
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

Applications of CSP solving in computer games (camera control) Applications of CSP solving in computer games (camera control)

Mohammed Liakat Ali
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ali, Mohammed Liakat, "Applications of CSP solving in computer games (camera control)" (2008).
Electronic Theses and Dissertations. 1202.
https://scholar.uwindsor.ca/etd/1202

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1202?utm_source=scholar.uwindsor.ca%2Fetd%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Applications of CSP Solving in Computer
Games (Camera Control)

by

Mohammed Liakat Ali

A Thesis
submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2007

' 2007 Mohammed Liakat Ali

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42266-3
Our file Notre reference
ISBN: 978-0-494-42266-3

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

While camera control systems of commercial 3D games have improved greatly in recent

years, they are not as fully developed as are other game components such as graphics and

physics engines. Bourne and Sattar (2006) have proposed a reactive constraint based third

person perspective camera control system. We have extended the capability of their

system to handle occlusion while following the main character, and have used camera

cuts to find appropriate camera positions for a few difficult situations. We have

developed a reactive constraint based third person perspective chase camera control

system to follow a character in a 3D environment. The camera follows the character from

(near) optimal positions defined by a camera profile. The desired values of the height and

distance constraints of the camera profile are changed appropriately whenever the

character enters a semi-enclosed or an enclosed area, and the desired value of the

orientation constraint of the camera profile is changed incrementally whenever the

optimal camera view is obstructed. Camera cuts are used whenever the main character

backs up to a wall or any other obstructions, or comes out of a semi-enclosed or an

enclosed area. Two auxiliary cameras to observe the main camera positions from top and

side views have been added. The chase camera control system achieved real-time

performance while following the main character in a typical 3D environment, and

maintained an optimal view based on a user specified/selected camera profile.

iii

To
my father, Juhurul Haque Bhuiyan

and
my mother, Jamila Aktar Khatun

IV

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Scott Goodwin for countless hours of discussion

on the concepts and implementation of the camera control method, advice and guidance

to complete this thesis. When I started my graduate study under his supervision, I was

barely aware of research on CSPs in computer science and had very limited enthusiasm

about computer games. Thus, it was indeed a difficult task to explain to me something in

the forefront of the application of AI. I would like to thank the members of my thesis

committee, Dr. Jonathan Wu of the Department of Electrical and Computer Engineering

and Dr. Ziad Kobti of the School of Computer Science, for their advice and guidance. My

appreciation goes to Dr. Christie Eziefe, chair of defence, for her help and support during

my studies at the University of Windsor.

I wish to also thank Dr. Owen Bourne for providing me with the source code of one of

his camera control systems including the Sliding Octree Solver. Thanks to my fellow

students, staff and teachers at the School of Computer Science for their consultations,

cooperation, and help.

I am grateful to my wife Salma for her sincere support and encouragement during my

undergraduate and graduate studies. Without her help, this thesis work could never have

been completed. My sons Rafi and Arko amazed me with their enthusiastic discussions

about computer game making from a young user's perspective.

The project was partly supported by an NSERC Post-graduate Scholarship.

v

TABLE OF CONTENTS

ABSTRACT iii
DEDICATION iv
ACKNOWLEDGEMENTS v
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER 1 INTRODUCTION 1

1.1 Motivation 4
1.2 Statement of Problems 5
1.3 Discussion 6
1.4 Outline 7

CHAPTER 2 REVIEW OF LITERATURE 8
2.1 Constraint Satisfaction Problem (CSP) 9
2.2 CSP Solving Techniques 13
2.3 Virtual Camera and Graphics Pipeline 21

2.3.1 Three Basic Transformations 23
2.3.2 Model Transformation 29
2.3.3 View Transformation 30
2.3.4 Projection Transformation 34
2.3.5 Viewport Transformation 40
2.3.6 Overall Transformation Matrix and its Uses 42

2.4 Camera Control Systems 46
2.5 Constraint Based Camera Control Systems 58
2.6 Occlusion Detection Methods 77

CHAPTER 3 DESIGN AND METHODOLOGY 82
3.1 Formulation of Camera Control Problem as a Weighted CSP 83
3.2 Modification of the Sliding Octree Solver 85
3.3 Extension of the Occlusion Detection Method 89
3.4 Outline of the Implementation 92

CHAPTER 4 ANALYSIS OF RESULTS 95
4.1 Implementation 95
4.2 Test Performance 95

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 109
5.1 Summary of the Contents 109
5.2 Limitations 110
5.3 Conclusions I l l
5.4 Future Work 113

REFERENCES 114
VITAAUCTORIS 119

VI

LIST OF FIGURES

Figure 1: Three Shots by Three Perspective Camera Control Systems 2
Figure 2: A Binary CSP and its Constraint Graph 11
Figure 3: A Non-binary or General CSP and its Hypergraph 12
Figure 4: State Space Landscape 20
Figure 5: OpenGL Graphics Pipeline 22
Figure 6: Translation of a Point 24
Figure 7: Rotation of a Point 25
Figure 8: OpenGL World Coordination Frame 29
Figure 9: Camera Placement Relative to the Line of Interest 34
Figure 10: View Frustum 35
Figure 11: Perspective Projection 36
Figure 12: Different Shot Types with their Cutoff Positions 39
Figure 13: Relation between the Coordinate Frames 42
Figure 14: Camera Position in Spherical Coordinate 46
Figure 15: The World and the View Spaces 48
Figure 16: Triangles in the World and the View Spaces 49
Figure 17: Classification of Interactive Constraint Solvers 60
Figure 18: Initial Constraint Set 83
Figure 19: Search Tree 85
Figure 20: The Octree Spatial Data Structure 86
Figure 21: Search Tree for the Sliding Octree Solver 86
Figure 22: AABB-Ray Intersection Test 90
Figure 23: Expected Camera Positions for Different Orientations of the Character 97
Figure 24: Actual Camera Positions for Different Orientations of the Character by SOS.

98
Figure 25: Actual Camera Positions for Different Orientations of the Character 99
Figure 26: Navigation through a Crammed Doorway 100
Figure 27: Actual Navigation through a Crammed Doorway by SOS 101
Figure 28: Actual Navigation through a Crammed Doorway 102
Figure 29: Expected Camera Position when the Character Moves to a Corner 103
Figure 30: Actual Camera Positions when the Character Moves to a Corner by SOS... 103
Figure 31: Actual Camera Positions when the Character Moves to a Corner 104
Figure 32: Camera Positions inside an Enclosed Area Found by Two Solvers 105
Figure 33: Camera Positions when the Character backs up to a Wall 106
Figure 34: Camera Positions before and after the Character Comes out of an Enclosed
Area 106
Figure 35: Camera Positions during Movements under an Over-hanged Obstacle 107
Figure 36: Camera Positions during Movements through a Covered Pathway 108

vii

LIST OF TABLES

Table 1: Algorithms as a Combination of Tree Search and Arc Consistency 17
Table 2: List of Constraints and Solvers in Interactive Graphical Applications 59
Table 3: Common Constraints 76
Table 4: Intersection Testing Criteria 81
Table 5: Constraint Cost Calculation 84
Table 6: Real Values of the Constraints 84
Table 7: Cost for Frame Coherence Constraint 85
Table 8: Sliding Octree Solver Algorithm 87
Table 9: Modified Sliding Octree Solver Algorithm 88

viii

CHAPTER 1 INTRODUCTION

A virtual camera can be described as a window to the 3D virtual world (Bourne 2006). A

user observes a virtual 3D world through a virtual camera (Christie et al. 2005).

The idea of perspectives is utilized to implement different kinds of camera control

systems. Three kinds of perspectives for camera control are possible: first person, second

person and third person.

In a first person perspective camera control, the virtual camera represents a view of the

player. The camera is at a fixed position relative to the main character throughout the

game play. First person games such as Doom™, Quake™, Halo™, and World War 2

Online™ use this technique. In a second person perspective camera control, the virtual

camera represents a view of an antagonist of the player in the game. This is a very

difficult perspective to implement. No commercial computer game ever fully

implemented the second person perspective camera control system. In a third person

perspective, the virtual camera represents a view of a third person. The camera positions

are not fixed relative to any object or absolutely in the world coordinate frame. The

camera position changes based on the development of the game play at that point of time.

Commercial games such as World of Warcraft™, Full Spectrum Warrior™, and Tom

Raider™ use this technique. Three shots by three different perspective camera control

systems are shown in fig. 1. Many commercial games such as Oblivion™ have both first

person and third person perspective camera control systems. The player can choose either

one.

1

Figure 1: Three Shots by Three Perspective Camera Control Systems.
Shots (from left to right) by a First Person Perspective Camera (Ref: Image_l 2007), a Second

Person Perspective Camera (Ref: Image_2 2007), and a Third Person Perspective Camera (Ref:
Image_3 2007)

A chase camera (Stone 2004) is a third person perspective camera that keeps the main

character in view while maintaining some desired separation. It can also keep one or

more additional characters, objects or points of interest in view.

The seven major degrees of freedom (DOF) of a camera are three Cartesian coordinates

of its position in a 3D environment, three Euler angles of its orientation, and one angle

representing its field of view (FOV). There are other camera control parameters such as

aspect ratio of the viewport, depth of field of the camera, shutter speed, and lighting of

the environment (Dracker 1994). The camera position and its orientation angles define a

camera coordinate frame. In OpenGL, this camera coordinate frame can also be defined

by the camera position, the target character position, and an up vector using a GLU utility

library function 'gluLookAtO'. Consequently, the seven most commonly used parameters

to control a virtual camera are camera position (three parameters), where it is directed

(three parameters), and its FOV (one parameter) (Christie et al 2005). If FOV is kept

constant and the target character position is known or determined by another system, the

seven parameters can be reduced to three as done in both Bourne (2006), and Bourne and

Sattar (2006).

2

A film or cinema consists of multiple scenes, each of which represents a series of events

occurring in continuous space and time, and consists of multiple shots. The duration of a

shot is from the point at which the camera is turned on until it is turned off (Amerson and

Kime 2001). In cinematography, a shot can also be described as a continuous stream of

frames, each of which consists of individual images (Bares, Thainimit and McDermtt

2000). Like a film or cinema, a computer game can be logically divided into scenes,

shots, frames and images.

To implement scenes and shots, the tasks of the camera control system of 3D computer

games can be decomposed into multiple levels following the division of labour of the

film-making practices. Hawkins (2003) implements three roles from a film crew:

Cinematographer, Editor and Director. The Director determines the availability of good

camera shots. The Editor selects shots and decides on the transition between the shots.

The Cinematographer finds the camera parameters. Oliveros (2004) implements three

levels: low, medium and high, identified as Camera Operator, Cinematographer, and

Director, respectively. The Director deals with the automatic selection and sequencing of

scenes, based on mood, pace, etc. The Cinematographer deals with various types of shot

setup, incorporating photographic and cinematic idioms. The Camera Operator deals with

finding camera parameters by locating the values of mainly seven major DOFs of a

virtual camera for the selected shot.

A camera system which can enhance viewers' experience significantly must be built on

top of an efficient Camera Operator. The Camera Operator should be capable of finding

3

appropriate camera parameters for the selected shot. In addition, it must have real-time

performance.

The motivation behind this thesis is discussed in the next section. In section 1.2, the

statement of the problems is provided. In section 1.3, discussion centres on relevant

issues. Finally, the outline of the thesis structure is provided in section 1.4.

1.1 Motivation

In interactive computer games, the target character position is not fixed. Camera

movements can be based on a prediction of the future character movements or a reaction

to the current character movements. In the predictive camera control systems, statistical

means are used to estimate target character position for the next frame. With the

estimated target position, the next frame is planned, allowing the camera to capture a shot

more precisely during fast changes of scenario. Obviously, the frame quality depends on

the quality of the prediction. In reactive camera control systems, the target character's

current position is used to determine the next frame. Relieved of the burden to calculate

the next target position in a reactive system, the real-time performance of the system

becomes highly feasible.

In the literature, both the predictive constraint based third person perspective camera

control systems such as in Halper, Helbing and Strothotte (2001) and the reactive

constraint based third person perspective camera control systems such as in Bourne

(2006), and Bourne and Sattar (2006), have been investigated. In addition, predictive

4

constraint based third person perspective chase camera control systems to follow a

character have been investigated (Harper, Helbing and Strothotte 2001). However,

reactive constraint based third person perspective chase camera control system to follow

a character has not yet been investigated fully.

1.2 Statement of Problems

A third person perspective camera control system provides much more information to the

user than a first person perspective camera control system (Christie et al 2005; Lin, Shih

and Tsai 2004). It can create much more sophisticated computer games than can be

achieved with the first person perspective camera control system, enhancing viewer

experience significantly (Lin, Shih and Tsai 2004). However, implementation of an

automated third person perspective camera control system in a 3D computer game is a

difficult and time consuming task.

A camera should be controlled to fulfill the user's viewing requirements which can be

specified as constraints on the camera parameters (Drucker and Zeltzer 1994). Various

kinds of constraints are used to describe the relationship between the objects (Badros

1998). Constraints on the camera (with or without constraints on objects of the scene or

the image) can define a camera shot. The camera motion, position and orientation must

be optimized to deal with a number of hard and soft constraints involving factors such as

desired distance from the primary subject or any character of interest, and the size and

positioning of the subject in the scene.

5

To find camera parameters for a camera shot, which fully (or partially) satisfy all the

constraints, the problem can be cast as a Constraint Satisfaction Problem (CSP) (Christie

et al. 2005). Thus, finding an appropriate shot turns into finding an optimal solution for

the CSP instance.

We state that a reactive constraint based third person perspective chase camera that keeps

the target character visible at all times can be implemented with real-time performance.

1.3 Discussion

Bourne and Sattar (2006) have introduced a reactive constraint based third person

perspective chase camera system which uses a local search based constraint solver called

the Sliding Octree Solver. Due to a minimal occlusion handling capability, the camera

control system is not able to keep the target character visible all the time. In our study, we

extend the Sliding Octree Solver with an occlusion handling capability using ray casting

from the character position to the potential camera positions. The character remains

visible all the time. If the character is not visible from the optimal camera position, the

solver searches for the next best (unobstructed) camera position.

A paper (Ali and Goodwin 2008) based on this thesis work is accepted in the following

workshop.

• 1st IEEE International Workshop on Digital Entertainment, Networked

Virtual Environments, and Creative Technology - DECT 2008, to be held along

6

with the Fifth Annual IEEE Consumer Communications & Networking

Conference - CCNC 2008, in Las Vegas, NV, USA, January 10-12 2008.

The success of the technique will be judged by the following.

a) Comparing camera shots for a few difficult positions in semi-enclosed/enclosed

areas with those of other approaches.

b) Achieving occlusion-free camera shots of the main character all the time.

c) Achieving real-time performance.

1.4 Outline

In chapter 2, we discuss various aspects of CSP, CSP solving techniques, the virtual

camera in the context of the OpenGL graphics pipeline, both constraint and non-

constraint based camera control systems, and occlusion detection techniques of computer

games. In chapter 3, we discuss the experimental design and methodology used to

implement the thesis project. An analysis of the results is given in chapter 4. Chapter 5

consists of limitations, conclusions and recommendations for future work. Appendices,

References, and Vita Auctoris follow.

7

CHAPTER 2 REVIEW OF LITERATURE

To implement a reactive constraint based third person perspective chase camera control

system for computer games, this thesis covers three areas of study, namely, CSP and CSP

solving techniques, camera control in computer games, and occlusion detection

techniques. Occlusion detection technique or visibility testing is a part of the collision

detection and response system of games. We deal with occlusion detection only, as we

are interested only in determining if a character is visible from a potential camera

position.

Existing CSP solving techniques, camera control systems in computer games, and

occlusion detection techniques in the literature will be discussed in this chapter to provide

readers with the necessary background information to understand the issues. We provide

mathematical derivations, and theoretical and practical discussions to make all the

necessary and relevant information available within this thesis.

In section 2.1, definitions and various aspects of CSPs are discussed. In section 2.2, we

discuss and compare various solution techniques of CSP. The virtual camera and its

control in the context of OpenGL graphics pipeline is explained in section 2.3. The

general and constraint based existing camera control systems are discussed in section 2.4

and 2.5, and occlusion detection methods are discussed in section 2.6.

8

2.1 Constraint Satisfaction Problem (CSP)

A problem solving algorithm can be classified as a general or a special algorithm. The

CSP is a general problem solving algorithm. There are three reasons to study a general

algorithm. Firstly, tailor-made special algorithms are costly. Secondly, a slight change in

problem specifications would render a special algorithm inapplicable. Finally, a general

algorithm can be the basis for development of a special algorithm (Tsang 1993).

CSP can be used to model a wide range of practical problems. A large number of

problems in AI and other Computer Science areas such as machine vision, belief

maintenance, scheduling, temporal reasoning, graph problems, floor plan design,

planning genetic experiments, and satisfiability problems can be considered as special

cases of CSP (Nadel 1990; Kumar 1992). Few well-known applications of CSP solution

techniques are Map coloring problem, N-queens problem and Car sequencing problem

(Tsang 1993).

A CSP is defined as a triple of sets (V, D, C). V, D and C are all finite sets. V is a set of

variables { xl,x2,...xn }. D can be viewed as a function which maps every variable in V to

a set of objects of arbitrary type. If Dx is the set of objects mapped from xt by D,

Dx will be called the domain of x,. The domain Dx must be a non-empty set. C is a set of

constraints on arbitrary subsets of variables in V. C may be an empty set. C will restrict

the values that the variables in V can take simultaneously (Tsang 1993; Bartak 1998;

Russell and Norvig 2002).

9

There are two representations of constraint specification; extensional and intensional. In

an extensional representation, a constraint is specified explicitly by listing all the valid

combination of values. In an intensional representation, a constraint is specified

implicitly by mathematical equations, logical expressions, etc. (Yang 2004). CSPs having

discrete variables with finite domains, such as map-colouring and n-queens problem, are

the simplest kind of CSPs. Boolean CSPs are also finite domain CSPs because their

variables can only take 'true' and 'false' as values. When discrete variables have infinite

domains, constraint language has to be used to describe the constraints because the

constraints cannot be enumerated (Russell and Norvig 2002).

Arity of a constraint depends on the number of variables of the constraint. A constraint

that restricts the values of a single variable is a unary constraint. Arity of a unary

constraint is one. A constraint that relates two variables is a binary constraint. Arity of a

binary constraint is two. A non-binary constraint relates more than two variables. Arity of

a non-binary constraint is more than two (Russell and Norvig 2002; Huang 2004; Yang

2004).

A CSP with only unary or binary constraints is called a binary CSP. A binary CSP can be

visualized as a constraint graph where the set of graph vertices corresponds to the set of

CSP variables, and the set of graph edges corresponds to the set of CSP constraints

(Russell and Norvig 2002; Huang 2004; Yang 2004). A binary CSP and its constraint

graph are shown in fig. 2. The left image of the figure is a map to be coloured. A CSP is

defined for the map colouring problem. The CSP and its constraint graph are shown in

10

the right image. A graph representation of a binary CSP allows the CSP solution

techniques to take advantage of graph search algorithms.

{red, blue, green) {red, blue, green)
vtiv2

vj j [v.

V&Vj
vttv3 vr-fv4

Vj

v&v4
<D

{red, blue, green} {red, blue, green}

Variables: \>i, vj, vs, v4

Domains;
Domain of v/ D(vi): {red, blue, green}

Domain of v? D(v^): {red, blue, green)

Domain of vj D(V]): {red, blue, green)

Domain of V4 Dfv.i): {red, blue, green)

Constraints:
Cr- vrfv7 Cy. vrfvj Cy. v,4*>4

C,: vffri Cs: V1+V4

Figure 2: A Binary CSP and its Constraint Graph.
(Ref: fig. 2.1; pp. 7 of Huang 2004 which is adapted from fig. 1.5; pp. 20 of Tsang 1993)

A CSP with any constraint with an arity of more than two is a non-binary or general CSP,

and can be visualized as a constraint hypergraph consisting of a set of vertices and a set

of hyperedges. A hyperedge allows the connection between more than two vertices

(Russell and Norvig 2002; Huang 2004). A non-binary or general CSP is defined in fig.

3. The CSP and its hypergraph are also shown in the figure.

A non-binary or general CSP can be transformed into an equivalent binary CSP which is

why the study of binary CSPs becomes so important. Two methods to transform a non-

11

binary or general CSP are hidden variable encoding and dual encoding (Bartak 1998;

Huang 2004; Yang 2004).

f~ A hyperedge representing Cf; V/-+ V2+ Vj>4

o

o

A hyperedge

representing

A hyperedge

•representing.

0

Variables: vj, v2, vj

Domains:
Domain of v, D(v>): {1,2, 3}
Domain of v2 Dfvs): {1, 2, 3}
Domain of vj D(v3): {1,2, 3}

Constraints:
Cy: v#v j

Cj: v^< iy

Cf. V/+ V:>+ Vj>4

Figure 3: A Non-binary or General CSP and its Hypergraph.
(Ref: fig. 2.2; pp. 10 of Huang 2004)

In hidden variable encoding, the set of variables of the transformed binary CSP consists

of the original set of variables of the non-binary or general CSP and a new set of hidden

variables. The domains of the original variables remain the same. Each hidden variable

represents an original constraint. For a hidden variable, a binary constraint will be added

between the hidden variable and each of the original variables involved in the concerned

original constraint. The domain of the hidden variable will be unique identifiers for each

satisfying tuple of the concerned original constraint (Huang 2004; Yang 2004). Instead of

a set of hidden variables, a single hidden variable representing all the constraints can also

be used in hidden variable encoding (Bartak 1998).

In dual encoding, the set of dual variables of the transformed binary CSP consists of the

original set of constraints of the non-binary or general CSP. The domain of each dual

12

variable will be the set of the tuples that satisfy the corresponding original constraint. The

set of the original variable will become the set of new constraints of the transformed

binary CSP (Bartak 1998; Huang 2004; Yang 2004).

2.2 CSP Solving Techniques

A sound algorithm will return only the solutions of the problem while a complete

algorithm will find every solution of the problem. Soundness and completeness are two

very desirable properties of an algorithm. To deal with the intractability of some

important problems in real life, efficient algorithms, even if incomplete or unsound, are

sometimes considered acceptable (Tsang 1993; Russell and Norvig 2002).

There are three unique features of CSP search space. They are identified as: finite search

space size, fixed depth of the search tree determined by the numbers of the variable of a

CSP, and similarity of sub-trees topology for a particular variable ordering. Due to these

characteristics, problem reduction becomes possible (Tsang 1993).

A CSP solving technique may become suitable based on its tightness measure. Tightness

of a CSP is defined as the ratio of the number of the solution tuples of the CSP, and the

number of distinct tuples consists of all the variables of the CSP (Tsang 1993; Huang

2004; Yang 2004).

During CSP solution, one may search for any solution with or without preference, all the

solutions, or an optimal solution based on a cost or object function (Tsang 1993; Bartak

13

1998). CSP solving techniques can be classified as solution synthesis, problem reduction,

and search (Tsang 1993).

The solution synthesis technique can be seen as both search and problem reduction. It

searches multiple branches simultaneously, and creates constraints for the set of all

variables of a CSP in such a way that only solution tuples are present. It generates

solution constructively. It will collect a set of legal values starting with a single variable

and will generate solution of the CSP incrementally (Tsang 1993).

The node, arc, and path consistency algorithms can be used to reduce search space easily

when a CSP is represented as a constraint graph. Node inconsistency can be eliminated

by removing all the values from the domain of each variable that does not satisfy the

unary constraints of the variable. Once node consistency is achieved for a CSP, all the

unary constraints can be dropped from further consideration without affecting the

solutions. Arc consistency can be achieved by making each arc of the constraint graph of

a CSP consistent (Kumar 1992; Bartak 1998). An arc consistency algorithm makes a

directed arc (x, y) of a constraint graph consistent by removing all the values from the

domain of x for which there is no corresponding value in the domain of y to satisfy the

binary constraint that relates x and y. Arc consistency algorithms such as AC-1, AC-2,

AC-3, AC-4, AC-5, AC-6 and AC-7 are developed to remove arc inconsistency. AC-3

and AC-4 are the most frequently used arc consistency algorithms (Bartak 1998). The

concept of arc consistency is generalized as k-consistency because arc consistency is not

enough to avoid backtracking. By definition, k-consistency involves two or more arcs.

14

When k is equal to three, the k-consistency is called a path consistency (Kumar 1992;

Tsang 1993; Bartak 1998; Russell andNorvig 2002).

Problem reduction techniques remove redundant values from the domain of the variables

and tighten the constraints so that fewer assignments satisfy them. The technique is used

with the expectation that the reduced problem will become easier to solve (Tsang 1993).

However, problem reduction techniques are rarely used alone to find solutions of a CSP.

Problem reduction techniques are frequently used along with either solution synthesis or

search.

However, most of the CSP solvers find solutions using search. Variables are instantiated

with values by the solver, which then checks if the current instantiation is a consistence

assignment. In the case of consistent instantiation, it will continue instantiation until a

solution is found or lead to an inconsistent assignment (Bourne 2006). In a complete

assignment, all the variables of a CSP are instantiated. A complete assignment which

satisfies all the constraints simultaneously is a solution of a CSP.

The generate-and-test (GT) method is the simplest method to find a solution of a CSP. In

GT, all the possible combinations of the variables are generated and tested. The number

of combinations generated and tested is equal to the Cartesian product of all the variable

domains. The first combination which satisfies all the constraints is the first solution of a

CSP (Kumar 1992). All combinations which satisfy all the constraints are solutions of a

CSP. The cost of using the GT method to find the first solution or all the solutions is

15

enormous. In GT, constraint checking is done after instantiation of all the variables of a

complete assignment.

In the backtracking (BT) method, the variables are instantiated one by one. The validity

of a constraint is checked whenever all the relevant variables of a constraint are

instantiated. In other words, BT performs a depth-first search (Kumar 1992). If any

partial or complete assignment violates any constraint, this method backtracks to the most

recently instantiated variable. In the case of a constraint violation by a partial assignment,

BT will eliminate a subspace from its search space (Kumar 1992; Bartak 1998).

Though BT is more efficient than GT, BT has exponential complexity. There are three

major drawbacks of BT: late conflict detection, redundant work and thrashing (Kumar

1992; Bartak 1998).

BT detects conflict during constraint checking. It cannot detect a conflict before the

conflict actually occurs. Advance checking of possible conflicts before instantiation of a

variable will eliminate the late detection problem of BT, something accomplish by the

Forward Checking (FC) algorithm (Bartak 1998).

Three techniques to avoid redundant work and improve performance of the BT algorithm

are identified as constraint propagation at search node, intelligent backtracking, and

ordering of variable instantiation and instantiation of different values (Kumar 1992).

16

Using the constraint propagation technique, a given CSP can be transformed into another

CSP which has a smaller search space compared to the original one in such a way that the

same failures are not encountered again. Parameterized arc consistency procedures can be

combined with tree search algorithms. As a result, arc consistency processing can be

done on the sub problems rooted at each individual search tree node. However, all the arc

consistencies of hybrid algorithms do not achieve full arc consistency at the tree nodes. In

the spirit of full arc consistency algorithms such as AC-1, AC-2, and AC-3, the partial arc

consistency algorithms are named as AC l/5, AClA, AC/3, and AC/4 based on the degree

of partial arc consistency achieved by the hybrid algorithms (Nadel 1990). Many well-

known CSP solving algorithms listed in table 1 can be described as a combination of tree

search and constraint propagation (Nadel 1990; Kumar 1992).

Table 1: Algorithms as a Combination of Tree Search and Arc Consistency.
(Ref: fig. 6, pp. 12 of Kumar 1992 which is adapted from Nadel 1988)

BT = GT + ACX
FC = GT + AC %
Partial Lookahead (PL) = FC + AC %
Full Lookahead (FL) = FC + AC lA
Really Full Lookahead (RFL) = FC + AC

When a branch of search fails, BT will revisit the most recent decision points while an

intelligent backtracking algorithm will revisit the set of variables that caused the failure

which is called conflict set. The backjumping (BJ) algorithm will revisit the most recently

added variable of the conflict set (Russell and Norvig 2002). The dependency-directed

backtracking (DDBT) algorithm used in the truth maintenance system and its many

simplified implementations, determines the culprit of constraint violation to revisit. Truth

17

maintenance methods deal with developing general techniques to attach justification or

assumptions to the inference. DDBT, learning nogood compound labels (LNCL),

backchecking (BC), and backmarking (BM), utilize similarity of search space sub-trees

(Tang 1993). Using these techniques, information about a failure is updated and used

during the search of the remaining search space (Kumar 1992).

During CSP solving for any one solution without preference, the order of variables to be

considered and the order of value instantiation have great implications to the efficiency of

the search. Higher search efficiency could be achieved using heuristics. The most

common heuristics for variable ordering is based on the 'first-fail' principle where the

variable with the fewest remaining alternative values will be selected next for

instantiation (Bartak 1998). The application of the variable ordering technique will move

failures to upper levels of the search tree (Kumar 1992). The most common heuristics for

value instantiation ordering is based on the 'succeed first' principle where the value

which is most likely to succeed will be selected during instantiation (Bartak 1998). The

application of value instantiation ordering techniques will move a solution of the CSP to

the left of the search tree (Kumar 1992).

Trashing is defined the as repeated failure of the search in different parts of the search

space due to the same reason. Node and arc inconsistency of the constraint graph are two

causes of thrashing. Trashing can be avoided by making all nodes and arcs of the

constraint graph of the CSP consistent (Kumar 1992; Bartak 1998). Thrashing of a BT

algorithm can be eliminated with much more cost than that incurred by the simple BT if

18

any of constraint propagation, intelligent backtracking, or variable ordering or value

instantiation ordering techniques is applied to an extreme. On the other hand, a simplified

version of the techniques can be used together with BT to reduce the overall search space

efficiently, but the optimal combination of these techniques will be problem dependent

(Kumar 1992).

A CSP is defined as over-constrained if there is no instantiation of the variables that

simultaneously satisfy all the constraints. To solve over-constrained CSPs, the concept of

classic CSP is extended as Fuzzy CSP, Probabilistic CSP, Weighted CSP and Partial

CSP. In addition, constraint hierarchy is used to solve an over-constrained CSP.

Constraints can be specified with hierarchical preference. Solutions will satisfy mostly

preferred constraints (Bartak 1998).

Two methods frequently used to solve an over-constrained CSP to find the best camera

position in computer games are based on constraint hierarchy and constraint weighting.

In the first method, constraints are classified as hard and soft. At first, all hard constraints

are satisfied. Then as many soft constraints as possible are satisfied without violating any

hard constraint. In the second method, constraints are given weights and the solver

calculates a trade off between constraint violations to find an optimal solution (Bourne

and Sattar 2006).

As stated earlier, constraint solvers can be classified as complete or incomplete. An

algorithm is complete if every solution of the problem is found by it. Incomplete

19

algorithms may miss some or all of the solutions. Most variants of local search solution

algorithms are incomplete. In lieu of completeness, these algorithms may achieve real

time performance.

Russell and Norvig (2002) use the state space landscape shown in fig. 4 to explain local

search algorithms. Search location in a landscape is determined by the current state. Cost

or objective function is represented as elevation of the landscape. The aim is to find a

global minimum or maximum based on whether elevation corresponds to cost or object

function. A solution search may get stuck in locations such as shoulder, flat local

maximum, local maximum or local minimum.

Figure 4: State Space Landscape.
(Ref: fig. 4.10; pp. I l l of Russell and Norvig 2002)

Local search CSP solving techniques use complete-state formulation. Here, every state is

a complete assignment which may or may not be a solution. The next assignment is

derived by changing the value of one variable at a time. Most of the local search methods

use a min-conflict heuristic to choose a new value. Using the heuristic, the million-queen

problem was solved in approximately 50 steps. It was also successfully applied to reduce

20

estimation time from three weeks to ten minutes to schedule observation of the Hubble

Space Telescope for one week (Russell and Norvig 2002).

Finally, the features of an individual CSP can be exploited to arrive at solutions

efficiently using specialized techniques. The structure of the CSP formulation helps to

derive specific solver algorithms. The characteristics of a CSP such as number of

solutions required, problem size, type of variables and constraints, structure of the

constraint graph, tightness of a problem, required quality of solutions, and need of partial

solutions should be considered when choosing a CSP solving technique (Tsang 1993).

2.3 Virtual Camera and Graphics Pipeline

In this section, we will discuss the placement of a virtual camera in a 3D world. We will

also discuss available camera control parameters in the process of displaying 3D scene

objects on a display window as 2D images. The control techniques of a virtual camera

will be discussed mostly in the context of the OpenGL graphics pipeline shown in fig 5.

A graphics pipeline depicts a journey of a point from a scene of a 3D virtual world where

it is modeled as a vertex to a display window. The point on the display window is defined

as a pixel, i.e., picture element of a 2D image. In this process, a point undergoes four

transformations, model, view, projection and viewport. All the transformations can be

represented by matrices.

21

Viewport
Transformation

Lw I eye clip normalized device window

J coordinates coordinates coordinates coordinates

object

coordinates

Figure 5: OpenGL Graphics Pipeline.
(Ref: fig 3-2; chapter 3 of Neider, Davis and Woo 1994)

A natural scene is composed of a set of complex objects such as a tree, forest, mountain,

river, sea, fish, bird, human, building, road, bridge, and car. There is an infinite variety of

objects of different size, shape, and colour. Hence, modeling a 3D scene using these

complex objects is neither convenient nor intuitive. However, all complex objects can be

modeled using a small set of constructs such as points, lines and polygons. These

building blocks of the objects are known as output primitives (Boufama 2007). On the

other hand, the basic building block of OpenGL is vertex. All the output primitives in

OpenGL are defined by using vertices. A vertex can be described in a 3D homogenous

coordinate system using four coordinates.

Usually, objects are defined in their own local coordinate frames. The orthogonal basis

vectors of a local coordinate frame for an object are defined for easy identification and

placement of parts of the object. Thus, the local coordinate frame of each object is

different. Moreover, an object can be constructed using multiple parts with their own

local coordinate frames. This is done especially to control independent movements of the

Modelview
Matrix

x

y
z

22

individual parts of an object. In this case, a part of the object can be described relative to

another part of the object using appropriate transformations, and the complete object is

defined by a hierarchy of transformation usually with a particular coordinate frame as the

root of the tree (Verth and Bishop 2004).

2.3.1 Three Basic Transformations

The Cartesian coordinate frame in 3D consists of a standard origin (0, 0, 0) and a 3D

vector space with the standard basis vectors {ei, ti, ti). The basis vectors are also

represented by {i, j , k} where

i = ei = (l ,0 ,0)

j = e2 = (0,1,0)

k = e3 = (0,0,1)

We can express a vector v of the vector space using the basis vectors as

v = vxi + vyj + vzk

The location of point P with respect to the origin of the coordinate frame will become

P = pxi + pyj + pzk

Now, we will derive translation, rotation and scaling transformation matrices for a point

defined in the coordinate frame. At first, we will consider the translation of a point shown

in fig. 6. Point P is translated by a vector t to point Q. We have

Q = P + t

= (pxi + pyj + pzk) + (txi + tyj + tzk)

= (Px + tx)i + (py+ ty)j + (pz+ tz)k

23

Figure 6: Translation of a Point.

Point Q can also be expressed with respect to the origin of the coordinate frame as

Q = qxi + qyj + qzk

By equating terms of Q we have

qx = px + tx

qy = Py + ty

qz = Pz + tz

We can write the above equation in matrix notation in homogonous coordinates as

'O '

<S J

i o o trYP^
o i o ty

o o l tz

0 0 0 1

Py

Pz

The translation transformation matrix in homogonous coordinates is

' 1 0 0 O
0 1 0 r,
0 0 1 tz

0 0 0 1

T =

vv j

24

The OpenGL function 'glTranslate()' can be used to translate a point of an object. The

function creates a translation transformation matrix. Its three arguments will define the

translation in their respective axes, i.e., values of tx, ty, and tz.

Next, we will consider the rotation of a point. In a pure rotation, a point will be rotated in

a 2D plan using the origin of the current frame as the centre of rotation. There are three

such planes in 3D. Let us consider a point P in xy-plane. We will rotate P using the origin

of the frame and the z-axis as the centre and the axis of rotation, respectively. Let the line

between the origin and P make an angle 9 with the x-axis as shown in fig. 7. P is rotated

to point Q by an angle </> counter clockwise around the z-axis.

Y
J

Py

k

.

Q

/ \
/ 1

/ 1
/ 1

1 p
1
1
1
1 •

qx Px

Figure 7: Rotation of a Point.

Let the distance of P and Q from the origin be r. We have

qx = r cos(9 + $)

qy = r sin(0 + </>)

By expansion of cos and sin terms, we have

qx = r cos 9 cos ^ - r sin 0 sin </>

X

25

qy = r cos 9 sin <f> + r sin 9 cos <j>

Since r cos 9 = p x , r sin 0 = py, and qz = pz, we have

qx = px cos ^ - py sin </>

qy = px sin <j> + py cos <j>

We can write the above equations in matrix notation as

qy

^cos <j> - sin ̂ 0Ypx ^

sin <f> cos <f> 9

The rotation transformation matrix around z-axis is

R7

^cos <l> - sin ̂ 0^

sin (f> cos <j> 0

V 0 0 1

Similarly, we can derive rotation transformation matrices around y-axis and x-axis as

Rv

^ cos^ 0 s i n ^

0 1 0

v
• sin <j) 0 cos (f>

and Rx =

1 0 9

9 cos ̂ - sin 0

0 sin ̂ cos </>

Now, we can derive a general rotation transformation matrix R around all the three axes

by applying rotation around each axis one by one as done in Verth and Bishop (2004).

The angles^, <j)y and <j)z are from transformations Rx, Ry, and Rz, respectively. We have

R = Rx Ry Rz

cos ̂ cos <j>z - cos <j)y sin ̂ z s i n <j>y

s i n </>x s i n <f>y c o s ^z + c o s </>x s i n <f>z - s i n 0X sin<f>y sin(/>z + c o s </>x cos<j)z - s i n </>x c o s <f>y

- cos ̂ sin <f)y cos ̂ z + sin ̂ sin 0Z cos ̂ sin ̂ sin </>z + sin ^. cos ̂ z cos ̂ cos <f>y .

26

r2\ r22 r23

\r3\ r32 3̂3 J

We can express the rotation transformation matrix in homogonous coordinates as

R =

V

rn rn rn "
r21 r22 r23 ^

ri\ T12 r33 "

0 0 0 1

The OpenGL function 'glRotate()' can be used to rotate a point of an object. The function

creates a rotation transformation matrix. It will take the degree of rotation, i.e., value of

</> as its first argument. The remaining three arguments will define an axis of rotation.

Rotation around an arbitrary axis and a centre of rotation is also possible. The vector

between the point and the centre of rotation is decomposed into component vectors that

are parallel and perpendicular to the axis of rotation. The parallel component vector will

remain the same during rotation. The perpendicular component vector will be rotated

around the axis of rotation by the desired angle of rotation. In this case, the point will

move in a plane perpendicular to the axis of rotation. Then the parallel component and

the rotated perpendicular component vectors are added to find the vector between the

centre of rotation and the rotated point. For mathematical derivation of rotation around an

arbitrary axis and a centre of rotation, readers are directed to Verth and Bishop (2004).

Finally, let us consider scaling of a point P at (px, py, pz). After scaling by (a, b, c) the

point will become Q at (qx, qy, qz). We have

27

q x =ap x

q y =bp y

q z =cp 2

We can write the above equations in matrix notation as

qy =

'a 0 0N

0 b 0

v° 0 C,
Py

The scaling transformation matrix is

fa
0

,o

0

6

0

°]
0

c ,

We can express the scaling transformation matrix in homogonous coordinates as

(a 0 0 0~)

0 b 0 0
S =

V

0 0 c 0

0 0 0 1

Scaling of all points on the surface of an object will change the shape of the object.

Application of the above scaling transformation with different values of a, b, and c will

change the shape of the object differently in each coordinate axis. To change the shape of

the object similarly in each coordinate axis, i.e., to keep the shape of the object the same,

values of a, b and c should be equal. The OpenGL function 'glScale()' can be used to

scale a point of an object. The function creates a scaling transformation matrix. Its three

arguments will define the scale factors in their respective axes, i.e., values of a, b and c.

28

2.3.2 Model Transformation

The ModelView matrix in OpenGL graphics pipeline shown in fig. 5 represents two

transformations, model and view. The transformations are represented by two 4x4

matrices. We derive a model transformation matrix in this sub-section. The view

transformation is covered in the next sub-section.

Model transformation is a local-to-world transformation. After the model transformation,

all the objects in the 3D scene will be described in a common coordinate frame known as

the world coordinate frame. The OpenGL world coordinate frame is shown in fig. 8. It is

a 3D coordinate frame. Thus, model transformation is a 3D to 3D transformation. The

model transformation is an affine transformation.

Y

•> X

Figure 8: OpenGL World Coordination Frame.

All the objects are placed in their intended position in the 3D world using their individual

local-to-world transformation. For a hierarchically defined object, the local-to-world

transformation will be described as a series of transformations. A local-to-world

29

transformation with or without hierarchy consists of any combination of scaling, rotation

and translation.

The model transformation can be described in terms of translation, rotation, and scaling

transformation as

M local->world = TRS.

2.3.3 View Transformation

View transformation is a world-to-camera transformation. After the view transformation,

all the objects in the 3D scene will be described in the eye or camera coordinate frame. It

is a 3D coordinate frame. Thus, view transformation is also 3D to 3D transformation. It

consists of rotation and translation. It is a Euclidian transformation.

Now, we construct a view transformation matrix as done in Boufama (2007). P and Q are

representing the same point defined in the world coordinate frame at (X, Y, Z) and in the

camera coordinate frame at (x, y, z), respectively. The points are related by rotation and

translation as

^

y ri\ rn rn

\rn r32 r33 J

Y +

^

*.J

The above equation in homogonous coordinates is

fx\ (r r r t \ (X^
x '\\ '12 '13 lx -^

y
z

V

r21 r22 r23 *y

r31 r32 r33 *z

0 0 0 1

Y

Z

30

The view transformation matrix is

world->camera

(r
Ml

, 0

M2

hi

0

13
r23

1 » 3

0

'*]

I J

In OpenGL, the default camera position or eye point or viewpoint is at the origin of the

world coordinate frame. The camera, by default, is oriented toward the negative z-axis of

the world coordinate frame. In other words, the eye or camera coordinate frame is the

same as the world coordinate frame. The objects positioned on the negative z-axis of the

eye or camera coordinate frame will be displayed at the centre of the display window or

viewport.

Camera position and camera orientation are two main camera control parameters. These

parameters can be changed arbitrarily anytime using rotation and translation. In OpenGL,

we can again use the 'glTranslate()' and 'glRotate()' functions to change the camera

position and the camera orientation. Changing the parameters is equivalent to moving and

orienting the camera physically in the real world. It defines a new eye or camera

coordinate frame. The new camera position defines the origin of the new frame. The

negative z-axis of the new frame will be aligned with the camera optical axis.

The 'gluLookAt()' function, defined in the OpenGL utility library, is a more convenient

function to change the current camera position and to define a new line of sight (Neider,

Davis and Woo 1994). The function will take a new camera position, a look at object

31

position, and an up vector as arguments. With the function call, a new camera coordinate

frame consists of normalized orthogonal basis vectors will be defined from the three

arguments. The origin of the new frame will be at the new camera position. The camera

will be oriented toward the negative z-axis of the new frame which is aligned with the

look at vector between the camera position and the look at object position. Because the

objects positioned on the negative z-axis of the camera coordinate frame will be

displayed at the centre of the display window, any object can be displayed at the centre or

at any position relative to the centre of the display window by changing the 'look at'

direction of the camera.

Now, we will derive three orthonormal basis vectors u, v and n representing x-axis, y-

axis and z-axis of an eye coordinate frame respectively from a look at vector and an up

vector as done in Drucker (1994). Let the look at vector be Vi00kAt> the up vector be Vup,

and n be the negative of the normalized vector of Vi00kAt. In other words, the look at

vector ViookAt will align with the negative z-axis of the eye coordinate frame as in

OpenGL. Let the projection of Vup on n be V|| and the component of Vup perpendicular to

n be VL. We have

V l l = l ^ F n = (V u p # n) n

VL = V„P-V||

v = ^
|V L |

u = v x n

32

The Gram-Schmidt Orthogonalization is another method of defining orthonormal basis

vectors from non-orthonormal basis vectors (Verth and Bishop 2004).

We can also calculate an eye or camera coordinate frame from a camera position and

three Euler angles. The Euler angles are pitch, yaw and roll. They are also known as

azimuth, elevation and roll. Pitch, yaw and roll are rotations around x-axis, y-axis, and z-

axis respectively.

In the first person perspective camera, the camera position is fixed relative to the player

character and the look at vector is along the line between the camera and the object of

interest. In the second person perspective camera, the camera position is fixed relative to

an antagonist of the player character and the look at vector is along the line between the

camera and the player character. In the third person perspective camera, the camera

position can be at any arbitrary point in the 3D world and the look at vector is along the

line between the camera position and the objects of interest.

We can implement basic cinematic camera movement by rotation and translation. The

tilt, pan and roll camera movements can be achieved by rotation of the camera around x-

axis, y-axis and z-axis of the world coordinate frame, respectively. On the other hand, the

dolly, crane and truck camera movement can be achieved by the translation of the camera

position along x-axis, y-axis and z-axis of the world coordinate frame, respectively.

33

By changing the arguments of the 'gluLookAt()' function, we can place the camera in

any of the positions or orientations shown in fig. 9 to implement various cinematic shots.

We discuss fully the various methods of camera placement at the desired position and

orientation by the constraint and non-constraint based camera control systems in the next

two sections.

x

i - - - k

V
AjKTX

Figure 9: Camera Placement Relative to the Line of Interest.
(Ref: adapted from fig. 1 of Christianson et al. 1996 which is adapted from fig. 4.11 of Arijon 1976)

2.3.4 Projection Transformation

Before the projection, culling of the scene is done. The objects which lie completely

outside the view frustum are ignored for the rest of the transformations for the shot. A

view frustum is defined by six planes. The planes are determined by the type of

projection. The view frustum for a parallel projection has two pairs of parallel planes

defined by opposite sides of the view window, in addition to near and far view planes. On

the other hand, four planes of the view frustum for a perspective projection are defined by

two adjacent vertices of the view window and the view point. The remaining two planes

are near and far view planes. A view frustum or viewing volume for a perspective

projection is shown in fig. 10. An efficient culling method can use object bounding boxes

34

in different resolutions to test if an object is completely outside the viewing volume

(Verth and Bishop 2004).

After culling, the 3D objects inside the view frustum are projected to a 2D coordinate

frame using the Projection Matrix shown in fig. 5. Thus, this transformation is 3D to 2D.

The projection transformation is represented by a 3x4 matrix. It is a projective

transformation. There are four types of projection, namely, oblique-parallel,

orthographic-parallel, oblique-perspective, and perspective projections.

View or eye
point

Field of
view

X

Figure 10: View Frustum.

In parallel projection, the size of an object will remain the same irrespective of the

distance of the object from the view point. The centre of the projection is assumed at

infinity. The fixed size of an object creates odd views if used for a 3D scene such as in

computer games. But, keeping parallel lines parallel in the displayed image is important

for accurate measurement in blueprints and construction drawings. Thus, parallel

35

projection is used mainly in CAD/CAM (Verth and Bishop 2004). In OpenGL, we can

use the 'glOrtho()' function to implement orthographic-parallel projection.

Foreshortening is the characteristics of the perspective projection where an object appears

smaller as it retreats from the camera (Neider, Davis and Woo 1994). The perspective

projection is similar to our perceived view of the real world (Verth and Bishop 2004),

which is why perspective projections are mainly used in computer games to simulate real

world views. The working principle of perspective projection is similar to the working

principle of a camera in the physical world. However, to avoid inverted images of the

objects, the view plane is placed in front of the view point or centre of projection.

Now, we will construct a projection transformation matrix mostly based on the work of

Verth and Bishop (2004) without considering culling and clipping. For derivation of a

projection transformation with culling and clipping, readers are directed to Verth and

Bishop (2004).

Y-axis

1

Y

y

0 d Z

Projection plane

Figure 11: Perspective Projection.

36

Z-axis

In perspective projection, a 3D point P(X, Y, Z) is projected to the 2D point q(x, y) on the

view or projection plane having an aspect ratio a at a distance d from the view point. The

point q will be expressed in NDC frame having dimensions of all the axes in the [-1,1]

range.

Let us consider projection of P to q in yz-plane as shown in fig. 11. From the similar

triangles we have

y d

Similarly, considering projection in xz-plane and from the similar triangles we have

— = —

ax d

By rearranging the above equations we have

d X
x = •

a Z

y-d-

Putting X = 1/Z, the above equations can be written in homogenous coordinates in matrix

notation as

r.
^

y = A

- 0 0 0
a
0 d 0 0
0 0 1 0

Y

Z

v 1 /

All the points on the line from the view point or centre of projection through the point P

will be projected to the same point q on the projection plane. This fact is implied by the

37

presence of the scale factor A, in the above equation. In other words, A. is a scale for

equality in the projective space. We have projection transformation matrix as

camera->NDC

a
0

0
I

0

d

0

0

0

1

0

0

0
J

In OpenGL, 'glFrustum()' function can be used for projection. The function creates a

view frustum by defining the lower-left and upper-right corners of the near clipping

plane. Thus, four planes are defined by the adjacent corners of the near clipping plane

and the view point. The two remaining planes are the near clipping and the far clipping

planes. The far clipping plane is parallel to the near clipping plane and is at the specified

distance from the view point. This function can be used to implement both perspective

and oblique-perspective projections. The oblique-perspective projection can provide

dramatic and special effects of visualization.

Alternatively, we can use the OpenGL utility library function 'gluPerspective()' to

implement perspective projection. The function creates a symmetric perspective view

frustum. It is easy and intuitive to control the view frustum by calling the function. It

takes the angle between the upper and lower clipping planes known as FOV as its first

argument. The function also takes the ratio of width to height of the near plane of the

view frustum called aspect ratio, and the distances of the near and far clipping planes

from the view point as arguments.

38

Now, let us find an expression relating FOV 0 and the distance d between the centre of

the projection and the projection plane as shown in fig. 11. The angle between the

negative z-axis and the upper clipping plane will be —. The distance between the negative

z-axis and the top most projected point in the Normalized Device Coordinate (NDC)

frame is 1. We have

tan— = —
2 d

d = — = cot—
• 6 2

tan —
2

If we keep the height of the view plane constant as in NDC, any change of the FOV angle

will change the distance between the view plane and the view point. By changing the

FOV angle to large and small values, we can implement wide-angle and telephoto lenses,

respectively. Thus, different cinematic shot types, shown in fig. 12, can be implemented

by changing the FOV angle along with different camera positions and orientations.

s XJSJ close up

close shot

medium shot

% %£& long shot

Figure 12: Different Shot Types with their Cutoff Positions.
(Ref: fig. 2.4; pp 36 of Bourne 2006)

39

After projection transformation, clipping is done. All the outside portions of the edges of

the objects, which are partially inside the view volume, are clipped. During clipping,

OpenGL reconstructs the clipped polygon edges (Neider, Davis and Woo 1994).

In the Perspective Division phase of the OpenGL graphic pipeline, coordinate values of

the vertices are divided by 'w' to derive the coordinates of the vertices in the NDC frame

(Neider, Davis and Woo 1994).

2.3.5 Viewport Transformation

Now, we construct a viewport transformation matrix as done in Boufama (2007). The

viewport transformation makes a correspondence between the points transformed into the

NDC frame and the screen image pixels in the window coordinate frame (Neider, Davis

and Woo 1994), creating a 2D to 2D transformation. The viewport transformation is

represented by a 3x3 matrix. It is an affine transformation.

Let p(x, y, 1) and q(u, v, 1) represent the same point defined in a scene unit in the NDC

frame and in pixels in the window or viewport coordinate frame, respectively. In

OpenGL, the scene unit can be imagined in any unit such as ft, miles, mm, cm, m, and

km. Let us consider that the scene unit is given in mm. Now, we have to change the unit

of the coordinate values from mm to pixels using scaling. The scaling factors au and

av can be defined in terms of focal length in mm (/) , the number of pixels per mm along

the x-axis (Ku), and the number of pixels per mm along the y-axis (Kv) as

40

(*v=Mv

In addition, we have to consider the change of the origins of the frames. The origin of

NDC is located at the point of intersection of the camera optical axis with the view plane.

The origin of NDC will be mapped into the centre of the viewport. The origin of the

window or viewport coordinate frame is at the upper-left corner of the viewport. The

origin of NDC is located at the point («o, vo) in the window or viewport coordinate frame

where both «o and vo are in pixels. Thus, the coordinates of point p and q are related by

the equations

u = aux + u0

v = avy + v0

We can write the above equations in matrix notation in homogonous coordinates as

v
a.. 0

0 «v v0

0 0 1

VvA

y

The viewport transformation matrix is

^•NDC->viewport: 0 av v0

0 0 1 V

In openGL, viewport transformation is performed by calling the 'glViewportO' function.

The function uses x and y coordinates of a corner as well as the width and height of the

viewing window. To get a distortion-free projected image, the aspect ratio of the view

port should be equal to the aspect ratio of the view volume as defined in the projection

phase of the graphics pipeline (Neider, Davis and Woo 1994).

41

2.3.6 Overall Transformation Matrix and its Uses

Let us summarize the process of object transformation. At the beginning, all 3D scene

objects will be in their own local coordinate frames. They will be placed in the world

coordinate frame by the model transformation. The camera will also be placed in the

world coordinate frame by defining an eye coordinate frame relative to the world

coordinate frame. In fig. 13, vector t represents distance and relative orientation between

the world and the eye coordinate frames. After the view transformation, all 3D scene

objects will be in the eye coordinate frame. After the projection transformation, all 3D

scene objects will become 2D objects in the NDC frame. Finally, the objects will become

2D images after the viewport transformation. The image will be in the window coordinate

frame. The relationship between the various coordinate frames is shown in fig. 13.

Eye
coordinate
frame

Window
coordinate
frame

X

World
2 coordinate

Figure 13: Relation between the Coordinate Frames.
(Adapted from fig. 1; pp. 4; chap. 3 of the slides for 60-551 of Boufama 2007)

42

Now, let us consider the application of model, view, projection and viewport

transformation to a point P(X, Y, Z, 1) defined in its local coordinate frame, in that order.

The point P(X, Y, Z, 1) will be converted to the image point q(u, v, 1) defined in pixels in

the window coordinate frame by the transformations. We have

Y
' w *

v l y

: ^ A i NDC->viewport "camera->NDC » world->camera ™llocal->world

v i y
P u t t i n g M - ANDC->viewport Pcamera->NDC Vworld->camera MiOCal->world5 We h a v e

Y
^

V

\h
= XM

v i ;

q = MVIP

M is a 3x4 matrix representing four transformations of a point from 3D to 2D. In the

physical world, camera calibration is equivalent to finding the elements of M. M has 12

elements, 11 of which are independent.

Christie and Olivier (2006) derived another camera model and over-all transformation

matrix consisting of translation of camera position, rotation on the Euler angles, and

projection. They observed that the relationship between the 3D and 2D coordinates of a

point is highly non-linear. Thus, it is difficult to invert the over-all transformation matrix.

In other words, it is difficult to find the 3D coordinates of a point from its known 2D

coordinates by inversion of the over-all transformation matrix. Fortunately, there are only

43

a few applications such as picking that require 3D coordinates of a point from its 2D

coordinates.

We can define an image declaratively by constraining the 2D image coordinates of

objects as done in many camera control systems such as in Jardillier and Languenou

(1998). In a 3D environment, the 3D coordinates of the static objects are known and the

3D coordinates of the dynamic objects are almost always known. If we can derive a

transformation matrix M from known 3D and 2D coordinates, the 2D image constraints

can be satisfied by using it for projection.

Now, we will outline a solution technique to calculate the elements of M from known 3D

and 2D coordinates as done in Boufama (2007). By using the elements of matrix M, we

can write the equation q = X MP as

(\{X^
mn mn w13 mu |

^

Kb

m2\ mTL m23 mU

vw31 m32 w33 m^j

Y

Z

O;

The values of u and v can be calculated as

mnX + mnY + mnZ + mH

mnX + m32Y + m^Z + mM

m2XX + m22Y + m2iZ + m24

m3lX + m32Y + m3iZ + mM

We have the following linear equations by rearranging the above equations

mnX + muY + mnZ + mu -umnX-um32Y-um33Z-um^ =0

m-^X + m„Y + m,,Z + m-,, - vm,,X -vm^Y - vm-,?Z -vm-,, = 0 '21 '22 '23 '24 3V '32 J i 3 3 / '34

44

Assuming both the 2D image coordinates and the 3D scene coordinates of a point are

known, the 3D coordinates of a point P{ and the corresponding 2D coordinates of the

point q\ provide us with two equations. For n points, we have a set of 2n equations. We

need at least six points defined both in 3D and 2D to find the values of the elements of

M. We can write the linear equations in matrix notation as

Yi
0

Y2

0

y.

0

Zl
0

z2
0

zn
0

1

0

1

0

1

0

0

*x

0

x2

0

xn

0

Yx
0

Y2

0

Yn

0

Zi

0

z2

0

zn

0

1

0

1

0

1

-uxXx

-vxXx

~ U2X.2

-v2X2

~KXn

-vnxn

-u,Yx

~\YX

— U2i2

-v2Y2

-unYn

-v Y
n n

-uxZx

-vxZx

lAyZw)

- v 2 Z 2

-unZn

-v„Z„

-ux^

- V !

-u2

~V2

- « »

" V « >

'V
mx2

mu

mu

m2X

m22

m24

m3X

m3i

, ^ 3 4 J

The above equation becomes AV = 0. Numerical methods such as the singular value

decomposition (SVD) technique can be used to solve the above equation.

Once elements mu, mu, mu, ..., m^ of V are calculated, a 3x4 matrix M can be

constructed easily, allowing M to be used to project the 3D objects to the desired location

in a 2D image.

45

2.4 Camera Control Systems

The desired camera position can be described mathematically. Let a target be at the origin

of a Cartesian coordinate frame. The desired camera position can be described relative to

the target in a 3D spherical coordinate as done in Stone (2004) using a vector (p, 0, ^) ,

where p is the distance to the origin, 0 is the counter-clockwise rotation angle around the

y-axis starting from the z-axis, and </> is the signed rotation angle from xz-plane. A

camera position in a spherical coordinate is shown in Fig. 14. The corresponding

coordinates of the camera position in a Cartesian frame are

x = p cos ^ sin 0

y - p sin <j)

z = p cos <f> cos 0

•u. .

Figure 14: Camera Position in Spherical Coordinate.
(Adapted from fig. 4.1.1; pp 304 of Stone 2004)

In a dynamic environment, the target position is not fixed at any single point. If we add

the coordinates of the current target position to the initial camera coordinates, i.e., x, y,

46

and z calculated above, we will get a new camera position. The new camera position will

maintain displacement defined by the vector (p, 0, </>) relative to the target.

Variation to the camera control scheme can be implemented easily. The angle 9 can be a

counter-clockwise rotation angle around the y-axis starting from the target facing. The

desired relative camera height of a camera can be used instead of <f> (Bourne 2006).

Direct mathematical methods are the simplest ways to describe a desired camera position.

Direct mathematical methods depend on other methods such as spring systems to handle

acceleration and deceleration during camera movements (Treglia 2000).

Blinn (1988) uses vector algebra to define camera positions to make space movies. Given

the image coordinates of a spacecraft (x/, yj) and a planet (xfl, ya), as well as the distance

between the spacecraft and the eye point d in world space, the camera control problem is

defined so as to find the displacement vector D of the eye point from the spacecraft and

the look at vector T. The world space and the corresponding view space are shown in fig.

15a and fig. 15b respectively.

Now, we will drive equations of T and D as outlined in Blinn (1988). All the vectors used

in this derivation are row vectors. Let the FOV angle be </>. The view plan will be at

-cot— from the eye point. Thus, z-coordinates of all the points on the view plane

are-cot—.
2

47

Figure 15: The World and the View Spaces.
(Ref: fig. 1; pp. 78 of Blinn 1988)

At the beginning, we will derive equations of the displacement vector E of the eye point

from the spacecraft and a normalized vector H showing direction from eye point to the

planet. Vectors E and H are in view space. The vector from the eye point to the

spacecraft location point on the view plane is (x/, y/t - cot—). We will normalize the

vector and multiply by -dto find the value of E. The vector from the eye point to the

planet location point on the view plane is (xa, ya, ~ cot—). We will normalize the vector

to find the value of H. We have

E =
-d x f -dyf

dcot *

x2
f+y2

f+cot2^ Jx) + yj+ cot2£ ^x) +y) + c o t 2 |

H = ya

•cot 1 -
2

X2a+y2a+™t2^ fa+ya+™t2^ ^ X 8
2 + ^ 2 + C O t 2 |

48

We then derive the equation of the vector from the spacecraft to the planet R in view

space. The corresponding vector from the spacecraft to the planet Q in world space is

known. We have |E| = d and |H| = 1. From fig. 16b we have

-E.H = |-E||H| cos 6 = |E||H| cos 0 = d cos 9

Figure 16: Triangles in the World and the View Spaces.
(Ref: fig. 2; pp. 81 of Blinn 1988)

Using law of cosine in the world space triangle in fig. 16a,

q2 = a2 +d2 -ladcosO

a2 - 2 d cos<9 a + d2 - q2 = 0

a = d cos9 + ^J(d cos0)2 -d2 +q2

Putting value of d cos 0,

a = -(E.H) ± ^(E.H)2-d2+q2

Thus, we have

R = E + aH

Now, we will derive the equation for the up vector V in view space. The corresponding

up vector U in world space is known. Both are unit vectors. The x-coordinate of V is zero

49

i.e. Vx = 0. We need to calculate two more coordinates of V, i.e., F>,and Vz, only. From the

dot product constancy across the coordinate frames, we have

V.R = U.Q

The equation in terms of axes coordinates becomes

VyRy + VZRZ = U.Q

VZRZ = U.Q - VyRy

From the dot product of a unit vector, V. V = 1. The equation in terms of axes coordinates

becomes

Vy2 +VZ
2=\

Multiplying both sides of the equation by R2 and putting the value of VZRZ, we have

Vy2'RZ
2+ (U.Q- VyRyf =R/

(Ry
2 + R2) V2-2(U.Q)Ry Vy + (U.Q)2-R z

2=0

By solving the quadratic equation, we have

_(V.Q)Ry±R^R2
y+R2-(V.Q)2

R2
y+R2

Similarly,

K+R2

Now, we will derive the equation for the look at vector T in world space. To calculate T,

we can express T as a linear combination of Q, U, and a cross product of Q and U. Then

we have to find the values of a, p, and y.

T = aQ + (3U + y(QxU)

50

Before finding the values of a, P, and y, let us simplify (QxU).(QxU) using vector

identities. Assuming QxU = W is the first vector of the dot product, we have

(QxU).(QxU) = W.(QxU) = Q.(UxW) = U.(WxQ)

= U.[(QxU)xQ] putting W = QxU back

= U.[(Q.Q)U - (U.Q)Q)] = (Q.Q) (U.U) - (U.Q)2

= (Q.Q)-(U.Q)2

Assuming A = (Q.Q) - (U.Q)2, we have

(QxU).(QxU) = A

Now, let us calculate the values of a, P, and y. The view direction vector L in view space

is known.

L = (0,0,-1)

From the dot product constancy across the coordinate frames, we have

V.L = U.T

Putting U.U = 1 and the values of V, L, and T in the above equation, we have, in terms of

axes coordinates,

-F z = a(U.Q) + P

P = - F z - a (U . Q)

Again, from the dot product constancy across the coordinate frames, we have

R.L = Q.T

Putting the values of R, L, and T in the above equation, we have, in terms of axes

coordinates,

- & = a(Q.Q) + P(U.Q)

51

Putting the value of P in the above equation, we have

-Rz = a (Q.Q) -Vz (U.Q) - a (U.Q)2

a[Q.Q-(U.Q) 2]=- i? r+F r (U.Q)

Since A = Q.Q - (U.Q)2, we have

<x = H? z+F z (U.Q)] /A

Putting the value of a in the equation of p and simplifying the equation, we have

P = [-Fz(Q.Q) + *z(U.Q)]/A

Again, from the dot product constancy across the coordinate frames, we have

(RxV).L = (QxU).T

Putting the values of L, T, and (QxU).(QxU) in the above equation, we have, in terms of

axes coordinates,

- i ? ^ = y(QxU).(QxU)

y = -RxVy/A

Now, we will derive the 3x3 transformation matrix M using T and U. Let M = (Mn, MJ2,

M13). Since M represents pure rotation, the inverse of M is equal to the transpose of M. It

transforms T and U in world space to L and V in view space, respectively.

TM = L

UM = V

Post multiplying both sides of the equations by MT, we have

T = LMT

U = VMT

Putting value of L in the equation of T, we have

52

T = (0,0,-1)MT = -M i3

Mi3 = -T

Putting the value of V in the equation of U, we have

U = (0, Vy, VZ)MT = Vy Mi2 + Vz Mi3

Putting the values of Mi3 and rearranging terms, we have

U + VT
Mi2 =

Vy

From the dot product constancy across the coordinate frames, we have

L.V = T.U

Putting the values of L and V in the above equation, we have, in terms of axes

coordinates,

(0,0,-l).(0,Vy ,Vz) = T.U

Vz = T.U = -U .T

Putting values of Vz in the equation of Mi2, we have

U-(U.T)T
Mi2:

v>

From the cross product of Mi2 and Mi3, we have

U x T
Mil = M i2 x M i3 = -

V>

Finally, we will calculate D. We can transform D to E by using M.

DM = E

Post multiplying both the sides of the equation by MT, we have

D = EMT

53

Wane and Osborne (1990) propose three metaphors for camera control and exploration of

the virtual environment using input devices having six DOFs. The metaphors are 'eyeball

in hand', 'scene at hand', and 'flying vehicle control'. In the 'eyeball in hand' metaphor,

the view point can be moved around in a 3D world. A 2D image contains only those

objects which are visible from the view point. In the 'scene at hand' metaphor, translation

and rotation of the control device will generate the corresponding translation and rotation

of the 3D world. The 'flying vehicle control' metaphor allows the user to fly the view

point through the 3D world. The camera control system using metaphors is one of the

early high-level camera control systems in the 3D environment.

He, Cohen and Salesin (1996) propose a camera control system that consists of a real

time application, a camera control system called Virtual Cinematographer (VC), and a

renderer. The components of the VC are grouped into two sets: idioms and camera

modules. Idioms represent cinematographic knowledge and expertise. Each idiom will

capture a particular type of scene by selecting the appropriate shots and by controlling

transition timing between shots. An idiom is represented as a finite state machine. Finite

state machines are organized hierarchically with more generic idioms at higher levels.

Thus, in the case of any unforeseen events, an idiom will return control to a more general

idiom. A camera module will handle camera placement geometrically based on the type

of shot and number of actors. It can also make minor changes to actor positions for better

effect. A camera module can be utilized by any idiom. Sixteen camera modules are

implemented. At each time tick, the game application will send the VC a description of

events which are significant to the protagonist. The VC uses the events along with the

54

existing state of animation at that point of time to produce a camera specification for the

time tick, sending the specification to the renderer. At the same time tick, the game

application supplies the renderer with animation parameters and a description of the

current application. To display game contents, the renderer uses the information from

both the game application and the VC for the same time tick. The system is tested with an

interactive game called 'virtual party', played by multiple players over a network and in

real-time performance.

Halper and Olivier (2000) propose a camera planning agent called CAMPLAN for

camera placement to capture a shot with some predefined set of visual properties. Image

properties of an object in the scene can be defined by its position, size, visibility or

orientation with respect to viewplane, viewport and viewpoint of the camera, either

relatively or absolutely. A set of functions to define image properties declaratively are

classified and implemented. Once a user of the system selects the shot properties,

COMPLAN utilizes a genetic algorithm to find a camera placement that maximizes the

selected shot properties.

Hornung, Lakemeyer and Trogemann (2003) formalize the dramaturgical means of

expression of the movie camera system to be applied in interactive narratives, and

identify a set of basic dramaturgical principles. The formalization is implemented in a

camera agent. In the camera agent, a neural network called perceptron is used to choose

the appropriate camera shots for a given situation within the current narrative context. A

story is represented within the camera agent as narrative events in such a way that a

55

narrative event corresponds to a single story event. The narrative application sends

information regarding its states as narrative events to the camera agent. The system uses

eight parameters of events to communicate information about the states of a story

between the narrative application and the camera agent. After receiving an event, the

camera agent re-computes its internal representation of the narrative based on the events

received so far. Then, the camera agent selects an event as the active one for visualization

based on the history of the narrative, coherence between the events, and event priority.

Next, the decision module of the camera agent selects matching shots from a user-defined

shot library to be added to a priority list of the active event. Finally, the action-realization

module of the camera agent selects a shot with the highest priority for the active event.

The module computes camera position and orientation per cinematic rule for the shot, and

transfers the information back to the narrative application for visualization. If a shot can

not be realized, the next matching shot will be considered for the active event.

Giors (2004) describes the camera control system of Full Spectrum Warrior (FSW). FSW

has several cameras. Each camera is derived from an abstract base class and is managed

by a camera manager. The main camera represents the primary user controlled view and

the fly-by system. Other cameras are used for cinematic, in-game events and playback.

The cinematic camera can move between preset positions in addition to movements of

the normal in-game view system. The camera system remains under the control of the

user all the time except at the beginning of a fly-by. FSW has an auto-look feature to look

around corners. This feature will handle occlusion using ray-casting from the camera

position. The basic Proportional Controller (PC) is a common camera motion control

56

system used in commercial computer games. While PC has nice arrival characteristics, it

is disadvantaged by abrupt exit characteristics and lag of current camera position behind

the moving targets. To solve this, Modified Proportional Controller (MPC) is used in

FSW. MPC controls exit characteristics by limiting acceleration and correcting lag by

considering the velocity of the target points. FSW uses camera cuts to avoid passing

through obstacles and whenever the destination is beyond a preset distance. The FSW has

one of the most advanced camera control systems among commercial games. Unique

solutions to several camera control problems were found, due to special attention given to

the issues related to implementation of the camera system during the development of

FSW. However, the FSW camera system is affected by more than 100 parameters which

pose a tuning problem for the designers and the programmers.

Christie et al. (2005) is a survey on camera control systems. The authors present an

overview of automated camera planning techniques, having structured the survey on the

expressivity of the set of properties and the characteristics of the solving mechanism.

Three levels of image properties are proposed. They are geometric, perceptual and

aesthetic. It is observed that the solution technique adopted by the approaches, constrains

both geometric abstraction and expressiveness. Christie and Olivier (2006) is an extended

survey on camera control systems in computer graphics.

57

2.5 Constraint Based Camera Control Systems

Badros (1998) is a survey of classes of constraints and their solution techniques used in

interactive graphical applications such as drawing, graph layout, visualization and

animation systems.

The constraints relevant to the geometric applications are identified as: 1) "linear

equalities", 2) "linear inequalities", 3) "linear geometric", 4) "geometric", 5) "geometric

in complex plane", 6) "geometric (on camera image)", 7) "point-on-object",

8) "coincident", 9) "arbitrary acyclic", 10) "Horizontal relationship between pairs of

points (HOR)", 11) "Vertical relationship between pairs of points (VER)", 12) "Parallel

relationship between pairs of line segments (PARA)", 13) "Congruence relationship

between pairs of line segments (CONG)", and 14) "Visual Organization Features

(VOFs)".

The constraint solving techniques are classified as: 1) "relaxation", 2) "numeric",

3) "iterative numeric", 4) "optimized iterative numeric", 5) "direct numeric (QOCA)",

6) "differential methods", 7) "symbolic", 8) "spring simulation", 9) "graph-layout, direct

& iterative", 10) "extreme-bound propagation", 11) "Degree of Freedom (DOF

analysis)", 12) "Constraint Logic Programming with Real arithmetic constraints

(CLP(R)-like)", 13) "Local Propagation (LP)", and 14) "LP w/o planning".

The constraints relevant to the geometric applications and their solving techniques are

shown in table 2. The author classified the constraint solving methods and compared their

58

expressiveness and performance. A visual classification of interactive constraint solvers

is shown in fig. 17. The author observes that 1) the constraints are used to keep the

relationship among the on-screen objects, 2) the constraints are used as a declarative

means to specify the relationship that the designers or users wish to hold true, 3) the

declarative specification of the desired relationship is the fundamental strength of using

constraints, and 4) the backtracking algorithm is not successfully used to find solutions in

the interactive graphical applications. The author claims that expansion of the classes of

constraints used in an application is a significant challenge because the classes of

constraints used by the application are restricted by its constraint solver.

Table 2: List of Constraints and Solvers in Interactive Graphical Applications.
(Ref: table 1; pp. 3 of Badros 1998)

I

!

!

1

System

Sketchpad

IDEAL

Juno

JlUB-2

Briar

Uuldmw

GCE

Chimera

ffcgiKUg

CILIDB

CGI.

TR1PA', IMAGE

1CQLA

EongulHs

TLCO

Animus

JIM, Parcon

Author (Year)

Sutherland (1083)

Von Wyfc (1083)

Nekrai p»8G)

H*?y<km and Nekon (ItIM)

Gfeldier and Witklii (UHttj

Helm et al. (1905)

Krsuu« (1»2)

Kurliuidsr (H»l)

latuasht * a], (1997)

Ryall et al. (1807)

Ho et al. (1B9B)

Takatiaslii et al. (1998)

Oster & Kusallk (l.»08)

Clmk fc Marriott (MOB)

Cilefcber Ik Wltklti (1992)

Daiaberg (1»87)

Gitebel et til. (1W6)

Constraints supported

j»otn«rfc

geometric in. complex plans

CONG. PARA, HOR, VER

CONG, PARA. HOR, VER

potots-ein-objeeMolneident

lititw (in)wni»litias

geometric

:g«yojrte't..rte

geometric

VOFs

liuo&r (in)e<"nialities

linear geometric

limmr inequalities

linear (iii)equalltto

geometric (oil camera im&ga)

arbitrary acyclic

tin&ar (iu^i i t s l i tk^ . geometric

Solvtajs t e c h n i q u e

IP, relaxation

LP w / o planning

tteratirff numeric

optimbKsl iter. num.

differential matliods

direct: numeric (QOCA)

DOF analysis

hytulxiie, numeric

a,P(R)-lite

spring sitmtlatton

iter nuuM*lt?

grapb-layout, direct &r iterative

esaremobound propagation

direct numeric (QOCA)

differential inetiiods

LP, rckxartou

iterativo numeric

Performance

0(»i),0(r,s)

0(»2)

0{»8)

0(» s)

0(» s)

0(u»), 0(«,s)

Q(ng), G(nlogn)

0{«P)

0(2")

polynomial

> 1 sec (tret? r. ~ 1 IS)

'•u^eds to be- i'awtor1

0(n + «)

tntfirmtve {n < TOO)

0(»"), mm-lnteraetlve

O(n), 0(na)

<,• .1 sec (» < 100)

59

One-way *-P
WQKWVUf

Arbitrary
domain

Numeric •«••••—*"••
only

.„..-«'*• Iterative *"""""—«.^
Physical'/-;

based I
Optimization

Mull-way LP {8!u«> Geometric
LFofDOF

fi#to«§sn GUO£

Dffltrentiai
Ifethod*

ruiKM$u <%tm

] Green
I SBIOJBW11

PUtpM

Indigo

OsspPurp:*

CLP{D)
tsaifs-jvlrci

..„ „„.,.....-...--"*

Figure 17: Classification of Interactive Constraint Solvers.
(Ref: fig. 1; pp. 10 of Badros 1998)

Gleicher and Witkin (1992) introduce a camera control system called 'Through-the-Lens

Camera Control'. This method enables users to manipulate a camera in a 3D world by

controlling and constraining features of the generated image. Camera parameters are not

used as camera control parameters (called controls) in this method. Thus, the camera

control system can be based on any underlying camera parameterization model. A

quaternion based camera model is implemented. Given time derivatives of the camera

control parameters, the time derivatives of the camera parameters will be calculated. The

problem of calculating time derivatives of the camera parameters is formulated as a

simple constraint optimization problem. After finding the solution of the constraint

60

optimization problem, the camera parameters, over time, are calculated by solving a

relevant first-order ordinary differential equation from initial values.

The CamDroid camera control system (Drucker and Zeltzer 1995) consists of a general

interpreter, a built in renderer, an object database, and a network of camera modules

along with application-specific processes/object interfaces and camera interfaces. To

solve the problems of devising a general procedure in a procedural framework for camera

control called CINEMA system described in Drucker, Galyean and Zeltzer (1992),

Drucker and Zeltzer formalize a constraint based framework. Drucker (1994) deals with

the formulation of a consistent framework for camera control across applications from

interactive domains classified as exploration, planning, rehearsal, and control using

constraint optimization techniques. They propose a design methodology for the

framework to control the camera in a 3D virtual environment. The framework is based on

the notion that a camera is controlled for particular reasons which can be represented as

constraints on the camera parameters. At first, the task requirements for a specific

environment are to be analyzed. Then, the camera modules are built with constraints

identified from the task requirements. A network of camera modules implements

branching conditions between the modules. A camera module consists of an initializer to

deal with the changing conditions in the environment over time, a controller to handle

user control, a list of constraints, and a local state vector to store camera parameters. The

active camera module handles all user inputs. Constraints or camera primitives can be

derived from diverse disciplines such as physical limitations of a camera, human factors,

cinematography, task performance, and interface design principles. The constraints can

61

be direct constraints on DOFs in relation to the environment, direct constraints on DOFs

in relation to a single object, constraints on derivatives of DOFs, projective constraints

based on projection of an object, constraints based on the entire environment, changing

constraints, and constraints based on another camera. The constraint list of a camera

module can be derived from any of the above mentioned constraints or a combination

thereof. A constraint solver finds the final camera parameters for a camera module by

satisfying all hard constraints and by optimizing object functions for soft constraints of

the module. The solver is implemented in the Feasible Sequential Quadratic

Programming coded in C (CFSQP). Five examples of camera frameworks are

implemented: a Mission Planner and a Visibility Assistant (Drucker 1994), a Virtual

Museum (Drucker 1994; Drucker and Zeltzer 1994), filming conversation between two

actors (Drucker 1994; Drucker and Zeltzer 1995), and a Virtual Football Game (Drucker

1994; Drucker and Zeltzer 1995). The authors claim that special constraints can be

designed and combined with other constraints by using their method for camera control.

Christianson et al. (1996) formalize a declarative language called Declarative Camera

Control Language (DCCL) to encode cinematographic idioms into camera control

systems to enhance story telling capabilities of interactive 3D computer graphics

applications. Four basic primitive concept or construct of DCCL are fragments, views,

placements, and endpoints. Constructs such as shots and idioms are defined by using the

primitive constructs. A Camera Planning System (CPS) is designed to codify idioms and

to implement the camera placements using idioms for simple movement sequences

involving one or two actors. CPS consists of a Sequence Planner, a DCCL Compiler, and

62

a Heuristic Evaluator. CPS uses an idiom database and a data structure called Film Tree,

which consists of the root (Film), internal nodes (Sequence, Scene, and Candidate

Idioms), and leaves (Candidate Frames). Input of CPS is trace from an interactive game.

CPS finds camera placements based on cinematic principles for a new film to be created

from the trace. The Sequence Planner divides the trace into sequences, with each

sequence being divided into scenes based on the activities performed in the sequence.

The DCCL compiler solves DCCL constraints and calculates camera movements. The

Heuristic Evaluator ranks the candidate shots and selects the best idioms for each scene

of the new film. The system is tested with a simple interactive game consisting of two

actors.

Bares, Gregoire and Lester (1998) propose a real-time camera visualization interface

system for dynamic 3D world called CONSTRAINTCAM, a real-time 3D camera

planning system. The system is extended in Bares and Lester (1999) with multi-shot

visualization capability. The proposed intelligent visualization interface uses a partial

constraint based framework. The main modules of the extended system are a Constraint

Analyzer, a Constraint Solver, and a Multi-Shot Frame Composer. The visualization goal

of a user is expressed as a constraint problem. Viewers can select which objects to view

and how, specify constraints for each object, and select cinematic style or pace, etc.

Given the viewing goal, the Constraint analyzer will determine a consistent region where

all the constraints will be satisfied. The Constraint Solver will search the consistent

region to find a camera placement that will satisfy all the constraints. If such a solution is

not possible, the Constraint Solver relaxes the pairs of weakest incompatible constraints

63

progressively from a generated incompatible constraints pair graph. If a solution is not

found, even after the constraint relaxation process, the problem is decomposed to find a

multi-shot solution, in which case, the Multi-Shot Frame Composer creates a sequential

or composite visualization solution. This method uses the hierarchical constraints solving

strategy (Christie et al. 2005). An example interaction, consisting of multiple

autonomous characters interacting in a dense cityscape, is implemented. The real-time

performance and results of an informal focus group study with viewers have been

reported as encouraging. The authors claim that by using constraints relaxation and

creating multi-shot solutions, the system can compute near-optimal solutions to difficult

problems.

Jardillier and Languenou (1998) propose a virtual cameraman to help graphic artists

create camera movements easily, while, at the same time relieving the artists from having

to understand the mathematical concepts underling the camera movements. The virtual

cameraman generates a set of camera movements in a dynamic environment which

satisfies the constraints, allowing the user to select a series of camera movements to

create a desired animation. The solution technique of the virtual cameraman is on a

global instead of a per-frame basis. It does not use key framing. The solution set is for the

complete animation. Users can define constraints either on the image space or on the

object of the scene, or on both. The constraints can be defined for any arbitrary duration

of animation because time is considered a variable. A global solving process computes a

solution set of camera movements which satisfies multiple constraints for the complete

animation. The constraint solver is based on interval arithmetic. It recursively evaluates

64

the current interval function on hyper-rectangles using tri-valued logic. If the evaluating

response for a hyper-rectangle is true, it is a solution and will be added to the solution set.

If the evaluating response for a hyper-rectangle is false, sub hyper-rectangles of the

hyper-rectangle will not be evaluated further. If the evaluating response for a hyper-

rectangle is unknown, the hyper-rectangle is subdivided into two sub hyper-rectangles

which will be similarly evaluated further. The authors claim that it is the first method that

can compute a complete set of camera positioning solutions.

Languenou et al. (1998) extend the method of Jardillier and Languenou (1998), by using

more sophisticated constraint solving techniques implemented using high-level

programming in a CLP language. Like a user of the first implementation in Jardillier and

Languenou (1998), a user of the second implementation will be able to define constraints

on the image space, on the objects of the scene, or on both. The authors use Declarative

Language with Interval Constraints (Declic) to utilize two solvers for enforcing hull-

consistency over primitive constraints, and box-consistency over global complex

constraints. The more sophisticated constraint solving techniques are employed to handle

non-linear constraints aroused from modeling camera movements and screen-space

constraints. Interval computation is used in the solver to avoid key-framing and

interpolation. An extension of the core local-consistency algorithm is used to process

universally quantified time constraints. Using the second implementation, satisfaction of

the specified constraints can be characterized precisely.

65

Amerson and Kime (2001) propose a real-time camera control system called Film Idiom

Language and Model (FILM) that uses cinematographic techniques and inputs from a

Narrative Planner to constraint camera location and orientation in a virtual world of the

interactive narratives. Cinematographic idioms will be defined as constraints to find an

appropriate camera placement for any shot. Due to the utilization of film idioms, the

camera position and movement conveys narrative information along with the events of

the narratives. But the exact flow of action will not be predefined in interactive

narratives. The user can substantially change the flow of action at any time. The flow of

action in the interactive narratives can only be predicted with a high degree of

uncertainty. Due to this uncertainty, an automated camera control system in an interactive

environment cannot utilize all the idioms of the cinematography. The film idioms are

encoded in scene level, a scene tree is constructed using FILM language, and a keyword

list is used to search the tree for shot selection. The Narrative Planner generates

information based on the actions carried out by the characters and the outcomes of these

actions. This information is translated by a domain specific Translator. A domain

independent Director uses the translated scene requirements to select a film idiom from

the scene tree. It bounds any unbounded variables in the scene to the virtual world

objects. These scene specifications, along with the constraints, are used by a graphics

engine specific Cinematographer to choose the best camera position to satisfy these

constraints. If the selected optimal position is not a valid position, constraints are relaxed

based on the weights defined in the scene specification using an ad hoc procedural model

to find a point closest to the optimal position which satisfies the remaining constraints.

The authors claim that, after implementation of the method, it will be able to select

66

abstract film idiom knowledge and convert that knowledge into virtual camera

placements.

Planning camera shots automatically in virtual 3D environments such that each shot will

communicate some specific visual message or goal is dealt with in Bares, Thainimit and

McDermott (2000). The authors propose a constraint weighting based camera planning

method for 3D virtual environments. A user or a software system requests the

visualization of subjects of interest and how they should be viewed. The view request

will be translated by a constraint script into a set of constraints. The constraint solver tries

to find a solution camera shot based on the given constraints. A solution contains values

for camera position, aim direction, up vector and FOV. It uses an exhaustive generate-

and-test method to determine the camera placement with the highest cumulative

constraint satisfaction rating. The cumulative constraint satisfaction rating is the weighted

sum of all individual constraint satisfactions measured as a product of relative priority

and satisfaction rating of the constraint. An example application for an over-the-shoulder

shot is implemented. The authors claim that the constraints can be used to create

cinematic camera shots and to communicate a specific visual message.

In an extended work of camera shot planning, Bares et al. (2000) propose a system

consisting of a graphical interface called the Storyboard Frame Editor and a recursive

heuristic constraint solver. The frames drawn on the Editor are automatically encoded

into a set of constraints. The Editor exports files in two forms of shot definition, namely,

the relative displacement definition and the constraint definition. The solver uses the

67

relative displacement definition for an instantaneous solution if configurations of scene

objects match with the 3D scene model of the Editor. Otherwise, the solver uses the

constraint definition and finds a solution using an exhaustive generation-and-test method.

At first, it finds a valid region for each constraint. Then, it examines candidate camera

shots by discretely incrementing camera parameters inside the respective valid regions.

Each camera placement is evaluated with the help of an individual constraint evaluation

function to find an individual constraint satisfaction rating. The cumulative constraint

satisfaction rating is the weighted sum of the individual constraint satisfaction ratings.

The search begins at a relatively coarse resolution to find pre-defined numbers of the best

candidate shots based on cumulative satisfaction ratings. The search space around the

best candidate shots are recursively searched with an increasingly refined resolution. If

no camera position is found which satisfies all the constraints, the solver reports failure.

Four example camera shots are implemented. The authors claim that the Storyboard

Frame Editor and the constraint solver, together, are tools to define how the virtual

camera should film objects of interest without worrying about the placement of the

camera.

Halper, Helbing and Strothotte (2001) use a predictive camera planning system which

obtains a balance between optimality of camera setting and smooth transition with

appropriate cuts. All shots in interactive applications are presented to the user

immediately without editing. Hence, to plan shots and transitions, the director module

should anticipate what is going to happen next. If a good camera position cannot be found

in the scene evolved up to that moment due to geometric constraint, a less satisfactory

68

camera position has to be used. The camera module of the method consists of a Director

and a Predictive Camera Planner. Based on past trajectory and acceleration, scene and

object states at a future time are calculated by the Planner. The current trajectory is

modified by the Planner so that the camera will be at the calculated position at the correct

time. It achieves frame coherence by computing a new camera state using existing

camera states. The camera position for the next frame is estimated along the path. Then it

requests the Director for setting for that future time. The events created by the action

module of the game pipeline are used by the Director to select templates from its Shot

Library with the help of its Template Selector. To fit successive shots together, various

transition rules are utilized to select templates. The Director selects constraints using the

templates from its Shot Template for the Constraint Solver of the Planner, and uses its

Emotion Template to influence the result of the camera shots. The Constraint Solver is

then applied by the Planner on the estimated position to find the camera state for the next

frame. An ad-hoc incremental solver has been used for constraint solution (Christie et al.

2005). The Constraint Solver finds a solution for the constraints in hierarchal order in

such a way that successive constraint solution influences previous solutions minimally.

Each constraint has an optimal setting, a tolerance region, and a relaxation parameter.

The relaxation parameter will determine how far the camera can be placed from the

optimal value. The camera is placed at the boarder of the tolerance region of a constraint

if it lies outside of the region. The system supports the seven constraints, namely, "Height

angle", "Level at", "Facing", "Angle to line of interest", "Size", "Visibility", and "Look

at". Constraints can be chosen in various combinations. An exploration template was

implemented using four constraints namely 'Level at', 'Size', 'Visibility', and 'Look at'.

69

With this constraint set, the camera should follow the character at its height and keep it in

constant view by avoiding obstructions. Three scenarios - a helicopter flying through a

city, a human exploring the inside of a medieval building, and a bee flying through a

highly cluttered attic - were explored using the template. The authors observed that the

camera performed remarkably well in all cases as it avoided obstructions and collisions,

and was able to adjust appropriately. They claim that their camera system is the first

frame coherent constraint based camera engine and produces a "nearest-best-fit" frame

coherent camera solution in real-time by considering future conditions.

A high level modeling approach to camera control is introduced in Christie, Languenou,

and Granvilliers (2002), and Christie and Languenou (2003) to find camera parameters to

ease the camera path creation and to give the user a declarative tool for animation

modeling following the approach of Jardillier and Languenou (1998). The hypertube

model to compute camera path for animation is used to avoid expensive computation,

camera movement restrictions, and poor interactivity. It provides a global control over the

camera path and fine control over the image. Each property of the desired image is

defined by a set of constraints over the camera parameters based on established

cinematographic techniques. To find a camera path to visualize shots, a dynamic system

using a complete search method based on interval filtering is used. A solution will satisfy

all the constraints. The paths are based on user-defined sequences of parameterized

elementary camera movements. These cinematic primitives are called hypertubes. The

hypertubes are defined for linear movement (traveling), rotation around the camera's

horizontal or vertical axes (panoramic), zoom-in, zoom-out, and arcing to turn around

70

objects. The hypertubes are connected by intertubes which are relations between two

successive hypertubes that guarantee continuity of camera movement. A hypertube with a

set of properties and duration is a Numeric CSP (NCSP). Each cinematographic property

is redefined as constraints on the hypertube variables. To model a shot, a user, like a

director of a film, provides properties like orientations or locations of the objects on the

screen as image and a sequence of elementary camera movements. Then interval

consistency and quantified constraint based solving algorithms will compute the

parameters of the hypertubes. The search algorithm combines constraint propagation and

enumeration to compute a solution of the global NCSP consisting of individual hypertube

NCSPs. The solver uses interval-based filtering to remove inconsistencies and isolate

inner boxes for each hypertube. It finds a solution based on optimization criteria from the

set of the isolated inner boxes of the given hypertube in order to determine starting

conditions for the next hypertube. It uses backtracking techniques to remove inconsistent

hypertubes. The test results are reported as very encouraging and, as a consequence, open

up the way for real-time application of the approach.

Benhamou et al. (2004) deal with finding an efficient solution of control and motion

planning problems which, in turn, will enable a graphic artist to specify the desired

camera movements for a shot using cinematographic idioms. The method is an extension

of Jardillier and Languenou (1998), and Languenou et al. (1998). The constraint solver

utilized interval arithmetic and local consistency enforcement based on sound numerical

methods to prune the search space. Each constraint is considered one by one along with

the sets of elements verifying all the constraints considered so far. During application of

71

the method to the camera control problems, the user defined descriptions for a shot are

translated into constraints in terms of camera parameters. The authors observe that the

efficiency of their method increased steadily with progressively higher precision.

Lin, Shih and Tsai (2004) present a constraint based event driven camera control system.

The camera movements are automatic, i.e., without any user manipulation, based on

cinematographic principles. The authors utilize a sequence of shots per cinematic

heuristics to capture a scene. The cinematic heuristics considered are 'do not cross the

line', 'avoid jump cut', 'use establishing shots', 'let the actor lead', and 'break

movement'. The camera modules are included to handle shots in 'fixed', 'track', 'pan',

'point of view', 'over the shoulder', 'close shot', 'gun fight', and 'close fight' situations.

The focus of the method is to improve game experience in a playable game by using

cinematic camera control. Like the system in He, Cohen and Salesin (1996), the event-

driven computer game system consists of a real-time application, a camera control

system, and a Tenderer. The two systems work similarly. The camera control system

consists of camera modules and descriptions of shots. A camera module represents a

cinematographic shot and solves the constraints defined by the shot. It handles camera

placement and transition based on user input, its constraint list, and parameters from the

application. The system has eight camera modules to handle any situation. A description

of shot is a sequence of shots. It represents a cinematographic scene and is a finite state

machine of camera modules. The descriptions of shots are organized hierarchically. If

frame coherence is required, the camera position and angle are interpolated. The

constraints and constraint solver used are the same as those used in Halper, Helbing and

72

Strothotte (2001). The authors claim that the camera control system can generate shots

automatically and arranges the shots to create a cinematic effect which is suitable for 3D

computer games.

Jhala and Young (2005) propose a camera planning system for narratives in virtual

environments where decisions are made in three levels: cinematic geometric composition,

camera parameter for information communication, and camera shots and transition to

maintain rhetoric coherence. As the narrative based virtual environment becomes more

complex, the need for effective communication of information increases. A user

perceives the virtual environment through a virtual camera. Thus, the camera can be

considered a powerful tool of communication for conveying events, mood of the scene,

pace or tempo of the underlying narrative, and the relationship between objects within the

virtual environment. The camera planning system is similar to the film production

pipeline. The film idioms are formalized to communicate effective information and

represented as plan operators. The representation of idioms has casual motivation and

hierarchy. It allows the system designer to rank candidate shot sequences. The story is

represented as a sequence of actions executed in the 3D world. The knowledge base of

the discourse camera planner consists of the sequence of actions executed in the 3D

world, and the annotations indicating the properties and characters of the story. The

planning system incrementally formulates plans by adding steps to the existing plan to

satisfy a goal state or a pre-condition of an existing action by the effect of the action, or

to refine an abstract action by expansion. It uses causal reasoning, temporal reasoning,

and decomposition during the addition of steps. A ranking function with user preference

73

then chooses the best plan. The discourse camera planner utilizes a library of hierarchical

plan operators to generate a camera directive sequence for specific types of action

sequences. The camera directives are translated into constraints. Then, a geometric

constraint solver, implemented in the underlying game engine, will find a camera

placement solution which satisfies the constraints. The authors observe that the approach

may not work at real time for large stories because it needs the story details for pre

planning the camera movement.

Bourne and Sattar (2005) deals with implementation of autonomous third-person

perspective camera control for computer games with manageable implementation

complexity and system usability. The authors use constraint weighting techniques with a

constraint set consisting of height, distance, orientation and frame coherence for a three

variable CSP. Each of the constraints, except the frame coherence constraint, has two

parameters. One is for the desired value, and another is for the weight of the constraint.

The weights indicate preferences among infeasible constraints, and are unique and

normalized. Different kinds of camera behaviors can be achieved by manipulating the

weights. The weights of the constraint set are referred to as the weighting profile. The

cost of a constraint is the weighted difference between its desired value and its current

potential solution value. The total cost of a solution for a camera position in a frame is the

sum of the costs for individual constraints except the frame coherence constraint. An

incomplete Stochastic Local Search technique is applied to find the lowest cost solution

for the constraints for a frame. The search method will make a pre-defined numbers of

moves and return the best solution found so far as the optimal solution. The frame

74

coherence constraint prevents camera movement if the cost improvement does not exceed

its desired value and act like a simple acceleration and deceleration mechanism. A meta-

level visibility constraint using ray casing from the target to the search domain is applied

to influence the underlying constraint solver for occlusion avoidance. The authors claim

that the gap between implementation and usability requirements can be significantly

reduced by this technique.

Bourne (2006) analyzes constraints used in various camera control methods. The

constraints may be named differently. The summary is shown in table 3. The author

models the camera control problem as a reactive over-constrained weighted CSP

problem. A constraint set defines a basic spatial relationship between the camera and the

target. Each constraint of the set has a weight and/or a desired value. The set of desired

values and weights is defined as the camera profile. The camera profile contains the

information needed to determine a state of the camera. The total cost of a solution for a

camera position in a frame is the sum of the costs for individual constraints. An efficient

constraint solver, called the Sliding Octree Solver, is developed by analyzing the problem

domain. The solver will search for an optimal camera position. A game called Dwarf is

developed to demonstrate the ability of the camera control system to address existing

camera control requirements of Interactive Digital Entertainment systems. Modification

of Unreal Tournament 2004 is also done to test the efficiency of the solver and to check

real-time performance capability of the camera control system in a commercial game

environment. The flexibility and extensibility of the CSP representation are demonstrated

by incorporating new capabilities such as frame coherence and occlusion avoidance.

75

Table 3: Common Constraints.
(Ref: table 2.1; pp. 27 of Bourne 2006)

Constraint

Size

Placement

Vantage Angle

Viewing Angle-

In View
Exclude
Depth Order

Occlusion

Description

The size of an object in the final image, usually specified as a
percentage of the screen.
The placement of an object in the final image, usually specified a«
left, right or centre.
The altitude to view the object from, sometimes represented as
height.
The angle to view the object from, usually determined with respect
to the facing direction of the object.
To ensure that a given object is within the camera view.
To ensure that, a given object is not within the camera view.
Specific depth ordering of two or more objects, where one must be
closer to the camera than the other.
Minimize (or avoid) the amount of occlusion of an object.

Bourne and Sattar (2006) present a method to implement a camera control system with

minimum development time. The constraint based camera control system can be used in

various situations with different behaviours. The behaviours can be extended by using

more constraints. The camera is controlled through a profile mechanism. By using the

profile mechanism, viewing properties and camera movement characteristics can be

defined separately.

Bourne, Sattar, and Goodwin (2007) describe the application of CSP solving techniques

in the design of a camera control system. The constraint solver of the camera system

utilizes the spatial structure of the problem to achieve real-time performance. New

capabilities can be added to the camera system by using new constraints. A simple game

to find lost treasure is developed to demonstrate how to add additional capability.

Extensions such as occlusion avoidance, multiple-target visualization, cinematography,

and replays are discussed.

76

2.6 Occlusion Detection Methods

Christie and Olivier (2006) describe occlusion detection methods in camera control

systems. The detection methods use the following detection techniques.

1) Ray casting.

2) Consistent region calculation.

3) Rendering the scene in a hardware stencil buffer.

4) Shadow volume based algorithms.

5) Sub-division of space related to total and partial occlusion cones from

bounding spheres of the objects.

Bares and Lester (1999) deal with occlusion as a constraint. All the bounding boxes of

the potential occluding objects are projected into a sphere surrounding the object of

interest. Next, the projections are converted into a global spherical coordinate system.

Finally, these are negated to find a consistent region which satisfies the occlusion

avoidance constraint for the object of interest.

Bares et al. (2000) also deal with occlusion as a constraint. Two variations of constraint

evaluation are suggested. In a ray casting method, the number of hits by rays from the

camera position to the midpoint and vertices of the bounding box of a potential

obstruction is counted. Then, the number is used to estimate the fraction of object

occlusion. In a frame rendering method, both the object and the potential obstructions are

rendered into the OpenGL backbuffer. Next, the non-zero pixel having values not equal

77

to the id of the object of interest is counted. The number is used to estimate the fraction

of object occlusion.

Halper, Helbing and Strothotte (2001) introduce Potential Visibility Region (PVR) to

deal with occlusion avoidance. The user of the system can set the preference of the

regions for the camera movement by shading the regions with brightest to darkest

colours. The depth information of all potential occluders is written into a visibility map.

The visibility geometry is rendered into a stenciled buffer from the regions with the

brightest to darkest colour. The resultant image buffer consists of the brightest coloured

regions that pass the depth test. The brightest colours in the image buffer represent the

most desirable regions for camera movements where the target will remain visible.

Pickering (2002) deals with occlusion using a shadow volume technique. Occlusion is

described as a function of position in space. If a position of a target object is considered

as a position of a light source, finding an occluded region becomes finding a shadow

volume created by a bounding box of a potential obstruction. The volume excluding all

the shadow volumes is the feasible volume for camera positions for an occlusion-free

shot. The feasible volume can be found by the intersection of all feasible volumes of all

potential obstructions.

Carlisle (2003) uses ray casting to avoid occlusion of the character. Four rays are cast

from the current character position to the locations at the sides as well as the top and

bottom of the camera. If any ray collides with an object, the camera is impulsed to the

78

opposite direction of the camera position to the collision point vector. To prevent

oscillation and to allow the user to move the camera, even toward an occluded position

when all four rays collide with objects, an overall impulse is applied to move the camera

toward the character.

Giors (2004) describes FSW camera collision avoidance methods during normal view

and flyby. During normal view, several rays are cast from the target position toward the

vicinity of the camera position to deal with collision avoidance. The end points of all the

rays have the same altitude that is equal to the camera height. If any ray intersects an

object, the camera will be move toward the target. The reduction of the view radius will

depend on the position of the ray relative to the target and camera line of sight. During

flyby, two rays are cast from the target position to the sides of the camera positions to

deal with collision avoidance. If a ray intersects an object, the camera position is moved

away from the object by applying an impulse.

Lin, Shih and Tsai (2004) use a line intersection test for collision detection. The test line

segment runs from the camera position to the bounding sphere of the actor. If a user

desires a smooth camera movement, the line intersection test is replaced by a cylinder

intersection test.

Stone (2004) uses a sphere intersection test with triangles of objects. In a virtual camera

collision model, a sphere with a finite radius is cast along the line segment from the target

character to the desired camera position. If the sphere intersects with any object, the

79

nearest unobstructed point along the line segment from the target is calculated. The

camera is moved to that position. In a physical camera collision model, a sphere is swept

from the present camera position to the desired camera position. If the sphere intersects

any triangle of an object, the sphere is made to slide along the triangle using the

remaining length of the desired camera displacement.

Verth and Bishop (2004) derive mathematical equations to determine if there is any

intersection. The authors considered the testing base on triangles and bounding objects

(BO) such as sphere, capsule (one type of swift sphere), axis-aligned bounding box

(AABB), and object-oriented bounding box (OBB). The test criteria for the intersection

between a BO and another same type of BO, a ray and a plane, are listed in table 4. The

test criteria for the intersection between a triangle and another triangle, a ray and a plane,

are also listed in table 4.

Bourne (2006) and Bourne, Sattar, and Goodwin (2007) deal with occlusion as a

constraint. Like Carlisle (2003), four rays are cast from the current character position to

the locations at the sides, as well as the top and bottom, of the initial search domain. If

any ray intersects an object, the solution cost for the positions closer to the occluded area

will be increased. Thus, it is expected that the solver will avoid the occluded area as the

solution for the next camera position. When all rays intersect, a safe point relative to the

target is selected as next the camera position.

80

Table 4: Intersection Testing Criteria.

BO/Triangle

Sphere

Capsule

AABB

OBB

Triangle

Intersection with another

same type of BO/Triangle

Distance between the centres of the

spheres are less than the sum of

their radii

Distance between the line segments

of the capsules are less than the

sum of their radii

If there is no plane that separates

the two AABB in any coordinate

direction

If length of projection of line

segment between the centres of

OBBs is less than the sum of the

projections of two extent vectors

after all vectors transformed into

first OBB's local space.

If two edges of first triangle cross

the second triangle plane and part

of the intersecting line segment lies

inside the second triangle

Intersection with a Ray

Distance between centre of the

sphere and the ray is less than

radius of the sphere

Distance between the line segment

of the capsule and the ray is less

than radius the capsule

If three line segments overlap one

another. Each line segments are

defined by intersection of the ray

and two yz, zx, or xy planes at

maximum and minimum x, y, or z

coordinate values respectively of

the AABB

First transforming the ray into the

OBB's local space. Then similar to

the AABB and ray intersection test

If intersection point between plane

of the triangle and the ray lies

inside the triangle

Intersection with a Plane

Distance between centre of the

sphere and the plane is less

than radius of the sphere

If the end points of the capsule

lie on different sides of the

plane or distance between an

end point and the plane is less

than radius of the capsule

If the diagonal most closely

align with the plane normal

crosses the plane

First transforming the plane

into the OBB's local space.

Then similar to the AABB and

plane intersection test

If two edges of triangle cross

the plane

81

CHAPTER 3 DESIGN AND METHODOLOGY

In this thesis project, we intend to implement a chase camera. In other words, we intend

to follow the main character as it wanders around a 3D virtual environment. We want to

keep the character in occlusion-free view at all times. The character may move through

open, semi-enclosed, or enclosed areas. In response to character movements, the camera

will act autonomously and move automatically without the players' manipulations.

We will work mainly in low level camera control. The desired camera position for a

frame will be defined by using a set of constraints. The medium and high level controls

will be represented by a user selected camera profile. As mentioned earlier, a camera

profile is a set of all weights and/or desired values of the constraints. The challenge is to

find an optimal camera position for the next frame cast as a weighted CSP. Starting from

the current camera position, the CSP solver will find an optimal camera position for the

next frame.

Implementing a reactive constraint based third person perspective chase camera control

system for computer games has three major components: formulation of camera control

problem as a weighted CSP, modification of the Sliding Octree Solver, and extension of

the occlusion detection method.

We discuss these components in the next three sections. In section 3.4, we outline the

implementation issues of the project.

82

3.1 Formulation of Camera Control Problem as a Weighted CSP

We follow the weighted CSP formulation of Bourne and Sattar (2006) that uses the initial

constraint set described in Bourne (2006) and other constraints for a three-variable CSP.

Three coordinates of the camera position, i.e., X, Y, and Z, will be considered as the

variables of the CSP. The domains of the variables will define a region in the space

where the camera can be positioned for the next frame. The region will be a cube with

equal dimensions along each axis and a subset of the 3D environment (Bourne 2006;

Bourne, Sattar and Goodwin 2007). The constraint set of the CSP includes height,

distance, orientation, frame coherence, and occlusion constraints.

The initial constraint set consists of height, distance, and orientation constraints,

described in 3D world coordinates (Bourne 2006). Each constraint of the set has a weight

and a desired value, with the weight of a constraint representing its relative importance.

The desired values of the constraints define 'the basic spatial relationships' between the

camera and the target character that is visualised in fig. 18.

Figure 18: Initial Constraint Set.
(Ref: fig. 3.1; pp. 56 of Bourne 2006)

83

The weighted CSP solver will evaluate the cost of each constraint for a candidate camera

position using the equations shown in table 5. The terms of the equations are self

explanatory.

Table 5: Constraint Cost Calculation.
(Ref: eq. 3.2.1,3.2.2, and 3.2.3; pp. 176 of Bourne and Sattar 2006)

Cost H.W* =1 Height
desired

- AHeight \ •WeightHeight
Cost Distance = | Distance desired - ^Distance \ •Weight Distance

Cost0rientmion =| Orientationdesired - AOrientation | •Weight0rientation

The AHeight and ADistance are calculated using the equations shown in table 6. The

AOrientation is an angle between the character orientation and the LookAt vectors in

degree. The LookAt is a vector from the camera position to the character position. The

angle can be calculated using the dot product of the vectors.

Table 6: Real Values of the Constraints.
(Ref: eq. 3.4 and 3.5; pp. 57 of Bourne 2006)

AHeight = (Camera - Character^)

ADistance = ^((Camerax - Characterx)
2 + (Cameraz -Characterz)

2)

In addition to the initial constraint set, Bourne and Sattar (2006) also use frame-

coherence constraint for smooth camera movement, acceleration and deceleration. The

cost of the constraint is evaluated using the equation shown in table 7. The frame-

coherence constraint has no desired value. It has weight only.

84

Table 7: Cost for Frame Coherence Constraint.
(Ref: eq. 3.2.4; pp. 177 of Bourne and Sattar 2006)

C - ' DiStanCe^t.frame -DiStanCepotenUal \ „ r . ,
Frame Coherence j - , . , j o Frame Coherence

Frame interval

In Bourne and Sattar (2006), occlusion is handled nominally. If the top-middle point of

the initial search space is occluded, the solver will change the cost of the height

constraint.

The weighted cost for the constraint violation for a camera position is the total cost

derived by using the equations for height, distance, orientation, and frame coherence

constraints. The total cost also includes the cost change due to occlusion, if any, of the

top-middle point of the initial search space for the frame.

3.2 Modification of the Sliding Octree Solver

A typical search tree for a camera control problem, defined as a three variable CSP, is

shown in fig 19. The depth of the tree is equal to the number of the variables.

• * • • • * • • « • • • •

44:

Y s/iim

Domain Values

Figure 19: Search Tree.
(Ref: fig. 3.2; pp. 59 of Bourne 2006)

85

A local search based solver called the Sliding Octree Solver developed in Bourne (2006)

and used in Bourne and Sattar (2006) will be used after modification. The Sliding Octree

Solver was devised for computational performance. The movement of the search space

represented by the Octree data structure is visualized in fig. 20.

I I

Figure 20: The Octree Spatial Data Structure.
(Adapted from fig. 3.7; pp. 68 of Bourne 2006)

The search tree for the Sliding Octree Solver is shown in fig. 21. The depth of the tree is

equal to the number of iterations.

?7/V%v
Pass #1

Pass #2

Pass #3

Pass #n

^h*~-

, ^ 7 ' ^

^;>/,'\vv-.
- J ^ \ - s

y'V/l '•• V - s ^ 4

Octree Node /
Potential Solution

- Solution

Octree Nodes / Potential Solutions

Figure 21: Search Tree for the Sliding Octree Solver.
(Ref: 3.8; pp. 69 of Bourne 2006)

The algorithm of the original Sliding Octree Solver is given in table 8. The Sliding Octree

Solver finds a camera position with minimum weighted cost (least constraint violation).

At first, the solver divides the current search space into eight regions. Next, it calculates

the solution cost at the centres of the regions. It then selects the region having the least

cost. It considers the selected region and the surrounding area of the selected region as

86

the search space for the next iteration. After a predefined number of iterations, it returns

the centre of the currently selected region as the optimal camera position.

Table 8: Sliding Octree Solver Algorithm.
(Ref: Algorithm 5; pp. 68 of Bourne 2006)

calculate camera facing and right vectors;
calculate initial domain size;
set centre of octree to current camera position;
while current pass less than maximum passes do

configure octree nodes;
for each octree node do

evaluate octree node as potential solution;
if octree node cost less than best solution cost then

keep octree node as best solution;
end

end
reduce domain size by scaling factor;
slide direction = (best solution - octree centre);
new octree centre += slide direction * domain size;
increment pass count;

end
return best solution as new camera position;

The algorithm for the modified Sliding Octree Solver is shown in table 9. In the modified

solver, the desired values of the height and distance constraints of the current camera

profile are changed based on the height of the character and the width of the area,

respectively, on the fly, whenever the character enters a semi-enclosed/enclosed area. The

changes remain effective as long as the character remains inside that area. Moreover, the

desired value of the orientation constraint is changed incrementally to find an occlusion-

free camera position. All the weight values, however, remain the same. Occlusion testing

is done by casting a single ray from the character position to the centre of the current

octree region. If the ray is intersected, the centre is an invalid camera position. Camera

87

Table 9: Modified Sliding Octree Solver Algorithm.

calculate camera facing and right vectors;
calculate initial domain size;
set centre of octree to current camera position;
if character is inside an enclosed area do

change the desired height and distance values;
end
if character comes out from an enclosed area do

restore the desired height and distance values;
use camera cut;

end
if character backup to a wall or any obstruction do

restore the desired height and distance values;
use camera cut;

end
for each 10 degree increment of desired orientation value do

while current pass less than maximum passes do
configure octree nodes;
for each octree node do

evaluate octree node as potential solution, if character is visible from the node;
if octree node cost less than current calculate best solution cost then

keep octree node as current calculated best solution;
end

end
if current calculated best solution is occluded then

try next desired orientation value;
end
reduce domain size by scaling factor;
slide direction = (best solution - octree centre);
new octree centre += slide direction * domain size;
increment pass count;

end
if current calculated best solution is not occluded then

assume it as the calculated best solution; break;
end

end
if front or back points at unit distance away from the calculated best solution

has less cost then
choose it as calculated best solution;

end
Set best solution in an occlusion free position toward the calculated best solution

from the current camera position for smooth camera movements;
restore the desired height and distance values;
return best solution as new camera position;

88

cuts are used whenever the character goes out of a semi-enclosed/enclosed area or the

character backs up to a wall or any other obstructions.

3.3 Extension of the Occlusion Detection Method

The occlusion detection method of this thesis project is based on the AABB-ray

intersection test technique. For the intersection test of a ray and an AABB, we derive

three parameterized intervals [sx, tx], [sy, ty], and [sz, tz] from intersections of the ray and

the appropriate AABB planes, as done in Verth and Bishop (2004). The intersections of

the ray and the yz planes at minimum and maximum x-coordinates of AABB define the

interval [sx, tx]. Similarly, the intersections of the ray with the zx and xy planes define the

intervals [sy, ty] and [sz, tz], respectively.

The ray is represented by the starting point P and the direction vector v, as shown in fig.

22. The ray will intersect the yz planes at x = xmjn and x = xmax of the AABB at R(sx) and

R(tx), respectively. We have

•» x ' SxVx ~ •"•min

" x "•" 'x^x = ^max

From the above equations, we have

x -P
„ mm x

89

Here, we have to consider the following two cases during calculation of the interval.

1. If vx = 0, the ray is parallel to the yz planes. In that case, if Px < xmin or Px > xmax

the ray can not intersect the AABB.

2. If both tx and sx are less than zero, the ray cannot intersect the AABB.

Similarly, we can derive intervals [sy, ty], and [sz, t j . During derivation of the intervals,

two conditions of non-intersection are also checked. Finally, if there is a pair of non-

overlapping intervals, the ray cannot intersect the AABB. If no condition of non-

intersection is satisfied, the ray intersects the AABB.

R(ty) / | J
ymax

ymin

Xmin X m a x

Figure 22: AABB-Ray Intersection Test.
(Ref: fig. 11.14; pp.542 of Verth and Bishop 2004)

The occlusion detection method of Bourne (2006) and Bourne and Sattar (2006) is based

on casting four rays from the current character position to four points at the sides, top,

90

and bottom of the initial search domain for the next frame, and testing the intersection of

the rays and the AABBs. The intersection of each ray with each individual AABB of the

3D objects is tested one by one. If the top ray intersects any AABB, Bourne and Sattar

(2006) handle the occlusion nominally by changing only the cost of the height constraint.

As a result, the technique can not handle occlusion appropriately in all situations.

We have enhanced the occlusion handling capability by using another similar, but

separate method. The main occlusion detection method in this thesis project is based on

casting another ray from the character position to the centre of the current octree region.

Intersection of the ray with each individual AABB of the 3D objects is tested one by one

for occlusion detection. The testing is based on the techniques and the code fragments of

Verth and Bishop (2004). If the ray is obstructed in any area, the centre of the current

octree region is an invalid camera position.

As this thesis project is concerned with following a character which is wandering in open,

semi-enclosed, and enclosed areas, we have to consider the view through portals (doors)

of the scene objects. We have added the following modifications to the basic AABB-ray

intersection testing algorithm to decide if the ray is obstructed in the area under testing.

As mentioned above, a ray is cast from the character to the centre of the current octree

region. During intersection testing of the ray with an AABB of an area, five cases may

arise based on the positions of the character and the centre of the current octree region.

91

The five cases are discussed below.

1. Both the character and the centre of the current octree region are outside of

the semi-enclosed/enclosed area. The ray does not intersect the AABB of the

area. The ray is not obstructed.

2. Both the character and the centre of the current octree region are outside of

the semi-enclosed/enclosed area. In addition, the ray intersects the AABB of

the area. If the ray passes through an even numbers of doors, the camera at that

position has a clear view of the character. In that case, the ray is not obstructed. If

the ray does not pass through an even numbers of doors, the ray is obstructed.

3. The character is inside and the centre of the current octree region is outside

of the semi-enclosed/enclosed area. If the ray passes through a door of the area,

the camera at that position has a clear view of the character. In that case, the ray is

not obstructed. If the ray does not pass through a door of the area, the ray is

obstructed.

4. The character is outside and the centre of the current octree region is inside

of the semi-enclosed/enclosed area. Same argument applies as in case 3.

5. Both the character and the centre of the current octree region are inside of

the semi-enclosed/enclosed area. The ray is not obstructed.

3.4 Outline of the Implementation

This thesis project is implemented in C++ using OpenGL API. OpenGL is a software

interface to graphics hardware consisting of approximately 120 distinct commands. Large

three-dimensional objects such as automobiles, airplanes or body parts have to be

92

developed from a small set of geometric primitives such as points, lines, and polygons. It

is designed to work efficiently in a client-server environment as a hardware-independent

interface. Thus, it has no commands for windowing task or getting user input (Neider,

Davis and Woo 1994). To create projection and viewing matrices, the GL Utility (GLU)

library will be used. The GLU library is designed to enhance OpenGL capabilities by

providing support such as matrix manipulation, polygon tessellation, quadrics, NURBS,

and error handling (Chin et al. 1998). In addition, the OpenGL Utility Toolkit (GLUT), a

programming interface for windowing task to write system independent OpenGL

programs, will be used. GLUT is designed for window system independent interface for

OpenGL. GLUT is used to display a graphic scene created by using OpenGL (Kilgard

1996).

Like the camera control system of Bourne and Sattar (2006), the camera control

technique developed for this thesis work will use occlusion information from a 3D

environment only. Thus, the techniques can be applied to any similar arbitrary 3D

environment having open, semi-enclosed, and enclosed areas. Testing will be done for a

reasonable amount of time to garner confidence that the developed technique will work

for any similar 3D environment.

The outline of the implementation, in brief, is given below.

• The Sliding Octree Solver developed by Bourne and Sattar (2006) is extended to

have an unobstructed view of the main character all the time.

93

• The ability to switch desired distance and height values of the camera profile is

incorporated.

• Also incorporated is the incremental change of the desired orientation value of the

camera profile whenever the character becomes occluded.

• An occlusion detection method using a single ray from the character to the

potential camera position is devised following the approach of Bourne and Sattar

(2006) and using the AABB-Ray intersection test.

• Capability to view the main character through the door(s) is added.

• Camera cut is used whenever the main character backs up to walls or any other

obstructions.

• Camera cut is also used whenever the main character leaves a semi-enclosed or

enclosed area.

• Smooth camera movement during transition is ensured.

• A second camera, to show side views of the main character and the main camera

position, is added.

• A third camera, to show top views of the main character and the main camera

position, is also added.

• Camera positions for few well-known difficult camera shots from the literature

are tested with our implementation.

• We draw our conclusions.

94

CHAPTER 4 ANALYSIS OF RESULTS

The performance of the reactive constraint based third person perspective chase camera

control system for computer games against design goals is evaluated in this chapter. The

comparison of performance between the camera control system of Bourne and Sattar

(2006) and our camera control system is also done.

A short implementation note is given in section 4.1. Then the test performance of the

camera control system in both quantitative and qualitative terms is discussed in section

4.2.

4.1 Implementation

The thesis project is implemented with all the modifications discussed in chapter 3 in

C++ using OpenGL API, GL Utility (GLU) library, and OpenGL Utility Toolkit (GLUT)

programming interface.

We have also used relevant source codes from the camera control system of Bourne and

Sattar (2006). Those codes are for a Windows API application. We have used them

subject to required changes for an OpenGL API application.

4.2 Test Performance

We have tested our camera control method in an Intel Centrino Duo, 1.00GB RAM,

2.00GHz, Windows XP Home Edition Version 2002 Service Pack 2 Toshiba Satellite

95

T2500 laptop. Frame rate was around 60 frames per second. We have also tested our

method in a Pentium III, 640MB RAM, 651 MHZ, Windows XP Professional Service

Pack 2 PC. Frame rate was around 7 frames per second.

Expected or actual camera positions and orientations for different character positions and

orientations in various areas are given in fig. 23 to fig. 31. Actual camera positions and

orientations for different character positions and orientations in various areas are given in

fig. 32 to fig. 36. The actual snapshots are taken by either the second or the third cameras

of the project. The selected current camera profile for both the solvers remains the same

throughout the testing.

In an actual snap shot, the character is represented by a blue arrow and the main camera

under investigation is represented by a smaller red arrow. The arrow heads indicate the

orientations. The ground surface of the 3D environment of the project is black with green

grid lines. The inside walls of a semi-enclosed/enclosed area in the environment are

yellow and the outside walls of the area are dark grey. The floor of the area is light grey.

At the beginning, we compare the performance of the Sliding Octree Solver (SOS) based

camera control system and our camera control system with the changing character

orientations inside an enclosed area as shown in fig. 23. Then the systems are tested

against two well-known difficult situations as shown in fig. 26 and fig. 29. All the figures

from fig. 23 to fig. 31 are in top view. The actual snapshots in fig. 24 to fig. 31 are taken

by the third camera of the project.

96

The top views of the expected character and camera positions and orientations while the

character rotates counter clock-wise inside an enclosed area are shown in fig. 23. The

walls of the area are outlined by the rectangles. The character and camera are represented

by the arrow and the circle, respectively. The arrow head indicates the character facing.

The character is rotated 45° counter clock-wise from one sub-figure to another.

O o

{3 d te a c

i> *- cj *• Sx ^
a-

o

Figure 23: Expected Camera Positions for Different Orientations of the Character.

The top views of the actual camera positions and orientations for the main camera found

by the Sliding Octree Solver for different orientations of the main character in an

enclosed area are shown in fig. 24. Since the Sliding Octree Solver does not handle

occlusion fully, it selects positions at the other side of the walls as valid camera positions

for the main camera. The view of an inside character from camera positions outside of the

area will be blocked by a wall. Hence, the character cannot be visible at all times.

97

Figure 24: Actual Camera Positions for Different Orientations of the Character by SOS.

The top views of the actual camera positions and orientations for the main camera found

by our camera control system for different orientations of the main character in an

enclosed area are shown in fig. 25. The actual camera positions in fig. 25 are near the

expected camera positions shown in fig. 23. In addition, all the camera positions are

98

inside the area. The main camera has an unobstructed view of the character all the time.

Hence, the character is visible from all positions, resulting in our system (fig. 25) being

an improvement over the Sliding Octree Solver (fig. 24).

Figure 25: Actual Camera Positions for Different Orientations of the Character.

The top views of the character and camera movements through a crammed doorway are

shown in fig. 26. Bold lines outline two rooms and a doorway between the rooms.

Character movement is shown in the left sub-figure. The filled circles represent target

character positions. In the right sub-figure, expected camera positions for an unobstructed

view of the target character are superimposed on the character positions. The circles with

the origins represent camera positions. The camera positions are suggested by Stone

99

(2004). But our requirements are different. In addition to an unobstructed view of the

character, the selected current camera profile for both solvers defines an optimal camera

position behind the character. Therefore, the actual camera positions are expected to be

different.

*

X
0^C

^~J<m>iCmwx

Figure 26: Navigation through a Crammed Doorway.
(Ref: fig. 2.7; pp. 49 of Bourne 2006 which is adapted from fig. 4.1.6 of Stone 2004)

The top views of the actual camera positions and orientations for the main camera found

by the Sliding Octree Solver are shown in fig. 27. The Sliding Octree Solver again selects

positions beyond the walls as valid camera positions for the main camera. The view of an

inside character from camera positions outside of the area will be blocked by a wall.

100

Figure 27: Actual Navigation through a Crammed Doorway by SOS.

The snap shots in fig. 28 show the top views of actual camera positions by our camera

control system for different positions of the character in an enclosed area while the

character moves through a crammed doorway. Our system was able to handle movements

through a crammed doorway nicely. The character remains visible all the time. This is

another improvement of our system (fig. 28) compared to the Sliding Octree Solver (fig.

27).

101

^ ^

^

^

Figure 28: Actual Navigation through a Crammed Doorway.

When the target character enters an enclosed area and moves to a corner of the area, the

top views of the expected character and camera positions are shown in fig. 29. The

expected final camera position is indicated by P and represented by a circle in the figure.

The initial camera position is represented by a camera shape. The target character is

represented by a square. The wide straight lines are walls of the enclosed area.

102

Figure 29: Expected Camera Position when the Character Moves to a Corner.
(Ref: fig. 1 of Halper, Helbing, and Strothotte 2001)

The snap shots in fig. 30 show the top views of the actual camera positions for the main

camera found by the Sliding Octree Solver when the character enters an enclosed area

and moves to a corner of the enclosed area. Here again, the Sliding Octree Solver selects

a position on the other side of the obstruction in the right image as a valid camera

position.

Figure 30: Actual Camera Positions when the Character Moves to a Corner by SOS

The snap shots in fig. 31 show the top views of the actual camera positions for the main

camera found by our camera control system when the character enters an enclosed area

103

and moves to a corner of the enclosed area. Our system is able to find the appropriate

camera position in this situation too. This is another improvement of our system (fig. 31)

compared to the Sliding Octree Solver (fig. 30).

Figure 31: Actual Camera Positions when the Character Moves to a Corner.

As a last comparison, fig. 32 gives another example showing yet another improvement of

our system (right image) compared to the Sliding Octree Solver (left image). The

snapshots show side views of the actual camera positions taken by the second camera of

the project. The character in fig. 32 is inside a room of an enclosed area. The view of the

main camera in the left image is blocked by a wall of the room whereas our system, in the

right image, finds an obstruction-free position for the main camera inside the room for

the same target character (same position and orientation).

104

Figure 32: Camera Positions inside an Enclosed Area Found by Two Solvers.

The remaining snapshots show side views taken by the second camera of the project. The

next two figures show camera positions by our camera control system during two camera

cuts. The camera positions during character movements under an over-hanged obstacle

and through a covered pathway are shown in the last two figures.

Most commercial 3D games are not able to handle appropriately the situation whenever

the character backs up to a wall or any other obstruction. Some of the methods select a

vertical position on top of the character. Others make the obstacle transparent. However,

both create a somewhat unnatural feeling. Our system use camera cuts. In fig. 33, the

actual positions for the main camera are shown. The positions are found by our camera

control method when a character backups against a wall. The result shows a natural

camera movement.

105

Figure 33: Camera Positions when the Character backs up to a Wall.

When the target character comes out of an enclosed area, our system use another camera

cut. The left snap shot in fig. 34 shows the actual position for the main camera found by

our camera control system when the character is about to come out of an enclosed area.

The right snap shot in fig. 34 shows the actual position for the main camera when the

character comes out of the area. The result shows a natural camera movement here too.

Figure 34: Camera Positions before and after the Character Comes out of an Enclosed Area.

The snap shots in fig. 35 show camera movement parallel to a wall and under a dangled

obstacle. Our camera control system is able to find appropriate positions for the main

camera to keep the main character visible all the time.

106

Figure 35: Camera Positions during Movements under an Over-hanged Obstacle.

The snap shots in fig. 36 show the camera positions when the character moves through a

covered path way. Our camera control system is also able to find appropriate positions

for the main camera to keep the main character visible all the time.

107

Figure 36: Camera Positions during Movements through a Covered Pathway.

108

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

This thesis has described the design, development, and implementation of a reactive

constraint based third person perspective chase camera control system for computer

games using a local search based CSP solver.

The contents of this thesis are summarized in the next section. In section 5.2, the

limitations of the thesis project are discussed. In section 5.3, we draw our conclusions.

Finally, future work is discussed in section 5.4.

5.1 Summary of the Contents

Chapter 2 provides a literature review of CSP solving techniques, camera control

systems, and occlusion detection systems. Various aspects of the representation of a

problem as CSP are discussed. The CSP solution techniques are described and compared.

The working principle of a virtual camera, in the context of a graphics pipeline, is

discussed with relevant mathematical derivation of transformation matrices and others.

General camera control systems and constraint based camera control systems are covered.

Finally, occlusion detection systems are discussed.

Chapter 3 provides the formulation of the reactive constraint based third person

perspective chase camera control system for computer games as a weighted CSP

instance. The objective function, to calculate minimum cost for an optimal camera

position, is derived. The modification of the Sliding Octree Solver to enable it to handle

109

occlusions and to find camera positions for a few difficult situations is discussed.

Occlusion detection using the AABB-ray intersection test is covered. Finally,

implementation issues of the thesis are outlined.

Chapter 4 provides a performance evaluation of the implemented camera control system

against design goals in both quantitative and qualitative terms. Comparative performance

analysis with another camera control system based on the original Sliding Octree Solver

(Bourne 2006; Bourne and Sattar 2006) is done. A short implementation note is also

provided.

5.2 Limitations

The main limitations of this thesis project are listed below.

• The structural entities of the implemented 3D environment consist of static cubic

objects only. The objects are made of walls parallel to the coordinate axes. As a

result, a single AABB having the same dimensions of an object can fully contain

the object. In a more natural scenario, multiple AABBs with different dimensions

will be required to represent an object. As a result, the occlusion detection testing

becomes less time consuming.

• There is a single moving object in the implemented 3D environment. The target

character moves around in the environment. We did not consider any other

moving object. As a result, the occlusion detection testing becomes somewhat

simplified and less time consuming as well.

110

• Our camera control system is not tested in a commercial game environment. Thus,

performance of the camera system in a commercial game environment is not

known.

5.3 Conclusions

The Sliding Octree Solver (Bourne 2006; Bourne and Sattar 2006) is an efficient local

search based solver for weighted CSPs. The solver is used in reactive camera planning

for real-time performance. We have modified the Sliding Octree Solver, by incorporating

the occlusion handling ability fully without compromising the real-time performance of

the solver. Our camera can follow a character from the positions defined by a user-

specified camera profile.

We have tested our camera control system using some difficult situations. We also

compare the performance of our camera control system with another camera control

system based on the original Sliding Octree Solver.

Considering all relevant figures in Chapter 4, we find that our camera control system is

able to keep the target character visible all the time. The camera control system based on

the original Sliding Octree Solver, as shown in fig. 24, fig. 27, fig. 30, and fig. 32, is not

able to keep the character visible all the time. This is the main improvement of our

camera control system compared to the camera control system based on the original

Sliding Octree Solver.

I l l

Camera behaviour when the main character backs up to a wall or any other obstruction is

a well-known problem faced by many commercial computer games. Many commercial

games make the wall/obstacle transparent which creates a somewhat unnatural feeling.

Few commercial games solve the problem by choosing a vertical camera position. We

have used a camera cut. Our solution is far more natural and works in both open and

enclosed areas.

We use another camera cut when the target character comes out of a semi-enclosed or

enclosed area. As a result, the user will have a clear view of the character during the

change of scenario.

We have also tested our camera control system during character movements under an

over hanged obstacle and a covered pathway. The camera was able to keep the character

visible at all times during both tests.

Another well-known camera control problem found in many commercial computer games

is viewing both sides of a wall or an obstruction with a disturbing feeling. Our technique

will allow viewing from one side of a wall or an obstruction only. Implementation of the

feature depends on the relevant information from the representation of the virtual

environment to make points very close (within 1 pixel) to the walls or obstructions as

invalid camera positions. We collected this information during the occlusion detection

process.

112

We have implemented a reactive constraint based third person perspective chase camera

control system to follow a character in a 3D virtual world. As the character wanders

around the 3D environment from one location to another through open, semi-enclosed,

and enclosed areas, the method finds appropriate camera positions in each area keeping

the character fully visible at all times. The camera is able to follow the character from the

desired height, distance, and orientation defined by the current camera profile. The

camera control system has real-time performance.

5.4 Future Work

The direction of future work is given below:

a) To investigate the functionality of the Editor in computer games to establish the

relationship of the Editor among the Director and the Cinematographer.

b) To develop two higher level camera control systems on top of the low level

camera control system, i.e., the Camera Operator, developed in the present work.

A medium level camera control system, i.e., the Cinematographer, will

incorporate cinematic idioms to enhance viewers' experience. A high level

camera control system, i.e., the Director, will enhance viewers' experience further

by incorporating mood, pace, etc.

c) The occlusion detection used in the present work is based on ray intersection with

the axis aligned bounding boxes (AABB) of the objects. More comprehensive

occlusion detection using binary space portioning (BSP) or other advance data

structures could enhance performance in more complex and realistic game world

scenarios.

113

REFERENCES

1. Ali, M. L. and Goodwin, S. D. (2008) Applications of CSP Solving in Camera
Control. In Proceedings of IEEE Consumer Communications and networking
Conference [To appear] [Accepted on September 24,2007], Las Vegas, NV, USA,
January 10-12, 2008.

2. Amerson, D. and Kime, S. (2001) Real-time Cinematic Camera Control for
Interactive Narratives. In Working Notes of the AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment, Stanford, CA, USA, AAAI Press, 1-4.

3. Arijon, D. (1976) Grammar of the Film Language. Communication Arts Books,
Hasting House, Publishers, New York.

4. Badros, G. J. (1998) Constraints in Interactive Graphical Applications, Ph.D. General
Examination, University of Washington, Box 352350, Seattle, WA 98195-2350,
USA.

5. Bares, W. H., Gregoire, J. P., and Lester, J. C. (1998) Realtime Constraint-based
Cinematography for Complex Interactive 3D Worlds. In Proceedings of Fifteenth
National Conference on Artificial Intelligence and Tenth Innovative Applications of
Artificial Intelligence Conference (AAAI/IAAI), Madison, WI, USA, AAAI Press,
1101-1106

6. Bares, W. H. and Lester, J. C. (1999) Intelligent Multi-shot Visualization Interfaces
for Dynamic 3D Worlds. In Proceedings of 1999 International Conference on
Intelligent User Interfaces (IUF99), Los Angeles, California, USA, 119-126.

7. Bares, W., McDermott, S., Boudreaux, C, and Thainimit, S. (2000) Virtual 3D
Camera Composition from Frame Constraints. In Proceedings of Eight ACM
International Conference on Multimedia, Marina Del Ray, Los Angeles, CA, USA,
177-186.

8. Bares, W. H., Thainimit, S., and McDermott, S. (2000) A Model for Constraint-
based Camera Planning. In Proceedings of AAAI 2000 Spring Symposium Series on
Smart Graphics, Stanford, CA, USA, 84-91.

9. Bartak, R. (1998) On-Line Guide to Constraint Programming.
http://kti. ms. mffcuni. czf bartak/constraints/index, html.

10. Benhamou, F., Goualard, F., Languenou, E., and Christie, M. (2004) Interval
Constraint Solving for Camera Control and Motion Planning. ACM Transactions on
Computational Logic, 5(4) 732-767.

11. Blinn, J. (1998) Where am I? What am I Looking at? IEEE Computer Graphics and
Applications, July 1998, 76-81.

114

http://kti

12. Boufama, B. (2007) Lecture Slides in http://boufama.uwindsor.ca/352/lectures.html
for course 60-352 and in http://boufama.uwindsor.ca/551/lectures, html for course 60-
551, University of Windsor, October 21, 2007.

13. Bourne, O. (2006) Constraint-Based Intelligent Camera Control for Interactive
Digital Entertainment. Ph.D. thesis, Griffith University, Queensland, Australia.

14. Bourne, O. and Sattar, A. (2005) Applying Constraint Weighting to Autonomous
Camera Control. In Proceedings of the First Artificial Intelligence and Interactive
Digital Entertainment Conference, Marina Del Ray, CA, USA, AAAI Press, 3-8.

15. Bourne, O. and Sattar, A. (2006) Autonomous Camera Control with Constraint
Satisfaction Methods. In Rabin, S., editor, AIGame Programming Wisdom 3, Charles
River Media, 173-187.

16. Bourne, O., Sattar, A., and Goodwin, S. D, (2007) A Constraint-Based Autonomous
3D Camera System. Constraints [To appear],
http://ai. uwaterloo. ca/~vanbeek/Constraints/constraints. html#forthcoming.

17. Carlisle, P. (2003) An AI Approach to Creating an Intelligent Camera System. In
Rabin, S., editor, AI Game Programming Wisdom 2, Charles River Media, 179-185

18. Chin, N., Frazier, C , Ho, P., Liu, Z., and Smith, K. P. (1998) The OpenGL Graphics
System Utility Library (Version 1.3). Editor (version 1.3), Jon Leech, Silicon
Graphics Inc.

19. Christianson, D. B., Anderson, S. E., He, L. W., Salesin, D. H., Weld, D. S., and
Cohen, M. F. (1996) Declarative Camera Control for Automatic Cinematography. In
Proceedings of Thirteenth National Conference on Artificial Intelligence (AAAI 96),
Portland, OR, USA, AAAI Press, 148-155

20. Christie, M. and Languenou, E. (2003) A Constraint-Based Approach to Camera Path
Planning. In Butz, A., Kriiger, A., and Olivier, P., editors, Proceedings of the third
International Symposium on Smart Graphics, Heidelberg, Germany, LNCS, Springer,
2733 172-181.

21. Christie, M., Languenou, E., and Granvilliers, L. (2002) Modeling Camera Control
with Constrained Hypertubes. In Hentenryck, P. V., editor, Proceedings of the Eighth
International Conference on Principles and Practice of Constraint Programming
(CP2002), Ithaca, NY, USA, 618-632.

22. Christie, M., Machap, R., Normand, J. M., Olivier, P., and Pickering, J. (2005)
Virtual Camera Planning: A Survey. In Butz, A., Fisher, B., Kriiger, A., and Olivier,
P., editors, Smart Graphics: 5th International Symposium Proceedings, SG 2005,
Frauenworth Cloister, Germany, LNCS, Springer, ISBN: 3-540-28179-7, 3638 40-52.

115

http://boufama.uwindsor.ca/352/lectures.html
http://boufama.uwindsor.ca/55
http://ai

23. Christie, M. and Olivier, P. (2006) Camera Control in Computer Graphics. In Groller,
E. and Szirmay-Kalos, L., guest editors, EUROGRAPHICS 2006,25-3.

24. Drucker, S. (1994) Intelligent Camera Control in Graphical Environments. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

25. Drucker, S. M., Galyean, T. A., and Zeltzer, D. (1992) CINEMA: A System for
Procedural Camera Movements. In Proceedings of 1992 Symposium on Interactive
3D Graphics, Cambridge, MA, USA, 67-70

26. Drucker, S. M. and Zeltzer, D. (1994) Intelligent Camera Control in a Virtual
Environment. In Proceedings of Graphics Interface '94, Banff, Alberta, Canada, 190-
199.

27. Drucker, S. M. and Zeltzer, D. (1995) CamDroid: A System for Implementing
Intelligent Camera Control. In Proceedings of the 1995 Symposium on Interactive 3D
Graphics, Monterey, CA, USA, 139-144.

28. Giors, J. (2004) The Full Spectrum Warrior camera system. In Proceedings of Game
Developers Conference, 2004, San Jose, CA, USA.

29. Gleicher, M. and Witkin, A. (1992) Through-the-Lens Camera Control. In Catmull,
E. E., editor, Computer Graphics (Proceedings ofSIGGRAPH '92), 26(2) 331-340.

30. Halper, N., Helbing, R., and Strothotte, T. (2001) A Camera Engine for Computer
Games: Managing the Trade-off between Constraint Satisfaction and Frame
Coherence. In Computer Graphics Forum, 20(3) 174-183.

31. Halper, N and Olivier, P. (2000) CAMPLAN: A Camera Planning Agent. In
Proceedings ofAAAI 2000 Spring Symposium on Smart Graphics, Stanford, CA,
USA, 92-100.

32. Hawkins, B. (2003) Creating an Event-Driven Cinematic Camera, Part Two.
http://www.gamasutra.com/features/20030110/hawkinsOl.htm, January 10 2003.

33. He, L., Cohen, M. F., and Salesin, D. H. (1996) The Virtual Cinematographer: A
Paradigm for Automatic Real-Time Camera Control and Directing. In Proceedings of
23rd Annual Conference on Computer Graphics (SIGGRAPH 96), New Orleans, LA,
USA, ACM Press, 217-224

34. Hornung, A., Lakemeyer, G., and Trogemann, G. (2003) An Autonomous Real-Time
Camera Agent for Interactive Narratives and Games. In Proceedings of Fourth
International Workshop on Intelligent Agents {IVA 2003), Kloster Irsee, Germany,
Springer, 236-243.

116

http://www.gamasutra.com/features/200301

35. Huang, M. (2004) Dueling CSP Representations: Local Search in the Primal versus
Duel Constraint Graph. Masters' thesis, University of Windsor, Windsor, Ontario,
Canada.

36. Image_l (2007) First Person Shooter - World War 2 Online in
http://en. wikipedia. org /wiki/Image:SShot4862.jpg.

37. Image_2 (2007) Second Person Shooter in http://www.selectparks.net/modules.php?
name =News&file =article&sid=284.

38. Image_3 (2007) Third Person Shooter in http://en.wikipedia.org/wiki
/Image :Tomb_Raider_City_of_Vilcabamba.png.

39. Jardillier, F. and Languenou, E. (1998) Screen-Space Constraints for Camera
Movements: the Virtual Cameraman. In Ferreira, N. and Gobel, M., editors,
Proceedings of Computer Graphics Forum (Eurographics-98), Blackwell Publishers,
ISSN 1067-7055,17(3) 175-186.

40. Jhala, A. and Young, R. M. (2005) Discourse Planning Approach for Cinematic
Camera Control for Narratives in Virtual Environments. In Proceedings of the
National Conference of the American Association for Artificial Intelligence,
Pittsburg, PA, USA, AAAI Press, 307-312.

41. Kilgard, M. J. (1996) The OpenGL Utility Toolkit (GLUT) Programming Interface
(API Version 3). Silicon Graphics, Inc.

42. Kumar, V. (1992) Algorithms for Constraint Satisfaction Problems: A Survey. AI
Magazine, 13(1) 32-44.

43. Languenou, E., Benhamou, F., Goualard, F., and Christie, M. (1998) The Virtual
Cameraman: an Interval Constraint Based Approach. In Proceedings of the Thirteenth
European Conference on Artificial Intelligence (Constraint Techniques for Artistic
Applications Workshop), Brighton, UK.

44. Lin, T., Shih, Z., and Tsai, Y. (2004) Cinematic Camera Control in 3D Computer
Games. In Proceeding of the Twelfth International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision'2004, WSCG 2004,
University of West Bohemia, Campus Bory, Plzen-Bory, Czech Republic, 289-296.

45. Nadel, B. A. (1988) Tree Search and Arc Consistency in Constraint Satisfaction
Algorithms. In Kanel, L. and Kumar, V., editors, Search in Artificial Intelligence,
Springer-Verlag, New York, 287-342.

46. Nadel, B. A. (1990) Constraint satisfaction algorithms. Computational Intelligence,
5(4) 188-224.

117

http://en
http://www.selectparks.net/modules.php
http://en.wikipedia.org/wiki

47. Neider, J., Davis, T., and Woo, M. (1994) OpenGL Programming Guide. Silicon
Graphics, Inc. Addison-Wesley Publishing Company,
http://fly.cc.fer.hr/~unreal/theredbook/.

48. Oliveros, D. A. M. (2004) Intelligent Cinematic Camera for 3D Games. Masters'
Project B2 Report, University of Technology, Sydney, Australia.

49. Pickering, J. H. (2002) Intelligent Camera Planning for Computer Graphics, Ph.D.
thesis, Department of Computer Science, University of York, York, YO10 5DD,
UK

50. Russell, S. and Norvig, P. (2002) Artificial Intelligence: A Modern Approach. 2nd

Edition, Prentice Hall/Pearson Education, Inc., Upper Saddle River, NJ, USA.

51. Stone, J. (2004) Third-Person Camera Navigation. InKirmse, A., editor, Game
Programming Gems 4, Charles River Media, 303-314.

52. Treglia II, D. (2000) Camera Control Techniques. In DeLoura, M., editor, Game
Programming Gems, Charles River Media, 371-379.

53. Tsang, E. (1993) Foundations of Constraint Satisfaction. Academic Press Inc., San
Diego, CA, USA.

54. Verth, J. M. V. and Bishop, L. M. (2004) Essential Mathematics for Games and
Interactive Applications: A Programmer's Guide. Morgan Kaufmann, March 25
2004.

55. Ware, C. and Osbom, S. (1990) Exploration and Virtual Camera Control in Virtual
three-dimensional Environments. In 1990 Symposium on Interactive 3D Graphics,
175-184.

56. Yang, J. (2004) High Performance Constraint Satisfaction Problem Solving: State-
Recomputation versus State-Copying. Masters' thesis, University of Windsor,
Windsor, Ontario, Canada.

118

http://fly.cc.fer.hr/~unreal/theredbook/

VITA AUCTORIS

Mohammed Liakat Ali was born in Bangladesh. He obtained his first degree, a BSc in

Electrical Engineering, from the Bangladesh University of Engineering & Technology

(BUET), Dhaka in 1978. He worked as an electrical engineer in the field of operation,

maintenance, and trouble shooting of electrical systems in electrical sub-stations, power

stations, and chemical and petrochemical industries. He also worked in installation,

testing, and commissioning of electrical projects. He obtained his second degree, a BCS

(Honours) in Computer Science, with high distinction from the University of Windsor in

2004. He is currently a candidate for the MSc in Computer Science degree at the

University of Windsor and hopes to graduate in fall 2007.

119

	Applications of CSP solving in computer games (camera control)
	Recommended Citation

	ProQuest Dissertations

