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ABSTRACT

This disserﬁétion deals with the stability analy-
sis of single—érossarm space stayed columns which are
acted upon by a concentrated axial locad. Two methods
of predicting the critical loaduand the correspondipg. !
buckling mode afe considered. The two methods are
(1) the nonlinear analysis based on the stability
functions, and (2) geometrically nonlinear analysis by
the ﬁgnite element method. In the first'method the
stiffnesé matrix is written in terms of the stability
functions to account for the change in the bending
stiffness as the axial load is increased. In the
" ‘second method the geomgtric stiffness matrix in three
dimensions was deveioped based on retaining the gquadra-
tic terms in the,expre;sion of strain energy and dis-
carﬁing the higher order terms. The two methods of
predicting the.critical load were programmed and were
rﬁn on an IBM Systemf360 computer. The parameters of
the single*crossarm.stayed column with three and four
crossarm memﬁers were varied to determine the -effect
‘on the‘predictéd crﬁtical load,.buckiing mode'and the
relative efficiency. The influénce ¢of end cohditioﬁs
on the buckling behavior of a single-crossarm stafed

column with three crossarm members were briefly



‘investigated. Three cases of end conditions are con-
sidered: (1) both ends fixed; (22-one end fixed and
the other end hinged; -and (3} one end fixed and the
other end’ free. ‘

The gheoretical results indicate‘that the
buckling behévior of the staﬁ?d columns is heavily
dependent upon the stay propéréies and the-crossarm
membex length.“It has been'fopnd éﬁat the: buckling
strength of the staved célumn with four crésgarm
- membe;s is always hiéher thén that of three crossarm

members regardless of the stay properties and the
'-crossarm membef length. Also, the single—cr?ssarm
>stayed column with.éhreercrossarm members is generaliy
more efficient than that of four crossarm members.

An important cenclusion is that since in the
finite element method the process.is non-iterative it
is therefore much more convenient for a computer solu-
tion. At the same time it should be pointed out that,
in solving for critical loading ?s an eigenvalue pro-
blem, the presence of the geometfic stiffness matrix
is absolutely essential when using the finite element
method. Finally, it can be said with great confidence

that the stability analysis of ény uniform space

k/

stayed column is now possible.
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' CHAPTER 1

) INTRODUCTION

1.1 General -~

In the last few decades it has been widely
recognized in the field of structural engineering that
theory of buckling is an indispensable basis for design
of structures. That is because of the fact that the
strength of structures is heavily depeﬁdent upon
sgructural instability. Numerous research articles
have been published on various aspects of this vast
subject. This work was greatly aided by the development
of matrix methéds of structural analysis for use on
modern high speed digital computer.

One of the interesting problems that arose in the
field of structural instability™~ip the last decade was
the stability anai;sis of stayed columns. It was found

that the buckling strength of a concentrically loaded,

pin-ended, slender metal column may be increased many



times by reinforcing it with rigidly connected‘crossarm
members and pretensiongd stéys. These stayed columns.can
be u;ed as 1) supports to hold plates in place duriﬁg the |
.erection of large plate structures, 2).side booms fof the
mast of a derrick, 3) masts for ships, eté.

In this thesis the study is focused on the stabil-
ity analysis'of the single-crossarm Space stayed columns
witq three and with four crossarm membefs. It should be
noted that ﬁn the space stayed column the buckling is ﬁot
confineg in a certain plane and hence must}pe treated as
a three-dimensional structure. In general many alternat-

dve methods can be used to analyze the nonlinear problems.
In this research the finite element method has been
selected{

In the last ‘decade the finiﬁe element method
appears to offer many advéhtages, and its relatively
simple logic makes it ideally suited for the computer.

Now the finite element method is widely accepted as a
method of stress analysis. Progress in the finite

element method has been made in three fronts, all of which
cgntribute to the strength and flexibility of the method.
First, the relation of the finite element method to
previous well-established methoés in continuum mechanics
has given it a firm foundation. Secondly, the search.

for and development of many consistent elements has given

&



it a wide aréa of application. Finally, extension of the
method to the study of nonlinear behavior in both material
;ﬁif%?ometric nonlinearities has resulted in more real-
istic:models and design methods.

'In fact nonlinear theory is inevitably more com-
piex than the corresponding linear theory. Coﬁsequently,
the applicatign of nonlinear theory to-physical problems
;eads to mathemaﬁical problems which are'uéually intract-
able. This is néﬁ surprising since é similar situation
often arises in connection with_the intrinsically simpler
linear problem. 1In facﬁ, it was jus; fhis situation which
led to the development of the finite element method in
the first place.

At‘the present time, finite elements offer the
greatest promise for solving complex nonlinear problems.
The practicai analyst has been aware of this for some time
and has done much to lavy down tﬁe foundations™ for provid-
ing ;uch a capability. Progress and results achieved
during the'last decade indicaté that significant advances
can be expected during the decade which liés just ahead.

It should be emphasized here that material or
physical nonlinearity is not considered in this study.
Only.geometric nonlinearity is considered which results

in two classes of engineering problems, the large\deflect—

ion problem and the problem of structural stability.



Two methods of determining the crifical lcad and
the corresponding bucklinglmode are ipveséigated in
Chapter 2. The two methods are (i) the nonlinear analysis
based oﬁ the stability functions, and (2) geometrically
nonlinear analysis by §§g finite element method. |

The two methods of determining-the critical lcads
were computerized for an IBM System/360 Coqputer. In s
Chapter 3 the two computer programs are discussed in detail.

In Chapter 4 the influence of the crossarm member
length on the buckling behaviour of the single-crossarm
staved columns with three and four crossarm members is
‘examined.

Investigation in Chapter 5 deals with the influ-
ence of stay properties on the buckling behavior of the
single-crossarm stayed columns.

In Chapter 6 the influence of crossarm member
length on the relative efficiency and the influence of
-the'stay size on thé ﬁaximuﬁ value of the relative
efficiency are examined.

The effect of the end conditions on tﬁe buckling
behaviour of the single-crossarm stéyed column with three
crossarm members are studied in Chapter 7. A numeérical
example is given to illustrate the power of the finite
elémént method in the stability analysis of space stayed

columns.



yid
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In Chapter 8 summary, conclusions and recommend-

ations are presented.

1.2 Purpose of Research -

The purpose of this research can be summarized as
follows: N

1) To establish an analytical method of predicting
the critical‘load and the corresponding buckling mode for
any three-dimensional stayed cclumn.

2), To investigate the effect of varying certain:
pé%ameters.of the stayed column on the buckling behavior.

3) To compare the relative efficiency of the
single-crossarm stayed columns with three and four céoés}
arm members.

4) To investigate the effect of varying the end
conditions of the stayed column on the buckling behaviocr.

4

1.3 Svstem to be Studied

In this research two systems are considered: a
single-crossarm stayed EETEEh\with three crossarm members,
and the other with four crossa members as illustrated
in Fig. 1-1.

In both systems it ig/assumed that:

1) The axia ‘3tion of the column and the

crossarms have  a negligib effect on the buckling

&



" behavior.

v

2) lThe connections Bétween the crossarm members
and the column are assumed perfectly rigid.

3{ The stayed column is ideally concentrically
loaded. This means that there is no initial eccentricity
or crookedness and that there is no lateral deflection of
the column prior to bifurcation.

4) The axial load in the crossarms is negligible
compared to its critical load.

5) At the instant of buckling there is a small -
residual pretension force left in the stays. This implies
that all stays are effective in resisting displacements
of the stayed column.

In the analysis presented in Chapters 4 to §

(i.e. hinged end conditions) it is assumed:

(1) (2)
No. of tem 3 crossarms 4 crossarms
Elements 13 le
Elements with bending

stiffness 7 8

y’

Elements with signifi- ‘
cant axial load gl 4
Nodes 8 a& 9
Nodes in columns 5 5
Degrees of freedom 37 43

“Table 1.I




It is assumed that the displécement u,v,w and the

. rotation about the longitudinal axis are prevented at

13

both ends of the column. <= . - A

o —

- ~ In the analysis presented in Chapter 7 (i.e.

different end conditioﬁs) it is assumed: —

one end cne end
i _ both fixed and | fixed and
No. of System ends the other | the other
) fixed | end hinged end free
Element's 13 ' 13 13
Elements with bending ’
stiffness . 7 7 7
Elements with signifi-
cant axial load 4 4 ' 4
Nodes ' 8 ‘8 8
Nodes in columns ‘ 5 5 5
“-Degrees of freedom 33 35 ‘ ' 42
Table 1.IX
1.4 Previous Work ‘4
In 1963, Chu and Berge(l)

developed a genefal
solution for the elastic buckling lcad-of a slender, pin-
énded column stayegfwith tension ties and multiple
ideally éin-connectéd crossarms. The solution indicated
that the maximum buckling load that'could be achieved

would be a four-fold strength-increase over the Euler

Load, regardless of the number of symmetrically placed



intermediate crossarm supports.

In 1967, Mauch and Felton(z)‘continued~the work

'of.Chg and Berge'by developing_an analytical foundation for

the rational design of these columns, such as exists for
simple columns. Their analysis indicated that at low -
values of structural index (i.e. P/Lz) columns sugported
by tension ties offer potential savings of ﬁp to 50% of
the weight of optimum simple tubular columns.

In 1970, as a design-iild-test brdject, a single-
crossarm stayed column was studied by the Civil Engineer-

ing undergraduate students at the Roval Military College
(3)

of Canada as their fourth yvear project . The crossarm
member was ;igidly connected, by means of welding, to
the column. The test result was a sévenfoid increase in
the buckling strength of tﬁé column.

(4)

In 1971, Pearson examined the behavior of a

single¥crossarm stayved column with a high slenderness
ratio when loaded to its buckling point. The effect on

column strength of stay eccentricity and pretension force

-

ﬁere examined experimentally only. The result indicatéd
that buckling strength is directly praportional to stay
eccentriéity and pfetension,

During 1971, at the RoYyal Military College of
Australia, Ellis introduced -a stayed column with three

sets of crossarm members along its length. Buckling

<



A

-

strength increases of 20 and 23 times that of the unstayed
column were' achieved experimentally for the two pin-ended
stayed columns tested. In 1972, four experiments on pin-

ended triple-crossarm_stayed columns were conducted at

the Royal Military College of Canada by McCaffrey. Test

results with strength increases ranging from 34 to 45

.times that of the Euler buckling load of the unstayed

column were obtained.

In January 1975, Smith, McCaffrey and Ellis(s)
published a paper in which tﬁey developed an analytical
solution to predict the buckling load associated with each
of .two assumed modes Of failure for single-crossarm
stayed columns. , ' {

In 1975, Temple(s)

developed an afhalytical

£ -2

solution to predict the buckling load and the correspond-
ing buckling shape for a single, double and triple-

crossarm stayed column by the finite element method.

-
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CHAPTER 2

ANALYTICAL METHODS FOR PREDICTION

OF CRITICAL LOAD

AN

Twe approaches have been selected for solving the

2.1 Introduction

present problem. The two approaches are 1) the analysis
based on the stability functions, and 2) the analysis by
the finite element method. The first approachlrequires

an iterative solution. With the finite element approach,

the buckling loads are obtained directly. Thus, the latter

approach requires less computer time. For this reason

the finite element approach is used to analyze the problem.
The first approach is the so—called;"exact“ soluéion and

is used tc check the results obtained by the finite element
approach. _The two aﬁ%roaches will be discussed subsequently
in detail. It should be noted that exéellent results meay
be obtai;ed by the finite element approach when a reason-

able number cf finite i}ements are used. Therefore the
[ _ \‘ \‘ -

-

10
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finite element approach is believed to be the best solution

for. the present problem.

2.2 Methed I: Analyéis Based on the Stability Functions

2.2.1 General

One common method gsed to determine whether a
structure containing axially loaded members is stable or.
unstable is to study the behavior of such a system under
the effect of disturbing forces. 1If after removing the
disturbing force, the structuré goes back tc its original
position, it is in stable equilibrium. If the struéturé-
remains in its deflected configuration then it is in neutral
equilibrium and the axial load is the critical load. It
the deflection increases indefinitely when an infinitély
small disturbing force is applied, then the structure was
in a position of unstable‘equilibrium.

L

T When the disturbing forces are applied the
equilibrium equations my be written in matrix form as:

[K1{8} = (F,} 2.
where [K] is the stiffness matrix for the complete structure,
{a} is the vector of displacements, and {Fd} is the vector
of distufbing forces. It will be shown later that the

elements of the stiffness matrix will be written in terms

of stability functions to account for the change in bending
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stiffness as the aiial load is increased.

For the most part, stability ﬁpalyéis has been
transformed into an g}genvalue problem that,pgedictévthe
.buckling load and the‘buckling mode. This apProach will

be discussed subsequently in detail.

2.2.2 Characteristic Value. Problem

Egs.2.1l can be expanded as follows:

k RS S B (
11 12 1n A1 T Fd1}

e e s e s e = F..
kz1 kzz kzn A2 dz

h

- - . ﬁ . > _ < - > (2.2)

LFH1 Knym = 0 7 Xnn B L 8n ) LFdnJ

The displacements may be written as (7.8)
A = Adl = Adl = Fdl

' 1’(% ) Ta 2 ®a
. ) Ccr'
i 1\ Al F

i 1 - B m_ a.m_

(Pcr) : J
) 3
) " F
¢ dn
by = (2.3)
n am,
A
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Eqs. 2.3 can be written as follows:

Fdx‘ [ 4,a,my
- - . 3 |
K . ) = * . (2.4)
- - -~ ‘
[ Fan. \ bn2aa J

Substituting Egs. 2.4 into Egs. 2.2 and rearranging,

the following system of equations is obtaineds

" o - . ¢ "y
1t =1
e . . . .
L_ kn1 knz * * : knn—anma ' Ad | 0
(2.5)

Since My = 1- P/(Pcr)j , my approaches zero as P
approaches any of the critical loads. Thus, at'the criti-
cal load, the term am, goes to zero regardless of the
value of the constants a, to a,. The terms a.m, can thus

be replacéd, with a single term A.
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Egs. 2.5 can be written as follows:

- T A (
rku A k1z‘ T °k1n A; © _ &
=A. . .k
| kfl fzz ‘ .zn J ?zf J ? )
. R . A Il : (2.6)
_kn1 ) knz. . .'.knn-lj AnJ o

Since Egs. 2.6 are homogeneous, they are consistent and

alﬁays have a trivial solution (4 = c). However, it is

the nontrivial solutions that are of interest, and they

will .exist only if the determinant of the coefficient

matrix is zero. Therefore

k11‘k ‘kzz' Tttt 'kln
sz kzz—x’ s 'kzn

. - - =0 (2.7)
knl knz. S .knn-A

This is a typical eigenvalue problem. The load must be

varied until the minimum eigenvalue goes to zero. There

are n eigenvalues and there may be as many as n critical

loads. The eigenvector associated with each eigenvalue

gives the relative value of the displacement components,

that is, the buckled shape(g’lo).
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2.2.3 Generation of Element Stability Stiffness
Matxix

The difficulty in the‘nonlinear structural analysis —
or the énalysis in the presence of significant axial férces‘
arises from the fact that the axial forces in the elements
are themselves unknowns. Since the axial force in the
elements of a structure varies, their individual stiffnesses
éhange and so does the master st@ffness matrix of the
structure.

The stiffness matrix will be developed for an
element in which the shear center and the centroid of its

P 7 . . -
cross-section c01nc1de( ). Such a segtion )is shown in

—

Fig. 2.I. ~

Fig. 2.1

To develop the stiffness matrix\four types of
deformations are required. They are: |

1) axial -- the AE/L terms, where A is the cross-
secd¢tional area, E the modulus of elasticity and L the

length of the element,
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2) torsion - the I G/L terms, where I is the
torSLOnal constant, and G is the modulus of rigidity, and

3) translation of one end with respect to the other

as shown below.

Y
2s(l+c)k
Il'I.Lz
_ 2s(l+clk : D unit displacement
mLz
P L1 -

- s(l+c)k/L
-s(1l+c)k/L

S—
Fig. 2.1II
4) rotation of one end,
yl
s(1+c)k
_s(l+c)k
L
P

Fig. 2.III
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where,

k = EIz/L .
20 - sin(2w)

c = -
Isin(2m)—2m cos(2w)
w{l=-2wcot (2w))

s =

tan{w) - w

25 (1+c¢) v

m= (2.8)
2s(1+c) - wl p

and,

T

w= - ‘)p .
2
P
PE
U m2EI

PE = " » the Euler load for the column.

L .

The expressions listed above which have been .
represeﬁted, éor convenience, as s,¢, and m are called
stability functions. This is not the complete listing
of stability functionsf used in structural problems but
are the only cnes required in this dissertation.

The complete element stability stiffness matrix

*Details of these stability functions can be found in Horne,
M.R. and Marchant, W.(ll)

Tror detailed information and explanation refer to Majid(lz).

-

N

~

N— —
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N\
\
is shown in Fig..2-1. When the axial force is zero,

s = 4.0, c= 0.5 and m = 1.0 and the element stability

stiffness matrix becomes the familiar elastic stiffness
N ‘

matrix shown in Fig. 2-2. \
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2.3 Method IXI: Finite Element Analysis_

2.3.1 General

As mentioned before geometfic nonlinearity results
in two ciasses'of problems: the large deflection problem,
and the problem of structuralbstaﬁility. The term "large
deflections” is misleading since problems falling within
this category need not have actual deflections which are
in any sense large; in fact they can’be, and often are,
as small as those arising for the linear case. However,
and this is important, the deformed configuration of the
structure must be used when writing tﬂe equilibrium equations
for the large deflection problem. In addition, the strain
displacement equations must now include the appropriate
higher order, nonlinear terms. Each of these effects

intreduces nonlinearity into the problem.

2.3.2 General Theori®s Z
In Ref. 13, the finite element theory for the
geometrically nonlinear problem was established in terms

of the Lagrangian strain tensor, and the principle of

 virtual displacements. Theoretical developments since

then have occurred along several paths.
The development in Ref. 13 retained quadratie terms

in nodal displacements in the expression for the strain
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enérgy but discarded higher order terms. Although thisqa
formulation permitted large deflection and staﬁility
analyses to be undertaken, it left unanswered the question
as to the possible importance of the di'scarded terms.

.P.V. Marcal and R. Mallett presented an alternative
development which retained these higher order terms; This
led to a hierachy of stiffness matrices which Mallett and
Marcal called the initial displacement stiffness matrices*.
. These involve only three basic matrices, nameiy, (K],

[N1] and [N2]. Matrix [K] has beenrn identified as the
conventional liﬁear stiffness matrix. Matrix [N1] is a
linear function of the displacemeﬁts. The terms in this
first order stiffness matrix represent the membrane and
flexure actions of the elément. ‘Terms in Fhe {N2] matrix
are quédratic and are confined to the flexure region of
the matrix. The second-order stiffness matrix is essential
to accurate predictions of behavior in the presence of
significant nonlinearity. Mallett and Marcal emphasized -
that no post-buckled solutions exist in the absenée of
this matrix. -

A third formulation due to Purdy and Przemieniecki

showed that an alternative formulation was possible which

also retained the higher order terms. This formulation is

*For detailed formulation and explanation refer to Mallett
and Marcal(l4). Some comments by Martin on this approach
can be found in Ref. 17.



very interesting in that it leads to the same stiffness
‘matrices as ih Ref. 13, which was developed on the basis
of retaining only the quadratic terms; however, an
additiopal generalized ;oad vector.is introduced to-
account for the higher order terms. in ﬁhe strain energy. A
detailed formulation of this approach cén be found in
Refs.16 and 17. In Ref. 17 Martin solved the nonlinear
problem ﬁhown im Fig. 2.IV using several theories. These

irfclude the exact solution, the solution using the higher

—+— . 100" —

-

Fig. 2.IV :.

order initial displécemeﬁt_mgtfix of Mallett and Mércal,
and the solution of Purdy and Przemieniecki. 1In addition,
the solgﬁibn based on the first order geometric stiffness
matrix of Martip is akso done. This afalysis indicates
su;prising.agreement between the exact solution and the
solutibn by Purdy and Przemieniecki, and also indica;es
that the solution by Mallett and Marcal is extremelj\
close to the solution by Martin and very close_to.the

_ ’ ‘
exact solution. -4 /
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It should be emphasized here that the general

theories mentioned above deal with a nonlinear analysis

of plane strdétg:es. ’ ' T

2.3.3 T;Loretical Development ' L.
\ .

To develop the geometric stiffness matrix for a
three-dimensional element, consider the general prismatic

space frame element with end displacements

~ -~ -~
-~

@ - &, %r %08y ép' ip’ rlq’ ;’q’ ‘}q’ Ber G iq}

as shown in Fig. 2.V.
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The total strain energy i$ the sum of the strain

energy due to the normal strain and shear strain.

US = Usn +‘USS ) . (2.1%)
in which Ug is the total strain energy, Uin is the strain

energy due to normal strain and U__ is the strain energy

due to shear strain.

And, Exx

U .= f( fcde:) dv

. v 0

Y
USS = -/.‘(f'rdy) dv . J '(2.11)
v 0 g ) ' ‘

where ¢ and T are the normal and shear stress respectively.
. . N ! .

‘Introducing Hooke's Law ¢ = Eg, T = Gy and
substituting into Eg. 2.11 and then into Eg. 2.10 leads to
¥ ‘

-

_E [ .2 g [ .2 I
u, = zf;xxdv+2f7 av (2.12)

v . v
in which E is the modulus of elasticity, e is the normal
strain énd Y is the shear stréin;

Referring to Appendix A, the normal strain can be

L]

written as

4 -
_ai o a%* a%% , 1,d%, %, 1,aw,?2
fxx - ax Y. o tI& T IR

ax? - ax? . - (2.13)
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25 . = . 2.~ ~
d Zyz + 1 dv)u + ZZ(d w)z + 1 dw)u
dx

2
2
+3 ¢ 7 & e ;(a';

~ 25 : 23 ~ 2 ' = 2
- 2y&EEdh Dy Eh(§ - 23 * (&)
=& ax? “dx? - ax?
1,87, 3 &%, 2 :
* 3@ & (2.14)
The shear strain can be written as a function of

_rotation of the cross section about the x axis as shown

in Fig. 2.VI.

-

)
H
I
n
<

2 - 2 éé 2
()

|
H

Y o (2.15)

Substituting Egs. 2.14 and 2.15 into Eg. 2.12 leads to
. <,

-t



2 x dx?
1 d ¢ as, 4%, _ ag, @ dd, ,av,?
+ ) (a?) 2y (Fx) (;2—) 2z (.d_i) (dx—z) + ('d—x) (EE)
ai, 4w, 2 av, a2 av, 4&v,?
2 @ Vvy (&, _ ¢ v
+ (a;) (aE) + 2yzZ (dxz (dxz) v {dxz) (a?{-)
_ 4%, d4w,? aw, ,d4¥,?2 aw, 4aw
(T) (d_x) Z (;) (a'f) -2 (a‘;;) (T-x)
' 2 2 - F : 52 |
1 .,4v aw G dg .
+ T (aT(') (a-'-x)r ]dAJ dx + = f [ f r? (d—-—x dAJ dx
0 A .
(2.16)
But
+dA = A

A
frsz = I
. . xX
- A
fydA=fsz=fzydA=0
A A A
y and z are the principal axes. {2.17)

Substituting Egs. 2.17 into the strain energy expression

o4
Eg. 2.16 and then neglecting the higher-order term (g%)

: ~ &4
and (g';%) leads to
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L
~ I 2= EIX -
pf @Bl @y Bl e,
o dx? _..g'/ o ax
L
EA-[ @ dV f 2 f
TO (dx) (dx (&% dx +T (&=
. (2.18)

The displacement distribution on a space frame

element is given by (see Appendix B).

2dx

*f\

- - v X
u(x) = up, + (uq up)L
3 =l - X2 Lo Xy 3l Xy - X2 X ¥
v(ix) = [l 3(L) + Z(L) ]vp + [(L) 2(L) + (L) 3] Lkp
X, 2 Xy 3 |~ X, 2 X -
+ [3(53 - 2(5) ]Vq + ["'(f) + (f) 3}qu
W (x) =l:l - 3P+ 2(};‘)3]% - [(%)-— 2(H2 + (%)a]r.ép
Xyz2 _ Xydlem | —Xy2 Xy31:3
+‘[3 (£ 2 () ]wq |: 2+ (P ]Leq
B(x) = B - )X
B(x) = Bp + (Bq BP)L (2.19)
* ey ~ _ = . o X
s;nce d(x) = g + (uq - up) T
-~ 9. - 1
%% = (—E—E—EB) = constant

i.e.

Eg. 2.18 &ontains only the guadratic terms.
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From Eqs . 2.19

o
B
it

£l%

— o

(Gg - up) /L

1] e X, 2y3 _oaXy 432y o3
2 [c s X + 6P NT, + (L - 4@ + 3PN Th

+ (6(%). - _6(%)2)\7q + (—2(3;:) + 3(%}2)Liq]

1

Xy~ X ~
= [6(51 + 20T, + (-4 + 6D LAp

Xy~ X by

1

X Xy 24 - X "o Xy 2y e
E[uf+(§ Yap + (1 - 4P + 30 )L

X _ &g 2% X)2y1,8
* 62 - (P g + (2(7) + 3D )Leq]

1 Xy~ Xy
L—z[G( 1 + Z-ﬂ)wp + (-4 + GE)LSP

. Xy~ - X, .
+ 6(1 - zi-)vq + (-2 + ez)mq]

(8g = Bp) / L (2.20}

Eq. ‘5.18 can be rewritten as follows:

US=IJ_+I?_+13+I4+IS+I6 {(2.18a)



where,

Substituting Egs. 2.20 into Egs. 2.21

lead to
1) Il
2) 12

I
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L
§5~/P(3§JZ d
0
L
2\-
—35 (Q—lz’-)2 dx
0 dx
EI L b
2~
—i-y- (d_w)z dx
dx

P

z [lZLGZ + 4L33E + 12192

- 24LV, ¥ + 12L%%. ). - 12L2% V. + 4L3%

P'q P"gq

+ 4LP%g + 12129

(2.21}

and integrating

(2.22)

- .

Pkp

pP"g

- Vo -
X 12L yqxq]

(2.23)



3)

4)

5)

since

But

and,

where
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L
Eflulp(g_i)Z
2
0 dx
EX

2L P

-~

y ~2 3152 =2 L 47332
[12Lw + 4L Bp + 12qu + 4L Bq

- 1212%.8

PP

_ ~ = 25 = 35 3 25 3
24Ligiq - 120%ig8g + 1203350 + 4133 5, + 121 wqqu

E"J( (&2 ax

d _ 1 ,. ~ _
ax - I (u Uy = constant
- EA, - ~
Iy = 3p8g - ”p’f
u
e = hjl?f_Ja
EeA = gA =F

F is the axial load in the member

- EA _ o=
F = i (uq up)
L
dV 2
‘—2'.0[ (dx) dx

(2.24)
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F |8 15 2 .33 6 =2 2 _ax2 _ L. =
Ig 2L2[5 L + TsL’8, + 5 Lig + T3b78g - 590
12 _~ ~ L. - Liz = L} ~ = 1 . 3
- (2.26)
. _ 2
6) 16 = _i_' ( ) ax
Sﬁbstituting Egs. 2.22 to 2.27 into Eg. 2.18a leads to
U = BB (G, - 802 + 12052 + 40372 + 12192 + 4n3%.
s 3L 4 P ZLQ P D q q
* ~l -~ £
2= - ~ = 22T _ 1a727 o 3
+ 12079 A - 24LTpTg + 12L°vphg = 12173V + 4L°Aphg
- 12L%v g | + Eii 12132 + 4LIE2 + 121@2 + 4132
L™Vq q] 21" [ Vo P q °q
_ _ z*‘* 25 = iz a
- 12L° wpep 24prwq 121, wpeq + 12L epwq + 41 BPBq

+ 12L2wqeq] + EE;{;% Lig + %g Lii;

+ %iipGP - %3 Lop¥q + %i~piq - %ikpéq -

- %iquq + % LW; + is L3§; + % L“; + Eg

- %i'apep - 32 Ligig - %i wplq *“%i Spg
+ %i‘ﬁqéq] * ;;E (By - Bp)® |

Applying Castigliano's theorem (Part I)

(2.28)

(18}

to the

strain energy expression Eg. 2.28, leads to the following

element force-displacement equations.



EI_ »
= [24Lv + 12L%)
2L*
F |12 .. L? «
+ Z{ ["5—- LVP + 5 Ap
EI, .
= —a | 24w - 121.°%8
2Llo p
F |12 .- L?
Ty [S_Lp 5 %
GI :
= X .z =
EI .
= ¥ 8L°0, - 1212w
2L
F 4 1s ' _ L? -
+ —_— -Ig L ep -5— w

2L* _
*ﬁ? 4_51‘3’113‘“?_237
-
= B (§ - §)
EI g
- o[
+-2—§;[;'—2L\?q—-]5'—2-Lv

24Lv + 1212 Aq]

12 o, 1t
'S'_\L 5 Aq]
24Ld, - 128 q]
12, . _

5 g eq]
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aus ET [ -~ -
P = —2 = Y| 241%, - 24L%, + 125283 + 12178 ]‘
2 % 2t L ¢ o P !
g F | 12 _- 12 L? & L’ =
3U )
= S - & (3 -B
3B
q
aUS IV [ 35 2 13
p,, = —= = —L|8L¥_ - 12L%%_ + 4L°6_ + 12L°§
P | 4 .35 _L' s _L 3 L? .
+_2L2[1—5-L8q =¥ - 15 %t 5 ¥
o
3T EI, , is \
P, = — = stiX . + 1212%., + 4L3X_ - 12L°%
12? BAq 2L“[ q P p qJ
F L . L’ L? - 4 33
+2Lz[s_"p 5% ~ 5 Vg * 15 L%
(2.29)
Egs. 2.29 can be rewritten in matrix form
as follows:
{8} =- [kg] {u} + [Kgl {u} (2.30) -

J/

where [iE] is the conventicnal small deflection theory
stiffness matrix shown in Fig. 2-2, [iGI is called 'd/4,
geometric stiffness matrix, {P} is the vector of end
forces and {u} is the vector of end displadements. ALl
of thése matrices are written with referencé to the local
coordinates.

Notice that [iG] depends not only on the

geometry but also on the initial load F as shown in Fig. 2-3.
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For an arbitrarily onientea space element, the stiffness-
matrix in the global cocrdinates may be obtained from the
‘local stiffness matrix by the tfansférmation [T1TIRLIT]
The transformation matrix [T) is developed in detail in
-section 2.5.

-

2.4 cCalculating the Critical’Load

Two fundamental types of nonlinear analysis method
exist: iterative and incremental. The iterative approach
is a-direct attack on the nonlinear problem, it is also
valid in all methods of analysis. The iNeremental approach
is also valid in all methods of analysis but unfortunately
it b;eaks down with the first occurrengé of an instability.
Therefore the incremental method shouid be wused only to
determine the critical load.

' In the post—Suckling analysis, iterative method
should be used. It should be re-emphasized that the
method of analysis used in this thesis cannot analyze the
post-buckling phenomenon. To analyze this phonoméﬁon,
the highef order terms in the.expression of strain energy
ishould be retained.

The equilibrium equations are

~— [Rg + Kg] {u} = ({P} : (2.31)

where, [Kg] is the master elastic stiffness matrix for

the stayed column, {Kgl is the master geometric stiffness

7

» -
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matéix assembied only “or the column elements, {U} is the
vector of nodal displacements, and {P} is the vector of
nodal loads.

In Eq. 2.31 the external loading P is expressed as

P = up* ' - (2.32)
where u is a constant and p* represent the relative.
magnitude of the applied loads whi¢h can be conveniently
taken as unity. Also,. since the  geometrical stiffness
matrix is proport;onal to the internal forces at the
start of the loading step, it follows that’

[Kgl = plKE) (2.33)
where [KE] is the geometrical stiffness matrix for unit .
value of applied loading (1=1). The eldstgséftiffness Qﬁg
matrix [Kg] can be treated as a constant for gquite a wide
range- of displacements {U} . Hence we may wriéé. )

kg + ukgl {U} = yu{p*} ' (2.34)
The displacements {U} may therefore be determined from,

{U} = (8g + uk&1™" u{p*} (2.35)
From the formal definition of the matrix invé;se, the
adjoint matrix divided by the determinant‘of the
coefficients, it can be noted that the displaceﬁents
tends t; infinity when

| kg + % | =. 0 ' (2.36)
the lowest value of u multiplied by P* gives the

critical load for the stayed column. Since the relative

value of the applied load P* is chosen as unity then the



 i5,
lowest value of u ‘F the flISt buckllng load the second
lowest value is the sec0nd buckllng load, etc. _The
eigenvector associated wlth each elgenvalue gives the
relative va%uelof €hg dfgplacement, that is the bucklihg'
shape. The disadvantage of‘th;s direct approach is éhe )
need to solve a set of nonlinear algebraic equations;’
consequently a relatively long computer tiﬁé. .
. . .
The incremental apgroach isfgéne:ally more efficient

in determining the critical'lgaé. In this apprcach‘Eq. 2.31
can be rewritten in linear incrementg} form as fﬁllows

. [Rg + MuKg] {(8U} = {ak P*} . (2.37)
By taking incremental values of Aﬁ, i£ is easy to determine
the corresponding incremental displacements {au} .

“

‘Continuelincrgas;pg>the.incremental load and computihg
‘the corresponding iﬁcreﬁentql displaéement AUL .

If at the nth step the incremental displacements tends,:
to"go to infinity it means that the’ggplied load at this
step is the critical load, and' the buckliﬁg{;;;pe justJ

> . (8. )
before the instant of buckling is

' n-1 . :
{og1} = > {suy} . (2.38)

There is another approach (6) to calculate tge
buckling load and the corresponding buckllng mede without
using an iterative or incremental procedure. This can be

done by using Subroutine NROOT from IBM System/360

B -
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Scientific Subroutine Package (20). Eq. 2.36 should be

rearranged to read
»

| Alny) + (xg1-'(KE | = o  (2.39)

where ) is.%‘ and [Iy] is an unit matrix. Subroptine
NROOT calculates the eigenvalues of the matrix [KE]‘}[KE]
which are A. To obtain the desired buckling load, yu,

the values of X are simply inverted. To obtain the first
buckling load the smallest value of u is required and
hencé‘the'largest elgenvalue, ), is inverted to obtain
this critical load. Other buckling loads are_obtained

in a similar manner.

The last approach is the mostjefficient for
determining the critical load. Unfortunately, this
approach is only valid whén'the guadratic terms in the
expression of strain energy have been retained. ©No
knowledge of post-buckling behavior can be obtained

from this approach.

. *
2.5 Transformations

The displacements associated with the space frame
‘element in local coordinates (cj r J=1,2,3) can be
expressed in terms of displacement components in the

3

global X, Y and Z coordinate system as .

* .
For more details refer to Gerstle (19)

T e e ——— - —n  —
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. {(a} = [ {u} ‘ (2.40)
where,
-{u}T ={u_, v ,w, B8, 8, A rQ_, v _,w , B, 08, 2}
P*P" P* TP" e’ TP’ Tqf Tq' Mg’ Pqr g’ ‘g

are the end displacement components in global coordinates.

And,
R 0 0 0
0 R 0 0
0 0 0 R
12x12
in which -
L m n
1 1 1
[R]3x3 = , Ez m2 n2 (2.42)
L m n
_ 3 3 3 3x3

where lj’ mi, ny are the direction cosinds of the angles
between the cj axis and X, Y and Z axes respectively.

| To determine.the matrix [R] , consider the general
member of length L shown in Fig. 2.VII. The principal
member axes are shown as cj’ j=1,2,3 and the global axes
as X, Y;and Z with unit vectors i, j @nd k. The member
end coordinates_are X,r ¥, and z, at end 1, and X,
y, and z, at end 2.

Tﬁe direction cosines of the longitudinal axis

c; of the member are determined by the geometry of

Fig. 2.VI as follows,

N
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' X - x
g = 2 :
1 L [y
Yy .- Yy
- 2 1
mo= L
o
. z2 -z,
n, = T - (2.43)
Y /
t ] \
S ¥ B
end 2
. (X,,¥,,2,)
c3
end 16 > ¥
(Xy,¥;,2;)
c sz
(o]
c‘a
(b)
Fig. 2.VII
/—-—‘
“ oy
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In the special case éi a circular cross section
the érincipal cross—-sectional axes are considered to be
any two perpendicular diameters. Consequently, one can
ass;me c, is parallel to xz-plané, orlhorizonéal, that
is no:mal to the vertical global axis Y. 1In this case,

a unit vector e along this cross-sectional axis,

denoted by cs‘in Fig. 2.VI is determined according to

the rules of vector analysis (13) Since‘e3 is normal

to both vectors j and er(zxi, mii, nlg),

. T 1 k
e X j
e =—_-].'..._-.x—_ = 1 1A m n
3 el ll (El 2 + nl 2) !'j 1 1 1
) . 0 1 0
-n. 1 + % k
e = 1 = e
3 ' (22 +n 2)35
1 1
Calling the denominator guantity _(112 + nlz)35 = L,
L = -—n.-‘L.
3 L; .
m = 0
3
2‘1
n —_

2 - I (2.44)

The other bending axis < is normal to the unit

vectors albng c1 and cs. Therefore the unit vector e,

along c, is obtained by
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i i ok
. _ S0 ‘-n 0 2
SETE ST A !
L. bul n
1 1 1
e, = 2[it-2m) - 3{-n®-2%) 4 X(-m n )
2 L1 - 11 1 1 - 11 ]
The direction cosines of c2 are
_ =1
22 = i‘— (11 ml)
1
_ 1 2 2
mz = f_ (21 + nl)
1
n = —:(m n) (2.45)
2 L 1 . )

1

From Egs. 2.43, 2.44 and 2.45, the direction cosines
are assembled into the [Rll matrix for the case in which

c, local is normal to Y glcbhal.

') m. n ]
1 1 1
2 2
-2 2 - . ‘
IR1]= " k! m o (2.46)
L
1 L: L:
—n1 2 .
—_ L
L 0 L
1 1

L _ ﬂ3x3

’

in the most ‘'general case the local ‘axis c, is not

et
p

perpendicular to the global Y axis. Assuming a new set

of local axis (c; ' c; and c;) in which ¢' makes an angle «
C T3
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with the previously defined ¢ , as shown in Fig. 2.VIb.
The longitudinal member axis c; is id;;;EEgl with the
c{ axis.
It is essential now to transform from the 5 to

: cé axes (j = 1,2,3) as follows

{c'} = [R,] {c}
where,
1 0 0
[R2] = P cosa sina
0 -sina cosa (2.47)

The resultant transformation now consists of
two successive transformations, first from (X,Y¥,2) axes
to (cj + 3=1,2,3) axes by Egqg. 2.46, then from the

(cy » 3=1,2,3) axes to the (63 , 3=1,2,3) axes by Eqg.2.47.

X
ie. {e'} = [RI(R]]|y
z
X
{c'} = [R{y
z
where,
[R} = [Rz][le. ‘ (2.48)

In the special case when the element longitudinal
axis is vertical, the transformation by Eq. 2.46 breaks
down, since the direction cosines &, and n1 are both zero,

and some of the terms in the transformation [R ] become
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indeterminate (L,=0, see ﬁq. 2.46). The angle @ can be
redefined, however, as the angle in the horizontal xz-
plane between the global Z and the local C3 axes,
positive when turnlng from the global 2z to global X axis

(19) as shown in FPig. 2.VIII.

Y

/(’ z Fig. 2.VIII

%

2 = 0
1
Y -v%
— 2 1
m1 = T
n = 0 (2.49)

1

Referring to Fig. 2.VIII one can easily determine

the direction cosines of axis ¢, as follows,

- -



)

The

sina

Cosa (2.50)

unit vector along axis c, is normal to the

unit vectors'along‘c1 and c, axes. Therefore the unit

vector e, along c, is obtained by,

or the direction cosines of ¢, are

-

[R13x3

Eqg.

and in this

[R]

i hj k
e.x e = sina 0 cosa
0 m. 0
1
R .
-(m1 cosa)i + (m1 sina)k
-m cosa
1
0
m. sing (2.51)
1
0 m 0
1
-mlcosa 0 m sina
1
sinc 0 cosa (2.52)

2.52 is valid only in case of vertical members,

case m1=l.0 and the same Eg. becomes,

0 1 0
-Ccosa 0 sing
sina o] coso {2.53)

3x3
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CHAPTER 3

COMPUTER SOLUTION

3.1 General

Two methods of determining the critical load and
the correséonding buckling mode for the space stayed
columns were outlined in Chapter 2. The two methods were
(1) the nonlinear analysis based on the stability functions,
and (2) geometrically nonlinear analysis by the finite
eléﬁent method.

The procedures of Chapter 2 could hardly be applied
-in a meaningful way without a computer program. For this
reason, two programs were written ‘tc handle the calculations
required to investigate the buckling behavior of the space
stayed columns. One is based on the stability functions,
and the other on the‘finite element method and are listed
- in Appendix C. .
The process of determining.the critical leoad in the

first method is iterative since many of the elements of
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the_étiffnesé matrix are dependent upon the value of the
ﬁxial load. A highly sophisticated iterative technique
is used iﬁ the second program based on geometrically
nonlinear analysis by the‘finite element method. This
téchnique will allow the user to find the critical load
in one computer run.

In the subsequent sections the general layout of
the two grograms will be discussed in some detail. .

’

3.2 The First Program (stability functions)

3.2.1 Description of Computer Program

A céméuter program of approximately 450 cards was
written to handle the calculation required to f£ind the
critical load and the corresponding buckling mode. . The
program is written in FORTRAN IV and will run on iBM'
System/360 Computer. This program iteratively determines
the critical load based on the arithmetic minimum eigeq—
value method. .The program consists of a main program and
six subroutines. Below is a déscription of each component
of the program. Since most of the work_is accomplished
by the subroutines they will be discussed first, followed

by a description of the main program. .



45

3.2.2 Subroutines

STAFUN This subroutine calculates the stability
functions as shown in Chapter 2, Section 2.2.3.

STASM  This subroutine sets up the master
stability stiffness matrix for the three-dimensional
stayed column. The element stiffnéss matrices in local
coordinates and the transformation matrices are generated
by this subroutine. With the assistance of subroutines:
TRANS and MULT, the element stiffness matrices in global
coordinates are assembled according to the relation,

(K] = [T1T(R] (7]
Then the master stability stiffness matrix is assembled
using the variable correlation table.

TRANS This subroutine transposes a matrix.

MULT  This subroutine determines the product of
two matrices.

BAKY This subroutine stores the upper triangular
"‘elements of the master stability stiffness matrix as a
column vector. This form of the stiffness matrix is
required for use in ;ubroutine EIGEN.

EIGEN EIGEN is a subroutine from IBM System/
360 Scientific Subroutine Packagé(zo). This subroutine
calculates the eiggnvalues and eigenvectors of a real
symmetric.matrix. The eigenvalues are developed on the

diagonal elements of the matrix. A matrix of eigen-
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vectors is also generated. The final érrangemqnt of
eigenvalues is in descending order on the diagonal. The

eigenvectors are arranged by column in the same order

as the elgenvalues.

3.2.3 Main Program .

The‘MAIN program can be divided into several main
parts that outline the steps in the iterative pProcess .used
to obtain the critical locad for the structure.  Comments
on operations are given for clarification or emphasis.

The steps are:

1 - Read imput data. The input data consists of,

2) number of elements (M)
b) number of nodes (N)
€¢) number degree of freedom (NDF)
d) " number of elements with bendiﬁg
. stiffness (NBS)
e) number of elements with significant
axial 1oad‘(NKG)
£f) number of buckling loads reguired (NM)
g) dimension of the problem (NN)
h) wvariable éorrelation table (IVC)
i) Coordinates of nodal points (CN)
. j} outer and inner diameters (D22 and D11)

k) modulus of elasticity (E) and modulus
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of rigidity (G).

1), the angle a (ALPHAI) has been,défined
in Chapter 2,‘Section 2.4.

m) the initial load (P1) and the load

inerement (DP).

-2 = Calculate element properties. The properties
of elément consists of, |
a) area '(Ad)
b) moment of inertia (MI)
c¢) direction cosines (DC)
d) Euler load for elements with significant
axial load (PE)

3 - Write the input data and the élement properties.

Thus, the results.of the analysis will be accompanied by
the input daté apdtyhe elements properties. This makes

checking‘easier if some mistakes have been inadvertently
;ntroduced.f Aléo, this data will generally be useful for

future reference.

4 - calculate the stability functions using sub-

routine {STAFUN). .k

5 - Set up the mastér stability stiffness matrix

. through subroutine (STASM).

6 - Store the upper triangular portion of the

stabiiity stiffness matrix as a linear array, using sub-

routine (BRKY).
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7 - Calculate the eigenvalueé and the correspond-

ing eigenvecﬁors through subroutine (EIGEN).

8 - Iteration. The minimum eigenvalue is found

19 L
in the [nx(n+l)/2]th element of the ﬁE%rix, where n is

the order of the master stability stiffness matrix. Based
on the sign of the minimum eigenvalué the load is incre-
mented, the new §ystem stability stiffness matrix is
assembled, and the eigenvalues are calculated ag;in. If
the sign of the minimum eiéeﬁvalue changes, the 16ad'
increment or decrement is reset at minus one-fourth of

its previous value.

’

9 - The iteration continues until the criﬁical-

-

load is obtained within certain limits.

10 - Write the critical .load and the corresponding

>

buckling mode.

/i;;.4 Critical Loads Oﬁhér Than the First
To determine a critical load other than the first,
the corresponding éigeﬁvalue must be used as a basis of
iteration. The eigenvalues are gen a}Fd on the diagonal
of the matrix which was the mastey/séability stiffness
matrix. This is illustrated in Fig. 3-I. The elements
of the upper triangular portidn of tqs.mast?r stability,

stiffness matrix are stored, by BAKY, in a linear array in

which the elements are numbered as shown in Fig. 3-I.

L

—
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L |
After EIGEN calculates the eigenvalues these appear on

the diagonal, as elements 1,3,6,10,15,......., {jx(j+1)}/2,
esesiee,{nx(n+l) }/2, where j is the jth eigenvalue and n
is the order of the two dimensional stiffness matrix. The
eigenvalues are stored in desgending order. Thus the

eigenvalue in“the {nx(n+l)/2}E? position is.used to obtain

th

the first critical load. To obtain the i critical lecad

(i = 2,3,4,5,....r n) the eigenvalue that must be used as
h

, @ basis of iteration is the jt = n-i+l. The storage

location of this eigenvalue is the element {(n - i+l1)

(n - i+2)/2}th. Thus any of the critical *oad may be

~

determined
_ \ _
1
1 : 2 4 -
****** H=———===n
I I fu
I 3, s K
L—-a-c————;-- ——————
| ! ' v
I 1 . .
l 6 | + eigenvalues are in
: e the diagonals
+ .
|
1
T IIT0
13x(j+1)-
. .th . Skt
J =3 eigenvalue v 2 |
n = matrix size (nxn) TTTTTATT
) |
inx (n+1)
l_z__.
Location of eigenvalue™ |

Fig. 3.I
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3.3 The Second Program (The finite element method)

3.3.1 Description of the Program

A computer prcgram of approximately 550 cards was

wrltccn to calculate the .critical load and the corresponé-
ing buckling mode in one computer run u51ng the geometric
nonlinear analysis by thc finite element method. The
program is writtem, in FORTRAN IV and will run on the IBM ..
' System/360 Computer. The program consists of a main
program and seven subroutines. As mentioned previously
most of the work 1is accomplisheé by the subroutines,

therefore they will be discussed first, followed by a

. discussion of the main program.

3.3.2 Subroutines

)

ELAKM This subroutine sets up the master elastic

stiffness matrix by a similar procedure as subroutine
STASM in Section 3.2.2.

-ggggg This subroutine sets up the master geometric
stiffness matrix in 3-dimension by the same procedure as

subroutine ELAKM.

i

TRANS and MULT These subroutines have been defggfﬁ

in Section 3.2.2. -

ARRAY ARRAY is a subroutine from IBM System/360
(20)

scientific Subroutine Package This subroutine

converts the-data matrix from double to single dimension.
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This form of matrix (Array) is required for use in sub-
‘routine NROOT. ‘ | -

EEQQE NROOT is also a subroutine from IBM System/
360 Scientific Subroutine Packageczo). This subroutine

calculates the eigenvalues, ) and the matrix eigen- -

il
vectors, V, of a real square nonTSymmetrié matrix of a
special form B  'A, where both B and A are real symmetric
matrices and B is positive definite.

DODY This subroutine calculates the weight and

the relative efficiency of the stayed column.

3.3.3 Main Program
‘ ) 3 u-
The MAIN program can beé% be described by a series
of statements that outline the steps used to obtain the
critical load for the space. stayed column in one computer
rﬁn. Where applicable, comments on operations have been
added for clarification or emphasis. The steps are:

1 - Read input data. The input data are exactly

the same as in the first program, Section 3.2.3, except
step (l1-m), the initial load Pl and the load increment
(DP) are omitted.

2 - Calculate element properties. The same as in

the first program, Section 3.2.3, except step (2-d), the

Euler load (PE) is not required.

e

3 - Write the input data and the element properties.

As in the first program.
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4 - Set up the master elastic stiffness matrix

through subroutine (ELAKM).

5 -~ Set up the master geometric stiffness matrix

using subroutine (GEOKM).

6 - Convert the matrices ELAKM and GECKM from
double to single dimensjion oxr array through subroutine
(ARRAY) .

7 - Calculate the eigenvalues and the corresponding

eigenvectors psing subroutine (NROOT). As explained in
Chapter 2, Section 2.2.5.

8 - Calculate the weight and the relative efficiency

using subroutine (DODY).

g - Write the outpuE data which consists of the

a) Critical load and the corresponding —
buckling mode.
b) Weight and the relative efficiency of the

stayed column.

10 - A new data set is now read and the process.
continues. The only data cards that need be included in
the new data set are those on which some or all the data
has been changed. This is convenient and saves time when
the effect on the critical load of changing a parameter is

being investigated.



CHAPTER 4

INFLUENCE OF CROSSARM MEMBER LENGTH

ON BUCKLING BEHAVIOR

4.1 General

As mentioned in Chapter 1, the elastié buckling
load of a concentrically loaded, pin-ended, §lender meﬁal
column may.be increased several times by reinforcing it
with rigidly connected crossarm members and pretensione§§
stéys. The purposg of” the pretensioned stavs and the
crossarm members is to.introduce, at several points along
the length of the column, restraint against translation
and rotation. The effect is to decrease the effective
unsupported bﬁckling length of the column. One of the ..
most interesting problems associatéd with this research‘
is that of influence of crossarm length on buckling
beﬁavior of the stayed columns. The investigation in

- this chapter’ is focused on the following problems:

1) Influence of crossarm length on the buckling

. 54 N

-
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- 1

strength of a single-crossarm stayed column. -
2) Comparing the buckling behavior of the single-
crossarm. stayed columns with three and four crossarm
members, due to the changing of crossarm member length.
3) Influence of crossarm length on the modes of

instability for the two systems under consideration.

ﬂ4.2 Influence of Crossarm Member Length

The influence of crossarm member length on the
buckling behavior for the two systems mentioned previously
in Chapter 1 are explored here. The stay diameters, which
must remain consﬁant, during the varying of crossarm member
length were selected as 3/16, 4/16, 5/16, 6/16, 7/16, 8/16,
9/16, 10/16 and 12/16 ins. Theﬁ, for various ratios of
half column length, L, to crossarm member iength, léa '
and with the .aid of the computer program based on the
finite element method, the buckling load and the
correspondinnguckling mode were calculated.

An important feature of the problem is that there
are two practlcal possible modes of instability: a tyée
of triple curvature and double curvature buckling.'
Consegquently, it was of interest to study the influence
of crossarm member length on.these'modes of buckling. " The
two modes of buckling will be discussed ‘subsequently in

some detail.



56

The theoretical results obtained from the cémputer
program are illustrated in Figs. 4-1 and 4-3 to 4-10.
Each of these diagrams corresponds to a constant value of
the stay diameter. The ratio of half column length to
- crossarm length is the abscissa and the values of the
critical locads corresponding the two buckling modes are
the ordinates in these diagrams.

The curved lines in Fig. 4-1 reveal that for large
ratios of half cdlumn lenéth to crossarm member length,
instability in both systems results in Mode I buckling, a

type of triple curvature buckling. As the ratio of L to

lca became smaller, in this case by incrgasing lca.’ a
ratio was reached where Mode II, double curvature buckling,
becomes the controlling instability moce at bifurcation.
This behavior was Expected since, as the crossarm member
length is increased, the rotational res#;;int of the
crossarm at the column 1s decreased and the translational
restraint at the same poiﬁt is increased. These results
can be supported mathematically as foi}ows. Referring to
Fig. 4-2, the.change in the stay length due to deflection,

.6 at the crossarm level is As’ and

cl’
4,38, coso (4.1)
The additional force in the stay Ta due to the

change in length is given by,



T, = EBg (&) Ag /L (4.2)

substituting Eq. 4.1 into Eq. 4.2 leads to

8. BA, cosO
T = L

(4.3)
s -
where,

Ag is the stay cross-sectional area,
L is the stay length, and,

Eg is the modulus of elasticity of

the stay.

also,

cos@® = lca/LS

2
p-Y nds/4

S

in which ds is the stay diameter.

Eqg. 4.3 can be rewritten as follows:

4 : : _
" _ 8 L, Eg -
a | 12 T4 (4-4)
s
but, _
2 _ 2 2 (
12 o= L+ 1%, (4.5)

in which L and lca has been defined previously.

?

When Eg. 4.5 is substituted into BEq. 4.4, the
result is:

= 2 32 .
T, = Fc LP Es ) ds /4 (4.6)

- - —_ 2
in which Lp = 1/(L /lca' + lca)
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It is obvious from Eq. 4.6 that the additional
force in the stay T, is proportional to the parameters

s ,E, &

c s S and Lp. Investigation is now focusing on the

length parameter Ip.

To examine the influence of Cxossarm member length

on Ta’ the length parameter LP is calc for warious
values of crossarm member length lca' The
length, L, is considered constant and equal to 120 ins.

The results are given in Table 4.I.-

1., L, x 103
12 0.83

15 _ 1.0

20 1.35

24 1.6

30 2.0

60 3.3
120 4.2

Table 4.1 \

It is obvious from Table 4.I that-as the crossarm
member length is increased, the length parameter Lp also
increases. Conseguently the additional force in the stay
Ta,‘which is directly proporticnal to the length parameter

Lp, is also increased.
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Referring to Fig. 4-2, from geometry:

Fa‘ = T, cosd S {4.7)
in which F is the horizontal component of the additional
force in the stay. This is the force which resists trans-

lation. Eq. 4.7 reveals that as the crossarm member length

1s increased, thg\izzzziffigpaiﬁiestraint is also increased.
‘As for the tional reStraint, it is a well- '

known fact that the bending stiffness of an element is in-
versely proportional to the length ofrthe element. There-
fore, it.1s expected that the bending stiffness, and
conseqguently the rotational restraint decrease with the
increase of the crossarm member length.

It is also apparént in Fig. 4-1 that as the ratio
of L to lca is increased, and when instability is con-
trolled by Mode I buckling, there is a rapid increase in
buckling strength. When'Mode II buckling controls, the
strength decreases slowlyv. This diagram also indicated
that for the ﬁwo systems the maximum strength of the
stayed column will be in the vicinity of the intersection
of the two buckling curves. It should be'noted that the
strength of the stayed column with four crossarm members
is higher than that with three crossarm memberé. It
should be emﬁhasized that a higher strength does not
always lead to higher efficiency. This will be discussed

in Chapter 6.

-r
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The curved lineé.in Fig. 4-3 and Fig. 4-4
indicate thaf as the stay diameter is increased the
stréngth oé the two systems wasg, increased énd the region
in which Mode I buckling controlled is narrowed. These
results were expected because of the effects of stay size
as will be discussed in some detail'in the next chapter.

In Fig. 4-5 it should be noted that the buckling
behavior is totally controlled by Mod‘ ITI buckling for
the stayed column with four crossarm members. The region
controlled by Mode I buckling narrowed for the stayed
column with three crossarm members.

Figs. 4-6 to 4-10 indicate that Mode II buckling
"controls the buckling behavior in both systemé regardless
of the crossarm member length. It can also be recognized
that the second buckling load, which corresponds to Mode
I buckling, became closer to the ﬁaximum theoretical
buckling loaq* of the stayed column. It is also seen that
the rate of increase of the second buckling lcad is very
small. This behavior can also be expected because of the

’

influence of the stay size. K

4.3 Modes of Buckling

Two realistic buckling modes are possible, for the

*Maximum theoretical buckling load 1s defined as the critical
load for column of length L with one end fixed and the other
- hinged.
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pin-ended single-crossarm stayed column. These are (1)
.a type of triple curvature buckling or sfmmetrical
buckling: and (2) double curvature buckling or anti-
symmetrical buckling. They are shown in Figs. 4-lla and
4-11b as Mode I buckling and MEEQ Ir buckling reSpectivgly.

To simplify the.phenomenon of instability modes,
the stayed column cantbe replaced by the model* shown in
Fig. 4-lle. It consiéts of a pih-ended cclumn of length
2L, in which the stays and crossarm members have been
replaced by an elastic spring that resigts lateral
translatiof of the column;

The resistance of the\linear spring reflects the
preperties of the stays and/the length of the crossarm
member. Now, if there are’no stays, the resistance of

- the linear spring will vanish and consequently the
expected shape cf instabiiity will be a half sine wave
or a single curvature buckling as shown in Fig. 4-11d.

~If the stays are light and the length of the crossarm
members are small, the resistance of the spring Qill be
small and the expected buckling mode will be a type of
triple curvature as shown in fig- 4-1la'. In the case
of heavy stays and long crossarm member;, the resistance

of the spring will be enough to prevent translation.

*For d%g?iled information refer to Smith, McCaffrey and
Ellis .
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Thus the rotation of the column at the crossarm will
either be egual to zero or have a certain vaiue as showh
in Figs. 4-lla" and 4-11b respectively. One can observe
that the buckling strength'in case of zero rotation at
the crossarm is higher thén that_with a certain rotation
at the crossarm. That is because the effective buckling
length for the case where the rotation of the column at
the crossarm occurs is longe: than the case where the

rotation at the crossarm is zero..

3
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INFLUENCE OF THE STAY PROPERTIES

LN}

ON THE BUCKLING BEHAVIOR :

5.1 General R
In Chapter 4 the lnfluence of the crlossarm member
length on buckllng behav;or was lrvestlgaued. Through

this investigation many questions arose c0ncerhing the

influence of stay properties on buckling behavior. In

this chapter the investigation is focused on the follow1ng
problems. ' .~,'”

1} Influence of the stay s;zefon the buckllng
behavior of the s;ngle crossarm stayed columns (Section
5.2). )

'2) Comparing the buckling behavior of the single-

crossarm stayed columns with three and four crossarm ™

members, due to the changing'of.the stay size (Section

y i Q

5.2). .

3} In*luence of stay'modéﬁhs of:gla7ticity on the
- . F



I ' bucklingi?ehavior of the single-crossarm stayed column

with three crossarm members only (Section 5.3).

\;\?.2 Influence of-Stay Size

The influence of stay size on buckling behavior
for the two systems under éﬁnSideration and previously
described in Chapter 1 are explored here. The ratio of

.i half column length to crossarm member -length, (i/lca),
o which must remain constant durihg-the varying of the
étéy size, were selected from 10 to 2 in ﬁnit
increments. Then, for various values of stay size aﬁd
wit the-aid of the computer program, based oﬁ the finite
f—\\i}ement method and previously described in Chapter 3, the
buckling load and the corresponding buckling mode were '
. calculated.

It should be goted that when the stay size or the
modulué of elasticity of the stay is yaried the modes of
buckling will still be one of the two modes previously
discussed in Chapter 4, Section 4.3. But it should be
re-emphasized that the presence-of the stays is extremely
essential to the creation of these particular.modes ‘of

Y instability. - '
N The tpeoretiéal results obtained from the computer
program are illustrated in Figs. 5-1 and 5-3 to 5-8. "Each

~

of these diagrams correspecnds tc a constant value of the

1 ‘
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ratio (L/lca). Ih Plotting theséidiagrams, the value of
the stay diameter is the absc;ssa and the values of the
critical loads corresponding the two modes of iﬁstability
are the ordinates. |

The curves in Fig. 5-1 indicate that for small
stay diametgrs,:instability in both systems were controlled
by Mode I buckling (é type of triple curvature buckling).
For larger stay diameter, Mode II buckling (double
curvature buckling), became the controlliné instability
mode at bifurcation. This behavior was expected Because
the translational restraint of the column at the level of
the crossarm increases as the stay diameter is increased.

The results seen in Fig. 5-1 also reveal that as
the stay size was incrgased and when insﬁability was con-
trolled by Mode I buckling, the buckling strength of the
stayed columqbincreased rapidly. However, when Mode II
buckling controlled, the increase in buckling strengthl
comparatively was very small. These results can be.
supported mathematically as follows. Eq. 4.7 in Chapter
4 can be rewritten as follows:

— 2 2 .
Fa = woc Dp Es ds cos® /4 (5.1)

in which 6c' Lp, E, and ds have been defined in Chaptef. 4,

Section 4.2. ~

] It is obvious from Eq. 5.1 that the horizontal
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force Fa,'which resists translation, is directly pro-
portional'éo the séuare of the stay diameter. Then,for
constant values of the crossarm member length and modulus
of elasticity of the Stay, the horizontal force Fa and
consequently the tianslatiénal restraint at the crossarm
increase rapidiy as the sta§ diameter increases.

The point of intersection of the two buckling
curves reveal that bo;h Mode I buckling and Mode, IIX
buckling are equally.possible for the stayéa column.
Thereafter, as the stay diametér becomes larger, a value
is reached where the stays become heavy encugh to prevent Ql
the translation at the crossarm. At this point, Mode II
buck;%ng will be the governing instabilitv mode at

bifurcation.

As mentioned previously, the increase ih buékl;ng
strength was relatively small when Mode II buckling
controlled the instability behavior. This can be explainedJ
(’and supported mathematically as follows: Mode II buckling
can be represented by the model” shown in Fig. 5-2a, in
which the restraint of the stays has been replacgd, in
Fig. 5-2b, by a vertical elastic spring. In Fig. 5-2d
the - change in the stay length, As' due to vertical defor-

mation, Gca' at the end of the crossarm member is shown

5 *For detalled information about thls mode)l refer to Smlth,
HcCaffre? & Ellis (5) ‘

Y

~o,
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to be

Ay = aca sino - (5.2)
Consequently, the additional force in the stay Ta’ due to
the change in length is given by

T, = Bg 6., s;n@ ndy /4 (5.3)

I s

- in which B, ds and Ly have been defined Previously in
Chapter 4. &
In Ref. 5, the value of Gca was calculated, and

the result was

dca = — (5.4)

T 5 s 2 )
(1 + g Eca Ica lca sin® 0@ cosd)

"in which ¢ is the angle of rotation of the buckled column
at tﬁe crossarm and Ica is the moment of inertia of the
crossarm member.

Substltuplon of Gca from Eq. 5.4 into Eg. 5.3
1eads‘to

E_ sin@ 1 {5.5)

v Tca
S 4 2/ Es 12 sin?@ cosd
I__ . Jca

2
wds ca “ca

It ié obvious from_Eq- 5.5 that as the stay size
increa§es the.additional force in the stay alse ifcreases.
Referring to_fig. 5-2a, the vertical component of the
additional force in the stay, V,+ 1s given by

Vé = Ta sin® (5.6}
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Eg. 5.6 reveals that the vertidal force Va is
directly proportional to the additional force in the stay
Ta’ since the crossarm member length is considered

-constant. Referring to Fig. 5-2b the two vertical forces
Va consist of a couple which resists the iotation at the
crossarm and consequently increases thé buckling strength.
To prove that the increase in buckling strength will be
sﬁall as the stay diameter is increased, Eg. 5.6 can be

rewritten as follows

. 2 -
v o (Es sin” @ cos@) ¢ (5.7)
)} a 5 ~
where P
D = (-4 EE——— 1 sin®6 cos0) (5.8)
T8 3 E:ca Ica. ca

To examine the -influence of stay diameter on the
vertical force Va)‘the denominator, D, defined by Eg. 5.8
is calculated for various values of stay diameter. The

results are given in Table 5.1I.

- A

s : . D

0.3750 20.91

0.4375 18.50

< 0.5000 16.94
0.5625 15.87

0.6250 15.11

N 0.6875 14.54

- 0.7500 14.11

- ) Table 5.I
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It is obvious from Table 5.I that as the stay
diameter ié increased, the value of. the denominator D is,
slowly decreased. Ccnsequently‘thé vertical force Va at
the end of the crossarm member is increased at a slow
rate. This léads to a slow increase in thé restraining
moment and consequently to a slow indérease in the buckling
strength. . | '

Figs. 5-3 to»S-é‘indicate that for the two systems
as L/lca decreases the buckling strength is increased when
instability is controlled by Mode I buckling. Similarly
when Mode II instability controls, the buckling strength
is slightly decreased. This result was expected because,
as mentioned previously, the rotational restraint of thé
column at the crossarm is décreased and the translational
restraint of thé éolumn at the.croksarm is increased as
the crossarm member length is increased. The resulznghown
in these.diagrams also indicate that the region inbwhrqh.
Mode I buckling controlled is narrowed as L/lca decreases.
This behavior was also expected due to the effect of the-
crossarm member lengtﬂ as discussed in Chapter 4.

In figs. 5-7 to 5-9 it should be noted that, for
the stay sizes studied, the buckling behavior for the two
systems is totally controlled by Mode II'buckling. It
can also be recognized that the 5uckling strengih of the

stayed column is decreased as the crossarm member increases

L}

/1l | :
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in 1ength.‘ It can also be seen that the rate of increase

of the second buckling load became smaller and

the maximum theoretical buckling load for t stayed
.column. ' N

- It should be noted that the strength of thd stayed
column with féur crossarm members is higher than that of
‘three crossarm members regardless of the stay size and the
crossarm member length. As mentiongd previously, and as
will be d;Ecussed in detail in the next chapter, a higher
strength does not mean a higher efficiency.

3

5.3 Influence of Stav Modulus of Elasticity

In this section investigation is focused on the
influence cf the stay modulus’of elasticity on buckling
behavior of the single-crossarm stayed column with three
crossarm members. Two types of staved columns ére
considered. In type I the stays are considerkd to be
steel rqds with a modulus of elasticity of 29600 ksi. In
type II the stays are considered to be steel cables with
modulus of elasticity of 9400 ksi. The main purpose of
this sﬁudy is to emphasize that the buckling behavior of
the stayed columns previously discussed is heavily
dependent upon the stay modﬁlus of elasticity.

In Figs. 5-10 and 5-11 the influence of the

crossarm member length on buckling behavior is examined
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for the two types under consideration. The curved lines
in Fig. 5-10 reveal that for large ratios of L to lca

and when Mode I is the controlling mode, the buckling

strength of the stayed column with high 'stay modulus of

elasticity is higher than that of low stay modulus of
elasticity or type II. It can also be seen from the
curved lines in the same Fig. that the region in which
xode I controls is comparativgly narrow for the staved
column (type I). Also, the bucklihg strength for the
two types becomes closer for small ratios of L to 1

ca
and when Mode II buckling is the controlling mode at

bifurcation. These results were expected and can be-

-

-

i .
supported mathematically as follows. Eg. 5.1 can be -
rewritten as follows:

Fa =C Lp ES (5.9)

- and

C = % Ec d; cos®

in which LP' E s Gc and d have been defined previously.
It is obvious from Eg. 5.9 that the horlzontal
force F which resists the transli\ion is directly pro-

portional to the modulus of elasticity of the stays and

the length parameter LP for a constant.stay size. Then,

for the same crossarm member length, it is expected 'that

the force Fa and consequently the translational restraint

7

1.

“
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for. the stayed column with high stay modulus ofbglasticity
(type I) will be higher than that of low stay modulus of -
elas;icity (type II). This explains why the buckliﬂg strength
of the stayed column of type I is higher than that of typei
II, when Mode I controls the bﬁckling behavior for both -
types.: It can also be seen from Eg. 5.9 that as the length
pérameter increases by increasing the cfossarm member length,
a value for Fy and consequently the translation restraint
is reached where both Mode I and Mode II buckling con-
figurations are séually possible for thélstayed column.
'Thereéfter, Mode II buckling becomes the contiolling mode
at bifurcation. fsince the translational restraint of the
sta§ed column of type I is greater than that of type II
due to the influence of stay modulus of elasticity. It is
therefore expected that the region controlled by Mode I
buckling for the stayed column of type I is narrower than
~ that of type II.
’5' It can be seen from Eg. 5.7 that the vertical force
Va at the end.of the crossarm member incrgases with the
‘increase of the stay modulus of elasticity. ‘Therefore,
it is expected that the restraining couple for the stayed
column of type I is greaéer than that of type II. This
explains why ;&9 buckling gtfength of the stayed column
of type I is higher than that of type II, when Mode II
bﬁckling was the controlling mode for both types at

bifurcation.
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: The curved lines in Fig. 5-11 reflect the great
effect of the stay modulus of elasticity on the buckling
behavior of the stayed column. It can be seen from the
curved lines Fig. 5-11 that the buckling behavior of
the stayed column with high stay modulus of elasticity is
totally controlled by Mode II buckling. Also, thé buckl-~-
ing behavior for the Stayed column with low stay modulus
of elasticity is controlled by two modes of instability:
Mode I controls for large ratios of L to lca while Mode
IT controls for small ratios of L to lca'
In Figs. 5-12 and 5-13 the influencé of the stay
size on the buckling behavior is shown for the two tvpes
under consideration. It is oé%&ous from the curved lines
in Fig. 5-12 that the buckling behavior is greatly affected
by the stay modulus of elasticity. The curved lines in
that Fig. indicate that the buckling strength of the stayed
golumﬁ of type I increases with a comparatively higher rate
than that of type II when Mode I controls the bucklihg
behavior in both types. Also, the region controlled by
Mode I buckling for the Stayed colutn of type II is wider.
It can alsoc be recognized that the buckling strength of
the stayed column with high stay modulus of elasticity
(type I) is higher than that of iow stay modulus of
elasticity (type II). These results are expected because

of the influence of stay modulus of elasticity explained’

before. ) j; . f

o Yo
i
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It can also be seen from Fig. 5-13 that for the
stayed column of type I the reglon controlled by Mode I
buckling is narrowed. It can also be seen from the curved
lines in Fig. 5-13 that the buckling strength of the
stayed column with high‘stay modulus of elasticity (type
i) increases rapidly in the region governed by Mode I
buckling. These results are expected due to the effect
of stay modulus of elasticity on buckling behavior.

In Fig. 5=~14 the influence of varying the stay
magulus of elasticity on buckling behavior jpr the single
crossarm stayed column with three crossarm members is
examined. The curved lines in that Fig. indicate that
for small values of the élay medulus of elasticity,

instability was controlled by Mode I buckling. For large

values of the stay modulus of elasticity Mode II buckling

became the controlling mode at bifurcation. This \
behavior was expected becausg the translational restraint
of the stayed column at the c;ossarm increases as the
stay modulus of elasticity is increased. This can be
confirmed mathematically using Eg. 5.9. It can also be
seen in the same Fig. that the buckling strength of the
stayed column increaied rapidly fs the stay modulus of
elastieity was increased and when Méde I buckling was the

controlling mode at bifurcation. However, when Mode II

buckling controlled, the increase in buckling strxength

e
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was comparatively small.
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These results can be confirmed

mathematically by using Egs. 5.7 and 5.9.

by
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CHAPTER 6

-y

THE RELATIVE EFFICIENCY OF THE STAYED COLUMNS

€.1 General - - T

In the last two chapters the influence of the

S~
—

crossarm member length and étay properties on the
buckling behévior of the single-crossarm stayed column

were investigatéd. It was obvious through these
investigatiops that the buckling strength of the stayed
column;_with four crossarm members was alWéys higher than
that of three crossarm members_regardless of the stay
properties and the crossarm member length. However, )
based on these results it cannot be said that the stayed .47
column with four crossarm members is always more efficient “
_thaﬁ that of three crossarm members. - It is of. interest - .
to explore the relative>efficienc§ which will be dgfined

as the strength of the stayed column relative to its -
total weight. In this chapter.the inflpéhce of the

crossarm member léngth on the relative efficiency and the

76
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influence of ‘the stay diameter on the maximum value of

the relative efficiency will be examined in some detail.

6.2 Influence of the Crossarm Member Length

The influence of crosggrm member 1eﬁgth on the
relative‘éfficiency for the two systems under consiaeration,
and previously described in Chapter 1, are examined here.
The stay diameters, which must remain constant durihg the
varying of crossarm member length were selected as 3/16
to 10/16 in. in 1/16 in. increments, plus 12/16 in. Then,
for various ratios of L to 1., and with the aid of the
same computer pfogram previously used for the anélysis in
the last twé chapters, the relative efficiency was
calculated. It should be noted that the total weight of
the stayed column consisted of the weights of the doiumn,
crossarm members and stays. It did not include aﬂy
additional weight due to connections.

The theoretical results obtained from the computer
program are illustrated in Figs. 6-1 to 6-9. Each of
these diagrams is plotted for a constant value of the stay
size. The curves are plotted in these Figs. to represent
the relative efficiency as a function of the ratio L to lca'
It should be noted that the stay modulus of elasticity is
considered to be a constant and was selected as 29600 ksi.

& £
Fig. 6-1 reveals that the relative efficiency (REF)
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of the stayed columns in both systems varied as_the ratio
of L to 1,, was changed. Also, for large fatios of L to
Jca,'the relative‘efficiéngy of‘the stayed column with

four crossarm members is higher than that of the three
crossarm members. As thé ratio of L to 1ca becomes
smaller, by increasing the crossarm member length, a ﬁatio
was redched where the relétive efficiency of the stayed
column with three crossarm members becom§§fhigher than that
of the four crossarm members. It can also be seen from

the same Fig. that the relative efficiency of the stayed
column in both:systems increased with the increase of the
crossarm member length until it reached its maximum

value. Thereafter, it decreased with the increase:df the
crossarm membex length. These results were expected and
can be fully understood by refer;ing to Figf 4-1. It can
be recognized from Figs. 6-1 and 4-1 that the maximum value
of the relative efficiency (REF) in both systems was
obtained in the regicn where the two corresponding buckling
curves of Fig. 4-1 intersect. It can alsoc be seen from.the
same Figs. that for large ratios of L to lca’ the rate of
increase of buckling strength is highe£ than the correspond-
ing rate of increase of the relative efficiency. Also, for

small ratios of L to lc s the rate of decrease of the

a

bucklding strength is less than the corresponding rate of

decrease of the relative efficiency. That is because the
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weight of the stayed column was continually increasing -
with the increase of the crossarm member length. Fig.

4-1 reveals that for large ratios of L to 1., the buckling
strength of the stayed Cbi;mn with four crossarm members
was higher than that of the three crossarm members. Thel
difference in the strength becomés less for small ratios
of L to 1.,. The weight of the staved column with foﬁr
crossarm members is higher than that of the three cross-
arm members and the difference in weight between the two
systems becomés larger for small ratios of L to l_,. This
explains why ;he\relative efficienéy of the staved column
with four/crossa:uuxwmtﬁﬁggﬁzgﬁﬂfgﬁéf\Eyan that of the
three crossarm members for large ratios of L to lca while
the staved column of three crossarm members is more
efficient for small ratios of L to lca'

Figs. 6-2 and 6-3 indicates that for large ratios
of L to 1ca the stayed céiumn with four crossarm members
is still more efficient than that of the three crossarm
members. It can also be seen from the same Figs. that
the region in which the stayed column with four crossarm
members is more efficient becomes narrower. This result
was expected and can be ﬁuily understood by going back to
the corresponding Figs,'in Chapter 4.

Figs. 6-4 to é-9 indicates that the relative

efficiency of the stayed column with three crossarm members



was higher than that of the four crossarm members regérd-
less of the crossarm member length. It can also be seen
from these Figs: that the relative efficiency for the two
systems decreased with the increase of the stéf size.
These results were expected because at a certain stay size
the translational restraint was enough to prevent the

tr lation at the crossarm. Thefeafter, éhe increase in
the stay size will cause a slight iﬁcrease in the buckling
strength as explainéd previously in Chapter 5; At the
same time the weight of the stayed cslumn increases at a

relatively higher rate than the increase in the buckling

strength of the column as the stay size 1is increased.

6.3 Effect on the Stav Size-

The influence of the stay size on the maximum value
of the relative efficiency is examined here. ‘It can be .
recognized from Figs. 6-1 to 6-9 that for each stay
diameter there exists a séafed column configuration in
both systems for which the relative efficiency ﬁill be a
maximum. fhe masximum values'of_the relative efficiency
ocbtained from Figs. 6-1 to 6-9 for the two systems under
consideration are illustrated if Fig. 6-10. Ig plottiﬁg
this diagram, the stay diameter is the abscissa aAd the
maximum values of the relative efficiency are\the

ordinates. It should be noted that the points on the
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two curves in Fig. 6-10 ~represent the maximum values of

the relative efficiency (REF) for each diameter of the
-
}

, stay investigated. The numerical ratio beside each point

indicates the ratio of L to %ca,for.which the maximum
" value was obtgined.

Fig. 6-10 reveals that the maximum values of REF
for the stayed colﬁﬁn with three crosggim members is higher
than that of tﬁé four crossarm members régardless of the
stay size. It can also be seen from thé same Fig. that
for small values of the stay.size, the crossarm member
length for ﬁPiCh the maximum value of REF is obtained is
relatively long. As the stay size beqome; larger the
correéponding crossarm member length decreases. A;;o, one

. can recognize that for a small stay siie the crossarm
"member length for the stayed column with three crossarm
members is longer than that of the four crossarm ﬁembers.
It is also apparent from the same Fig. that the maximum
valﬁe of the REF increases as the stay size is increased
until it reaches its mgximum value. Thereafter it
decreases as the sta& size is increased.

It should be re-emphasized that changing the
material properties of the column, crossarm members or
stays generally would alﬁer ;he shﬁéé of the cutved lines

in Fig. 6-10.
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 CHAPTER 7

INFLUENCE OF END CONDITIONS ON

BUCKLING BEHAVIOR

7.1 General - '
In the last three chapters the studies have been
directed towards the buckling behavior of the single-
crossarm stayed columns with hinged ends. The analysis
of the stayed columns_with-different-end cqﬁditions is
deéirable since the previous work published on the stayed
columns was confined to the casd® of hinged ends. It is
the purposé of this chapter to present a summary and
genefal survey of the buckl;ng behaviéf of an arbitrary
three-dimensional staved columns with.different end
conditions. Attention will be focused on the analysis
of a sinéle-crossarm'stayed column with three different
boundary conditions: 1) both ends fixed, 2) one end

fixed and the other end hinged, and 3) one end fixed and

the other end free. PFirst, the influence of crossarm

82
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member length and the stay size on buckling behavior of

the three céses under consideration will.be examined.

Next the influence of crossarm member length on the
relative efficiency ;;ll be examined. Finally, a numerical
'éxampie will be presented to illustrate the power of the

finite element method in nonlinear analysis.

.C:E/’/

7.2 Influence of Crossarm Member Length

The influence of the crossarm member length on the
buckling behavior of the three cases under consideration
are explored here.r The stay diameter, which must remain
constant during the var&ing of crossarm member length,
was selected as 0.25 in. ThER\ for various ratios of L
to lca’ and with the aid of the ame-computer program
used previously, the buckling lcad and the corresponding

. buckling mode were calculated. The results obtained from
the computer program are illustrated in Fig. 7-1. In
this Fig. the value of L to lca 1s the abscissa and the
values of "the critical ioadslis the ordinate. It should
be noted that the buckling behavior ¢of the three cases
under consideration is illustrated on the same Fig} to
clarify the influence of end conditions. It can be seen
from this Fig. that thé buckling strength 6f the stafea
column with one end fixed and the other end free is

comparatively low. Also, for this case the buckling

Y
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strength chénges slightly with the increase of the cross-
arm member length. It can also be recognized that the
buckling behavior in this case is controlled by onl§ one
mode of instability (Mode III buckling) shown in Fig. 7-2a:
This mode will be discussed subsequently in somé detail.
For the case of one end fixed and the other end
hinged the buckling behavior is controlled by two modgs
of instability: Mode IV and Mode V buckling shown in’
Figs. 7-2b and 7-2c respectively. One can observe from
Fig. 7-1 that Mode IV buckling controls for large ratios
of L to lca. For small ratios of‘L to lca" Modé v
buckling becomes the controlling mode at bifurcation. It
can also be seen from thé samé Fig. that when Mbdg Iv
buckling i1s the contreolling mode, the buckling strength
of the stayed column is increased as the crossarm member
length is increased. When Mode V buckling controls, t%g
buckling strength decreases as the crossarm member lenéth'
increases. This behavior was expected because as the
crossarm member length is increased the translational,
restraint at the crossarm is increased and the rotational
restraint at the crossarm is decreased. It is also :
apparent from the same Fig. that the buckling strengt#
increases and decreases slowly when Mode IV and‘Mode/V
buckling controls respectively. g

{
It can be seen from the same Fig. that the buckling



strength is the highest in the case of the stayed column
with both ends figed. Also, for large ratios of L to lcd;
the buckling stréngth increases rapidly and the buckling
behavior is controlled by Mode VI buckling. It can also ° °
- be seen that wher Mode VII buckling is the controlling
mode, the buckling strength decreases slowl§ with the
increase of the crossarm member length; This behavior
was expected because as the crossarm member length is
increased the translational restraint increases and the
rotational restraint decreases. It should be noted that
the modes of instability mentioned here will be discussed
subsequently in some detail, The curves in Fig. 7-1

-

reflect the great influence of the end conditions on the —

v

buckling behavior of a single-crossarm stayed column.
\_-I-\

7f3  Influence of Stay Size.

In this section the influence of the stay size on
bucklinglbehavior is investigated for the three cases under
consideration. The ratio of L.to 1ca’ which must remain'
constant during the varying of the stay size, is selected
as 7. Also, the stay modulus of elasticity is selected as
29600 ksi. Thén, for various values of the stay size and
with the aid of the computer program, the buckling ldad
and the corresponding buckling mode were calculated. The

results obtained from the computer program are illustrated



86

in Fig. 7-3. The curved lines in this Fig. represent the
buckling strength of the stayed column as a function of
the stay size. The curves in that Fig. illustrate the

buékling behavior of ﬁhe three cases under consideration’
énd the influence of end conditions on buckling behavier.
It can be observed from the same Fig. that the buckling
strength of the three cases under consideration always
increése with an increase in the stay size. For the ca§e'
of one end fixed gnd the other end free, the buckling
strength is only slightly increased with the increase of
the stay size. It should also be noted that the buckling
_ béhavior in this case_ is only controlled by one mode cof
instability (Mode III buckling). Also, the buckling
strength is comparatively low as can be seen from the'same
Fig.

As for the seggg@ case where one end is fixed and
the other end hinged;/the buckling strength is controlled
by two modes of instability: Mode IV and V buckling. For
a small stay diameter the buckling behavior is controlled
by Mode IV buckling, while Mode V buckling controls for
-1arger stay diameters. It can be seen from the same Fig.
that éhe buckling strength is slightly increased when
Mode V buckling controls. Also, the rate of inérease in
buckling strength is comparatively high when Mode IV

buckling is the controlling mode at bifurcation. These

\
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results were expected because the horizontal component of
the additional  force in the stay i; increased as the
stay size is increased. At a certain diameter the
' horizontal force at'the crossarm is é;ough to prevent
translation at the crossarm. At this point, the rotation
of the column a£ thé crossarm may equal zero or have
. a certain value. Mode V buckling will occur when the
rotation has a certain value while Mode IV buckling
occcurs for zero rotation at the érossarm. It is obvious
that the buckling strength c&rresponding to zero rotafion
at the crossarm is higher than that of a certain rotation
at the crossarm. Conseguently, it is expected that the
buckling behavior will be controlled by Mode V buckling.
In the case of both ends fixed, the buckling
. strength is also controlled by two modes of instability:
Mode VI and Mode VII buckling. For small stay diameter,
Mode VI buckling contrels the instability behaﬁior. Also,
the buckling behavior is controlled by Modé VII buckling
for larger stay diameters. It can be observed from the
same Fig. that the buékling strength increases rapidly

when Mode VI buckling controls the instability behavior.

*At the i1nstant of buckling, when Mode IV buckling occurs,
the displacement at the crossarm causes elongations in the
‘stays at the convex side. This creates additional force

in these stays which resists the translation’ at the cross-
arm. At the same time the stays in the concave side slacks.
A similar casglexplained in Chapter 4.
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Bowever, the buckling Strength increases slowly when
Mode VII buckling controls. Tt can also be seen from that
Fig. that the buckling strength for this case is the high-

est.

7.4 The Relative Efficiency

The influence of the crossarm mémber léngth on the
relative efficiency for the three cases under cansideraﬁion
is explored here. Aas defined Previously tﬁe relative
efficiency is the ratio of the critical lcoag, Pcr’ to the
total weight of the stayed'cp%ﬁyn. The results obtained
from the computer,progrgm are iilustrated in Fig. 7-4.

The curved lines in +his Fig. represent the relative
efficiency of the‘étayed column as a funcgion of the ratio
L to I&a. _}t should be noted that each of the three curves
in that Fig. corresponds to oﬁe of the three éases under
consideration. It should also be emphasized that the

stay diameter and the stay modulus of elasticity ‘are
considered to be constant and are selected as 0.25 in.

and 29600 ksi'respectively. The curved line corresponding
to the case of oné end fixed and ﬁhe.opher'end.freé |
indicates that the relative efficiency is only slightly
changed as the crossarm member length varies. It can be
observed that the relative efficiency is slightly increased

with the increase of the crossarm member length until it
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reaches its maximum value. Thereafter, it slightly
decreases as the crossarm member length‘is increased.
This behavior is expected-and can be fully understcod by
going babk to the corresponding curve in Fig. 7-1. It is
also appareﬁt-from this Fig. that the stayed columnvwith
omé ‘end fixed and the othef ehd free is the least efficient.
As for the case ofjpge end fixed and the other end
hinged, it can be seen from the same Fig. that fhe relative
efficiency increases normall& as the crossarm member length
is increased until it reaches its maximum value. There-
after it decreases at a comparatively fast rate. This
behaﬁior can be fully undeistood by comparing the corres-
ponding curves in Figs. 7-1 and 7-4. It can be observed
that the relatiwve efficiehcy increases whén Mode IV
buckling controls the instability behavior. It decreases
when Mode V buckling is the controlling mode a% bifuréétion.
For the third case of both ends fixed it can be
seen from\Eﬁe coffesponding curve in the same Fig. that the
relative efficiency in this case is the highest. It can
also be seen that for large ratios of L to lcé‘the relative
efficiency increases rapidly with the increase of the
crossarm member length until it reaches its maximum value.
Thereafter it decreases rapidly as the crossarm member
length is increased. It can be noted that the maximum

value of the relative efficiency is obtained in the vicinity
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where the two corresponding buckling curves of Fig. 7-1
intersect. The_behavior can be truly understédé by
comparing'the corresponding curves in Figs.,7;l and 7-4.
Tt can be observed that the relative effiéiency in this
case increases whén Mode VI buckling controls the .
buckling behavior while it decreases when Mode VII buékling
controls. The curved lines in this Fig. reflect the

tremendous effect of the end conditions on the efficiency

of the stayed columns.

7.5 Modes of Instability

In this chapter five modes of instability corres-
ponding to the three cases under considération(have been
mentioned. Quite natura;ly, attention has been directed
toward the investigation of these modes. That is because

the interpretation of the buckling phenomenon discussed .

in the  previbpus sections is only possible when those mcdes

of instability\ are fully understood by the analyst.

In the case of both ends fixed, the buckling
&

‘behavior is found to. be controlled by twe mcdes of

instability: Mode VI and Mode VII buckling. These modes
are illus£rated in Figs. 7-5a and 7-5b fespectiﬁely. To
simplify the phenomencn of buckiing modes, the stayed
column can be replaced by ﬁhe modél shown in Fig. 7-5c.

It consists of a fixed ended column of length 2L, in which

A
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the stafs.and crossarm memberé have-been replaced by an
-~ elastic spring’that resists the lateral translation of
the column at the crossarm. It is obvious that the
resistance of the linear spring reflects the stay properties
and £he length of the crossarm members. If there are no
stays, the resistance of the elastic spring will vanish

and the expected mode of instability will be the symmetric

buckling of the simple column with both ends fixed as
illustrated in Fig. 7-54. 1In case‘pf light stays and
small crossarm members, the .resistance of the spring will
~ be small. The expected mode of instability is illustrated
in Fig: 7-5a (Mode VI buckling). For heavy stays and long
crossarm members, the resistance of the spring will be
enougp.to prevent the translation at the crossarm. As
mentioned previocusly, the rotation of the EOIﬁmn at the
crossarm may have a certain value F#g. 7-5b (Mode VII
buckling) or egqual zero as illustrated in Fig. 7-5e. The
two modes shown in Figs. 7-5b and 7-5e represent the
possible modes of instability when the translation of the
column at’ the crossarm is prevented. As-can be seen from
this Fig. the two modes can be referred £o as a symmetric
buckllng in which the rotation of the column at the
crossarm is prevented(Fig. 7-5e) ‘and antlsymmetrlc
buckling in which the rotation of the column at the

crossarm has a certairt value (Fig. 7-5b). One can obsexrve
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that the qﬁfective buékling length in the case of anti-
symmetric buckling‘is longer than that of symmetric
buckling. Consequently the buckling load corresponding
to the symmetric buckling is‘higher than that of the
antisymmetric buckling. Therefore it is expected that for
heavy stays and long crossarm members the gntisymmetric
buckling (Mode VII instability) will be'thé\controlling
‘mode at bifurcation. -

In the case of one end fixed and the other end
hinged, the buckling behavior is controlled by two modes
of instébility:. Mode IV and Mode V buckling. These modes
are shown in Figs. 7-6a and 7-6b. In this case the stayed
column can also be replaced by the model illustrated in
Fig. 7-6c.. It consists of a column of length 2L, with one
end fixed and the other end’hiﬁged. The stays and the
crossarm members are replaced ;y an elastic spring to
resist the translation of the column at the crossarm. As
mgntione§ previously, the resistance of the elastic spring
will vanish if there are no stays and the expected buckling
mode is shown in Fig. 7-6d4. In the‘case of light stays
and small crossarm members, the resistance of the elastic
spring will be small and the expected mode of instability
is shown in Fig. 7-6a (Mode IV buckling). Again, for heavy
stays and long crossarm members, the resistance of\Egg

edastic spring will be enough to prevent the translation of



93 .

of the column at the crossarm. As mentioned previously
the rotation of the column at the crossarm at this point
will either equal to zero (Fig. 7-6e) or have a certain
value (Fig. 7-6b). It can'be recognized that the occurrence

-

of a certain rotation of the column at' the crossarm is ﬁore
prxobable. That is because the.rotational restraint of
the column at the éiossarm decreases as the crossarm member
length is increased. - Also, cone can see that the effective
buckling length for the case where the rotation of the
column at the crossarm occurs (Mode V buckling) is longer
thah the case where the rotation is prevented (ﬁode v
buckling). Consequently, it is expected that for heavy
stays and long crossarm members, Mode V buckling controls
‘the buckling behavior. )

As fo£ the case where one end of the stayed column
is fixed and the other end free, the buckling behavior is
controlled by only one mode of instability (Mode III

buckling) as illustrated in Fig. 7-7a. It can be recognized

ion of the stays and the crossarm members

is to reduce the effectivé buckling length and conseéuently
increase the buckling load. Th%s can be observed by
comparing this mode (Mode III buckling) to the mode of
buckling‘for the simpfg column with one end fixed and the

other end free shown in Fig. 7-7b.

I3 *,3,2.“': .

3
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7.6 Numerical Example {Q\ .

The finite element method was ﬁsed to analyze ihe
stayed column showp in Fig. 7-8 in order to gain insight _
intc the power of the-metyod in the analysis of space
stayed columns. Special care is gdven to the buckling
behavior of asthree-dimensional triple-crossarm stayeé'
columﬁ. However, it should be emphasized that the power
of the computer program used here is rniot limited to a
certain type of space stéyed column.

In this example, the column and the crossarm
members wefe assumed to be circular steel tubes with an
outside.diameter of %.25 in. and an inside diameter of
1.75 in. The length of the colﬁmn was selected to be
100/3 ft. The modulus of elasticity of the golumn and
crossarm members were taken’to be 29600 ksi. Two types
of stays were considered in this example: 1) steel rods,
with modulus of elasticity of 29600 ksi and 2) wire ropes,
with modulus of elasticity of 9400 ksi. The stay diameters
were selected as 0.25 in. and/or 0.375 in. This will
illustrateyhéw the buckling behavior of the stayed column
is heavily dependent on the stay properties. Since the
main purpose of the numerical example presented here is to
emphasize that the method of analysis used in this thesis

is capable of analyzing any space stayed column. No attempt

has been made to optimize‘the'ioad-carrying capacity of the

———— e



triple crossarm space staved celumn under consideration; .
. Peg
" As can be observed from Fig. 7-8, there are :

three levels of crossarms. Each of the first and third L

level contains three crossarm members having a length of
14.3 in. as shown in Fig. 7-8b. The intermediate level
contains four crossarm members having a “length of 28.6 in.
as illustrated in Fig. 7-8c. The stays connected to the
epds of the crossarm member; in the intermediate level and
the ends of the column will be denoted as the outer stays
{é sfays). All other stays will be reﬁerred'to as the
innder stays_}lé stays). In this analys;s it is considered

that (table 7.I):

Number of:

Elements 38

Element with bend-
ing stiffness| 18

Elements with sig-
nificant axial load| 8

Nedes - 18
Nodes in column _ 9

Degrees of freedom | 99

Outer stays K 8
Inner stays 12
Table 7.1

YL
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-Four cases are examined here. In these cases
'the dimensions and tﬁg properties of the column and the
crossarm members remaip constant. Only, the stay propert-

ies are changed as illﬁstrated in Table 7.II.

] Modulus of
Diameter Elasticitv
innex | outer | inner | cuter
stays staysr,stays stays
: i
Case I 0.25 | 0.25 9400°| 29600
Case II |0.25 | 0.25 | 29600 | 29600
Case III {0.25 | 0.375| 29600 | 29600
Case IV |0.375 | 0.375| 29600 29600
‘Table 7.II

The critical loaé, the corresponding buckling mode,
the weight and the relative efficiency for the four cases
under consideration wereicalculated using the computer

program. The results aré shown in Table 7.III.

'\
Case I| Case II| Case III| Case IV
Critical Load :

{(kps) 21.5 37.0 37.0 42.9
Weight (lbs) | 300.0| 306.0 334.0 355.0
Relative

efficienty| "71.6| '120.9 110.9 120.8

Table 7.III
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The buckling mode corresponding to the critical
load in case I is illustrated in Fig. 7-9.

The theoretical results illustrated in Table 7.III
indicate the folibwing points:

1 - When the modulus of elasticity of the inner
stays changes from 9400 ksi in case I to 29600 ksi in case
II, the buckling strength increases significantly from
21.5k-to 37k. That is because as the modults of elasticity
of the inner stays is increased, the translational |
restraint at the first and third crossarm levels is
increased. Consequently the buckling strength is increased.
This reflects the influence of stay‘modulus of elasticity -
on the buckling behavior of the stayed column.

. 2 - From case II and case III, it can be observed
that the buckling strength does not change with the change
in the diameter of the outer stays from 0.25 in. in case
IT to 0.375 in. in case III. This result was expected
because the crossarm member length and the stay properties
in case 1I were sufficient to prevent the‘translation at
the intermediate crgssarm. Therefore the increase in the
diameter of the outer stays will not cause any change in
the;buckling shape and consequently no change in the
buckliﬁg strength.

3 - The bugkling strength in case IV increased when

the diameter of the inner stay changed from 0.25 in. in
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case III to 0.375 in. in case IV. That was because the
crossarm member 1en§th and the stay properties of the
inner stays in case III were not sufficient to prevent
the translation at the first and third crossarm levels.
Therefore any increase in tﬁe stay size-or the modulus
of elasticity of the inner stays reduces the translation

at the first and third levels. Consequently will increase

the buckling strength.



CHAPTER 8

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

-

8.1° Summary

This dissertation deals with the stability of
three-diménsional stayed columns which are acted upon by
a concentrated locad. Two systems are considered in this
study: a single-crossarm staved column with three cross-
arm members, and the other with four-crossarm members. The
following problems are included in the investigation:

1) Methed ;f_analysis for strucéures with
geometrically nonlinear behavior (due to axial forces) -

2) Influeﬁce of certain parameters of a single-
crossarm stayved column on buckling behavior.

3) Efficiency of single-crossarm stayed columns.

4) Comparing the buckling behavior and the
efficiency of the singié—crossatm stayed column with three
crossarm ﬁembers and the other with four crossarm members.

5) Buckling of a stayed column with various end

99
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conditions.
' Problem number 1 has been investigated in detail
:in Chapter 2. In Chapters 4 and 5 the §roblems'numbers
2 and 4 have been examined for the two systems under
consideration. The relative efficiency for the two
systems was exglpred in Chapter 6. The buckling behavior
of a singlewcréésarm'stayed column with three crossarm .
members was iﬁﬁestigated briefly in.cChapter 7 for three
cases of ehd conditions. A

The contributions contained in-this dissertation
may be summarized as follows:

1) The development of the geometric stiffness-
matrix in three-dimensions is believed to be the first
extension of the géometric stiffness matrix from two
dimensions to three dimensions.

2) The'influehce of varying cqrtain parameters
on buckling behavior of a single-crossarm space stayed
column.

3) The comparison of the buckling behavior and
the relative efficiency of the single-crossarm stayed
column with three and that having four crossarm members.
One can gain insight into the influence of the number of
crossarm members on the buckling behavior and the relative

efficiency.

4) A general survey of the buckliﬂg behavior of
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a single-crossarm stayed column with various end conditions.
5} A computer program to analyze any space stayed

column.

8.2 Conclusions

The methods of Predicting the critical loads based
on the finite element method and the stability functions
were reviewed. It wés concluded that for a compute£
solution the analysis based on the finite element method
was much more convenient due to its non-iterative process.
As mentioned previously the parameters of the single-
crossarm staved column were varied to determine thelr
effect on the buckling behavior and the relative efficiency.
At this point some of the important conclusions are
summarized as follows:

1) ;t is possible to predict the buckling load
and the corresponding buckling mode for any three dimen-
sional stayed column by-the finite element method.

2) The analysis based on the stability function
is more accurate but needs more computer time due to its
iterative process. Excellent results may be obtained by
the finite element method when a reasonable number -of
finite‘elementg are used.

3) The load carrying capacity of a column may be

increased several times by reinforcing it with a system



102 ) - v
of rigidly connected crossarms and pretensioned stays.
4) The load carrying capacity of the stayed
column with four crossarm members is'always'higher than
. that of three crossarm members regardless of the staved
properties 6: the crossarm member length.

-

5) The crossarm member length has a significant
effect on buckling behavior. Tﬂg optimum length is that
sufficient to make Mode I and Mode II buckling equally
possible for the stayed column.

6) -The buckling‘load increases continucusly as
the stay size is increased.  The rate of increase of the
buckling load when Mode I buckling contrels is higher than
+hat when Mode II buckling is the contreolling mode.

7) Forlsmall stay diameters and small-crossarm
member léngths, the stayed column with four crossarm
‘members is T?re efficient. For small stay sizes and
longer crossarm members the staved column with three cross-
arm members is more efficient. For heavy stays the

y N
stayed column with three crossarm members is more efficient.

8) For the stayed column with three crossarm
members the maxiﬁum value of the relative efficiency is
higher than that of four croséarm members regardless of
tﬁe stay size.

9) For the single-crossarm stayed column with

one end fixed and the other end either fixed or hinged,
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thé buckling behavior is controiled bj two modes of
instability. However, in the case where one end is fixed
and the other end is free, tbe buckiing behavior is .
controlled by only Sne mode of instability.

10) The buckling strength'of tﬂe single-crossarm
stayed column with one end fixed and the other end free

. changes sliéhtly with the varying of the crossarm member
length énd the stay size.-

11) For the single crossarm stayed column with
one end fixed and the other end either fixed or hinged,
the modes of instabiiity are heavily‘dependent upon the

- stay properties and the crossarm mémber length.
12) The buckling strength and the relativé -
. efficiency of the single-crossarm stayed column with both
ends fixed are the highest and those for a column with

one end fixed and the other end free are the smallest.

8.3 Suggestions for Future Investigations

The thecretical studies nfééented in this disser-
tation constitute the firm foundaticn fox obtaining
" solutions to the buckling of any séaée stayed columns.
Further problems that need be studied in future ére:

1) Extension of the analysis to the mos£ general
case in which both geometric nonlin€&rity and material

nonlinearity are present.
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P 2) Stability analysis at non-uniform stayed
' . . columns. - -
f C3) 'Pretension §f space stayed 9oluﬁns- Thié'will
IV include the theoretical>formuiation required to determine
_r‘._ “ the optimum pretension in the stays.
" 4) Expérimental verification of the theoretical

results obtained.

-~
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120°
120°
0) Single-crossarm stayed column b) Sinéle—crossarm stayed

with three crossarm members - column with four cross-

arm members
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APPENDIX A

Large ‘Deflection Strain Displacement Equation

in Three-Dimension Analvsis

Assumptions: -

1) plane section before deformation remains plane after
defgrmation
2) /plane perpendicular to neutral axis before deformation
Temains perpendicular to it after deformation
3) section is incompressible in the transverse direction
/ 4) displacements and rotations ate relatively small.

Consider the section of the Ségm before and after

deformation. Fig. (A.I) .

v
}

Z,W

149
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Let u, v and w be the displacement components in the

hd [

X, ¥ and z directions respectively of a point on the neutral

~

surfaces.
The position vector of the poinﬁnP a distance y and z

from the neutral surfaces before deformation is

- o =xi+yj+zk (A.1)
The position vector of the same point after deforma-

tion is .

r=(x +u -y sine -z sinB) i + (v + y cosa) j
) P

+ (w + z cosB) k , (A.2)

Since rotations are assumed to be relatively small,

-

then sing = o = %%
sing = § = ¥ .
and, cosa = cosB = 1.0 (A.3)
Therefore,

dw) 1 + (v + vy) 3

£=(x+u—yT-z
+ (w+2) k (A.4)
Since the beam is assumed to be incompressible in the

vy and z directions, y and z are constants and from equation

(A.1)
ggq =dx i N . (A.S)
and,
2 2
du dV _ 5 47 4y i+ (a—) dx j + (gg)dx k

, dr = (1 + -y
- dx ax? dx?
(A.6)
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Now,
=3 .
laze| drg - dro. = ax* " (A7)
and,
2 2
lar|® =ar . ar = (1 + %% S A= . DI M
: dx? dax?
” avyz . 2 , dwy2
‘ 2 2
lar|” = [l + (%E)2 oy (V2 2@y 2 2%5
x dx? ] dx? x
_ 2yd2v _ d'w _ 5 du a3v _ du d*w
ax? dx? dx ax?’ dx dx?
2 2
- 2yz EY LW, (@Y (éﬂf] ax?.  (A.8)
dx* dx d dx
By the definition of strain
lar| - |ér,] lar|
Exx = = -
|dro] ldrg]|
o -
(e + 1) = (A.9)
. |aro| )
T
lar|*
(e.. + 1Y =
xx |dro]?
2 r2e 41 = 14 @74y &G 4 2@
. dx dx
L~
2 2
+ 293 5 d°v _ 22& W o_ o du d°v
dx ax? dx? dx ax?
2
- 22 Qg a w 2yz d‘v d°w + (g! 2 . (gg)z
dx gx? dax? dx? dax dx
(A.10)
N\
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Now assuming that

-

- . 2 -
1. €yx is small i.e. €7, % 0 f

Cdu . du, 2 _ -
2_. a; is small‘ l.e. (a'i) =0

——) are small

. 2 2
3. Strain due to bending (yc—l—-X and zd il
ax? ax? g

_ 2. 2 2, 2 . a2 2
fe. (&Y = 22@3Y =y @Y &

=0
dx? dx? dx?  dx?

dv, ? dw, 2 . .
However, the terms (EE) and (EE cannot be similarily

discarded. Discarding such terms will result in omitting

the contribution of rotation to € x and these are precisely

the terms which must be retained. It can be observed from
Eg. (A.10) that the lowest order rotational terms appear

as a nonlinear contribution to the strain-displacement

. . i dv, ? aw, ?
equation. Therefore discarding these terms (3! d (3P

leads to a linear strain-displacement equation. Consequently
the equation will not account for the nonlinearity in the

problem and the method fails.

In view .of these considerations Eg. (2.10) will be

retained in the simplified form

du _ _d%v a%w , 1 ,4av,? , 1 &w,?
€ = -y———z—+ 5 (). * (=) (A.11)
xx  ax ax? ax? 2 QX 2 'dx
Eq. (A.11) repreéénts the large deflection strain ;
displacement in three-dimensions.

-
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APPENDIX B ~

~ L, . -

"Generation of Displacement Functions for a Space

Frame Element by the Use of Interpolation Formulas

The one dlmen51onal Hermite interpolation polynomlals
are used to generate the displacement functions Egq. 2.19,
for the general space frame element shown in Fig. 2.V
Chapter’(Z). These polyngahals, H(ﬁi(S), have the

properties:

) e L
(L): H oi(sj) = 5ij
gg H‘gl(s‘) =0
al L (st) =0
asN ol J T~
(2) : ‘N’(s ) =0
=
S5 uflisy) =5y, f—\\77
ds i3 '
' )
&
v H'ji(85) =0 AN

(N+1) :

153
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N
d ()
—_—_H ,() =6i.
dSN le] J
where,
N = Number of derivatives that the set can
interpolate
S. = Specific values of the argument, §, of
3 the polynomial (j = 1,2)
i = station or end point number (i = 1,2)
n = index, ranging over the number of derivatives.

to be interpolated (k = o + N)

In the following two such polynomials* will be dealt

with. For convenience the fcllowing values will be con-

sidered: i,3j =-1,2 and §, = 0 and S

2 = b

A) LAGRANGE (zeroth order Hermite) INTERPOLATION

PORMULA:
- /— - ¢ =
In this case N =0, 1 =1,2, j=1,2 and Sl =90,
S, = b. The idea is to interpolate the function between

the two points (Sl =0 and §,-= b) shown in the Fig. below

when the function values are known at the two end points.

£(s

rh
n
I
wn
"

0), ;

th
!
I
wn
I

f(s 2 = D) : {(B.1)

*detailed formulations can be found in F. K. Bagner,

R. L. Fox and L. A. Schmit, Jr. (21) and G: Monforton(zz).

)
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In this case (N = o} the requirements become :

(o)

/ H Ol(s = Sl =0) =1
(o) _ _ -
H Ol(S = 82 =Db) =0
(0) _ _ -
g =s. =p) =1 (B.2)
o2 2 *

(o}

A pair of peolvnomials, H ol

(s8) and H(g;(s), having

" these properties is

~ =8 - 8§ )
(o) 2 - (8§ - b)
H {(s) = =
ol Sy -'52 b
s -5
(o} = 1_ s (
H 02(5) = 752—__—§I = 5 . (B.3)

These are known as Lagrénge interpolation formulas.
Formulas B.3 can be used to interpolate a function,

£(s), at the two points § = 0 and S = b as

)
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(o) {o)
o1(S) £ ¥+ B p(8) £, - ox

£(s) H

£(S) = (1 - S/b) £, + /b £, (B. 4)

given the values £, and fz;

Using Eg. B.4 the variation of axial displacement
7(s) and the variation of the rotation of the cross-
section about the longitudinal axis B(S) can be obtained
as follows: 7 - +

a) For the variation of @(S), the displacements at

both ends ﬁp and ﬁé are known. If

fl =u;-= uP

f2 =0, = uq
and b=1L

are substituted into Eg. B.4 leads to

4q(s) (L - S/L)ﬁp + (S/L)ﬁq

or q(s) = a_ + (1

o o~ uq) S/L (B.5)

b) For the variation of R{S), the end rotations

Bp and Bq at p and g respectively are known. Then by the
same manner 1f
fl=Bl=Bp
£2 = B3 = Bg
and b=1L

are substituted into Eg. B.4 leads to
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8(S)

(1 - S/L)Bp f (S/L)Bq

s "+ (3. - B : .6)
or | B(S) Bp (Bq BP)S/L (B.6)
However, the Lagrange interpolation formula cannot be

used to generate the expressions for the lateral displace-

ment distributions ¥(S) and W(S) in planes §,S, and S8,

respectively. That is because at S = §; = 0 and 5§ =5, =1L

the values of the function and its first derivatives are
known and Lagrange interpolation formulas interpolate only
the function between two points when the function values.
'are known at these twe points. This means that Lagrange
intérpolation formulas do not account for the effect of
the end rotation on the ldateral displacements. Therefore
the first order Hermite will be used to generate the
‘expressions for the lateral displacement distributions

J(S) and w(S).

B) OSCILLATORY (first order Hermite) INTERPOLATION
FORMULA: . * .
' Vs
In this case N =1, i =1,2, J=1,2 and &

1 -9

.

s, = b. The idea is two interpolate a function between
the two points (Sl = ¢ and 52 = b) when the function values

and its first derivatives are known at the two end points

as shown below.
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g .
£(s) _ -
i
]
2
i 1
81 ) }
N
- 1
1 4
1
i -
0 b .
#here,
- 2 4df o _ &2 o
. L
— - df o _ =
fl = £(S = S1 =0
f2 = £(S = 82 = b)

In this case (N

alll(s
H(i)l(s
H%?,_ (s
5l

(1)

Hy:

(s

= (1)
H ll(S

2

-

0)
b)
o)
b)
o)

b)

1) the requirements

1 =
0 T
0 &
1 & |
0 T
0 %

(1)

H' (8
(1)

H ol(S

(1)

H 02

(s

(1)
H' (8
g (1)

(1)
H']y(s

I
ur

Q)

b)

o)

b)

o)

b)

(B.7)



FERY A e e L,

2% S

AT

5

159

g s s =y o a (1) o
H';5(8 =8, =0) =0 as E']p(8 =8, =0) =0

{1) _ e _ a (1) = =y =
(S = 52“— b) =0 3_ (S —-S2 =Dh) =1
{B.8)

A set polynomials which satisfies these are

, - - 2
L 2(f 31) s - s,
S1~ 8, S1™ 5,

i

8 (s)

= is (283% - 3bS? + b3I)
b _
- . S - 8§ $ - s.?
(1) )is) - [1 2 Sz)] [S - 51]
2 1 2 1
—_ —_— 3- - 2
= b3 (28 3bsS?)

(l)(s)

[s - s, 2
8 -8)) | g—=
1’| 5;- 5 -
_ 1 3 2 2 ~
.= L, (87 - 2p8? + bs) . <::i)g\
Y 2

S - 8
(l) 1
(S) = (s - 5§ ) e
[ SZ- Sl ] .
. 1 3 2 :
= gz (S - bS ) B (3.9)

Egs. B.9 can now be used to interﬁolate a function,
f(s), and its derivative at the two points o and b, given

the valugs fl'-fsl’ f2 and fs2 as ,‘ _ o

ﬂm=HuNmf +ﬂ“w)f ‘“m)f+HuHmf

g . ’ (B.10)
Substituting Egs. B.9Iint6 B.10 leads to :

v
-
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£(s) = L (25%- 3bs?+ bY)E, + = (S- 2bST+ b2S)Egy . .

) I . b? /—\ . L

. :

o= L (28%- 3bsPE, + L (s?- bs?) £, & ) (B.11)
© b? ' b: . ! .

. "

Using Eg. B.1ll the lateral displacement distribution ¥(S)

,.._J.
P P eV ¥ b
[OTTACS o

;can.be obtained as follows:

Let, ) '
£, = {.rl B GP X
£, = dgéS) (s =85, =0 = ip
£, = ¥, = Y )
e _dzéS) (5 =5, =) = b | .
and b =L ) |

L

Eg. B.ll reduces to

!
[y%]
fl!f’"

()
+
.ﬁﬁn
)
| —
t
B
g

o ' o oo (B.12)

Also the lateral displacement distribution -w(S) can be

’

obtained aé_folngs: -
Let, .
_ = - @ v - .
£, = ¥ wp,_ N
- - e
i (S) DN T~ . .

Cf/m T 8= S0 T i )‘\\{

* ° -




- P .\-
w(s) = [1 - 3(%)2 + 2(%) 3]&

S S, 2
o~ [(f) - Z{f)

4 [3(%)2 - 2(%)3Jaq - [—(%)2 + (%)3]

e ————

+

(B.13)
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Z1 .. - . MAIN
IBEAHIM ABDEL SALAM HATHOJT

DATE = 763456 - 05735717

O ZALSULATE THE BUCKLING LOAD OF STAYED COLUVMNS IN 3 DIMENSION

BY STAHILITY FUNCTICNS

NOTATICNS

M = NUMALCR OF ELLMONTS
N = NUMBFR OF NODZS .
NDF = NUMBER DEGFEE OF FREEDO M

NDS®= NUMBER OF ELTMENTS wITH RENDING STIFFNESS
NKG= NUMBIR OF ELEMENTS WiTH STGNIFICANT AX IAL LOAD

NM = NUMOER OF RUCKLING LOADS REQUIRED
NN = JIMNSION OF THE PROBLE W
1vCe VARIAOLZ CORRELATION TABLE
CN = CO ORDINATE 0OF NODAL POINTS
Dz2= CUTER D1ANMFYER
Diliw INNGR DIAMETER )
= MODULUS OF ELASTICITY
« MODULUS OF RIGIDITY
= CROSS SECTIONAL AREA
= MOMENT OF INERTIA
CC = DIFECTICN CCSINES
= ZULEP LOAD
= INTIAL LOAD
= INCEIMINTAL LOAD
= STIFFNE S5 STADILITY SUNCTION
= CARRY OVER STABILITY FUNTION
MFF= Sway STABILITY FUNCTION
g 2 TRANSCORMATION MATRIX
KL=

Swkz MASTER STABDILITY STIFFNESS MATRIX
LMDA=ZIGEN VALLUE :
C1GV=: [GEN VECTOR

LGTH= LENGTH OF ELZMENT

FYTITIITS T PS PY IR R 1 12 8l

ELEMENT STIFFNESS MATRIX LOCAL COORDINATE
CXGeELEMZINT STIFFNISS MATRIX ALTBAL COORDINATE

l"‘-““0.""-‘i“i"t*t“““.!“t‘.'l.t““‘l“t.‘."".“.

ALPHAL{FOR GENERAL MEMRER)= ANGLE BETWEZN HORZONTAL ANC PRINCIRAL  #

€uOss SECTION AXCSS b
ALPHAT{FOR VERTICAL MEMBER)& ANGLE FRCM GLOBAL Z TO LOCAL X3, =
- -

1IF TUWARD GLOBAL X AXIS

‘l.l"-itl‘ts.l“"tt.t.“-.“‘."“.“

DIMENSION CN(20s8) ¢EXL{IZ+22 PeERGTI2e1224T (120 12)eSMK (404 40)

DIMENSION DC{40 8} «PE(20) G(AD)XRI[40) sMN(4D,

21, LGTH(40).E(40}

DIMINSION IVC(80,.12) 4D22(30) oDL1{80)sAAlND) .EIGV(I()OD)-L‘NDA(6'100)

DIMZINSICN SF(40) +CT (80) +MFF(40)
DIMINSION ALPHAL (40)

DIMEINSICN SMxV(I600) -
REAL MFF oMl ,LGTHLYDA

FEAL M1

PI=3.14155263

NPROB=O0

READ(S+10) MoNoNOF « NNoNKG +NBSeNK
FORMAT(TI3)

BEEAD(S+12) PlsDP

FORMAT( 2F1 0+ 5} -

PEAD MEMAER END NODES {IN NUNERICAL CRDER

QEAD(S5.20) ((MN(I«J} I 2) o 121 M)
FORMATI 21 3)

8y MEMBER)

CEFD VC TABLE (BY MEMASR, IN SAME ORCER AS MEMBER END NQDES?

PEAD(S +301((IVC(]43) o 3m1 v12) oI=®leM) .
FORMATUI21I4)

READ COCRDINATES (IN NUMERTCAL CRDER BY NUDEe X THEN ¥ THEN Z COORDs)

GEAD(Se40) (C(CNLIs3)eJd=i sNN) o121 N)
FORMAT( 3F10e4)

RELD OUTER AND INNR DIAMETERS (IN MUMERICAL ORDER BY MEMBER)

READ {5.50) NUM o MS ¢ MF oD O
FORMAT (313.F10.0)

IF (NUM .EQe. 0) GO TO 55
DO %1 I SMS.MF

p22¢ 1) =00

TC A9
READ (5450} NUW,¥S +D1
IF {NUM <EQes 0O} G0 ’TQ &0

+ -

¥

l-.--it'.l‘i“““"-"..‘.

PPETTTIITEERA LR LR 2 2 22

SRERAEIISRA LS DETHSASNR RS

]
»

e amdmarmen
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FORTRAN IV G LEVEL 21 . MAIN DATE = 76346 03/35/717
opRe DO S7 ImMS, Nx
0030 ST Di1i(1l)wDl
oo GD TO SS
[ READ MODULI OF FLASTICITY (I N MUMEGICAL ORDER BY MEMBER)
[+ Lo i G0 READ (S5.50) NUM MSMFEM
[+]+ ] IFINUM.EQ. 0.0} GO TO 7=
Q0 2a 00 62 1 aMS.MF
0033 42 F(JI)=EM
Qo3 G0 TS 60
o037 TS REAI(N+SOINUM MS o MF ALMMA
o038 IF(NUMLEQ.Q+0) GO TO 70
0029 DO 72 1=MS.MF s .
004D T2 ALPHAL ([ )=ALPHA 5
004l GO TO T=
0042 TO PELD(S . Z0INUMIMS o MF oG M
.0043 IFINUM,FQ«Ce0)GO TO &5
. Q04 DO 71 [aNSMF
004S Ti G(II=GM f
0046 GO TO 70 > .
C2esnaCALCULATE MEMIER PROPEPTI=5tOtttnttttst---ccs-tt-----t--tut‘-:ttt-ctt-tttt
c NOMENT OF INERTIA
Qo0aY ) 65 DO 67 | =1 .NOS N
004an MICI)=PIa(D22{I)*xd D11(1)*e4a) /84,0
0.049 . 67 TONTINUE
00590 NB £1 x=NB S+1
0%} DO &8 ]I=NASY .M
o0%2 68 MI{I)=0.0
c AHEA-LENGTH.DIRECTI CN COSINES
0053 o0 80 I=m1.,
00fa uu)-p:-(ozzun-z-bn(n-az)n. -
0QSsS 80 CONTINLE
0056 00 110 Iml.M
oQ%T KaMN(I .1}
0QSA LO=MNL I +2)
[« X j-1- SUM=Q,
[+ 2o 4104 DO 90 J=1 4NN Lt
09¢€l SUMESUIM(CN(LQcJ) SCN(KeJ) )62 > .
00%2 S0 CONTINLE L. -7 . . -
00¢&3 LGTH(T ) sSQRT{ SUN) ' . -
*Q0Sa DO 100 J=1,NN
QonsS DC(I +J)=(CNILOsJ) CNIXKeJ)IZLGTH(L) N
0058% 100 CONTINUE
Q&7 110 CONTINUE
C3esnnwCITE [ NPUT DATA AND MSCHANI CAL PROCERTIESSSes s s ash s kAR i8S KSR RSB ORER
oosa NPROB=NPF 0341 '
00£9 w-ITE (£.118) NPROB .
0070 118 FOFMAT{SX:14HPROBLEM NUMBER. 14 /)
0071 - WEITE (6.119) + ~
0072 119 FOFMATL /410X eZSHUNITS ARE INCHES AND K!PS.IJ
[+ 1] WRITE (6,120}
00 7a 120 FOFMAT (10Xe8HNDe OF ¢ SXSMNOe OF ¢SXJI0HDEGRECS OFs SXe GHD IMENSIONGS
1Xel 9NDs OF MZMDERS WITHM+5Xe6HNOs OF)
Q87% wrITE (€e1340)
2076 130 FORMAT (10X 7THMEIMBIRS+4X s SHNCDES ¢ TX « THFREEDOMy 7X ¢ 10HOF PROBLEM, 6Xe
12HKG e S X elHI 311 XSHMCOES)
0Cc?7 WRITE (E€+190) MeNMDF o NN oRKG oNES « NM
0078 140 FOFMAT{ 10X sl4+8XeI308XeT3413Xe124+13XsT304XKe 132 12Xe IZe/)
0079 WEITE (64150)
oo8o0 150 FORMAT [10X+6HMEMDER oS X o9HENT Rmes.sx.sn:u‘ran. 5Xe SHINNER, SXe THMOD
1 LLUS 1 OXeTHMODULUS+SX +4HART A -SX «SHMOCMENT « 7X » SHLENGTH)
0081 WRITE (G5.160)
o082 160 FORMAT{ISXsSHDTA M, ¢+5XeTHDT AM 4 +SX +9HOF ELAST 05Xe 10HOF RIGIDT Y
110X.I0HOF INERTIA)
o0e * WRITEC 5.2 70M(1] .(ﬂN(I-J)oJll-2!-022!1!.011(!J-E(I)oG(II-AA(Il-
IMICIDLGTHT) oI 21 o M)
0084 170 FOFNAT(llx-!S.?X-IS-ZK-IS EX oF a3 44X aF6e300XKeFTaleaTXeFTaleSXe |
IFG- JeSXFGa3e6XeFTa3) .
oous { "WR1TE (64180)
0QR& \ 180 FOFMAT( // s GHME MBER ¢ 34X oBHVE TACLE o/ )
0087 WRTITF(G 190 {I+(IVCITed) e J=1 412) o Im1 M} .
gous 190 FORMAT(LIXeIJ012X el 32X el o2 XeI3e2Xe13e2XsI302XKeI3:2Xe13s
12Xel3eXel3e2X413:2X41342Xs1302X4/7) .. )
[=1:7-1- . WRITE (6.200)
00%0 200 FOEMATE /<1 0Xs6H- NODE +5X 311 HCCORDINATES s3XeJH X o 9Xe3H ¥ 4 9Xe
c 13 Z )
0091 DO 70T I[si.N
o092 WRITEC(S210) 1 «(CNII +J) e Jul o« KN)
0083

210 SOFMAT(11XeIJ+20Xs B3 o8 X sFB8a3+4XsF843e/)

- r

»x .
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21 . MAIN DATE = 76348 - -\ @5/35/17
i M . )
707 CONTINUE . '
WRITE( & 42200
220 FOFMAT( /730X +6HM=MBIRWAX TH=ALPHAL o7
DO 747 Iml.M
WRITE(64230) 1 +ALPHAL (1)
230 FORMAT(31X2I34TXeFOe )
747 CONTINUS
WRITE( %4235} M : - :
234 FORMAT( /7741 0X+30RINITIAL LODAC AND CLTA LOAD AR=Z.77)
wE1TE(E+235)P1 0P

23%

501

FOFMATC12XeF10e5+10XeS10e5./7)

CALCULATE EULTR LOAD FOR RACH COLUNMN ELEMENT
D0 S01 1=1«NKG

PE(T}ap I#PI #C{1 YoMl {I}/LGTH(I) w02
WRITE(6+2358)

236 FORMAT{ /77.20%X+25HEULER LOAD FCR ELEMENT L4247/ )

237

s502

eago

302
903
S04
141
151

152
121

WRITE(€4237) (JePELI) + Il oNKG Y

FORMAT(I1%XeI510XsF10a3) .

CALZULATE RHTTAND STABILITY FUNCT 10NS

MSIZE=NCF+1

DO 121 %=l +KM

MS]ZZ=MEIZE-1

K:;NS!ZE*(HSI&-NSI ZE-MST ZE) 72

PaPl

DP1=DP )

DO 131 Ial.100

PER+DR]

DO 502 J=1 «NKG o
EHO=P/PE(J)

CALL STAFUN tRHOCLl +51eM1) -
CF{J)I=C1 .
SFl{J)1=51

MEF{ J) =Ml

CONTINUE

NKG1=NKGH]

DO 800 JaNKGL M

CFLII=0e5

.SF(J)=a.0

MFF(J)=1.0

CONTINUE

SET VP MASTER STIFFNESS MATRIX i

CALL STASM (M.MT AL 22 eGsLGTH «DCeNDF + IVCeSFe CFy NEF ¢ SMK, ALPHALD -
CALL BAKY [ NDF ¢ SWK,SMKV)

CALL TIGEN (SMRV,EIGV.NOF.0) ~
LMOA(K +I)=SMKV(KK)

IF(1eZ0e3) GO TO 131 :

MMu]=13

XaLMDA [ Ko MM) ‘

Y=ELMDAL K1)

IF(XeY) 301 +502+133 .

DP1=-2F 1740

IF(ARS{OP1}eLE«0+005) GO TO SO2 -

wh T TE(6+301) v .

WETTEC €4302) KoLMDA(KI) oPsl

CONTINUS

wrITE( € +301)

FORMATC 10X .1 3MNGs OF CaLOAD. 13X s10HEIGN VALUE: 10Xe 3H P o 10Xe
116MNG. OF ITERATICNG/)

WRITECE «202) KoLVDA{K eI 2Psl
FO:M‘T(l“x-l‘llﬁXlFl3-".7X|390607I¢!B|,”
WRITE(EL «703)

FORMAT(25X,12HE IGEN VECTOR)

NO 141 Jx1 JNDT -

W ITE( 64904 JE1GV({ NOF ¢NDF NDF $X+J}
FORMATI 25X.F15.12) .
CONTINUE ' ' v
W] TE(C 151

FCRMAT( 7/77+25% ¢ 3SHTHE, MASTER CLASTIC STIFFNESS MATFIXe/)
CALL PMOUT (SMK.29.2087 +40440)

wWRITE(&.152) i

EORMATI 777 +25X +3SHTRANSF OQM CF S.S5eMATPIX INTD VECTOR)
CALL PMCUT (SNKV.4TS.l «1 4700 ol)

CONTINUE .

sSTCPR i

END -
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FORTEEN IV G LEVEL 21 STarFuN CATE = T&8348 0s/3517
ocol ¢ SLEROUTINGE STAFUN (RHJI.CeSe2)
c..t‘---ttt‘to--tt‘-l0.tctonttt-ttnttnttt-tttttt‘t-tllt-tttnttt--tttt-
C T CALCULATE THE STIHILITY FUNCTIONS

C--t-t---t--.l!‘.i.tt.‘l!t.--'t‘tt.ttt‘l“.."‘lt.l.“l“.‘.“."“‘-‘
0002 REAL M] ,WFF

0003 PI=3:1415G2¢5

0004 Az{P1/2 .Olt(SORT(RHQl!

000S . A2=2.0%A

[sN+1.1 A2¢aSIN(AZ)

noor A2CECOSIAZ)

o008 . CNT=AZC FAZS

0009 xTAN-SINtA)/COS(A)

[+ B+ C=(A2 A2S)/ZLA2S AZ2=A2C) »
0011 S=E({l.0 A2*COT)#A)}/(XTAN A)

0012 Za(24 00581 04C) ) /{2,005%(1,0+C) PINS2eRHO)
oc1:3 RETURN

0014 END

/-



FCRTRAN IV G LEVSL

00012

o002

0003
Q000a
0005
o0as
0007
ooon
0009
Q010
001Il
oo01tl2
o011
‘0Qla

0015

0016
0017
001A
0019
Q020
o021

QQ23

0024 .

0028
Q0028
o027
0028
o029
0020
0031
0022
0033
003a
Q035
Q036
Qo037
0028
00236
0040
0041
02£2
0043
004aa
00as>
00as
00a7
Qos&8
0049
Q050
00s1

cos2’

oS3
005e
00S5Ss
00 5¢
[+ Lo R-¥ g
c0sSy
0059
0060
0061
0062
00¢3

00465
0Co56
00aT
Qorxg
0g&Q
Qo070
0071
Qo072
QC73
007a
0078

167

21 STASM CATE =2 T&3AS 0%/35/717
SURFOUTIND ST&SH(M-"!.AA-é-G.EL-DC-NDF.!VC.SF-CF.HFF.SNKolLPHl!I

c-‘..i.“l.‘...‘-..“..""...‘I....-li‘lt-.-.“‘“.itltt-t-t“‘t*‘.‘-“..‘...‘.

c

THIS SUBFOUTINE WILL TRY TO CALCJILATE THU AASTER FELASTIC STIFFENESS Mec

CHNR AN SERE AR R SR PR R IRI S PR A SR NA PRI A ER AN NS AR SN MO U NSR T AR N AN AR ORC AN EN NS AT ARS S OR

104

10

DIMINEION ALM(A0) oF(S0)aGla0) 47 LI20)oLC{20es)e IVC(40,2)
DIMINSICN ?KL(IE.IQ‘-EKG(]Z-:z’.*(!?nl?)lSHK(QO.‘O’
DIMEINSICN MI(40) s MFF (A0) oSFIA0)2LPHAI(AD ) 4d{12e12)eVI(12:12) .
DIMENSION CF(aQ) .

ECAL NI MFF

o0 104 Is=} .40

DO 104 J=xl .40

SMK(I+J)=0.0

0N 100 K=l M .

FAsSF{xX)#(] 40+CF{K)) - N -
FA=Z o ORFA/MWFFK) :

FCmSF(x)

Pl1=3.141%59265

ALPHASALPHAL(K) 2P /1806

CX=DC(K41)

Cry=DC{K2) -

CZxDC{K+3)

DO 1 Iwmiai2 .

001 Jml.l2

T(l+J)ImCuO

T{ls1)=CX

T{l+.2)=CY

T(1+3)mC2 .

IF{CX+CZ)IBeTeB -

SLONE=SORT{C X a2+ 2uu2) -
Tl(2+1)=( CXeCYRCCSIALPHA) C2Z9SINCALPHA))IZELONLC ~
T(2:2)=SQCT(CXAR2+C2Z0e2) aC0S (ALPHA)

Tlc» S(=CYSCZCOS(ALOHA) +CX 83 INCALPNA) ) /ELONE -

Tl ) ={CX®CYRSIA{ALPHA) CZIwCNS (ALPHA) WELDONE

TC2e2) 2=-SART(CX®BZ +CZMn2 ) aST AN ALPHAY

TC3.3) 2({CYeCZaSIN(ALFHA) +CXa COS (ALP
GO TO 10

T(241)= -CYRCOSIALPHA)
T(243)=CYRSINIALPHA)
TC3s1)Y=SINIALPHA)
T(3+3)=COS(ALPHA)}

DOZ2 I=4 &

DO 2JT4 o5

JJu -3 -

Il=]=-3
T(I«Jd)=T(IX I}

PO 3 I=®7.9

DO 3 J=7.%

) ¥/ SLONE

3 -
TCIeJI=T(IT A4} -
DO & I=l0,12
DO 4 J=10.412
Ii=1-3
JI=3 3
TCIeI=TCITwIM)

DO S 1=1.12
DO 5 J=1l.12
EKLII+J)=0.0

EKLi1+1)=E(XK)®2A(K)/EL(K)

ExL{ls7)= SXLI(L 1)
EXLI(2+:.2)=FBeE{X) 2aM] (K) /EL (K] #+3
EKL(2+0)sFaAsti(K) »#M] (K)/ELI(K) #82
EXL(2.8)m EKL(Z,+2)
EXL{2412)2EKLI2.6)

EKL{J3)=FB+Z(K) aM] (K) FEL{K) #a3
EXL{3.5)= FAs(K)*MI (K} /EL{KI*&2
EKL{3+4S)=-EXL(2.+3) N
EXL{3+11)3KL(3+5) ’
EXKL(8,8)=2.080(K) *M] {(K)/ELI(K)
EXLI&s1 Q) =-TKL{a ,a)

EKL{ S+S)2FCeT (K} »M] {K) /EL(XK)
EKL{S.:9)= EXL(3+11) ” '
EKLIS11)rCFIXK)»FCof () *MI {K)/FLIX)
EKL{G+&)aFI e () oMl (K} /EL(K}
EKL(GeB)a EXLI(2,.L)
EXLIGI2YCFIK)NF OOt (K) #MI.{K)/ELI(XK)
EXLE T« 7)=EKLLL o1)

EKL{B.8)r EKL(2,.,8)
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FORATRAN IV G LEVEL

23

loo

STASH

CATE = 76346

SMKL IL1 »INI Y =SMK(IL] oI N1 )+ JJIKKEEKGITaI)

00TA CKLIBY12)= EXLE2,.12)
[ 1.k ad EKL( 94612 EXL(3+49)
oo 7 ERLL 9e112a-EKLIT 1)
LEYL EKL{10,10)= EXL{44,10)
00%0 IR ST -n):&x LIS «5)
00AL EKLIL12412)3EKLLIE 48)
ooa2 Do & !-2 12

00A3 11=1 1

[ 2.2% 00 & Jul,Il

0035 & EXL(TIJ)=EXLL

Q0ge CALL TRANS (T

o087y CALL MULT (U,

ocen CALL MULT (Vs

0099 . 50 16l I=1,12

00 3% . IL=IvC{ K1)

0061 IFC{IL+EQa0} GO TC 101
09982 DO 102 Jalel2

0063 INEIVCIKed)

00%a IFLINCEC.0) GO TO 102
00¢cs 1L1=faBS(IL)

0036 INI=lABS{IN)

Q0S7 JJ=IL1ZIL

onsA KK=IN1/ZIN

0099 .

0100 102 CONTINUE

otol 101 CONTINUS

0102 100 CONTINUE

0103 . RETURN

Q10e . END

FOFTRFAN IV G LFEMVEL 21

STASM

«OPTICNS IN EFFECT®
sN2TINONS IN EFFECT®

DATE = 76346

1D .EBCDIC -SDURCE «NOLIST. N'JQECK oLO:D.NONAP

NAME =

STAS .e LIMCCNT

*STATISZTICSY
asTAszTIC S

SOURCE ':TATEH.ENTS =

0
104, FFUGQAH'S'! E =

ND DIAGNOSTICS GENERATED

6382

0S/35217

os/35/717
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FORTRAN 1V G LEVEL 21 PULT

CATE =
o0l SUPROUTING MULT (A+BeCoMaK4N)
coou-too-no-t‘twtoo-n-.tttooo-----1.-.“-‘-------“:-
THTS wItL MULTIBLY Tw( MATRICF
cc----to-nt-o.onoo‘----o-tot-t--u--tootttnoc--cct--
0002

BIMCNSTEN A{MK)} sBIKIN) cCIMe M)
o 00 20 1=1l.M
DO 20 J=leN

0005 C{1+J¥=0s0

000A DO 20 L=l..K
00C? Cl=A(l +sL)uOLLeJ)
poce 20 CC1.J)=C{Ted)eCE
0009 - RE TURN

0010 END

FORTRAN IV G LEVEL 21

TRANS CATE = 76338
0001 - CLBROUTINE TRANS(U.VeK.L)
ct.‘i‘t"t!.“.l'it‘.“lit!‘tt“il.“-.‘-“ltttttttt
€ - THIS SLAROQUTINE WILL TRANSPOSC.A MATRIXShERER®
ct‘l-l.!tictitai!0..“{"!.“.“’.ll.‘t’.‘lttt.tt#‘l
Q002 DIMENSICNUCL«X) +VIKeL)
. 0003 ' D010 1=1.K
000e 0010Jx1 ol
0005 .. - 10 V(1ed¥=UCJoL?
0006 RETURN
0007 - END R
at .

. ~
05712743 -

=
SEREREP SR ERBAB S AES S EERRE

76338

GHEASER AREARREEE AR ORERED

0S5/12743

'.l‘!’..l"l.-t#-“"'ttt“‘
REBRERWR TR R v b0 L2l

P TII L P I P T RS 2 L L L L)
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FORTRAN IV G LEVEL 21 f'ﬂANS B DATE = T4348 03/33/717

SOPTIONS IN EFFECTe  ID JEBCDIC s SIURCE oNOLIST « NODECK 4+ LOAD: NOMAP
«MTIONS IN CFFICTe NAME = TRANS L CNT = 80

SSTATISTIC S SNLRCSE STATEMENTSG = T+FROGRAM SIT7U & s54
®STATISTICS® NO DIAGNOSTICS GENCRATED

r - .
[ - .
FORTRAN IV G LEVEL 21 . BAKY DATE = 76346 0s/35/17
ooc1 SUBROUTINE BAKY (NDF JSNK,SMKV)
- N C Tt rrrer et e T e e e AT TR R YL IS T R DS R R IR L LD AL g s Fl R ity el
c THIS SURRCUTINE WILL TRY TN TRANSFER THS UBEm TRIANGLE MATRIX TO VECTIR
. [ s .“'_.“‘“’-‘.-'--‘--."'-.-‘.-..‘-.-‘.."‘t'..“..“.‘-‘..‘.-“‘-‘.‘.“"‘.-
0002 DIMENSION SMK(40 +60) +SHKV(700) -
0003 © 00 105 11,700
ooos 109 SMKV(T)%0s0
gocs NINA=0O
0006 DD 17 LulNOF
0007 DG 18 LL=1eL : -
oaas NONA =NORA #1
0009 SMXV{N'INA)=SKMK{LL,L)
0010 18 CONTINUE
0011 17 CONTINUE : i
0012 RETURN ‘ : :
0013 END :
~



FORTEAN IV G LEVEL 21 BAKY

*DPTICNS IN EFFECT®

SOPTIONS IN cFFECTE NANME = BAKY » LINCGC
*STATISTIC S

¢ STATISTICS»

FOPTRAN IV G LEVEL

0001

0010

coco00000
00000000
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DATE = 74340

ID +EBCDIC « SOURCE o NOL T 51’- NODEPK-LO ADs NIMAP

-1-]
SOUSCE STATEMENTS = lBoFHCGFAH S1Z: = s18
NO DIAGNOSTICS GENCFATED
21 FNOUT ' CATE = 76346

SUGROUTINE PWOUT (A ¢NI oNJoMy MDIMNDTW)

)

oS/38/17

LEVATYSL

4 3 IIFRANTNITREIFISRT LRI RIS ER LA RET AL 01 PR IR R PR Rl dl i dlddt 1Y} ]

THIS SUBROUTINE PRINTS CJT MATFIX A(QRDER NIsNJ}+STORED I[NDIMENSION
(MCIM.NDIM) IN WLIN PRCGQAN,

=0

KEND =0

JOxJE+]1

JExJB ¢S

IF{JE~NJIZ2S 2020
JEmNY

KL AD =] »
IF(M)A] 441 30

WEITE(G 40} ([ Je Jm B,

DIMENSION A(MDIM NDIM)

JE)
FCRMATIIIHOROW/COLUMN,IS +3119)

DC S0 I=1eNI

WRITE(E+50)I 4 (AT 4 J) o J=JAJE)

FORMATIIA 46519 5)
IF(KEND )10+1Q7C
RE TURN

END ’

3
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LEVEL
[+
Ceanew
[ =4
C
Cusen

nnnnn(uuwnnnnnnnnnrww\nnnnnnnnnnrnunnqnnnn
ilIlilllllIIl!lilllllG!Il!llllll"llll

Clses

10
c

C
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"2 " MAIN CATE = 76338 05/12/743

185 AHI M HATHOUT . )
...‘..-‘.'."“OO..“"-l"-‘...‘.O..."“.‘--‘---‘-t‘.."-‘ltl. (11113111 3 1)
TO CALCULATE THE BUCKLING LOAD OF STAYED COLUMNS IN 3-DIMENSION

8Y TWS FINITE ELEMENT WETHOD .
-.‘-.."‘..".‘..l..‘.“-‘.l.1_“.-l‘-‘...“““-‘-.-.'."-."..““.‘.“...

Y Ul

-l‘“lt...0."O.'..'..“-‘.l".‘ill.“.-t..t““‘.tltl.‘.t.‘.‘..“.“-

NOTATICNS

*
-
M = NUMDER CF FLEMENTS .
N = NUMBER CF NCDES -
NOF = NUMAER DEGRFE CF FREEDOW .
NBSm NUMAER OF ELEMENYS WITH BENDING STIFFNESS ]
NKGE NUMODER OF SLEMENTS WITH SIGNIFICANT AXIAL LOAQ L
NM = NUMBER QF BUCKLING LOADS REOUIREC : .
NN = STWMENSICN OF THE PROSLEN *
tvC= VARIABLE CCRRELATICN TAELE L4
CN = CO=0RDINATE OF NADAL POINTS »
D22= OUTER DIAMETEFR : . -
D1la INNIR DIAMETER N .
= MODULUS OF ELASTICITY -

= MODULUS OF RIGIDITY . =
= CROSS SECTIONAL AREA -
= MOMENT OF INERTIA *
DC = DIRECTICN CCSINES .. -
= EIGEN VALUE =
= EIGEN VECTOR -
= CRITICAL LOAD + . : &
RES= THE RELATIVE ZFFICIENCY ( CRITICAL LOAD/MEIGHT) L ]
MK = MASTER STIFFNESS MATRIX . - *
LGTH=® LENGTH QF ELEMENT - -
GLKI=MASSTER ELASTIC SIFFNESS MATRIX - ]
GLK2=4ASTER GEOVETRIC STIFFNESS MATRIX . N -
GLK1V=VECTOR CCNTAIN ELEMENTS CF MsE+S+MATRIX TO TRANSFER THIS &
MATRIX ESCM DOUALE TO SINGLE DIMENSIOIN - .
GLXZVEVECTOR CLNTAIN ELEMINTS CF MeGaSeMATRIX TO TRANSFER THIS »
MATHRIX FRCM DNUBLE TO SINGLE OIMENSION - =
ALPHAL {FOR GENERAL MEMBSR) = ANGLE PFTWIEN HJRZONTAL AND PP INCIPAL -
- CRECSS SECTION AXES =

ALPMAL (FOR VERTICAL MEMBER)= ANGLE FRCM GLUOBAL Z TO LOCAL X3s :
*

g
/.

: POSITIVE IF TIWARD GLOEAL X AXIS
EANIRAEEPRRERB LIRS ttttttt‘ao-sn.-t-ttttttt;‘lct-t-'tttttttt‘o'.‘t:-
DIMENSICN ci.xzvno 00 +MI LS00 .XL(1001+X(100000.XX(100) ’
DIMENSICN DC(SO.A).HK(IOO.IOO).HN(SO-E‘D.A-‘\(SJ)-Elso)-ﬁ(so\
DIMENSICN ALPHAL(S0) +GLKI(100.1003.GLK2( 100,100).GLK1IV( 10000)
DIMENSION D22(50) +D11(50)+LGTHIS0) 4 IVCELS0e12)
DIMENSICN CN{10+30,4)+REF{100)
REAL MK LGTH+M
PIngO0%ATANI1.0) -
NPROR=(Q -

NONA L -
«INPUT DATA!‘.'#‘..t‘l‘tttt‘tttt‘i“t-lc.t.lt.‘#it““-t“ttttt..O‘-“t.t“
EEAD(S5+10) MoeNADF s NNoeNKG 4NBSe kM
FORMATI71I3) - §
READ MENBER END NODES (IN NUNERICAL ORDER 8Y MEMBER)
ECAD{S«20) COMNCT o) o J=1 02) o IZ1 M)
20 FORMAT(213) " .
PELD VC TABLE (BY MEMBER, IN SAME ORCER AS MZMBER END NODES)
REEZDUS « 301 CLIVC (I od) 4I=1 o12) 41x1. M)
30 FORMAT(12I4) .
READ OUTER AND INNER-DIAMETERS (TN MUMERICAL ORDER BY MEMBER)
49 OSAD (5.50) NUM,MS,MF DO -
S0 FOFMAT (313.F1040)
IF (NUM LEGe 0) GO TO 55
DO S1 IZMS,MF .
51 D2¢(1)=DO
GO TO A4S .
&5 QEAD (S5+50) NUMMS,WFE D] 2
IF (NUM .EQs 0) GO TQ 60
DN ST I=NSNF N
57 DI I)=D? ‘
GD TO £8 .
PEAD MODUL! O ELASTICITY (I M WUMERICAL ORDER BY MEMBEFR )
60 PEAD (5.50) NUM,MS.MF.EM

R VR
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XD 1] B IF{NUM.EQe0) GO TO 75 . \ -

T3 DO &2 IaNSNF -

002 62 E{T)=CM ) . ' *

0033 GO TO &0 .

603a % AEAD(S « SOINUM, NS o NF s ALPHA

0033 IFINUM.EQ. 00} GO TO TO .

00368 DO T2 1EMSMF v . .

o027 T2 ALPHAL (1) ZALPHA .

0038 GO TD 7% :

Q039 70 FLAD(S s SOINUMSMS +HF +GM . . . -

0040 : TE(NUM EQ.0) GO TO 533 - -

00al DO 71 laswS.WF

0042 71 G(l)aGM » -

oo0al GO TO TO ' :
< READ COORDINATES (IN NUMERICAL ORCER EY NODEs X THEN ¥ THEN Z COORDe}

Q0 4AA 5% 00 455 K=l .LO0LA" .

00aS . BEADIS40) C((CNIKJI aJd) oJdul oNF) oIm1.N) -

00a6 . 40 FORMATIIF12e46) ' o

QCA7 455 CONTINUE

0048 100D YENASH] | T

QoA9 DO 458 LCwlJLOLA .

0080 . NI €=30 . B

(123 NDS=NI S+1 Co. .

o002 554 FEAD(S+258) DM R

00%3 268 FORMAT(FICe? ' ~

[+]+3-19 DO 1010 I=IDCDY+NIS .

005% D22({ 11=DM K

00%Z6% 1010 D11(1)=Qe0 =

00S7 READ(S5.258) D% .

Q0SA 00 1011 T=NOS.M

00%9 . D2 I)=DM <§t§

Q0eo0 1011 D11{TI)=C.0 - - '
C2eesaCALL VLA TE MEMBER PROPERTtESt.nat‘tn-.t-t--t-u-ag-t-o‘-‘-‘--ttttotns.nttttt
4 « MCMENT OF INERTIA .

00¢e1l 0 47 1=1.,N8S

0Qéd2 MI(I)=PIs(D22(])*sa=DI1 (1) ®*4}/64.0

QoeE3 &7 CONTINUE -

00¢ca NAS]1 =NB S+ . .

006% NO 68 1=NBS1.M .

[+3-41.] 68 MI(1)=20.0 . -
c AFCA LENGTH.DIRECTION COSINES .

0a67 - 00 80 1=1.M - -

2068 AA(T) =P 14(D22( T ue2=D11 (1) se2}/4,

0C¢9 4 80 CONTINUE - N .

Q70  *, DO 110 I=xl.M - . ,

0071 - k=MNI(T41)

0g7e LO=MNI T o2

06073 SUM= 0,

Q074 D0 90 JxI <NN

0075 SUMZSUM+{CNILE «LOs J} =CNILC oK 2 J) ) #22

0CcTs 90 CONTINUE .

oC77 LGTHC T ) =SGPT{SUN) -

[+Ivlr g 00 100 .J=1 NN R v

0079 pc(!-Jl-(CN(LCoLc.J)-CN(LC-K.J)lILGTH(Il

00 ED 100 CANTINUE

0dasl 110 CONTINUE

C3swxswk [TE INPUT DATA AND MECHAN!CAL P:nPEnTxEstt;tcs-cutttttwt.stttott-.tctttt
ooez2 NPROB=NPRCB+1

QCE3 WEITE (E.,118) NFROB ) :
OOEA 118 FORMAT( #//7,10K«14HPROBLEM NUNBER,I4+/) -
008s - "WRITE {€e119) - .
00Ee6 119 CORMAT(/+10Xe25HUNITS ARE INCHES AND KIPSe/)
0087 - WRITE (&,120) -
ooas ~ 120 FOPMAT (10X<&HACs OF +5X.6HNDe OF+SX. 10HDEGREES 0F 45X+ 9HD IMENSION. S
. 1X. 19HND. NF MZMEERS WITHSXsSHNCs OF) .
cca9 WR1TE (€4130) ; -
0090 130 FORMAT (10X s THMEMBERS o4 X + SHNCDES » 7X ¢ PHFREEJL M, 7Xs 1LOHOF PROBLEM . 6Xo
12HKG o SX o1M] 211 XsSHMCDESY . N - .
0051 WRITE (€.140) M,NNDF ¢ AN ohKG +NBS JNM I
0092 . 1a0 cnnuATt1ox.14.ex.zs.ax.:s.x3x.12.13x.13.4x.x:.xzx.tz./: .
0093 WFITS (€4150)
. 0054 150. FOEMAT (10X,6HMEMASR 45X +SHENE AODES « SX «SHRT R » SX o SHINNER SXe THMOD
1ULUS.!OX-THnODULUS.Sx.ﬂHAREA.5!-&HHCMFNT.JX.uHLENGTH)
0065 - WITE (6+160) ) - -
0056 160 FORMAT(35XeSHOTAMs ¢5XeSHOT AMa ¢ 5X 4G HOF ALAST o s 35X+ 10HOF RIGIDTYe
- : 110X, 10HOS INERTIA) . - . -
oos? <o un:TEte.;?o)tx.(unt:.J:.J-:.2:.022(1).&11(LJ.E(II.Gt:)¢AA(tr, - .

AMILI ) LGTHI T ) o1 =1 < M)
_ : . . B o

e e v s

T Sl

L oS
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o000 © 0O 0000000000 OO O
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- i 2 > - Sl ik D B B A S b - IS
e MO0 000 OO0

0000000000000 0D00 0000000000 OQODOOCO
Pk B b b ek 0 Bt B8t 1 B et 0k B el bl e et 0 B s e et d b e 0
MIMAD S DL ELLEALWW Wit WIMANKY  ANAR A MAY
NH+OORNOABUNMO DN CAPLNHOIENN NEILN~O0 0Dy
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21 WN CATE = 7&338 Q=/12/743
170 FORMATI LI Xal 3 a7 X el do2X sl B e SX aFA s oA X o FAsI406XsFT el 7XeFTale3Xs )
1 «SXF eIt XFTel}

wWeITE (65.190
1RD FORMAT( /74 RHME MIIET 434X s AHYC=TAALT ./}
WEITE(S 101 IVOlLl o) eJml o12)4T214M)
190 FPOARMAT(1I1Xel 34l2Xs13e2XsI342Xs130 ?x.!.nuKOIJOZxOISOZXOISU
12Xe1342X413, zx‘l302K|!302xtt302Ku//'
WEITC {£.20049
200 ZOFMA;(I/-XQX-ﬁﬂ-NQDF oSXv‘lFCCOQC!NATESUSXOJH X +GXeIM ¥ o+ 9Xe
134 Z ~ A
DO 7CT I=1.N
WEITT(6+210) I +C(CNILCI o) o J=] 4NN)
210 FORVMATII1 Xel J 420X oFBa3 s XsF3 a3 48X +FALT/) .
TOT CONTINUE ﬁ
wRITE( & 2201}
220 FORMAT( /7« 30X e OHMEMHER & X o TH=ALPHAL /7 )
D0 747 I=ml.M

WEITE( 62300 I ,ALPHAL(I) R
230 FOREMAT{IIX4I3eTXeFTPe3) .
747 CONTINLE
COnamaMASTEE ELASTIC STIFFNESS MATRIXZISASRNIAA A SRS RtAR RN SRR USSR SR AR RREEERR XD

CaLL SLAKMIM (MI (AA T «GoLGTH.CCoNOF, IVC.GLK1 . ALPHAL)D
CoudanaMASTER GECME TRIC STIFFNESS MATRIXSSE*AS AR N U NSE RO N RSN REN SR A AEANA AR B e RN R dE
CALL GICKM (AKGoLGTHDCoNDFL IVC, ALPHAL L GLK2Z)
ConnasCALCULATS INVIFSE MF EGIENVALUES AND THE ZIGENVECTORSHT 22004 AL R SRR EAERERS
CALL APRAY (2 NDF+NDF 4+100+100+GLKIV.GLK]) '
CALL ARRAY (2 «NDF wMDF 4100+100,6LX2VRK2)
: CALL NFCOT (NIF+GLK2VGLKIVeXLaX), .
CowxwsaCALCULATE AND WwRITE EIGENVALLcstt--l-tt-tttttlttttlttttt-ttlt-tlttttltittt
whlTE(E.762)
762 FORMAT(///4 15X +13HCRITICAL LCAD.I/) .
DR TET I=1NM - .
XX{131=107XL(I)
TEZ WEITE (65.764) XX(1)
764 FOEMAT(1ISXsF1Seb4//)
CornmadwRITS EIGENVECTOFS IS AN RR SRR A RIS IR AR SRR dE SRR RSN SN AR N SRR NEAE R EE SRR AT R RE
wTITE (& TE5)
TS CSQRMAT( //7/7+25X 41 2HEIGERVECTORS /7))
0D 7546 1=1.NDF
IP=] +NDF .
IKP=T+2sNDE
WOITE(SH+TET) I .X(I).XIIP).X(IKP)
TE7 FORMAT( 12Xl 3 el O0XeF1BalS 410X «F18415410XsFl8e15+”/)
745 CONTINUE
CALL DCDY (M NASsAMNAALGTH XX+ WT »REF)
WEITE (6 +8496)
496 FNEMATI//7//19X 1 JHCRITICAL LCAD.AX.I0HTHE. l:lGHT.!!X.23HTHE RELAT
1IVE SEFICIENCY /) ~
oC ACO0 1=l kWM .
WEITE(6,470) XX(I)+WT,REF(I)
G700 FOFMATI1SXsF11e8410XsF11leG6el OXeF1S54Fe/)
BO0O CONTINLE
NOMALZSNCNALS] ) s
IF (NOKALl+EN.MOLY} GC TO 456
GO TO =S e
456 CONTINLE -
WETTE (6.303)
303 FORMAT( ////7 20X +35HTHE MASTEF ELASTIC STIFFNESS MATRIX.//7)
CALL PMCUTI(GLX] +99499+1 ¢100.100)
wElITE(l 5304)
304 FORMAT{ ////+20%3THTHE MASTZFR GECVETRIC STIFFNESS MATRIX./Z7/)
CALL PMDUT (GLKZ +99:99¢1 2100 ,+100)
STOR
END



000000000000 0000000D0O0
D000 O0O0O0O000O000OO0DO0000
CQODPNOAPUNOORIGAPWINM

LGN WA NI N A A PO A B v bt 1t 1t 1t 18 0 pt gt
L

TFICX+C2)8+¢9+8
8 ELONZ=SQRT(CX®*2+CZue2}
T(2:1)=(=CX*CY®COS(ALPHAY=—CZ#S IN{ ALPH
T(Z.2)=SORTICX*e2+CZou2) %COS (ALPHAY
=CY®C ZeCOS(ALPHA) # CX *SIN(ALPHA )}/ 5L ONE
CXMCY®SINCALFHA) =C Z« (OS ( ALPHA } )/ ELONZ
SAQATICXeu2+C 72 1RSI M ALDHA) .
CYRCZESINIALPHA) «CX*COS(ALPHA} W/ ELONGE

)
T(2.3)=¢
T(3.1)=¢
T(2+2) ==
TC3.3)=¢
GO TO 1¢ ‘
9 TI241)==CYeCCSLALPHAY
T{2431=CY*SIN{ALPHA)
0032 TC2,1)1=CSINCALPHA)
0023 T(3,21=COSCALPHAY}
003a 10 DN2 I=4.6
0025 DO 2Jx4 .4
0036 Jizg=3
0037 . ITel=3
0038 2 Tl =TIl dd)
0029 9
0040
0041
0042
00e3 3
06aa
poas
0046
0047
06ae a
0049
0050

5 =lel
5 ﬁKl(IlJ‘*O-O

00=y

no%2 EXKL{I.1

o0%3 EKL(1e7)=
00%a *EKL(2.2)=1
00ss EKL(2.6)=58c
0056 EXL{2,3)==EK
0057 EKL(2412)=EK
00=A EXL{3¢3)=129c
0059 EXL{23,S)==68E
0060 EKLI3+9)==EKL
00£1 EKL(3411)2EKL
00e2 EKL{4.4)=2,0
00e3 EKL{&4410)=-CSK
opfa } CEXLIS.,5)=a»F
00es . EXL{S Q) ==EKL
0086 EXL{Z411)=202
0047 EKL({ &4F )HamE (
Q0B ® ExLit.B)=-FEXKL
0069 EKL{B,12)=2m
0070 ERL{T.7I3EKL(
0071 EKL( 8,8)==EXL
0072 EXL(R+1Z)==EK
o073 FKL{ 9, <) =>=ZKL
0074 EXL{Gel1)=—EK

oo?s IXL(10,10) ==FE

rr
—~—

&
R WA WA

SFE(X) *MI (KI/ELIK) 92}
(K) =M (K} /7ELIK) 292

K) NI (K) /EL (K) 23
}AMI (K) FELI(K) #u2
»3)

I (K} 7ELIX)
KI/ELIK}

{K)7EL(X}
K)/ZELL{K)

T LK) 7ELL{K)
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0001 SUBROUTINE ELAXM (MMl tAALE CoELsDCoNDFs IVC oMK 3 ALPHALY .
Ct‘!--“..'lt...t--"t‘....l-‘.lttl‘tt-lt‘t.lt.lt“"..--tt‘"-.Ill.l.‘-““.'.‘
[ THIS SLBROUTINE WILL TRY TO CALCULAMTE THL MASTER ELASYIC STIFFNESS M,
c-tt‘t-tn-a--.-t-o--t.a--.---t¢¢-tt.t--tt-a-c-u----u----t--t--ttt‘tt-‘--lt-lttci
o002 DIMENSICN AA(S0) dEL(S0) «G(S0) CL(S0) o0 (50.8),IVC{S0.12)
0003 DIMINSICN MK(!OO-IOO)'”ICSO).ALDH&I(501.&&6(12-;21v7l12c!2i
Qo0a DIMENSICN Ul12.12) 4V{12,12).EKL(12.12)
anaos REAL M] MK .
0006 - DO 104 1=1,NDF
agcy 00 104 J=x].NOF )
oaca 104 MK(I.J1=20,0 o,
onge DO 100 Xm] M . T
0010 PI=3.,0%ATAN[1.0)
ALPHA=ALPHAL (K] 2P] /180,
Cx=0C( K1)
CYSDCIK+2) .
CZaDC({ K +2)
DO 1 I=).12
DO 1 J=1,12
1 Til«J)I=CaO
T{l.1)=CX .
T{1.2Y=CY
TCIoe3)mC2

AV}/ELONE
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0078

oc?r?

ocve

0CTV

00RO .

noel . ]
ogRA2

ooel

176

21 ELAKN

CALL MULT (

o0 101 1=1.

IL=tvCiK,1)

IFCIL -EO-D) GO TO 101
12

IN!:I&BS(XN)

JJI=ILLZTL

KK=zIN1/IN

MK(IL1oINIISVRKIILLeINL}4JIBKKAEKG(T0 )
I3

CATE = 763238

05712743
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FORTRAN IV G LEVEL 21 GECKM CATE = 75338 0S/12/743
o1 SUPFOUTINE GEOKM (NKG,ELDCehDFoIVECy ALPHAL, MK) :
CI.'.!‘.I"‘.““‘.‘..-‘i.t‘-lt‘.‘l..ll---t.‘l.l..‘t‘-tttit‘-.#...‘.-.t-t-‘.t‘..
< THIS SLHROLTINE wILL TRY TO CALCULATE THZ MALTER GEAMTRIC STIFFNESS MATRIX
c---iiﬁl-‘--‘\l".“.‘..“.l‘l'-..l.t..l‘.!!“‘tl.-l.------.l."‘“t-‘ttll.‘-‘.“
0002 DIMENSICN SLISO0) +DCIS043) o IVCIS0412),CKL (12421205 0CKG( 124 12) .
0003 “ CDIMINSICN T(12412) ,ALPHAL (S0).UC12,1214V(12412), MK{100s100) '
0004 - [EAL MK s .
00Cs DN 1048 Ixl,.NDF
0Q0s DO 104 J=1 .NDF .
aco7? 104 MX{I.J)a0.0 ‘ ‘
0Jc8 DO 100 K=l ,NKG . .
0009 Plz4e0®ATAN(L,0)
0010 ALPHAZALPHAL (K) *PI /180,
co11 CXLC(Kol) .
0012 CY=DCI K 2)
0013 CZ=DCI{K .3}
0014 DO 1 I=1.12
001S DO 1 J=l,.12
0o1lé 1 T(l.J)=C.0
0017 T(le1)2CX
0o01s T(l2)CY
0Q19 Tll1.3)2C2 '
0020 IF(CX+CZ)B.DWS '
00%1 8 SLONE=SCRT(CX*»2+C2Z0u2) X
o022 T{2.1) = (=CX®CYRCCS(ALPHAY =CZ4SINCALPHA)) ZELONE
0023 T{2,2)=SORTICX* M2+ C2Zan2) wCOS (ALPHA) .
0024 . T(2e3)=(=CY*CZvCCSIALOHA) +CX #S IN( ALPHA ) /ELONE .
002s T(3.11=(CX®CYRSINCALFHA) =C 2o COS (ALPHAY W ELGNZ - .
0026 : T(2.2) ==SORT{CXan2+CZen2 ) aST N{ALPHA) .
o027 T{3.3)=(CYSCZwSINIALFRA) +CX®CAS (ALPHAY I/ SLONE .
0028 GO TO 10 . ) i
0029 ‘ 9 T{2.1)==CY=COS{ALPHA)
0030 TC2+I)=CYSSINIALPHA) -
0021 TE3W1)=SINCALPHA)Y -
0032 T{3.3)=COSIALPHA} .
0033 .10 D02 I=za,.&
003a D3 2J=a,6 . '
003s JI=g=3 - ‘
00368 1i=1=-3
~ 0037 2 T(1.9=370I14d) Tt
. 0038 DD 3 1a7,9 ) .
00136 DO I J=7.9
0040 11=1-3
coal JJzi=3
0042 . 3 NI J)I=TIIT I . )
. 0043 ’ DO & Ix10.12 -
004aa DO 4 Jx10,12
0045 [I=t-3 -
0048 JI=3=2
0047 4 T(I.I=T(IT.43}. . .
00an DO S I=1.12 .
6Q4a9 0N 5 J4=1,12 -
0050 S GKL(1.0)=0.0
00=1 GRLIZ2+2)=65.0/(S. 0sEL (X))
Qo= © GKL(2.6)=0.10
0043 GKL(2,8)=~GKLIZ,2)
00%a GKLI{Z2.121=GKLL2 &) : _
ooss GKLL343)=GKLI2,2) ‘ -
0056 GKL(3.%5)==GKL{2,6) .
0057 GKLI3.S)=CKL(248) ) :
o0=a . GKL{3+11)1=GKLI3,5%) . i .
0059 GKLUS,5)=2,00EL(K) /15,0 . .
0060 GKL(549)=GXL(2 +6) o/
001 GKL{S411)==EL(K) /30,0 /7
00€&2 GKL{ 64 E)ZGKILLS +5) -
00e3 GKL(6,BIZGKL{3.5)
00¢a GKL{E.}2) 2GKLI{S,11) ‘
00&S GKL{A.BIZCKLI2.2) . .
0066 GRLTB,12)=GKL(3,5)
0067 GKLL9MGI=GRLI2 42)
o0é&s GKLIS, 11 EGKLI2 +6)
0CaS GKLI11411)=GKL{S,5) .
0070 GKLL12+12)=GKLIG ¢6) - . .
0071 DN 6 1=z2,.12 . .
0072 1r=1-1
0073 OO & J=1.11
007a 6 GRLII+JI=GKL(J.1)

007% CALL TRANS (TsU,12,12,12)
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FORTRAN IV G LEVEL 21 . GECKM . CATE = 76338 0S/12/743

o076 CALL MULT (UWGKLIVe12412412)
0O07T - CALL MULT (VeToGXGol24+12412)
o078 ND 101 l=xi.t2 X v . '
0ave IL=IVELK.I) ' . . )
0080 IFIIL.ECa0) GO TG 101 . - -
ocel DO 102 Jrlal2 . : >
oce2 INSIVCU K Y | .
OOE3 1IFCINC.EQ.0) GO TC 102 .
O0Es IL1=]aBS(IL) -
acas INI=TADS{IN)
OCE6 oJaaILl s . . .
OCE? KK=INI/IN -
Qo0as COMKIILL o INDY=MKCILLoIN1} ¢+ JIeKKaGKG(Tad) = .
ocear 102 CONTINUE ‘ :
0080 © 101 CONTINYE - .
60%1 100 CONTIN
coc2 ' RE TURN : - ) Y )
0063 - .END - )
- s .
- 1Y
1]
s
. I




FORTRAN IV G LEVEL 21 ) " ‘poor CATE = 76338 0S/12/743
0001 B SLBFOUTING DODY (MoNAS AN ALELIXX o WT 4 REF) -

CORRRA RSB auEss dP RN FRRTIVRRRERNRdbR l.llllll.t----‘.-‘...‘l..‘l!t“t.“‘l“l"".l

TH1S SURFOLTINE wiLL TRY TO CALCJLATE THE WEIGHT AND FELATIVE EFFICIENCY
Cl.‘.t..lntttl"i'...’..'ntt..'ittlQllOttiittlll-l“.ltttliitl‘.t.’t.t*.lt,‘l..l

0002 DIMINGICN V{S0) +A(SO)EL{50} «xX (1001 +2EF(100)} .
Jog3 AMNz, 283 ,
9nca . DM 100 1=14NBS

000s VII)za( D)wELCL)

00C6 100 COMTINUE

0oc? ND S12NB S+l .

0008 © N0 200 I=NBS1 M

0009 VII)=AC L) #ELAT)

0010 200 CONTINLE

0011 VT20.0

ooiz . DO 300 Jal .M

0013 VI=VT+V( )

0014 300 CCNTINUE

Q0015 wT=VTERHD ’ .

0018 DO 400 K=1ohM

0017 RES(XK)=1000s OR(XX(K) /WT)

0018 400 CONTINUE

0c19 RETURN

0020 END

~ .

el
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