University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

1993

Dynamic logic synthesis with application to self-
timed pipelines.

Hong Ming. Chan
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Chan, Hong Ming., "Dynamic logic synthesis with application to self-timed pipelines." (1993). Electronic Theses and Dissertations.
Paper 179S.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F1795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/1795?utm_source=scholar.uwindsor.ca%2Fetd%2F1795&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

. Naticnal Library
* I of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Onawa, Ontano
K1A QNS K1A ONS

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, nue Wellington
Quaawa (Ontano)

Yo fier Ve itiprre e

Dt Ble Satre revlerong e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
micrcfilmage. Nous avons tout
fit pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec [l'université
qui a confére le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielie,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

DYNAMIC LOGIC SYNTHESIS WITH
APPLICATION TO SELF-TIMED PIPELINES

by

Hong Ming Chan

A Thesis
Submitted to the Faculty of Graduate Studies through the
Department of Electrical Engineering in Partial Fulfillment
of the Requirements for the Degree of
Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

1992

! * ! National Library

of Canada

Acquisitions and

Bibliothéque naticnale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Onawa, Ontano
KTA ONd K14 ONd4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada %o reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395. rue Wellinglon
Quawa {Ontano)

Toul fint ot et e e

Qe e b e e

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 2-315-83081-1

Canada

Nome HOI\Q MLJ‘!'\‘L -'C!ﬂ%
Disserfation Abstracts Infernatignel is arrangdd by brood, general subiject categories. Please select the one subject which most
nearly describes the content of your dissertation, inter the carresponding four-digit code in the spaces provided.

Electronics tndl E'[eg{'}(fcm\ oI5 44 UMI

SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Pyychology . . 0525 PHILOSOPHY, RELIGION AND ABGIONT .1t e 0579
Architoctore 0729 Rooding Medievel ..o 0581
ArtHivory Rebgiout0582
Cinomo, .. iencel . .0328
Donce ondary .0331
Fiom At Social Sciences 0332
Information Scvence .. Socidlogy of ... v . Q340 g TEIT e gl g Conadion e 0334
Joyrnalinm o Special ... 0335
Library Sciance 0399 Teachar Training ... 0336
Maus Communicahons, . .0708 Tech:

Poliical Science

) . SOOI -3 I
Adult and Continuing 0518 Public ﬁdl:\iniuruﬁon . .
Agricultral 0517 S
Arn

; mdllmlgggg
gulmincn Collcga RITTRTT 0488
Cuﬂkuulz:zond Instruction

HEALTH AND ENVIRONMENTAL
SCQENCES

Emvironmental Sciences 0768

o i han

© All Rights Reserved

2

ABSTRACT

This thesis describes 2 new method of designing multiple output dynamic logic
suitable for an automatic synthesis procedure. A new cascode voltage switch logic
synthesis method is derived with examples demonstrating the procedures. The
procedures are summarized into 3 reduction rules, This method is modified to synthesize
multiple output domino logic. A companion algorithm for handling “Don't care cases™ is
also developed. Another algorithm for transforming a non-planar circuit into a planar
circuit for use in autoraatic layout synthesis is presented. An alternate method of
realizing cascode voltage switch logic is developed. It is a semi-custom cell design
method. The cell uses almost one half the number of the transistors used in a full tree
implementation. All of the new synthesis procedures are automated by a program written
in PROGRAPH and C. A SRT self-timed divider is implemented to demostrate the use
of the new procedures. It is implemented in 3um CMOS technology.

iv

ACKNOWLEDGMENTS

I would like to express my sincere thanks and appreciation to Dr. G. A. Jullien and Dr.
W.C. Miller and Dr. S. Bandyopadhyay for their ttemendous support and guidance
throughout the progress of this thesis. I give my special thanks to Bruce Erickson for
helping me to meet the deadline of layout submission. In addition, I would also like to
thank Andy Hung for helping me to draw graphs included in this thesis, Sam Lai and
Henry Chan for rescuing the mask layout file. Thanks must also go to all of my friends
who stay in school at night. Last but far from least, I would like to thank my parents.

Table of Contents

ABSTRACT iv

ACKNOWLEDGMENTS v

LIST OF FIGURES ix

LIST OF TABLES xiv
CHAPTER 1

Introduction i

1.1 Control schemes 1

1.2 Design hierarchy 2

1.3 Thesis Organization 3
CHAPTER 2

Self-timed pipeline S5

2.1 Introduction to self-timed pipeline 5

2.2 Basic element 8

2.3 Control signals 11

2.3.1 Transition signals 11

2.3.2 4 phase dual rail signaling 11

2.3.3 2 phase dual rail signaling 12

2.3.4 Completion detector 13

2.4 Self-timed pipeline configurations 14

2.4.1 PCO configuration 14

2.4.2 PC1 configuration 16

2.4.3 PSO configuration 17

vi

2.4.4 Complex darapaths

2.5 Analysis methods
2.5.1 Performance parameters
2.5.2 Analysis by data dependency graph

2.6 Constraints of different operation regions
2.6.1 Performance graph

2.7 Techniques of performance improvement
2.7.1 Decreasing grain size
2.7.2 Shifting function blocks
2.7.3 Selective tapping of datapaths
2.7.4 Completion detector placement

2.8 Summary

CHAPTER 3

Switching uee synthesis

3.1 Introduction to dynamic logic design
3.1.1 Domino logic
3.1.2 Cascode voltage switch logic
2.1.3 Charge sharing problem

3.2 Cascode voltage switch logic synthesis
3.2.1 Traditional design method
3.2.2 New design method
3.2.3 Semi-custom cell design
3.2.4 Comparison

3.3 Multple output domino logic design
3.3.1 The new method

3.4 Don’t care case

vii

36
37
38

41
42
49
51
52
53
56

3.5 Windsor synthesizer and planar switching wee
3.6 Synthesizer design
3.7 Summary
CHAPTER 4
Implementation of divider
4.1 Conventional division method
4.2 SRT division
4.3 System level organization
4.4 Circuits and simulation
4.5 Summary
CHAPTER 5
Summary and future directions
5.1 Conclusion
5.2 Future directions
5.2.1 Logic partition
5.2.2 Improvement to switching tree synthesis
REFERENCES
APPENDIX A C program code for the synthesizer
APPENDIX B Circuits and mask layouts of the divider chip

Vit Auctoris

viil

67

63
63
71
15
77
81

114

LIST OF FIGURES

Centralized control

Distributed local control

Different control schemes

Typical design hierarchy

Design hierarchy with switching tree

Block diagram for synchronous pipeline

Block diagram for self-timed pipeline

Block diagram for Clocked system

Block Diagram for the synchronous pipeline
Block diagram for the self-timed pipeline

Muller C element

Construction of multiple-inputs C element

Use of C-element in self-timed ¢ircuit

Wave propagation circuit

Snapshot of the signals in the wave propagation circuit
Signal manipulation elements for transition signal
Full adder using 4 phase dual rail signaling
Dynamic cascode voltage switch logic
Completion signal

Completion signal generation for multiple output function
One stage of the PCO pipeline

PCO pipeline with three stages

One stage of PC1 pipeline

C latch

O WO 00 o0 ~1 h G L W W W

[O R
~ O O L A A W N~ O O

3.10
3.11
3.12
3.13
3.14

PSO pipeline with three stages

Datapath merging structure

Datapath splitting structure

Data dependency graph for PCO configuration
Folded dependency graph for PCO

Performance graph

Pipelines with large and small grain size

Effect of grain size on throughput rate

Different external datapath widths

Selective tapping of datpaths

Different placements of completion detector
Dynamic CMOS logic

Cascading two dynamic logic structures

Adding extra delay to solve race problem
Domino Logic

Solutions for solving leakage for dynamic logic
Static and dynamic cascode voltage switch logic
Pre-charging internal node

Delaying the clock signal to solve the charge sharing problem
n block used in domino logic

Traditional method of CVSL synthesis

Example Truth Table

Full tree of transistors with terminals assigned with logic values
Full wee of transistors with terminals wired

equivalent circuit for a circle symbol

3.15
3.16
3.17
3.18
3.19

3.20

3.21
3.22
3.23
3.24
325
3.25b
3.26
3.27
3.28
3.29
3.30
3.31
3.32
333
3.34
335
3.36
3.37
3.38

Full adder Truth table
Full Tree with sum bit column of the full adder truth table
Full tree with assigned node numbers

Merged tree for sum bit of full adder

CVSL implementation of sum bit generation for full adder (n

-block only}

Dynamic cascode voltage switch logic implementation of the

surn bit

CVSL n-block of the carry bit generation for full adder
CVSL implementation of 5 bit majority function

Two implementations of the middle bit of a 2 bit adder
Full tree implementation for CVSL

All possible combinations of circle symbol at the top level
Circle to wire transformation

One level encoded semi-cusiom cell

Traditional model of MODL

CVSL synthesis

MODL synthesis

N block for MODL

CVSL and domino logic implementation of majority function
The steps required after the merged ree generation
MODL implementation of 2 bit adder

Full wee of circle symbol

Layout produced from the WINSYN

Merged tree diagram for prime detector

Step 1 of transformation

Step 2 of ansformation

xi

48
48
49
49
50
50
51

33
53

54
55
56
38
60
61
61
62

3.36 Step 3 of mansformation 62

3.40 Step 4 of wansformation 63
3.41 Step 5 of wansformation 63
3.42 Step 6 of transformation 64
343 Step 7 of ransformation 64
344 Step 8 of ransformation 65
345 Step 9 of transformation 65
3.46 graphic user interface for the svnthesizer 66
4.1 Robertson diagram for quotient digit set {-1,0,1} of radix 2 73
division
42 Taylor diagram for quotient digit set {-1,0,1) of radix 2 division 74
43 Colored Taylor diagram for quotient digit set {-1,0,1) of radix 2 75
division
44 Complete block diagram for self-timed divider 76
4.5 The block diagram for one stage of function block 76
4.6 Schematic diagram for the sum bit of the full adder 78
47 Mask layout for the sum bit of the full adder 78
4.8 Simulation result of the sum bit of the full adder 79
49 Reduced Tree for quotient selection logic 80
4.10 Schemeztic derived from the reduced tree 80
5.1 Two pértition schemes of the same system 83
B.1 Schemau. Jiagram for the carry bit of the full adder 105
B.2 Mask layout for the carry bit of the full adder 105
B.3 Schematic diagram for the flag generator 106
B.4 Mask layout for the the flag generator 106
B.S Schematic diagram for the C element 107

B.6 Mask layout for the C element 107

xii

B.7

B.8

B.9

B.10
B.11
B.12
B.13
B.14
B.15
B.16

Schemutic diagram for the quotient generator

Mask layout for the quotient generator

Schematic diagram for the MSB generator

Mask layout for the MSB generator

Schematic diagram for the divisor multiplexor sub-cell
Mask layout for the divisor multiplexor sub-cell
Schematic diagram for the remainder multiplexor sub-cell
Mask layout for the remainder multiplexor

Mask layout for one stage of pipeline

Mask layout for complete chip

xiii

108
108
109
109
110
110
111
111
112
113

PN RN
HW (S8

N
o

3.1
32
33
4.1
42

4.3
44
4.5

LIST OF TABLES

4 phase dual rail signaling scheme

2 phase dual rail signaling scheme

The signal dependency of the PCO stage
Performance parameters for self-timed pipeline
Performance parameters for various pipelines

Effect of changing function block size on the performance
parameters

Effect of changing function block size in the total stage number
Rules for assigning node numbers to the tree

Transistors count table for different tree structures
Functionality of the “bindlogic”

Rules for restoring division

Steps for converting binary pseudo quotient to normal signed
digit

Quotient selection table
Truth table for the quotient selection logic

Modified truth table for table 4.4

xiv

77
80
80

CHAPTER 1

INTRODUCTION

1.1 CONTROL SCHEMES

Traditional VLSI design discipline uses a centralized control scheme. All
activities are usually synchronized and scheduled ir. a central control sub-system. This
control center has control wires linking different parts of the system. The
communications between sub-systems are also synchronized by this control center.
Figure 1.1 shows the conceptual diagram of this centralized control scheme. As the
density of the VLSI chip increases, the amount of circuitry that can be packed into one
chip also increases. The operating frequency also increases. The management of this
control network becomes very difficult since more sub-systems are to be controlled. To
solve this problem, a distributed local control scheme can be used, as shown in figure 1.2,

Figure 1.1: Centralized control Figure 1.2: Distributed local control

Each conwrol center is responsible for only its neighbors. Between control centers, they
comraunicate using a handshaking asynchronous control scheme which is independent of
the operating frequency. This approach has been proposed{1]. By further extending this
concept, a complete asynchronous system design discipline is possible. This is called a
self-timed system[2]. There are a vast range of control methods possible, between these
end-points, as shown in figure 1.3

- -
Centralized Distributed Self-umed
control control control

Figure 1.3: Different control schemes

One extreme end is the traditional centralized control. The other extreme end is
the total asynchronous self-timed system. This self-timed system control leads to the
study documented in chapter 2. In the realization problem of the self-timed functional
block, cascode voltage switch logic is found to be the candidate for the function block
realization. The research of the new synthesis method for cascode voltage switch logic
leads to the development of a more general class of switching tree. Another prospective
of switching tree viewing from the design hierarchy decomposition is presented in the
next secaon.

1.2 DESIGN HIERARCHY

VLSI design is hierarchically decomposed into levels of sub-systems. This is
necessary for a complex design task since over tens of thousands of transistors are
integrated into one system. Figure 1.4 shows a typical hierarchical decomposition.
Integration of two or more levels of design hierarchy into one will reduce the final area of
the chip. It is because some redundancy wasted in partitioning the design is saved;
however, this level binding technique will also increase the design efforts involved. The
extra time is used in managing the more complex sub-system blocks in which each of
them is combined from two or more blocks. The switching tree[3] is a design technique
that combines two levels of design hierarchy into one. Those levels are the gate level and
the one above it. The final design decomposition is shown in figure 1.5.

Complete chip

Functonal block levels

Gate level

Figure 1.4: Typical design hierarchy

Comoplete chip

Functional block level

Switching tree and latch level

Figure 1.5: Design hierarchy with switching ree

1.3 THESIS ORGANIZATION

This thesis consists of three main parts: the self-timed pipeline[7], multiple output
dynamic logic design[6] and SRT[4}[5] divider implementation. The main contribution
from the author is the derivation of algorithms for multiple output dynamic logic design.

Chapter II gives an overview of the self-timed pipelines. The basic structures are
presented and the techniques of analysis are introduced. Different methods of
performance improvement are also examined.

Chapter I gives an introduction to dynamic logic design and its problems. The
traditional as well as the new proposed design methods of cascode voltage switch logic
and multiple output domino logic are examined. An algorithm for handling “don’t care

-3-

cares” is also proposed. A transformation algorithm will be derived with examples.
Lastly the synthesis program is presented.

Chapter IV contains an introduction to the traditional division method along with
an examination of SRT division. Its implementation in VLSI is presented with
simulation results.

Chapter V concludes the thesis with a summary and a few suggestions for
possible future research directions.

CHAPTER 2

SELF-TIMED PIPELINE

2.1 INTRODUCTION TO SELF-TIMED PIPELINE

Pipelining is a common high speed informaton processing architecture used in
digital signal processing, arithmetic computation, and machine instruction processing.
The basic idea of this architecture is similar to a factory assembly line. Each worker on
the line is specialized to work on a small portion of the product. The unprocessed parts
are fed in the front of the line and the products are generated from the tail. It is a crucial
job for the pipeline designer to create an efficient pipeline architecture. The issues
involve communication method and processing element design.

Fll»! L |» 2|+ L || F3|»

clock distributed globally
Figure 2.1: Block diagram for synchronous pipeline

Generally, pipelines are classified into two types: synchronous pipelines and self-
timed pipelines. The synchronous pipeline, shown in figure 2.1, consists of
combinational function blocks separated by latches. The clock signal is distributed to
¢ach latch from a common clock generating source. The self-timed pipeline, shown in
figure 2.2, consists of adjacent self-timed logic stages with no connecting latch. The

communication between two consecutive stages is through bi-directional handshaking
control signals. No global clock is required to be distributed 1o each stage.

F1

Control signal

F2

\

F3

Data path
Figure 2.2 Block diagram for self-timed pipeline

F4 FS

A typical block diagram for a clocked system is shown in figure 2.3. Each
function block has a delay block attached 1o the clock distribution line. The delay value
for each delay block varies from block % block. The resistance and capacitance of the

BLOCK 1

BLOCK 2

DELAY

DELAY

BLOCK 3

DELAY

—

clock

Figure 2.3: Block diagram for clocked system

distribution wire, along with clock
loading capacitance, parameterizes the
delay block. These differential delay
blocks create a well known problem in
clocked systems called clock skew.
System designers are forced to take a
very conservative approach to
compensate for this delay. In a mult-
phase clock system, the problem can
be solved by extending the non-
overlapping time; however, the
computation time remaining will be
reduced.

Another solution is by add

extra delay blocks to equalize the delay generated from clock loading and clock
distribution wires. The cost of this method is the extensive design and simulation effort
required. Also, it is highly technology dependent. In other words, moving the design
from one fabrication technology to another becomes costly. The third method is the total
elimination of clock distribution wires by adopting a self-timed system design discipline.
Since the self-timed system does not have a global clock, the clock distribution problem
does not arise.

The efficiency of a pipelined system is measured by the throughput and the
latency. The latter is the time taken to travel from head to tail of the pipeline while
throughput is the number of data processed per unit time. For a synchronous pipeline, as
shown in figure 2.4, the 1otal latency is equal to the sum of the delay through each block.
The following equation describes the relationship:

Total latency=FI+F2 Fn +n *D
where D is the delay through the latch L

Fil-l L2 | L |3 °°* |Fn [

CLOCK
Fig 2.4: Block diagram for the synchronous pipeline

The throughput is the reciprocal of the clock period.

Throughput=1/clock period
where clock period= MAX(F1+D, F24D, Fn+D)

The actual delay time for each of the function blocks may be different. In this case
the differences between the actual and the maximum block delay are wasted for each
function block.

A better approach is the self-timed pipeline shown in figure 2.5, Total latency can
attain the sum of the function block delay under special conditions. Since the self-timed
pipeline stage processes the data as soon as the data becomes valid, the throughput is
always larger than that of a synchronous one. The handshaking delay is shielded from the
calculadon of total latency, but not the throughput.

F1 F2 F3 ***1 Fn

Figure 2.5: Block diagram for the self-timed pipeline

In a self-umed system, the timing criterion is probabilistic delay, as opposed to
worst case delay in the synchronous system. This property shifts the traditional practice
of minimizing the worst case delay of the system to the probabilistic delay.
Environmental conditions also impact on the use of self-timed systems. Traditional
design strategy focuses on conservative specifications to ensure the the system works in
the expected environment. If the system is placed in some extreme conditions, the
system may fail. In the self-timed system, the sub-systems change their operating speed
for the existing condition. For example, temperature may cause a synchronous system to

fail easily, while a self-timed system is

A

C more robust with respect to the change
of temperature.

2.2 BASIC ELEMENT

A_

0 0
0 1{M
1 O{M
1 1

The Muller C element[8] is a

-I basic circuit used in self-timed
_,I C systems. A static version of the static
B clement is described in reference[9].

The schematic diagram is shown in

Figure 2.6: Muller C clement Figure 2.6. The truth table shows that

when both inputs are equal then the output equals the input. When the inputs differ, the
output is the previous stored value. The output changes only when both inputs change to
the same state. An multi-input Muller C element can be constructed from the basic 2
input Muller C element as shown in figure 2.7

Figure 2.7: Construction of a multiple-input Muller C element

If predecessor and sucessor
differ in state

then

copy predecessor's state
else

hold current state

\“““““\“I\\\!

"R ERERRERRRwRYww -nw

predecessor current sucessor

P CS

— — |Nothing will happen

* Current state will rise to 1

— * Current state will drop to 0

Figure 2.8: Use of the C-element in a self-timed circuit

An experimental circuit is used to demonstrate the use of the C element[9].
Figure 2.8 shows a C element with one terminal connected to an inverter. The operation

is that if the predecessor’s and successor’s states are different then the predecessor’s state
is copied to the current state. Figure 2.8 clearly shows this relationship.

TalAl

Figure 2.9: Wave propagation ¢ircuit

Five blocks of C elements, with inverters, are cascaded together to form a circuit
(figure 2.9) with the functionality shown in figure 2.10. Figure 2.10 represents a
snapshot of the signals at the tapped points with the top one being the earliest. When a
“1” logic state is fed to a circuit, it propagates, wave-like, to the end. This characteristic
will be explored later when we create a self-timed pipeline.

3 4 S 6 7

Naglih
| b

|
|
|

e W R EEE SRR, ERSRTSRSRw .

_ ¥
- ¥

Figure 2.10: Snapshot of the signals in the wave propagation circuit

| b1
|

e e et R E R E W T ESSEE SRR .RR

-10-

2.3 CONTROL SIGNALS

Self-timed pipelines can be classified by the method of block to block
communication. There are three types of common communication methods: transition
signaling{9], 4 phase dual rail signaling[2] and 2 phase dual rail signaling[10]. Similar to
clocked systems, which use clock signal to indicate the validity of the output signals, self-
timed circuits use special signaling methods to indicate the validity of the output signals.

2.3.1 TRANSITION SIGNALING

Transition signaling uses transitions rather than levels to represent an event.
Both rising transitions or falling transitions are called events. The absolute voltage level
of the signal is irrelevant to the meaning of the signal. For instance, let a pair of wires be
used to transmit one bit of data. To transmit a logic zero, the first bit is complemented.
If later a logic one is sent, the second bit is complemented.

For signal manipulation of the transition signal, basic components, similar to
standard digital logic gates, are available (figure 2.11).

XOR in conventional logic
is 2 OR gate in transition signalling

Muller C-elements is a AND gate in
transition signalling

Figure 2.11: Signal manipulating elements for ransition signal

2.3.2 4 PHASE DUAL RAIL SIGNALING

4 phase dual il signaling represents each bit of information on one pair of wires.
If the two wires are at logic ‘0’, this denotes an invalid data token. When the first wire
goes high, this represents logic zero. The two wires have to go back to level zero (invalid

-11-

data token) before wunsferring another data token. To represent logic one, the second
wire should be set 1o high. The table below summarizes the represenration.

0 0 Invalid
0 1 Logic
1 0 Logic 1
1 1 not used
Table 2.1: 4 phase dual rail encoding scheme

A full adder (figure 2.12) will have 3 pairs of wires for inputs and 2 pairs of wires
for outputs. T1:: full adder starts the calculation when all input signals are valid signals.
The completion of the calculation can also be detected from the output terminals.

Cin »
— —l S
.
A —P| FULL
> Adder
- —: Cout
B

Fig 2.12: Full adder using 4 phase dual rail signaling

2.3.3 2 PHASE DUAL RAIL SIGNALING

The disadvantage of using 4 phase dual rail signaling is the necessity of returning
the signal to invalid states(Q 0) between valid logic signals. The invalid state functions as
a delimiter for valid dates in a sequence of signals. Without it, the receiving end cannot
properly recognize two bits of data which have the same logic state. Whenever new logic
information has to transmit to another block, an invalid state has to be transmitted first to
reset the receiving block. This resetting takes up some of the time available for

-12-

computation. An alternate method of signaling, called 2 phase dual rail signaling[10],
also uses two wires to represent logic. Unlike 4 phase dual rail signaling, however, it
does not need an invalid state between logical information transfer. Data is encoded into
two phases: even or odd. Each data in a stream must have the opposite phase data
preceding it. Table 2.2 illustrates the relationship.

z! | z0 Phase State
0 1 ODD 0
1 0 ODD 1
1 1 EVEN 1
0 0 EVEN 0
Table 2.2: 2 phase dual rail encoding scheme

If Odd phase data is fed to a functon block, Odd phase output data will be
created. Even phase data will generate Even phase output. The design should be carefully
crafted to ensure this rule is being followed. Since transition signaling and 2 phase Dual
rail signaling take comparatively more hardware to build than 4 phase-dual rail signaling,
the 4 phase dual rail is chosen as the signaling method used in this thesis.

234 COMPLETION DETECTOR

To generate 4 phase dual rail signals, dynamic cascode voltage switch logic
(figure 2.13) is a good candidate for function block implementation.

'Foq-— .—DoF

n block

clk

Figure 2.13: Dynamic cascode voltage switch logic

-13-

The F and F represent the non-

complement and complement output of the

F logic gate. When the function block is in the

Function pre-charging state, both outputs drop to zero.
Block = This characteristic matches well with the 4
phase dual rail signaling method. Since itis a

Figure 2.14: Completion signal dynamic logic family, it shares the same

behavior with other members in this family.
The behavior inherited from the dynamic logic family has fast evaluation time and area
efficient VLSI implementations. The output state of this logic family is not determined
from the voltage level of the output terminal. It is determined from the choice of which
terminal experienced a low to high transisition. This makes this logic family logically
complete. Unlike domino logic which can not implement inverting logic, the DCVSL
can implement any function in one block. Also, the completion of evaluatica can be
detected from the output terminals alone. When both output terminals stay at logic level
zero, the evaluation is not complete. For single output functions, only an OR gate is
needed to generate the completion signal, as shown in figure 2.14.

For multiple output functions, the C element, introduced earlier, is used to form the
completion signal (figure 2.15).

F
. F
Function
Block — C
Fl
Completion Signal
F1

Figure 2.15: Completion signal generation for multiple output function

2.4 SELF-TIMED PIPELINE CONFIGURATIONS
24.1 PC0 CONFIGURATION

After examining the function block, C element and completion detector, a.few
basic pipeline configurations will be explored in this part of the chapter,

-14-

Ack
Qut

Req
Qut

Data
Out

Figure 2.16: One stage of the PCO pipeline

One stage of the PCO pipeline[7] is shown in figure 2.16. F is the dynamic
cascode switch logic block. D is the completion detector. Ackln and ReqOut become
zero when F completes the evaluation and they become one when F is in the reset state
(all output terminals stay at zero). If AckOut is one and Regln is zero then F will start to
evaluate. When Ackout is zero and Reqin is one then F will start to pre-charge. Table 2.1
summarizes the relatonship

Event Consegence

Function block completes the evaluation | Ackin=0, Reqout=0

Function block completes the resating Ackin=1, Regout=1

Ackout=1, Regin=0 Activate the function block evaluation
phase

Ackout=0, Regin=1 Activate the function block pre-charging
phase

Table 2.3 The signal dependency of the PCO stage
By cascading 3 stages of pipeline blocks, a pipeline is constructed as shown in figure

2.17. When F1 is in the evaluation phase and F3 is in the pre-charge phase, F2 will start
to evaluate. This mechanism is responsible for the wave front propagation. When Fl1 i1s in

-15-

the pre~charging phase and F3 is in the ¢valuation phase, F2 will start 10 pre-charge. This
second mechanism is responsible for the wave crest propagation. These two mechanisms
combined together can push a wave to propagate from the pipeline head to the tail.
Between each consecutive stage, there is no explicit latch. This is because dynamic logic
is used as the functon block. If the input to the function block is invalid, the function
block will still retain the previous cutput value,

Figure 2.17: PCO pipeline with three stages

24.2 PC1 CONFIGURATION

The first modification is to add dummy stages to hold the data. Fig 2.18 shows
one combined stage. The C latch is shown in figure 2.19

The new configuration is called
PC1[7]. The “1” used in “the word
PC1” represents one extra latch. Since

a PCO pipeline with n stages, at least
n/2 stages are neceded to hold the
reseted stages. It is because consecutive

unreseted stages need a reset spacer in
between to seperate them out. At most

nf2 stages are used to process data.
However the data is dynamically
moving forward in the pipeline. Some
extra stages will be wasted for the dynamic effect. By adding some dummy stages(C
latches) 1o hold the data, a pipeline can hold more data than before. If the complexity of

Figure 2.18: One stage of PC1 pipeline

-16-

the function block is much higher than the latch, then
the performance improvement over the original PCO

C
E_ configuration is greater.

:@_ 243 PS0 CONFIGURATION
B

The delay of a C ¢lement is in the criticai path
[) of a forward moving data token. If C elements are

eliminated from the design, then the forward moving

¢ data can propagate faster. By carefully analyzing the

A B PCO configuration, the C element is found to be
C

redundant and it can be replaced with a single wire,

Latch shown in figure 2.20; this modification is termed the

Figure 2.19: C latch PSO configuration. The rising transition of the C
element is not important when dual-rail signaling is
used. The input data prevents each stage from evaluating untl its input become valid.
Each stage’s predecessor resets faster than the stage’s successor evaluates, and the falling
transition of the C element is always triggered by the falling of the signal from the
successor completion detector. Therefore, it can be replaced with a single wire

connecting the successor’s completion detector to the resetting input of the function
block.

figure 2.20: PSO pipeline with three stages

-17-

244 COMPLEX DATAPATHS

Non-linear pipelines with arbitrary topology can also be constructed. The main
basic building blocks for these are datapath merging and datapath splitting
configurations[7] as shown in figure 2.21a and figure 2.21b.

Splitting

figure 2.21b: Datapath splitting structure

-18-

2.5 ANALYSIS METHODS
2.5.1 PERFORMANCE PARAMETERS

The performance of a synchronous pipeline can be easily determined from the
clock frequency and the number of stages contained in the pipeline. However, for 2 self-
timed pipeline, it is not an easy task. The delay of each component and configuration
determine the performance. Before introducing different performance parameters for a
self-timed pipeline, some basic concepts have to be understood. A token consists of a
data and a reset spacer; otherwise, it is called a bubble. A token flows forward, while a
bubble flows backward. Tokens need bubbles to travel forward. The supply of bubbles
can limit the performance; the supply of tokens and local control mechanism also
determines the performance. A list of performance parameters is shown in table 2.4.

Performance parameters

Lf forward latency

-the delay from new valid data outputs at one stage to new valid data output at the
following stage.

-It can be measured by observing a data token flowing forward through an empty
pipeline.

Lr reverse latency
-the delay from the acknowledgement of a stage's output to the acknowledgment
of its predecessor's output.
-It can be measured by observing the bubble flowing backward through an empty
pipeline.

P minimum local cycle time.
-analogous to minimum clock period for a traditional synchronous pipeline.

T throughput
-Itis the rate at which the input and output must deliver and consume tokens
respectively to keep a pipeline flowing at its maximum capacity.

S static spread
S=2/(H+1)
where H is the number of extra latches in each stage.
S=number of stages needed to hold one data token
(one data and one spacer).

Table 2.4: Performance parameters for self-timed pipeline

-19-

2.5.2 ANALYSIS BY DATA DEPENDENCY
GRAPH

The performance can be analyzed by using a data dependency graph. Each node
in the graph represents a component delay. The up-arrow and down-arrow refer to the
rising transition and the falling transition respectively. From the PCO configuration
(Figure 2.17), the data dependency can be traced to create the data dependency graph
(figure 2.22),

AN TN

CZT'_"‘FZ T CBT ---.*FBT C4 T\‘F‘l- T

Dz{ p3l \BN'

C'll-—-.ﬁ] l C3.l, _’FS.L o

/ \ /c'zl J'\‘/ \DsT

v

o1t

NN

Figure 2.22: Data dependency graph for PCO configuration

After the data dependency graph{7](]11] is drawn, some performance parameters
can be extracted. To find the forward latency, the whole graph is traced to find the longest
path from a transition to the same kind of transition with the next highest index. For
example FaT — D24 = C3T = F3 Tis the longest path meeting the restriction. Delays
for F2 T, D24 and Ca T are added up to get the forward latency. Reverse latency is one
half the value of the delay through the longest path from a transition to the same kind of
transition with an index 2 lower than the current index. The local cycle time is the delay
of the longest cyclic path.

-20-

Figure 2.23: Folded dependency graph for PCO

Observing the data dependency graph in figure 2.22, the graph can be easily
recognized to have a repeated structure. It is due to the homogeneous structure of the
pipeline. Each stage is identical to every other stage. By making use of this property, the
data dependency graph can be re-organized into a more compact form called a folded data
dependency graph[7]. One example for this folded graph for the PCO structure is shown
in figure 2.23. Each node in the folded dependency graph represents the delay for
component transition. The number attached to the directed edge is the stage offset. A
number zero attached to the directed edge means that the component delays at both ends
head are in the same stage. Between D1 and CT, an offset of 1 is placed. The meaning
is that D4 is first activated follwed by the activation of C T of the next stage. Equations
2.1 to 2.3 describe the forward latency, reverse latency and minimum local cycle time.

L, = maximumoverall [T
f = non-repeating cyclic paths i€ path
with 0< T, Zwi 2.1)
i€ path L i€ path
maximum over all - T
L= non-repeating cyclic paths e M‘;
with 0> Sw; _——
weport [ieparh (2.2)
maximum over all
P = non-repeatng cyclic paths
with 0= Zw ie%z:r):
i€ path

(2.3)

The corresponding methods used to find performance parameters by dependency
graph and folded dependency graph are conceptually equivalent. The methods are
structurally different, but the underlying concepts remain the same. The folded
dependency graph can only be used for homogenous pipelines. If the pipeline contains
different function blocks for its stages, the normal dependency graph should be used. By
applying equation 2.1 to 2.3 to the PCO folded datwa dependency graph, the following
equations are generated.

Le=max(ts T+1p 4 +1c T] (2.9)
Lr=%[IFT+IDJ'+IC~L+IF'L+IDT+ICT] (2.5)

=tFT+tD~L+tC~L+tF~L+tDT+ICT 2.6)
+2-max[tpT+m~L+tcT.tF L+tp T+ic J-] .

By making some assumptions, the equations can be greatly simplified. The
assumption includes: the rise and fall time of completion detectors are equal; the rise and
fall time of Muller C elements are equal; the reseting delay is larger than the evaluation
delay for function blocks; the delay of C element is less than the reseting delay of
function blocks. The equations (2.7 -2.10) describe the assumptions.

-2

to=tpT=1pl

zc=:‘cT=th’

el e T

tc<trd

2.7)

(2.8)

(2.9)

(2.10)

Using these assumptions, equations 2.1 to 2.3 can be reduced to the following
simpler equations.

Le=tr T+tp+1tc

L:=tp+tc +é[EFT+tF‘L]

P=3tf T +1g l +4tp+4tc

(2.11)

(2.12)

(2.13)

Applying equatdon 2.1 to 2.3 to various PC and PS self-timed pipelines, a set of
equations describing the performance of pipelines is derived. The results are shown in
wable 2.4. The numbers are co-efficients of the equadon. For example PCO cycle time has
3 for tzT, 1 for trd, 4 for tc and 4 for rp. This is actually the equation

3t T+eed +4zc+41p.
Config Cycle time Forward latency Reverse latency
rFT IFJr Ic In IFT ICT ID*L tFT IF~L Ic In
PCO 3 1 4 4 1 1 1 105 0.5 1 1
PC1 2 0 4 4 1 2 1 105 05 2 2
PC2 1 1 4 4 1 3 1 05 0.5 3 3
PC3 1 1 4 4 1 4 1 105 05 4 4
PSO 3 1 0 2 1 0 0 105 05 O 1
PS1 2 0 2 2 1 1 0 JO5 05 1 2
PS2 1 1 2 2 1 2 0 |05 05 2 3
PS3 1 1 2 211 3 0]|05 05 3 4

Table 2.5: Performance parameters for various pipelines

-23-

From table 2.5, it can be seen thar the PS family always has better performance
than the PC family. By adding laiches to the stages, the cycle time is reduced. However
the forward latency and reverse latency are increased. After adding two latches, both the
PC and PS family saturate. This means that adding more latches brings no more
improvement to the cycle time. If the function block reset time is not much faster than its
evaluation time, then adding two extra latches is not better than adding one. Another
observation is in the PSO family; the forward latency only equals to the function block
evaluation time. The effect looks like a pure combinational functon block delay.

Config Big F Block Small F Block
1ed=0 trd =2 T
ic=tp=0 tc=tp=tr?
L P L P

PCO 1 3 3 12

PCl 1 2 4 10

PC2 1 1 5 10

PC3 1 1 6 10

PSO 1 3 1 6

PS1 1 2 2 6

PS2 1 1 3 6

PS3 1 1 4 6

Table 2.6: Effect of changing function block size on the performance parameters

To get an overview of the forward latency and local cycle time range, a table with
values normalized to the function block evaluation time is constructed. Table 2.6 shows
different performance values for large and small function blocks. For large function
blocks, it is assumed that (tC=tD=0) with reset time equal to zero. This is valid because
the evaluation time is comparatively larger than other delay times. For small blocks, all
delay times are assumed to be equal (tC=tD=tF). This is also a valid assumption as all
component delays are comparatively close to each other.

-24-

2.6 CONSTRAINTS OF DIFFERENT OPERATION
REGIONS

A pipeline is a subset of a more general class of structure called a ring structure.
A ring is a looped pipeline with N equal 10 the number of stages it contains and G the
number of functon block evaluations required. For a general iterative problem, N is a

fraction of G. It takes % number of loops to obtain the final result. A simple pipeline is

a sub-class of a general pipeline with G equal to N. To use the ring, or the pipeline, more
efficiently, multiple tokens are allowed to circulate inside the ring. Let K be the number

-
of tokens that can be packed into the ring where S is the static spread equal to H.:i-l- H

is the number of extra latches in each stage. For example, PCO has no extra latch so H=0.

This % value is called token capacity. The number of bubbles that can be found in a ring

is 2 . The factor of 2 is due to the fact that each missing data token leaves 2 bubble

spaces.

Pipeline performance is evaluated by latency and local cycle time. For the ring
structure, similar parameters are present which are called total latency (1) and total
cycle time (¢). The total latency is the time a token takes to finish computation and
leave the ring structure, The total cycle time is the time between consecutive tokens fed
to the ring. There exists a relationship between these two parameters. The equation

A=Kg¢ (2.19)
governs this relationship, and is intwitively simple. Since there are K tokens circulating in
the ring and ¢ is the consecutive token feeding time, K times ¢ is the time for z token to

stay in the ring to keep that K tokens circulating. Since T= -3; equation 2.15 holds.

. K
A=— 2.15
T (2.15)

2.6.1 PERFORMANCE GRAPH

The performance of a ring can be determined from the performance graph(7]
shown in figure 2.24. The axes are K and G, which are the number of tokens and stages
in the ring. By controlling the number of data tokens fed to the ring and the number of

stages contained in the ring, the operating point can be moved to different regions of the
performance graph.

AN

G —§=

N=G unrolied ring line

Q
£
QD
-
8
Q
o
Pl &
L¢ -—
1
v
3L
2

1 G%L

v7<

Figure 2.24: Performance graph

The data limited region is the region where the performance is limited by too few data
tokens introduced to the graph. The ring is not fully utilized. Therefore the total latency is

A=GL, (2.16)

-26-

Substituting this equation to equation 2.15, this equation T =GLLI 1s derived. For
bubble limited region, the performance is limited by an insufficient number of bubbles in
the ring. The data tokens are jammed in the ring. They can only move forward if they
have bubbles to consume, however in these regions, there are t00 many data tokens,
therefore very few spaces are left for bubbles. The throughput equals the number of
bubbles multiplied by the data token moving rates.

N 1
T=2=-K|
(5-%) %z

r=-—‘—(ﬁ-x) @17

is the bubble moving rate. The rate of the data token is 2 times less because a

GL,

bubble moves two spaces backward to make a data token move one space forward.

Substituting equation 2.17 into equation 2.15, we obtain:

_ GL,
1= 5 (2.18)

—-1

SK
In the control limited region, the limiting factor is the local cycle time. Therefore the
throughput equation is

N
T=— 2.19
GP 219)
and by substituting it into equation 2.15. equation 2.20 is generated
1= GPK (2.20)
N

Equating 2.16 and 2.20, the intersecting line between data limited region and control
limited region is found to be

N=kL 221)
Ly

This line is called the “zero-overhead” line. Operations that fall in this line give the
lowest latency value and the best throughput rate. There are another two interesting
operation lines; the single token line and unrolled ring line. The single token line (K=1)
denotes only one 1oken circulating in the ring. This line intersects with the zero-overhead

. P . . - .
lineat N =z-. This value gives the minimum number of stages for constructing a zero-
i

overhead single token self-timed ring. The unrolled ring line (N=G) is actually the

operation line for pipeline. It intersects with the zero-overhead line at K= Géﬁ_ This

-27-

value gives the number of data tokens that should be fed to 2 pipeline 10 get maximum
throughput and lowest latency value.

By making some assumptions, an estimation of the number of stages that a ring
should have in order to attain zero-overhead performance is derived. For a ring with
large function blocks, it is assurned that the blocks reset in zero time compared to their
evaluation times. Completion detectors and C elements are also assumed to require zero
delay. This is a valid assumption, since the transistor chain in the n block discharges
much more slowly than the single p-transistor pre-charges. Another reason is that
cascaded function blocks evaluate in senes but reset in parallel. For a ring with small
function blocks, function reset times, function evaluation times, completion detector
delays and C element delays are assumed to be equal. According to these assumption, a
table is generated to show the P/X ratio for different configurations(table 2.7). It can be
seen that PCO takes 3 stages for a ring with large function blocks and 4 stages for a ring
with small function blocks to circulate a single token without overhead. For a multiple
token ring, the number of stages equals the number of the stages for a single token
multiplied by the number of tokens. The range in PSQ is 3 for large function blocks and 6
for small function blocks. All other sizes of function blocks will require 3 to 6 stages for
each token.

pipeline Big F block Small F block
configuraton
trd =0 trd=1rT
tc=tp=0 tc=to=tFT
PCO 3 4
PC1 2 2.5
PC2 1 2
PC3 1 1.67
PSO 3 6
PS1 2 3
PS2 1 2
PS3 1 1.5

Table 2.7: Effect of changing function block size on the total stage number

-28-

2.7 PERFORMANCE IMPROVEMENT
TECHNIQUES

While satisfying the zero-overhead constraint, there are some techniques which
can further improve the performance. A few of them will be presented in the following
sections.

2.7.1 DECREASING GRAIN SIZE

Decreasing the grain size of the ring will increase the limit of throughput. Figure
2.25 shows two pipelines with a large grain size pipeline at the top and small grain size
pipeline at the bottom. Both pipelines perform the same function. The difference is only
in the grouping of function blocks in each stage. The large grain size pipeline groups
three function blocks in each stage, while the small grain size pipeline has only one
function block per stage. The effect of changing grain size is shown in figure 2.26. The
large grain size pipeline has a smaller maximum throughput rate than the small grain size
pipeline. The resultant increment in performance is obvious since the small grain sizs has
more stages and more spaces for storing data tokens. This is analogous to adding extura
latches to the stages to increase the performance. These small grain pipelines can
accommodate more data tokens at any time instance without breaking the zero-overhead
constraint. However, reducing the grain size, in other words breaking the pipeline into
more stages, will increase the hardware overhead. Also, the number of stages can be
reduced if the grain size is chosen to be small. It is because more stages are available and
these extra stages can be eliminated by allowing data tokens to circulate in the ring more

[yl

large grain size

Ialalgyly e

small grain size

Figure 2.25: Pipelines with Large and small grain size

-29-

small grain
size

hy
» Ill
i W, ""l.
|I l|| Y
/ i h
! l"'t ltl"l.
1 Illh
|||‘

large grain l"'n.
size h

Figure 2.26: Effect of grain size on throughput rate

The tradeoff is between grain size, number of stages and area. Area can be minimized
while satisfying the zero-overhead constraint. An example is presented for the PSO
configuration. First of all, the zero-overhead constraint is stated

N2kL @22)
Ly
Next, the P and Lt from Table 2.4. are substituted. It becomes
N2 K[3+M] (2.23)
e T

And then it is assumed that function blocks reset in a single delay, let g r be the measure
of grain size which is assumed to be -t-F—I After substitution of g into the equation. It
IF

becomes
N2K 3+-1—[1 +zﬂ] (2.24)
grl 1rd
And area is proportional to { g-+aD)N, where aD is the relative size of the completion
detector. This area equation is minimized with respect to gr. The following two

equations describe the conditions of zero-overhead with minimized area for PSO
configuration.

(2.25)

- |goly, 20 2
8, =133 [l-i- rpi] (2.26)

2.7.2 SHIFTING FUNCTION BLOCKS

Another way to improve the local cycle time is to reduce the delay time for the
completion detector. The complexity of the completion detector can be reduced if the
data path width from completion detector to tap is reduced. This can be accomplished by
moving the thin data path out of each stage as in figure 2.27. After moving them to the
interior, the external stage to stage data path width is changed to 5 bits. This will reduce
the complexity of the completion detector and thus reduce the local cycle time.

A

D D
| |]| —» |||] | }—>
5 30 bits 3 30 bits
bits bits
e - — -
30 5 30 5 30
bits bits bits bits bits

Figure 2.27: Different external datapath widths

2.7.3 SELECTIVE TAPPING OF DATAPATHS

Another similar method is selective tapping of datapaths. Although from a
theoretical viewpoint, all the wires in the data paths should be tapped, some tricks can be

-31-

used 1o reduce the tapping
by analyzing the circuit 1o

determine the most critical

wires for tapping. As seen
in the left side of figure
2.28, one critical pair is
found and therefore one

group of tapping is
necessary. The right one
n has two pairs of possible
critical wires, so the tapping
is applied to two groups of
wires.

YY YV YV VY VY
WYY WYY VY

Figure 2.28: Selective tapping of datapaths

2.74 COMPLETION DETECTOR PLACEMENT

The last method to

I | I increase the performance is

(L J} Old placement moving the placement of the
completion detector. If a stage

contains multiple cascade
function blocks, the
completion detector can be
I L_ moved to the output of the first
T l Newplacement | function block. That will make

=4 Fa Fb

Q the completion detector delay
overlap with the function
= F2 o block delay as in figure 2.29.
Figure 2.29: Different placements of 2.8 SUMMARY

completion detector

Various problems in

constructing syachronous

pipelines have led to the swdy of self-timed pipelines. The study begins with
identification of advantages of self-timed pipelines over traditional synchronous

-32.

pipelines. The Muller C element is examined with its structure and its application in
wave propagation circuit. Signaling methods are studied afterward. They include
transition signaling, 4 phase dual rail signaling and 2 phase dual rail signaling.
Composition and use of completion detector are also examined. After all of the basic
background information has been provided, the PCO self-timed pipeline is constructed,
followed by PC1 self-timed pipeline constructed from adding extra latches to PCO
pipeline. The PSO self-timed pipeline is derived from PCO self-timed pipeline by
eliminating the C elements. Methods of constructing complex datapaths are also
introduced. Analysis methods are introduced by explaining the five performance
parameters. These parameters can be obtained by analyzing the data dependency graph
which is derived from the pipeline delay values and topology. The repeated structures in
the data dependency graph are used to simplify the graph into a folded data dependency
graph. The results of exwracting the performance parameters are organized into tables.
Another graph showing different regions of operation is constructed from the
performance parameters derived previously. These regions are data limited region,
control limited region and bubble limited region. the throughput and latency of pipelines
operating in these regions are also derived. Zero-overhead line is identified as the line
intersecting between data limited region and control limited region. At the end of this
chapter for the self-timed pipeline, various techniques of performance improvement are
discussed. They include decreasing grain size, shifting function blocks, selective tapping
of datapaths and changing the completion detector placement.

-33-

CHAPTER 3

SWITCHING TREE SYNTHESIS

3.1 INTRODUCTION TO DYNAMIC LOGIC
DESIGN

When designing digital logic circuits, either static or dynamic logic cells may be
used as building blocks. As long as the power supply is operating, static logic will keep
the logic level constant if the inputs are constant. Dynamic logic needs periodic charging
to maintain the valid logic state. It has two different operating phases called pre-charge
and evaluation. The pre-charge phase is used to charge an internal parasitic capacitor
such that the output is biased to a valid logic state. In the evaluation phase, the parasitic
capacitor may discharge depending on the input signal. Orly at the end of the evaluation
phase is the output considered valid. The dynamic logic family also decreases the power
dissipation because there is never a conducting path between VPP and V§S at any time
instance. NMOS logic has high power consumption as there is a conducting path in some
tme instance. The cost in area is smaller for dynamic logic than static logic. Static logic
needs both an NMOS network and a PMOS network for implementation; however,
dynamic logic needs only one of the

MOS networks for a single gate
implementation. Dynamic logic is
clk 4 generally faster than static logic for there

output is less input capacitance associated with
dynamic logic.

foput |k

Dynamic CMOS logic, as shown
in figure 3.1, consists of a PMOS and a

—_I Q NMOS clock transistor together with an

n-logic network block. The n-logic may
create a conducting path depending on

Figure 3.1: Dynamic CMOS logic the input signal. Direct cascading of two
dynamic logic cells is not feasible.

-34.

Figure 3.2 shows two cascaded dynamic blocks. When the clock is low, both pre-
charging nodes are charged to VDD. Afterward, the clock is changed to V§§ which
switches the logic gates into the evaluation phase. The first dynamic logic will start to
evaluate, however the second dynamic logic will get the output of the first dynamic logic
as input. This input is invalid since the first dynamic logic has not yet completed
evaluation. This invalid input may accidentally discharge the evaluation node of the
second dynamic logic block. To selve this problem, multiple phase clocking[12] can be
used. Adding exwra delay, as shown in figure 3.3, is also a solution. This extra delay
value is highly technology dependent and the accuracy is largely controlled by
technology parameters; therefore, it is not a practical solution.

OE AL, e
input-J-w h n

block block

IIJ |
“-—l— I

Figure 3.2: Cascading two dynamic logic structures

clk __ci _q
output

inputested»>-| 1 n

o
—
2

-

e

o
—
3

-~

I:L delay I

Figure 3.3: Adding extra delay to solve race problem

-35-

3.1.1 DOMINO LOGIC

Another approach is through modifying circuit structure. Figure 3.4 shows a
domino logic gate[13). It is simply a dynamic logic gate cascaded with a CMOS static
inverter. By doing so, the race problem in cascading dynamic logic can be solved. The
inverter inverts the pre-charging node signal and during the beginning of the evaluation
phase, all outputs of domino logic are low and therefore no driven domino logic gate will
accidentally discharge. Another advantage of this logic is that the inverter acts as a buffer
which increases the driving force of the gate. Domino logic has the disadvantage of not
being logically complete. Only non-inverting logic functions can be implemented with
this logic family. The reason is the uni-directional logic switching property. For a
domino logic gate, the output can only change from zero to one or stay at zero, but it
cannot change from one to zero. Since the domino logic belongs tc the class of the
dynamic logic family, it shares some of disadvantages with dynamic logic, such as the
leakage problem of the evaluation node. Leakage may cause the evaluation node to
discharge to a faulty state.

]

Do ,,output

Figure 3.4: Domino Logic

Figure 3.5 shows two solutions for this problem: adding weak transistor to
continuously recharge; adding feedback transistor to retain the correct logic level.

-36-

L.
~N

1= >

\4
Bd] | cner &—OH; o—
n

input output input output

block block

] {L

Figure 3.5: Solutions for solving leakage for dynamic logic

3.1.2 CASCODE VOLTAGE SWITCH LOGIC

Domino logic is restricted to non-inverting gates which may cause trouble in logic
synthesis. To overcome these problems, cascode voltage switch logic{14] is introduced.
This new logic family is logically complete and complementary outputs are provided.
Figure 3.6 shows two CVSL logic structures.

=
=
8
&

aaips] nblock
input

| o

Figure 3.6: Static and dynamic cascode voltage switch logic

-37-

The left one is a static gate with a push-pull load and the right one is a dynamic gate with
a clock signal connecting both PMOS tansistors. Because both complementary and non-
complementary outputs are provided, an inverter in this logic family is merely two wires.
By reversing the two output terminals of any gate, the complementary function of the
gate is generated. An AND gate is identical to 2a NAND gate. An OR gate is identical to
a NOR gate. We need only AND gates and OR gates in this logic family to realize any
Boolean function. Another advantage of this family is that the completion of evaluation
can be observed from the output, which is not available in other logic families.
Whenever a complementary output value pair appears at the output terminals, the
evaluation phase is complete and the output values are valid.

3.1.3 CHARGE SHARING PRCBLEM

The major problem of using dynamic logic is the charge sharing problem. It
occurs when an input to the function block is high and tums on an n-block transistor as
shown in figure 3.6. This creates paths to the internal nodes consisting of drain and
source capacitance. This capacitance, together with the evaluation node capacitance,
shares the charge originally stored only in the evaluation node. The equation below
shows the new voltage at the evaluation node.

. C
Vp = £V, (3.1)
p Ci+Cp p

VP Pre-charge node voliage
New pre-charge node voltage
C: Internal capacitance

Cp, Pre-charge node capacitance

The voltage will be lowered to Vp according to equation 3.1. Rather than pre-charging
the evaluation node, some internal nodes can be selectively pre-charged by adding an

extra pre-charge transistor[12] as shown in figure 3.7. The selection of internal nodes has
to be verified by simulation.

-38-

N
R

input X n

% block

_g

Figure 3.7: Pre-charging internal node

Another solution is to ensure that the input signals are stable before entering the
evalyation phase. This can be achieved by delaying the clock signal to the functon
block, as in figure 3.8. By doing so, the internal nodes can be pre-charged in the pre-
charging phase.

ckl delay

C;lE? [output
iw n

block

4

Figure 3.8: Delaying the clock sigral to solve the charge sharing problem

By increasing the capacitance of the pre-charging node, the problem can also be solved.
An extra capacitor connecting .he pre-charge node can increase the capacitanc. or
indirectly by using a larger inverter in the domino logic. The feedback transistor

«+30.

configuration used in solving the leakage problem can partially solve this problem,
However, it is not a very efficient method because the charge sharing takes place in a
very short time while the feedback transistor takes a longer time to re-supply the charge.

3.2 CASCODE VOLTAGE SWITCH LOGIC
SYNTHESIS

The wraditional method of realizing Boolean function block is based on switching
circuit theory{17] which uses AND, NAND, OR, and NOR gate as the basic construction
blocks. However, due to the increasing availability of VL3I ASIC design and
advancement of computer aided design technology, classical switching network
theory[17] which uses switches as the basic elements can be used. These switches are
translated into MOSFETSs in MOS fabrication technology. A method based on graph
theory has been developed for MOS circuit design called switching network logic[21].
Hwang[6] has develop a 32 bits CMOS adders based on multiple-output domino logic.
Chu[15] has developed a design procedure based on the Karnaugh map and the Quine-
McCluskey method for cascode voltage switch logic design. Recently Jullien{3] has
developed a minimization procedure based on a transistor tree for dynamic logic block.

. J

input B n
Py block

{>c . output

Figure 3.9: n block used in domino logic

Switching network design concerns the topological structure of a transistor
network(n) as shown in figure 3.9. This n-block is the NMOS transistor network for
dynamic logic design. One or more evaluation nodes are connected to this n-block with a

-40-

switching pathway connecting these evaluation nodes and the bottom node conditonally
turned on and off depending on the state of the input signal. This n-block design can be
divided into two sub-problems: the connectivity design aud the physical layout design.
The connectivity design concemns the transistor connectivity only without considering the
physical placement of the transistors. It is appropriate to think of this as a netlist design.
The next phase is the physical layout design. This step takes a network as the starting
point and the final product is a physical layout description which conforms to the target
fabrication technology. The connectivity design is a technology independent procedure
while the physical layout design is highly technology dependent. However, some
variation can be seen in this hierarchical division of problems. For example, the
connectivity design can take the layout style adopted in the physical layout as a constraint
parameter and produces a net-list with concern to the final layout design.

3.2.1 TRADITIONAL DESIGN METHOD

The traditional method of cascode voltage switch logic design is based on the K-
map and tabular method introduced by Chu[15]. These methods basically divide the n
block into four sub-trees as shown in figure 3.10

AL <l o

tree tree tree tree
derived detived derived derived
from from from from
(1) list (01) list (10) list (0) list

Figure 3.10: Traditonal method of CVSL synthesis

and the designer derives the tree structures based on Boolean functions generated from
the K-map or tabular method. Afterwards, the designer merges the sub-trees by finding
common structures between all sub-trees. The designer needs some intuitive skill to

-41 -

partition the structure into four sub-trees. It is not an easy task to choose a variable to
partition the structure such that the final transistor count is small. The merging part of the
procedure is also a problematic step, since merging may create an unexpected conducting
path which may cause incorrect evaluation. As the number of input variables increase,
the design procedure becomes very time-consuming and the result may not be very
efficient. In the following section, a new design procedure which gives very good results,
is presented; this procedure is easily automated by computer. Even without a computer,
the procedure is quite efficient to apply.

3.2.2 NEW DESIGN METHOD

Any n-block for cascode voltage switch logic can be implemented with a full tree

=C)
g

— o - = OO O O
o OO = = OO T
(SN o T o I = L o
—_ e O = O = O O ™

Figure 3.11: Example Truth Table

having n levels. For example, the Boolean
function, as shown in figure 3.11, is to be
implemented. The output column of the truth
table is copied to figure 3.12. All of the wires with
zeros and ones are connected respectively. After
connecting all the zeros and ones wires, there are
two terminals at the top of figure. 3.13 and one
terminal at the bottom. This three terminal block
is the n block for the cascode voltages switch
logic. By merging transistors in the n block, the
ransistor count of the n-block can be significantly
reduced. The method for reducing the block is
based on the algorithms proposed by Bryantf16].
In lis paper, he presents a new data structure for
representing Boolean functions and a set of
algorithms for manipulating them. The basic

element in his data structure representation is a two way decision block commonly used
in the tree data structure representation. Its hardware equilvant is realizied by using two

tansistors proposed by the author.

-42-

0 0 I _(j) 11
E-i c-I T:-”:i: c c-|
5 b4 5[b

1]

Figure 3.12: rull tree of transistors with terminals assigned with logic values.

b-”:|

Figure 3.13: Full tree of transistors with terminals wired

The basic element for this method is a circle symbol representing two transistors
as shown in figure 3.14. This circle is a three terminal szucture with two terminals at the
top and one at the bottom. The variable beside the circle is the input variable connected
1o the gates of the two transistors inside the circle. A node number is usually attached to
the circle for indexing purposes.

-43.

34[: a1§wa

Figure 3.14: equivalent circuit for a circle symbol

Another aspect of the method is a set of rules for assigning the node number to
each circle. Table 3.1 show the rules. This procedure is started with an empty key table
which grows when a new key is assigned to a node. After every node has a node number
attached to it., the key table will be used for constructing the merged tree diagram. This
merged tree diagram is then mapped to the tansistor network by substituting the circles
with the corresponding transistors.

Rule 1: If the left and the right node numbers are equal, the parent node number
will be equal to the children’s node number.

A

Rule 2 If the left and the right node numbers can be found in the key table, the
recorded parent node number will be substitute to the current parent node.

a 2a<0,1> 2a<0,1>
3a<l,0> e 3a <1:0>
4b<32> 4b<32>

b > (4)

Rule 3 If the left and the right node numbers cannot be found in the key table, a
new parent node number will be created and recorded in both the key table and the
current parent node.

a 2a<0,1>
2a<0,1> o 3a <!.:0>
3Ja<1l,0> 4b<32>

b > (4)

Table 3.1: Rules for assigning node numbers to the tree

Figure 3.15 shows a truth table for the sum bit of a full adder. The output column
is copicd to the top of the figure 3.16 which shows a full tree inverted.

a b ¢ |S C
0 0 0J0 O
0 0 111 9
¢ 1 0J1 O
0 1 1]0 1
1 0 01 O
1 0 110 1
i 1 00 1
1 1 1|1 1
Figure 3.15

Full adder mruth table

a
Figure 3.16: Full tree with sum bit column of the full adder truth table

The terminals are connected to the rectangular boxes containing the output values of the
sum bit. The circles are assigned with node numbers according to the rules presented in
table 3.1. The final tree with assigned node numbers is shown is figure 3.17.

-45.

c) 3 3 2 2 ¢ <0,1>
3¢ <1,0>
4 b 23>
b 4 5 5b <32
6 2 <4,5>
a 6

Figure 3.17: Full Tree with assigned node numbers

The key table is then used for constructing the merged tree diagram as shown in figure
3.18.

Figure 3.18: Merged tree for sum bit of full adder

The first row of the key table 2c<0,1> corresponding to a circle with 2 as the node
number, placed at the row ¢. Its left wire is connected to 0. Its right wire is connected to
1. Each row is mapped to the merged tree diagram one after another. After the merged
tree is available, the ransistor connection diagram for the n-block is constructed by

substituting each circle with the corresponding transistors. The final n-block is in figure
3.19.

| —
T

c
5[o B[»®
| Bl PIL
7| a
it S————

Figure 3.19: CVSL implementation of sum bit generation for full adder (n-block only)

Connected with the pre-charge transistor, ground switch and inverter buffer, it is shown
in figure 3.20.

2
~

clk ‘d‘_r_q—[‘

L

i
clk E_-l-'

Figure 3.20: Dynamic cascode voltage switch logic implementation of the sum bit

A few examples are shown in figure 3.21 and figure 3.22. The variable ordering will
significantly affect the resultant mansistor count. Figure 3.23 shows two circuits of the
middle bit of a 2 bit adder with a good and a bad variable ordering. In order to get a
circuit with least transistor count, enumeration of all combinations of variable ordering
should be incorporated into the synthesis procedure. For an n input variable function,
there are n! combinations to ry.

0 1
cll ¢
c 2 8l ol ®
3
b (& 2l a
a S

Figure 3.21: CVSL n-block of the curry bit generation for full adder

0 1
e 2

d 5 3

c (8

b 9

a

Figure 3.22: CVSL implementation of S bit majority function

-48 -

0
1

| :]I-bz FD': Fo2 152

M,

E"-?l l‘all]l'a-}]'“‘%: F 1k t”?z:”'?f I

tlhz]l-f;l-;]!-?;'jtazpﬁp}ag T Tle; 1or
e Jﬁ,ﬁrbx :}3, P‘ll]Fa'l Faljjl T
&I:“'E'z EI‘E::H'?O

Fig 3.23: Two implementations of the middle bit of a 2 bit adder.

3.23 SEMI-CUSTOM CELL DESIGN

=
£

The n-block design method proposed previously is suitable for full custom VLSI
design. Here, a new semi-custom CVSL programmable cell is proposed. As mentioned
before, any Boolean function of n variables can be implemented with a full wee of n
levels. A full tree of 3 levels is shown in figure 3.24.

» Q

Q<

Figure 3.24: Full mee implementation for CVSL

-49.-

The terminals of the top row circles can be connected to either Q or Q depending on the
wuth table of the target Boolean function. This approach takes a lot of transistors
compared with the reduced tree method. However, some tricks can be applied to the full
tree to reduce the transistor count by almost half,

First, chserving the circles at the top row of the full ree diagram, there are only

four possible connections for each top row circle. They are shown in figure 3.25a. Also,
two of the possible connections can be reduced to a single wire only as shown in figure

3.25b.
o 0 1 0 o 1T 1 1

Figure 3.252: All possible combinations of circle symbol at the top level

0 O 0

1 1 1
> }:;5'<lh———I>

Figure 3.25b: Circle to wire transformation

By pre-encoding these four possible connections, the top row of any full ree can always
be replaced with 2 circles. The wire connection part is moved one level into the tree as
shown in figure 3.26. Since the top row of any full wee has the largest number of circles
than the sum of all other rows, the encoded tree has significantly less transistors than the
full ree. The full tree has 20+1-2 transistors where n is the number of input variables.
The encoded tree has 27+2 transistors. As n increases to a large value, the percentage of
saving will become almost 50%.

-50 -

-

Figure 3.26: One level encoded semi-custom cell

3.24 COMPARISON

To get an overview of the advantage of using the new reduced tree and the
encoded tree, a table (table 3.2) is shown below for comparison. All the data are
generated from a computer optimization program. It can be seen that the new reduced

tree method always generates the best solution.

Transistor count table for different tree structures

-51-

Cell function New S-tree | Full tree | encoded tree
5 bits Majority 18 62 34
5 biis XOR 18 62 34
5 bit Prime detector 20 62 34
mod3 detector 22 62 34
Table 3.2

3.3 MULTIPLE OUTPUT DOMINO LOGIC DESIGN

In the previous section, a new cascode voltage switch logic design method has
been proposed. This method generates circuits with both complement and non-
complement outputs . To implement multiple output cascode voltage switch logic, this
procedure 1s applied to each output function separately. The cascode voltage switch logic
can be seen as two domino logic gates grouped together. However, for the new design
method proposed, the two separate n-blocks are merged together. If two can be merged,
more blocks should possibly be merged. This multiple-block merging technique is called
the Muldple-Output Domino Logic (MODL) synthesis method. MODL synthesis is not a
new concept. It has been used in Hwang’s work[6]. Their Model of synthesis of MODL
is shown in figure 3.27 which restricts f = fjf3. A more complete method of MODL
synthesis is proposed in Jullien’s work(3]. In that paper, the MODL synthesis is treated
as a tree reduction problem by using a few reduction rules. However, the order in which
the reduction rules are applied will greatly affect the result. Also, after each rule is
applied, a checking of correctness is necessary since applying a rule may alter the
implementation of the original Boolean function. A more efficient method is proposed in
the next section. This method generates an unique transistor network for each specific
variable ordering as opposed to other methods. Checking of correctness is unnecessary
for this synthesis method. Reduction by hand is also feasible. The final layout area is
smaller than by using other methods if th full custom layout style is adopted.

Figure 3.27: Traditional model of MODL.

-52-

3.3.1

Truth table Empty key table

{

reduction
engine

!

tree to schematic
mapping for CVSL

v

Schematic
Figure 3.28: CVSL synthesis

THE NEW METHOD

The new synthesis method for MODL is
a modified algorithm of the new CVSL
synthesis method incoduced earlier. Before the
MODL method is described, a birds-eye view
of the CVSL algorithm is presented first.
Figure 2.28 shows a block level abstraction of
the CVSL algorithm. The truth table and the
empty key table are supplied to the reduction
engine. This reduction engine applies the rules
10 the full ree and then each circle in the wee is
assigned a node number. Following this, a
merged tree description is formed in a key table

Truth Table (f]

Truth Table (f4)

Empty Key Table

reduction
engine

&

Truth Table {£3) (

reduction)
engine

N

O O

/

reduction
engine

mapping for MODL

Schematic

tree to schematicj

Figure 3.29: MODL synthesis

- -53-

format. This key table goes through a mapping procedure by transforming each circle
into two transistors. This part is accomplished in the “tree 10 schematic mapping” block.
The result is the schematic for the n-block. The block diagram of the MODL synthesis
procedure is shown in figure 3.29. The reductivn engine used in MODL syathesis is
same as the oae used in CVSL synthesis. The wee to schematic mapping procedure is
different from the one used in CVSL. The block diagram (figure 3.29) is for the three
outputs function (F1,F2,F3). By cascadirg more reduction engines, the synthesis
procedure for any number of outputs is possible. For MODL, the n-block, as shown in
figure 3.30, is the result. Since the zero terminal has no use in MODL, we eliminate
those transistors in the n-block which are attached to the zero terminal. An example of
e majority function is given in figure 3.31 The n-block on the left side is generated from
the new CVSL algorithm. By eliminating the three ransistors connected to zero terminal,
an n-block for domino logic is derived as shown on the right side.
The number of transistors can be further reduced by replacing the

0 1 two circled transistors with two wires.
| l Since the zero terminal has no use in MODL, we climinate
n block those transistors in the n-block which are attached to the zero
for terminal. An example of the majority function is given in figure
MODL 3.31 The n-block on the left side is generated from the new CVSL
l I I algorithm. By eliminating the three transistors connected to zero
terminal, an n-block for domino logic is derived as shown on the
N}:E.f: fz.rBI(\,rIODL right side. The number of transistors can be further reduced by

replacing the two circled transistors with two wires.

— cll
G
)

Figure 3.31: CVSL and domino logic implementation of Majority function

-54.

After climinating the redundant transistors and the zero terminal, the n-block will
be inveried before connected to the rest of the circuitry, as shown in figure 3.32.

0 1

| |
n block

for V

e cli -dé—cﬂ:l—clfl

After Elimination q [E

n block
for

MODL
[clk 1&
Inverting the Block

n block
for
MODL

Figure 3.32: The steps required after the merged tree generation

This simple elimination and inversion is the difference between CVSL and
MODL in the *“tree to schematic mapping™ procedure. An example of a 2 bit adder is
shown in figure 3.33.

T\

5T b, R Ly
b= by F7 b a]I‘Erfibﬁljl‘al £

I]P%]-Co : ’

Figure 3.33: MODL implementation of 2 bit adder

—

- e

3.4 DON’T CARE CASE

In a real world application, not all digital circuits have fully specified minterms as
the requirement. Some applications, for instance BCD to 7 segment decoder, MOD 7
multplier, BCD code related circuits and some control circuits do not have fully filled
truth tables. In other words, they have some “don’t care cases”. These don’t care cases
can be zeros or ones. This degree of freedom gives us choices for further reduction.

One easy way to make use of this freedom is enumeration of all possible
combinations to the “don’t care cases” and afterwards, each truth table will pass through
the reduction process. The one which produces a minimum transistor count is the final
selecton. For n variables with m don’t care cases, there are 2Mn! wees to reduce. n is
usually less than 8; however m can be any number between 0 to 127 for functions with

-56-

less than 8 variables. If a function has many don’t care cases, the number of
combinations for reduction will lead to unacceptable computation time.

Because of this problem, a new algorithm is developed to handle the don’t care
cases more ¢fficiently. The don’t care case algorithm basically consists of two main
parts. The first part substitutes the don’t care cases in the truth table with ones and zeros.
The second part performs the ree reduction. The reduction algorithm is either the CVSL
reduction engine or MODL reduction engine depended on the target application. The
algorithm is shown as below

Generaie all variable ording combinations

Repeat
put the output columns of the truthtable into "logic"
logic<-dontcare(logic)
tree<-reduction engine(logic)

Until all variable orderings are used

get the tree with the least number of transistors

“logic” is a representation of a truth table. Only the output columns are recorded
in the “logic™. For example a full adder has eight rows for the possible minterms and two
column for the sum and carry bit outputs. These two columns are recorded as below

<0> <01101001 >
<1> <00010111 >

The “don’t care”™ procedure substitutes each don’t care case from “X™ to “1” or
“0". Itis a recursive procedure which basically does pattern matching. The underlying
concept behind this procedure is the assumption that more transistors can be reduced if
the merging occurs closer to the top of the wee. It is a valid assumption since a sub-tree
closer 1o the top of the ree generally consists of more transistors than the one farther
down. It can be visualized from figure 3.34.

-57-

A—>

< B

Figure 3.34: Full tree of circle symbol

Sub-tree A consists of more transistors (circles) than sub-tree B. The algorithm first tries
to do merging by assigning ones and zeros to the truth table. If the trees cannot be
merged, then the algorithm divides the each tree by half, and repeats the procedure until
all don’t care cases are bound to fixed binary values. The algorithm is shown below.

dontcare (logic)

logic <- bindlogic (logic)

IF allfixed (logic)
RETURN logic

ELSE
aftersplit = split (logic)
tobebind = dontcare (aftersplit)
logicout = rebind (tobebind, logic)
RETURN logicout

END

“bindlogic” is a procedure for finding the possible merging of vectors. Two or
more vectors can be merged if each corresponding element in the vectors can be bound
together. An “X” can be bound with “X™, “1” or “0”. A “0” or “1” can be bound with
itself or “X”. Table 3.3 shows all the possible results.

-58-

Input Result
x0->0
xI->»1
XX->X

0 1 ->can’t be bound.

Table 3.3: functionality of the “bindlogic”

An example for “bind logic” is given below.

input output
0 <Ox10xIxx> <0,1> <00100110 >
1 <00100x10> <2> <100101x0>

2 < 100101x0 >

vectors O and | can be merged together.

“Allfixed” is a procedure for testing the existence of “don’t care cases” in the
vector table. If the vector table contains any number of “don’t care cases”, the result will
be false, otherwise the result will be true.

Split is a procedure for splitting the vector table into a larger one. Each vector
will be split into two vectors. for example

input output
<0,1 > <00100110> <0> <0010 >
<2> <100101x0. <1l> <0110>

<2> <1001 >
<3> <0lx0>

-50.

“Rebind” is a procedure for mapping the split vectors table back into the original
one. For example

argument 1 argument 2
input <0,1 > < 00100110 > <0> <0010>
<2> < 1001 C1x0 > <1l><3> <0110>
<2> <1001 >
output <0,1 > <00100110 >

<2> < 1001 0110 >

By considering don’t care cases, the number of transistors used in a module 7
multiplier is reduced from 56 to 52. This is only one specific example which shows only
a small improvement. The number of transistors saved may be larger for other
applications.

3.5 WINDSOR SYNTHESIZER AND PLANAR
SWITCHING TREE

The new CVSL or MODL synthesis procedure produces a network as a result.
The next step of the logic implementation is the physical layout of the netlist produced in
the synthesis procedure. This step can be simply accomplished by full custom layout. It
is a very time-consuming task and an error-prone activity. Another approach is
automation of this step by
computer. Windsor synthesizer
(WINSYN)[19] is such a
program for mapping transistor
network to physical layout.

Figure 3.35 shows a
layout produced from the
WINSYN for double-metal
CMOS technology. The -
horizontal lines running across
the layout are metal2 wires and
Figure 3.35 WINSYN Layout polysilicon wires overlapped

together. The function of these metal2 wires is for minimizing the resistance. The long

polysilicon wires have a large resistance. Tapping some points in the line to metal2 will

reduce the resistance. The polysilicon wires are the gate inputs for all transistors. The

transistors are interconnected by metall wires. By traversing the nedlist, the layout can
be produced very easily. The only drawback with this approach is due to 2 dimensional
wiring restviction. Only metail is used for interconnection, therefore the nedist is
restricted to a planar structure. No crossing wire is permitted. However, the synthesis
procedures will generate both planar and unplanar netlist. To overcome this problem, a
new procedure is derived to transform a unplanar merged wee 10 a planar merged tree.

1 0

Figure 3.36: Merged tree diagram for prime detector

The procedure is better illustrated by example. Figure 3.36 shows a merged

(D)
AONO

Figure 3.37
Step 1 of mansformation

diagram for a prime detector. Its function is to determine
whether, or not, the input value is a prime. The algorithm
builds nodes row by row. The root node is re-created first
and then its right and left children are re-created as shown in
Figure 3.37. Node 10 will create node 9 and 7. Node 6 will
create node 5 and 3; however, the location of node 3 is not
in the same row as 9, 7 and 6. This special case is handled

-61-

by creating a virtual node 3 in the row that it is not supposed to be. This is shown in
figure 3.38.

=y

b @ o Virtual node
® DG ‘/

Figure 3.38: Step 2 of transformation

Procedure continues after this step. The next row is created as shown in figure 3.39.

a (1)

b (19 O
ORNOBONNO
00200002016

Figure 3.39: Step 3 of ransformation

(g

o,

Virtual nodes will create children with the same node number as their parent. This node
3 in level ¢ is a virtual node, therefore it creates children with the same node number as
their parent. In row d, there are nodes with the same node number. By exchanging the
right and the left children, the number of nodes can be reduced as shown in figure 3.40.
The exchanged parent node is marked with a double circle.

-62-

:é%
:@%

Figur: 3.40: Step 4 of ransformation

This new row is substituted into the tree as shown in figure 3.41

Figure 3.41: Step 5 of wansformation

-63-

Another row 1s created as shown in figure 3.42.

Figure 3.42: Step 6 of transformation

After flipping and merging, the tree becomes as shown in figure 3.43

Figure 3.43: Step 7 of transformation

The last row is created as shown in figure 3.44

Figure 3.44: Step 8 of wansformation

The next step is the elimination of redundant circles from the planer tree. Those circles
with single bottom wires are eliminated by substituting them with wires. The final
merged tree diagram is shown in figure 3.45

Figure 3.45: Step 9 of transformation

-65 -

The new planer swiiching tree takes only 4 more transistors than the original
unplanar wee. However, the area of the layout generated from WINSYN is not

determined by the transistor count, rather it is determined by the number of branches of
the switching tree.

3.6 SYNTHESIZER DESIGN

All of the algorithms introduced earlier are automated with a program written in
PROGRAPH{20] and C[21] runuing on a Macintosh. The C part of the program is
responsible for the reduction procedures and all the time-consuming steps. The
PROGRAPH code is used us the graphical user interface (GUI) because of the ease of
effort in GUI programming. The GUI is shown in figure 3.46. MODL and CVSL
synthesis can be selected by toggling the merging option. The “don’ tcare” procedure is
acuvated by selecting the “don’t care” option, The planar wree option is for planar
switching tree generation. After the truth table and cptions are entered, pressing the
RUN bottom will produce a merged tree diagram in the graphic window.

T e SRR S\| TCHING TREE A

MINTERMS |[MINTERMS (aoo) (insear | [oewere |
FOR ONE |{FOR DONT
CARE CASE 5

S & o | J
3 © USE DON'T CRRE OPTIMIZLR
? @ SET DONT CARE CRSES TO 2LR0S

QN0 MERGING

@ MERGING

@ NORMAL TREE

O PLENAR TREE

TRANSISTORCOUNT]
= & =
ol
Figure 3.46: graphic user interface for the synthesizer

- 66 -

3.7 SUMMARY

The switching tree synthesis part of this thesis is mostly the author’s own
contribution. This chapter stants with an introduction to dynamic logic design. The race
problem is discussed which leads to the examination of domino logic. The cascode
voltage switch logic is also examined for solving the logical incompleteness of the
domino logic. The cause and solutions of the charge sharing problem are discussed. The
solutions include pre-charging internal node, delaying the clock signal, increasing the
evaluation node capacitance and adding an feedback transistor. After the introduction
part, 2 new cascode voltage switch logic synthesis method is proposed with examples
demonstrating the procedures. The procedures are summarized into 3 reduction rules.
An alternate method of realizing cascode voltage switch logic is proposed. It is a semi-
custom design method as opposed to the full custom design required for the new
synthesis procedure. Only a few connections are needed to program a semi-custom cell.
The cell uses almost one half the number of the transistors used in a full tree
implementation. By utilizing the new cascode voltage switch logic synthesis method, a
new multiple output domino logic synthesis technique is derived. A companion
algorithm for handling “don’t care cases™ is also proposed. Its underlying concept and
procedures are explained. The WINSYN synthesizer requires a planar switching wee as
input, therefore a new planar transformer is propozed with examples. At the end of the
chapter for switching tree, a synthesizer designed for tree reduction is presented.

-67 -

CHAPTER 4

IMPLEMENTATION OF DIVIDER

4.1 CONVENTIONAL DIVISION METHOD

The mathematical division operation is similar to the multiplication operation in
u:¢ use of the iteration operator. Multiplication algorithms iterate the use of addition,
whereas division algorithms use subtraction algorithm instead. Most division algorithms
are either modification or extensions of restoring and non-restoring division methods22}.
The restoring algorithm is another name for the pencil and paper division method that is
usually taught in grade school. The procedure involves repeated subtraction of a shifted
divisor from the dividend to find the digits of the quotient. An example is given below to
show the procedure.

6.936

1
I~
)
——
2

The actual steps are decomposed as below

6936
-3000
3936
-3000
936

-3000
~2064

Three subtractions are needed to give a negative remainder. Two subtractions are the
maximum number of subtraction to give a positive remainder. Therefore the first digit is
2. Before thz division is continued, the negative remainder is restored to positive value
by adding the shifted divisor. The word “restoring” of “resicring division method”
comes from this step of restoring the remainder to a positive value.

=65 -

-2064
+3000
936

Subtractions ure repeatedly applied to the remainder until a negative remainder appears.

936
-300
636
-300
336
-300
36
-300

————r—

-264

Three is the maximum number of subtractions to give positive remainder. Therefore the
second digits is 3. After restoring the remainder to a positive value, the process continues
as before. Finally, the list of digits will be 2212 which are the digits for the quotient.

in the non-restoring division method. both subtraction and addition are used. The
subtraction is used first to give a negative remainder. The number of subtractions
becomes the first digit. Negative remainder is multiplied by the radix which is 10 for the
decimal system. The additon operations are repeatedly applied to this remainder until a
positive value returns. The number of additions becomes the second digit with an
overbar indicating that it is a negative digit. The process continues with subtraction and
addition until the remainder is zero or the number of required digit is fulfilled. An
example below illustrate the process

6936
-3000
3936
-3000
936

-3000
-2064

First digit is 3

-69-

-206490
+ 3000
-17640
+ 3000
-14640
+ 3000
-11640
+ 3000
-8640
+ 3000
-5640
+ 3000
-2064 ~2640

X 10 + 3000
-20640 360
Second digit is 7
3600
-3000
360 —00
x 10 -3000
3600 -2400

Third digitis 2
-24000
+ 3000

-2460
x 10
-24000 0
Fourth digitis 8
The answer is 3.728

This pseudo-quotent can be easily converted to the normal quotient by separating the
positive part and negative part
/ Positive part 3.020

Negativepart 0.708

3.728%

By subtracting the negative part from the positive part , the quotient can be derived.

'
O W
WO
O
taoe ©

-70-

The sign of the digit depends on whether addition or subtraction is used. Adding or
subtracting dzpends on the sign of remainder. The table below summarizes the
relationship.

Addition -> negative digit
Subtraction -> positive digit
positive remainder -> subtraction
negative remainder -> addition

If (r-1) subtractions are used without changing the remainder sign then (r-1) is recorded
as the quotient digit.
Table 4.1: Rules for restoring division

For a binary pseudo-quotient, there is a simple algorithm for converting to normal signed
digit representation. The table below shows the steps involved.

Step 1 Convertall 1100
Step 2 Shift 1 bit to the left and a 1™ is shifted into the LSB
Step 3 Complement the MSB

Example 11111
Afterstepl 10110
Afterstep2 101101
Afterstep3 001101
Table 4.2: Steps for converting binary pseudo quotient to normal signed digit

4.2 SRT DIVISION

SRT division[4]{5] is originated from the three initial proposers. They are D. W.
Sweeney of IBM, J. E. Robertson of the University of illinois and K. D. Tocher of
imperial College. Their last names become the name of the division method. This
division method uses a redundant digit set for quotient bits and they can be determined

-71-

from an estimation of divisor bit and remainder bits. Not all of the bits are required at all
times for quotient digit determination.

The result of a division algorithm is a list of quotient digits representing the
quotients Q

n=1

Q= _Zoq‘-r"' (4.1)
r radix
Q quotients value

qi quotient digit
n number of quotient digit

For normal irredundant division with quotient digit set (0.....r-1). a quotient value Q can
only be represented by a unique combination of quotient digits. To correctly determine
the partial remainder at each computational stage, the entire previous partial remainder
has 1o add or subtract to or from the divisor. This addition or subtraction operation takes
tme proportional to the number of partial remainder digits. By using an irredundant
quotient digit set, quotient digits can be determined by inspecting a portion of partial
remainder digit and divisor digits. This works because a single quotient value can be
represented with a small sequence of irredundant quotient digits. Previous inaccuracies
generated can be compensated with subsequent quotient digits. The partial remainder,
quotient digit and previous partial remainder have the following relationships:

Rin=rRi—Dg; (4.2)

qi: quotient digit

Ri: partial reminder of stage i
D: radix

r: radix

The dividend is initialized with rRO. Redundant quotients are in the set {-p,..0..p} where

p is restricted to be % < p Sr—1 according to reference [23]. By inspecting a few bits of

partial remainder and divisor, the quotient digit can be chosen. However, there are
restrictions to the number of bits that should be examined. Three diagrams are used to
determine the number of bits used for inspection. They are the Robertson diagram,
Taylor diagram and Colored Taylor diagram. Figure 4.1 show 2 Robertson diagram for
the quotient digit set {-1,0,1} of radix 2 division.

-72-

)
1
Gim-1
qQi=0 gi=1
« 1 1 1 1 1 1 ’
2 S 1 2 2R
D

-1

Figure 4.1 Robertson diagram for quotient digit set {-1,0,1} of radix 2 division

From equation 4.2
Rin=rRi—Dg,
This equation is divided by D

R Ri 4.3)

%ﬂ is the y axis of the Robertson di sgram.

For radix 2, r=2, %?i is the x axis of the Robertson diagram. The lines are different

possible quotient digits. The boundary for the y axis is *1 computed from equation

Iﬂ{sL @.4)
D r—1

according to reference [23). For example, if % =(.5, there are two possible choices of
2R

quotient qi=0 and qj=1. If '?R‘ = 1.5, there is only one possible choice which is gi=1
The Taylor diagram is derived from the Robertson diagram by considering

divisors and dividends that are both normalized to the range 1 t0 2. The graph is shaded

to show different quotient digit validaton regions. The region shaded by more than one

quotient digit pattern are valid for both quotient digits. Therefore, more than one choice

is possible in those overlapping regions. Figure 4.2 shows a Taylor diagram for radix 2.

-73-

* N
: NE
AN)
AN
LN . qi=Q
AT
AN
TN >
y N
|4 /A Q=1
1
-t —t—bt0p .
4 3 2 - 1 02 3 4

Figure 4.2 Taylor diagram for quotient digit set {-1.0.1) of radix 2 division

The colored Taylor diagram is constructed by painting with a rectangular paint
brush on the Taylor diagram. Each rectangular paint applied to the diagram must fit
wholly inside a valid quotient digit region. The vertical size of the paint brush is the
maximum value of the unexamined bits of the divisor, the horizontal size is the sum of
the maximum value of the unexamined bits of the partial reminder. The grid spacing for
the paint brush is the tolerances of the divisor and partial remainder. The following
equations describe the sizes for the painr brush and grid spacing.

grid height = 2(-DivisorBits)

brush height = 2(-DivisorBits)

LefiBits = 2+ [1°g°(pr 'I
“r=-1

grid width = 2(LeftBits-RBits)

brush width = 2(LeftBits-RBits) o (LeftBits-CBits)

where
r radix
p: the maximum quotient digit in the quotient digit set {-p,. . .,0,. . ..p)
LfetBits the number of partial remainder bits to the left of the binary point
DivisorBits the number of divisor bits examined
RBits the number of partial remainder sum bits examined
CBits the number of partial remainder carry bits examined

-74-

The largest the paint brush can be, the smaller the number of bits is needed to be
examined. It is found that no divisor bit should be examined and 3 bits of the partial
remainder should be examined as shown in figure 4.3

NN NN

§ Qi1 qi=0 % gi=-1

Figure 4.3 Colored Taylor diagram for quotient digit set {-1.(1,1] of radix 2 division

4.3 SYSTEM LEVEL ORGANIZATION

Each step of SRT division returns a quotient digit and a partial remainder as
results. This partial remainder is fed to next step for computing the next quotient digit
and the next partial remainder. This iterative computation algorithm is suitable for
homogenous pipeline implementation. In order to minimize the delay time between each
quotient result, a self-timed approach is adopted for implementation; the self-timed
pipeline can be constructed to meet the “zero-overhead” constraints. The entire
computation delay is equivalent to the pure combinational delay of processing blocks.
Figure 4.4 shows a block diagram of the implementation of the self-timed divider. There
are five stages of processing blocks for the iterative procedure. These five stages are
cascaded together to form a ring structure. Each stage has a quotient shift register
attached. These registers are constructed using C elements and NOR gates. The
remainder register and the compare block are designed for early termination of iteration.
If the remainder has remained unchange after one loop of iteration, the subsequent
quotient digits will repeat the same pattern again. The early termination of iteration will
save a great deal of computation time.

-75.

S—
Stage Stage
E D e
~)
SERE
Stags Swmge Suge - 3 -
=
-~ .
AlLIB L] C & |
Dividend _}_ ! 4 5‘"‘°—|7J’—1>_>
o dpo
2 § S S g Ful Done
G 7| o I _g [;]
Logic = FIMECIECIE
T o = e] =
d » 2] [1-]
=} (=] L=}
- = [ol m
JE I B
Figure 4.4 Complete block diagram for the self-tned divider
Remainder(i-1 Remainder(}
Gk coande?
L n bit |
+Divisor CSA
~Divisor
Reset(i)
- Reset(i-1) C -
+0=3p | b
CSA|_ICPA
= @ quot @
3b T
c digit
cPA| L S ol
3p p=—q3b
D =CSA| [CPA
—
Quot_bigit(i-1) Quot_Digit(}
Figure 4.5: The block diagram for one stage of function block

Figure 4.5 shows the block diagram for each stage. The n-bit CSA calculates the
current partial remainder from the previous partial remainder and the selected divisor.
The selection of divisor is achieved through the use of a multiplexer, controlled by the
previous quotient digit. The group of blocks consisting of 3-bit CSAs and 3-bit CPAs is

-76 -

designed for speeding up the computation. The quotient digit selection block needs the
current partial remainder for input. However, the current partial remainder is computed if
both previous partial remainder and previous quotient digit are available. The group of
CSAs and CPAs pre-calculates the 3 most significant bits of current partial remainders.
Three possible results are waiting at the input of the multdplexer. As the previous
quotient digit becomes available, the selected current partia: remainder will be fed into
the quotent digit selection. This pre-calculation of partial remainders speeds up the
overall computation time.

The quotient digit selection block selects the quotient digit according to the
colored-Taylor diagram in figure 4.3. Table 4.3 summarizes the selections

Remainder 4-3-2 j-1]1 0123
Quotient digit -1 0 1
Table 4.3

It is found that when the most negative remainder approximation occurs, the current and
the next quotient digit stays at the same value, therefore a force-ahead is implemented.
The following equations describe this modified selection scheme.

qi=1, ifpi>0and F-1=0

qi=0, if pi=-1and Fj-1=0
qi=-1, if pi<-2 or Fi-1=1

Fi=1 if Pj=-4

4.4 CIRCUITS AND SIMULATION

All function blocks used in the implementation of the divider are synthesized with
the new design procedure. The charge sharing problem is solved by pre-charging
selected internal nodes. The selecticns are verified by spice simulation. Worst cuse
charge sharing conditions are alse verified by spice simulation. The functional
correctness of the algorithm is verified using the PASCAL language.

All of the circuits are designed using the synthesis procedure in the same manner.
An example is given for illustrative purpose. Figure 4.6 shows a schematic for the sum
bit of the full adder. Two additional PMOS transistors are used for pre-charging the
selected intemal nodes. Figure 4.7 shows the mask layout of this schematic.

-77-

Figure 4.0: Schematic diagram for the sum bit of the full adder

| <
b] ' sIumnnr
P [
N - £]
L3
'
!
[
!
'
- L)
| .
L -
=
T [. -+ fige .
- s
u::OI l ot
[
[+]
1
anar H
1]
iy | l
o LI .
= < |
s t
R 15544504 pea *
SILLILLII LI dtNTIsf Tl

Fizure 4.7: Musk lavout for the sum bit of the full adder

.78 -

B— /sum in volts

5
4..
3
s
1
;

¥ l’!! !!ll [N} [) !i!!

T T 777 TI Ty
e]

B— /b

ds

n vlo'l't.s

5
4..
3
2
1
g

LB T rrry
HEE I - R

1 [] !!ll [2400 [

3ssn seen 3esn . aon

Figure 4.8: Simulation result of the sum bit of the full adder

Figure 4.8 shows the worst case delay HSPICE[25] simulation of the sum bit of
the full adder. The worst case delay is 8ns. Since the next computation block will start to
evaluate as soon as the output of this block becomes valid, the actual delay time is much
shorter than the worst case delay.

Another interesting variation of the synthesis procedure is demonstrated in the
synthesis of the quotient selection logic. Table 4.4 shows the truth table of the quotient
selection logic. Observing the truth table, it is found that the output columns are mutually
exclusive. No two outputs will be *“1” at the same time. Therefore, the truth table can be
modified as shown in table 4.5. The cascode voltage switch logic synthesis algorithm is
- applied to this table. The reduced ree is synthesized as shown in figure 4.8

-79-

-1

-1

pOH q

P2 Pl

F

K
o 1

1

0

1l -1

q0

0

1

Pl p0 i ql {qg-!

P2

F

04 0

1

Modified mruth ble

of table 4.1

Table 4.5

Truth table for the

Table 4.4:

quotient selection logic

ql

Reduced Tree for

Figure 4.9

Figure 4.10 Schematic derived from

" the reduced tee

quotient selection

logic

-80-

The schematic is shown In figure 4.9. The rest of the circuits are included in Appendix B

4.5 SUMMARY

This chapter describes the implementation of the divider. It starts with an
introduction 10 the restoring division method. Its disadvantage is overcome by the non
restoring Jivision method. A few examples are given to illustrate the procedures. SRT
division method is introduced with Robertson diagram, Taylor diagram and Colored
Taylor diagram. After all of the basic algorithms are explained, the block level diagrams
are presented to show the dataflow and the modification. The circuit part is introduced
with the sum bit generation block and its mask layout. Quotient selection logic
generation block is synthesized with varied CVSL synthesis method.

-81-

CHAPTER S

CONCLUSION AND FUTURE DIRECTIONS

5.1 CONCLUSION

This thesis is emerged from the study of self-timed pipeline. Different
configurations of self-timed pipeline are studied. Communication methods are also
studied. Different configurations are evaluated by their performance. It includes the
throughput and latency. Their performance are determined by using the data dependency
graph and performance graph. By assuming different sizes of functon block, the range of
performance and no of stages can be estimated. After the study of performance
measuring, some methods for improving the performance are investigated. In the study
of the function block implementation, cascode voltage switch logic is found to be the
choice for realizing the function block. A previous design method is investigated and itis
found to be inefficient. Therefore, a research effort is initiated to create a more efficient
method. Previous work in the Boolean function manipulation[16] is applied to reduce the
transistor trees. This reduction technique together with the new interpretation of the tree
node forms a new cascode voltage swich logic design method. After many circuit
designs are synthesized by using this method, the bottom row of the reduced tree is found
to be narrow in shape and each node in this bottom row falls only into one of the four
possible types of nodes. This observation is made use in the realization of a new type of
semi-custom cell to reduce the number of transistors by half. Further research into this
synthesis method leads to a new multiple output domino logic design method which is
only a slight modification of the new CVSL synthesis method. The creation of “Don’t
care case” algorithm is the result of an investigation of further reducing the wansistor
count in the Module 7 multiplier implementation. The problem of mask layout of this
reduced tree by using a new layout style(WINSYN)[19] becomes the next target of the
research effort. The result of this effort is a new algorithm created to transform a non-
planar switching tree into a planar one. All algorithms proposed in this thesis is

-82-

automated by a program written in PROGRAPH|20] and C{18]. To demonstrate the use
of the new algorithms, a SRT divider designed and fabricated in CMOS 3um technology.

5.2 FUTURE DIRECTIONS
5.2.1 LOGIC PARTITION

As discussed in Chapter 1, the switching tree is an effort to combine a few levels
of design hierarchy into one level. Within the level of switching tree design, the whole
system is partitioned into switching tree blocks and latches. This partition is usually
intitively handled by the designer. Figure 5.1 shows two partition schemes of the same
system.

System B

Figure 5.1: Two pantition schemes of the same system

The switching tree levels can be partitioned into D] to D5 or Dg to Dg. Different ways
of system partitioning will lead to different performances and costs. An optimal
computer generated solution to satisfy the requirements is better than an intuitive
designer’s solution. A similar effort for gate level design has been accomplished[24]. A
future research direction for the switching tree may target to the logic partition problem
of the switching tree.

- 83 -

5.2.2 IMPROVEMENTS TO SWITCHING TREE
SYNTHESIS

More transistors can be reduced by repiacing a transistor with a wire. This is
possible because the reduction technique introduced previously generates schematic with
only single conducting path between the evaluation and the bottom node. Muldple
conducting paths are allowed in the schematic design as long as the Boolean function is
not changed. An example is already shown in figure 3.31. Two more transistors are
eliminated in this circuit by considering multiple conducting paths. The planar switching
wree can be more optimized by considering more levels at a time. The method introduced
ir chapter 3 considers only one level.

-84.

(1]

3]

4]

[5]

(6]

{7

(8]
(91

(10]

[11]

(12]

[13]

[14]

{15]

(16]

REFERENCES

D. M. Chapiro, “Globally-asynchronous, locally-synchronous systems,” Ph.D.
Thesis, Stanford University, 1984.

C. Mead, L. Conway, Introduction to VLSI systems, Addison-Wesley: Reading
MA, 1980.

G.A. Jullien, W.C. Miller, R. Grondin, Z. Wang, D. Zhang, L. Del Pup, S. Bizzan,
1992, "WoodChuck: A Low-Level Synthesizer for Dynamic Pipelined DSP
Arithmetic Logic Blocks.” Proceedings of the 1992 IEEE Int. Symp. on Circuits
and Systems, (Invited), 1, pp. 176-179.

1. E. Robertson, “A New Class of Digital Division Methods,” IRE wrans,
Electronic Computers, vol. EC-7, pp. 218-222, September 1958.

T. D. Tochner, “techniques of Multiplication and Division for Automatic Bin
Computers,” Quarter J. Mech App. Math., vol. 2, pt. 3, pp. 364-384, 1958.

1. S. Hwang, A. L. Fisher, “Ulwa Compact 32-bit CMOS Adders in MMultiple-
Output Domino Logic,” [EEE J. of Solid-State Circuits, vol. 24, no 2, April 1989.

T. E. Williams, “Self-Timed Rings and Their Application to Division,” Technical
report: CSL-TR-91-482, Stanford University, 1991.

R. E. Miller, Switching Theory. New York: Wiley, 1965.

L. Sutherland, “Micropiplines,” Communications of the ACM, vol. 32 no. 6, pp.
720-738, June 1985.

M. Dean, T. Williams, D. Dill, “Efficient Self-iiming with Level-Encoded 2-
Phase Dual-Rail (LEDR),” Proceedings of the Santa Cruz Conference on
Advanced Research in VLSI pp. 55-70, March 1991.

T. A. Chu, “Synthesis of Self-timed Control circuits from Graphs: An example,”
Proceedings of ICCD, pp. 565-571, Oct. 1986.

N. Weste, K. Eshraghian, Principles of CMOS VLSI DESIGN: A Systems
Perspective, Addison-Wesley:Reading MA, 1985.

J. A. Pretorius et. al., “Latched Domino CMOS Logic,” IEEE J.5.8.C, pp. 514-
512, Jan. 1986.

L. G. Heller, W. R. Griffin, “Cascode voltage switch logic: A differential CMOS
logic family,” in ISSCC dig. tech. Papers, 1984, pp16-17.

M. K. Chu, D. 1. Pulfrey. “Design procedures for differential cascode-voltage
switch circuits, “ TEEE Trans. Solid-State Circuits. vol. SC-21, pp. 1082-1087,
1986.

R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” [EE
Trans. on Comp. vol. 35, pp. 677-691, 1986.

-85-

[17] C.E. Shannon, “Symbolic analysis of relay and switching circuits,” Trans. Am.
Inst. elect. Engrs. 57, 713-723, 1938.

[18] B.W. Kemighan, D. M. Ritchie, The C Programming Language, Prentice Hall,
1988

[19] G. A. Jullien, “Seminar on Windsor Synthesizer”, Faculty of Engineering,
Department of Electrical Engineering, University of Windsor, May 1992.

[20] The Gunakara Sun Systems , Ltd, Prograph Reference Manual, Halifax, Nova
Scotia, Canada, 1990.

(21] M. Y.Wu, W, Shu and S. P. Chan, “A unified theory for MOS circuit design-
Switching network logic,” Int. J. Electron., vol. 58, no.1, 1-22, 1985.

[22] N.R. Scott, Computer Number Systems and Arithmeric, Prentice Hall, 1985.

(23] T.E. Williams, M. Horowitz, “SRT Division Diagrams and Their Usage in
Designing Custom Integrated Circuits for Division,” technical report csl-tr-87-
326, Stanford, Nov. 1986.

[24] R. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis. Hingham,
MA:Kluwer, 1984.

{25] Meta-Software, Inc. HSPICE User’s Manual H9001, 1990.

-86-

APPENDIX A
C PROGRAM CODE FOR THE SYNTHESIZER

-87-

#include <sdlib.h>

#define ONE 1

#define ZEROO

#define DONT 2

#idefine ERROR -1
#define FINISH -1

#define MERGE 1

#define NONMERGE 0
#define YES 1

#define NO O

#define MAXY 40
#define MAXPATLEN 40
#define MAXLISTOFLOGIC 50

struct logic |
int x;

inty;

int **table;
int **pattern;

J:

struct config {
int top;

int left{100];
int right[100];
int key[100];
)i

stmuct truthtable {
int index;
int *table[7];

.

struct package {

struct config **aconfig;
int noofconfig;

struct logic *alogic;

int seq[10];

int lastseq;

int head{10];

int bestcount;

B

struct logic *logicinput;

struct package *packageoutput;

int *copyvector(int.int *);

int bind(int ,int);

struct logic *copylogic(sauct logic *):
void checkonezero(struct logic *);

-88-

int *bindvector{int ,int *int *);

void pushvector(int *,int * struct logic *);
sTuct logic *gencom(struct logic *):

int samepat(int *.int *);

int *bindpattern(int *.int *);

int *copypatiern(int *);

void *newmalloc(size_t size) {

void *res;

if ((res=malloc(size))==NULL) { exit(1):}
return res;

}

struct logic *initlogic(int x) {

struct logic *res;

res=newmalloc(sizeof(struct logic)):

res->y=-1;

res->x=x;

res->table=newmalloc(sizeof(int *)*MAXY);
res->pattern=newmnalloc(sizeof(int *)*MAXY);
retum res;

}

int power(int x,int y) {
int res.i;

res=l1;

for (i=0;i<y:++i)
res*=x;

return res;

)
int bind(int inl,int in2) {

if inl==in2) retum inl;
clse

if (in1==DONT) return in2;
else

if (in2==DONT) return inl;
else

}return ERROR;

void checkonezero(struct logic *logicv) {
int lenght,height, beforex,y;

lenght=logicv->x;

height=logicv->y; '

for (y=0;y<=height;++y) {
before=DONT;

-89-

for (x=0;x<=lenghti++x) {
before=bind(before, logicv->table[y}{x]):
if (before==ERROR) break:

}
if (before!=ERROR] {
if (before==DONT) before=ZERO;
for (x=0:x<=lenght;++x)
logicv->table[y][x]=before:
)
}
}

int *bindvector(int x,int *vectorl.int *vector2) |
int *res.i;

res=newmalloc((x+1)*sizeof(int));

for (i=0; i<=x;++i)
{res[i]=bind(vectori{i],vector2[i]);

if (res[i]==ERROR) (free(res);res=NULL:break:}
)

retumn(res);

]

int *bindpattern(int *patl.int *pat2)

int nextstart,i,j,exist,lemp[MAXPATLEN], *res;
i=0;
while (pat1{i]!=FINISH) {

templ(i]=parl[i};

i+

i=0;
while (pat2[i]!=FINISH) {
exist=0;
for (j=0:;j<nextstart;++j)
if (templ[j]==pat2{i]) {exist=1;break:}
if (exist==0) (temp[nextstart]=pat2[i};++nextstart;}
++i;

res=newmalloc(sizeof(int)* (nextstart+1));
for (j=0;j<nextstart;++j)

resj]=temp[j);

res[nextstart]=FINISH;

TClurn res;

}

int samepat(int *patl,int *pat2) {
int i,j,count2;

i=0;

count2=0;

while (pat1{i]!=-1) {

j=0s

while (par2[j]!=-1) {

if (pati[iJ==pat[j]) ++count:
++;

}
++13
if ((count2==j)&&(count2==1)) rewrn 1; else return O;

}
void pushvector(int *patint *vect.struct logic *logicout) {

int y.exist,i;

y=logicout->y;

exist=0;

for (1=0;i<=y:++)

if (samepat(logicout->pattern[i].pat)) (exist=1:break;}
if (exist==0) (

y=++logicout->y;

logicout->table{y]=vect;

logicout->pattern{y]=pat;

else {free(pat); free(vect);)
]

int *collect(int *collectpat.int *pat) {
int *res;
res=bindpatern(collectpat,pat);
free(collectpat);

return res;

}

int equalvector(int last,in" *vecl,int *vec2) {

inti;

for (i=0si<=last++i) if (vec1[i]'=vec2[i]) rerurn(NO);
return(YES);

}

struct logic *gencom(struct logic *logicin) {
struct logic *logicout;

int start,endpoint,i,*collectpat,*pat;

int *tempvector,visited{ MAXY],*samevector;
for (i=0;1<=logicin->y;++) visited[i]=NO;

logicout=NULL;

for (start=0;start<logicin->y;++start) {
if (visited[start]==NO) {
samevector= ;

-91 -

for (endpoint=start+1;endpoint<=logicin->y;++endpoint)
if (visited[endpoint]==NO) {
if (c.qualvec:or(]ogicin—>x,logicin->tablc[start],logicin—>t.ab1c[cndpoim])) {
if (samevector==NULL) {collectpat=copypatiern(logicin->patern(start]);
samevector=copyvector(logicin->x,
logicin->table[start]): }
visited{endpoint]=YES;
collectpat=collect(collectpat,logicin->paitern[endpoint]);}
else {
tempvector=bindvector(logicin->x,logicin->table{start],
logicin->table[endpoint]):
if (tempvector!'=NULL) {
if (logicout==NULL) logicout=initlogic(logicin->x);
pat=bindpattern(logicin->pattern[start},Jogicin->pattern[endpoint]);
?ushvcctor(pat.tcmpvector.logicout);

J
if (samevector!=NULL) {if (logicout==NULL) logicout=initlogic(logicin->x);
pushvector(collectpat.samevector,logicout): } }
)

return logicout;

struct logic**createlistoflogic(stuct logic*logicin) {
intij;

struct logic *templogic{MAXLISTOFLOGIC],**temp;
checkonezero(logicin);

i=0;

templogic[i]=logicin;

while ((templogic[i+1]=gencom(templogic[i]))!=NULL)
{

++His }

temp=newmalloc(sizeof(struct logic*)*(1+2));
for (j=0;j<=1+1;++j) temp[j]=templogic(j]:
returntemp);

int matchcount(int *large,int *small) {
int res,1,j,exist;

res=0:;i=0;

while (small[i]!=FINISH) {

j=Orexist=0;

while (large[j]'=FINISH) {

if (;r}nall[i]:largc[j]) {exist=-1:break:}
HJ;

if (exist==1) ++res; else break;
++i;

}

if (exist==0) return 0; else¢ return res:

int *sub(int *large,int *small) {
int co,*res.1,j.exist,temp[240];
co=0;i=0;

while (large{i]!=FINISH) {

j=0iexist=0;

while (small[j]!=FINISH) {

if (_sr]nallﬁ]=la:gc[i]) {exist=1:break:}
++j;

if (exist==0) temp[co++] =large{i);
+Hi;

res=newmalloc({co+1)*sizeof(int));
for (i=0; i<co;++i) res[ij=tempfi];
res[co]=FINISH;

return res;

}

int *copypattern(int *head) {

int i,j,*res;

for (=0;head[i]!=FINISH;++i);
ge.gncwmalloc(sizeof(int)*(i-i-l))H
=

for (i=0;j>=i;++i}

res{i]=head(i};

Teturn res;

}

int *copyvector(int lastelement,int *head)
int i,*res;
res=newmalloc(sizeof(int)*(lastelement+1));
for (i=0;i<=lastelement;++i) res[i]=head(i];
Teturn res;

}

int *pickbest(struct logic *logicin,int *vector,struct logic* res) (
int en,i,max,temp,best, *newvector;

en=logicin->y;

nNEeWVeCtor=vector,

while (*vector!=FINISH) {

i=0;

max=0;

for (i=0;i<=en;++) {

-93-

temp=maichcount{vector,logicin->pattern{i]);
if (temp>max) {max=temp;best=i;}

}
if (max==0) break;
newvector=sub({vector,Jogicin->pattern[best]);
free(vector);
VEClor=newvecton,
++rEs->Y,
res->pattern[res->yJ=copypattern(logicin->pattern{best[});
res->table[res->y]=copyvector(logicin->x.}logicin->table[best]);

}

returm vector;

)

struct logic *choose(int *vector.struct logic **logiclist) |
struct logic *res;
inti;

res=initlogic(logiclist[C]->x);

1=4
while (logiclist[i]'=NULL) ++i;

--1;
while (*vector!=FINISH) {

vqctompickbcst(logiclist[i],vcctor,rcs);

--l;

free{vector);
returmn res;

}

void freelogic(struct logic *logicin) {
int1;

for (i=0:i<=logicin->y;++) {
free(logicin->table[i));
t}'rcc(logicin—>pancrn[i]);

free(logicin->table);
free(logicin->pattern);
ﬁrce(logicin);

void freelistoflogic(struct logic **logicin) {
inti;

for (i=0;logicin(i]!=NULL;++i)
freelogic(logicin[i]);

grcc(logicirs):

-94.-

struct logic *bindlogic(int *vector,struct logic *test) |
struct logic **listoflogic;

suct logic *bestlogic,*testl;

int *tempvector,;

testl=test;
tempvector=copypauern{vector);
listoflogic=createlistoflogic(testl);

f*for (i=0;listoflogic[i]!=NULL;++i)
printlogic(listoflogic[i]);*/
bestlogic=choose(tempvector,listoflogic);
f*printlogic{bestlogic);*/
freelistoflogic(listoflogic);

printlogic(bestlogic);*/

return bestlogic;

}

int _al.lﬁxcd(su'uct logic *logicin) {

intigj;

for(i=0si<=logicin->y;++i)
for(3=0;j<=logicin->x;++j)

if (logicin->table[i](j}==DONT) return(0};
return({1);

int *copyvectorpart(int start,int endpoint,int *vector) {
int *res,1j;
res=newmalloc(sizeof(int)*(endpoint-start+1));

for (i=start,j=0;i<=endpoint ++i,++j) resj]=vector(i];
return res;

}

struct logic *rebind(struct logic *prebind,struct logic *orglogic) {
int i,j,k.loc,realloc;

stuct logic *res;

res=initlogic(orglogic->x);

for (i=0;i<=orglogic->v;++i) {
res->pattern[ij=copypattemn(orglogic->pattern(i]);
res->tablefi]=newmalloc(sizeof(int)*(orglogic->x+1));

for (i=0;i<=prebind->y;++i)

for (j=C;{loc=prebind->pattern[i][j])!=FINISH;++j) {
realloc=loc/2;

if (loc-2*realloc==1) {

for (k=0;k<=prebind->x;++k)

1}-es->tab1c[rcalloc] {k+1+prebind->x]=prebind->table[il[k];

else {
for (k=0;k<=prebind->x;++k)
1ics->tablc[rcalloc][k]=prebind—>table[i][k];

}

res->y=orglogic->y;
return res;

-95-

struct logic *sprit(struct logic *logicin) {

int tempai{2],1,i;

struct logic *logicout;

tempat[1]=FINISH;

logicout=initlogic((logicin->x+1)/2-1);

for (i=0,ii=0;i<=logicin->y;++,ii+=2) {

tempatf0}=ii;

logicout->patternfii]=copypattern(tempat);

tempat[Q)=ii+1;

logicout->pattern[ii+1]=copypattern(tempat);
logicout->table[ii]=copyvectorpart(O.Iogicout—>x,logicin->:able[i]);
logicout->tab1c[ii+1]=copyvectorpart(logicout->x+l,logicin->x,logicin->table[i]);

logicout->y=2*(logicin->y+1)-1:
return(logicout);

int *newvector(struct logic *logicin) {
int *res,y.i;

y=logicin->y;
res=newmalloc(sizeof(int)*(y+2));
for (i=0;i<=y;++i)

resfi]=i;

res[y+1]=FINISH;

return res;

!

struct logic *dontcare(int *vector,struct logic *logicin) {
struct logic *logicnew,*aftersprit, *tobebind, *logicout, *logicinl;
int *newvec;
logicinl=copylogic(logicin),
logicnew=bindlogic(vector,logicinl);
if (allfixed(logicnew))
return(logicnew);
else {

aftersprit=sprit(logicnew);
newvec=newvector(aftersprit);
tobebind=dontcare(newvec,aftersprit);
logicout=rebind(tobebind,logicnew);
free(newvec);
freelogic(aftersprit);
freelogic(tobebind);
freelogic(logicnew);
} return(logicout);
}

void push(struct config *table,int left, int right, int key) {
int current;
current=++table->top;

-96-

table->left[current]=left;
table->right[curreat)=right;
table->key{current]=key:

int find(int left,int right,struct config *table) {

int res,c;

res=-1;

c=table->top;

while (table->key[c]i=FINISH) {

if ((left==table->leftc]) && (right==table->right[c])) res=table->key(c];
--C;

)

return res;

}

struct config **makecircuit(struct logic *logicin,int selectmode) (
struct config **res;
int x,y.1,j.k,p.left,right.fnewkey;
newkey=2;
if (selectmode!=MERGE) {
res=newmalloc(sizeof(struct config*)*(logicin->y+1));
for(i=0;i<=logicin->y;++i) {
res[i}=newmalloc(sizeof(struct config));
res{i]->top=-1;
push(res(i],0,0,FINISH);
}

else {

res=newmalloc(sizeof(struct config*));
res[0]=newmalloc(sizeof(struct config));
res[0)->top=-1;
push(res[0],0,0,FINISH);

1

x=logicin->x+1;
y=logicin->y;
while (x!=1) {

for (i=0si<=y;++1) {

p=0;

for (=0;j<x;j+=2) {
left=logicin->table[i][j];
right=logicin->table[i][j+1};

if (selectmode=MERGE) k=0;else k=i;

if (left==right) logicin->table[i][p]=left;
else
if ((f=find(left,right,res[k]))!=ERROR) logicin->table{i](p]=F;
else
{push(res[k],leftright,newkey);logicin->table[i][p]=newkey++; };
P+

-97-

]

if (selectmode!=MERGE) push(res(i},0,0,FINISH);
)

x/=2;

if (selectmode==MERGE) push(res[0].0,0,FINISH);

}

retumn res;

}

struct truthtable createwruth(int index) {
struct ruthtable res;

int norow,i,j,10sa,sa,value;
norow=power(2,index+1);
res.index=index;

for (i=0;i<=index;++i) {
res.tablefi]=newmalloc(norow*sizeof(int));
value=0;

sa=power(2,i);

j=0stosa=0;

while (j<norow) {

res.table[i][jl=value;

JHitosa++;

if (tosa==sa) {

tosa=0,;

if (value==0) value=1; else value=0;

]

)

}

retum res;

)

struc: logic *changelogic(struct logic *logicin,struct truthtable *con) {
struct logic *res;

int x,y.1,).k.index,co,acc;

x=logicin->x;

y=logicin->y;

res=initlogic(x);

TeS->y=Ys

for (i=0si<=y;++)
res->table[i]=newmalloc{(x+1)*sizeof(int));

index=con->index;

co=power(2,index+1)-1;

for (j=0;j<=co;++j) {

acc=0;

for (i=0;i<=index;++i) acc+=con->table[i}[j]*power(2,i);
t}'or (k=0;k<=y;++k) res->wmblef[k][acc]=logicin->table[K][i];

TCturm res;

]

-98-

void rot {int *initvector,int first,int last) {

inte,;

c=initvector|first];

for (I=first+1;i<=last;++i) initvector[i- 1}=initvectorfi];
initvector[last}=c;

}

suct muthtable changetruth(int *convector,int last,struct truthtable *con) {
inti;

smuct truthtable res;

res.index=con->index;

for (i=0;1<=last;++i)

res.table[i]=con->table[convectorii]l;

return(res);

)

struct logic *copylogic(struct logic *logicin) {

struct logic *res;

inti;

res=initdogic(logicin->x);

res->y=logicin->y;

for (i=0;i<=logicin->y;++i) {
res->pattern(ij=copypauern(logicin->pattern[i]);
res->tablefi]=copyvector(logicin->x,logicin->table{i]);

}

return res;

)

struct logic *superdontcare(struct logic* logicin) {
struct logic *res,*logicl;

int tempvector{9]={0,1,2,3,4,5,6,7,8};
tempvector[logicin->y+1}=FINISH;
res=donicare(tempvector,logicin);

return res;

}

int mergecount(struct config **listofconfig) {
int res,i;

struct config *aconfig;
aconfig=*listofconfig;

res=();

for (=0;i<=aconfig->top;++i)

if (aconfig->key[ij'=FINISH) {

if (aconfig->lefi[i]!=0) ++res;

i]f (aconfig->right[i]!=0) ++res;

TEIuIm 1es;

}

int nonmergecount(struct config **listofconfig,int total) (

-99.

int res,ij;
res=0;

for (i=0;i<=total;++i}

for (j=0;j<=listofconfig[i]->top;++))

if (listofconfig[il->key(j]!=FINISH) ++res.
res*=2;

return res;

)

void clearpackage(struct package *apackage) {
int i;

for (i=0;i<=apackage->noofconfig;++i)
free(apackage->aconfig[il);
freelogic(apackage->alogic);

)

struct package *selectconfig(struct config **currentconfig,
struct logic *logichead,
struct logic *logicin,
int* seq,
int lastseq,
int selectmode,
struct package *best) {
int pass,count,i,total;
struct package *res;
pass=0;
if (selectmode=MERGE)
{total=0;
count=mergecount(currentconfig); }
else
{total=logichead->y;
count=nonmergecount{curreniconfig,total); }

if (best==NULL)
{best=newmalloc(sizeof(struct package));pass=1;}
else if {count<(best->bestcount))
(clearpackage(best);pass=1;}

if (pass==1) {

best->aconfig=currentconfig;

best->alogic=logicin;

best->noofconfig=total;

for (i=0;i<=lastseq;++i) best->seq[il=seq[i];
best->lastseq=lastseq;

for (i=0;i<=logichead->y;++i) best->head[i]=logichead->table[i][0];
l])est->bcstcount=count;

else

{freelogic(logicin);

for(i=0;i<=total;++i)

free(currentconfigfi]);

free(curreniconfig); }

res=best;
f*printpackage(best);*/

Telurn res;

- 100 -

struct package *gencon(int *initvector,

int first.int last,

stuct logic *logicin,

struct truthtable *con,

struct package *best,

int selectmode,

int enabledont) {
struct truthtable currentable;
struct logic *newlogic,*newlogicl,*newlogic2;
struct config **currentconfig;
int temp[9],1,];
if {first!=last) {
for (1=0;i<=last;++i) temp[i]=initvector[i];
best=gencon(temp.first+1,last.logicin,con,best,selectmode,enabledont);
for (1=0;1<(last-first);++i) {
rot(temp,first,last);
currentable=changetruth(temp,last,con);
newlogic=changelogic(logicin.¤table);
free(newlogic->pattem);

newlogic->pattern=logicin->pattern;
/*printcon(temp,last); */
/*printdogic(logicin);*/

if (enabledont)

newlogicl=superdonicare(newlogic);

else

newlogicl=copylogic(newlogic);
newlogic2=copyiogic(newlogicl);
currentconfig=makecircuit(newlogic1,selectmode);
best=selectconfig(currentconfig,newlogic,newlogic2,temp,last,selectmode,best);
for (=0;j<=newlogic->y;++j)
free(newlogic->table[j});
freelogic(newlogicl);
free(newlogic);
best=gencon(temp,first+1,last,logicin,con,best,selectmode,enabledont);
}

return (best);

struct package *funcom(struct logic *logicin,

int last,int selectmode,int enabledont) {

struct truthtable inintable;

smuct package *best=NULL;

int i,initvector{8]={0,1,2,3,4,5,6,7};

inittable=createnuth(last);
best=gencon(initvector,0,last,logicin,&inittable,best,selectmode,enabledont);

- 101 -

for (i=0;i<=last;++i) free(initable.tablefi]).
return (best);
}

int init{int x,int y) {

int i,*pat;
logicinput=initlogic(x);
for(i=0;i<=y;++i) {
pat=malloc(sizeof(int)*2);
pat[0]=i;

pat[1]=FINISH;
logicinput->pattern|i]=pat;

logicinput->y=y;
retum X;

)

int startop(int last,int selectmode, int enabledont) {
packageoutput=funcom(logicinput,last.selectmode,enabledont);
return (packageoutput->bestcount);

int writetable(int x,int y,int v) {
logicinput->table[y]{x]=v;
retum v,

}

int readtable(int x,int y) {
return packageoutput->alogic->table(y][x];

int readleft(int con,int no) {
return packageoutput->aconfig[con]->left[no];

int readright(int con,int no) {
return packageoutput->aconfig{con]->right[no];

int readkey(int con,int no) {
return packageoutput->aconfig[con]->key[no];

}

int readtop(int con) {
return packageoutput->aconfig[con]->top:

-102-

int readnoofconfig(int x) {
return packageourput->noofconfig;

int readseq(int no) {
return packageoutput->seq[nol:

int readlastseq(int x) {
return packageoutput->lastseq:

int readhead(int no) {
return packageoutput->head[no];
)

int finishop(int x) {
clearpackage(packageoutput):
free(packageoutput);
free(logicinput);

return X;

}

Ili
main() {
res=funcom(test,5, MERGE,YES);

)
*/

- 103 -

APPENDIX B

CIRCUITS AND MASK LAYOUTS OF THE
DIVIDER CHIP

- 104 -

Figure B.1: Schematic diagram for the carry bit of the full adder

o
' Zaare,
§ 1
= - b o =
i 1] } -
1 i
!:' ! | .
i i —t l
-r3f ; .
y L]
Toan
™ : _ - are g
o}
. 1
N
353 ‘||
S [ll
3 5 it
J
o !

Figure B.2: Mask lavout for the carry bit of the full adder

-105 -

T T ———— ~
B R] . s, =
t o R 2 T G, _ LI P -
R A S e A=) -
. = - — . = .
el - P Pl +a
tm - - - - F
T, —_——— b - (.
B - -
. — -\—_
-—
~—‘.

trep o
LN

et — (R
. d omuny’

e oy

.
-

Figure B.4: Mask lavout for the flag generator

- 106 -

-
I
e
fan— -
- - _ o~ - ~ o
. e B .5
S .
b
- -
T h
< -~ a
— L X} N -
n [— -
_— e s ey] — [T
— . - . -
—_ . oy 0
- - .
- . ey
. ———— e —t h '
P - a0 e Yae
[
L .
— - e— -
' S L v Toeel,o Y
- - - .
o — S —
s 2 h
! . - ' . -
- . L -
T -
= -
s b
—_ . - .
———— ———

Fizure B.5: Schematic diagram for the C element

| 4 H +
Cea b
i H]
" er——— e TTTTITIT
- - - . - e - v - -

Fivure B.6: Mask lavout for the C element

- 107 -

' -
y -
P T T .
- — e, l e T, T e HIew
: o -- e L s
Pind . [Renr —s ke T ET =
—r R - P - -~ s
~ -_._i - - L
> -~ - r - b
.\‘—_‘_P_\: - -
- _ — —
wirge Tieme Mg Tt
BT =TT e -
-~ g - . ‘ —
. b wn S - It ‘J"
=l AT L .
h= e ——— -
. . . - s
- —— “"';‘ aq.-‘:“‘
-~ =% =l
R .z e
P I PO TP —
PR - Lo _-‘"
O W -
Nttt} -3
B :
- .t
. et e et
o
)
-
H

Fizure B.7: Schematic diagram for the quotient generator

il[lIlllllIHHlll T || mmuu|uuuumuu|l||llﬂ||huumuun

Fizure B.X: Mask lavout for the quotient generator

- 108 -

- - S—ene— .
A -—1" - \'——h} e S = \':.‘ < :“..\
hd T e e —_— .ot - - o -)
—oaTh -~ —r R
R L____ﬂ_ 3 —ali. S .. S
L T L T
= —_———e—— "
@:"bc.r—!a
i
rt—
Figure B.Y: Schematic diagram for the MSB generator
Laa '
o= I
N i : ;
N - M3
| .
}
t
-2 1 |t 8 . - o —
e !{I- s mILoL T
xiidaTols : "=
' &
1%
i i
i | i
Al] i
H "'[: +
i il

Ficure B.10: Mask lavout for the MSB generator

- 109 -

~3 |
o« Smap “d
—:4.‘ e b
- ?G::_-_ "
.._:-‘ -~ — =‘ ..'3. Toret
- At Sy - T Rl F 13 2
[_I--:..E . .".-:"-'3‘ 3-:..:
s E) 13
> = v
.3 n® -
. L b Y S
R bl
A 3
=
w Lo :“"'
R gt
S
-—

Fizure B.11; Schematic dirgram for the divisor multiplexor sub-cell

doutbar

Figure B.12: Mask Lavout for the divisor multiplexor sub-cell

- 110 -

-
[i
. s
3 "
R R FE
P | [P
L.
" - :)
- =1 = o
- - - "y - '_-.
T
ca—— _— —_— -
. . RN - " Mo e ™ iU - e
e PERUY L D e S —— .
= T o3
e T L1t
- — < - - L —
. -t . _..:
T e ——— R — o ——

P — —
hed .
s
=
1
——

Figure 1B.14: Musk lavout for the remainder multiplexor

-111 -

Figure B.13 Mask lavout for one stage of pipeline

- 112 -

m\\w\\= T T T PR e T P e Sy et ey s

1 @@f@@@gmmxmmmm

JOPNNE TNIRE SN e
T U WINATINE AN e o e e nnd e e e T S
—_—r

Pog, APh BT Atherss AR, L BB iRt

e

YT ITTRR L)
#

[YPL IV

g e T o
=5,

glelile

B . e - \
Qe NS SO U TUNE LU T ST S - : : i i ‘\.\\\\%\‘C

Figure A.14: Mask lavout for complete chip

-113 -

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION

VITA AUCTORIS
Hong Ming Chan
Hong Kong
1966

Vincent Massey High School, Brandon, Manitoba
1984 - 1986

University of Windsor, Windsor, Ontario
1986-1990, B.A.Sc.(Electrical Engineering)

University of Windsor, Windsor, Ontario
1990-1992, M.A Sc.(Electrical Engineering)

-114 -

	University of Windsor
	Scholarship at UWindsor
	1993

	Dynamic logic synthesis with application to self-timed pipelines.
	Hong Ming. Chan
	Recommended Citation

	tmp.1363786207.pdf.PNhLM

