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ABSTRACT 

It is widely known that the decreasing feature size facilitated vast 

improvement in semiconductor-based design. But this improvement will eventually 

come to an end. The MOS transistor itself cannot overcome its limits dictated by its 

operating principle. In order to ensure further feature size reduction, the field of 

single-electronics has been developed. Single Electron Tunneling (SET) 

technology offers the ability to control the transport and position of a single or a 

small number of electrons. 

In this thesis we investigate the implementation of arithmetic operations in 

SET technology. In particular we focus on design methodologies for SET based 

Electron-Trap which is a basic memory cell that has been recently fabricated. 

Given a circuit topology and the corresponding targeted behaviour, the 

proposed methodology assists the circuit designer in deriving the circuit parameters 

in an analytical way. The methodology is based on the mathematical description of 

the tunnel junctions in the circuit. Moreover the method allows for the analysis of 

reliability issues. 
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CHAPTER I 

INTRODUCTION 

Because of the ongoing increase in complexity of software, there is an 

urgent need for more powerful computers. The enormous success of semiconductor 

microelectronics during the past three decades was based on scaling down of 

silicon field effect transistors (MOSFETs) and the resulting increase of density of 

logic and memory chips. Moore's law (which states that the number of components 

per chip doubles every 18 months) has remained valid since it first became known 

in 1965. However, prospects to continue the Moore Law beyond the 10 nm are 

much more uncertain. It is generally expected that current technology eventually 

cannot be pushed beyond some limit. This limit is expected to arise in mainly two 

areas: power consumption and scalability. In order to keep variations of the 

transistor threshold voltage below an acceptable limit (~50 mV), gate length of a 5-

nm MOSFET should be controlled better than ~ 0.25-nm, which shows high 

sensitivity to parameter fluctuations, and hence to the fabrication process as a 

whole, may lead to increasing of chip fabrication facilities cost, very high even 

now. As a result, the Si-MOSFET-based Moore Law may stop at gate length ~ 10 

nm, long before fundamental physical limits have been reached. These prospects 
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give a strong motivation for the search for alternative devices that could replace 

MOSFETs beyond the 10-nm. 

In order to ensure further feature size reduction, the field of single-

electronics has come of age. SET technology allows controlled transport of single 

electrons among quantum islands. If values or bits are represented by single or few 

electrons this technology has in principal the potential of performing computation 

with lower power consumption than CMOS technology. When semiconductor 

structures are scaled down to the nanometer region and beyond, quantum 

mechanics effects increase and finally determine the behaviour. While for CMOS 

this causes faults to occur, and therefore is a limit to the scalability, for SET this 

means scalability even on atomic scale set, because SET is based on quantum 

mechanics effects [1]. 

Because of the SET technology potential several proposals have been made 

to implement computational structures using SET technology. The main type of 

implementation represents bits by single electrons, thus it utilizes the SET device 

capability to control the transport of single electrons. In these implementations SET 

devices are used to transport electrons to and from quantum islands (sometimes 

called quantum dots). Using this approach the power consumption is very low. For 

an overview of these implementations the reader is referred to [2]. 

These attempts of scientists to build circuits using SET technology have 

mainly taken place in the last decade, although the principles of SET have been 

known for many decades. Since SET technology is different from MOS 

technology, existing design methodologies are not applicable. Additionally, CAD 
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tools are not available and only a small number of simulators exist. Thus the design 

of SET circuits is generally speaking not automated. Therefore the first objective of 

this research is to propose a design methodology for deriving the circuit parameters 

of SET based Electron-Trap memory cell. A SET Electron-Trap is a small circuit 

consisting of a few (typically between one and four) tunnel junctions and some 

other circuit elements (like capacitors, voltage sources, etc.), which performs an 

elementary operation. Nano-scale devices are more sensitive to a variety of random 

noises which are the random charges appearing on nodes of SET devices during the 

fabrication process. These charges generate a biased voltage contributing to the 

total voltage across the SET device. The function of the device could be destroyed. 

Thus reliability turns out to be one of the biggest concerns in designing SET 

devices. Our second objective is the reliability analysis of SET Electron-Traps. 

This thesis is organized as follows. Chapter 2 provides a background on the 

SET phenomenon and introduces the previous works, including the theoretical 

background of SET technology, several proposed SET memory cells, and some 

challenges. In Chapter 3 the first objective of this research is met by proposing a 

design methodology for SET based Electron-Trap memory cells. Chapter 4 

concerns the second objective. We analyze the reliability of SET circuits by 

introducing Random Background Charge on the single island. Chapter 5 concludes 

this thesis with future works being discussed. 
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CHAPTER II 

SINGEL-ELECTRON TUNNELING 
BACKGROUND 

In this chapter some background information on SET technology is provided. In 

the first section the basic theory of single electron tunneling is presented. Since this 

thesis is about the utilization of basic SET devices for computation, and not about 

the physics of SET devices only the theory needed for understanding the SET 

tunnel junction behaviour is presented. Section 2.2 discusses the reliability issue of 

SET, we concern Random Background Charge which is the biggest challenge in 

designing SET devices. In Section 2.3 an overview of the proposed SET memory 

cells is given. The simulator-SIMON is introduced in Section 2.4. 
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2.1 Theoretical Background of SET 

2.1.1 Single Electron Tunneling 

In the classic physics theory electrons are viewed of as particles and the 

theory does not allow electrons to cross a barrier like a piece of insulator. In 1923 

L. de Broglie [3] suggested that particles may also behave like waves. Three years 

later this hypothesis was formally described by Schrodinger, which became the 

basis for the quantum mechanics theory of today. Using the Schrodinger wave 

equation there is a probability that an electron tunnels through a barrier and enters a 

classically forbidden region. 

This tunneling phenomenon is the basic principle of SET technology. It is 

used to create the basic circuit element of SET technology, the tunnel junction. The 

symbol for the tunnel junction is depicted in Figure 2.1. The junction is created by 

separating two conductors with a thin insulator and therefore it behaves like a 

capacitor. Given that the insulator is thin enough quantum tunneling may occur. 

The tunneling of an electron through the junction is called a tunnel event. 

Fig 2.1: Symbol of tunnel junction 
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2.1.2 Single Electron Box 

The electron box (see Figure 2.2) is one of the most simple SET circuits. On 

one side the island is connected to a voltage source through a tunnel junction, On 

the other side it is connected to the ground through a capacitor, which is formed by 

the thick piece of insulator. 

Vb f + 0 
i 

n • 
\J m 

vi 

Cj 

Island 

11 
1 Cc 

i 
Fig 2.2: Single Electron Box 

The basic working principle of Single Electron Box is that one needs 

Coulomb energy E0 to charge an island with an electron: 

E = 
2C, 

»kT (2.1) 

Where k is Boltzmann's constant, T is absolute temperature, CE is the total 

capacitance of the island which is charged, e is the elementary charge. If the 

Coulomb energy is not available a tunnel event cannot happen. This phenomenon 

is known as Coulomb blockade. The voltage source can provide the energy needed 

for an electron to tunnel. If the bias voltage exceeds a certain value an electron 
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tunnels from the island. Further increase of the bias voltage eventually leads to a 

second electron to tunnel. This way, the number of electrons present on the island 

can be controlled by the bias voltage (see Fig 2.3). 

q[e] U 

3 ~ I ' 

2 - | 1 

1 " I ' 

V b 

Fig 2.3: Transfer function of Single Electron Box 

When building circuits with tunnel junctions, one needs to predict the 

tunneling of electrons. This could be done by calculating all free energy in the 

circuit. But even for modest sized circuits this method results in very complex 

computation. Therefore generally the method of critical voltage is employed [4, 5]. 

This method predicts that an electron only tunnels if the voltage across the tunnel 

junction (Vj) is greater than some critical voltage (Vc). For the Single Electron 

Box displayed in Fig 2.2: 



2.2 Reliability issue of SET 

SET devices show high sensitivity to parameter fluctuations. During 

fabrication process, it is unavoidable that certain amount of charges (Random 

Background Charge) appears on islands of SET devices. It may be caused by 

several reasons: charged impurities in the surrounding material, charged tarps on 

surface and grain boundaries, charges on nearby conductors, etc. These background 

charges will be mobile and move and change over time. With today's techniques, 

one is not able to control them. These random charges are so devastating, because 

they can fully suppress the Coulomb Blockade. 

One observes the Coulomb blockade in the I-V characteristic (see Fig 2.4) 

[6]. The size of the blockade is 

e 2 0 
V < = ^ - - r ' f 0 r Qo=[0,0.5]e (2.4) 

Where e = 1.6 x 10"19 C, Cj. denotes the capacitance of the island. It shows 

that the Coulomb Blockade is largest for zero background charge, but if we 

consider a background charge, the Coulomb Blockade, depending on the amount of 

background charge, decreases and vanishes completely forQ0 =0.5. As one can 

imagine, the Random Background Charge problem is crucial. It will decide the 

usability of SET devices. 
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-1 0 1 

Drain-Source Voltage V (e/C) 

Fig 2.4:1-V characteristic with different background charge Qfl 
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Now there are some promising solutions such as using current oscillations 

to determine the presence of absence of charge on a floating gate [7] and using 

multi-island structure [8,9], But they are not perfect. So, one of our purposes to 

design SET devices is to make the circuit more tolerant to background charge. The 

detailed reliability analysis and simulation are given in Chapter IV. 
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2.3 Some basic memory cells 

Memory is one of the most promising SET applications. What are the 

criteria for a good single electron memory cell? Such a SET memory should work 

at room temperature with a reasonable bit error rate. It should have low power 

consumption and not sensitive to background charge which is a random offset 

charge induced by stray capacitances and impurities located near the circuit nodes 

[10]. Several different single-electron memory cells are analyzed and compared on 

the basis of the above criteria in [11], 

2.3.1 SET Flip-Flop 

One design possibility is to mimic conventional memory design with SET 

devices, such as a static SET memory cell or Flip-Flop. The design was proposed 

by A. Korotkov etal [13]. R-S Flip-Flop is one of the most basic memory elements, 

the behaviour and structure of which are shown in Table 2.1 and Fig 2.5, 

respectively. 
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Table 2.1: The behaviour of Flip-Flop 

R 

0 

0 

1 

1 

S 

0 

1 

0 

1 

Q 

lastQ 

1 

0 

? 

QN 

last QN 

0 

1 

? 

Function 

Hold current output values Q and QN. 

Set output Q to 1 (and QN to 0). 

Reset output Q to 0 (and QN to 1). 

Unspecified / Forbidden input combination. 

Fig 2.5: SET R-S Flip-Flop 

The first two bars represent the inputs S and R, and the bottom two bars 

represent the outputs Q and Q. Initially, the inputs are S = 1 and R = 0, while the 
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outputs Q = 0 and Q = 1. These output values are memorized when the input R 

becomes one. When the input S becomes zero, the outputs are set to Q = 1 

and Q = 0. Next, S and R are both set to zero, as a result of which the outputs Q 

and Q are both one. Therefore, we conclude that the circuit correctly implements 

the behaviour as traditional Boolean gate-based R-S Filp-Flop. 

2.3.2 Electron-Trap Memory 

Nakazato and Ahmed [15, 16] proposed the idea of a dynamic memory cell 

pushed to its extreme. A small number of electrons, or even just a single electron, 

is stored on a single island. Their presence on the island corresponds to logical ' 1' 

and their absence to '0 ' [17, 18] (see Fig 2.6). The line of tunnel junctions 

introduces an energy barrier for electrons entering or leaving the island. Thus, 

stored electrons reside in a local energy minimum. To write in this cell a voltage 

pulse Vg is applied, which eliminates the energy barrier. A positive pulse forces 

electrons to tunnel through junctions onto island. A negative voltage pulse forces 

electrons to tunnel off of the island to ground. The state of the island is sensed 

at Vout . The more tunnel junctions are used the less likely it is that electrons escape 

from the storage node to ground. 
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J1 JZ J3 J4 

Vg 

Fig 2.6: SET Electron-Trap Memory with six tunnel junctions 

2.3.3 SET Ring Memory 

A different idea which is a generalization of the bistable quantum cell for 

cellular automata by Lent et al. [14] is shown in Fig 2.6. On the circuit level it is 

also similar to the electron trap memory, because it is a trap connected to a ring, a 

so called ring memory cell. However the operation is different. An even number 

(n=6 in our case ) of tunnel junctions is connected to a ring, and n/2 electrons are 

inserted into the ring. Due to their Coulomb interaction, they will repel each other 

and thus can form two stable configurations (see Fig 2.7). Applying positive or 

negative voltage pulses on Vin will switch the state of the ring to either one of the 

stable configurations. The capacitors should be small compared to the capacitances 

of the tunnel junctions, so that the electrons have a large influence on their 

neighbors and keep their distance. 
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Fig 2.7: SET Ring Memory Cell 
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2.4 Simulator-SIMON 

SIMON is a single-electron tunnel device and circuit simulator [12]. It 

allows transient and stationary simulation of arbitrary circuit consisting of tunnel 

junctions, capacitors, and voltage sources of three kinds: constant, piecewise 

linearly time dependent, dan voltage controlled. A graphic user interface allows the 

quick and easy design of circuits with single-electron tunnel devices. Parameters 

can be changed interactively, and simulation results can be looked at in graphical 

form. Also, all simulation parameters such as simulation mode, event number, and 

temperature, are modifiable. Fig 2.8 shows the interface of SIMON. All the 

simulation results issued in the following two Chapters are achieved by SIMON. 

BUUH > IBJSO ' KJI, > tButon I t _ l l _ - 1 . .. Pau^jJWiipnwl < } 

Fig 2.8: Interface of SIMON 

16 



CHAPTER HI 

DESIGN METHODOLOGY 

Although the principles of electron tunneling have been known for many decades, 

it has only been in the last decade that a few circuits using SET technology have 

been designed. Since SET technology is different from MOS technology, existing 

design methodologies are not applicable. Therefore, designing circuits with SET 

components has not been done very often. Computer design tools are not available 

and only a small number of simulators exist. The design of SET memory cells is 

generally not automated. This chapter provides a methodology for finding the 

circuit parameters of SET based Electron-Trap memory cell. The design 

methodology presented in this section focuses on implementations where values 

are represented by single or few electrons. 

This chapter is organized as follows. In Section 3.1 a brief overview of 

steps of the methodology is given. In Section 3.2 these steps are explained in more 

detail based on a SET memory cell model. The design is verified and Simulation 

results are showed in Section 3.3. An improved structure of Electron-Trap is 

showed in Section 3.4. Section 3.5 discusses the voltage range and the number of 

tunnel junctions which are important for memory cell design. 
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3.1 Overview of the methodology 

The aim of the methodology is to calculate the circuit parameters given a 

circuit topology, the corresponding targeted behaviour and some known parameters. 

It consists of the following steps: 

A. Derive the basic equations. 

B. Derive the voltage value applied to the circuit. 

C. Write logical value " 1 " in the cell. 

D. Hold the electron at Nl . 

E. Write logical value "0" in the cell. 

In the next sections the steps of the methodology are explained in more 

detail using an example circuit. Since the SET Electron-Trap memory cell, 

presented in Section 2.3.2, is an important memory cell for the research described 

in this thesis, it is used throughout this chapter to explain the methodology. 
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3.2 SET Electron-Trap memory cell model for the 
methodology 

Fig 3.1 shows the circuit diagram of the SET Electron-Trap memory cell 

that will be used throughout this work. The electron trap circuit consists of N 

tunnel junctions and N islands, One capacitor Cg is bounded by Nl. The resistance 

of each junction is io5iQ and we assume each junction and capacitor have same 

capacitanceCn =C = 10"18F . An electron or a small number of electrons is stored 

on the island Nl. Their presence on Nl corresponds to logical' 1' and their absence 

to logical '0 ' . The line of tunnel junctions introduces an energy barrier for electrons 

entering or leaving Nl. To write in this cell, a voltage pulse is applied at Vg, which 

eliminates the energy barrier. A positive voltage pulse Vg forces electrons to tunnel 

from ground, through junction Jn and eventually to island Nl. A negative voltage 

pulse Vg forces electrons to tunnel off of Nl to ground. 

+ Vn - + V3 - * V2 - + V1 - + Vc -

<rHI} -••• {D—°—(Ih-MIHrH]^~^^ 
Jn J3 J2 J1 c Q ) Vg 

o 

Fig 3.1: Circuit diagram of an Electron-Trap memory cell 
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A. Derive the basic equations. 

The first step of the methodology is to derive the characteristic equations 

for all junctions of the circuit. The behavior of a SET circuit is mainly determined 

by the behavior of the tunnel junctions. Thus the behavior can be characterized by 

a set of equations describing the voltages across the junctions. For each junction 

one equation can be derived. In the following part, we will use these equations to 

show the detailed operation of the Electron-Trap memory cell and do parameter 

selection based on some known parameters. 

The characteristic equations can be derived by performing the following 

steps: 

• Derive the basic equations describing the charges on the capacitors, 

tunnel junctions and the circuit nodes. 

•For each junction, find a voltage relation to start the derivation. A good 

voltage relation should at least contain some important input voltage, the voltage 

across the junction of which the characteristic equation is being derived, and as 

many other voltages across junctions as possible. 

• Specify what parameters are know, what are unknown. 

To derive the basic equations describing the charges on the tunnel junctions, 

they can be treated as capacitors, and therefore the charges can be described as the 

product of the capacitance of the junction times the voltage across it. Assuming 

20 



q,,q2,...qn are the initial charges in the islands N,,N2,...Nnrespectively, for the 

SET Electron-Trap memory cell the following basic equations were found: 

q ^ C ^ - C . V , (3.1) 

q2=C,V,-C2V2 (3.2) 

q3=c2v2-c3v3 (3.3) 

q „ = C n , V n , - C n V n (3.4) 

The SET Electron-Trap memory cell contains N tunnel junctions, so N 

characteristic equations should be derived and we need a voltage relation to start 

with. For this topology there is a voltage relation which meets the conditions of a 

good starting point for all the derivations: 

-V 8 =V 1 +V 2 +V 3 +V c +- .V n (3.5) 

V . = 0=1,2,3) (3.6) 
C" 2(C.+C j) 

Vg>(n + l)Vcri (3.7) 

Where Vn , Vc are the voltages across each tunnel junction and capacitor C, 

respectively. Vg is the voltage applied to the circuit. Equation (3.6) calculates the 

critical voltage of a junction, we assume a tunnel junction with a capacitance 

of Cj . The remainder of the circuit, as viewed from the tunnel junction's 

perspective, has an equivalent capacitance of Ce [10]. 
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B. Derive the voltage value applied to the circuit. 

Initially, the voltage V is zero and there are no electrons at the island Nl. 

After some time it becomes positive and reaches a certain value, which makes the 

voltage across the tunnel junction Jn larger than its threshold voltage, tunnel event 

happens. The value of Vg can be determined by equation (3.5) and (3.6). 

C. Write logical value " 1 " in the cell. 

To write logical value " 1 " in the cell, Vg becomes positive and reaches a 

certain value. One electron tunnels from ground to the nearest island. 

D. Hold the electron at Nl . 

After some time, the value of Vg becomes zero and remains for a short time. 

As a memory cell, the electron should remains in Nl, because the voltage across 

J, is less than its critical voltage. It means that the electron can not surmount the 

potential barrier imposed by junctions J, -Jn . 

E. Write logical value "0" in the cell. 

To write the logical value "0" in the cell, which currently keeps the logical 

value "1" , Vg becomes negative and reaches a certain value. At this time the 

electron is transported from Nl to ground. The process is the same as step C. 
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3.3 Design Verification 

* V3 * V2 + V1 - + Vc 

J3 

-o-
K3 N2 

- O -
N1 

J2 Jt 

i 
* 

i 
Vg 

Fig 3.2: Circuit diagram of an Electron-Trap with 3 tunnel junctions 

To verify the above methodology, we use the Electron-Trap with three 

tunnel junctions which is shown in Fig 3.2. According to the methodology above, 

the basic equations can be written as: 

q , = C V.-C.V, 

q 2=C 1V,-C 2V 2 

q3=C2V2-C3V3 

•V =V I + V 2 +V 3 + V C 

v„„ 
2(Ce+CJ) 

0=1,2,3) 

V >4V 
" g — ' " en 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

We assume each junction and capacitor have same capacitance 

C, =C2 =C3 =C = 10"18F, Using (3.8)~(3.13), q, , q2 and q3 all being zero, the 

minimum value of V to make the tunnel event happen is V = 0.24V . We 

23 



choose Vg = 0.25V to ensure that one electron tunnels. The threshold voltage for 

one tunnel junction is Vcri = 0.06 V . 

To write logical value " 1 " in the cell, Vg becomes positive and reaches the 

value of 0.25V. One electron tunnels from ground to N3. Table 3.1 shows the 

values of voltage across each tunnel junction when the electron stays in N3, N2, Nl, 

respectively. 

Table 3.1: The process of voltage changes with 3 tunnel junction3 Electron-Trap 

V,(V) 

0.25 

0.25 

0.25 

0.25 

V,(V) 

0.0625 

0.1025 

0.1425 

0.0225 

V2(V) 

0.0625 

0.1025 

-0.0175 

0.0225 

V,(V) 

0.0625 

-0.0575 

-0.0175 

0.0225 

Electron 
position 

None 

N3 

N2 

Nl 

Tunnel? 

YES 

YES 

YES 

NO 

After some time, Vg decreases to zero. In Table 3.2, since the voltage 

across J, is less than its threshold voltage, that the electron remains in Nl. 

Table 3.2: The voltage across junctions when Vg =0 for 3 tunnel junctions 

Electron-Trap 

V g 

ov 

v, 

-0.04V<Vcri 

v2 

-0.04V 

v3 

-0.04V 

Electron 
position 

Nl 

Keep on tunneling? 

No 
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To write the logical value "0" in the cell, which currently keeps the logical 

value " 1 " , Vg becomes negative and reaches the value of-0.09V. At this time the 

electron is transported from Nl back to ground. 

Fig 3.3 shows the simulation results. 

-2e~1# 
&M 1M s 

time 

Fig 3.3: The time variation of the voltage V and the charge at Nl 



3.4 Improved structure of Electron-Trap 

V3 " VZ 

r 
m 
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J3 

N2 

-0-

+ vi 

-J 
VC 

K1 

ct i=3 J2 a ^ ^ 

T T 
JI 

* 

t 
vg 

Fig 3.4 Electron-Trap with capacitances to ground 

Fig 3.4 shows a SET Electron-Trap memory cell which is slightly different 

from the one shown in Fig 3.2. It has capacitances connected to ground. The basic 

equations can be derived using the methodology shown in previous sections. 

q ^ C ^ - C . V , (3.14) 

q 2=C 1V 1 -C 2V 2+C iV i (3.15) 

q 3 = C 2 V 2 - C 3 V 3 + C t V t (3.16) 

V g = V 1 + V 2 - f V 3 + V c 

vt = v3 

v,=v 2 + v3 

v„„ = • 
2 ( 0 , + ^ ) 

V„ > 4V 

0=1,2,3) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Where each tunnel junction has same capacitance C, =C2 =C3 =10"I8F , the 

value of capacitor isC = 2xlO"18F. By using equations (3.14)~(3.21), the minimum 



value of Vg to make a tunnel event happen is Vg = 0.09V , the electron goes back to 

ground when Vg becomes negative and reaches the value of -0.07V. Observation from 

the Fig 3.5, it is obvious that the minimum value of Vg to drive the circuit reduces to 

0.09V, compared with 0.24V for the structure shown in Fig 3.2. 

U s 

-2e-19 
1.0s 

time 

Fig 3.5 Simulation results of Electron-Trap with capacitances to ground 



3.5 Some discussions 

3.5.1 Discussion about voltage range 

The above methodology of determining the parameters of the circuit for 

required behavior of memory cell applies to any number of junctions and initial 

charges in the island. A question to ask is: Is there a maximum value of Vg ? We 

take 3-tunnel Electron-Trap again for example (shown In Fig 3.2). When the 

voltage Vg increases from 0.25V to 0.4V, it is found that a second electron starts to 

tunnel from ground to Nl. However, this additional electron goes back to ground 

as the voltage decreases to 0V. This is to say that the transport of the second 

electron is unnecessary. Therefore, the proper voltage range of Vg for this case is 

from 0.24V to 0.39V. Simulation results are given in Fig 3.6. Table 3.3 shows the 

approximate voltage range of Vg for Electron-Traps with different number of 

tunnel junctions. 

Table 3.3: The voltage range of Vg for Electron-Traps with 

different number of tunnel junctions 

Number of 
Tunnel 

junctions 
Voltage 
range(V) 

Two 

0.17-0.33 

Three 

0.25-0.39 

Four 

0.33-0.48 

Five 

0.41-0.56 
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Fig 3.6: Simulation results in the case of V„ = 0.4 

29 



3.5.2 Discussion about the number of tunnel junctions 

In this chapter, we use the Electron-Trap with 3 tunnel junctions as the 

example. As the number of tunnel junctions increases, the Electron-Trap memory 

cell shows better reliability in terms of its insensitivity to the Random Background 

Charge. However, if the number of tunnel junctions in the cell reduces to one, the 

electron at island Nl can not be held when Vg goes back to zero from a positive 

value. This means that at least two junctions are needed for the Electron-Trap to 

work as a memory cell. 

In this chapter we introduced a design methodology that allows us to derive 

circuit parameters in an analytical way, assuming the topology and targeted 

behaviour are known. In the following chapter we utilize this method for the 

reliability analysis of SET Electron-Trap memory cells. 



CHAPTER IV 

RELIABILITY ANAYSIS 

Background charge is one of the most serious problems with single-

electronics, which could be caused by stray capacitances and impurities located 

near the circuit nodes. These background charges may be mobile and change over 

time, and are less likely to control with today's technology. Thus, the memory cell 

should be designed to tolerate certain amount of background charges for its reliable 

operation. 

Section 4.1 presents reliability analysis of SET Electron-Trap memory cell, 

while the improved structure of Electron-Trap is discussed in Section 4.2. 
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4.1 Experiment on Electron-Trap 

+ V3 " + V2 " + V1 -
N2 

i 
• — ^ 

J3 
P ' 

J2 

£ 

- o — d 

J1 

Background cterge 

Ml 

* Vc 

* 

1 
Vg 

Fig 4.1: Three tunnel junctions Electron-Trap with background charge on island N3 

V4 V3 V2 V1 
H4 m „ M2 

Vc 

• ® - 0 4 

m 
J3 J2 J I 

Background charge 

T 
Vg 

Fig 4.2: Four tunnel junctions Electron-Trap with background charge on island N4 

When introducing background charge to the Electron-Trap memory cell 

with the structure of Fig 4.1 and Fig 4.2, it has been observed that they are not 

sensitive to positive background charge on any of the single islands. Therefore, we 

conducted the experiments on the reliability of the Electron-Trap by introducing 

negative background charges into the islands. 
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According to the above methodology, with the same parameters we use in 

section 3.3, the basic equations for 3 tunnel junctions Electron-Trap with 

background charge on island N3 (Fig 4.1) can be written as follows: 

0 = C V c - C , V , (4.1) 

O^C.V.-C.V, (4.2) 

q3=C2V2-C3V3 (4.3) 

-V=0.25 = V I+V2+V3+VC (4.4) 

V . = 0=1=2,3) (4.5) 
cn 2 (C e + C j ) 

The results show that the maximum background charge that the circuit can 

tolerate is -0.5e, where e is the elementary charge. Moreover, the voltage range is 

narrowed down to 0.25V-0.32V. It is clear that the existing of background charge 

limits the function of the circuit. 

This situation can be improved by introducing more tunnel junctions to the 

circuit. For example, our experiments show that the Electron-Trap with 4 tunnel 

junctions (Fig 4.2) can tolerate the background charge up to -5.1e. In general, the 

more tunnel junctions are present in the Electron-Trap memory structure, the more 

reliable operation one can expect. 
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Fig 4.3: Three tunnel junction Electron-Trap with background charge on two 

islands 

A question to ask is: What happens when background charge exists in more 

than just one island? We take 3-tunnel Electron-Trap (Fig 4.3) again for example. 

Both the islands N3 and N2 get background charge, in compliance with previous 

research, the maximum background charge that island N2 can tolerate is -0.2e, we 

can calculate that the range of background charge on island N3 is from -O.le to 

0.3e. We conclude that background charges could be anywhere of the circuit and 

affect each other. 
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4.2 Experiment on the improved structure of Electron-
Trap 

Background Charge 

Fig 4.4: Improved 3 tunnel junctions Electron-Trap with background charge on 

island N3 

Background charge 

Fig 4.5: Improved 4 tunnel junctions Electron-Trap with background charge on 

island N4 

We do the similar procedure and obtain that the maximum background 

charge that can be tolerated by improved 3 tunnel junctions Electron-Trap (Fig 4.4) 

is -1.2e, as while -6.1e for the structure of 4 tunnel junctions (Fig 4.5). Compared 
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with the structures of Fig 4.1 and Fig 4.2, the improved Electron-Trap shows better 

reliability. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

In this thesis, we considered the design methodology for Single Electron 

Tunneling (SET) technology and reliability issues. Our overall investigation and 

achievements can be summarized as follows. 

We investigated the design process of SET based Electron-Trap memory 

cell in which logic values are represented by single or few electrons. A design 

methodology was proposed that, given a circuit topology and the corresponding 

targeted behaviour, allows for the derivation of the circuit parameters in an 

analytical way. The methodology is based on the mathematical description of the 

tunnel junctions in the circuit, called the characteristic equations. It has been shown 

that the parameter selection is the key to the correct logic operation. 

Moreover, we analyze the reliability of SET Electron-Trap memory cell by 

introducing Random Background Charge on the islands. Two structures of 

Electron-Trap were simulated and compared, we conclude that more reliable 
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behavior can be achieved by using more tunnel junctions in series in this particular 

cell structure. 

The proposed methodology and reliability analysis are verified by means of 

simulation using SIMON, and all the calculation are verified by MATLAB. 

5.2 Future Work 

5.2.1 Investigation on different memory cells 

Several different single-electron memory cells have been proposed, including 

SET Flip-Flop, Electron-Trap memory, SET Ring Memory, etc. 

In this thesis, we used a rather simple and basic, though generally accepted, 

model of the SET phenomenon. The detailed design methodology and simulation 

results of Electron-Trap memory cell are presented. For the purpose of this 

research this model was sufficient, but as SET technology matures a more detailed 

model will be necessary. We suggest that these models are worked out in detail. 

5.2.2 Reliability issue 

The research on reliability issues of SET circuits involves two aspects, 

reliability analysis and reliability improvement. 
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The above reliability analysis assumes that Random Background Charge 

exists on just one or two islands. However, during fabrication process, background 

charges could appear on every island at the same time. 

Reliability improvement, on the other hand, is to use various architectures or 

new encoding techniques to increase reliability. 

These two aspects will be investigated in our future research work. 



APPENDIX 

Matlab Program for SET memory cells 

In this thesis, all the calculations are verified by MATLAB. The following 

program shows the procedure for the proposed methodology in MATLAB. 

Program for 4 tunnel junctions Electron-Trap memory cell: 

clear 

c=10A-18; 

q=1.6*10M9; 

vcri=0.062; 

vg=v; 

[vl ,v2,v3,v4,v5]=solve 

(Vl-v2=0*q/c', 

V2-v3=0*q/c', 

'v3-v4=0*q/c', 

V4-v5=0*q/c', 
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*vl+v2+v3+v4+v5=vg'); 

vl=subs(vl) 

v2=subs(v2) 

v3=subs(v3) 

v4=subs(v4) 

v5=subs(v5) 

If v5>vcri 

Fprintf('electron tunnels from ground to island N4') 

Else 

Fprintf('no electron tunnels') 

end 

%given the input voltage Vg = 0.33 , we obtain: 

vl =0.0660, v2 =0.0660, v3 =0.0660, v4 =0.0660, v5 =0.0660, one electron tunnels 

toN4. 

[vl,v2,v3,v4,v5]=solve 

('vl-v2=0*q/c', 

V2-v3=0*q/c', 

V3-v4=0*q/c', 

V4-v5=l*q/c', 

'vl+v2+v3+v4+v5=vg'); 

Ifv4>vcri 

Fprintf('electron tunnels from island N4 to island N3') 
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Else 

Fprintf('no electron tunnels') 

end 

%we get: 

vl =0.0980, v2 =0.0980, v3 =0.0980, v4 =0.0980, v5 =-0.0620, one electron 

tunnels to N3. 

[vl,v2,v3,v4,v5]=solve 

(Vl-v2=0*q/c*, 

V2-v3=0*q/c', 

V3-v4=l*q/c', 

V4-v5=0*q/c', 

Vl+v2+v3+v4+v5=vg'); 

If v3>vcri 

Fprintf('electron tunnels from island N3 to island N2') 

Else 

Fprintf('no electron tunnels') 

end 

%we get: 

vl =0.1300, v2 =0.1300, v3 =0.1300, v4 =-0.0300, v5 =-0.0300, one electron 

tunnels to N2. 

[v 1 ,v2,v3 ,v4,v5]=solve 



('vl-v2=l*q/C, 

•v2-v3=0*q/c', 

'v3-v4=0*q/c', 

V4-v5=0*q/c', 

Vl+v2+v3+v4+v5=vg'); 

Ifv2>vcri 

Fprintf('electron tunnels from island N2 to island NT) 

Else 

Fprintf('no electron tunnels') 

end 

%we get: 

vl =0.1940, v2 =0.0340, v3 =0.0340, v4 =0.0340, v5 =0.0340, one electron tunnels 

toNl . 

[vl ,v2,v3,v4,v5]=solve 

('vl-v2=l*q/c', 

V2-v3=0*q/c', 

V3-v4=0*q/c', 

V4-v5=0*q/c', 

'vl+v2+v3+v4+v5=vg'); 

If v2>vcri 

Fprintf('electron tunnels from Nl to island N2') 

Else 
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Fprintf('no electron tunnels') 

end 

% given the input voltage Vg = 0 , we obtain: 

vl =0.1280, v2 =-0.0320, v3 =-0.0320, v4 =-0.0320, v5 =-0.0320, no electron 

tunnels. 

[vl ,v2,v3,v4,v5]=solve 

Cvl-v2=l*q/c\ 

V2-v3=0*q/c', 

V3-v4=0*q/c', 

V4-v5=0*q/c', 

Vl+v2+v3+v4+v5=vg'); 

If v2>vcri 

Fprintf('electron tunnels from island Nl to island N2') 

Else 

Fprintf('no electron tunnels') 

end 

% given the input voltage Vg = -0.17 , we obtain: 

vl =0.0940, v2 =-0.0660, v3 =-0.0660, v4 =-0.0660, v5 =-0.0660, the electron goes 

back to N2. 

Program for 3 tunnel junctions Electron-Trap memory cell: 



clear 

c=l*10A-18; 

q=1.6*10A-19; 

vcri=0.06; 

vg=v; 

[vl ,v2,v3,v4]=solve 

(,vl-v2=0*q/c', 

V2-v3=0*q/c', 

•v3-v4=0*q/c', 

Vl+v2+v3+v4=vg'); 

vl=subs(vl) 

v2=subs(v2) 

v3=subs(v3) 

v4=subs(v4) 

end 

%given the input voltage Vg =0.24 , tunnel event happens. 

Program for 5 tunnel junctions Electron-Trap memory cell: 

clear 

c=10A-18; 

q=1.6*10A-19; 

vcri-0.067; 
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vg=v; 

[v 1, v2,v3 ,v4,v5 ,v6]=solve 

(Vl-v2=l*q/c,
5 

V2-v3=0*q/c', 

,v3-v4=0*q/c', 

V4-v5=0*q/c', 

V5-v6=-1.4*q/c', 

VI +v2+v3+v4+v5+v6=vg'); 

vl=subs(vl) 

v2=subs(v2) 

v3=subs(v3) 

v4=subs(v4) 

v5=subs(v5) 

v6=subs(v6) 

end 

%given the input voltage Vg =0.41 , tunnel event happens. 

Program for 3 tunnel junctions Electron-Trap memory cell with capacitances 

to ground: 

clear 

c=l*10A-18; 

q=1.6*10A-19; 



vcri=0.06; 

vg=v; 

[v 1, v2, v3, v4]=sol ve 

(,vl-v2=0*q/c*> 

V2-v3+vi=0*q/c', 

V3-v4+vt=0*q/c', 

Vl+v2+v3+v4=vg' 

'vt=vg-v4' 

Vi=vg-v4-v3'); 

vl=subs(vl) 

v2=subs(v2) 

v3=subs(v3) 

v4=subs(v4) 

vi=subs(vi) 

vt=subs(vt) 

end 

Program for 4 tunnel junctions Electron-Trap memory cell with capacitances 

to ground: 

clear 

c=l*10A-18; 

q=1.6*10A-19; 



vcri=0.06; 

vg=v; 

[vl ,v2,v3,v4]=solve 

Cvl-v2=0*q/c', 

'v2-v3+vj=0*q/c', 

V3-v4+vi=0*q/c', 

V4-v5+vt=0*q/c', 

Vl+v2+v3+v4+v5=vg' 

'vt=vg-v4' 

Vi=vg-v4-v3' 

'vj=vg-v4-v3'); 

vl=subs(vl) 

v2=subs(v2) 

v3=subs(v3) 

v4=subs(v4) 

v5=subs(v5) 

vi=subs(vi) 

vt=subs(vt) 

vpsubs(vj) 

end 
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