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ABSTRACT 

 
The Arabidopsis thaliana genome encodes several families of polypeptides that 

are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin 

ligase complexes. One such gene family encodes the Skp1-like class of polypeptide 

subunits, where 21 genes have been identified and are known to be expressed in 

Arabidopsis. The complexity of this family of Arabidopsis Skp1-like – or ASK – genes, 

together with the close structural similarity among its members, raises the prospect of 

significant functional redundancy among select paralogs. We have assessed the potential 

for functional redundancy within the ASK gene family by analyzing an expanded set of 

criteria that define redundancy with higher resolution. The criteria used include 

quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the 

sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins 

expressed in vivo, as well as the in planta assessment of individual ASK-F-box protein 

interactions using BiFC. The results indicated significant functional divergence of steady-

state transcript abundance and protein-protein interaction specificity involving ASK 

proteins in a pattern that is poorly predicted by sequence-based phylogeny. The 

information emerging from this and related studies was used to functionally characterize 

using an RNAi approach complemented by phenotypical analysis. The observation of 

diverse phenotypes not only argues a high level of sub-functionalization has occurred 

throughout the ASK gene family, but also underscores the breadth of functions that this 

gene family plays throughout plant development.  

Transport Inhibitor Response (TIR1), is a member of a family of five Auxin-

signaling F-box proteins (AFBs) and has been shown to act as the receptor for auxin 
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binding and activation of the SCFTIR1 complex, leading to targeted protein degradation 

events involved in auxin perception. We provide evidence for homo-dimerization of 

TIR1 protein in planta together with a role for TIR1 homo-dimerization in the 

degradation of Aux/IAA proteins as part of the auxin-signaling pathway. 
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CHAPTER 1 

General Introduction 
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Arabidopsis thaliana  

Advances in the field of molecular biology in the past 30-40 years have resulted 

in an unprecedented level of insight into the molecular mechanisms governing complex 

biological processes. At the forefront of these discoveries has been Arabidopsis thaliana, 

a dicot plant species and member of the family Cruciferae (mustards), which has been 

utilized extensively as a model organism to study the function and specific roles of plant 

genes in the context of plant growth and development. This plant model species is widely 

used in plant research on the merits of its small stature, large seed set, short generation 

time (8 weeks), self-compatibility, and relatively small genome (125 Mbp) [1]. 

Arabidopsis has served as a productive system in which to gain insight in our 

basic understanding of cell homeostasis and organism development. The benefits of such 

studies in Arabidopsis arise from a combination of the technical benefits of Arabidopsis 

for plant research, combined with a vast array of genetic and genomic resources available 

for this model plant species [1–3]. These findings have been extrapolated to other non-

plant model species, for instance in aspects of our understanding of the development of 

multi-cellular organisms from single cells or how signals in an organism’s environment 

are integrated during the organism’s growth and development. Arabidopsis has also 

contributed significantly (albeit indirectly) to human health as it relates to improving food 

security through an understanding of plant pathogenesis and productivity, or as a result of 

contributions Arabidopsis has made through the elucidation of the function and 

contribution of evolutionarily-conserved plant developmental and pathways [4]. 

 Due to the relatively recent divergence of flowering plants from a common 

ancestor around 150 million years ago [5,6], Arabidopsis can be considered to be related 



! 3 

to many of angiosperm  plants extant today, making it an ideal model candidate in the 

realm of plant science. 

Plants uniquely face many challenges with respect to changes in their biotic and 

abiotic environment. Given their sessile nature, plants must adapt to rapid and significant 

changes (such as changes in temperature or the presence of a pathogen) all without the 

ability to evade threatening conditions, as is possible with animals. Hence, plants must 

integrate internal and environmental cues and must respond in such a way to ensure 

reproductive survival and success. The prominence of this integration can also be 

visualized by the fact that the plant embryo, unlike animal embryos, contains no adult 

organs, thus all patterning and post-embryonic development proceeds in close association 

with the environment. This unique feature of plants should allow for a distinct adaptive 

strategy different from that observed in the animal kingdom. The adaptive capacity of 

plants in response to their environment is thought to be achieved through rapid changes to 

the metabolome and proteome [7,8] but precisely how this process is controlled has been 

under much speculation and debate. With the availability of the Arabidopsis genomic 

sequence in 2000, and subsequent genomic comparison studies between Arabidopsis and 

other model systems, it was clear that the Arabidopsis genome contained a high 

proportion of genes associated with post-translational protein turnover [9,10]. With the 

availability of the genome sequence of other plants species, [11–13] a similar pattern was 

observed suggesting that protein degradation may be a fundamental regulatory attribute 

of the plant adaptive strategy, and essential for underlying patterning and developmental 

responses in complex sessile organisms such as plants. However, this hypothesis has not 

been experimentally verified to date due to technical difficulties associated with assessing 
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protein degradation in plants. In support of this view, unbiased genetic surveys have 

connected targeted protein degradation mechanisms with almost every aspect of 

environmental response and developmental pattern in plants [14–19].  The relatively large 

number of ubiquitin-associated proteins found in eukaryotes (4% of the entire protein 

coding repertoire in humans and 6.5% in Arabidopsis) indicates a diverse array of cellular 

functions in which ubiquitin is involved [23,25–27] 

Ubiquitin 

Ubiquitin is a small, 8.5-kD polypeptide comprised of 76 amino acids (aa) 

possessing a mostly rigid structure, characterized by a unique β-grasp fold (Figure 1.1) 

[20]. Ubiquitin’s sequence is highly conserved from yeast to humans and Arabidopsis 

with only four conserved aa substitutions observed suggesting a high degree of 

evolutionary selective pressure [21], in the regulation of growth and development of 

multi-cellular organisms (Figure 1.2).  

Ubiquitination 

Ubiquitination is a process of covalent post-translational modification whereby 

ubiquitin moieties are covalently conjugated via lysine residues within the target protein. 

Ubiquitination is achieved through the sequential action of three protein complexes as 

enzymes; an E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and 

E3 (ubiquitin ligase enzyme) [21–23]. Ubiquitination is initiated generally by ATP-

mediated activation of ubiquitin resulting in a thioester bond between ubiquitin and E1 

[23]. Activated ubiquitin is subsequently transferred from E1 to E2. The final step of 

ubiquitination is achieved through the coordinated action of E2 and E3 enzyme resulting 

in the formation of an!iso-peptide bond between the C-terminal tail of ubiquitin’s 
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terminal glycine residue and the ε-amino group of a lysine residue found within the 

substrate [23]. E3s can bind substrates directly or through an intermediate protein, thus 

determining the specificity of the reaction (Figure 1.3). Although ubiquitin is generally 

conjugated via lysine residues, ubiquitination has also been shown to occur at the N-

terminal amino group of substrate proteins and in rare occasions at cysteine and serine 

residues [24,25].  
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Figure 1.1. Crystal structure of ubiquitin.  

Ubiquitin is a small, 8.5-kD protein comprised of 76 amino acids (aa) possessing a 

mostly rigid structure, composed of 4 β-strands and two helix structures. Ubiquitin 

proteins across all species have 7 conserved lysine residues essential for mediating 

ubiquitin-ubiquitin interactions. 
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 Figure 1.3. General schematic of protein ubiquitination.  

In an ATP-dependant manner, ubiquitin is initially activated by the E1 enzyme. Activated 

ubiquitin is then transferred from E1 to the E2 enzyme. E3 ligases are responsible for the 

recognition and selection of the substrate protein. Once E3 binds to the substrate, the E2 

enzyme is recruited by the E3. Ubiquitin is then transferred from the E2 enzyme to the 

substrate. The repetition of the above sequence of events allows for the formation of a 

ubiquitin chain on the protein. 
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Unlike most other enzymatic processes inside the cell whereby a single enzyme is 

sufficient for the carrying out a reaction (e.g. protein phosphorylation by kinases), the 

requirement of three enzymes (E1, E2, and E3) for the ubiquitin-based modification of 

target proteins has been one of the many challenges complicating the study of 

ubiquitination as a post-translational regulatory mechanism. 

Following the attachment of an initial ubiquitin moiety to a ‘target’ protein, two 

distinct paths can be taken: either the protein remains mono-ubiquitinated (Figure 1.4A) 

or the covalently linked ubiquitin is subjected to poly-ubiquitination (Figure 1.4B). Poly-

ubiquitination is the result of the formation of new iso-peptide bonds between the first 

ubiquitin moiety and that of additional ubiquitin moieties, either through the N-terminus 

of the first ubiquitin or within one of its seven lysine residues (Lys6, Lys11, Lys27, Lys 

29, Lys33, Lys 48 and Lys63) [23,25–27]. Substrates harboring all probable linkage types 

have been identified in vivo in several species such as yeast and humans [23,25,28,29]. 

Poly-ubiquitin chains can be homogenous (the same lysine residues are used for ubiquitin 

chain formation) or heterogeneous (different lysine residues are used throughout the 

chain) resulting in a diverse array of conformations and corresponding molecular 

functions. 
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 Figure 1.4. Ubiquitination patterns serve different functions. 

Ubiquitin binds to a lysine residue within the substrate protein. Proteins can 

undergo either mono-ubiquitination (mono- or multi-mono-ubiquitination) or poly-

ubiquitination. Several known proteins that are subjected to some of these different types 

of polyubiquitination are provided in this figure. 

Monoubiquitin 

Polyubiquitin 

A!

B!
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 Little is known about the molecular basis of Ub chain formation and elongation. 

Based on recent observations, E2 and E3 enzymes collectively dictate the type and the 

length of the ubiquitin chains to be formed on a target substrate [25,29–31]. Mono-

ubiquitination of proteins has been shown to be mainly involved in trafficking and 

endosomal sorting of proteins [25,32,33].  

  Mono-ubiquitination or poly-ubiquitination of target proteins is achieved either 

solely by the catalytic activity of the E2 enzyme (FANCD2 ubiquitination via E2-

Ube2W) [34], or in some instances is the result of E3 ligase-mediated inhibition of the 

conjugative activity of the E2 enzyme (e.g. the ubiquitination of PCNA via E2-Rad6 and 

E3-Rad18) [35].  

With the exception of Lys48 and Lys63 homogenous poly-ubiquitin chains, the 

function of the remaining linkage classes is not clearly understood. The Lys48-linked 

chains adopt a closed conformation and have been shown to signal the targeted proteins 

for degradation via the 26S proteasome (Figure 1.5A) [36,37]. Alternatively, Lys63-

linked chains adopt an open configuration and mainly act in a non-proteolytic manner for 

the recruitment of proteins for trafficking and localization (Figure 1.5B) [36,37]. Lys11-

linked chains also adopt a closed conformation but have a relatively flexible structure 

compared to that of Lys48 chains (Figure 1.5C) [38]. Lys11 chains are primarily 

produced by the Anaphase Promoting Complex (APC/C) and are involved in mitotic 

degradation of proteins via the 26S proteasome [39].  
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Figure 1.5. Conformation of polyubiquitin chains. 

The availability of different lysine residues allows poly-ubiquitin chains to acquire 

different structural conformations. In the more open structures (K48, K63) the 

hydrophobic patches are more exposed as opposed to chains that take the closed 

conformation (K11) where hydrophobic patches are buried within the protein. 
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The molecular structures and mechanisms underlying the function of the E2 

conjugating enzyme, or ubiquitin transfer by E3 ligases, is not yet fully understood. The 

E3 ligases have been classified into two groups based on their discrete roles in the 

determination and specificity of substrate ubiquitination and chain formation [40].  

The first class of E3 ligases is comprised of the RING-Box containing E3 ligases 

(RING-E3), where the type and formation of the chain is solely dictated by the type of E2 

ligase bound to the RING-E3 ligase [41]. The second group of E3 ligases bear a HECT 

domain (Homologous to E6-AP Carboxy Terminus) and a catalytic cysteine (Cys) residue 

that is involved in the transfer of activated ubiquitin from E2 to the HECT-E3 

ligase[40,42]. The attachment of the activated ubiquitin to the HECT domain confers on 

the HECT-E3 ligase the ability to form the ubiquitin chain on the substrate protein 

(Figure 1.6) [42].  

RING-E3 Ligases 

RING-E3 ligases are conserved across all eukaryotae from yeast, humans, and 

plants. Despite their relatively high abundance, many aspects of structure-function and 

regulation of these enzymes are poorly understood. An initial description of the RING 

domains was reported in 1991 by Freemont and co-workers [43]. Subsequently, 

characterization of the three dimensional structure of the RING domain revealed that 

buried within its core were conserved Cys and His residues that play an essential role in 

maintaining the overall structure of the protein through their ability to bind two zinc 

atoms buried within the core of the RING domain (Figure 1.7) [44].  
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Figure 1.6. Mode of action of RING- and HECT-domain-containing E3 ligases. 

E3 ligases are generally categorized into two main classes, the RING and HECT ligases. 

A. The RING class comprises the largest class of E3 ligases. Within the RING class the 

E2 enzyme binds to the RING domain and the activated ubiquitin is transferred directly 

to the lysine residue on the substrate. B. The HECT class possesses a domain that allows 

for the transfer of the activated ubiquitin from the E2 enzyme to the E3 and then the 

substrate protein. 

A 

B 
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Figure 1.7. Crystal of RBX1. 

RING domain-containing proteins are found in most eukaryote species. RING domains 

are composed of 7 Cys and one His residue (C-X2-C-X[9-39]-C-X[1-3]-H-X[2-3]-C-X2-C-

X[4-48]-C-X2-C). The RING domain in RBX1 protein is responsible for the recruitment of 

the E2 ligase. All RING domains bind two zinc ions (depicted in purple). 
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Although the initial connection between the RING domain and ubiquitination was not 

made until 1999, based on genetic and biochemical studies it was assumed early-on that 

the RING domain potentially mediates ubiquitination [45]. 

The first concrete evidence connecting the RING domain and ubiquitination was 

made by three laboratories who independently showed that a RING domain protein, 

RBX1, could assemble as part of the SCF sub-class of E3 ubiquitin ligases [46,46,47]. It 

was later shown that the RING domain mediates ubiquitination by binding to the E2 

enzyme, bringing the E2 enzyme in close proximity to the substrate binding subunit of 

the E3 ligase [48,49]. 

 In some classes of E3 ligases the RING domain co-resides in a single polypeptide 

with the substrate-binding domain, whereas the majority of E3 ligases have distinct and 

dedicated subunits that mediate substrate-binding and E2-ligase recruitment, thus 

allowing for a greater diversity of substrate-binding specificity and Ub chain formation, 

with a correspondingly more complex role(s) in post-translational protein regulation 

(Figure 1.8) [49]. Of interest is the Cullin-class of E3 ligase complexes, which all share 

the same RING-domain subunit protein component in RBX1, but possesses different 

classes of substrate-binding proteins in the form of F-box and BTB-domain subunit 

proteins [45,49]. It should also be noted that not all RING-Box-containing proteins have 

explicit E2-binding or E3 ligase activity. However, the majority of RING-Box-containing 

proteins are believed to be associated with the ubiquitination process [49,50].  
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Figure 1.8. Formation of distinct RING-E3 ligases. 

The RING E3 ligases are categorized into 5 distinct classes. All E3 ligases can bind to the 

RBX1 protein. Although distinct Cullin proteins functions as the backbone of the 

complex, all have a high level of sequence identity at their C-terminus (RING binding 

domain). With the exception of the BTB class, all other classes have an adaptor subunit 

connecting the backbone of the complex to the substrate recognition subunit. The adaptor 

subunit is variable among different classes: SKP1, which binds to CUL1; Enlongin B and 

C, which bind to CUL2 and CUL5; and DDB1, which binds CUL4. In the BTB class, one 

end of BTB acts as the substrate recognition subunit while the other end is responsible for 

recognition of the CUL3 protein. F-box, VHL, BTB, DWD and SOCS-box proteins act as 

substrate recognition subunits for CUL1-, CUL2-, CUL3-, CUL4- and CUL5-based E3 

ligases, respectively. 
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SCF-ligase 

 SCF-ligases are the largest class of E3 ligases and are believed to be responsible 

for the targeting of up to 20% of ubiquitinated proteins [50,51]. This class of E3 ligase 

complexes has been shown to be minimally comprised of 4 subunits: RBX1, CUL1, 

SKP1 and an F-Box protein, where RBX1 is responsible for the recruitment of the E2 

ligase, CUL1 acts as a scaffold for the assembly of SCF ligase, SKP1 acts as an adaptor 

connecting CUL1 to the F-box protein, and the F-box protein dictates the target 

specificity of the E3 through substrate selection. (Figure 1.9) [52]. The greater part of 

SCF-ligase function is thought to be the control of protein abundance via ubiquitination 

and subsequent 26S proteasome-mediated degradation [53]. Although a substantial 

amount of information has been provided for regulation of the cell cycle, transcription 

and many other processes via proteasome-bound SCF ligase-mediated protein abundance 

regulation, the possibility of substrate ubiquitination events mediated by the SCF-ligase 

which are not subjected to proteasome bound degradation cannot be excluded at this 

juncture.  

CULLIN 
 
 Cullin proteins act as scaffolds for the assembly of the CUL-E3 ligase complexes. 

To date, 7 Cullin proteins have been characterized [53,54]. . While all share the ability to 

bind to the RBX proteins, each Culllin subunit is distinguished by its ability to directly or 

indirectly associate with different sets of substrate-binding proteins (Figure 1.8). For 

example, CUL1 exclusively participates in the formation of the SCF-ligase by binding 

SKP1 via its N-terminus, as well as interacting with RBX1 via its highly conserved C-

terminus[55]. A distinguishing characteristic of CUL1 proteins is the rigidity of the 
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structure and its long, crescent-like shape, although the functional significance of the 

observed molecular topology has yet to be assessed. It is known that RBX1 alone cannot 

activate an E2-ligase but, rather, requires an interaction with CUL1 [56]. Hence, CUL1 in 

conjugation with RBX1 is responsible for the activation of the E2-ligase. 
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Figure 1.9. The SCF-class of E3 ubiquitin ligases. 

The SCF class is composed of four subunits (F-Box, SKP1, CUL1, RBX1). F-box 

proteins are responsible for recognition and selection of the substrate and bind via their F-

box domain (depicted by the stick model in B) to SKP1. 

 

A 

B 

C 
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SKP1 

SKP1 is a small and highly conserved protein of about 160 aa residues (Figure 

1.10) [57,58]. Various studies have shown that SKP1 associates as a subunit component 

of different E3 ligase complexes, thus establishing an essential role for SKP1-like 

proteins in cellular growth and development. For example, protein interaction studies 

involving both immune co-precipitation pull-down and yeast 2-hybrid (Y2H) approaches 

have shown that SKP1 associates with a diverse array of proteins such as RAV proteins 

to form a vacuole ATPase [59] or Cbf3 binding proteins as part of the kinetochore 

complex [60].  

 The unusually large number of proteins that SKP1 can associate with, along with 

the lack of different isoforms, indicates a diverse role for SKP1-like proteins in post-

translational regulation [57–60]. SKP1 has been best characterized as the adaptor protein 

mediating the interaction of the F-box protein with other components of the SCF-ligase 

Figure 1.9. SKP1 recognizes and binds to a semi-conserved 40-aa F-box domain within 

F-box proteins thus connecting the F-box protein to the remaining subunits comprising 

the SCF class of E3 ligases. [61]. 

 Our lab’s historical interest in the SKP1 protein pre-dates an understanding of the 

role SKP1 in the structure and function of SCF-ligases. During the course of 

characterizing the function of mutant alleles of the Unusual Flower Organs (UFO) locus 

(def flowering mutant termed), we showed that the protein product of the UFO locus 

interacted with two proteins (UIP1 and UIP2) [62] that were later defined as Arabidopsis 

SKP1-like proteins, ASK1 and ASK2, which bore strong primary sequence similarity to 

yeast the SKP1 protein shown to be involved in yeast cell cycle regulation [63]. In 1999, 
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following the functional characterization of the F-box domain by others, plus the finding 

that SKP1 and SKP2 are both subunit components of E3 SCF-ligases [61,63], it was 

deduced that UFO was an F-box protein that interacted with Skp1-like subunits in a 

putative E3 Ub ligase complex [62]. There followed an undertaking to annotate the ASK 

gene content of the Arabidopsis genome, with the finding that a total of 21 ASK genes are 

expressed in the Arabidopsis genome. As one aspect of this thesis, I have undertaken a 

functional analysis of members of this gene family as a contribution to our understanding 

of why this gene family has been so highly expanded during the course of Arabidopsis 

evolution. 
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Figure 1.10. Crystal structure of Arabidopsis and human SKP1. 

SKP1 is a highly conserved protein among different species. A. Crystal structure of the 

human SKP1. B. Crystal structure of Arabidopsis SKP1.  All SKP1 proteins display a U-

shaped structure (highlighted), which is responsible for recognition and covering of the 

hydrophobic F-box domain. Of the 200 or so interacting partners identified the majority 

were two highly similar proteins, which were termed UFO Interacting Proteins 1 and 2.  

A 

B 
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F-box proteins 

F-box proteins are the principal substrate-recognition components of the SCF-

ligase [57,61,65]. All F-box proteins possess a semi-conserved stretch of 40-50 aa’s 

denoted as the F-box domain [61]. The name F-box was derived from Cyclin F, the first 

F-box protein to be characterized. The F-box domain is composed of three highly 

hydrophobic helices that mediate interaction with SKP1-like proteins [57,65]. The most 

C-terminal helix of SKP1 is sandwiched between the two N-terminal helices of the F-box 

protein via an extensively hydrophobic interaction, thus concealing the F-box protein’s 

hydrophobic patch [57,65]. F-box proteins transiently bind to their substrates via various 

modular domains found within their C-terminus [66,67] and are categorized into three 

distinct classes based on their substrate-binding domain [68]. F-box proteins that possess 

a WD-40 domain or leucine-rich repeats (LRRs) are classified as FBW and FBL 

respectively, and comprise the two largest classes of F-box proteins. FBO is the third 

class of F-box proteins which contain various C-terminal domains (such as Kelch repeats 

or CASH domains) or no known motifs (Figure 1.11) [69]. 

Regulation of the SCF ligase 

Given the broad-based and essential role that the SCF family of E3-ligases plays 

in the regulation of cellular processes, stringent regulation of SCF-ligase subunit 

expression, compartmentalization and assembly is likely. Most regulatory mechanisms 

identified to date are manifest at primarily the post-translational level and include a 

plethora of different modifications, from regulation of SCF oligmerization to 

phosphorylation-dependent binding of substrates [70–73].   
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Figure 1.11. Schematic of the three different classes of F-box proteins. 

All F-box proteins possess a degenerate F-box domain, which mediates the interaction of 

the F-box protein with the remainder of the SCF ligase. The F-box proteins use various 

protein interaction domains for the recognition of different substrates. F-box proteins that 

possess a WD-40 domain or leucine-rich repeats (LRRs) are respectively called FBW and 

FBL, and comprise the two largest classes of F-box proteins. FBO is the third class of F-

box protein, which contains either various types of domains (such as Kelch repeats or 

CASH domains) or no known motif. 
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Post-translation modification of substrates 

The selection of substrates for ubiquitination by the SCF ligase is usually 

achieved via post-translational modification. Chief among these is protein 

phosphorylation [73,74] of target proteins as a requirement for their binding and selection 

by the F-box protein. A classic example is the cell cycle regulator p27, which is 

recognized by the SCFSKP2 ligase and subjected to ubiquitin-mediated degradation only 

after the phosphorylation of Thr187 [75,76]. Although the vast majority of proteins 

recognized by the SCF-ligases are subjected to phosphorylation, other forms of post-

translational modification of substrate proteins have also been reported. For example, the 

glycosylation of Pre-integrin 1 is required for recognition by the SCFFBX2 ligase [77,78]. 

Despite the essentiality of substrate modification for recognition by the SCF-ligase for 

the majority of reported substrates, it appears that such modifications are not mandatory. 

For instance, in the auxin-signaling pathway, SCFTIR1 recognition of IAA proteins is not 

mediated by any form of post-translation modification of the target, but rather by the 

direct binding of the auxin effector molecule to the subunit F-box protein, TIR1 [77–79]. 

Regulation of SCF ligases 

 Regulation of SCF-ligase function can also be achieved via post-translational 

modification of the E3 ligase at the level of each individual substrate. These forms of 

regulation are categorized into two principal classes: ubiquitin- or phosphorylation-based 

modification. 

Phosphorylation-based regulation 

 The F-box protein SKP2 is phosphorylated at Ser64 and Ser72 by two kinases, 

Akt and Cdk2, respectively [79–81]. These phosphorylation sites are in close proximity to 

the destruction box motif (D-box) of SKP2. This D-box is responsible for the recognition 
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and binding of SKP2 to APCCdh1, ultimately controlling the stability of SKP2 in a 26s 

proteasome-dependent manner [79,82,83]. The phosphorylation of SKP2 at Ser64 and 

Ser72 prevents Cdh1 binding, resulting in SKP2’s increased stability and abundance 

[79,84].  

 High-throughput phospho-proteomics screens have shown that mouse and human 

SKP1 is also subjected to phosphorylation at a residue that is conserved among its 

orthologs [79,85,86]. Although the functional significance of this phosphorylation event 

is not known, the close proximity of the phosphorylation site to the F-box binding region 

suggests a potential involvement of phosphorylation in F-box binding. 
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Figure 1.12. TIR1 is an auxin receptor. 

The TIR1/AFB family of F-box proteins is the only characterized auxin receptor. The 

auxin molecule is responsible for enhancing the interaction between the F-box proteins 

and the Aux/IAA transcriptional inhibitors. The recruitment of Aux/IAA proteins to the 

SCFTIR1/AFB complex promotes Aux/IAA ubiquitination and degradation. This leads to 

expression of the auxin response gene under the action of ARFs. 
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Ubiquitin and ubiquitin-like modifications 

Subunit components of the SCF ligase can be regulated via auto-ubiquitination or 

through modification by the ubiquitin-like protein, Nedd8 [87–90]. For example, F-box 

proteins have been shown to be subjected to ubiquitination via the same E2 ligase that 

conjugates ubiquitin to the substrate [91]. This form of auto-ubiquitination is only seen 

when the F-box protein is not bound to a substrate, suggesting that F-box proteins are 

stabilized in the presence of substrate protein, and are subjected to proteasome-mediated 

degradation in the absence of an F-Box-substrate interaction (Figure 1.13) [92].  

NEDD8-based modification is the most well studied form of SCF regulation 

[88,90,92]. Nedd8 and ubiquitin share 58% identity and function in a similar manner 

[93,94]. The NEDDylation of target proteins is achieved via the sequential function of 

three enzyme complexes also known as E1, E2 and E3. E1 activates Nedd8 while E2 is 

responsible for conjugation of Nedd8, and finally, E3 is responsible for the selection of 

the substrate [88,90]. It should be noted here that NEDDylation and ubiquitination require 

an independent set of E1 and E2 complexes, however no unique E3 ligase responsible 

exclusively for NEDDylation has so far been identified [95]. It is hypothesized that the 

same set of E3 ligases responsible for ubiquitination are also utilized for NEDDylation. 

The CUL1 subunit of the SCF E3 ligase has been shown to be NEDDylated [89–91,93–

95]. This NEDDylation occurs at a highly conserved lysine residue within the CUL1 C-

terminus, in close proximity to the RBX1 binding site (Figure 1.13). 
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Figure 1.13. Schematic diagram of CUL1 NEDDylation/RUBylation. 

NEDDylation/RUBylation of Cullin proteins provides a means of regulation for the 

RING E3 ligases. CAND1 binds to CUL1 in a competitive manner opposing SKP1 

binding to CUL1, thus impeding the formation of a complete SCF ligase. The 

conjugation of the NEDD8 protein to CUL1 promotes the disassociation of CAND1, 

which in turn is hypothesized to allow the recruitment of the SKP1-F-box complex. 

NEDD8 is thought to be detached through the collaborative function of the COP9 

signalosome and a deubiquitination enzyme. 
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The NEDDylation of CUL1 has been shown to be essential for the ubiquitination of 

select SCF target proteins [88,89,96]. A mutation in the conserved lysine residue of 

CUL1 results in the accumulation of SCF ligase substrates such as IAA proteins and p27 

[97,98]. It is assumed that NEDDylation provides the flexibility that RBX1 needs for the 

recruitment and retention of E2-ligases [95]. Although the essentiality of subunit 

NEDDylation for selected target selection and ubiquitination by SCF-ligases has been 

shown, the extent to which target ubiquitination is generally dependent on CUL1 

NEDDylation has not been fully examined. NEDDylation has also been shown to control 

SCF-ligase homeostasis, where the NEDDylated form of CUL1 – although active – is 

highly unstable [95,96,98]. De-NEDDylation of CUL1 is mediated by COP9 

signalosome, which prevents the degradation of the protein ultimately resulting in the 

increased stability of CUL1 [99,100]. CAND1 (Cullin-Associated and NEDDylation-

Disassociated) binds to unneddylated CUL1 and prevents CUL1 NEDDylation, 

maintaining the protein in an inactive form [100,101]. The crystal structure of CAND1 in 

complex with CUL1 has shown that CAND1 wraps around the length of CUL1 thus 

covering Nedd8 and SKP1 binding sites [100,101]. Although it is known that CAND1 is 

displaced by the COP9 signalosome, the mechanism by which this is achieved is not 

understood. 

Oligomerization of the complex 

Most RING-E3 ligases have been shown to form higher-order structures through hetero- 

or homo-oligomerization (Figure 1.14) [102–104]. The functional significance or the 

structural determinates of these dimerization events has yet to be fully characterized. 

Various hypotheses have been put forward for the functional significance of these 
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oligomerization structures including increased stability of the E3 ligase through the 

covering of surface- exposed hydrophobic patches, enhanced affinity and efficient 

ubiquitination of substrate proteins (either through requirement and joint function of two 

E2 ligases on a single substrate) or aiding in the exposure of inaccessible ubiquitination 

sites [102,104,105]. The homo-dimerization of the SCF-ligase is thought to be mediated 

solely via the F-box protein [102,106–108]. To date, all F-box proteins that have been 

shown to dimerize are all part of the WD-40 class of F-box proteins and contain a short 

dimerization domain (D-domain). The dimerization of the WD-class of F-box proteins 

has been shown to be imperative for the functionality of the SCFCDC4 [106–109]. 

Mutations abolishing the ability of the yeast F-box protein Cdc4 to undergo dimerization 

results in poor ubiquitination of substrate proteins and an inability to rescue the 

phenotype presented by Cdc4 deletion mutants of yeast [105]. Homo-dimerization of 

Fbw7 is influenced by the phosphorylation of a Ser residue located close to the D-

domain, providing a means for regulated dimerization [110]. In cancerous cells, mutations 

in Fbw7 more commonly occur within the D-domain than in any other region of the 

protein, emphasizing the functional significance of Fbw7 homo-dimerization in the 

transformed state [111]. F-box proteins that do not possess a dimerization domain such as 

the FBL and FBO classes, are thought to function solely as monomers, although no 

experimental data has been provided to support this hypothesis [50]. 
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Figure 1.14. Oligomerization of SCF ligases. 

SCF dimerization has been shown to be mediated via their substrate recognition subunit, 

the F-box protein. Although the functional relevance of this dimerization is not clearly 

understood, it has been shown that dimerization of select F-box proteins is essential for 

substrate recognition and ultimately ubiquitination and degradation of said substrate 

mediated by the SCF ligase. It is hypothesized that the availability of two E2 ligases 

within close proximity of the substrate can result in a more efficient ubiquitination of the 

substrate than the presence of a single E2. There is also the possibility that F-box 

homodimerization increases its affinity for the substrate. 
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Ubiquitination in Arabidopsis 

Following the sequencing and subsequent annotation of the Arabidopsis genome, 

it was evident that genes known or predicted to participate in the post-translational 

ubiquitination machinery are highly elaborated in the Arabidopsis genome. It is estimated 

that nearly 6% of the protein-coding capacity of the genome is involved in the selection 

and ubiquitination of the proteome, with nearly 1400 proteins thought to act as potential 

E3 ligases [112,113]. Interestingly, in yeast roughly 150 genes (or 2.5% of the genome) 

are dedicated to this same process. Along with phylogenetic-based genomic studies, 

unbiased genetic surveys have also emphasized the importance of the ubiquitin 

machinery in plant growth and development [114–117]. These studies have shown that 

almost every aspect of plant growth and development including cell cycle, hormone 

signaling, environmental response and the like are regulated by the ubiquitination 

machinery [113,115–117]. 

In the Arabidopsis genome, the F-box protein family constitutes the largest E3 Ub 

ligase subunit family with at least 700 F-box proteins known to be expressed, in contrast 

to the human and yeast genome that encode for only 68 and 12 F-box proteins, 

respectively[118]. Furthermore, the third largest gene family in Arabidopsis is the RING-

domain containing protein family with 480 members [113], which is an order of a 

magnitude more complex than the corresponding gene set in yeast and humans comprised 

of 48 and ~120 members, respectively [118]. Sheer numbers indicates that in comparison 

to other non-plant model species such as S. cerevisiae, C. elegans, D. melanogaster, D. 

rerio, M. musculus and even H. sapiens, ubiquitination-associated genes are highly 

expanded in Arabidopsis [118]. It should be noted that this elevated level of gene 
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complexity is not unique to Arabidopsis and can be found in other plant species such as 

Oryza sativa, Populus trichocarpa and Zea mays, all of which possess a large number of 

genes dedicated to the ubiquitination machinery [12].  

 Several hypotheses have been postulated as to the evolutionary benefits that may 

accrue from the expansion of the ubiquitination machinery for the plant adaptive strategy, 

however none have been experimentally substantiated. One possible explanation is that 

plants are transparent to their environment and rely on post-translational mechanisms to 

rapidly modify their cellular processes in response to changes in their environment [118]. 

This hypothesis can be validated by comparing the collection of ubiquitinated proteins – 

or the “ubiquitome” – of the plant prior to and following exposure to environmental 

changes. Another possibility for the expansion of this genes family arises from a 

comparison of the number of ubiquitination-related genes in the genomes of herbaceous 

versus woody plants, where woody plants contain a smaller repertoire of ubiquitination-

related genes. The larger numbers in herbaceous plants could be an indirect result of the 

rapid life-cycle that the plant must undergo within a single growth and reproductive 

season. This suggestion is supported by the number of genes in a model species that 

possesses a shorter life cycle, such as C. elegans (21 SKP1 and 326 F-box genes) is in 

sharp contrast to lone SKP1 and ~ 70 F-box proteins expressed in humans and mice [118]. 

Another possibility could be that the high number of genes is merely the result of 

polyploidy through whole-genome duplications - a common evolutionary feature within 

the plant kingdom. However, if one accepts this hypothesis, the retention of such a large 

family of genes during plant evolution must also be explained. For instance, although 

there are 200 pseudo-F-box proteins in Arabidopsis, there are 700 functional F-box genes 
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that have been annotated within the genome. A counterargument that can be made for the 

retention of such a high of number of ubiquitination related genes might be the neo-

functionalization of a number of genes within the family. While the literature lacks any 

experimental evidence supporting this hypothesis, one could recognize this as a viable 

alternative. To test this hypothesis one would have to compare the expansion and 

retention of phylogenetic clades. For instance, if one assumed that neo- or sub-neo-

functionalization is occurring within a certain clade associated with the new function that 

clade should exhibit signs of rapid evolution relative to the clades that are associated with 

the retained functions. 

SCF-ligase in Arabidopsis 

The Arabidopsis genome expresses 5 of the 7 known Cullin subunit proteins 

(Cul1, Cul2, Cul3A, Cul3B and Cul4) found in humans and yeast [113,119], all of which 

are able to assemble as part of Cullin-based E3 ligases and play an essential role during 

plant growth and development [119,120,120]. Arabidopsis CUL1 has been extensively 

shown to assemble as part of Arabidopsis SCF-ligases. Unlike the other components of 

the SCF ligase, one and two genes encode CUL1 and RBX1, respectively [119,120]. 

Other subunit components of the SCF-ligase in Arabidopsis such as ASK1 (Arabidopsis 

SKP1-like protein) and F-box proteins are encoded by large gene families comprising 21 

and 700 genes, respectively, accounting for almost 2.5% of the coding capacity of the 

genome [118]. The large number of SCF-related genes allows for the assembly of a 

combinatorially diverse set of SCF-ligase complexes, providing the means for the 

targeting of a complex spectrum of different proteins for ubiquitination. Signifying the 

importance of this complex throughout the plant development are the severe 
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developmental defects associated with loss-of-function alleles of genes encoding broadly 

functional SCF components such as ASK1, ASK2, RBX1, RBX2 and CUL1 [117,120–

122].  

SCF ligases and hormone regulation 

 Plant hormones are small molecules synthesized by plants that have a broad 

impact on plant growth and development. Plant hormones include such compounds as 

auxin, jasmonic acid, cytokinin, abscisic acid, gibberellin, ethylene and brassinosteroid 

[123]. Over the past 20 years, genetic studies have elucidated pathways that lead to the 

biosynthesis and regulation of these hormones including how these hormones exert their 

effects. Interestingly, a common theme among most of these hormones is the utilization 

of the ubiquitination machinery – more specifically, the SCF-ligase class of E3 Ub 

ligases – to control the abundance of specific activators and repressors of hormone-

signaling pathways [124]. Moreover, some can even initiate substrate binding through 

their direct binding to components of the SCF-ligase [124,125]. I describe here, in some 

detail, the mechanism and function of several of these hormones and how they interplay 

with the SCF ligase machinery. 

Auxin signaling 

The plant hormone auxin, or indole-3-acetic acid (IAA), is a small amphipathic 

molecule (175.184 MW) (Figure 1.15) that has a central role in plant growth and 

development [123]. Auxin signaling is achieved through the regulation of a set of 

transcription factors known as auxin response factors (ARFs) which act as either negative 

or positive regulators of auxin response genes [123,125]. A family of five auxin F-box 

(AFB) proteins has been extensively characterized to act as co-receptors for the IAA 
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molecule [125–128]. The binding of IAA enhances the affinity of these AFBs for 

Aux/IAA transcription factors, which act as negative regulators of ARFs. In the presence 

of auxin, Aux/IAA proteins are targeted for ubiquitin-mediated degradation via the 26S 

proteasome. The Arabidopsis genome expresses 5 AFB and 29 Aux/IAA proteins. While 

no experimental data has been provided, it has been suggested that the combination of the 

different AFB and Aux/IAA proteins along with diverse set of affinities observed 

between the two groups of proteins provides a means for auxin to play diverse roles 

during growth and development [128,129]. At this juncture, the possibility that auxin 

could have additional unidentified receptors cannot be excluded and further experimental 

data is required to validate the above hypothesis. 
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Figure 1.15. The chemical structure of indole-3-acetic acid. 

The plant hormone auxin, or indole-3-acetic acid (IAA), is a small amphipathic molecule 

(175.184 MW). 
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Jasmonate signaling 

 Jasmonates are a group of small molecules composed of jasmonic acid and its 

derivates, which are responsible for the mediation of biotic and abiotic responses in 

plants [123]. COI1 encodes an F-box protein that is structurally similar to AFB, and was 

one of the first components discovered in the jasmonate signaling pathway 

[116,123,130,131]. The jasmonate signaling pathway is now known to be highly 

reminiscent of the auxin-signaling pathway in several respects. Jasmonate ZIM domain-

containing (JAZ) proteins act as negative regulators of jasmonate signaling through their 

interaction with MYC2 transcription factors. MYC2 transcription factors have been 

shown to act as direct effectors of jasmonate response genes. The JAZ proteins are 

targeted for degradation via SCFCOI1 in the presence of jasmonic acid thus allowing 

MYC2 transcription factors to coordinate the expression of jasmonic acid response genes 

(Figure 1.16) [131]. Structural studies have revealed that jasmonic acid binds directly to 

COI1 and in turn increases the affinity of COI1 for JAZ proteins [130]. To date, COI1 is 

the sole identified receptor for jasmonic acid, although the broad range of functions that 

jasmonate can play suggests that additional receptors remain to be discovered. 

Gibberellin signaling 

 Gibberellin is a plant steroid-based plant hormone that can regulate a diverse set 

of functions in plants, such as cell division and timing of flowering [123]. DELLA 

proteins have been shown to act as negative regulators of gibberellin signaling through 

their direct interaction with a set of transcription factors, PIF3 and PIF4 [125]. 
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Figure 1.16. COI1 is a jasmonate receptor. 

COI1 is the main receptor for the jasmonate (JA) molecule. The binding of jasmonyl-

isoleucine (JA-Ile) to COI1 enhances the recruitment of JA response inhibitors, the JAZ 

proteins. Binding of JAZ proteins to SCFCOI1 results in the ubiquitination and degradation 

of these JAZ proteins, resulting in the derepression of the MYC2 transcription factor.  
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PIF3 and PIF4 are responsible for the activation of expression of gibberellin response 

genes [125]. DELLA proteins are subjected to proteasome-mediated degradation via the 

SCF ligase harboring the F-box proteins SLEEPY1 (SLY1) or SNEEZY1 (SNY1) in the 

presence of gibberellin [125,132]. Unlike auxin and jasmonate, gibberellin does not 

directly bind to the F-box proteins but rather to a different protein, GID1. GID1 acts as 

co-factor and mediator between SLY1/SNY1 and the DELLA proteins (Figure 1.17) 

[125,132]. The mode of GID1 action resembles that of CKS1 in SCFSKP2, which is 

responsible for the degradation of p27 in the regulation of cell cycle progression [133]. 

SCF-ligase and other hormones 

The SCF ligase has also been shown to regulate other hormone singling pathways, 

such as strigolactone signaling mediated by the F-box protein MAX2, or the ethylene-

signaling pathway. In the latter case, not only are F-box proteins involved in controlling 

signaling (EBF1 and EBF2), but also in the regulation of ethylene synthesis (ETO1 and 

ETL1) [125,134]. 
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Figure 1.17. Gibberellin-mediated degradation of DELLA proteins. 

GID1 acts as the main gibberellin receptor. The binding of gibberellin enhances the 

formation of a complex between GID1 and the DELLA protein. This interaction 

promotes the recognition and subsequent poly-ubiquitination of DELLA proteins by 

SCFSLY1/SNY2. DELLA proteins are subsequently degraded, releasing PIF proteins that 

bind DNA and act as transcription factors.  
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Plant morphogenesis and the SCF-ligase 

Forward genetic screens have functionally connected diverse aspects of plant 

morphogenesis with key components of the SCF ligase machinery in Arabidopsis. As 

described earlier, the UFO protein is an F-box protein that regulates both homeotic and 

cadastral functions supporting normal growth and development during florigenesis. 

Phenotypic analysis of ufo mutant plants has revealed de-regulation of the spatial pattern 

of cell division in early floral meristems. UFO has been suggested to target LEAFY 

(LFY) for degradation, thus acting as a negative regulator of the B-class of flower 

homeotic genes [135].   

FBL17 is a male germline-specific F-box protein that allows the haploid cells of 

flowering plants to undergo a division and produce twin sperm cells. This cell division is 

mediated by the degradation of the cyclin-dependent kinase inhibitors, KRP6 and KRP7, 

following transient expression of FBL17 in male germline cells [136]. 

Several F-box proteins, such as ZTL and FK1, also tightly regulate the plant 

circadian clock. These F-box proteins possess a common LOV domain that is involved in 

plant responses to blue light. ZTL and FK1 are responsible for the degradation of key 

circadian regulators, TOC1 and PRR5. It is believed that the oscillating levels of these 

proteins, achieved through combined expression and degradation, allows the plants to 

respond and measure the photoperiod and distinguish between the various seasons 

[134,137]. 

Identification of ubiquitinated proteins 

Due to the rapid degradation of ubiquitinated proteins and transient interaction 

between E3 ligases and their substrates, identification of ubiquitinated proteins has been 
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of utmost difficulty [138]. Early approaches in identification of targets for various E3 

ligases relied mostly on genetic studies. Recent advancements in mass spectroscopy and 

various affinity purification methods have greatly assisted in the global identification of 

post-translational modifications [139], proteome-wide profiling of ubiquitinated proteins 

still remains a challenge. Nevertheless, proteome-wide profiling of ubiquitinated proteins 

still remains a challenge. This challenge is more pronounced in the Arabidopsis-ubiquitin 

community where only a small number of the ubiquitinated proteins (~200) have been 

identified, only a handful of which have been fully characterized. In part due to their 

importance to our understanding of ubiquitination as a post-translational aspect of gene 

expression regulation, I review here the various methods that have been employed to 

identify ubiquitinated proteins in both the Arabidopsis community and beyond. 

One of the first attempts at the identification of ubiquitinated proteins was made 

by expressing an epitope-tagged ubiquitin in a yeast ubiquitin null background [141]. A 

similar study was done in mammalian cells using His-tagged ubiquitin. Both methods 

were successful in identifying ~100 and ~50 ubiquitinated proteins, respectively 

[141,142]. This method has been further optimized and has allowed for the identification 

of 750 ubiquitinated proteins in mammalian cells [142] . A similar approach in 

Arabidopsis using His-tagged ubiquitin resulted in only 54 ubiquitinated proteins being 

identified [143]. Although purification of ubiquitinated proteins using tagged ubiquitin 

has its advantages such as the ability to purify purification of proteins under denaturing 

conditions. Nevertheless, it is widely accepted that application of a tagged form of 

ubiquitin can interfere with its function - a problem more evident with the linear form of 

ubiquitin chains. Furthermore, it has been shown that the over-expression of ubiquitin can 
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cause mild dominant-negative phenotypes in the cells and organisms studied - likely due 

to the competition between over-expressed and endogenous ubiquitin, especially in 

organisms where multiple loci are dedicated to the expression of ubiquitin genes such as 

in Arabidopsis and mammalian cells [142–144].  

To overcome problems associated with the utilization of tagged ubiquitin several 

labs have used alternative methods of enrichment employing Ubiquitin Binding Domains 

(UBD) to enrich for ubiquitinated proteins [145,146]. UBDs vary in their binding affinity 

for ubiquitin and its different ubiquitin moieties [147]. Enrichment using UBDs has 

allowed for the identification of ubiquitinated proteins under native conditions. 

Employing UBDs in purification of ubiquitinated proteins in mammalian cells coupled 

with mass spectroscopy-based characterization has led to identification of 300 

ubiquitinated proteins [148]. A similar approach in Arabidopsis cell extracts purified 294 

proteins, only 54 of which bore a ubiquitin signature [145]. One explanation for the 

identification of only a small number of ubiquitinated proteins could be that Arabidopsis 

cell lines were employed instead of whole plant tissues. A second study utilized 

Arabidopsis seedlings, which identified a comparable number of ubiquitinated proteins 

suggesting that the inability to identify a large number of ubiquitinated proteins reflects 

the limitations of the techniques and not the sample used [149]. 

One of the limitations hindering the utility of ubiquitin antibodies for purification 

purposes has been their low affinity towards ubiquitinated proteins. To overcome this 

problem two different approaches have been utilized. In one approach, the unique Gly-

Gly-Lys signature of ubiquitinated proteins following trypsin digestion has been 

exploited to develop a unique antibody against this remnant peptide [150]. This antibody 



! 47 

was used to characterize several hundred novel ubiquitinated proteins in mammalian cells 

[150]. One disadvantage associated with this antibody approach is that it cannot 

distinguish between ubiquitin modification and ubiquitin-like modifications such as 

NEDDylation [51]. Secondly, for reasons not yet fully understood, the antibody 

developed was unable to identify the majority of known ubiquitinated proteins present in 

the extract. The application of this antibody approach has so far yet to be reported in 

Arabidopsis.  

Other studies have taken a different approach to tackle the problem associated 

with the low affinity of the ubiquitin antibodies. Through the exploitation of phage-

display libraries exposed to various ubiquitin chain peptides, high-affinity ubiquitin 

chain-specific antibodies were developed [151]. The high affinity of these antibodies has 

been experimentally verified but has not yet been employed in a mass spectroscopy-based 

proteomic screen. 

Genetics-based assays have been used as an alternative approach towards 

profiling the ubiquitome of mammalian cells. This approach has been spearheaded by the 

Elledge lab and is known as Global Protein Stability (GPS) profiling [139,139,151,152]. 

GPS profiling examines, in real-time, the changes in the stability of proteins under 

various treatments. GPS profiling relies on a fluorescent reporter system whereby two 

fluorescent proteins, GFP-ORF and RFP, are produced from a single transcript. The 

relative ratio of GFP/RFP is an indirect measure of protein stability. This method has 

been employed in mammalian cells and has led to the identification of 294 Cullin 

substrates using various NEDDylation inhibitors and dominant-negative forms of Cullin 

proteins [139]. 
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An alternative to proteomic- and genetics-based approaches is the utilization of 

protein arrays. Protein arrays populated with over 5000 proteins have been employed for 

the identification of NEDD4 E3 ligase substrates [153]. The single-subunit nature of 

HECT-based E3 ligase along with an extensive knowledge of the mode of action of this 

class of E3 ligases has allowed for a relatively easy recapitulation of the ubiquitination 

behavior in vitro. In this way, NEDD4 ubiquitination was reconstituted in the presence of 

the appropriate E1 and E2 enzymes on the protein array, which led to the identification of 

154 ubiquitinated proteins [153]. Due to the multi-subunit nature of SCF ligases, along 

with the large number of Skp1 and F-box proteins, which can assemble as part of the SCF 

ligase, reconstitution of this class of E3 ligase activity in vitro is not easily achieved 

[Personal communication, Judy Callis], thus a similar approach cannot be readily 

exploited for the SCF-ligase.  
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Summary 

Our understanding of the ubiquitin machinery in Arabidopsis has been greatly 

expanded in the past decade and has resulted in an appreciation for ubiquitination-related 

processes as a major contributor to the regulation of plant growth and development. 

Although forward genetic screens have associated ubiquitination to almost every aspect 

of plant biology, further elucidation of the underlying molecular processes will require 

more targeted, reverse-genetic approaches combined with more effective methods for the 

identification of ubiquitinated proteins. Arising from the central role of post-translational 

ubiquitination in various aspects of plant biology, furthering our understanding of 

ubiquitin biology and regulation could help us elucidate the evolutionary benefits that 

plants have gained by acquiring such a vast array of genes devoted to the ubiquitination.  

Furthermore as a prominent translational model species, Arabidopsis, our study of 

ubiquitination events can not only further our understating of various aspects of growth 

and development but can also result in diverse approaches for the improvement of 

agriculture ultimately advancing human health.  
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The SKP1-like Gene Family of Arabidopsis Exhibits a High Degree of 

Differential Gene Expression and Gene Product Interaction During 

Development1 

 

 

                                                 
1 This chapter is the outcome of joint research. 
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INTRODUCTION 

 Genetic and molecular studies in the model plant species Arabidopsis thaliana 

have emphasized the importance of ubiquitin-mediated targeted protein degradation for 

the regulation of diverse plant-specific processes [1–3]. Genetic surveys for the 

identification of loci that regulate patterning and development have revealed numerous 

genes that encode known or predicted subunit components of both RING and HECT 

classes of E3-ubiquitin ligases (E3-Ub). Functional analysis of mutants at many of these 

loci suggests a central role for post-translational protein degradation in such plant-

specific functions as auxin response [4,5], response to jasmonate [6], maintenance of 

circadian rhythm [7,8], photomorphogenesis [9] and floral development [10], to name but 

a few. 

 Arabidopsis is an attractive model system in which to study the role of post-

translational protein modification in the regulation of development, in part due to its 

many technical advantages coupled with a wealth of genetic resources and genomic data 

sets that facilitate hypothesis generation and functional analysis. Although Arabidopsis 

possesses one of the smallest known angiosperm genomes studied to date, with 147Mbp 

encoding approximately 27,000 protein coding genes, it has nevertheless been annotated 

to contain over 1,500 genes that are known or predicted to encode subunits of ubiquitin 

ligase complexes (nearly 6% of the coding capacity) including more than 700 F-box 

proteins comprising about 3% of the Arabidopsis genome coding capacity [1]. This 

genetic complexity and allocation of gene coding capacity to SCF-ligase complexes 

involved in post-translational protein turnover-related processes is prominent in plants, 

and can be compared with that of Homo sapiens where only 69 F-box genes have been 

identified [11]. 
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 The quaternary subunit composition of the SCF-class of E3-Ub complexes have 

been studied in numerous model systems [5,12–15], and are minimally comprised of one 

each of the F-box, Skp1-like, Rbx1 and Cul1 class of polypeptide subunits [15,16]. For 

the most part, the subunit stoichiometry of individual functional complexes has yet to be 

experimentally determined, although crystal structures for select SCF-class E3-ubiquitin 

ligases have been described for yeast, human and Arabidopsis protein complexes 

[5,13,15,17]. Recent evidence suggests that assembly of SCF-class E3-Ub ligase 

complexes may result in protein interactions involving multiple F-box subunits [16,18–

20]. The characterization of subunit interaction potential and stoichiometry for select 

SCF-class of E3-Ub complexes will likely prove important for understanding the 

combinatorial diversity of complexes that may form across developmental time and 

space, together with a determination of their associated biological function [21]. Given 

the relatively large number of genes that are known or predicted to function in post-

translational ubiquitination of proteins in Arabidopsis, together with the close primary 

structural similarity of the genes within the ASK gene family, a significant degree of 

functional redundancy might be expected. Knock down-based functional assessment of 

potentially redundant genes is commonly conducted on the basis of deduced amino acid 

sequence similarity, often ignoring functional aspects of genetic redundancy such as 

expression, localization and gene-product interaction. Since amino acid sequence 

similarity is not the only factor contributing to gene redundancy, such studies often result 

in a lack of observable phenotype. Therefore, a more insightful assessment of gene 

redundancy potential within the ASK gene family should include multiple aspects of gene 
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function as a foundation upon which any hypothesis driven functional assessment might 

be derived. 

  Among the four canonical subunit classes that are known to participate in the 

formation of the SCF-class of E3-Ub complexes, relatively little is known about the 

functional role of the individual Arabidopsis Skp1-like family of polypeptides (ASK 

proteins). The gene family encoding ASK polypeptides in Arabidopsis is complex, with 

21 known expressed genes compared to a single Skp1-like gene in yeast and H. sapiens 

[22–24]. Phylogenetic analysis of the ASK gene family based upon the deduced amino 

acid sequence has been used to define clades that are suggested to predict functional 

redundancy among individual ASK genes [24]. Indeed, studies involving loss of function 

alleles in the closely related genes ASK1 and ASK2 indicate these two genes perform 

strongly overlapping functions that are essential for early patterning and development 

[24]. These studies are complemented by the finding that the ASK1 and ASK2 proteins 

interact broadly with F-box proteins, suggesting correspondingly diverse roles in the 

formation of functional SCF complexes in Arabidopsis [21]. The function of the 

remaining 19 members of the ASK gene family remains largely uncharacterized. 

 Expression studies involving ASK genes in Arabidopsis have generally involved 

reporter-gene fusion and non-quantitative RT-PCR approaches, where such studies 

indicate that certain members of the ASK gene family are preferentially expressed in a 

subset of organs and tissues at different times during development [23,25]. Quantitative 

studies provide the desired precision needed for higher-resolution comparison of ASK 

gene expression and clustering on the basis of expression – an aspect that has been 

largely neglected from previous studies to date. This type of information can also be 
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important for defining the extent of expression overlap among SCF subunits, and for 

elucidating their potential to participate in the formation of SCF complexes. 

 In this report we analyze functional redundancy within the ASK gene family by 

evaluating three aspects of ASK protein and cognate gene redundancy; a quantitative 

analysis of ASK transcript abundance in select organs during development; the sub-

cellular compartmentation of expressed tagged ASK proteins; and an in situ analysis 

using bimolecular fluorescence complementation (BiFC)-based approaches to assess 

protein-protein interactions involving ASK polypeptides. Taken together, the study 

concludes that phylogenetic relatedness based upon primary amino acid sequence 

similarity is a poor predictor of redundancy defined by steady-state transcript abundance, 

sub-cellular localization and gene product interactions exhibited by products of the ASK 

gene family. The results are discussed in the context of the potential for combinatorial 

complexity of SCF complex formation by products of the ASK gene family.  

 

 

 

 

 

 

 



   

 68 

MATERIALS AND METHODS 

Plant Material and Growth Conditions 
  
 Arabidopsis ecotype Columbia (Col-0) was used throughout the study (ABRC 

stock No. CS7000). Seeds were sterilized by brief sequential washes in 50% ethanol and 

50% Bleach/SDS prior to plating on 0.5X MS medium [26] containing 1% sucrose, and 

0.8% agar. Seeds from treated plants were harvested, sterilized and stratified at 4°C for 2-

3 days prior to plating and germination on solid 0.5X MS medium containing 50 µM 

D,L-phosphinothricin (a gift from Bayer Crop Science Canada) using the rapid procedure 

as described [27]. Two to three independent transgenic plants were subsequently selected 

for each analysis. 

Plasmid Construction 

 For all expression constructs, a summary of standard gene nomenclature and 

molecular constructs are summarized in Table 2.1. For 35S-YFP-ASK(s) plasmid 

assembly, Gateway™-compatible cDNA clones were obtained from the ABRC stock 

center (Columbus, OH; see Table 2.2) and were cloned into pEarleyGate104 [28] using 

the commercial Gateway™ recombination system (Invitrogen). To assemble 35S-ASK1-

CFP, 35S-TIR1-CFP and 35S-CUL1-CFP constructs, termination codons were first 

removed from the cDNA clones by PCR amplification of the coding region using the 

indicated primers (Table 2.2). Amplified PCR products were subsequently cloned into 

pDONR221 using the Gateway™ recombination system prior to recombination into 

pEarleyGate102 [28]. All recombinants were sequenced to verify the integrity of 

expression constructs. 
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Gene Name TAIR Locus identifier ABRC cDNA stock Number 
ASK1 At1g75950 G10618 
ASK2 At5g42190 N/A 
ASK3 At2g25700 G13779 
ASK4 At1g20140 G14059 
ASK5 At3g60020 PENTR221-AT3G60020 
ASK6 At3g53060 PENTR221-AT3G53060 
ASK7 At3g21840 N/A 
ASK8 At3g21830 PENTR221-AT3G21830 
ASK9 At3g21850 PENTR221-AT3G21850 
ASK10 At3g21860 PENTR221-AT3G21860 
ASK11 At4g34210 PENTR221-AT4G34210 
ASK12 At4g34470 N/A 
ASK13 At3g60010 N/A 
ASK14 At2g03170 PENTR221-AT2G03170 
ASK15 At3g25650 PENTR221-AT3G25650 
ASK16 At2g03190 N/A 
ASK17 At2g20160 N/A 
ASK18 At1g10230 N/A 
ASK19 At2g03160 PENTR221-AT2G03160 
ASK20 At2g45950 N/A 
ASK21 At3g61415 N/A 
CUL1 At4g02570 G09998 
TIR1 At3g62980 GC105370 
AFR At2g24540 G21324 
COI1 At2g39940 G12955 
EID1 At4g02440 G15754 

SKP2A At1g21410 G14226 
SLY1 At4g24210 G50138 
UFO At1g30950 PENTR221-AT1G30950 

 
Table 2.1. Gene names and locus identifiers for genes used in this study.  
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attB1-AtCUL1 GGG GACAAGTTTGTACAAAAAAGCAGGCTT AAT 
GCCAACTTTGTACAAAAAAG 

attB2-AtCUL1-stop GGGGACCACTTTGTACAAGAAAGCTGGGTA 
AGCCAAGTACCTAAACATGTTA 

attB1-AtTIR1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATG
CCAACTTTGTACAAAAAAG 

attB2-AtTIR1-stop GGGGACCACTTTGTACAAGAAAGCTGGGTATAAT
CCGTTAGTAGTAATGATT 

attB1-AtASK1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATG
TCTGCGAAGAAGATTGTGT 

attB2-AtASK1-stop GGGGACCACTTTGTACAAGAAAGCTGGGTATTCA
AAAGCCCATTGGTTCTCT 

 
Table 2.2. Primers used for stop codon removal in Gateway® vectors. 
 

All primers are indicated in the 5’-3’ orientation. 
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To assemble the described BiFC constructs, cDNA domains coding for the indicated 

ASK and F-box proteins were fused to the N- or C-terminal domains of EYFP (nEYFP or 

cEYFP). The ASK Gateway™-based cDNA clones (listed in Table 2.3) were 

subsequently cloned into BiFP2 [29] vectors using the Gateway™ recombination system, 

resulting in an experimental set of 35S-cEYFP-ASK constructs. Similarly, F-box protein-

encoding cDNA clones were cloned into BiFP3 [29], resulting in the 35S-nEYFP-F-box 

set of constructs. A complete list of the vectors used is summarized in Table S4. In those 

instances where the entry clone and destination plasmid backbone carried the same 

selection marker, for cloning purposes 1µg of the pEntry plasmid was initially digested 

and counter-selected by restriction digestion with MluI prior to input to the LR clonase 

reaction. Correct expression of the desired BiFC fusion products was independently 

evaluated in N. benthamiana leaves by construction, transformation and expression of 

select ASK and F-box fusions in the pE-SPYNE-GW and pE-SPYCE-GW gateway 

compatible BiFC vectors harboring Myc and HA tags at the N-terminus of the split YFP 

domain, respectively [30]. 

Generation of Transgenic Plants 

 The 35S-YFP-ASK constructs were transformed into Agrobacterium tumefaciens 

strain AGL1 by electroporation, and the presence of transgenes were confirmed by in situ 

PCR. Plant transformations were performed using the floral dip method [31]. Seeds from 

treated plants were harvested, sterilized and stratified at 4°C for 2-3 days prior to plating 

and germination on solid 0.5X MS medium containing 50 µM D,L-phosphinothricin (a 

gift from Bayer Crop Science Canada) using a rapid procedure previously described [27]. 

Two to three independent transgenic plants were subsequently selected for each analysis. 
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pENTR pDestination pExpression 
ASK1 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK1 
ASK3 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK3 
ASK4 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK4 
ASK5 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK5 
ASK6 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK6 
ASK8 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK8 
ASK9 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK9 
ASK10 pEarlygate104(35S-YFP-attR) 35S-YFP-ASK10 
ASK1 pEarlygate102(35S-attR-CFP) 35S-ASK1-CFP 
TIR1 pEarlygate102(35S-attR-CFP) 35S-TIR1-CFP 
CUL1 pEarlygate102(35S-attR-CFP) 35S-CUL1-CFP 
ASK1 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK1 
ASK3 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK3 
ASK4 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK4 
ASK5 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK5 
ASK6 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK6 
ASK8 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK8 
ASK9 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK9 
ASK10 BiFP3(35S-cYFP-attR) 35S-cYFP-ASK10 
UFO BiFP2(35S-nYFP-attR) 35S-nYFP-UFO 
TIR1 BiFP2(35S-nYFP-attR) 35S-nYFP-TIR1 
COI1 BiFP2(35S-nYFP-attR) 35S-nYFP-COI1 
EID1 BiFP2(35S-nYFP-attR) 35S-nYFP-EID1 
AFR BiFP2(35S-nYFP-attR) 35S-nYFP-AFR 
SLY1 BiFP2(35S-nYFP-attR) 35S-nYFP-SLY1 
SKP2A BiFP2(35S-nYFP-attR) 35S-nYFP-SKP2 

 
Table 2.3. Plasmid constructs generated in this study.  
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Western Blotting 

 Protein was extracted following fusion construct expression in a N. benthamiana 

transient expression system.100 mg of leaves, infiltrated with the indicated expression 

constructs were ground in liquid nitrogen and mixed with 100 µl of extraction buffer [100 

mM Tris·HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 10 mM 2-mercaptoethanol, 10% 

glycerol, 0.1% Triton X-100, 1× EDTA free Complete protease inhibitors (Roche 

Applied Science)] [32]. Extracts were centrifuged at 14,000 g for 15 min and the 

supernatant was collected. Proteins were resolved by 12% SDS-PAGE and transferred to 

a PVDF membrane using a TransblotSD™ Semi Dry Transfer (Biorad) in Bjerrum and 

Schaefer-Nielsen buffer (48 mM TRIS, 39 mM glycine, 20% methanol). The blots were 

incubated with either anti-HA (Y-11) or anti-c-myc (9E10) antibodies (Santa Cruz 

Biotechnology) at a 1:1,000 dilution in 1% skim milk powder in TBST overnight at 4ºC. 

Blots were washed 3 times with TBST for 10 min and incubated with secondary antibody 

at a 1:10,000 dilution in 2% skim milk/TBST for 1 h at room temperature. Blots were 

subsequently washed and exposed using Pico West Reagent™ (Fisher Scientific) and 

imaged using an AlphaImager device (Alpha Innotech Corp., San Leandro, CA). 

Transient Expression in N. benthamiana 

 All BiFC vectors were transformed into Agrobacterium tumefaciens strain AGL1 

by electroporation, and the presence of transgenes was confirmed by in situ PCR.  

Mixed Agrobacterium cultures were co-infiltrated to the abaxial surface of 3-4 week-old 

N. benthamiana plants as described [33]. The p19 protein of tomato bushy stunt virus was 

co-expressed with all binary BiFC expression constructs in order to suppress gene 
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silencing [33]. Fluorescence signals were visualized in epidermal cell layers of the leaves 

after 3 days of infiltration using confocal microscopy.  

Confocal Imaging 

 Imaging of BiFC signals in planta was done using an Olympus Model FV1000 

point-scanning/point-detection laser scanning confocal microscope. Cyan fluorescent 

protein (CFP), yellow fluorescent protein (YFP) and propidium iodide (PI) were excited 

by using 440, 512 and 543 nm laser lines, respectively. When using multiple fluorophores 

simultaneously, images were acquired sequentially in order to reduce excitation and 

emission overlaps. Olympus water immersion PLAPO60XWLSM (NA 1.0) and 

UPLSAPO 20x (NA 0.75) objectives were employed. Image acquisition was conducted at 

a resolution of 512 x 512 pixels, with a scan rate of 10 ms per pixel. Olympus 

FLUOVIEW v1.5 software was used for image acquisition and the export of TIFF files. 

Figures were assembled using GIMP 2.0 (http://www.gimp.org/). 

Quantitative Real-Time PCR 

 Total RNA was isolated using a commercial mini-preparation kit (RNeasy™, 

Qiagen) and contaminating DNA was removed using an immobilized DNAse column 

(RNAse-Free DNAse Set™, Qiagen). Two micrograms of total RNA was used as 

template for first strand cDNA synthesis in a 20-µL reaction using the RevertAid™ 

synthesis kit (Fermentas). The resulting cDNA was diluted 1:20 and 1.5 µL of cDNA was 

used in a standard 20-µL PCR reaction. Analysis of gene expression used the Maxima™ 

Sybr-green qPCR master mix (Fermentas) in an Applied Biosystems 7300 RT- PCR 

System, following the manufacturer’s instructions. The primers used in the qRT-PCR 

analyses are listed in Table 2.4.  
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Name Sequence (5’-3’)  
CUL1_Sense  ACAGCAGCCTGGTAAGTAGA  
CUL1_Antisense  CAAGTGTGTTGAAGTCTTCA  
 ASK1_Sense  CAGCCAGAATGAGTTCAAAG  
ASK1_Antisense  GAGTATTGCAAGAGGCACGT  
ASK2_Sense  CAGCCAGGATAAGATCGAAG  
ASK2_Antisense  GCTGAGAAATCCGAAACCAC  
ASK3_Sense  AAATAGTTGGCAGCCCGAAG  
ASK3_Antisense  CTGGTGGAGACAAGGATTTC  
ASK4_Sense  TAGTTCGCAGCCAAGATGAG  
ASK4_Antisense  GAGTATTGCAAGAAGCACGT  
ASK11-12_Sense  GGTGGAAGAAGCGGTAGCAA  
ASK11-12_Antisense  GAGGGATTCCATCAGCAACG  
ASK7_Sense  CTCCCCCACAAAGAAAACAA  
ASK7_Antisense  CGTACATTCGGCTTCAATCA  
ASK20_Sense  GGCTCTGTGAGTTGACCTCT  
ASK20_Antisense  CCTCCTCAGTAAGGTCATCA  
Actin2_Sense  TCCCTCAGCACATTCCAGCAGAT   
Actin2_Antisense  AACGATTCCTGGACCTGCCTCATC   
Ubiquitin10_Sense   CACACTCCACTTGGTCTTGCGT   
Ubiquitin10_Antisense  TGGTCTTTCCGGTGAGAGTCTTCA   
ß-6-tubulin_Sense  ACCACTCCTAGCTTTGGTGATCTG   
ß-6-tubulin_Antisene  AGGTTCACTGCGAGCTTCCTCA   
ASK5_Sense  GACGGCTGCGCCACTGATGT  
ASK5_Antisense  TTTGCTCTTGACGTGCTTCTCGCA  
ASK8_Sense  ACGATCTTTGCTCTCACCAATGCTGC  
ASK8_Antisense  AAGAATTCGCGCATCTGCTTCGGA  
ASK9_Sense  GCCGCACGCCAATGCCAGATTA  
ASK9_Antisense  GCGGCATCGACGTGGTGCTT  
ASK10_Sense  GCATGCCAAACCGTCGCGGA  
ASK10_Antisense  GTTGAAGAATTTGCGAGTGTGCTCCAC  
ASK15_Sense  AGAAGAAGCCCGATGATGAGGCGAA  
ASK15_Sense  TCGACGTTGAGATAGTTAGCAGCGAGA  
ASK14_Sense  CGTCGTTGACGAAGAAAGCGACGA  
ASK14_Antisense  CAGCGAGCAAGAGTTGGAAGACCG  
TIR1_Sense  GCGCCTCTGGGTGCTTGACT  
TIR1_Antisense  GCCCCTGTTCCGTCAATGCCA 
ASK6_Sense  AAGGGTATGGCAGAAGACGA 
ASK6_Antisense  TCTTTGCTCTCAACGACGTG 

 
Table 2.4. Oligonucleotide primers used for qRT-PCR analyses. 
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To identify the optimal internal reference control β6-tubulin, ACTIN2 and UBQ10 

expression was assessed across all organs. ACTIN2 (At3g18780) transcript expression 

showed the least amount of variation across all tissues examined and was used as the 

internal standard in order to normalize the qRT-PCR data. Real time PCR results were 

analyzed using Q-Gene software that expresses data as Mean Normalized Expression 

(MNE) [34] which is directly proportional to the amount of mRNA of the target genes 

relative to the amount of mRNA of the ACTIN2 internal reference standard. In brief, to 

calculate MNE, the PCR efficiency (E), mean cycle threshold (Ct) and related standard 

errors (SEs) were used to calculate ECt for both the reference and target genes. MNE was 

subsequently calculated by dividing the ECt of the reference gene by the ECt of the target 

gene. Gene expression is depicted in MNE units after ACTIN2 normalization (Table S5). 

Two biological and 3 sample replicates were performed for each tissue/organ studied 

while taking into consideration the efficiency of the reaction for each primer combination 

[34]. Data is depicted as the mean of two independent biological repetitions ± SE. To 

calculate the relative fold-change expression among ASK genes, the ‘Relative Expression 

Software Tool-Multiple Condition Solver’ (REST-MCS) was used [35,36]. Pearson-

based hierarchical clustering of ASK gene expression data was done using the online 

version of Expression Profiler found at EBI (http://www.ebi.ac.uk/expressionprofiler/) 

[37]. 

Phylogenetic Analysis 

ASK protein sequences were retrieved from the TAIR10 genome annotation data set 

(http://www.arabidopsis.org/). Multiple alignments were carried out using the CLUSTAL 

algorithm found within the MEGA 4 software suite [38] using a BLOSUM 30 matrix with 
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a gap penalty of 10, an extended gap penalty of 0.2 and a gap distance of 5. The tree was 

constructed using the Neighbor Joining (NJ) method utilizing the p-distance substitution 

method in MEGA 4 and node reliability was calculated using 1,000 Bootstrap replicas 

[38]. In order to evaluate different clustering methods for their possible effect on tree 

construction, we compared three different methods: NJ Maximum Parsimony, Un-

weighted Pair Group and Arithmetic Mean (UPGMA) using MEGA 4. This comparison 

revealed slight differences in the clustering pattern. Clustering using UPGMA resulted in 

the grouping of ASK13 with ASK11 and ASK12 but not with ASK5 and ASK6. 

However, based on the chromosomal location and supporting literature [39] we believe 

that ASK13 is a result of tandem duplication of ASK5, thus NJ clustering was used for this 

study.  

 

 

 

 

 

 

 

 

 

 

 

 



   

 78 

RESULTS 

 A phylogenetic analysis of relatedness within the ASK gene family of Arabidopsis 

reveals that the 21 members of this gene family fall into 7 distinct clades when clustered 

on the basis of primary deduced amino acid sequence, as summarized in Figure 2.1. This 

clustering of the predicted ASK proteins is consistent with published results, where ASK1 

and ASK2 are grouped within a clade and were found to overlap functionally and are 

known to be essential for early development in Arabidopsis [40]. We used this 

phylogenetic tree as a basis to assess the functional relatedness among ASK paralogs as 

measured by three functional criteria: tissue/organ-specific transcript abundance, sub-

cellular localization of YFP-tagged ASK proteins, and the protein-protein interaction 

profiles of ASK proteins in conjunction with selected F-box proteins expressed as BiFC 

fusion constructs. 

qRT-PCR Analysis of ASK Gene Transcript Abundance 

 A qRT-PCR analysis of transcript abundance was undertaken for members of the 

ASK gene family which reside in common phylogenetic clades based on their primary 

deduced amino acid sequence 

(ASK1,2,3,4,5,6,7,8,9,10,11/12,13,14,15,16,17,18,19,20,21). Included were two genes 

known to be associated with SCF type E3-Ub function (CUL1, TIR1) as well as β6-

tubulin, Actin2 and UBQ10 as internal reference controls. We were unable to design 

unique qRT-PCR primers capable of distinguishing ASK11 from ASK12 transcripts, due 

to the high DNA sequence similarity (99.3%) between these two genes. Thus, for 

purposes of this study, a single primer pair for ASK11/ASK12 was used. Transcript-

specific primers and their associated genomic identifiers are listed in Tables 2.1 and 2.2.  
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Figure 2.1. Relationship of the ASK gene family in Arabidopsis.  

The phylogenetic grouping of ASK genes based on their deduced primary amino acid 

sequence was calculated using the NJ method described. The genes are grouped into 

seven distinct clades as denoted by the vertical lines. Numbers at the branches represents 

percentage bootstrap support calculated for 1000 replicates. All tree branches are scaled 

to the number of amino acid substitutions per site. 
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Transcript abundance was quantified in cDNA preparations constructed from total RNA 

fractions prepared from rosette leaves of plants prior to stage 5.2, roots of 7-day-old 

seedlings, green stems (1st and 2nd internodes of bolted plants), green siliques with seeds 

(late heart to mid torpedo embryo), whole 5-day-old seedlings, old stage 9 whole flowers 

(petal primordia stalked at base) from 19-23-day-old plants and stage 15 whole flowers 

(stigma extends above long anther) from 21-23-day-old plants [41]. Quantitative RT-PCR 

analysis and cDNA measurements were the result of 3 independent experiments 

involving 2 biological replicate samples for each as summarized in Figure 2.2, where 

data for each gene/organ combination are shown and clustered on the basis of their 

relative expression abundance across all biological samples analyzed (Figure 2.3). 

 From this analysis, and in agreement with previously published studies, the 

relative abundance of mRNAs for ASK1 and ASK2 were found to be elevated and 

constant in comparison to other ASK genes across all biological organs examined [23,42]. 

However for the common clade comprised of ASK3 and ASK4, the transcripts for these 

two genes were found to be expressed at markedly different steady state levels, where the 

abundance of ASK4 mRNA was consistently an order of magnitude higher in all organs 

examined except siliques. Moreover, the relative expression of ASK3 was elevated in 

reproductive organs in comparison to other organs, whereas ASK4 mRNA abundance was 

relatively constant across all organs examined. When expressed as the ratio relative to 

whole seedling organs, ASK3 mRNA was found to be 500-fold more abundant in green 

siliques (Figure 2.4C) and was elevated in stage 9 and stage 15 flowers excised from 21-

25-day-old plants (Figure 2.4A,B).  
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Figure 2.2. Real-time expression analysis of the Arabidopsis ASK gene family.  

RNA from the indicated organs was isolated and used to assess ASK gene expression as 

described in the methods. Organs examined were 4-5-day-old seedlings, stage 5 leaves, 

green stem, green siliques, stage 9 flowers, and stage 15 flowers. Gene expression is 

depicted in MNE units ± SE after ACTIN2 normalization. Data are means of two 

independent biological repetitions ± SE.  
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Figure 2.3. Pearson-based hierarchical clustering of ASK gene expression.  

Cluster summary of the Pearson-based hierarchical clustering of ASK gene expression 

among select organs. The colors represent genes within the different phylogenetic clades 

as defined within Figure 2.1.  
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Figure 2.4. Relative organ-specific abundance of cDNAs for select ASK genes.  

All gene expression was normalized relative to ACTIN2 expression. A; Relative 

abundance of ASK gene cDNAs in flowers from stage 9 plants relative to seedlings. B; 

Relative abundance of ASK cDNAs in stage 15 flowers relative to seedlings. C; Relative 

expression of ASK genes in siliques relative to seedlings. 
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In contrast, the expression ratio for ASK4 mRNA was only modestly elevated (about 3-4-

fold) in these same organs.  

 A distinct expression pattern was observed within the clade comprised of 

ASK5/6/13 where ASK13 transcripts were found to have a relatively higher abundance in 

foliar tissues and the silique. ASK6 transcripts were not detectable in the organs examined 

(data not shown), whereas its close paralog ASK5 albeit lower than ASK13, expressed 

measurable transcripts in all organs examined (Figure 2.2). Although ASK6 has been 

suggested in the literature to be a pseudogene [43] we think this is unlikely since ASK6 

cDNA has been enriched from a low-abundance RNA library and the corresponding 

clone is available from the ABRC stock center (stock number PENTR221-AT3G53060). 

 Within the phylogenetic clade defined by ASK7,8,9,10, all four gene transcripts 

were found to be relatively abundant in tissues from later-stage flowers (stage 15) and 

siliques, whereas their abundance was relatively low in earlier (stage 9) flowers compared 

to seedlings (Figure 2.4). The ASK10 gene expression pattern was unique among genes 

defining the ASK7,8,9,10 clade in that it exhibited a conspicuously lower relative 

transcript level compared to the other 3 genes in the clade. 

 For the clade defined by ASK20 and ASK21, transcripts were expressed at a 

relatively low and constant level, with a modest increase in abundance (2- to 4-fold) in 

stage 9 and stage 15 flowers (Figure 2.4). Interestingly, the expression pattern of ASK20 

and ASK21 most closely resembled that of ASK1 and ASK2 in light of their constant level 

of expression throughout development of Arabidopsis.  The lowest transcript level in 

comparison to all other ASK genes studied was observed for ASK14,15, which co-reside 

within the clade comprising ASK14,15,16,17,18,19. However, transcripts for these two 
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genes showed a distinct expression pattern between them in that ASK15 was expressed 

only in roots and siliques (Figure 2.2) whereas ASK14, similar to ASK5, was expressed 

preferentially in early stages of flower development (stage 9) followed by a decline in 

transcript abundance at later stages of flower maturation (stage15) and silique 

development. 

 The data underlying the observed pattern of relative abundance of mRNAs for 

each ASK gene, across all organ sources examined, was submitted to clustering analysis 

with the resulting grouping presented in Figure 2.3. The data indicate that ASK4 and ASK 

11/12 are similar with respect to the relative abundance of their respective transcripts and 

their pattern of expression across the organs examined. In this analysis, ASK3 mRNA 

abundance in the organ samples assessed was distinct from ASK4 as its closest primary 

sequence paralog in Arabidopsis.  

It should be noted that several deviations were observed between the expression 

data here versus the microarray data available through several databases such as Bio-

Array [44,45] and GeneInvestigator™ [46]. In those instances where deviations were 

observed, such variations could be attributed to the probes used in the microarray 

construction. For instance, and in contrast to our findings, closely related genes such as 

ASK3 and ASK4 as well as ASK20 and ASK21 exhibit identical expression behaviour 

when measured using microarray approaches (Figure 2.5), where the results can be 

explained by the use of probes that did not distinguish between the mRNAs encoded by 

these two genes.  
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Figure 2.5. Hierarchical clustering of ASK gene expression. 

Hierarchical clustering of publically available microarray expression data for ASK genes 

across different Arabidopsis tissues, using the Expression Browser tool found online at 

http://bar.utoronto.ca. The difference observed between this clustering and that generated 

by the present study can be attributed principally to the non-uniqueness of the probes 

used in construction of the microarrays, coupled with the higher resolution of the qRT-

PCR data. 
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Sub-cellular Localization of YFP:ASK Fusion Proteins in Arabidopsis 

 One explanation for the presence of the large number of ASK proteins in 

Arabidopsis could be a corresponding diversity of sub-cellular localization for some of 

the ASK proteins. A study was therefore undertaken to evaluate the sub-cellular 

localization profile of 9 selected ASK proteins expressed as functional fusions with the 

YFP auto-fluorescent protein in transgenic Arabidopsis. The YFP:ASK fusion proteins 

were expressed from CaMV 35S promoter constructs assembled and transformed into 

Arabidopsis as described, and the results are summarized in Figure 2.6. Propidium iodide 

(PI) staining was used to visualize cell walls and general morphology in whole mounts of 

roots and 5-day-old seedling leaf epidermal cells including guard cells (Figure 2.6A,C). 

The signal arising from chlorophyll auto-fluorescence is shown in Figure 2.6B. In 

parallel, cellular expression and sub-cellular localization of the YFP:ASK3 fusion protein 

is shown in Figure 2.6D-F, and the composite PI-YFP images is shown in Figure 2.6G-

I. Taken together, and in agreement with previous studies described for ASK1 [47,48], 

YFP:ASK3 proteins accumulate in both the nucleus and the cytoplasm in epidermal leaf 

cells of Arabidopsis. We observed no overlap between the YFP and chlorophyll auto-

fluorescence signals, suggesting that the extra-nuclear YFP:ASK3 fusion protein does not 

detectably localize to the chloroplast and largely accumulates in the cytoplasm. 

 This same pattern of YFP fusion protein accumulation in the nucleus and 

cytoplasm, with no significant localization to chloroplasts was reiterated across all other 

YFP:ASK gene fusions assessed (ASK1,2,3,4,5,6,8, 9,10) with the exception of ASK8 

(see Figure 2.7). The YFP:ASK8 protein fusion, when expressed in transgenic 

Arabidopsis was found to apparently aggregate predominantly in the nuclei of epidermal 
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Figure 2.6. Confocal imaging and sub-cellular localization of ASK proteins in transgenic 

Arabidopsis. 

A&C; Propidium iodide-stained epidermal root cell walls or leaf epidermal cell walls and 

guard cell nuclei. B; Chlorophyll auto-fluorescence from the leaf mesophyll cell layer. D- 

F; stable expression of N-terminal YFP-tagged ASK3 protein in transgenic Arabidopsis. 

G- I; merged channels corresponding to panels (A-C) and (D-F). 
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Figure 2.7. Confocal imaging and sub-cellular localization of YFP:ASK protein fusions 

in transgenic Arabidopsis. 

Fusion protein visualization in stable transgenic lines was carried out as described in the 

methods. A,B,C,E,G, J; sub-cellular localization of YFP:ASK1, YFP:ASK2, 

YFP:ASK4, YFP:ASK8 and YFP:ASK10 in root tissues, respectively. D,F,H,I; 

localization of YFP:ASK5, YFP:ASK8, YFP:ASK9 and YFP:ASK10 in leaf tissues, 

respectively. Scale bars = 30 µm. 
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leaf cells, resulting in highly localized and intense YFP signals. Notably, these aggregates 

were not observed in root tissues of the same transgenic lines (Figure 2.8A).  In order to 

investigate whether the apparent aggregation of ASK8 was the result of YFP:ASK8 over-

expression, the expression of  this fusion was compared to that of the YFP:ASK1 protein 

using Western blot analysis. As shown in Figure 2.8B, the level of YFP:ASK8 

expression in three independent lines was qualitatively lower than that of the YFP:ASK1 

fusion protein. Although ASK sub-cellular localization resembles that of GFP sub-

cellular localization, the lack of available ASK protein-specific antibodies precludes the 

possibility of taking immunohistochemical approaches to localizing nascent ASK 

proteins in situ. However, we noted that the majority of reported SCF substrates in 

Arabidopsis are known transcription factors [5,49], which is consistent with our 

observation of a general nuclear localization of YFP-ASK fusion proteins. To investigate 

whether N-terminal fusions could mask nascent localization signals, C-terminal CFP 

fusion constructs using the ASK1 coding region were generated, and a similar localization 

pattern was observed following transient expression in N. benthamiana leaves (Figure 

2.9C). In addition, we asked whether other known SCF ligase subunits exhibited a similar 

localization pattern to ASK proteins, suggesting the potential for co-localization and 

participation in SCF complex assembly. Upon assessing the localization pattern of TIR1 

and CUL1 as C-terminal CFP fusions, we found that a similar localization was observed 

relative to the YFP:ASK protein studies described above (Figure 2.9A,B). 
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Figure 2.8. Expression and localization of YFP:ASK8 fusion protein in transgenic 

Arabidopsis. 

A; Localization of YFP:ASK8 in leaves and roots of transgenic plants. The YFP:ASK8 

fusion protein was found to aggregate exclusively in the leaves of transgenic plants, but 

exhibited a similar pattern to that of other YFP:ASK fusion proteins in the roots of the 

same transgenic plants. B; Comparison of YFP:ASK8 and YFP:ASK1 protein expression 

in three different transgenic Arabidopsis lines, where YFP:ASK1 expression showed no 

sign of aggregation. The results indicate that the observed signal aggregation in the 

ASK8:YFP transgenic backgrounds were not due to over-expression of the fusion 

protein. Scale bars = 30 µm. 
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Figure 2.9. Confocal imaging and sub-cellular localization of CFP fusion proteins in N. 

benthamiana 

C-terminal CFP fusion proteins were transiently expressed in N. benthamiana leaf 

epidermal cells and visualized using confocal microscopy. A; TIR:CFP fusion protein. 

B,C; CUL1:CFP and ASK1:CFP fusion protein. The sub-cellular localization of 

ASK1:CFP in N. benthamiana leaves parallels that of YFP:ASK1 in transgenic 

Arabidopsis lines, and confirms the fidelity of the N. benthamiana transient expression 

assay. Scale bars = 30 µm. 
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ASK-F-box Protein Interaction Profiling In Vivo 

Previous studies have shown that individual protein products of the ASK gene 

family exhibit both general as well as specific protein-protein interactions involving 

select F-box proteins, when assessed in the heterologous yeast 2-hybrid system [21,50]. 

This property of generalized versus specific F-box protein interaction capability is of 

importance for determining which specific ASK polypeptides are capable of interacting 

with specific F-box proteins, with implications for the combinatorial diversity of SCF E3-

Ub complexes that could form in vivo involving subunit polypeptides of either class. 

Accordingly, we undertook to analyze the in situ interaction of polypeptides encoded by 

ASK1,2,3,4,5,6,8,9 and ASK10 in combination with a selected panel of 7 F-box proteins 

(TIR1, SLY1, COI1, EID1, SKP2A, AFR and UFO) known to participate in SCF 

complex assembly. These proteins are involved in the regulation of diverse aspects of 

plant development such as auxin sensing, circadian rhythm maintenance, ethylene 

sensing, patterning and development [4,10,51–59]. Protein interactions were assessed as 

the reconstitution of fluorescence signal upon co-expression of all 56 pair-wise 

combinations of split-YFP fusion expression constructs assembled as described in the 

methods, and subsequently expressed through co-infection of Agrobacterium-containing 

constructs in the high-fidelity N. benthamiana transient expression system [33]. The data 

for a subset of 16 pair-wise combinations of ASK-F-box interactions are summarized in 

Figure 2.10 with the exception of ASK2, which is shown in Figure 2.11. An interaction 

profile map is depicted in Figure 2.12. 
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Figure 2.10. Interaction profile of select ASK and F-box proteins as assessed using 

BiFC. 

Visualization of BiFC-based sub-cellular protein interactions between select ASK and F-

box proteins (TIR1 or UFO) in N. benthamiana epidermal leaf cells: YFP signal indicates 

a positive interaction; chlorophyll auto-fluorescence is shown in red. A-H; protein 

interactions between TIR1 and the ASK1,3,4,9 proteins expressed as BiFC fusion 

expression constructs. I-P; protein interactions between UFO and ASK1,3,4,9 proteins 

expressed as BiFC fusion expression constructs. Scale bars = 30 µm. 
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Figure 2.11. Sub-cellular localization of BiFC signals. 

The sub-cellular localization of BiFC signals were assessed by determining co-

localization of select BiFC signals with the nuclear-specific prodium iodide (PI) signal, as 

described. A,B,C,D,E; the YFP fluorescent signal from the BiFC assays. F,G,H,I,J; 

fluorescent signal from the PI-stained nuclei. 
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Figure 2.12. Interaction profile map of select ASK and F-box proteins. 

The indicated interaction map was developed as described in the methods, and 

summarizes the results obtained following transient expression of BiFC constructs in N. 

benthamiana leaf epidermal cells. Edge lines joining nodes represent a positive 

interaction. 
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With respect to protein interactions involving TIR1, five ASK polypeptides 

(ASK1,2,3,4 and ASK9) were found to interact with TIR1 in vivo. Interestingly, the 

interaction signal observed was predominantly localized to the nucleus in leaf epidermal 

cells (Figure 2.10A-D). Similarly, expression fusion products involving ASK1,2,3,4 and 

9 were found to interact with UFO in a pattern that was analogous to TIR1. Although 

closely related at the primary amino acid sequence level with ASK9, split-YFP 

expression constructs involving ASK10 did not detectably interact in vivo with TIR1 or 

UFO.  

The results summarizing binary protein interactions involving the remaining 40 F-

box-ASK combinations are depicted in the interaction map shown in Figure 2.10Q. For 

all protein interactions involving COI and TIR1, the YFP signal was restricted to the 

nucleus, whereas all other F-box-ASK protein combinations were observed in both the 

cytoplasm and the nucleus. Also noteworthy was the finding that SKP2a interacted with 

ASK3 in the split-YFP system but not with ASK4, notwithstanding the high degree of 

deduced primary amino acid sequence similarity between these two ASK polypeptides 

(94.5%). 

Considering that all ASK and F-box proteins tested were found to interact with at 

least one other binding partner, we concluded that the observed negative interacting 

protein combinations were biologically significant and were not due to low levels of 

protein expression. To confirm that protein expression among the observed negative 

interacting combinations was comparable to that of positive interacting proteins, we 

cloned select F-box and ASK coding domains into a second set of BIFC vectors where 

the split-YFP coding region incorporated c-Myc- and HA-tag domains, thus facilitating 
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comparative protein expression studies via Western Blot analysis [30]. As shown in 

Figure 2.13, from the select proteins investigated all were expressed to levels 

qualitatively comparable to that of the positive interacting proteins, indicating that the 

observed negative interactions were not due to the lack of protein expression. 
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Figure 2.13. Protein expression verification of the split-YFP fragments in the BiFC 

assay. 

Following visualization of the BIFC signal, injected N. benthamiana leaves were 

subjected to protein extraction and immunoblotting (IB), the expression of ASK1, ASK3, 

ASK6 and ASK8 in combination with TIR1, SKP2A, SLY1 and AFR was examined. The 

ASK genes were cloned into a Myc-tag BiFC vector and the F-box proteins in an HA-

tagged BiFC vector. Protein immunoblots decorated with anti-Myc (left panel) and anti-

HA (right panel) antibodies were used for detection of the nEYFP:ASK, and cEYFP:F-

box fusion proteins, respectively.  
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DISCUSSION 

 In evolutionary terms, and when compared with other well-characterized multi-

cellular model systems, plants exhibit a relatively complex complement of genes that are 

known or predicted to encode subunit components of the SCF-class of E3-Ub ligase 

complexes [1,60]. Despite having one of the smallest known genomes among angiosperm 

plants [61], Arabidopsis harbours a Skp1-like protein subunit-encoding gene family that 

is several-fold to orders-of-magnitude greater in complexity than the single gene found in 

mammals or yeast [39,62,63], with variable degrees of complexity found in other model 

systems such as Caenorhabditis elegans (21 genes) or Drosophila melanogaster (6 

genes) [64,65]. The apparent high degree of gene duplication of SKP1 genes is a feature 

of plants in general (e.g., the 28 Skp1-like genes in rice; [39]). Furthermore, the average 

rate of gene duplication of the ASK gene family in comparison to other gene families in 

Arabidopsis is roughly ten times higher [39]. This feature of plant SCF-E3 ligase subunit-

coding complexity can be traced to their earliest evolutionary origin in pre-vascular 

plants, as revealed by the predicted proteome containing 4 Skp1-like genes in the moss, 

Physcomitrella patens [66]. 

 Given the complexity of gene families that are known or predicted to encode 

subunits of SCF complexes in Arabidopsis, studies ascribing function to individual genes 

will minimally involve an assessment of subunit functional redundancy, together with an 

evaluation of the specific SCF complexes that may assemble across developmental time 

and space. Notions of functional redundancy can be approached from several 

perspectives, including genetic approaches where loss-of-function alleles in genetic 

backgrounds carrying single or combinations of mutant loci can be examined for aberrant 
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phenotypes. Single and multiple mutant lines are also valuable for complementation 

studies from which insight into structure-function relationships involving specific 

proteins can be derived. Where large gene families are involved, genetic approaches to 

defining redundancy are commonly guided by phylogeny and clustering of gene products 

based on their deduced primary amino sequence [67]. 

 Functional redundancy among gene paralogs has been recently extended to 

include multiple independent biological criteria including quantitative assessment of gene 

expression, protein-interaction networks involving specific gene products, as well as sub-

cellular compartmentation of individual gene products in recognition of the potential 

complexity of regulatory interactions and functional divergence among genes duplicated 

in the course of evolution [68]. The analysis presented here embraces this approach, and 

highlights variations in key functional properties among the Arabidopsis ASK gene 

family. 

Clade analysis reveals that clade 1 is comprised of two ASK genes, ASK1 and 

ASK2 with an overall similarity of greater than 83% between these two genes. These two 

genes are also representative of the four ASK genes (ASK1, 2, 3 and 4) bearing an intron. 

ASK1 and ASK2 are thought to be the evolutionary result of a segmental duplication and 

subsequent slow evolution of a highly conserved function in plants [39,43]. Although 

ASK1 exhibits a higher transcript level than ASK2, the expression pattern of these two 

genes shows a high degree of co-regulation in terms of transcript abundance. The BiFC-

based protein interaction profile described here for ASK1 and ASK2 confirms earlier 

findings arising from yeast 2-hybrid and co-enrichment experiments that highlight the 

broad F-box protein interaction potential of both ASK1 and ASK2 proteins [21]. This 
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pattern of broad interaction potential suggests that both ASK1 and ASK2 participate in a 

combinatorially diverse array of SCF complexes, which is consistent with the findings 

from genetic studies that these two proteins exhibit significant functional overlap and are 

essential for growth early in development [40]. The high degree of similarity in terms of 

interaction and expression profile is reminiscent of the phylogenetic clades defined by 

primary deduced amino acid sequence similarity, which could be in part explained by the 

high level of conservation of these two genes during the course of Arabidopsis evolution.  

The second clade is defined by ASK3 and ASK4 as two members of the ASK gene 

family whose products are predicted to be highly similar (94.5% at the deduced protein 

level) and where both genes possess an intron. The high degree of similarity of the 

deduced protein products of these genes might suggest a similar interaction profile by the 

two proteins, in a manner reminiscent of ASK1 and ASK2. However, we describe here 

the finding that ASK3 was able to interact with the SKP2a F-box protein whereas ASK4 

could not in the split-YFP system. Furthermore, the ASK3 and ASK4 transcripts exhibited 

markedly different steady-state abundance where ASK4 levels were consistently ten-fold 

higher than ASK3 in most organ samples. The exceptions were flowers (both stages 9 and 

15) and green siliques, where an inverse abundance relationship was observed, 

characterized by a much-elevated relative abundance of ASK3 transcripts over those of 

ASK4. The relative high level of expression of ASK4 might in part be explained by the 

suggestion that ASK4 is hypothesized to have arisen as the result of large-scale segmental 

duplication of the highly expressed ASK1 [39]. While our studies have not yet been 

extended to include a corresponding analysis of ASK3 versus ASK4 protein abundance, 

the available data suggests a significant disparity in gene expression levels between these 
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two close paralogs thus providing a possible explanation for the evolutionary retention of 

these two genes. In light of our previous finding that ASK3 and ASK4 exhibited similar 

F-box interaction profiles in the yeast 2-hybrid system [21], coupled with the finding that 

both share a common cytoplasmic/nuclear sub-cellular localization in the transient 

Nicotiana expression system, the data suggest that SCF complexes incorporating ASK4 

subunits will be relatively abundant in most foliar organs, roots and whole seedlings, with 

the exception of late-stage flowers and green siliques where ASK3-containing complexes 

may preferentially form. 

Clade three is comprised of ASK5 and ASK6 as two genes that are rapidly 

evolving and seem to be less conserved throughout plant evolution [39]. This clade 

includes a controversial member of the ASK gene family, ASK6, which has been 

suggested to be a pseudogene due to the extreme low abundance of its transcript in 

Arabidopsis, coupled with an apparent C-terminal truncation of its deduced polypeptide 

sequence. Although we likewise could not detect transcripts for ASK6 in the organs 

examined, others have nevertheless managed to clone a full-length ASK6 cDNA as part of 

the high-throughput cDNA cloning of low-expressing genes (C. Town, J. Craig Venter 

Institute, personal communication). As described here, the ASK6 protein containing an 

extended coding region was found to interact exclusively with COI1, suggesting a role 

for ASK6 in some aspect of jasmonate signal generation or perception. We conclude that 

ASK6 is both expressed and is functional at the polypeptide level. The data presented in 

this study show that both ASK5 and ASK6 have divergent expression profiles and their 

corresponding proteins exhibit different interaction profiles despite their high degree of 

similarity at the deduced protein level (~70%). As described here, the ASK5 transcript 
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abundance more closely parallels that of ASK14 in various organ samples in a way that 

was not predicted by sequence-based phylogeny. 

The ASK7,8,9,10 clade is defined by a group of closely related genes that are also 

tightly clustered within a 10 Kbp span of chromosome 3 (Figure 2.14), suggesting a 

recent localized tandem duplication event and a possible conserved expression profile for 

these genes. Indeed hierarchical clustering of transcript expression resulted in a relatively 

tight clustering of these genes reminiscent of their phylogenetic clade. Strikingly, a 

distinct protein interaction profile was observed among the genes within this cluster, 

where ASK8 and ASK10 interacted solely with COI1 and EID1, whereas ASK9 

interacted more generally with 6 out of the 7 F-box proteins tested with the exception of 

AFR. Taken together, the results suggest a strong sub-functionalization and a possible 

basis for evolutionary retention of the four genes within this clade. 

The clade defined by ASK14,15,16,17,18,19 appears to have diverged from ASK3 

and ASK4 as a result of an initial retrotransposition event followed by two recent tandem 

duplications within the clade, giving rise to the 5 clade members [39]. Given the probable 

recent evolution of the clade, one might anticipate similar expression and protein 

interaction profiles among its members. Although we did not investigate the sub-cellular 

localization or protein interaction properties of genes in this clade, the expression profile 

of the genes was found to exhibit a semi-divergent expression profile where ASK14 and 

ASK16 exhibited an expression profile distinct from the other genes in this clade, but 

highly similar to that of ASK5 and ASK13, respectively.  
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Figure 2.14. ASK gene chromosomal location. 

Chromosomal location of the ASK gene family in the genome of Arabidopsis. 
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Interestingly ASK16 and ASK17, with close to 62% protein sequence similarity, also have 

a high similarity expression profile, with a minor difference in stage 9 flowers where 

ASK16 transcripts were expressed with no detectable expression of ASK17. 

Defining nodes of ASK gene expression and ASK protein interaction at a higher 

resolution across different spatial and temporal dimensions at the organ, cellular and sub-

cellular level, may contribute to an improved understanding of potential function, or at 

least lead to the advancement of predictive hypotheses for the formation of specific SCF 

complexes with an inferred biological function. An illustrative example arises from the 

selective interaction of ASK6 with COI, where a role for jasmonate signalling is inferred 

among other possible functional roles for this member of the ASK protein family. 

Similarly, the interaction of ASK10 with EID1 may suggest that this member of the ASK 

protein family engages in the formation of a subset of SCF complexes that play a role in 

ethylene signal perception in Arabidopsis. Recent findings have shown that FBL17, an F-

box protein which is known to be involved in cell cycle regulation during male 

gametogenesis, is able to interact with ASK11 in yeast 2-hybrid and BiFC-based studies 

[69], which is in full accord with our observation of a flower-specific expression pattern 

for ASK11. 

 The study presented here serves to highlight the importance of defining functional 

equivalence or redundancy from multiple biological perspectives, here including 

quantitative gene expression profiling, sub-cellular localization and in vivo analysis of 

protein interaction potential. A third perspective arises from the phenotypic analysis of 

individual loss-of-function alleles, both alone and in combination. A genetic perspective 

of redundancy within the ASK gene family is complicated by the fact that genes in this 
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family are generally small and are therefore significantly under-represented for null 

alleles within reverse-genetic resources such as the T-DNA insertion mutagenesis 

population organized as the SIGnAL resource [22]. Future work to define genetic 

interactions within the ASK gene family would logically involve transgenic miRNA 

expression interdiction approaches [70], the development of alternative reverse genetic 

resources [71], or perhaps targeted deletion strategies directed to the disruption of ASK 

gene function [72]. 

In the present study, we have characterized the steady-state transcript levels, sub-

cellular distribution profiles, together with the analysis of a restricted set of protein-

protein interactions within the confines of a set of ‘standard’ laboratory propagation and 

environmental interaction conditions. It remains to be seen whether the observed 

expression, localization and gene product interaction profiles described here might further 

diversify in the face of changing environmental conditions, or treatment with different 

plant growth regulatory compounds with which several of the proteins involved are 

directly implicated. Indeed, related studies suggest that sub-cellular localization of select 

ASK-F-box protein interactions with a known role in hormone signal perception are 

altered in the presence of the relevant signalling compounds, thus presenting an 

additional dimension for our understanding of the molecular basis of their function 

(Dezfulian et al., manuscript in preparation). 

Notwithstanding its relatively small genome size and genetic complexity, 

Arabidopsis has nevertheless retained a complex family of closely related genes encoding 

Skp1-like proteins. This observation, which can be extrapolated more generally to other 

model plant species for which significant genome content information is available, is a 



   

 108 

general feature of plants and may relate to their unique adaptive strategy as sessile 

organisms in dynamic interaction with their environment. In basic terms, the large 

number of structurally related genes raises questions surrounding the issue of functional 

redundancy versus evolutionary retention within the gene family. In this study, we 

provide some novel perspectives on the issue of redundancy, which may help to explain 

the retention of these genes during Arabidopsis genome evolution. Although we cannot 

currently rule out the possibility that the other ASK genes not investigated as part of this 

study show unique sub-cellular localization, the similar localization pattern observed for 

the all the ASK proteins studied suggests that there has been no evolutionary pressure for 

retention arising from specialized sub-cellular localization among ASK gene products. 

Our finding that structurally closely-related genes are nonetheless distinguished on the 

basis of expression and/or protein interaction profiles offers an alternative explanation for 

their retention based on functional diversification.  Indeed, virtually every clade defining 

the phylogeny of the ASK protein family was found to contain one or more members that 

have diverged at the level of expression and/or protein interaction profile, thus defining a 

potential molecular basis for an expanded functional repertoire. Only through an 

expanded study that includes additional facets of redundancy will a reliable picture of 

functional redundancy within the ASK gene family emerge, with implications for future 

studies into their shared versus divergent molecular functions. 
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INTRODUCTION 

Gene duplication is thought to be one of the main sources of raw material for 

genome evolution [1]. Although still under debate, it is widely believed that among 

duplicated genes one copy of the gene is capable of carrying out its original function 

leaving the other gene free to mutate and gain one or more novel functions [2]. Recent 

genetic duplication events are thought to be one of the main contributors to genetic 

redundancy among duplicated genes [3]. However, it remains to be answered how often 

duplicated genes compensate for the inactivation of their paralogs [3].  

Arabidopsis has undergone at least three rounds of genome duplication 

throughout its evolution[4], it is estimated that over 41% of Arabidopsis thaliana genes 

possess at least one paralog [5,6]; hence, a high of level of genetic redundancy is 

expected among these genes. Genes encoding subunits of the SCF class of E3 Ub ligase 

complexes alone comprise nearly 2% of the protein-coding capacity of the A. thaliana 

genome [7]. The SCF ligase complex consists of four canonical subunits: SKP1 (ASK), 

CUL1, RBX1 and F-BOX. CUL1 acts as a scaffold protein whose N-terminal and C-

terminal domains interact with SKP1 and RBX1, respectively. SKP1 acts as an adaptor 

protein binding both CUL1 and the substrate specificity-determining F-box protein [7]. F-

box proteins interact with SKP1 via its N-terminal 40-aa F-box motif whereas RBX1 

interacts with E2 complexes via a RING-finger motif intrinsic to this protein [8–10]. 

The Arabidopsis genome contains approximately 700 F-BOX genes, 1 CUL1 

gene, and 21 ASK genes [8,9]. Based on the deduced sequence similarity of ASK 

proteins, a phylogenic tree with seven distinct gene clades can be constructed [7]. The 

clustering of the ASK genes within these clades suggests that the gene family was, in part, 
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generated by recent gene duplication events, leading to the expectation of a high level of 

genetic redundancy [7,10].  

As discussed in Chapter 2, members of the ASK gene family exhibit a variety of 

expression patterns and are involved in diverse processes in Arabidopsis. Among the 

twenty-one gene family members, only ASK1 and ASK2 have been phenotypically 

characterized via the analysis of null mutants [11-15]. Single mutants of ask1 and ask2 

have demonstrated that ASK1 and ASK2 are individually involved in embryogenesis, 

seedling development, meiosis, organ development and hormonal response. Strong 

overlapping functional redundancy between these two genes is suggested by the finding 

that the ask1/ask2 double mutant exhibits signs of severe developmental delay during 

early stages of growth and lethality during seedling development [11]. This is further 

supported by the high similarity in expression and interaction profiles observed between 

ASK1 and ASK2 genes and their protein products, as discussed in Chapter 1. The unique 

but strongly overlapping protein-protein interaction profile observed between ASK1, 

ASK2 and several F-box proteins as part of a large Y2H screen provides an explanation 

and grounds for the mild phenotypes observed for individual ask1 and ask2 mutants [6,9].  

A combination of data from Chapter 2 and the observed behavior for ASK1 and 

ASK2 led us to hypothesize that a similar profile of genetic redundancy might be 

observed within the ASK gene family. 

To date, functional characterization of genes within the A. thaliana genome has 

heavily relied on exploitation of the T-DNA insertional mutant resource developed as 

part of a collaborative project between the Crosby and the Ecker labs (the ‘SIGnAL 

Resource (http://signal.salk.edu/) [16]. This publicly available resource is known to 
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harbour insertional mutant alleles with different degrees of genetic penetration for 

approximately 70% of the protein-coding repertoire of the Arabidopsis genome [16,17]. 

Characterization of functional redundancy among genes requires the generation of 

multiple-mutant backgrounds, achievable by employing a simple cross and the facile 

recovery of double–mutant segregants involving loci that are genetically distant and/or 

reside on independent linkage groups.  

To phenotypically dissect the function of the ASK gene family, our lab has 

utilized two different reverse genetic approaches, namely, T-DNA insertion mutagenesis 

and fast neutron deletion library screening, where each approach presents  benefits and 

caveats. The T-DNA screen, although powerful, (as shown by our group and others) has 

proven to be relatively ineffective across large gene families such as in the ASK gene 

family. This is primarily due to the inability to generate multiple mutants for genes that 

are tightly clustered on small segments of chromosome. This process is further 

complicated in the ASK gene family where the genes are uniformly relatively small (150-

aa) with a corresponding reduced probability of identifying random inactivating T-DNA 

insertions in these gene. To overcome problems associated with the T-DNA screen we 

preformed a set of library screens using pooled DNA from fast neutron deletion lines to 

identify deletions within the region on chromosome 3 spanning ASK7/8/9/10 [18]. 

Although proof-of-principle screens and reconstruction tests appeared to validate the 

approach, screens of mutant DNA pools failed to identify deletions spanning the 

ASK7/8/9/10 gene cluster located on chromosome 3. To overcome the problems 

associated with the first two approaches, the development and deployment of alternative 
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and complementary methods were essential. To this end, we employed the ectopic 

expression of artificial microRNAs (amiRNA) constructs in transgenic plants. 

miRNAs are a class of small RNA molecules, 19-24-nt in size, which have been 

extensively characterized for their role as a gene regulatory mechanism [19]. . miRNAs 

exert their effects on gene expression at three levels;  methylation-based regulation of 

promoter activity, Dicer-mediated control of mRNA stability or control of translational 

efficiency achieved via direct binding of miRNAs to the target mRNA [19,20]. Although 

perfectly complementary siRNAs have been extensively used in the animal kingdom as a 

powerful means to achieve knockdowns of target genes, siRNAs have been shown to 

affect non-target genes due to its long, double-stranded nature [21-23]. To circumvent 

this problem, the Arabidopsis community has relied heavily on amiRNAs as a means to 

knocking down genes of interest [24]. The maximum amount of targets identified for any 

single miRNA has been 10 genes in A. thaliana [25-27]. Thus, miRNAs can provide a 

level of specificity not afforded by conventional RNAi approaches. Furthermore, our 

understanding of the miRNA mode of action allows for the prediction of off-target 

effects, which can be taken into consideration during data analysis.  [27].  

During the course of this study I generated 18 different amiRNA constructs 

designed to target select ASK genes - either individually or in combination. Transgenic 

plants harboring all 18 amiRNA constructs were generated and  the efficiency of these 

constructs in reducing the transcript abundance of target genes was measured. This 

experimental approach was supported by phenotypic analysis of transgenic plants using 

gross indicators of perturbed patterning, development and hormone response as indicators 

of altered biological function. 
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MATERIALS AND METHODS 

amiRNA design 

amiRNA precursors were designed using the Web MicroRNA Designer (WMD) 

tool, available at http://wmd.weigelword.org [24]. The cDNA sequence of the ASK genes 

(TAIR9) were used as the query input. The optimal amiRNAs (Table 3.1) generated by 

the WMD tool were selected based on the empirically determined criteria.  

Once designed, the amiRNA sequences were engineered into the backbone of an 

endogenous miRNA precursor (miR319a) via site-directed mutagenesis. The amiRNAs 

were then transferred using the Gateway® cloning system and placed behind the 

cauliflower mosaic virus (CaMV) 35S promoter inherent to the binary vectors, pFK-209 

(kanamycin resistance) and pFK-210 (DL-phosphinothricin resistance). 

Generation of transgenic plants 

Binary plasmids containing the amiRNA precursors were transformed into the 

Agrobacterium tumefaciens strain AGL1 via electroporation. The recombinant plasmids 

were introduced into A. thaliana ecotype Columbia (Col-0), also using the 

Agrobacteriumstrain AGL1. T1 seeds were harvested from transformed plants and 

selected on selective MS agar plates (DL-phosphinothricin or kanamycin). Seeds were 

germinated and plants were allowed to grow and produce siliques in growth chambers. 

T2 seeds were subsequently harvested from these plants and subjected to a PCR-based 

allelic content analysis. A complete list of primers used is listed in Table 3.3. T3 plants 

homozygous for the recombinant insertion(s) were subjected to phenotypic survey. 
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amiRNA Sequence 
amiR-ASK1a GCACACAACGTTCTACATTAT 
amiR-ASK2a ATCGCGAAAAGTTCGAATTTA 
amiR-ASK1/2a CGCGGCGCTAGAGACACAAAT 
amiR-ASK1/2b TTAGCGCTAGAGTGACAAACT 
amiR-ASK3a CCGCTCCGGGCTCCCAACTTA 
amiR-ASK4a CACCAAGGTTATAGAGTATTA 
amiR-ASK3/4a GAAGCGTAGGTTCCCAATGAT 
amiR-ASK3/4b CCACAGATGCGTGTACACTTT 
amiR-ASK7a AAATCGGTGCCGCAAATCCTT 
amiR-ASK10a GCAGAGCACACTCCCAAATTT 
amiR-ASK7/8/9/10a AAATCGGTGCCGCAAATCCTT 
amiR-ASK7/8/9/10b CGACGCACGCCAAAGCCAGAT 
amiR-ASK11/12a GCCGAGGTTAATGCTATCTCA 
amiR-ASK11/12b AAATCGGTGCCGCAAATCCTT 
amiR-ASK20a CAGCCAGGACGTACAAATATA 
amiR-ASK21a GCCGGGTTCTATCCATAGGAT 
amiR-ASK20/21a GCAGCTAACAGTTAGCAGTTT 
amiR-ASK20/21b TATGATAAGAGGTCATGCATT 
 
Table 3.1. 21-nt amiRNA fragments and their cognate ASK gene targets. 
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Primer  Sequence (5’-3’) 

AMIR/pFK210 F- CACTCCTGCGGTTCCTGC GG 
R- TGCGCAGCCTGAATG GCG AA 

pFK209/pFK210 F- CGGTCATTAGAGGCCACG AT 
R- CGGATTCCATTGCCCAGC TA 

 
Table 3.2. Primers used for genotyping of transgenic plants. 
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Real-time PCR 

Total RNA was isolated using a commercial mini-preparation kit (RNeasy™, 

Qiagen) and contaminating DNA was removed using an immobilized DNAse column 

(RNAse-Free DNAse Set™, Qiagen). Two micrograms of total RNA was used as 

template for first strand cDNA synthesis in a 20-µL reaction using the RevertAid™ 

synthesis kit (Fermentas). The resulting cDNA was diluted 1:20 and 1.5 µL of cDNA was 

used in a standard 20-µL PCR reaction. Analysis of gene expression employed Maxima™ 

Sybr-green qPCR master mix (Fermentas) in an Applied Biosystems 7300 RT- PCR 

System, following the manufacturer’s instructions. The primers used in the qRT-PCR 

analyses are listed in Table 3.3. 
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Name Sequence (5’-3’)  

CUL1_Sense ACAGCAGCCTGGTAAGTAGA  

CUL1_Antisense CAAGTGTGTTGAAGTCTTCA  

ASK1_Sense CAGCCAGAATGAGTTCAAAG  
ASK1_Antisense GAGTATTGCAAGAGGCACGT  

ASK2_Sense CAGCCAGGATAAGATCGAAG  

ASK2_Antisense GCTGAGAAATCCGAAACCAC  

ASK3_Sense AAATAGTTGGCAGCCCGAAG  

ASK3_Antisense CTGGTGGAGACAAGGATTTC  

ASK4_Sense TAGTTCGCAGCCAAGATGAG  
ASK4_Antisense GAGTATTGCAAGAAGCACGT  

ASK11-12_Sense GGTGGAAGAAGCGGTAGCAA  

ASK11-12_Antisense GAGGGATTCCATCAGCAACG  

ASK7_Sense CTCCCCCACAAAGAAAACAA  

ASK7_Antisense CGTACATTCGGCTTCAATCA  

ASK20_Sense GGCTCTGTGAGTTGACCTCT  
ASK20_Antisense CCTCCTCAGTAAGGTCATCA  

ACTIN2_Sense TCCCTCAGCACATTCCAGCAGAT  

ACTIN2_Antisense AACGATTCCTGGACCTGCCTCATC  

ASK8_Sense ACGATCTTTGCTCTCACCAATGCTGC  

ASK8_Antisense AAGAATTCGCGCATCTGCTTCGGA  

ASK9_Sense GCCGCACGCCAATGCCAGATTA  
ASK9_Antisense GCGGCATCGACGTGGTGCTT  

ASK10_Sense GCATGCCAAACCGTCGCGGA  

ASK10_Antisense GTTGAAGAATTTGCGAGTGTGCTCCAC  

 
Table 3.3. Oligonucleotide primers used for qRT-PCR analyses. 
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RESULTS 

To obtain insight into the function of ASK genes in A. thaliana, amiRNAs 

targeting various ASK genes were designed using online tools available at 

http://wmd2.weigelworld.org/ and constructed using an overlapping PCR strategy [24]. . 

These amiRNAs replaced the original 21-nt miRNA sequence in the miR156a backbone. 

The amiRNA sequences targeting various ASK genes are listed in Table 3.1. All 

amiRNAs were cloned into two vectors, pFK209 and pFK210 [28], between the 

cauliflower mosaic virus (CaMV) 35S promoter and terminator, conferring resistance to 

kanamycin and the herbicide bialaphos (Bar), respectively (Table 3.4). The availability 

of two different selection markers served to streamline the process of double transgenic 

generation. The amiRNAs were transferred into A. thaliana Columbia ecotype (Col-0) 

using Agrobacterium-mediated transformation via floral dipping to generate transgenic 

plants [29]. For each amiRNA multiple independent transgenic plants (n=3) were 

indentified using a PCR-based genotyping assay. To account for any phenotypes arising 

from off-target effects, two amiRNAs targeting different regions of a given ASK mRNA 

were designed to allow us to compare and contrast various phenotypes arising from 

independent amiRNA transgenic lines. The levels of target ASK mRNAs, as well as 

mRNAs of ASK genes that are closely related to the targets, were investigated in the 

amiRNA transgenic lines using qRT-PCR. 
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amiRNA pDestination 
amiR-ASK1a pFK209-Kanamycin 
amiR-ASK2a pFK210-Bar 
amiR-ASK1/2a pFK209-Kanamycin 
amiR-ASK1/2b pFK210-Bar 
amiR-ASK3a pFK209-Kanamycin 
amiR-ASK4a pFK210-Bar 
amiR-ASK3/4a pFK209-Kanamycin 
amiR-ASK3/4b pFK210-Bar 
amiR-ASK7a pFK210-Bar 
amiR-ASK10a pFK210-Bar 
amiR-ASK7/8/9/10a pFK209-Kanamycin 
amiR-ASK7/8/9/10b pFK210-Bar 
amiR-ASK11/12a pFK209-Kanamycin 
amiR-ASK11/12b pFK210-Bar 
amiR-ASK20a pFK209-Kanamycin 
amiR-ASK21a pFK210-Bar 
amiR-ASK20/21a pFK209-Kanamycin 
amiR-ASK20/21b pFK210-Bar 

 
Table 3.4. amiRNA expression vectors generated throughout this study.  

All amiRNAs were cloned into two main vector backbones which harbored either a 

kanamycin (pFK209) or a bialaphos (pFK210) resistance marker for selection of 

transgenic plants. 
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ASK1/2 

ASK1 and ASK2 reside within the first clade, sharing over 83% sequence 

similarity [7]. ASK1 and ASK2 exhibit signs of genetic redundancy and play an essential 

role in the growth and development of Arabidopsis.[11]. An ask1 mutant allele was 

identified as part of a Ds-transposon [30] insertional screen while the ask2 mutant was 

identified as part of a T-DNA screen [11]. The ask1/ask2 double mutant lines were 

generated by crossing these single mutants. While both ask1 and ask2 showed a mild 

phenotype, the double mutant exhibited delayed embryonic development and lethality at 

the seedling stage. Due to the lethality of the double mutant [11,30], phenotypic analysis 

of this mutant has been confined to embryonic stages leading to an incomplete knowledge 

of the role of the ASK1 and ASK2 later in plant development Since amiRNAs are not 

100% penetrant in gene knockdown studies, their use is often seen as a drawback to this 

type of approach. However, we took advantage of this “drawback” to generate double 

ask1/ask2 mutants, which we assumed would be incompletely penetrant and 

correspondingly viable. Two amiRNA constructs targeting ASK1 (amiR-ASK1a and 

amiR-ASK1b) and ASK2 (amiR-ASK2a amiR-ASK2b) were generated. Additionally, we 

generated amiRNAs simultaneously targeting both ASK1 and ASK2 (amiR-ASK1/2a and 

amiR-ASK1/2b). 

The transcript abundance of ASK1 and ASK2 was measured in all knockdown 

backgrounds (Figure 3.1). amiR-ASK1a and amiR-ASK1b achieved a relatively efficient 

knockdown for ASK1 (~72% and ~67%, respectively), however none of the independent 

amiRNAs targeting ASK2 (amiR-ASK2a and amiR-ASK2b) efficiently knocked down 

ASK2. Interestingly, in both amiR-ASK1a and amiR-ASK1b backgrounds, the level of 
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ASK2 transcript is 20% higher than in wildtype. This increase in expression in part can 

explain the lack of any observed phenotypes for the ask1 mutant. Among the amiRNAs 

simultaneously targeting both ASK1 and ASK2, amiR-ASK1/2a was more efficient in 

knocking down the target genes, lowering ASK1 and ASK2 transcript levels by ~85% and 

~55%, respectively, and these plants were subsequently subjected to gross phenotypic 

analysis. This mutant plant (amiR-ASK1/2a) was viable as expected but exhibited several 

gross phenotypes such as a smaller stature, delayed transition from vegetative to 

reproductive development and a smaller silique size (Figure 3.2). 
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Figure 3.1. mRNA transcript abundance for ASK1 and ASK2 in various mutant 
backgrounds. 
 
RNA was isolated and used to assess ASK gene expression as described in the methods. 

Relative mRNA expression levels in wild type (WT) and different transgenic lines were 

determined using qRT-PCR. Gene expression is depicted in relative amount after 

ACTIN2 normalization. Data depicted is a representative of two independent biological 

replicates ± SE from three sample replicates each.  
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Figure 3.2. Phenotypic characterization of ask1/ask2 mutant lines 

A. The ask1/2 double mutant line, amiR-ASK1/2a, displayed a smaller stature, delayed 

transition from vegetative to reproductive development. B. All double mutants that were 

viable and reached the flowering stage displayed a smaller silique compared to wildtype 

plants. C. Due to insertional position effect caused by the random nature of T-DNA 

insertion in the plant genome , amiRNAs can exhibit different degrees of penetration thus 

a wide range of phenotypes can be observed. All ask1/ask2 double mutant lines generated 

despite having various insertion sites exhibited a delayed development and smaller stature 

compared to wild type plants. 
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ASK3/4 

The second clade studied was compromised of ASK3 and ASK4, as two genes 

bearing a high level of sequence identity at the deduced protein level (94.5%) [7]. Data 

from chapter one indicates that ASK3 and ASK4 share a divergent expression pattern but 

at the protein level exhibit an almost identical interaction profile. Taken together, this 

finding indicates that the level of genetic redundancy between ASK3 and ASK4 cannot be 

as high as what was observed for ASK1 and ASK2 where a high degree of similarity at the 

expression and protein-protein interaction levels was observed. In order to understand the 

phenotypic contribution of these genes to plant development, we designed amiRNAs 

targeting ASK3 (amiR-ASK3a) and ASK4 (amiR-ASK4a) individually, or two amiRNA 

constructs targeting both genes simultaneously (amiR-ASK3/4a and amiR-ASK3/4b). 

Results of qRT-PCR analyses are presented in Figure 3.3. Although amiR-ASK3a 

efficiently knocked down ASK3 transcript levels by ~85%, amiR-ASK3a also non-

specifically resulted in a decrease of ASK4 transcript levels by ~20%. amiR-ASK3a 

mutant transgenic lines did not exhibit any obvious morphological phenotypes. In amiR-

ASK4a transgenic lines, ASK3 and ASK4 mRNA levels were reduced by only 5% and 

15%, respectively, and was therefore not subjected phenotypic analysis. amiR-ASK3/4a 

and amiR-ASK3/4b mutant lines exhibited a strong reduction in ASK3 and ASK4 

transcript levels (70-80% and 75-80%, respectively). The strong reduction in transcript 

levels allowed us to assess the physiological impact of these two genes. However, 

subsequent phenotypic analysis of these mutants revealed no overt morphological 

phenotypes. Although ASK3 and ASK4 proteins share highly similar interaction profiles, 
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their divergent expression patterns might partially explain the lack of any observed 

phenotype for the ask3/4 double mutant.  
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Figure 3.3. mRNA transcript abundance for ASK3 and ASK4 in various mutant 

backgrounds. 

RNA was isolated and used to assess ASK gene expression as described in the methods. 

Relative mRNA expression levels in wild type (WT) and different transgenic lines were 

determined using qRT-PCR. Gene expression is depicted in relative amount after 

ACTIN2 normalization. Data depicted is a representative of two independent biological 

replicates  ± SE from three sample replicates each.  
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ASK7/8/9/10 

This clade is comprised of a set of four tandemly-duplicated genes that are tightly 

clustered within a 10-kbp span on chromosome 3 [31] [7]. The high sequence similarity 

between these genes (~85%) raises the possibility of a high level of genetic redundancy 

within the clade. This hypothesis is further supported by the data gathered in chapter one 

where expression analysis, along with hierarchical clustering of transcript expression, 

resulted in a relatively tight clustering of these genes, reminiscent of their phylogenetic 

clade. Surprisingly, interaction studies performed on genes residing within this clade 

suggests that although these genes possess a high level of sequence similarity, these gene 

products present a diverged interaction profile [7,32]. To functionally characterize these 

genes several attempts were made to design amiRNAs targeting individual genes using 

various online tools. However, due to the high level of sequence similarity within this 

gene family, only a single unique amiRNA against ASK7 (amiR-ASK7a) and one against 

ASK10 (amiR-ASK10a) could be generated. Two amiRNAs were designed to 

simultaneously knockdown all four genes, amiR-ASK7/8/9/10a and amiR-ASK7/8/9/10b. 

In transgenic plants expressing amiR-ASK7a and amiR-ASK10a constructs, ASK7 and 

ASK10 mRNA transcript levels were significantly lowered, respectively (Figure 3.4). 

The expression of ASK8, ASK9 and ASK10 was not affected in the amiR-ASK7 transgenic 

plant, suggesting that the amiR-ASK7 construct exhibits a high level of specificity. In the 

amiR-ASK10a transgenic plant the expression of ASK9 was slightly (~17%) increased, 

indicative of a potential feedback mechanism and a level of genetic redundancy between 

ASK9 and ASK10. 
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Figure 3.4. mRNA transcript abundance for ASK7, ASK8, ASK9 and ASK10 in various 

mutant backgrounds. 

RNA was isolated and used to assess ASK gene expression as described in the methods. 

Relative mRNA expression levels in wild type (WT) and different transgenic lines were 

determined using qRT-PCR. Gene expression is depicted in relative amount after 

ACTIN2 normalization. Data depicted is a representative of two independent biological 

replicates  ± SE from three sample replicates.  
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Phenotypic analysis of the ask7 mutant plant did not show any overt morphological 

phenotypes under the lab conditions employed, however ask10 mutant plants developed 

smaller siliques and aborted almost 15% of seeds in the silique (Figure 3.5). Given the 

restriction of transcript expression of ASK10 in siliques [7], the observed phenotype for 

ask10 was reassuring. Between the two constructs targeting all four genes within the 

clade only the amiR-ASK7/8/9/10b construct was effective in reducing the transcript 

levels of all target genes (Figure 3.4). Hence, the amiR-ASK7/8/9/10b transgenic plant 

was subjected to phenotypic analysis; this mutant exhibited a smaller silique size and 

aborted around 20% of seeds within the silique, a phenotype quite similar to that of the 

ask10a mutant plant (Figure 3.5). Collectively, these data suggest a mild level of genetic 

redundancy among the genes within the clade, especially between ASK9 and ASK10. 
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Figure 3.5. Phenotypic characterization of ask10 and ask7/8/9/10 mutant lines.  

A,B. ask10 and ask7/8/9/10b mutant plants displayed a smaller silique compared to 

wildtype plants. C. ask10 and ask7/8/9/10b mutant plants despite having a smaller silique 

size did not exhibit any significant phenotype during early of the stages of growth and 

development.  
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ASK11/12 

 ASK11 and ASK12 are two genes with a DNA sequence similarity of around 99% 

and are tightly clustered on chromosome 4 [7]. A high level of genetic redundancy can be 

expected given the corresponding high level of sequence similarity between these two 

genes. To understand the physiological contribution of these two genes to the growth and 

development of A. thaliana two amiRNAs were designed, simultaneously targeting 

ASK11 and ASK12 (amiR-ASK11/12a and amiR-ASK11/12b). To measure the mRNA 

abundance of the target transcripts a single set of primers were designed to amplify the 

two genes. Mutants independently harboring amiR-ASK11/12a and amiR-ASK11/12b 

constructs, significantly down regulated ASK11 and ASK12 transcript levels by as much 

as ~95% (Figure 3.6). The availability of two independent amiRNAs targeting different 

regions of the ASK11 and ASK12 mRNA allowed us to assign function, confidently to 

both genes. Gross phenotypic analysis of the ask11/12 mutants revealed that both mutants 

were smaller in stature with mostly pale green leaves (indicating a defect in one of the 

stages of chloroplast production) and possessed smaller siliques. Interestingly, two recent 

papers have shown that ASK11 is the SKP1-like protein primarily responsible for the 

assembly of the SCFFBL17 [33,34] . SCFFBL17 has been shown to be involved in cell cycle 

regulation during male gametogenesis via degradation of the CDK inhibitor, KPR6. fbl17 

mutations result in seed abortion and smaller silique size [34], thus can in part explain the 

observed phenotype for ask11/12 mutants during silique development.  
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Figure 3.6. mRNA transcript abundance for ASK11 and ASK12 in various mutant 

backgrounds. 

RNA was isolated and used to assess ASK gene expression as described in the methods. 

Due to high level of DNA sequence similarity between the two genes, we designed a 

single set of primers for both ASK11 and ASK12. Relative mRNA expression levels in 

wild type (WT) and different transgenic lines were determined using qRT-PCR. Gene 

expression is depicted in relative amount after ACTIN2 normalization. Data depicted is 

representative of 2 independent biological replicates ± SE from three sample replicates.  
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Figure 3.7. Phenotypic characterization of ask11/12 mutant lines. 

A. ask11/12 mutants both mutants were smaller in stature with mostly pale green leaves. 

B. ask11/12 possessed smaller siliques compared to wild type plants. 
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ASK20/21  

Based on phylogenetic analysis of the deduced protein sequence, ASK20 and 

ASK21 do not possess the characteristics of typical ASK genes since both genes are 

strongly sequence-divergent at their N-termini (the CUL1 interaction domain) [35]. 

Furthermore, all ASK genes in A. thaliana or other model species possess either one or no 

introns, thus can only generate one isoform [7,35,36]. However, both ASK20 and ASK21 

genes possess multiple introns, and may therefore express several distinct isoforms. 

Therefore, in light of the degenerate CUL1 binding domain of ASK20 and ASK21, as 

well as the distinct mRNA splicing patterns of their transcripts, we believe that these two 

genes have entered the ASK gene family through a different evolutionary route than the 

other ASK genes. Collectively these findings denote the possibility of a neo-

functionalization for ASK20 and ASK21. To study the functional contribution of the 

ASK20 and ASK21 genes to plant growth and development, 4 amiRNA constructs were 

designed: amiR-ASK20a and amiR-ASK21a, which independently target ASK20 and 

ASK21, respectively; amiR-ASK20/21a and amiR-ASK20/21b, which simultaneously 

target both ASK20 and ASK21. The amiR-ASK20a and amiR-ASK21a constructs both 

significantly decreased the abundance of ASK20 and ASK21, respectively (Figure 3.8). 

Interestingly, in ask20 mutant plants the transcript level of ASK21 was upregulated by 

20%. Similarly, in ask21 mutant plants, ASK20 transcript levels were upregulated by 

~18%. Although at this juncture, the active mechanism behind the observed transcript 

compensation is unknown, up regulation of a paralog gene strongly indicates genetic 

redundancy. Between the two amiRNAs designed to target both genes simultaneously, 

only the amiR-ASK20/21b construct achieved a desirable level of transcript reduction for 
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ASK20 and ASK21. Although no interaction-based analysis has been performed on the 

protein products of these two genes, the expression-based analysis preformed presented 

in chapter one indicate a high correlation among the expression pattern of both genes. 

Thus it was anticipated that only the double mutants would exhibit phenotypes. Although 

no in-depth phenotypic analysis is available at this stage of the study, gross phenotypic 

analysis of the double mutant failed to reveal any significant morphological phenotypes. 
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Figure 3.8. mRNA transcript abundance for ASK20 and ASK21 in various mutant 

backgrounds. 

RNA was isolated and used to assess ASK gene expression as described in the methods. 

Due to high level of DNA sequence similarity between the two genes we designed a 

single set of primers for both ASK11 and ASK12. Relative mRNA expression levels in 

wild type (WT) and different transgenic lines was determined using qRT-PCR. Gene 

expression is depicted in relative amount after ACTIN2 normalization. Data depicted is 

representative of 2 independent biological replicates ± SE from three sample replicates.  
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CONCLUSION 

 Unbiased genetic surveys have shown that mutations in SCF ligase components 

affect A. thaliana growth and development [37]. CUL1 null mutations (cul1-1) are lethal 

and arrest at the single-cell stage [42,43] . Furthermore, point mutations in the CUL1 gene 

(cul1-6 and cul1-7) result in severe developmental defects [43,44]. Due to the essential 

role that CUL1 plays during growth and development, it was anticipated that mutations in 

ASK genes should exhibit a similar behavior. 

Interestingly, single mutations in ASK1 did not exhibit any embryonic lethal defects [30]. 

Furthermore, the ask2 null mutant did not exhibit any developmental defects at the 

embryonic stage [11]. The lack of a lethal phenotype for independent ask1 and ask2 

mutants could have two possible explanations: the remaining, uncharacterized ASK genes 

in A. thaliana play an essential role during embryogenesis or a high level of genetic 

redundancy exits between ASK1 and ASK2 during embryogenesis. The ask1/ask2 double 

null mutant generated by Liu et al. exhibited severe developmental defects suggestive of 

the redundant and essential role of ASK1 and ASK2 during embryogenesis and seedling 

growth [11]. The broad expression profile of ASK1 and ASK2 during growth and 

development, along with their general F-Box protein-interaction pattern (shown in 

chapter two) is suggestive of a major role for ASK1 and ASK2 during the later stages of 

plant development. The generation of the ask1/ask2a (amiR-ASK1/2a) double mutant, 

which resulted in a partial knockdown of both genes, has allowed us to assess the 

contribution of these two genes in plant growth and development. Although an in-depth 

phenotypic analysis is not available at this stage of the study, gross phenotyping indicates 

that ASK1 and ASK2 play a key role during the transition from vegetative to reproductive 

stage, flowering and seed generation in A. thaliana. Although no significant 
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morphological phenotypes were observed during embryogenesis among the mutants 

generated as part of this study, phenotypic analysis of several of these mutants revealed 

that selected aspects of growth and development are controlled and mediated by ASK 

genes. In instances where mutants exhibited phenotypes (ask1/2a, ask11/12a, ask11/12b, 

ask10, ask7/8/9/10b), the observed phenotype was mainly confined to the tissues in 

which the genes are known to be expressed. 

Among duplicated genes, the absence of a phenotype when one of the paralogs is 

deleted can be the result of an up-regulation of its duplicated paralog. Although the 

prevalence of this response is not fully understood in plants, in yeast it has been shown 

that ~12% of the paralogs exhibit such a characteristic [38,39]. To assess whether the 

absence of overt morphological phenotypes for several of the individual mutants could be 

the result of such a phenomenon, we assessed the expression of closely related paralogs 

in various mutant backgrounds. Interestingly, among the six individual mutant lines that 

achieved a significant level of down-regulation of the target genes, 4 displayed up-

regulation of the closely related paralog (ask1, ask10, ask20 and ask21). Furthermore for 

genes that reside in clades that show a divergent expression pattern, such as ASK3 and 

ASK4, we did not observe transcript up-regulation in response to the deletion of the 

paralog. Moreover, the ask3/4 double mutant did not exhibit any obvious morphological 

phenotype under the laboratory conditions assessed, suggesting that ASK3 and ASK4 do 

not genetically interact. Collectively, these data argue that deletion-mediated up-

regulation of a paralog gene within the ASK family is primarily restricted to genes that are 

not only genetically interacting, but have also recently diverged. 
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Although we have only performed gross phenotypic analysis at this stage of the 

study, the observation of diverse phenotypes (especially in instances that individual 

mutants exhibited a phenotype) not only argues a high level of sub-functionalization has 

occurred throughout the ASK gene family, but also underscores the breadth of functions 

that this gene family plays throughout plant development. 

Expression-based analysis of the ASK genes under various stimuli and conditions 

performed in the lab have shown that the expression of most ASK genes is induced 

following various biotic and abiotic stimuli (data not shown). Thus, future work will 

focus on an in-depth morphological phenotypic characterization of these mutants. This 

phenotypic screen will be further complimented by an in-depth assessment of mutant 

plant response to a variety of conditions and stimuli that have been previously connected 

to components of the SCF ligase such as auxin and jasmonate and gibberellin signalling, 

and pathogenic responses. 

At this point in the study we cannot exclude the possibility of neo-

functionalization of ASK genes. However, if we assume that the phenotypes observed in 

various ask mutant backgrounds are the result of the inability of ASK protein to assemble 

as part of the SCF ligase, the ubiquitination pattern between wild type and mutant plants 

should differ. Therefore, assessing the ubiquitination pattern between wild type and ask 

mutant plants should in principle allow us to dissect the molecular mechanism underlying 

the observed phenotypes. The mutants developed, as part of this study, will allow us to 

assess the contribution of the various ASK-containing SCF ligases to plant growth and 

development.   
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CHAPTER 4 
 

Dimerization of the E3 SCFTIR1 Ligase is Essential for Auxin Signaling 
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INTRODUCTION 

The plant hormone auxin is an essential regulator of diverse aspects of plant 

growth and development [1]. Previous studies have shown that an E3 ubiquitin (Ub) 

ligase of the SCF class (SKP1, CUL1, F-box) is an essential component of auxin 

signaling [2-4]. Transport Inhibitor Response (TIR1), is one member of a family of five 

Auxin-signaling F-box proteins (AFBs) and has been shown to act as the receptor for 

auxin binding and activation of the SCFTIR1 complex, leading to targeted protein 

degradation events involved in auxin perception [5]. Auxin/INDOLE-3-ACETIC ACID 

(Aux/IAA) proteins act as negative regulators of auxin signaling through their interaction 

with Auxin Response Factors (ARFs) [1,4]. In the presence of auxin, these transcription 

repressors have been biochemically characterized as the prime targets for the SCFTIR1 E3 

Ub ligase complex in the presence of auxin molecules [2,6]. Thus, in the presence of 

auxin and a reduced abundance of Aux/IAA proteins, several auxin response genes are 

activated as part of the generalized auxin response [7-9]. Since auxin plays a central role 

in many aspects of plant patterning and development, the tight regulation of auxin 

signaling and response is likewise central to plant growth, particularly at the level of the 

auxin receptor function of TIR1 and related F-box proteins. To date, all proposed SCF 

ligase-related auxin regulatory mechanisms mediated by CAND1 and RUB/Nedd8 are 

described at the level of CUL1 subunit modification [7-9]. Thus, these modifications 

should be considered as part of the general regulation of SCF ligase homeostasis and 

function independent of the AFB auxin receptors, with the sole exception of the S-

nitrosylation of TIR1 [10]. Substrate recognition by the SCFTIR1 complex is thought to be 

solely dependent on auxin binding to the F-box protein receptor, suggesting that the 
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SCFTIR1 E3 Ub ligase is constitutively active in the presence of auxin [4,8]. However, 

recent studies have shown that the homo-dimerization of select F-box proteins is required 

for efficient substrate ubiquitination and subsequent degradation, thus providing a novel 

perspective of SCF ligase regulation at the level of higher-order SCF complex assembly 

[11-17]. Accordingly, we have investigated the potential for the homo-dimerization of 

TIR1 as a major auxin receptor in Arabidopsis, with implications for auxin response and 

regulation. In this chapter I describe the homo-dimerization of TIR1 protein in planta 

together with a role for TIR1 homo-dimerization in the degradation of Aux/IAA proteins 

as part of the auxin-signaling pathway. 
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RESULTS AND DISCUSSION 
 

TIR1 protein lacks a dimerization-domain 

Recent reports have shown that select SCF-class E3 Ub ligases can function as a 

dimer, where dimerization of the complex is mediated through a conserved dimerization 

domain (D-domain) located immediately N-terminal of the F-box domain within the 

participating F-box subunit [12,15,16]. As one approach to investigate the potential for 

the dimerization SCFTIR1, we conducted a thorough bioinformatics survey for the 

presence of a D-domain within the family of AFB proteins in Arabidopsis. This survey 

failed to identify a canonical D-domain within TIR1 or any of the other AFB protein 

sequences (data not shown) suggesting that if TIR1 protein does indeed homo-dimerize, 

TIR1 homo-dimerization is not mediated by an identifiable D-domain.  

It has been suggested that the absence of a canonical D-domain in some F-box 

proteins, such as the mammalian SKP2, results in the formation of a monomeric SCF 

ligase complex. However, no experimental data has yet been provided to support that the 

D-domain is exclusively responsible for mediating SCF homo-dimerization [18]. To 

experimentally examine the potential for SCFTIR1 dimerization in vivo, we utilized 

Bimolecular Fluorescence Complementation (BiFC) in a heterologous Nicotiana 

benthamiana leaf expression system, thus allowing for visualization of protein 

interactions in living plant cells, together with information concerning the sub-cellular 

localization of the interaction [19-21]. To demonstrate the fidelity of the Nicotiana 

expression system for the recapitulation of TIR1-dependent Aux/IAA protein 

degradation, we co-expressed IAA7 [8], a member of the Arabidopsis Aux/IAA family of 

proteins, in the presence and absence of TIR1. As shown in Figure 4.1A, IAA7 protein 
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abundance was markedly reduced when co-expressed with TIR1, suggesting that TIR1 

can assemble as part of a Nicotiana SCF ligase and subsequently target IAA7 protein for 

degradation in the Nicotiana system. To confirm that the observed reduction in protein 

abundance was consistent with SCFTIR1 function and dependent upon 26S proteasome-

mediated protein degradation, we treated leaves co-expressing TIR1 and IAA7 proteins 

with the 26S proteasome inhibitor MG-132 and found that IAA7 abundance was elevated 

relative to the controls (Figure 4.1B). Interestingly, higher molecular weight IAA7 

proteins were detected in the presence of MG-132 and TIR1, reminiscent of a 

ubiquitination pattern. Taken together, the evidence suggests that the Nicotiana transient 

expression system faithfully recapitulates the function of TIR1-dependent Aux/IAA 

protein degradation as part of the Arabidopsis auxin-signaling pathway. 
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Figure 4.1. Arabidopsis Aux/IAA protein abundance is regulated by the SCFTIR1 E3 

ligase in N. benthamiana.  

A. IAA7 and TIR1 were visualized using anti-Myc and anti-HA antibodies, respectively. 

The large subunit of Rubisco was used as a loading control. B. Myc:IAA7 and HA:TIR1 

were co-expressed and leaves were subjected to MG-132 treatment for 5 h prior to 

protein extraction.  
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BiFC constructs expressing components of SCFTIR1 were generated and used to 

assess the homo-dimerization potential of three known subunits of the SCFTIR1 complex 

(Table 4.1). Among the three subunits assessed, a homo-dimerization fluorescent signal 

was observed for TIR1 and Arabidopsis SKP1-like (ASK1), but not for CUL1 (Figure 

4.2D). Interestingly, the TIR1 homo-dimerization signal was localized to the nucleus, 

suggesting this F-box protein self-interacts despite lacking a conserved D-domain. The 

ASK1-ASK1 protein BiFC signal exhibited a pronounced cytoplasmic and weaker 

nuclear localization, suggesting that ASK1 can also homo-dimerize. All observed 

interactions were compared to that of TIR1-ASK1 in order to investigate the relative 

strength of the BiFC signals corresponding to those interactions (Figure 4.2D). The sub-

cellular behavior of the relatively weak nuclear-localized TIR1-TIR1 interaction was 

importantly different from that of the predominantly nuclear and weaker cytoplasmic 

CFP:TIR1 localization (Figure 4.3). The exclusively nuclear homo-dimerization of TIR1 

is likely biologically relevant, given the demonstrated role of the SCFTIR1 complex in the 

degradation of Aux/IAA transcription factors early in the auxin signaling and response 

pathway in Arabidopsis. 

We used both yeast two-hybrid (Y2H) and co-immunoprecipitation (Co-IP) 

approaches to validate the BiFC results. Y2H approaches revealed a weak but significant 

homo-dimerization of TIR1 (Figure 4.4A). Similarly, Co-IP experiments involving Myc- 

and HA-tagged TIR1 fusion-expression constructs co-expressed in the presence of ASK1 

in Nicotiana leaves show results consistent with TIR1 homo-dimerization (Figure 4.4B). 
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Figure 4.2. BiFC-based evaluation of homo-dimerization potential of SCFTIR1 

components in N. benthamiana. 

A. Fluorescent signal confined to the nucleus resulting from a direct interaction of TIR1 

proteins fused to complementary fluorescent protein fragments. B. No detectable 

fluorescent signal for CUL1 homo-dimerization following BiFC. C. A nuclear and 

cytoplasmic fluorescent signal distribution resulting from a direct interaction of ASK1 

proteins fused to complementary fluorescent protein fragments. D. Nuclear fluorescent 

signal resulting from a direct interaction of ASK1 and TIR1 proteins fused to 

complementary fluorescent protein fragments. A'-D'. PI-stained nuclei. A''-D''. Overlay. 
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Figure 4.3. Nuclear and cytoplasmic localization of TIR1 following transient expression 

in N. benthamiana leaves. 

A. Sub-cellular distribution of CFP-TIR1, following transient expression in Nicotiana 

leaves is indicative of weak cytoplasmic and strong nuclear localization. A'. Chlorophyll 

auto-fluorescence from the leaf mesophyll cell layer. A''. Overlay of images A and A'. 

White arrows indicate CFP-TIR1 localization. 
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Figure 4.4. Validation of TIR1 homo-dimerization using Co-IP and Y2H. 

A. Assessment of TIR1-TIR1 protein interaction and strength relative to ASK1-TIR1 

interaction in Y2H assay. Images of single colonies expressing the designated constructs 

and grown on histidine plates (top panel) and test plates containing 10 mM 3-

aminotriazole (3-AT) without histidine (bottom panel). B. In vitro Co-IP experiments in 

Nicotiana leaves. HA:TIR1 and Myc:TIR1 were co-injected in leaves. Protein extracts 

were subjected to immono-precipitation using anti-Myc antibody. The 

immunoprecipitates were examined by Western blotting using anti-Myc and anti-HA 

antibody.  
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TIR1 dimerization is independent of other SCF subunits 

The emerging general pattern of homo-dimerization involving F-box proteins has 

been shown in other systems to be independent of SKP1 subunit binding and interaction 

[11,15,16]. We assessed the role of ASK1 in TIR1 dimerization by generating a variant 

allele with the deletion of the degenerate F-box domain – TIR1-ΔF(Δ10-40) – and 

assessed the interaction of this deletion variant with both ASK1 and full-length TIR1 

using the BiFC system. Interestingly, TIR1-ΔF did not detectably interact with either 

ASK1 (Figure 4.5B) or full-length TIR1 (Figure 4.5A), suggesting that ASK1 may be 

essential in the homo-dimerization of TIR1. The inability of TIR1-ΔF to homo-dimerize 

could be due to an altered tertiary structure resulting in decreased protein stability. To 

investigate this, we generated two alleles containing amino acid substitution mutations 

within the F-box domain of TIR1: Val33 to Glu (V33E-TIR1) and a double mutation of 

Val33 to Ala and Lys35 to Ala (V33A/K35A-TIR1). When submitted to BiFC interaction 

analysis, V33E-TIR1 failed both to detectably bind ASK1 (Figure 4.5F) as well as to 

homo-dimerize (Figure 4.5E). Alternatively, V33A/K35A-TIR1 retained a partial 

capacity to associate with ASK1 (Figure 4.5D) and also retained the ability to homo-

dimerize (Figure 4.5C). To further assess the role of ASK1 in TIR1 homo-dimerization, 

we performed a set of BiFC studies where TIR1 was co-expressed with ASK1 (Figure 

4.5G,H). The results showed an enhanced fluorescence signal arising from TIR1-TIR1 

interaction when co-expressed with ASK1. A parallel set of experiments was carried out 

in a yeast three-hybrid experiment, where the results supported the finding that TIR1 

homo-dimerization was enhanced by co-expression with ASK1 (data not shown).  
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 Previous studies have shown that SKP1 protein can stabilize F-box proteins by 

interacting with the hydrophobic F-box domain. To assess whether the enhanced TIR1 

homo-dimerization was due to protein stabilization in the presence of ASK1, we 

performed a set of Western blots, which revealed that steady-state TIR1 protein levels are 

strongly elevated in the presence of ASK1 (Figure 4.5F). An alternative explanation for 

the lack of homo-dimerization by TIR1-ASK1 binding mutants could involve an aberrant 

sub-cellular localization. Indeed, it has been reported that several F-box proteins retain a 

nuclear localization signal (NLS) within their F-box domain, such that the deletion of the 

F-box domain could result in an incorrect localization of the variant protein [22]. In order 

to investigate the stability and localization of the mutant proteins employed in this study, 

YFP-tagged variants of each TIR1 mutant were generated and expressed in the Nicotiana 

transient expression system. Upon comparing the localization and stability (signal 

intensity) of YFP:TIR1 mutants to that of YFP:TIR1, V33A/K35A-TIR1 and V33E-TIR1 

mutant proteins retained their nuclear localization (Figure 4.5J and Figure 4.5K, 

respectively), although they were relatively unstable as indicated by a marked decrease in 

fluorescent signal. On the other hand, expression of the YFP:TIR1-ΔF fusion variant 

resulted in a fluorescent signal that was strongly aggregated and external to the nucleus 

(Figure 4.5L), suggesting the variant was not only mis-localized but also unstable. Taken 

together, the homo-dimerization experiments involving select TIR1 F-box mutants 

suggest that the increased stability of TIR1 when co-expressed with ASK1 is effected 

through the masking of the hydrophobic F-box domain in TIR1 [4], rather than a direct 

involvement of ASK1 in TIR1 homo-dimerization.  
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Figure 4.5. TIR1 homo-dimerization is independent of ASK1 homo-dimerization. 

A,C,E. BiFC-based assessment of TIR1 homo-dimerization using ΔF-TIR1, 

V33A/K35A-TIR1 and V33E-TIR1, respectively. B,D,F. BiFC-based assessment of 

ASK1 binding with ΔF-TIR1, V33A/K35A-TIR1 and V33E-TIR1, respectively. G,H. 

BiFC-based assessment of TIR1 homo-dimerization in the absence and presence of 

Myc:ASK1, respectively. A'-H'. Propidium iodide (PI) staining of the nucleus. I-L. 

Assessment of sub-cellular localization of YFP-TIR1, YFP-V33A/K35A-TIR1,YFP-

V33E-TIR1 and YFP-ΔF + TIR1, respectively. F. Western blotting on protein cell 

extracts from Nicotiana leaves expressing either TIR1 alone or co-expressing ASK1 and 

TIR1 in the presence of cycloheximide.!



!163 

Aux/IAA transcriptional repressors have been shown to be the prime targets of the 

SCFTIR1 complex [2,3]. Following TIR1 binding, Aux/IAA proteins were found to be 

ubiquitinated and subsequently degraded via the 26S proteasome [2,3,7]. As with most 

transcription factors, Arabidopsis Aux/IAA proteins have been shown to form hetero- or 

homo-dimers [23,24]. We considered that the homo-dimerization of Aux/IAA proteins 

could, in turn, lead to the homo-dimerization of TIR1 while in complex with the SCF 

ligase. To evaluate this possibility, we assessed the homo-dimerization of IAA7 and 

IAA3 using the BiFC system. Both proteins exhibited the ability to homo-dimerize within 

the nucleus (Figure 4.6A,B), but the pattern of the homo-dimerization was distinct from 

that observed for TIR1 homo-dimerization in that the signal was confined to discrete 

regions within the nucleus. We subsequently examined the localization of YFP:IAA 

protein fusions and found that both IAA3 and IAA7 exhibited similar localization 

patterns to that of the BiFC interaction. The differential localization pattern of TIR1 

homo-dimerization versus IAA homo-dimerization suggests that the homo-dimerization 

of the two are spatially – and likely functionally – independent. To further explore this 

possibility, we developed a set of TIR1 mutants that were previously shown to abolish 

binding to Aux/IAA proteins. The specific variants included a double mutant where both 

Ser462 and Ala464 were mutated to Glu (S462E/A464E-TIR1). As shown in (Figure 

4.6C), the double mutant retained the ability to homo-dimerize, suggesting that the 

Aux/IAA protein interaction was not obligatory for TIR1 homo-dimerization.  
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Figure 4.6. TIR1 homo-dimerization is independent of Aux/IAA binding. 

A,B. BiFC-based assessment of IAA3 and IAA7 homo-dimerization respectively. C. 

BiFC-based assessment of TIR1 homo-dimerization with S462E/A464E-TIR1. D. BiFC-

based assessment of TIR1 homo-dimerization. A'-D'. Propidium iodide (PI) staining of 

the nucleus. 
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Although it cannot be excluded that other Aux/IAA proteins may possibly bind to TIR1 

and mediate TIR1-TIR1 self-interaction, the experimental evidence suggests that TIR1 

homo-dimerization is independent of Aux/IAA binding, particularly in light of the high 

degree of sequence similarity within the conserved binding domain of Arabidopsis IAA 

proteins [25]. 

Identification of the TIR1 homo-dimerization domain 

 In order to identify the domain(s) responsible for TIR1 dimerization, a set of 

deletion mutants were cloned and expressed in BiFC vectors and subsequently assessed 

for their ability to homo-dimerize. BiFC results show that all the mutant variants failed to 

dimerize in a manner similar to that of TIR1-ΔF, suggesting that the TIR1 deletion 

variants possessed a conformational change in the protein structure and a corresponding 

reduction in stability. To examine the potential effect of the deletions on protein 

abundance, all TIR1 deletion mutants were cloned in a fusion-expression vector coding 

for N-terminal HA tags (pEarlygate201) and their steady state abundance was studied 

using Western blotting following expression in the Nicotiana system. The resulting blots 

revealed a pronounced reduction in mutant protein abundance in comparison to the 

wildtype, suggestive of instability of the deletion mutants (data not shown). The results 

seem consistent with the published tertiary structure for TIR1 that includes a highly 

hydrophobic core [4]. We suggest that arising from the particular topology of the TIR1 

protein, the amino acid deletions made in this study likely significantly alter TIR1’s 

tertiary structure, resulting in the exposure of the hydrophobic core and a corresponding 

reduction in stability of the protein. 
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 Although the functional relevance of SCF ligase dimerization has not been well 

understood, one possibility is that F-box protein abundance is stabilized through the 

masking of otherwise exposed hydrophobic patches on the surface of the protein [15]. To 

investigate this possibility, we identified several hydrophobic patches in TIR1 that could 

participate in masking events through protein interaction. A select set of hydrophobic 

residues within these patches were mutated (Tyr 92 to Glu, Try95 to Ala, Leu441 to Ala, 

Leu525 to Ala and Leu573 to Ala) and subsequently assessed for homo-dimerization 

potential using the BiFC approach. All the mutants assessed for homo-dimerization were 

found to interact (data not shown). Due to the limited number of amino acid substitutions 

studied to date, the finding that the variant protein set continued to homo-dimerize does 

not rigorously exclude the possibility of an increased stability arising from homo-

dimerization relative to the monomeric form. The results may merely reflect that the 

above amino acids are not involved in homo-dimerization of TIR1. Further experiments 

are required to assess the potential contribution of homo-dimerization on the stability of 

TIR1.  

 The combination of a weak Y2H interaction as shown in this study and the 

purification of TIR1 as a monomer following size exclusion chromatography of proteins 

expressed in insect cells (Dr. N. Zheng, University of Washington, personal 

communication) led us to investigate the potential role of a post-translational mechanism 

for the regulation of TIR1 homo-dimerization. To date, the sole post-translational 

modification reported for TIR1 is S-nitrosylation [10]. Although specific modified-amino 

acid sites have not yet been identified, Cys140 and Cys480 have been suggested to act as 

the S-nitrosylation regulatory site for the function of TIR1. We assessed the role of 
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Cys140 and Cys480 in TIR1 homo-dimerization by generating mutants (C140A- and 

C480A-TIR1) and assessing their homo-dimerization potential in the BiFC system. While 

C480A-TIR1 retained its ability to homo-dimerize, we found that C140A-TIR1 failed to 

homo-dimerize (Figure 4.7C) but retained the ability to interact with ASK1 (Figure 

4.7D), although the interaction of C140A-TIR1 with ASK1 was relatively weak 

compared to that involving wildtype TIR1 (Figure 4.7B). To verify that that the inability 

of C140A-TIR1 to homo-dimerize did not result from folding defects arising from the 

mutation of Cys140 to Ala, we mutated Cys140 to Met (C140M-TIR1) and assessed the 

homo-dimerization of this mutant variant. The results revealed that the C140M-TIR1 

mutant failed to dimerize (Figure 4.7E), but retained the ability to interact with ASK1 in 

a manner similar to C140A-TIR1 (Figure 4.7F). Although Cys residues can contribute to 

disulfide bond formation, we noted that no other Cys residues are found within 3Å of 

Cys140 (the maximum length of a disulfide bond), diminishing the likelihood of intra-

molecular disulfide bond formation involving this residue. The two amino acids 

immediately adjacent to Cys140 (Ser139 and Glu141) and two highly conserved and 

surface-exposed amino acids in close vicinity of Cys140 (Gly142 and Thr145) were 

mutated to Ala to assess their contribution to TIR1’s homo-dimerization. All the variants, 

with the exception of G142A-TIR1, retained their ability to homo-dimerize (Figure 

4.7G). G142A-TIR1 interacted with ASK1 in a manner resembling that of C140A-TIR1 

(Figure 4.7H). These results were confirmed as C140A-TIR1 and G142A-TIR1 did not 

homo-dimerize in a Y2H experiment, thus validating the BiFC experiment findings.  

 



!168 

 

Figure 4.7. Cys140 and Gly142 mediate TIR1 homo-dimerization. 

A,C,E,G. BiFC-based assessment of TIR1 homo-dimerization using TIR1, C140A-TIR1, 

V33E-TIR1 and G142A, respectively. B,D,F,H. BiFC-based assessment of ASK1 

binding TIR1, C140A-TIR1, V33E-TIR1 and G142A, respectively. A'-H'. Propidium 

iodide staining of the nucleus.  
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These studies suggest that these two amino acids in close proximity of each other 

contribute to the homo-dimerization of TIR1 and define a domain necessary for TIR1 

homo-dimerization. 

TIR1 dimerization contributes to the degradation of IAA7 

 In order to assess whether TIR1’s homo-dimerization is critical for the SCFTIR1 

ligase-dependent ubiquitination of IAA substrates, we co-expressed wildtype and homo-

dimerization-deficient TIR1’s (C140A, C140M and G142A) along with IAA7 in the 

transient Nicotiana system. Interestingly, when we co-expressed IAA7 in the presence of 

TIR1, IAA7 was completely depleted from the sample. However, IAA7 levels were 

relatively stable when co-expressed with TIR1 homo-dimerization-deficient mutants 

(Figure 4.8). Thus, homo-dimerization-deficient TIR1 proteins show a reduced rate of 

substrate turnover. 

To evaluate the potential effect of S-nitrosylation on TIR1 homo-dimerization, we 

treated Nicotiana leaves with the NO-donor, sodium nitroprusside (SNP), following 

injection with BiFC constructs. As shown in (Figure 4.9B), following application of SNP 

on leaves, an obvious increase in the signal intensity arising from the homo-dimerization 

of TIR1 was observed. To further assess the effect of NO on the homo-dimerization of 

TIR1, we treated leaves with hemoglobin, a NO scavenger. Interestingly, in the presence 

of hemoglobin we could not see any TIR-TIR1 BiFC fluorescence signal (Figure 9C), 

establishing the necessity of NO on TIR1’s ability to homo-dimerize. 
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Figure 4.8. TIR1 homo-dimerization is essential for efficient degradation of the Aux/IAA 

proteins. 

Western blotting on protein cell extracts from Nicotiana leaves expressing either IAA7 

alone or co-expressing IAA7 and TIR1, or IAA7 and TIR1 homo-dimerization-deficient 

mutants. 
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To assess whether NO had any effects on TIR1 protein levels, we treated leaves 

expressing HA-TIR1 with SNP and the de novo protein synthesis inhibitor, 

cycloheximide (CHX), simultaneously. Interestingly, in the presence of SNP, TIR1 was 

considerably stabilized (Figure 4.9D). The increase in the stability of TIR1 following 

SNP treatment could be the result of enhanced TIR1 homo-dimerization. 

To evaluate whether TIR1 homo-dimerization can lead to enhanced stability of 

TIR1 we treated plants expressing the TIR1 homo-dimerization-deficient mutants 

(C140A-TIR1 and G142A-TIR1) with SNP.  

One possible scenario is that if indeed C140 is the chief residue responsible for S-

nitrosylation, following SNP treatment we should not see an increase in C140A-TIR1 

protein stability. Interestingly, in the presence of SNP and CHX we did not see an 

increase in C140A-TIR1 protein stability (Figure 4.9D). Furthermore, assessment of 

G142A-TIR1 protein abundance following SNP and CHX treatment did not result in an 

obvious increase in TIR1 protein levels (Figure 4.9D). The availability of the G142A-

TIR1 homo-dimerization mutant, which is independent of C140, the potential S-

nitrosylation site, allowed us to dissect the effect of nitrosylation from homo-dimerization 

on TIR1 protein stability and establish the necessity of S-nitrosylation mediated homo-

dimerization on TIR1 protein stability. 
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Figure 4.9. S-nitrosylation results in an increase in TIR1 protein stability. 

A. BiFC-based assessment of TIR1 homo-dimerization. B,C. BiFC-based assessment of 

TIR1 homo-dimerization in the presence of SNP, an NO donor, and hemoglobin, an NO 

scavenger, respectively. D. Western blott of protein cell extracts from Nicotiana leaves 

expressing TIR1 or leaves expressing TIR1 and treated with SNP and cycloheximide 4 h 

following treatment. E. Schematic representation of TIR1 secondary structures along 

with the corresponding hydrophobicity plot. 
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CONCLUSION 

Our understanding of auxin perception and signaling has been substantially 

advanced in recent years. Studies have demonstrated that auxin directly binds to TIR1, 

and in turn increases the affinity of TIR1 for the Aux/IAA protein [3,4,6]. However, 

despite the broad and essential roles that auxin plays in plant growth and development, 

the potential for auxin perception regulation at the level of substrate interaction is not 

clearly understood and remains to be elucidated. Here, we provide evidence for the 

homo-dimerization of the principal auxin receptor protein, TIR1. Although homo-

dimerization among the WD-class of F-box proteins has been described [11-13,15-17,26], 

no corresponding evidence has been provided for the LRR class of F-box proteins. Thus, 

the self-interaction of TIR1 reported here is the first example of homo-dimerization 

involving a member of the LRR-class of F-box proteins in any species. Data presented 

here indicates that two amino acids, C140 and G142, play an essential role in the homo-

dimerization of TIR1, since three mutants (C140A, C140M and G142A) are deficient in 

their ability to undergo homo-dimerization. We also assessed the degradation of 

Aux/IAA proteins in the presence of wildtype and mutant TIR1’s and showed that the 

homo-dimerization of TIR1 is correlated with the efficient degradation of Aux/IAA 

proteins. Hence, these mutants are significantly incapacitated for the ubiquitination of 

Aux/IAA proteins in comparison to wildtype TIR1 protein. Furthermore, we have 

provided evidence that NO can result in an increase in the abundance of TIR1. The data 

provided here indicate that the increase in TIR1 abundance is mediated via an increase in 

the homo-dimerization of TIR1. We believe, given that residues mediating the homo-

dimerization of TIR1 (C140 and G142) are residing within a highly hydrophobic and 
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surface exposed patch of TIR1 (Figure 4.9E), the homo-dimerization is potentially 

resulting in the burial of this hydrophobic patch within the interaction interface of TIR1-

TIR1, resulting in an increase in TIR1 protein stability. The increase in TIR1 protein 

stability, in turn, results in more efficient degradation of the Aux/IAA proteins, allowing 

the plant to more competently respond to the presence of auxin.  

Future work will primarily focus to address the molecular mechanism behind 

TIR1 stabilization and whether SCFTIR1 is subjected to auto-ubiquitination. Furthermore, 

a more in-depth understanding of the mechanism behind the deficiency in Aux/IAA 

protein degradation is required. Two potential scenarios that can be postulated is a 

decrease in the ubiquitination level of the substrate by SCFTIR1 or a decrease in the 

affinity of TIR1 towards Aux/IAA protein. Finally, assessment of TIR1’s ability to 

homo-dimerize during development will provide a more in-depth understanding of the 

role auxin plays in the regulation of plant growth and development. 
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MATERIALS AND METHODS 

N. benthamiana transient expression system 

Plasmids to be introduced in N. benthamiana were transformed into the AGL1 strain of 

Agrobacterium tumefaciens via electroporation. Successful introduction of transgenes 

were verified by in situ colony PCR. Agrobacterium cultures were infiltrated individually 

or co-infiltrated with cultures transformed with other expression constructs on the abaxial 

surface of 3-4-week-old N. benthamiana leaves. All Agrobacterium cultures were co-

infiltrated with tomato bushy stunt virus p19 to suppress gene silencing. 

Protein extraction and Western blotting 

Proteins were extracted from N. benthamiana leaves transiently expressing indicated 

expression constructs 3 days post-infiltration. Leaves were flash frozen and ground in 

liquid nitrogen and mixed with 100 µL of extraction buffer [100 mM TRIS-HCl (pH 7.5), 

150 mM NaCl, 5 mM EDTA, 10 mM 2-mercaptoethanol, 10% glycerol, 0.1% Triton X-

100, 1X EDTA-free Complete protease inhibitiors (Roche, St. Louis, MO)] per 100 mg 

of ground tissue. Lysates were cleared by centrifugation at 14,000 g for 15 min and 

proteins were resolved by 12% SDS-PAGE. Proteins were subsequently transferred to a 

PVDF membrane using a TransBlot SD Semi-Dry Transfer unit (BioRad) and Bjerrum 

and Shaefer-Nielsen buffer (48 mM TRIS, 39 mM glycine, 0.00375% SDS, 20% 

methanol). Blots were then incubated in either anti-HA or Myc antibody overnight at 

1:1,000 in 1% skim milk/TBST at 4ºC overnight. Blots were then washed with TBST 3 

times at 10 min intervals and incubated with secondary antibody (Santa Cruz 

Biotechnology), 1:10,000 in 2% skim milk/TBST for 1 h at room temperature. Blots were 

washed as previously described prior to exposure using Pico West Reagent (Fisher 
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Scientific) and visualized with an AlphaImager (Alpha Innotech Corp., San Leandro, 

CA). 

Confocal imaging 

Imaging of BiFC signals in planta was performed using an Olympus Model FV1000 

point-scanning/point-detection laser scanning confocal microscope. Cyan Fluorescent 

Protein (CFP), Yellow fluorescent Protein (YFP) and propidium iodide (PI) were excited 

using 440, 512 and 543 nm laser lines, respectively. When using multiple fluorophores 

simultaneously, images were acquired sequentially in order to reduce excitation and 

emission overlaps. Olympus water immersion PLAPO60XWLSM (NA 1.0) and 

UPLSAPO 20x (NA 0.75) objectives were employed. Image acquisition was conducted at 

a resolution of 512 x 512 pixels, with a scan rate of 10 ms per pixel. Olympus 

FLUOVIEW v1.5 software was used for image acquisition and the export of TIFF files. 

Figures were assembled using GIMP 2.0 (http://www.gimp.org/). 
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