calculating 

cumulative low back loads via rectangular integration has been shown to be more 

accurate than the square method used by Norman et al (1998) (Callaghan et al, 2001). 

Summation of the loads using rectangular integration was the method of choice for the 

current study (30fps). The Jack Classic Toolkit provides this data within minutes 

following the post-processing of motion capture data, thus making the collection and 

analysis of large amounts of cumulative low back loads more feasible than any other 

method known by the researcher. Agnew et al, (2003) also used a motion tracking device 

and a biomechanical model to assess cumulative loads during a lifting task. However, the 

benefit o f the current method is that data is obtained and reported in 3 dimensions, 

whereas the method of Agnew et al (2003) was only applicable to work in 2D.
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This study has shown that the collection and assessment of cumulative low back 

loading, using motion capture and virtual reality, can be done quite quickly and easily, 

relative to more traditional methods. Specifically, knowing that subjects between the size 

of the 50th F and 95th M can be used to represent one another and produce similar results 

for low back compression, allows a researcher to reduce the selection criteria for study 

participants, thereby speeding up the recruitment process and rejecting fewer subjects 

based on size. The ability to immerse subjects in a virtual reality environment and have 

them perform under different sized conditions, without compromising the accuracy of the 

results, provides the added benefit of keeping data collection within a lab environment. 

This allows researchers to avoid the complications associated with collecting data on a 

plant floor, such as acquiring plant and union approval, dealing with obstacles during 

data collection (ie. moving vehicles, large storage bins, etc), and also the limitation of 

finding equipment that is compatible with field collection. Very few motion capture 

technologies are suitable for the plant floor. Thus, given the need to review jobs from a 

cumulative loading perspective, and the traditional challenges of collecting data and 

recruiting a large number of appropriate subjects, these findings support the use of 

motion capture and virtual reality as a viable method for determining the cumulative low 

back loads associated with a task or job. This may, in fact, be a very suitable collection 

procedure for developing a large database of cumulative low back loads for a variety of 

different tasks. This information, in conjunction with epidemiological data could be used 

to help establish a threshold limit value for exposure to cumulative low back loading. The 

collection and analysis of large amounts of cumulative low back loading data has been a 

challenge to date, with the bulk of the research dedicated towards establishing a suitable
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methodology for this endeavor. As such, the possibility of using virtual reality may prove 

to be an interesting alternative for researchers.

To the best of the author’s knowledge, this is the first study to address the effects 

of scaling different sized subjects in a virtual environment. Past research has been 

conducted to show that virtual assessments yield the same results as the more traditional 

approaches to ergonomic assessments (i.e. plant floor observations), however, the virtual 

studies were all designed to replicate the anthropometries of the real life scenario, thus 

scaling was not a factor (Feyen et al, 2000). The ability to scale anthropometry is a 

readily available option within the Jack human model. This does not suggest that the 

developers endorse/or discourage the use of the scaling feature to alter anthropometric 

measures during automotive or other ergonomic assessments. However, given that the 

function exists, and for some users is seen as a means to reduce the time (and therefore 

cost) associated with conducting a virtual ergonomic assessment, the results of this study 

will serve as valuable information for users of motion capture and virtual reality 

integration.

During a virtual ergonomic assessment, the Vehicle Assembly division of Ford 

Motor Company considers three main criteria; a) is the job acceptable to the 5th percentile 

female in terms of reach, b) will the 25th percentile female have the strength to perform 

the task and c) is there sufficient clearance for the 95th male to access all parts? If a 

virtual assessment was being performed and all three criteria were to be tested, an 

Ergonomist would be required to do one of two things; a) recruit three individual subjects 

(5th female, 50th female and 95th male) and repeat the study three times OR b) recruit one 

individual to perform the task 3 times while scaled to represent the different sizes. In the
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interest of both time and money, virtual assessments have been conducted using the 

second option. However, to date, it has been unknown how this practice affects the 

validity of the results from an ergonomic assessment. Presumably, if  it is not valid to 

assume that a subject can be scaled to any size and perform similarly to someone of that 

actual size, then the likelihood of making a wrong ergonomic decision is increased. The 

costs associated with enforcing a product or design change, when it is not actually 

necessary, may cost thousands to millions of unnecessary dollars. Furthermore, the cost 

of not identifying an ergonomic problem that actually exist, is also a potential concern 

related to unsuccessful scaling practices. This is not only associated with unnecessary 

cost to the company, but also places the working population at risk for an avoidable 

injury.

SCALING RECOMMENDATION FOR INDUSTRY

In an effort to improve the practices used in the Work Center for Human Simulation 

(WCHS) lab, as well as reduce the potential for unnecessary spending resulting from 

ineffective scaling practices, a set of scaling parameters and procedure will be 

recommended to Ford Motor Company based on the results of this study. What is most 

interesting to note is that, if  one was to separate the data related to low back loads 

(compression) from the shoulder load data (resultant moment), and tried to answer the 

question; can subjects be scaled in virtual reality and yield similar results to un-scaled 

subjects o f  the same size, the answer would be different depending on which region of the 

body was the concern. The intended audience for this study is the Ergonomics division at 

Ford Motor Company, who are responsible for ensuring jobs are safe and acceptable to 

all regions of the body. Therefore, these Ergonomists will likely never be interested in
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using scaling guidelines that are specific to just the low back or just the shoulder 

individually. Rather, their concern will focus on ensuring that the scaling parameters they 

employ are conservative enough to encompass assessments of both the shoulder as well 

as the torso. Nevertheless, the Work Center for Human Simulation is a rather progressive 

lab and their involvement in academic research is strong. For this reason, 

recommendations have been provided individually, based on body part, in the event that a 

research study is undertaken where data will focus strictly on the low back or the 

shoulder. However, for the day-to-day virtual ergonomic assessments performed in the 

lab, a set of all-encompassing recommendations have also been provided.

When assessing the peak or cumulative demands on the low back, scaling subjects 

between the range of the 50F to the 95M was deemed an acceptable practice. However, 

because there was a tendency for the loads of the TA=5F to be lower than the other three 

groups, 5F subjects should not be scaled during motion capture and virtual reality 

integration. Furthermore, if  interested in the results of a 5F, it is recommended that a true 

5F subject perform the task.

In terms o f ergonomic assessments related to the shoulder, if  limits are to be 

based on 5F or 5OF individuals, subjects can be safely scaled anywhere within the range 

of a 5F to 50F, without affecting the accuracy of the results and subsequent ergonomic 

decisions. If a study is being conducted, and results will be based on 50M or 95M, it is 

acceptable to select subjects that fall within this range and scale them to the desired size. 

Scaling outside of these parameters presents the risk of erroneous results.

For virtual ergonomic assessments that will focus the loading demands of the low 

back and shoulder simultaneously, the following scaling parameters are recommended;
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When the demands of the low back and shoulder are going to be based on the either the 

5F or 50F anthropometry, scaling should not be employed. In this case a true 5F or 5 OF 

subject must complete the study. If the demands of the low back and shoulder are going 

to be based on the anthropometry of a 50M or 95M, subjects between the range of a 50M 

and 95M can be scaled to represent one another without altering the results of the study. 

CONCLUSIONS

Despite the fact that individuals can be scaled to appear smaller, there are no 

compensations made to help them feel smaller. This may in part explain why some of the 

differences were observed between small and large individuals. Furthermore, it is 

anticipated that small subjects have had considerable real-life experience performing in a 

variety of situations, where sometimes tasks can be performed close to the body and 

others are at the extremes o f their reaching capability. Given that jobs at Ford are 

designed to accommodate the 5th percentile female in terms of reach, these tasks will 

inherently be easier for the tall males. It is possible that when scaled, females were able 

to perform using motion patterns that were more efficient and practiced given their past 

experiences with real life work demands. Taller males, on the other hand, were asked to 

perform under conditions which they have rarely, if  ever, experienced on a true assembly 

line. This lack of practice may have led to the use of over-exaggerated movements when 

performing under conditions that required them to reach further than normal because they 

were scaled to be smaller.

Furthermore, the kinematic results of this study suggest that, as a task becomes 

more complex or presents more options for execution, the ability to scale subjects in 

virtual reality appears to be reduced. The majority of differences in segment angles were
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observed for Task 3, which was also the task that presented the greatest number of 

possibilities for completing the task. The differences in segment angles were 

subsequently responsible for a good portion of the variability observed in loading 

magnitudes for the shoulder and low back. Given that segment angles tended to vary 

more with complex tasks, it is expected that the feasibility of scaling is partially 

dependant on the activity being performed. The results of the study have been tailored to 

automotive assembly applications. Caution is warranted for applying these data to other 

industries, in particular for activities that are deemed to be quite flexible in terms of 

execution patterns.

FUTURE RESEARCH DIRECTIONS

The findings o f this study have identified the conditions under which scaling is 

acceptable and unacceptable during motion capture and virtual reality integration. 

However, it has not addressed the question o f why subjects perform differently. Based on 

the information presented, hypotheses can be generated about why subjects utilize 

different movement strategies, even when their environment is made to appear the same, 

but future research is needed to confirm these assumptions.

This study has only addressed tasks specific to automotive assembly. Caution is 

warranted when applying these results to scenarios that are different in nature from those 

tested. Before these scaling parameters can be applied to automotive stamping, power 

train, and especially non-automotive processes, further investigation of industry specific 

tasks is needed.

Lastly, these data suggest that differences seen in segment angles do not have a 

large effect on cumulative low back compression. Subject between the range of the 50F
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and 95M were found to yield similar results, which makes the methods outlined in this 

study appealing for researchers interested in developing a threshold limit value (TLV) for 

cumulative low back compression. Data are made available at 30 frames per second and 

can be collected in a lab setting with a defined set of scaling parameters. Given that the 

environment is virtual, injury data from current assembly plants could be collected and 

the processes deemed suitable to assess for low back loading could then be mocked up in 

the lab to represent the true life workstation layout. These data could identify the 

magnitude of loading observed for tasks that were associated with low back pain. 

Subsequently, this information could assist in defining a set of guidelines for exposure to 

cumulative loads.
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APPENDIX A

Full marker set with names of each marker based by body site

Scaling Study Marker Set

1 Head Top 35 Right R ear Bicep
2 Head Left 36 Right Elbow
3 Head Right 37 Right Lateral Elbow
4 Head Left Back 38 Right Arm Left Lateral
5 Head Right Back 39 Right Arm Rear Lateral
6 Neck Base Rear 40 W rist Mid Top Right
7 Mid-Ciavicle 41 Metacarpal 2 Right
8 Left Acromion 42 Metacarpal 5 Right
9 Right Acromion 43 Thumb Base Right

10 Xiphoid 44 Left Thigh 1
11 Scapula 45 Left Thigh 2
12 Mid Back Left 46 Knee Lateral Left
13 Mid Back Right 47 Knee Front Left
14 Mid Back Center 48 Gastroc Left
15 Root 49 Lower Leg Lateral Left
16 LeftA S IS 50 Lower Leg R ear Left
17 Right A SIS 51 Ankle Front Left
18 Left PS IS 52 Ankle Back Left
19 R PSIS 53 Toe Front Left
20 Right Upper Hip 54 Metatarsal 1 Left
21 Right Lower Hip 55 Metatarsal 5 Left
22 Left Upper Hip 56 Right Thigh 1
23 Left Lower Hip 57 Right Thigh 2
24 Left Front Bicep 58 Knee Lateral Right
25 Left R ear Bicep 59 Knee Front Right
26 Left Elbow 60 Gastroc Right
27 Left Lateral Elbow 61 Lower Leg Lateral Right
28 Lower Arm Left Lateral 62 Lower Leg Rear Right
29 Lower Arm Rear Lateral 63 Ankle Front Right
30 W rist Mid Top Left 64 Ankle Back Right
31 Metacarpal 2 Left 65 Toe Front Right
32 M etacarpal 5 Left 66 Metatarsal 1 Right
33 Thum b Base Left 67 Metatarsal 5 Right
34 Right Front Bicep
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involvement. On your first day in the lab you will be scheduled to return 2 additional times. These times 
will be booked at your convenience.

POTENTIAL RISKS AND DISCOMFORTS

The physical risks associated with this study are minimal. You will be asked to perform tasks involving 
manual labour. However, these tasks have been chosen from the many jobs that are performed in the Pilot 
Plant on a daily basis, therefore you may even be familiar with the task. In order to ensure the activity is 
safe an ergonomic risk assessemnt has been completed on each of the three tasks. If, once the task has 
been described to you, you do not feel cabable of safely completing the activity, notify the researcher 
immediatley and you will not be required to perform that task.

POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY

Participating in this study will allow you to become involved in other departments of the workplace, namely 
the Work Center for Human Simulation and also to learn how research is performed and what the various 
stages of developing a vehicle include. You will also be contributing to the overall success of Ergonomic 
Analyses performed within this lab.

The results of this research will be published in a public journal which means that other researchers can 
learn about this study and have the opportunity to expand on the project, therfore adding to the knowledge 
about Ergonomics. W hen ergonomics is enhanced in the workplace, all employees benefit as the goal of 
this field is to reduce the risk of injury.

PAYMENT FOR PARTICIPATION

You will receive your regular hourly wade throughout your participation in this study; however you will not be 
paid in addition to this.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified with you will remain 
confidential and will be disclosed only with your permission.
The data collected during your particpation will be coded by number and thus your name will never be 
associated with this informtation. Individual results from the study will remain strictly confidential and will 
have no effect on your status within the workplace. Gross results will be made available to Ford Motor 
Company and to the scientific community but your personal data will be held in confidence.
All data will be stored in a locked lab in the Human Kinetics building at the University of Windsor. Only the 
researchers will have access to this data. Data will be kept for 2 years following the study, at which point all 
records and documents will be disposed.

Please note, data collected during this study may be used at a later date for further Ergonomic analyses. 
Your personal information will remain confidential at all times.

PARTICIPATION AND W ITHDRAW AL

You can choose whether to be in this study or not. If you volunteer to be in this study, you may withdraw at 
any time without consequences of any kind. You may also refuse to answer any questions you don’t want to 
answer and still remain in the study. The investigator may withdraw you from this research if circumstances 
arise which warrant doing so. if for any reason you wish to remove your data from the study, you have the 
right to do so.

FEEDBACK OF THE RESULTS OF THIS STUDY TO THE SUBJECTS

General study results will be posted on your employee bulletin board when they become available. At this 
time you will also see a notification indicating that individual results can be obtained by visiting the Work 
Center for Human Simulation. If you wish to receive individual feedback from the study but do not wish to 
visit the lab, you may contact the researcher directly, using the information provided on this form. Results 
will be mailed to you.
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RIGHTS OF RESEARCH SUBJECTS

You may withdraw your consent at any time and discontinue participation without penalty. This study has 
been reviewed and received ethics clearance through the University of Windsor Research Ethics Board. If 
you have questions regarding your rights as a research subject, contact:

Research Ethics Coordinator Telephone: 519-253-3000, ext. 3916
University ofW indsor E-mail: lbunn@uwindsor.ca
Windsor, Ontario 
N9B 3P4

SIGNATURE OF RESEARCH SUBJECT/LEGAL REPRESENTATIVE

I understand the information provided for the study “Assessing the accuracy of ergonomic analyses when 
human anthropometry is scaled in a virtual environment” as described herein. My questions have been 
answered to my satisfaction, and I agree to participate in this study. I have been given a copy of this form.

Name of Subject

Signature of Subject Date

SIGNATURE OF INVESTIGATOR

These are the terms under which I will conduct research.

Signature of Investigator Date
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APPENDIX C

Subject Values for Cumulative Low Back Compression

The mean cumulative compression value (Ns) for each subject averaged across 3 trials 
for each of the 4 SA conditions. Cumulative compression was summed across all three 
tasks and the total duration was 30 seconds.

Subject True
Anthro

Scaled

5F 50F 50 M 95M

1 05 - F 24157.3 35891.0 53010.5 71211.8
2 05 - F 25233.5 30263.2 41685.3 65040.2
3 05 - F 24360.2 31269.7 43958.7 67545.7
4 05 -F 24188.6 30723.0 41283.6 67355.4
5 05 -F 26256.5 34125.7 42469.9 68305.0
6 50 -F 25598.7 36182.0 46268.6 74975.5
7 50 - F 27909.5 35616.6 484Q2.3 77677.2
8 50 - F 26416.9 43952.5 53957.8 81562.4
9 50 -F 16096.5 37959.7 51291.4 74796.3
10 50 - F 26383.4 37250.3 51408.2 80437.3
11 50 -M 27767.5 40417.8 59562.2 84310.8
12 50 -M 28040.0 37913.4 49927.8 73028.4
13 50 -M 26282.3 37586.4 49765.9 78676.4
14 50 -M 27814.6 35721.3 43830.8 70340.5
15 50 -M 29004.3 35984.2 48988.5 83556.5
16 95 -M 26979.4 30830.9 35186.8 55000.4
17 95 -M 20445.2 41736.0 54710.1 79499.1
18 95 -M 29697.6 43985.2 56503.3 88164.9
19 95 -M 29507.2 39938.6 54707.1 77360.9
20 95 -M 27016.5 33484.3 45120.7 69172.6
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APPENDIX D

Subject Values for Peak Low Back Compression

The peak compressive force (Newtons) for each task is presented below. Data is averaged 
across 3 trials for each of the 20 subjects.

Subject True
Anthro

Scaled Anthropometry

5F 50F SOM 95 M

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

1 05 -F .1159.2 1086.9 1720.5 1668.6 1599.0 2419.8 2332.2 2386.9 3326.8 3051.1 3118.5 4516.0

2 05 -F 1314.4 878.5 1788.6 1694.7 873.4 2083.1 2429.7 1381.8 3089.9 3184.1 2030.4 4016.4

3 05 -F 1403.1 931.9 1816.7 1810.6 965.3 2086.1 2390.6 1689.1 2741.0 3315.7 2659.3 3800.6

4 05 -F 1233.8 814.7 1436.1 1665.5 1083.3 1370.8 2582.9 1655.1 2030.7 3293.1 2209.8 3090.3

5 05 -F 1482.1 943.4 2123.5 1941.6 1204.0 2194.3 2677.3 2256.1 2215.1 3599.4 3307.3 3823.8

S 50 -F 1305.2 1110.5 1886.7 1655.6 1498:6 2393.5 2376.3 2353.5 2952.3 3544.1 2727.9 3877.8

7 50 -F 1327.3 992.3 1993.4 2044.9 1388:0 1448.3 2741.4 1998.3 2383.8 3594.7 3252.8 2888.0

8 50 -F 1437.2 1034.4 2006.1 1915.9 1777.6 2215.7 2546.4 2335.5 2827.8 3514.1 3260.4 4055.7

9 50 -F 1226.9 1113.7 1898.7 1655.9 1506.7 2144.7 2482.3 . 2096.9 2928.7 3356.9 2772.1 3978.2

10 50 -F 1376.2 1284.6 1451.7 1800.1 1351.4 2189.6 2426.0 1898.0 3222.7 3325.0 2893.9 4501.1

11 50 -M 1327.6 1215.4 1860.3 1877.4 1624.1 2609.5 2563.9 2562.3 3884.7 3330.8 3329.4 5265.2

12 50 -M 1369.6 1147.1 2197.0 1773.8 1558.4 2326.0 2391.1 2004.6 2948.9 3033.9 2923.0 3997.1

13 50 -M 1339.1 1143.4 1865.8 1651.5 1474.3 2562.0 2560.1 2071.8 2940.2 3353.3 2983.8 4370.6

14 50 -M 1322.4 1137.3 2069.9 1751.8 1598.7 2114.9 2264.0 1997.5 3027.1 3285.2 3353.2 3905.3

15 5 0 -M 1350.3 953.2 1662.6 1933.4 1163.0 1454.2 2697.7 1874.5 2187.8 3459.0 3238.1 3838.8

16 95 -M 1349.9 1021.7 1907.4 1775.9 1294.2 1625.7 2384.5 1696.6 1919.8 3274.4 2832.2 2101.0

17 95 - M 1323.1 1172.3 1887.6 1918.6 1755.8 2267.1 2718.3 2422.8 3127.2 3378.9 3338.9 4344.8

18 95 -M 1515.7 1333.0 1891.1 1897.4 1813.5 2596.7 2566.2 2485.7 3610.2 3453.6 3735.4 4862.7

19 95 -M 1453.7 1073.3 1807.8 1799.6 1476.1 2875.2 2957.1 2081.2 3777.0 3820.3 282B.4 4167.9
20 95 -M 1302.3 913.4 1709.6 1611.8 1220.1 2076.2 2556.8 1736.2 3022.1 3067.4 2650.7 3275.2
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APPENDIX E

Main effect o f Task for peak low back compression
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The main effect o f Task for peak low back compression has been shown (p<0.0001). 
Standard deviation bars are shown (n=80).
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