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Abstract

Wireless sensor networks have been envisioned to have a wide range o f applications 

which consist o f many inexpensive and low-powered wireless nodes which are used to 

sense, gather, and transmit the data towards the base station. In Two-Tiered wireless 

sensor networks, nodes are grouped into clusters, with a minimum of one cluster-head to 

distribute the work load among the member nodes. In the recent years, higher-powered 

relay nodes have been proposed to act as cluster heads and these relay nodes form a 

network among themselves in order to improve the lifetime o f the sensor networks. Since 

the nodes are generally energy constrained, efficient management o f the network data 

communication scheme can maximize the lifetime o f the networks.

A Genetic Algorithm is the technique for randomized search and optimization 

which is based on Darwin’s Principal o f Natural Selection. In this paper, we have 

proposed a Genetic Algorithm based solution for scheduling the data gathering o f relay 

nodes that can significantly extend the lifetime o f the relay node network. We have 

simulated our method on 15 different sizes o f networks and measured the lifetime o f the 

network as the number o f rounds, until the first relay node runs out o f battery power. For 

smaller networks, where the global optimum can be determined, our genetic algorithm 

based approach is always able to find the optimal solution with a lesser program run­

time. For larger networks, we have compared our approach with traditional routing 

schemes and shown that our method leads to significant improvements.
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CHAPTER 1 

Introduction

A Wireless Sensor Network (WSN) consists o f a collection o f inexpensive, lightweight, 

battery-operated multifunctional sensor nodes. The feasibility o f these sensor networks 

has been accelerated through the advances in MEMS (Micro Electro-Mechanical 

Systems) technology, combined with low power, low cost Digital Signal Processors 

(DSPs), and Radio Frequency (Rf) circuits. Sensors nodes are often severely energy 

constrained and expected to last until their energy drains out. Since it is not practical to 

replace or recharge the batteries o f thousands of sensor nodes deployed in hostile 

territories, the key challenge in sensor networks becomes maximizing the lifetime of the 

sensor nodes.

To balance the network transmission load among the nodes, WSNs are sometimes 

grouped into clusters. These cluster-based sensor networks can implement a two-tiered 

architecture. In the lower tier, the sensor nodes are deployed in each cluster to sense and 

transmit data to the cluster-head. There is one cluster-head in each cluster (Fig 1.1). The 

cluster-head is responsible for receiving raw data from the sensor nodes, creating a local- 

view by exploring application-specific correlations among the data, and finally, 

forwarding data towards the base station, either directly or via other cluster-heads. These 

cluster-heads and the base-station constitute the upper tier of two tiered WSNs [Pan05].

1
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(a) Physical topology (b) Logical topology

Figure 1.1 : Reference architecture for a two-tier WSN [Hou05]

1.1 Problem Outline

Sensor networks consist o f a large number o f battery powered sensor devices. Different 

cluster heads or relay nodes normally drain out their batteries at different times, resulting 

in parts o f the network becoming inactive. The lifetime o f a WSN can thus be defined as 

the time from the inception of the sensing operation o f the network, till a fraction of the 

nodes deplete their power. The node which runs out o f its battery power first, is known as 

critical node.

To maximize the lifetime o f the network is to extend the lifetime the of critical 

node(s). To reduce the burden on the sensor nodes, some special functionality nodes are 

deployed in hierarchical WSN, which are known as relay nodes [Bari06a]. These relay 

nodes act as cluster-heads, and can be provisioned with higher energy compared to the 

sensor nodes. These relay nodes form a network among themselves, and transmit data

2
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towards the base station using multi-hop paths. The relay nodes can also be used to 

improve connectivity and better load balancing for the networks. Similar to sensor nodes, 

relay nodes are also battery-operated devices capable of wireless communication and 

hence, power constrained. Thus, to extend the lifetime o f the network, it is necessary to 

find out the optimal data gathering and routing scheme.

1.2 Existing Solutions

In hierarchical sensor networks, higher-powered relay-nodes have been used as cluster 

heads in the last few years. These relay nodes route data towards the base station o f the 

network. In such networks, maximizing the lifetime of two-tiered network directly 

depends on maximizing the lifetime o f the network relay nodes.

Most papers deal with the data routing of relay nodes according to a flow-splitting 

[Hou04, Bor05, Yar05, Bari06] model. In a flow-splitting model, data transmits from a 

single node towards multiple destination nodes simultaneously. This approach has a 

number of limitations, including the requirement by the relay nodes to perform complex 

routing functions and costly packet level power control for nodes that are equipped with a 

single transmitter [Hou04].

In the paper of Bari et. al., the authors proposed an ILP formulation to find out the 

optimal routing scheme for a non-flow splitting relay-node network to extend the network 

lifetime. The authors compared their formulation with a direct energy transmission model

3
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to show significant improvements. But these formulations are not suitable for large 

sensor networks and computationally intractable for even a moderate sized network. For 

example, the CPLEX [ILCP] runtime o f these formulations takes more than 60 hours to 

optimize the routing o f a network of size 22 (one base station, with 21 relay nodes which 

act as cluster heads) with the machine of 2.4 GHz processor and 512 MB RAM under 

UNIX environment. CPLEX was unable to produce any solution for networks o f size 

larger than 25 within a reasonable amount o f time.

1.3 Proposed Approach

In this thesis, we propose a Genetic Algorithm (GA) based solution for scheduling the 

data gathering o f the relay nodes that improves the lifetime of the network. The relay 

nodes act as cluster heads to collect data from their respective clusters, or from 

neighboring relay nodes, and forward this data towards the base station either directly or 

via other relay nodes using a multi-hop data transmission (MHDT). Each period o f data 

gathering and transmitting to the base station is referred as a round [Bari06a, Bari06b, 

Kal02] and the lifetime o f the network is represented in terms o f the number o f rounds 

until the first relay node runs out o f its battery power. The non flow-splitting data routing 

is considered assuming both fixed and variable amounts of data received by each relay 

node from the sensor nodes o f its own cluster. We assumed that the nodes are stationary 

after deployment. The number of relay nodes, and their positions, are also assumed to be 

known. The initial energy o f each relay node is considered to be equal. The transmission 

ranges o f each sensor and relay node are considered as mentioned in [Tan06],

4
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1.4 Why Genetic Algorithm ?

The GA approach can be used to solve optimization problems based on the genetic 

processes o f biological organisms. It is useful to find out the approximate solutions to 

difficult-to-solve problems, like NP-Complete problems. The major advantage o f genetic 

algorithms are their flexibility and robustness as a global search method. GAs are not 

guaranteed to find the global optimum solution to a problem, but they are generally good 

at finding acceptably good  solutions to the problems in a reasonable amount o f time. In 

this thesis, we consider large networks and determine a routing scheme that extends the 

lifetime of two-tiered WSNs. The Optimal Integer Linear Program (ILP) formulations 

can be used effectively only for small networks. Even those take higher computational 

time than GA. Special care is needed while designing some GA parameters like 

population size, rate o f cross-over, rate o f mutation etc. to achieve more suitable 

solution.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews some relevant background 

information. Chapter 3 describes the network model used in this thesis. Chapter 4 

describes the methodology used to generate the population and implement the genetic 

algorithm. The experimental results, comparisons and discussions, are presented in 

Chapter 5. Chapter 6 summarizes our conclusions and points to directions for further 

work.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

Background Information

2.1 Two-Tiered Wireless Sensor Networks

Over the last few years, the design o f sensor networks has gained increasing importance 

due to their many potential applications. Such networks are expected to play a significant 

role in a wide range of applications, including motion detection, environment monitoring, 

military surveillance, and reconnaissance. Maximizing the network lifetime is a key 

challenge in most o f the research because the nodes are severely energy constrained. 

Most of sensor nodes are equipped with a small battery that can store, at most, 1 Joule 

[Kah99]. Also, it is not feasible to replace or recharge the batteries o f thousands of 

deployed sensors. Therefore, the battery charge taken with them to the field must be 

conserved in order to extend the life time o f the individual sensor nodes, as well as the 

entire sensor network. To maximize the lifetime o f two-tiered sensor networks, 

researchers have proposed several aspects which include :

•  Clustering algorithms

•  Data gathering and routing schemes

•  Task allocation algorithm for nodes

Sensors in a WSN are often grouped into clusters, each with its cluster head. Instead 

of communicating directly with the sink (base station), a sensor transmits data to its 

cluster head, and each cluster head relays them to a sink node directly, or through other 

(intermediate) cluster heads. Thus, a cluster head closer to the sink needs to relay more

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



traffic towards the sink, which can quickly consume the nodes’ batteries. In case o f the 

early death o f any cluster head, the underlying sensors covered by the failed node (cluster 

head) will become inaccessible (although they may be fully functional) and make the 

network lifetime shorter.

2.1.1 Applications

Recent advances in wireless communications and electronics have enabled the 

development o f low-cost, low-power, multifunctional sensor nodes that are small in size 

and communicate over a short distances. Wireless sensor networks can be deployed both 

indoors and outdoors, substituting for our sensory organs in inaccessible or inhospitable 

areas. For different application areas, there are different technical issues that researchers 

are currently resolving. Depending on the deployment platform, there are a variety of 

applications for such sensor networks. A sensor can be used to measure humidity, 

temperature, illumination, and pressure; detect movement, including speed and direction; 

habitat monitoring; or to detect an object’s shape and size. Sensor networks are widely 

used in a variety of areas, including military, security, health, and environmental 

applications. In military applications, sensor networks are used for target detection, to 

monitor forces, equipment and ammunition, surveillance o f battlefield, and to detect 

nuclear, biological, or chemical attacks. For environmental applications, sensors can be 

used for forest fire detection, flood detection, detecting environmental pollution, 

agricultural precision, etc. It can be also used in seismic activity monitoring. Health 

applications include patient-condition monitoring, diagnostics, and hospital-drug 

administration.

7
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2.1.2 Types of Nodes

Typically, a WSN is composed o f a large number o f nodes with processing, sensing and 

radio communication capabilities. In cluster-based sensor networks, each cluster has 

exactly one cluster-head, which acts as a cluster manager. Each cluster head collects data 

from the sensors in its cluster and relays them to a sink node directly or through other 

cluster heads in the upper tiers [Shu05]. These cluster heads are sometimes called 

gateway nodes [Yon03] or application nodes [Pan05]. To reduce the burden on these 

overloaded nodes, some special nodes are deployed in WSN, which are known as relay 

nodes [Bari06a, Bari06b]. Similar to sensor nodes, relay nodes are also battery-operated 

devices capable o f wireless communication, but their job is to relay data generated by 

other sensor nodes without sensing the environment.

2.1.3 Node Sub-systems

A sensor node usually consists o f four sub-systems [Rag02], as described below :

• A computing subsystem - It consists o f a microprocessor (microcontroller unit, 

MCU), which is responsible for the control of the sensors and the execution of 

communication protocols. MCU’s usually operate under various operating modes 

for power management purposes.

• A communication subsystem - It consists o f a short range radio, which is used to 

communicate with neighboring nodes and the outside world. Radios can operate 

under the Transmit, Receive, Idle, and Sleep modes. It is important to completely 

shut down the radio rather than put it in the Idle mode when it is not transmitting 

or receiving because o f the high power consumed by this mode.

8
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• A sensing subsystem - It consists o f a group of sensors and actuators that link the 

node to the outside world. Energy consumption can be reduced by using low 

power components and saving power at the cost of performance, which is not 

required.

• A power supply subsystem - It consists o f a battery which supplies power to the 

node. The lifetime o f a battery can be increased by reducing the current drastically 

or even turning it off often.

2.1.4 Types of WSN

The WSNs structure can be divided as follows according to the routing protocols 

[A1K05] :

•  Flat Network Routing -  In this network, each node typically plays the same role, 

and all sensor nodes work together to sense the data. Due to the large number of 

sensor nodes in this structure, it is become feasible to assign a global identifier to 

each node. The base station sends queries to certain regions and waits for data 

transmissions from the sensor nodes located within that region.

Sensor Nodes

Wifeless Links

Base. Station

Sensor Nodes . ^

T'

Wireless LinksDirection of Data 
FtOW

Figure 2.1 : Single-Hop and Multi-Hop routing for Flat Network
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• Hierarchical Routing -  In hierarchical or cluster-based architectures, higher 

energy nodes (cluster-heads) are responsible for collecting data from their 

respective cluster and forwarding them to the base station. To perform the sensing, 

low energy sensor nodes are used. This is a well-known technique with special 

advantage of network scalability and efficient communication. LEACH, APTEEN 

(TEEN), and PEGASIS are some example o f hierarchical clustering protocols. In 

hierarchical routing, data communication from relay nodes to the base station may 

be either single-hop or multi-hop. In the single-hop data transmission model 

[HeiOO, HThOO], the cluster heads send data directly to the base station, provided 

that the base station lies within the transmission range o f all the relay nodes. In 

the multi-hop data transmission model [Kal02, Hou04, Hou05, Tan06], relay 

nodes not only transmit data that they receive from the sensor nodes belong to 

their respective clusters, but also forward data from other relay nodes towards the 

base station.

• Location-based Routing -  In this kind o f routing in WSN, sensor nodes are 

addressed by means of their corresponding locations and the distance between the 

neighboring nodes can be measured on the basis o f incoming signal strength.

Cluster-based sensor network can also be classified into two broad types -  

homogeneous and heterogeneous sensor networks. In homogeneous networks all the 

sensor nodes are identical in terms o f battery energy and hardware complexity. The 

cluster-head nodes transmit data towards the remote base station, and are also responsible 

for data aggregation and protocol co-ordination. Heterogeneous sensor networks contain

10
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two or more different types o f nodes with different battery energies and functionality. It 

can reduce the network cost by embedding a smaller number o f cluster head nodes. As 

cluster heads are fixed in this network, the rotation o f cluster heads (for load balancing 

purposes) is no longer possible [Mha04].

Clustered sensor networks can also be again classified as single hop and multi-hop 

network. A single hop network is one in which sensor nodes transmit the data directly to 

the cluster head without relaying it through any intermediate node. In a multi-hop 

network, nodes use multi-hopping to reach the cluster head by using intermediate node, 

or nodes. This is particularly the case when the propagation loss index for in-cluster 

communication is large (m > 2) since the sensor nodes are deployed in regions o f dense 

vegetation or uneven terrain. In such cases, it may be beneficial to use multi-hop 

communication among the nodes in the cluster to reach the cluster head [Mha04].

Besides the two-tier WSN as described above, a Three-Tier WSN architecture has 

also been proposed by Zha et.al. which is designed specifically for the traffic monitoring 

and application processing purposes. At the Sensing & Fusing Tier, the networked 

sensors in clusters monitor the physical traffic and transmit data to their local cluster 

head. The Transmission & Management Tier equipped with high powered cluster heads 

to provide reliable, long-range, and high data rate transmission among communications at 

this tier. The proposed last tier, the Decision-making Tier, is claimed to provide 

transportation statistics and traffic control assistance service strategies owing to aware the 

information supplied by the other two tiers.

11
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2.1.5 Limited Resources

A wireless sensor network is a special network which has many constraints compared to 

other networks. One o f the basic characteristics o f sensor networks is that they are 

expected to perform in an unattended manner, i.e. without human intervention. Sensor 

nodes are also powered by low-powered batteries. The functions of sensing and 

communicating require a certain amount o f resources for implementation, including data 

memory, code space, and energy to power the sensor. However, currently these resources 

are very limited in a tiny wireless sensor. The sensor nodes have the following resource 

constraints:

• Limited Memory and Computational power -  A sensor is a tiny device with only 

a small amount o f memory and storage space for the code. Its’ computing power 

is also limited. For example, a MICA mote has an 8-bit, 4MHz CPU only with 

only 512 KB storage capacity (Table 2.1). This restricts the types o f data 

processing algorithms on a sensor node, as well as the sizes o f intermediate results 

that can be stored on the sensor nodes.

Rr< >< ■("»snr IMhz. M ill v IC U  (ATMEL)
S to n ie r ■'>12 KB

HUlMhz RadioILiuio
( H1 Monolithic)

( Mi mm miration
1 0 0  l iILmge

Data iLilr 40 I\1 11Msec
Transmit Current 12 111. \
Receive ( ‘un'ont 1.8 m A
Sl(>( p  C ll lT c l i l 5 uA

Table 2.1 : Hardware Characteristics o f a MICA Mote [Yao02]

12
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• Limited Communication -  The sensor nodes have latency with high variance and 

limited bandwidth. It has a 916 MHz radio transceiver that collets information 

from cluster members with communication rage of 100 ft (40 m) only.

•  Limited Power -  Limited power is the biggest constraint o f wireless sensor 

networks. To keep the cost and size o f the sensor nodes small, they are equipped 

with low powered batteries. For example, the MICA motes are powered by two 

AA batteries, that provide about 2000mAh [Hil02], powering the mote for 

approximately one year in the idle state and for one week under full load. Also, it 

is not feasible to replace or recharge the thousand of high cost o f sensors. 

Therefore, the battery charge taken with them to the field must be conserved to 

extend the life time o f the individual sensor node as well as the entire sensor 

network. The processing o f security related functions (e.g., encryption, decryption, 

signing data, verifying signatures) consumes extra battery power.

2.1.6 Design Factors

WSNs have several restrictions which include limited non-replenishable energy supply, 

limited computing power, limited bandwidth o f wireless links and small size o f sensor 

nodes. One o f the main design targets for WSNs is to carry out data communication while 

trying to maximize the lifetime of the network. Thus WSNs pose a number o f unique 

technical challenges due to the following factors [A1K05 and Aky02] :

• Energy consumption without losing accuracy -  Sensor nodes need to use their 

power efficiently due to the limited supply of energy as the included batteries are 

not rechargeable or replaceable. Proper power conservation and power
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management are needed to ensure the receiving of all data from source node to 

destination node without any packet lost or data conflict. Early power dissipation 

by any node causes significant topology changes and reorganization of the 

network routing.

• Node Heterogeneity -  Depending on the application, a sensor node can have 

different roles or capabilities (heterogeneity) which raises many technical issues 

related to data transmission.

• Unattended Operation and no Human Intervention - As the network may be 

deployed in inhospitable territories, or as the number of nodes deployed in sensor 

networks can be very large, it may be physically or economically infeasible for 

any kind o f human intervention after the deployment o f the networks.

• Fault Tolerance -  The failure o f sensor nodes, due to a lack of power, physical 

damage, or environmental interface, are more frequent in sensor networks. The 

network should sustain information dissemination in spite o f failures.

• Scalability -  Network protocols should be able to scale to a high degree and take 

advantage o f high density o f networks with hundred or thousands o f nodes.

• Connectivity -  The sensor node should be highly connected with each other, and 

no node should be completely isolated from the other nodes.

•  Coverage -  Each sensor node obtains a certain view of the physical area which is 

limited both in range and in accuracy.

• Data Aggregation -  Sensor nodes may generate significant redundant data, 

similar packets from multiple nodes. To reduce the number o f re-transmission, 

data aggregation should be performed to send a single packet.

14
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• Quality o f  Service -  As conservation o f energy is directly related to the lifetime 

of the network, there may be a trade-off between the quality o f the result and 

conservation o f energy, especially where maximizing the lifetime is more 

important than the quality o f data sent. Therefore, energy-efficient schemes are 

needed to address the issue.

2.1.7 Sensor Networks vs. Ad-hoc Wireless Networks

Wireless sensor networks may appear to be similar to ad-hoc wireless networks, but 

several important distinctions can be drawn between the two.

• Ad-hoc networks typically support routing between any pair o f nodes, whereas 

sensor networks have a more specialized communication pattern, like many-to- 

one, one-to-many, and local communication.

•  In most o f the sensor networks, nodes are not mobile, possibly embedded in walls 

or dispersed from an airplane in a field.

•  Sensor networks are more resource constrained than ad-hoc networks. Nodes in 

an ad-hoc network may have a 32-bit processor, megabytes o f RAM, a 2 Mbps 

radio, and a large battery, whereas a typical sensor node have an 8-bit processor, 

kilobytes o f RAM, a 40 Kbps radio, and a tiny battery.

•  There may exists a significant amount o f redundancy in sensor network traffic as 

an event in the environment may cause several neighboring nodes to send data to 

the sink at correlated times. This redundancy is almost absent in case o f ad-hoc 

networks.
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2.1.8 Hierarchical Protocols

In a hierarchical architecture, higher energy cluster heads are used to perform data 

aggregation and fusion, and process to send the information to the base station. On the 

other hand, the low energy sensor nodes are only used in sensing the target. Thus the 

main aim of hierarchical routing is to efficiently maintain the energy consumption o f the 

sensor nodes and to maximize the network lifetime. Some initial and popular hierarchical 

routing protocols are described below -

• LEACH (Low-Energy Adaptive Clustering Hierarchy)- It is one of the first 

hierarchical routing schemes for sensor networks [Hei02]. The basic idea o f  

LEACH is to organize sensor nodes into clusters based on the received signal 

strength. The node which requires the minimum communication energy for 

routing data to the base station is selected as cluster-head. The cluster-heads 

position change randomly over time in order to balance the energy dissipation of 

the nodes.

• PEGASIS (Power-Efficient Gathering in Sensor Information Systems) -  This is a 

chain-based protocol [Lin02]. In PEGASIS, each node transmits data only to its 

close neighbor. The node which receives data from its neighbor first aggregates 

with its own data and then sends the data to the next neighbor on the chain. 

Unlike LEACH, PEGASIS uses only one selected node on the chain to transmit 

data to the base station instead of using multiple cluster-heads.

•  APTEEN (Adaptive Periodic Threshold-sensitive Energy Efficient sensor 

Network) —  APTEEN [Man02] is the reactive approach in LEACH to further 

enhance the energy efficiency in sensor networks. APTEEN combines both
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proactive and reactive policies which allow the user to set threshold values and a 

count time intervals. The count time interval is the maximum time period between 

two successive reports sent by a node. If a node does not send data for a time 

period equal to the count time, it is forced to sense and retransmit the data.

Two widely used routing strategies, under the non-flow-splitting model are, the 

Minimum Transmission Energy Model (MTEM) and the Minimum Hop Routing Model 

(MHRM). In MTEM, each node i transmits to its nearest neighbor j ,  where j  is closer to 

the base station than i. If there is more than one such node, only one is selected. In 

MHRM, each relay node transmits its data towards the base station as far as it can but 

within its transmission range maintaining the minimum numbers o f hops to reach the 

base station. If the base station is within the transmission range of any source node, then 

data transmits directly to the base station. Fig 2.2 shows the sample o f data routing for 

MTEM and MHRM respectively.

Base Station Base Station

Figure 2.2 : Minimum Transmission Energy Model (MTEM) and 
Minimum Hop Routing Model (MHRM)
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2.2 Overview of Genetic Algorithms

Genetic Algorithms (GA) are techniques for randomized search and optimization, which 

is based on Darwin’s Principal of Natural Selection [Gol89, Hol75, Rec73]. The most 

basic concept o f the optimization is “Survival o f the fittest”, that is the strong will survive 

and the weak will die out. GAs employ a fitness function to determine how good the 

solution is for a particular given problem. The individuals having a greater fitness are 

chosen to reproduce the next generation. This process is repeated until an acceptable 

solution to the problem is found. Since GA is a heuristic, it estimates a solution to 

produce near to optimal results in a reasonable time.

The idea of evolution strategies in solving problems was first introduced by I. 

Rechenberg in 1973 [Rec73]. Later J. Holland [Hol75] and his students developed the 

concept of the genetic algorithm in 1975. Both of them developed a unique notation by 

using a mixture of biological and computer science term. GAs are now successfully 

applied in a wide range of studies in solving optimization problems, specially problems 

that are not well-structured and interact with a large number o f possible solutions.

GA starts with a set o f the randomly generated possible solutions (each of which 

is known as Chromosome or Individual) and the set is called a Population. Each 

chromosome is a simple string or array o f Genes which contains a part o f solution and the 

values of genes are called Alleles. The length of each chromosome should be same in a 

produced population. A Fitness Function is provided to assign the Fitness Value for the
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each individual. The function is based on how far or close an individual is from the 

optimal solution - greater the fitness value better the solution the individual contains.

Two randomly selected chromosomes, known as Parents, are twisted together in a 

process called Recombination, or Crossover, to produce two new chromosomes known as 

the Child or Offspring. If both the parents share a particular pattern in their chromosome, 

then the same pattern will be carried over to the offspring. To obtain a good solution, 

Mutation is often applied on randomly chosen chromosomes after the process of 

crossover. Mutation helps to restore any lost genetic values when the population 

converges too fast. Once the process o f crossover and mutation occurs in a population, 

then the chromosomes for the next generation must be selected. To ensure that the new 

generation is at least as fit as the previous generation, some of the poorest performing 

individuals o f the current generation can be replaced by appending same number o f best 

performing individuals from previous generations. This is called Elitism. This cycle is 

repeated until the stopping criterion o f the algorithm is met. The flow diagram of a 

typical GA process is shown in Fig 2.3.

The important factors that affect the GA performance are -  Size o f Population, 

Fitness Function, Method of Crossover, Mutation Probability, and Method of 

Replacement. The details of individual steps of a typical genetic algorithm are as 

follows :
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Acceptable 
Solution ?

Elite Members 
o f Prev Gen.

Stopping
Criterion?

Replacement

Selection

Mutation

Cross-over

Evaluation

Initialization

Evaluation

Select Elite 
Members

Select Elite 
Members

Final Solution

Figure 2.3 : Flow diagram of a GA process with Elitism

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.1 Initialization

The initial population (i.e. a set o f chromosomes) is usually generated randomly. Each 

individual/chromosome o f the population is a possible solution o f the given problem. The 

individuals are generated satisfying the all criterion o f the network. The most popular 

way to represent an individual is as a sequence of 0’s and l ’s. However, genetic 

algorithms can be applied with individuals that are the strings o f integers, floating point 

numbers, or arbitrary numbers. Before generating the population, it is crucial to 

determine the size o f the network. The size o f the network greatly affects the problem 

solution. A small population size may lead to premature convergence before reaching an 

acceptable solution. On the other hand, if  the population size is too large, it leads to 

unnecessary computational time [Sas05]. However, the size o f the population should 

remain the same for all generations.

2.2.2 Evaluation

Each individual o f the population is needed to determine its corresponding fitness value 

by using the fitness function. This function represents how close an individual is to the 

optimal solution. The individual with a fitness value represents a better solution to the 

problem. The most difficult and important step to implement the genetic algorithm is to 

construct the fitness function. The fitness function must also be fast because the fitness 

value o f each individual must be calculated. Hence, the program runtime also depends on 

the fitness function of the genetic algorithm.
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2.2.3 Selection

Selection is a process in GA to select the individuals/chromosomes with higher fitness 

values for the recombination (i.e. crossover) process. Individuals with a higher fitness 

value have a higher probability o f being selected. Thus, GA imposes the survival-of-the- 

fittest mechanism. There are many methods for selecting the best chromosomes : 

Roulette-Wheel Selection [Hol75, Gol89, Dav91], Tournament Selection [Bri81, Gol91], 

Rank Selection, Steady State Selection etc, some o f them are described below -

2.2.3.1 Roulette-Wheel Selection : This selection is based on Fitness 

Proportionate Selection method [Sas05]. Parents having better fitness values have a 

higher probability of being selected. In this method, each individual is assigned to 

the part o f roulette wheel (Fig. 2.4) with the corresponding slot sized according to

fitness ( A  ) = 4 
fitness ( B ) = 2  
fitness 1 C ) = 7 
fitness ( D j = 4
fitness f ! ) = 3 k A

Figure 2.4 : Roulette-Wheel Selection

fitness. The wheel is spun n times to select n individuals. It is not guaranteed that 

the fittest individual will always to be selected. Similarly there is no guarantee for
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the lowest individual not to be selected. Again, there is a chance o f selecting the 

same individual more than one time. Implementation of the roulette-wheel selection 

is briefly described in the section 4.4.

2.2.3.2 Tournament Selection : In Tournament selection process, s individuals are 

chosen randomly and entered into a tournament against each other. The individual 

with highest fitness value wins the current tournament and is selected as the parent. 

The selected parent is then just copied into the mating pool and then all tournament 

members (including selected member) are replaced into the original population. 

This is repeated until the mating pool is full. The most common type o f tournament 

selection is binary tournament, where the value o f s is 2. Using these selection 

processes, n tournaments are needed to select n individuals. Larger tournaments 

may also be used for selection [Bea93], from where the best o f m (and m > 1) 

individuals are copied into the mating pool. This selection process increases the 

selection pressure, as below average individuals are less likely to win a tournament, 

while above average individuals are more likely to.

2.2.3.3 Rank Selection : In rank selection, individuals are sorted in order o f raw 

fitness and assigned fitness from this ranking. The worst will have fitness 1, second 

worst 2 , and so on, and the best will have the fitness n, where n is the size of 

population. This method is mainly used when the fitness differs greatly.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.23.4  Steady State Selection : In a steady-state selection, one member o f the 

population is changed at a time. To perform selection, each member of the 

population is chosen according to its fitness. The first selected member is copied 

and the copy mutated. The second member of the population is selected which is 

then replaced by the previously mutated member and so on.

2.2.4 Crossover

After the Selection process, two individuals are selected randomly from the mating pool 

for crossover/recombination to produce two new offspring (children). The purpose of 

crossover is mainly to create better offspring by exchanging genetic materials between 

two individuals. Crossover is not usually applied to all pairs o f individuals selected for 

mating. Crossover Probability, p c, is set either experimentally or based on schema- 

theorem principles [Gol89, Sas05]. The value of p c should be selected carefully, as it 

affects the performance of GA [Gaz99]. It is needed to be mentioned that, if  a pattern 

appears in both the parents involved in a crossover, then both the newly produced 

offspring will also preserve that pattern [Lof06]. A random number, r, is generated 

between 0  to 1 and if  r < p c, the randomly selected two parents perform crossover process 

to produce two new offspring. Otherwise, the offspring are produced simply duplicating 

the parents when r > p c. Typically crossover probability is considered between 0.6 to 1.0. 

Various types o f crossover strategies have been designed for the GA, some o f them are 

described below -

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.4.1 k-point Crossover : The value of k is usually 1 or 2, resulting in One-point 

Crossover (or Single-point Crossover) or Two-point Crossover, respectively. In 

one-point crossover, one crossover point is selected randomly over the parent’s 

string length. Similarly in case of two-point crossover, two crossover points over 

the parent’s string length are selected randomly. After the crossover points have 

been selected, the two parents (chromosomes) exchange their alleles (genes) over 

the same crossover points and produce two new offspring as shown in Fig 2.5.

■ Parent' A Parent B

(a) One-point or Single-point Crossover

j pi#

Crossover pouuS

Child D

(b) Two-point Crossover 

Figure 2.5 : k-point Crossover

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2A.2 Uniform Crossover : In uniform crossover [Sys89, Spe94], the swapping 

probability, p s, is selected before the two randomly selected parents undergo the 

uniform crossover. In this crossover process, every allele between the parents is 

exchanged according to the selected swapping probability. Fig 2.6 shows the 

uniform crossover between two parents A and B. Allele 2, 3 and 5 are selected from 

the parent, as per the swapping probability, to exchange their values, and children C 

and D are formed after the crossover process. The value o f swapping is usually 

considered as 0.5 for the uniform crossover strategy.

st'livti'd genes 

position of gene

Parent A

. .Parent R

.'Child C 

Child H

Figure 2.6 : Uniform Crossover

2.2.4.3 Mixed Crossover : In mixed crossover, the type o f crossover is chosen 

randomly from different types o f crossover methods. The types o f crossover may be 

one-point crossover or two-point crossover or uniform crossover or any other type 

of crossover, but the selected crossover method remains the same for a same 

generation. Every type o f crossover has advantages and disadvantages. The mixed 

crossover does not care about any special structure o f the individuals nor does it
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care about the problem itself. At the beginning, random crossover assigns a unique 

constant to each type o f crossover. Every time a crossover is executed, a number is 

randomly picked among the assigned constant and the corresponding crossover is 

then executed.

2.2.5 Mutation

Mutation is applied to each child individually after crossover, to achieve a better fitness 

value. The mutation process also restores lost genetic values when the population 

converges too fast [Gol89]. If two parents, having same allele, are selected for mating, 

then the crossover will not change the structure o f the new child. Mutation is designed to 

overcome such problems. It changes each allele value according to the Mutation 

Probability p m. Bitwise Mutation is a common type o f mutation, where each bit in a 

binary string is altered with a probability o f p m. Fig 2.7 illustrates a bitwise mutation 

where randomly selected mutation point is 6  and the value of allele (gene) is 0. After the 

mutation the value o f same position for the child becomes 1 .

m utation p o in t

position of flone I 2  3 ~ 4  5 7  8  9

Q tth i bot'orv m u tation 1 0 1 1 0 0

I
lini aft<sr imitation] ^ 0 1 1

0 1
1 0 I

Figure 2.7 : Bitwise Mutation
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Similar to crossover probability, mutation probability also influences the GA 

performance. If the value o f the mutation probability is set too low, the GA will converge 

early, before reaching an acceptable solution. On the other hand, it may cause a stability 

problem in population if  the value o f p m is set too high [Gaz99].

2.2.6 Replacement

After selection, crossover, and mutation, new offspring are produced, and the population 

for the next generation must be prepared. A certain percentage, or all o f the offspring 

produced in the previous generation, can be selected for the next generation. Different 

types o f replacement strategies have been proposed in the GA literature -

2.2.6.1 Delete-all: In this strategy, all parents are deleted and all newly produced 

offspring form the next generation. To implement, we can consider an empty 

population P  and then every time new offspring are created they are put into P. At 

the end, we just delete all the population from the previous generation and P 

becomes the new generation.

2.2.6.2 Elitism : Cossover and mutation cannot guarantee creating o f a more fit 

child than the parents in the previous generation. This is the disadvantage of the 

Delete-all replacement strategy. To overcome this problem, some of the elite 

parents from the previous generation are included into the next generation by 

replacing the same number o f worse fit offspring. This is the most common
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replacement and known as Elitism strategy. Elitism ensures that the best fitness 

chromosomes always survive to the next generation, while the worst are not carried 

to the succeeding generation. To implement this strategy, we need to fix the 

percentage o f most elite individual that will be inserted into the next generation and 

probability o f elitism in each generation.

2.2.7 Stopping Criterion

The stopping criterion is used to stop the execution of the GA. The GA does not 

guarantee to find the global optimal solution of a given complex problem, but an 

acceptable solution can be obtained within a reasonable time. A satisfactory stopping 

criterion can be obtained -

1. When an acceptable solution is found that satisfies the minimum criteria,

2. When the number o f generations excees the value of Gen max, as defined by the 

user,

3. When the population is Converged, i.e. the average fitness o f the population is at 

least 95% of the best fitness, or

4. Any combination o f the above rules

If the criterion 2 for convergence is applied, the probability o f mutation should be 

increased to introduce more diversity into the population [Liu02]. In order to achieve a 

better solution with less execution time, the stopping criterion should be carefully 

selected.
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CHAPTER 3

Genetic Algorithm Based Routing

In this chapter, we will describe our tow-tiered network model and outline our GA based 

algorithm for routing in the upper tier relay node network. The objective o f the proposed 

GA is to find an optimal schedule for data gathering in a two-tiered WSN such that the 

lifetime o f the network is maximized.

3.1 Network Model

We consider a two-tiered wireless sensor network with n relay nodes, labelled as node 

numbers 1, 2, 3, ..., n and one base station, labelled as node number n+1. Each sensor 

node belongs to only one cluster and each cluster has one relay node that acts as a cluster 

head of that cluster. In other words, let D  be the set o f all sensor nodes which form total 

m clusters, and D h 1 < i < m ,  be the set o f sensor nodes belongs to the z'th cluster. Then, D 

-  Di U D2 U . . .  U Dm and D{ H Dj = 0 ,  for i ±j .

The sensor nodes transmit their data directly to their respective relay node belongs 

to that cluster, and relay nodes o f each cluster forwards the gathered data toward the base 

station. Each relay node i transmits data to one other node j  (either another relay node or 

the base station), such that node j  is within the transmission range o f node i and is closer 

to the base station than node i. The base station only receives data and there is no 

transmission from base station to any relay node. The initial energy provisioned in each
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relay node is assumed to be equal. The amount of bits received by each relay node in a 

round is fixed, but may vary from one node to another.

In this paper, we adopt the “non-flow-splitting” model, for the upper tier relay 

node network. In this model, the outgoing data from each relay node flows to only one 

destination node (either another relay node or base station). It cannot be split into a 

number of different flows to be sent different destination nodes simultaneously. The non- 

flow-splitting routing model has been investigated in the papers [Bari06a, Bari06b, 

Hou04],

The routing schedule is computed here by some centralized entity (e.g. the base 

station), which is not power constrained. It is assumed that all nodes are stationary after 

deployment, and that relay nodes are either placed at specified locations (determined by a 

suitable placement strategy such as in [Bari06b]), or can report their current location for 

initial configuration. We assume that the average data generated by each sensor node and 

the distribution o f the sensor nodes into their clusters is known. It is assumed that the 

initial energy provisioned in each relay node is equal. As already mentioned, the routing 

schedule is calculated centrally, based on the positions and expected data rates at each 

relay node. The computed routing schedule may either be pre-loaded on to the nodes 

prior to the deployment o f the network, or may be broadcast to all nodes during the setup 

phase. We note that, in the second scenario, the amount o f data exchanged for setting up 

the initial configuration is very small and its effect on the total lifetime o f the network is 

negligible. Each period of data gathering is referred to as a round [Bari06a, Bari06b, 

Kal02], and the lifetime is measured by the number o f rounds until the first relay node
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runs out o f power. The relay nodes are placed uniformly over the sensing area, using the 

placement strategy outlined in [Bari06b].

In the following sections, we will outline the main steps needed to implement our 

genetic algorithm for energy efficient routing.

3.2 Chromosome Representation

The chromosome corresponding to a specific routing scheme is represented here as a 

string of node-numbers. The length o f each chromosome is always equal to the number of 

relay nodes in the network. The position o f each cell (gene) represents a source relay 

node number -  which is transmitting data. The cell value represents the destination relay 

node number -  i.e. the node which is directly receiving the data from the corresponding 

source node. The base station only receives data from relay nodes and does not transmit 

data. Therefore, it is not necessary to represent it explicitly in the chromosome as a 

source node. The relationship between a specific routing scheme and the corresponding 

chromosome is illustrated in Figure 3.1 for a network o f size 7, with 6  relay nodes and 1 

base station. The routing scheme can be represented by the chromosome o f length 6  

(corresponding to the 6  relay nodes). Fig. 3.1(a) shows the logical routing path for such 

network and the corresponding chromosome is shown in Fig. 3.1(b). In Fig. 3.1(b), the 

value o f the gene in position 1 is 3, indicating that node 1 transmits to node 3. Similarly, 

the value in position 3 is 7, indicating that node 3 transmits to node 7 (base station), and 

so on.
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1 2  3  41 5 6

V  V  V i I V
3 4 7  rj7 3 7

Source N odes  

Destination N odes

Fig. 3.1 : (a) A routing scheme and (b) corresponding chromosome 

representation for a 7-node network

3.3 Generating Random Graphs

To generate random graphs for an initial population, the following network flow 

constraints should be maintained :

1. Each relay node receives data from the sensor nodes belonging to its own cluster, 

and can also receive data from any number o f other relay nodes.

2. Each relay node i transmits data to one other node j  (either another relay node or 

the base station), such that node j  is within the transmission range o f node i and is 

closer to the base station than node /.

3. The base station only receives data, and there is no transmission from base station 

to any relay node.

For the network o f size n+1, an integer array of size n is first initialized by setting 

all values to 0, to indicate no links currently exist in the network. First select node no. 1 

as the source node and generate a random number j  between 1 to n+\ for the destination 

node that satisfies the above flow constraint no. 2. Replace the value o f cell no.l from 0
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to j  -  which indicates j  is the destination node for node no. 1. Then, consider j  as the 

source node (when j  is not base station) and generate another random number k 

(destination node for j )  between 1 to n+ 1  satisfying the mentioned flow constraint. If k is 

not the base station, then repeat the process until the base station is found as the 

destination node. Special care should be taken selecting destination nodes so that the flow 

does not create any disconnected graph. The node j  can be selected as the destination 

node for the source node i where base station is n+ 1 such that:

i) i *  n+ 1

ii) j  e  { 1  ... n + l} and i * j

iii) djs n+i < dj, „+i

iv) du < data transmission range , where d;; j is the Euclidean distance from 

node i to node j .

After receiving the base station as the destination node, select the next available 

source node starting from the left side o f the array whose destination node is still labeled 

as 0  (i.e. no link yet established from that node) and follow the above procedure 

considering the node as the source node. If the generated destination node is found as any 

source node selected in earlier process, replace 0  by the new destination node and find the 

next available source node to determine the flow from the node. This cycle will be 

continued until all the source nodes find their respective destination nodes. To generate a 

random graph of size 7 as shown in Fig 3.1, the following steps were made :

1) 1 -> 3, 3 -> 7 (found base station, select node 2 as source node for the next flow)
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2) 2 —» 4, 4 -»  7 (found base station, select node 5 for next flow as 3 and 4 already 

selected for source nodes)

3) 5 —> 3 ( 3 is selected as source node for the flow from node 1)

4) 6  —» 7 (found base station, and since destination nodes for all source nodes are 

found, generating a random graph is completed)

For a population of size P, we need to generate such P  numbers o f randomly 

generated graphs following the above procedure and calculate the fitness value o f each 

individual before perform the initial selection.

3.4 Fitness Function

Each new individual needs to be evaluated to determine its fitness value. The fitness 

value is nothing but the lifetime o f the network, represented by the total number of 

rounds until the first relay node runs out o f battery power. The value can be computed for 

an individual through the use of the following equation [Bari06a],

F
t  _ _  i n i t i a l  / 1 \

n e t  p  \ J *
m a x

where, Lmt is the network lifetime in terms o f rounds, and Einiliai is the initial energy o f a

relay node, which is known beforehand. Emax is the maximum energy per round

dissipated by any relay node in the individual, for the routing scheme defined by the 

chromosome. It is defined as,

Emax = m ax(£„ 1 < x < n )  (2)
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where, is* is the total energy dissipated by relay node x for one round o f data gathering. Ex 

is obtained by summing the total energy dissipation for transmitting data (ETx), and the 

total energy dissipation for receiving data (£/&) for the relay node x, i.e.

E x ~  E tx +  E rx (3)

The total transmitting energy and receiving energy can be computed based on the 

first order radio model as mentioned in [HeiOO]. In this paper, the authors assumed a 

simple model radio (Fig. 3.2) that dissipates 50 nJ/bit to run the transmitter or receiver 

and 1 0 0  pj/bit/m (for the path loss exponent, m -  2 ) to run the transmit amplifier.

k bit packet

ETx(d)

Transmit
Electronics

F  *  kciec K

Tx A m plifier

d™* k * d2■"amp

j

k bit packet
'Rx

R eceive
Electronics

lT
F  * kd e c  K

Figure 3.2 : First Order Radio Model (where, m -2)

The transmitting energy, Etx, is dissipated in a round by each relay node x, 

1 < x < n, to transmit k amount o f data to another node y, \ < y <  n+\, can be defined as,

ETx= E elec*k + s amp*k*dZy (4)
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where, dx>y is the Euclidian distance between node x and y, Eeiec is the transmit energy 

coefficient, samp is the amplifier coefficient and m is the path loss exponent. The value o f  

m is considered as 2  for the free space, when using short to medium-range radio 

communication [Pan03, Bari06a].

Similarly, the received energy (Erx) dissipated in a round by each relay node x, 

1 < x < n, can be defined as,

ERx= E elec*k (5)

where, k is the number o f bits received by a relay node in a round, and Eeiec is the receive 

energy coefficient.

3.5 Selection of Individuals

Selection o f individuals is carried out by using Roulette-Wheel selection method [Hol75, 

Gol89, Sas05], where the probability o f being selected increases with the fitness value of 

the individual chromosome. In Roulette-Wheel selection, each individual in the 

population is assigned a roulette wheel slot sized in proportion to its fitness. That is, in 

the biased roulette wheel, good solutions have a larger slot size than the less fit solutions.
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For n individuals (xi.. ,xn), the Roulette-Wheel selection scheme can be implemented as 

follows,

1. Evaluate the fitness value, f , for each individual Xj, where 1 < i < n  and n is the 

total number of relay nodes. This is the Lnet value as discussed in section 3.4

2. Calculate population total fitness value, f T = ^  f t
!= 1

f.
3. Find the individual probability (i.e. slot size), p t -  —

fr

i
4. Calculate the cumulative probability, q , , for each individual as qt -  ^

7=1

5. Generate a uniform random number, r e  (0,1]

6 . I f r < q\ then select the first individual, x\, else select the individual x; such that 

9,-1 <r <q ,

7. Repeat steps 5-6 n times to select n candidates in the mating pool.

To illustrate the above procedure let us consider a population with five individuals

n

(n = 5), with the fitness values as shown in the table below. The total fitness, f T =
,= i

4+2+7+4+3 = 20. The probability o f selecting an individual and the corresponding 

cumulative probabilities are shown in Table 3.1 below,
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Individual A B c D E

Fitness,/ 4 2 7 4 3

Probability, p. 4/20 = 0.20 0 . 1 0 0.35 0 . 2 0 0.15

Cumulative 
probability, q,

0 . 2 0 0.30 0.65 0.85 1 . 0 0

Table 3.1 : Calculation of cumulative probability for Roulette-Wheel Selection

Now generate a random number r such that r e  (0,1]. Let the value of r be 0.58, 

then the third individual, C, will be selected since <72 = 0.30 < 0.58 < <73 = 0.65. If value 

of r is 0.14, then first individual A will be selected since 0.14 < <71 =0.20.

3.6 Mixed Crossover

The crossover operation is performed in order to produce new offspring from the selected 

parents. The type of crossover is selected randomly from the following:

i) uniform crossover (with swapping probability 0.5) and

ii) k-point crossover (k = 1,2, or 3, selected randomly) for each generation.

The different types o f crossover schemes are discussed in detail in Section 2.2.4. 

Fig. 3.4 shows an example o f 2-point crossover with two parent chromosomes, Parent A 

& Parent B, in a network with 6  relay nodes (n=6) and one base station. Two random

num bers r\ and r2 (r\ r2) are se lec ted  su ch  that r\, r2 e  { 1  77- I } to  d eterm ine the

crossover points. Let, r\=2 and r2 =5 represent the crossover points as indicated by the 

dotted lines in Fig 3.4.
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Parent A Parent B

Source

Crossover points

Child C Child D

Source

Figure 3.4 : 2-points crossover in a network of size 7

After the crossover, two new child chromosomes, Child C & Child D are 

generated by interchanging their gene values o f the parents at the crossover point r\ and 

r2 . Our crossover scheme guarantees that the two offspring resulting from the crossover 

will always be valid solutions, corresponding to a specific non-flow-splitting routing 

scheme. The rate o f crossover should be carefully designed, as it affects the GA 

performance greatly.

3.7 Network Mutation

In GA, mutation is usually applied, on a randomly selected gene, after the process of 

crossover, to improve the fitness value o f individual. In the proposed GA, instead of 

randomly selecting a gene for mutation, we identify the critical node, which becomes the 

selected candidate for the mutation operation. The critical node is the node which
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dissipates maximum energy (due to the receiving and/or transmitting o f its data), and 

hence determines the lifetime of the network. The purpose o f selecting the critical node 

for mutation is to reduce the total energy dissipation by the critical node, with the 

expectation that this is likely to increase the network lifetime. Energy dissipation o f the 

critical node can be reduced in one of two ways :

q q

• k

(a) (b)

Figure 3.5 : Redistribution of load on critical node in mutation process 
(only the affected flows are shown here)

i) by changing the destination o f the critical node to a randomly selected suitable 

node which is closer to the critical node (Fig. 3.5(a)), or

ii) by diverting some incoming flow away from the critical node (Fig. 3.5(b)).

The first option reduces the distance that the critical node has to transmit and the 

second option reduces the amount o f  data that the critical node has to transmit.

Fig. 3.5 shows a portion o f a network where i is the critical node and b is the base 

station. As shown in the Fig. 3.5(a), changing the destination node for the critical node i, 

from j  to k should be done in a way such that ditk < dy  and d^t < ditb, where dx>y is the
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Euclidean distance from node x to node y. Similarly, in Fig. 3.5(b), we reduce the load on 

the critical node i, by diverting the traffic from node u, so that it is sent to node v, instead 

of node i.

The alternate destination node v should be selected such that dvy < duy  and v lies 

within the transmission range of u. The changes in the corresponding chromosome 

representations are depicted in Figures 3.6(a) and 3.6(b), respectively.

critical node. critical node.

source nodes tt q p V © k . |  ' source nodes u q P V © k j

Before mutation 1 1 f t : Before mutation 1; ■ i -
i --

■ , . i :

t i r

Aiter mutation ~T';' i
-

m ; ■After mutation
Vy;. i .ij-.V: --

(a) (b)

Figure 3.6 : Chromosome representation o f networks after mutation performed

The rate o f mutation is also designed carefully, and it is closely related to the rate 

of crossover [Gaz99]. If the mutation rate is set too low, the GA will converge too early 

before the optimal solution is found, and if  it is set too high, it may cause stability 

problem in the population.
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3.8 Elitism and Stopping Condition

We have used elitism in selecting the individuals the next generation. 10% of the most 

elite (highest fitness value) individuals from the previous generation are inserted into the 

new generation, replacing the lowest 10% of individuals in the current generation. This 

process is implemented with a probability of 0.80 for each generation. This means that 

there is 80% chance that elitism will be used to select individuals for the next generation. 

A pre-specified maximum number o f generations is set in the proposed GA, depending 

on the network size, to stop the program when the population does not converge.
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CHAPTER 4

Experimental Results and Performance Analysis

In this chapter we will present and analyze our experimental results. We have run a 

number o f experiments with different networks, ranging in size from 11 nodes to over 

300 nodes. We have also experimented with different positions o f the base station, as 

well as uniform and non-uniform data rates for the relay nodes. We will first describe the 

network parameters and GA parameters used in our experiments and discuss the results 

from each set o f experiments.

The numbers o f sensor nodes for each cluster are not assumed any here, but a 

fixed receiving data rate (1000 bits/round) for each relay node has been assumed as 

mentioned in [Bari60a]. A random data receiving rate then again considered, varying 

from 500 to 2000 bits/round, to find out the 95% confidence level for each network for 

each placement o f Base Station. The communication energy dissipation is based on the 

first order radio model as mentioned in [HeiOO].

4.1 Experimental Setup

4.1.1 Network Parameters

We consider a two-tier sensor network architecture, with the relay nodes acting as cluster 

heads and the sensor nodes transmitting their data directly to their respective cluster
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heads. The relay nodes use multi-hop routing to transmit their data to the base station. 

The positions of the relay nodes are determined using the strategy given in [Bari06b], by 

covering the sensing area with an imaginary grid and placing relay nodes at 

predetermined locations. The number o f required relay nodes depends on the sensing area. 

In general a larger number of relay nodes are used, as the sensing area is increased. The 

network parameters, including the sensing area and the grid size, for each o f our networks, 

are shown below in Table 4.1.

Network
Size

N os. o f  Relay  
N odes  

(N os. o f  
Clusters)

Grid 
Dim ension  

(m x m)

Network
Area

(m x m )

11 10 4 0 x 4 0 160 x 120

13 12 4 0 x 4 0 160 x 160

16 15 4 0 x 4 0 200 x  160

18 17 4 0 x 4 0 240 x  160

20 19 4 0 x 4 0 240 x  200

22 21 4 0 x 4 0 240 x  200

25 24 4 0 x 4 0 240 x  240

29 28 4 0 x 4 0 280 x  240

32 31 4 0 x 4 0 320 x  240

36 35 4 0 x 4 0 360 x  240

41 41 4 0 x 4 0 360 x  280

45 44 4 0 x 4 0 400 x  280

50 49 4 0 x 4 0 400 X 320

55 54 4 0 x 4 0 440 x  320

61 60 4 0 x 4 0 440 x  360

85 84 4 0 x 4 0 480 x  480

Table 4.1 : Sensor networks and their sizes
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For each relay node, we use the following values to characterize the energy 

dissipation per bit [Hei02], as well as the transmission range and the initial energy 

[Tan06].

a) Receiver consumption rate, Eeiec = 50 nJ/bit

b) Transmitter consumption rate, Eeiec = 50 nJ/bit

c) Amplifier (to transmit data) consumption rate, eamp =100 pJ/bit/m

d) The data transmission range o f each relay node = 200 m [Tan06]

e) Initial energy o f each relay node = 5 Jouls [Tan06]

We also experimented with different values o f the path loss exponent m, uniform 

and non-uniform data rates for the relay nodes, as well as two different positions o f the 

base station -  i) base station placed at one comer o f the sensing area and ii) base station 

placed at the middle of one o f the boundary edges o f the sensing area

4.1.2 GA Parameters

The scalability and performance o f the genetic algorithm is greatly affected by a number 

of factors, such as the population size, method and the rate o f crossover and mutation, 

and the method o f replacement. A small population size may lead to premature 

convergence before reaching an acceptable solution. On the other hand, if  the population 

size is too large, it leads to unnecessary computations [Sas05].

A number o f experiments have been run with different values o f these parameters 

to determine the optimal set for each o f the mentioned 16 sizes o f networks. Increasing
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the rate o f crossover (and mutation) allowed the GA to reach the optimal solution faster. 

Initial selection was performed by only selecting individuals having a fitness value that is 

above a predetermined threshold. The probability o f elitism in each generation was set to 

1 for small networks and to 0.80 for larger networks. Although the GA was allowed to 

run for a maximum o f 100 generations, the best solution was typically found within 20 to 

30 generations. Table 4.2 below shows the values o f the different GA parameters 

corresponding to each o f the networks considered in our experiments.

Network
Size

Population
Size

Max
Generation

Crossover
Type

Rate of 
Crossover

Rate of 
Mutation

Elitism
Probability

11 50 10 Mixed 1 0.6 1

13 100 30 Mixed 1 0.6 1

16 800 100 Mixed 1 0.6 1

18 5,000 100 Mixed 1 0.8 0.8

20 5,000 100 Mixed 1 0.8 0.8

22 10,000 100 Mixed 1 1 0.8

25 10,000 100 Mixed 1 1 0.8

29 10,000 100 Mixed 1 1 0.8

32 10,000 100 Mixed 1 1 0.8

36 10,000 100 Mixed 1 1 0.8

41 10,000 100 Mixed 1 1 0.8

45 10,000 100 Mixed 1 1 0.8

50 10,000 100 Mixed 1 1 0.8

55 10,000 100 Mixed 1 1 0.8

61 10,000 100 Mixed 1 1 0.8

85 10,000 100 Mixed 1 1 0.8

Table 4.2 : GA parameters set for differen sizes o f networks
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4.2 Results with Base Station at a Corner

Our first set o f experiments was carried out with the base station positioned at the lower 

left comer of the sensing area. This sub-section describes the results corresponding to this 

placement (shown in Fig. 4.1).

Figure 4.1 : 18 Node Model Sensor Network 
(17 relay nodes and 1 Base Station)

The data received by the relay nodes were generated in one o f two ways:

i) Uniform data receiving rate (UDRR): Each relay node receives the same 

amount o f data ( 1 , 0 0 0  bits/round) from the sensor nodes in its cluster, and

ii) Non-uniform data receiving rate (NDRR): The amount o f data generated by the 

sensor nodes varies from cluster to cluster. The data rate for each cluster is 

selected randomly from 500 bits/round -  2,000 bits/round.

4.2.1 Uniform Data Receiving Rate (UDRR)

The optimal lifetimes found for the networks by our proposed GA based approach are 

compared with those obtained through traditional multi-hop routing schemes. These 

include MTEM (Minimum Transmission Energy Model) [Gup03], where each relay node
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transmits data to its nearest neighbor node, such that the destination relay node is closer 

to the base station than the source relay node, and MHRM (Minimum Hop Routing 

Model) [HeiOO] where each relay node finds a path to the base station that minimizes the 

number of hops. The results, shown in Fig 4.2, indicate that the GA is able to improve 

network lifetime by almost 2 0 0 % compared to the traditional routing schemes.

Lifetime for Minimum Transmission Enery, Minimum Hop Routing & 
Optimal Solution by Genetic Algorithm

4000

3500

3000

MTEM
MHRM
Genetic Algorithm

-8 2500

1500

1000

500
- O

1113 16182022 25 29 32 36 41 45 50 55 61 85
Network Size

Figure 4.2 : Comparison of the lifetimes achieved by GA 

to that o f using conventional methods

For smaller networks (up to 18), the ILP formulation proposed in [Bari06a] is able 

to determine the optimal solution o f the relay node networks. The same optimal lifetimes 

can also be obtained through the use of the GA with much less time. For example, in the 

case of a 18-node network, the proposed GA found the optimal solution in less than 25 

sec, whereas the said ILP required several hours, using the solver ilog CPLEX [Cplex91].

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig 4.3 shows a comparison of the solution times required using GA and CPLEX. One 

important factor, affecting the execution time, is the number o f nodes in the input graph. 

As the size o f networks increase, the time required to prepare a complete generation takes 

more time. In the basic genetic algorithm, the crossover rates and the mutation rates have 

negligible effect on the running time [Gaz99]. Fig 4.4 shows each generation times (in 

msec) for different sizes o f the network.

Solution Time to Find Network Lifetime

GA Time 
CPLEX Time

F  10:

10'

13
Network Size

Figure 4.3 : Comparison of solution times for GA and CPLEX
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Each Generation T im es for Different Networks
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Figure 4.4 : Generation time for different networks

4.2.2 Non-uniform Data Receiving Rate (NDRR)

In the previous section, data receiving rates for all relay nodes were equal (1,000 

bits/round). In this section, we randomly assigned different data rates to the clusters 

(ranging from 500 to 2,000 bits/round). For each network, the GA is run 5 times (with 

different values o f data receiving rates), and the average lifetimes are plotted in Fig. 4.5 

below. Overall, the GA improves the network lifetimes more than 250% over MHRM 

and around 200% over MTEM routing schemes.
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Average Lifetime with Random Data Receiving Rate 
(Base Station located at Comer)
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85

Figure 4.5 : Comparison o f the lifetimes considering NDRR

The network lifetimes obtained using uniform and non-uniform data receiving 

rates are almost same, as indicated below in Fig. 4.6.
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Figure 4.6 : Comparison o f the lifetimes considering UDRR and NDRR

Table 4.3 on the next page shows the 95% Confidence Interval (C.I.) chart with 

upper bound and lower bound o f network lifetimes (in number o f rounds) found using 

GA, and the corresponding improvements compared to MHRM and MTEM routing 

respectively. For example, for a 11-node network, the 95% C.I. is between 273 and 463 

for MHRM network. This means, we can state with 95% confidence level that the mean 

of percentage improvement o f the GA compared to MHRM will not be less than 273 and 

will not be more than 463.
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Network
Size

Network Lifetim e with 95% Confidence Interval

Lifetim e (in Rounds) 
obtained in GA

Percentage Improvement 
over M inimum Hop Routing 

Transmission (M HRM )

Percentage Improvement 
over M inimum Transmission  

Energy M odel (M TEM )

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

11 3,622 4,618 273 463 140 181

13 2,952 3,615 278 387 166 187

16 2,232 3,224 242 380 140 256

18 2,319 2,855 229 318 181 314

20 2,360 2,754 223 291 177 247

22 1,983 2,172 220 244 151 198

25 1,393 1,628 202 261 151 241

29 1,284 1,726 264 387 159 272

32 877 1,165 218 373 139 203

36 860 970 303 342 225 289

41 902 1,094 368 476 181 302

45 605 892 187 429 210 327

50 586 850 252 335 191 225

55 575 737 215 336 196 248

61 533 602 238 339 196 276

85 336 402 200 368 158 223

Table 4.3 : Statistical Analysis o f Improvement o f Network Lifetime using GA 
(when Base Station at Comer o f Network Area)
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4.3 Results with Base Station at the Middle of Left Boundary

The previous set o f experiments was carried out placing the base station at the comer o f  

the imaginary network grid. In this section, we change the position of the base station, 

placing it at the middle o f left edge o f the sensing area (as shown in Fig. 4.7). As before, 

we consider both uniform and non-uniform data rates for the cluster heads.

Figure 4.7 : 18 Node Model Sensor Network with BS at the Middle-Left Boundary 

4.3,1 Uniform Data Receiving Rate (UDRR)

In this case, each relay node receives data at a rate o f 1,000 bits/round. The results for our 

GA and for traditional routing schemes are shown in Fig 18. We note that the GA is able 

to improve network lifetime an average o f 255%, compared to both METM and MHRM. 

We also observe that this placement o f the base station improves the network lifetime 

compared to that o f placing the base station at comer o f the network, i.e. at the coordinate 

(0,0). F or ex a m p le , for a  18 n od e n etw ork , the n etw ork  life tim e  w a s  fou n d  2,440 w h en  

the base station was located at comer (Fig. 4.1), and for the same network the lifetime 

becomes 3,030 due to placing the base station at mid-left edge o f the network area.
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Figure 4.9 shows a comparison of the network lifetimes achieved using our GA, for each 

of the base station placement options.

Lifetime for MTEM, MHRM and Optimal Solution by GA 
(B ase Station located at Mid-Left edge)
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Figure 4.8 : Comparison o f network lifetimes -  Uniform data receiving rate 
(Base Station is located at mid-left edge)

C om parison of Network Lifetimes (by GA) for 
Different B ase Station locations
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Figure 4.9 : Comparison of network lifetimes obtained by GA at UDRR 
for different locations o f base station
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4.3.2 Non-uniform Data Receiving Rate (NDRR)

The data rate for each cluster is selected randomly between 500 bits/round ~ 2,000 

bits/round. The average results found from 5 runs of this experiment are shown in Fig. 

4.10 below. The GA clearly outperforms the traditional routing schemes, improving the 

network lifetimes by almost 300% over MHRM as well as over MTEM routing.

A verage Lifetime with Random Data Receiving R ate 
(B ase Station located at Mid-Left edge)
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4500

4000

3500 Genetic Algorithm
MTEM
MHRM

3000

,§.2500
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1500

1000

500

0 1113 16182022 25 29 32 36 41 45 50 55 61 85
Network S ize

Figure 4.10 : Comparison of network lifetimes -  Random data receiving rate 
(Base Station is located at mid-left edge)

Table 4.4 on the next page shows the 95% Confidence Interval (C.I.) chart with 

Upper Bound and Lower Bound o f network lifetime (in Rounds) for our second set of 

experiments. This is interpreted in exactly the same way in Table 4.3, for the first set of 

experiments.
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Network
Size

N etwork Lifetim e (in  Round) w ith 95%  Confidence Interval

Lifetim e (in Rounds) 
obtained in GA

Percentage Improvement 
over M inimum Hop Routing 

Transmission (M HRM )

Percentage Improvement 
over M inimum Transmission 

Energy M odel (M TEM )

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

11 4,144 5,277 199 349 148 226

13 4,366 4,886 249 273 204 260

16 3,165 3,652 212 281 239 348

18 2,859 3,197 241 288 209 302

20 2,546 2,960 211 291 214 335

22 2,282 2,748 222 294 207 311

25 1,959 2,347 236 373 233 288

29 1,639 1,813 234 284 255 396

32 1,452 1,718 350 448 281 403

36 1,209 1,509 333 573 367 460

41 1,276 1,463 384 510 292 469

45 1,094 1,232 283 450 275 329

50 905 1,060 259 332 271 439

55 830 972 287 398 364 511

61 661 848 201 340 317 468

85 500 567 225 356 282 363

Table 4.4 : Statistical Analysis o f Improvement of Network Lifetime using GA 
(when Base Station at Mid-Left Edge o f Network Area)
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4.4 Varying the Path Loss Factor

In wireless communications, path loss normally includes the propagation losses caused 

by the environment and can be represented by the path loss exponent (m). The value o f m 

is normally in the range o f 2 to 4, where m=2 for the propagation in free space and m=4 

for relatively lossy environments [Pan03]. In some environments, such as buildings, 

stadiums and other indoor environments, the value o f m varies from 4 to 6 . In our next 

experiment, we have considered the value of m as 2, 3, 4 and 6  with the network area grid

Comparisons of Network Lifetime (in Rounds) 
x io 4 with Path Loss Exponent, m=2

Genetic AlgorithmtDirectTransmlssion 
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11 16 18 2013
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Figure 4.11 : Comparison o f network lifetimes for the different Path Loss
Exponents
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size 4m x 4m. The simulation was performed over smaller size o f networks -  up to a 20 

node network. The base station is placed at the comer of network area, and each relay 

node is considered to have a uniform data receiving rate (UDRR) o f 1,000 bits/round. 

The results are shown in Fig. 4.11. It is observed that GA and Direct Transmission give 

the same lifetimes when m -2, which is in average more than 740% improvement over 

Minimum Transmission Energy Model. For m = 3, the GA lifetimes are found an average 

more than 250% improved over MHRM and MTEM. The network lifetimes are found 

almost nil for the Direct Transmission Model (MHRM) for higher values of m. 

Considering the path loss exponent value o f 4, GA shows in average of 150% 

improvement over MTEM. Also, GA shows the same network lifetimes as MTEM when 

m=6 for the network sizes 11,13 and 16.

4.5 Results for Very Large Networks

For our final set o f experiments, we consider a sensing area of 480m x 480m (same as 85 

nodes network, Table 4.1) but with 312 relay nodes, and with the base station located at 

the (0,0) coordinate with imaginary grid size o f 20m x 20m . The size o f the population is 

reduced to 100 as the number of nodes is very large. The data receiving rate is randomly 

chosen between 500 to 1,500 bits/round for each relay node from the sensor nodes of 

their corresponding cluster. The GA runs for a maximum of 300 generations, even though 

the maximum value o f network lifetime is found in 143 generations. The GA achieves a 

network lifetime o f 285 rounds. This represents an improvement o f 149% and 155% 

compared to MHRM and MTEM respectively.
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For this experiment, we set the other GA parameters as follows -

- Crossover type : Random

- Rate o f Crossover: 1.0

- Rate o f Mutation : 1.0

- Probability o f Elitism : 0.8 and

- Elite organisms : 10%

The time required to process one generation is found 223 msec for the population 

size of 100, whereas for 85 nodes network each generation required 3.54 sec o f  

processing time, with a population size o f 1 0 ,0 0 0 .
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CHAPTER 5 

Conclusions and Future Work

The lifetime of a wireless sensor network is typically constrained by the limited battery 

power o f the network nodes. Therefore, it is extremely important to develop efficient, 

energy-aware routing protocols. Such protocols take into account the available energy of 

the network nodes and determine a routing schedule that attempts to maximize the 

network lifetime. ILP formulations for energy-aware routing can guarantee optimal 

solutions, but quickly become computationally intractable as the network size increases. 

For large networks, heuristic approaches, such as the minimum transmission energy 

model (MTEM) or the minimum hop routing model (MHRM), are typically used. 

Although such heuristics can quickly generate feasible solutions, the quality o f the 

solutions is usually much lower, compared to the optimal solutions.

In this thesis, we present a genetic algorithm (GA) based method to find an 

energy-aware routing schedule, which tries to maximize the network lifetime. The 

network lifetime was measured in terms of the number of rounds o f data transmission, 

before the first node runs out o f power. We considered a range of network sizes, from 11 

nodes to 85 nodes. We also considered different base station locations, as well as both 

fixed and variable data receiving rates for the network nodes. Another special experiment 

is carried out taking huge numbers o f relay nodes within a dense imaginary grid. For each 

network, we compared the achieved lifetimes with optimal solutions (if an optimal 

solution could be generated) and heuristic routing schemes, such as MTEM and MHRM.
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The GA approach was found to be very effective in generating good quality 

solutions in an efficient manner. Simulation results demonstrated that our GA approach 

was able to find the optimal solutions for small networks (up to 18 nodes). For larger 

networks, it was not possible to generate optimal solutions, so we compared our approach 

to MTEM and MHRM. The proposed GA approach was shown to improve the network 

lifetime by almost 200 to 300% compared to the traditional routing schemes - MTEM and 

MHRM. Finally, we repeated our experiments with different values o f the path loss 

exponents m and found the performance o f the GA to be as good as or better than the 

traditional routing schemes in all cases.

In this thesis, we assumed that the network nodes are stationary after deployment. 

In the future, we will investigate ways to augment our algorithm to take into account 

node mobility in each round. This work did not consider the bandwidth limitations o f the 

wireless links. This can be taken into account in future versions o f the algorithm.
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Appendix A : Definitions
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Allele - The value o f each element(Gene) in a chromosome is known as allele 

Base Station -  The end node in a network that collects all data from sensor nodes either 

directly or via one or more relay nodes

Chromosome -  An abstract, coded representation o f a solution to the target problem 

Cluster Head -  The node which receives data from corresponding sensor nodes and 

transmits to the base station or any other cluster head

Convergence -  A situation where individuals in a population become identical or similar 

to each other, which indicates that GA has slowed to a point that it does not seem to find 

new, better solution

CPLEX -  An optimization software package to solve integer programming (IP) as well 

as integer linear programming (ILP)

Critical Node -  The node which runs out o f its battery power first

Crossover - A genetic operator which creates new chromosomes by combining genetic

materials from the two parent chromosomes

Crossover Point -  The split position in crossover. There might be more than one 

crossover points depending on the type o f crossover

Crossover Probability -  Percentage o f individuals in a population that can perform the 

crossover process

Destination Node -  The node that collects data from other node(s)

Elitism -  The replacement process where the poorest individuals of the current 

generation is replaced by appending same number o f the best performing individuals 

from the previous generation
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Elite Organisms -  Percentage of individuals o f a population that replace the same 

number of individuals from the current generation

Elite Probability -  Percentage of generations that perform the Elitism process 

Fitness -  A value assigned to an individual which indicates the performance o f this 

individual for the target problem. It also represents the possibility o f being selected for 

reproduction

Fitness Function -  The function that maps an individual to a fitness value 

Flow-splitting Routing -  The routing in which data transmits from a single node 

towards multiple destinations simultaneously

Gene - Each element in a chromosome is called gene which contains a part o f solution 

Generation - The population generated by each reproduction

Hierarchical Routing -  The routing which performs on cluster based networks, cluster- 

heads collects data from the respective cluster and forwards them towards the base station 

Individual -  A single chromosome in a population

Multi-hop Routing -  When the cluster-heads transmits data towards the base station via 

one or more other cluster-heads

Mutation - A genetic operator which creates a new chromosome by making random 

alternation to one or more values o f the genes in a chromosome 

Mutation Probability -  Percentage of individuals in a population that can perform the 

mutation process

Non flow-splitting Routing -  In this routing data transmits from a node towards a single 

destination node

Offspring -  The new chromosome generated by the reproduction or crossover process

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Population -  A group o f chromosomes which mate with each other during crossover to 

produce new offspring

Relay Node -  Nodes with special functionalities deployed in hierarchical WSN 

Round -  Each period o f data gathering by the replay node from corresponding sensor 

nodes and transmitting those to base station

Selection - The mechanism that according to their fitness, two chromosomes are selected 

for mutation

Single-hop Routing -  When the cluster-heads send data to the base station directly 

provided that the base station lies with the transmission range of all cluster-heads 

Source Node -  The node that transmit data to other node(s)

Stopping Criteria -  The conditions under which a GA should stop producing any new 

generation
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Some sample results obtained from network of sizes 11 to 25, where
D ata  rece iv in g  rate : U D R R
Base station location : Comer o f network area
Grid area: 40m x 40m

A. Genetic Algorithm (GA1

Network Final Gene value Network Critical
Size Lifetime Node#
11 2 5  8 7 8 4  10 11 10 11 4000 8
13 2 7 8  10 13 12 10 9 12 13 13 13 3355 5
16 10 9 9 3 12 16 11 12 12 11 15 16 14 15 16 2824 12
18 6 6 14 12 13 10 18 6 14 14 16 13 17 18 13 17 18 2440 10
20 8 9 14 8 16 4 15 12 16 15 20 16 17 15 19 20 18 19 20 2183 16
22 9 104 11 16 17 179 10 14 18 16 22 18 19 1721 22 2021 22 1960 18
25 6 5 17 5 12 14 21 13 17 25 9 16 17 21 23 20 21 23 25 24 25 24 24 25 1780 21

B. Minimum Hop Routing Model (MHRMt

Network Final Gene value Network Critical
Size Lifetime Node#
11 1111 11 111111 1111 11 11 1234 1
13 13 13 13 13 13 13 13 13 13 13 13 13 1234 1
16 9 16 16 16 16 16 15 16 16 16 16 16 16 16 16 1234 2
18 13 18 18 13 18 18 18 17 18 18 13 18 18 18 18 18 18 1234 2
20 15 16 12 20 20 15 20 20 20 19 20 20 15 20 20 20 20 20 20 1234 4
22 10 17 18 22 14 22 22 17 22 22 22 21 22 22 17 22 22 22 22 22 22 1160 10
25 16 17 17 13 20 21 25 17 25 25 20 25 25 25 24 25 25 20 25 25 25 25 25 25 1160 13

C. Minimum Transmission Energy Model (MTEM)

Network Final Gene value Network Critical
Size Lifetime Node#
11 4 5 5 7 8 9  10 11 7 11 2439 7
13 4 5  6 7 7 9  10 11 12 13 9 13 2439 7
16 4 5 6 8 9 9  10 11 12 14 15 16 10 11 16 1510 11
18 5 6 7 8 9  10 10 12 13 14 15 16 17 18 12 13 18 1205 13
20 4 5 7 8 9  10 11 12 12 14 15 16 17 18 19 20 14 1520 1204 15
22 1 6 7  1 2 3 4 5  6 7 9 9  10 11 12 13 14 16 16 17 18 1094 6
25 5 6 7 8 9  10 10 12 13 14 15 16 17 17 19 20 2 1 2 2 2 3 2 4 2 5  192025  1094 17
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