
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2004 

Olfactory biology of two vertebrate species: Central projection of Olfactory biology of two vertebrate species: Central projection of 

a subpopulation of olfactory sensory neurons in the sea lamprey a subpopulation of olfactory sensory neurons in the sea lamprey 

(Petromyzon marinus) and the production of putative (Petromyzon marinus) and the production of putative 

reproductive pheromone(s) in the round goby (Neogobius reproductive pheromone(s) in the round goby (Neogobius 

melanostomus) melanostomus) 

Wesley J. Arbuckle 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Arbuckle, Wesley J., "Olfactory biology of two vertebrate species: Central projection of a subpopulation of 
olfactory sensory neurons in the sea lamprey (Petromyzon marinus) and the production of putative 
reproductive pheromone(s) in the round goby (Neogobius melanostomus)" (2004). Electronic Theses and 
Dissertations. 2912. 
https://scholar.uwindsor.ca/etd/2912 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2912?utm_source=scholar.uwindsor.ca%2Fetd%2F2912&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


OLFACTORY BIOLOGY OF TWO VERTEBRATE SPECIES:
CENTRAL PROJECTION OF A SUBPOPULATION OF OLFACTORY SENSORY 

NEURONS IN THE SEA LAMPREY (Petromyzon marinus) and THE PRODUCTION 
OF PUTATIVE REPRODUCTIVE PHEROMONE(S) IN THE ROUND GOBY

(Neogobius melanostomus)

by

Wesley J. Arbuckle

A Thesis
Submitted to the Faculty of.Graduate Studies and Research Through the 

Department of Biological Sciences in Partial Fulfillment of the Requirements for the 
Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada 
2004

© 2004 Wesley J. Arbuckle

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-612-96117-6 
Our file Notre reference 
ISBN: 0-612-96117-6

The author has granted a non
exclusive license allowing the 
Library and Archives Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque et Archives Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Abstract

Both the sea lamprey (Petromyzon marinus) and the round goby (Neogobius 

melanostomus) are two fish species that invaded the Great Lakes; they likely use sex 

pheromones that are fundamental to their reproductive success. Understanding 

pheromone communication could potentially lead to population control of these two 

species.

In the larval sea lamprey, topographic and spatial projections from the olfactory 

sensory neurons (OSNs) to the olfactory bulb were studied. These projection patterns 

may be an initial step in organizing olfactory odourant information. The differential 

expression of G proteins forms spatial sub-regions consisting of OSN subsets in the 

olfactory epithelium projecting to discrete glomeruli. In the lamprey, all glomeruli are 

immunoreactive (IR) for the GTP binding protein G0if, except the medial glomeruli. 

Following micro-injection of fluorescent dextran into these G0if- non-IR medial 

glomeruli, back-filled G0if-non-IR OSNs were present in the ventral hemisphere of the 

peripheral olfactory organ. In contrast, G0ifIR OSNs projecting to non-medial G0̂ IR  

glomeruli were widely distributed in the olfactory epithelium. This suggests the 

existence of a spatially distinct olfactory sensory pathway in the sea lamprey that is 

reminiscent of olfactory systems in other vertebrates.

Studies in the round goby indicate that the reproductively mature male releases 

5p~reduced androgenic steroidal pheromone(s) that attracts ripe females. Steroid 

biosynthesis of these compounds was studied in both the testes and the seminal vesicles. 

The testis contains specialized glandular tissue that may be responsible for the production 

of pheromonal 5p-reduced androgens. The seminal vesicle may produce and store 

pheromonal steroids; excretions from this organ may serve as a vehicle for pheromones

iii
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to enter the aqueous environment. In vitro, the testes converted [ H]-androstenedione 

into: 3a-hydroxy-5p-androstane-ll,17-dione (11-oxo-etiocholanolone, 11-oxo-ETIO); 

11-oxo-ETIO sulfate (11-oxo-ETIO-s); 11-oxo-testosterone (11-ketotestosterone), 3a- 

hydroxy-5 P-androstan-17-one (etiocholanolone, ETIO); 1 ip-hydroxy-androstenedione; 

ETIO sulfate and testosterone. In vitro, the seminal vesicle converted [3H]- 

androstenedione into: 1 1 -oxo-androstenedione, 1 1 -oxo-testosterone, and 1 1 -oxo- 

etiocholanolone. Neither 11-oxo-ETIO nor 11-oxo-ETIO-s have been previously 

identified in teleost gonads. Both 11-oxo-ETIO and 11-oxo-ETIO-s are putative 

pheromones in the round goby, given that the carbon A ring has a 5P-configuration that 

has been linked with olfactory sensitivity and behavior induction in two other species of 

gobies.
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Chapter 1: General Introduction

1.1 Thesis Overview and Significance

In these two individual studies, model systems were implemented whereby both 

the detection of pheromones through olfaction and production of pheromones could be 

studied in vertebrate systems. Pheromone communication appears to be important for the 

survival and population expansion of the ancestral jawless-agnathan, the sea lamprey (Li 

et al., 2002) and for the round goby, a jawed-gnasthotome (Murphy et al., 2001). These 

two fish species have invaded the Great Lakes (Corkum, et al., 1998; Li et al., 2002).

In Chapter 2, the organization of the olfactory system in the sea lamprey 

(Petromyzon marinus) is assessed at the level of the olfactory bulbs and the peripheral 

olfactory organ. Unique pathways of neurons were studied that connect the olfactory 

bulb and the olfactory epithelium. In this study, a spatially distinct olfactory sensory 

pathway is identified that could possibly function in the detection of pheromones or 

distinct odorants.

In Chapters 3 and 4, the identification of putative reproductive sex pheromones 

in the round goby was established. In vitro incubations of the male gonad provided 

insight into the putative reproductive pheromones released by the male that attract the 

female to its nest during spawning. The pheromones identified could be implemented in 

species control. In this study, putative pheromones have been isolated, and further 

studies are required to confirm their function.
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1.2 The primary olfactory pathway

The olfactory system is a well-developed sensory system that is responsible for 

discriminating and detecting numerous low molecular mass odourant molecules 

(reviewed by Firestein, 2001). In order to accomplish this, the olfactoiy system possesses 

mechanisms to discriminate among the array of odourants it may confront in its 

environment. Olfactory research has indicated that this sensory system is essential in 

order for animals to find food, detect predators and prey and in mate detection.

From agnathans to primates, the organization of the vertebrate olfactory system 

and the primary olfactory pathway is fimdamentally similar. The primary olfactory 

pathway consists of olfactory sensory neurons (OSNs) that cover the olfactory 

epithelium These OSNs converge together to form the olfactory nerve (cranial nerve I) 

that projects onto the olfactoiy bulb. OSNs located in the olfactory epithelium are part of 

the peripheral nervous system. OSNs are bipolar neurons, with an apical dendrite located 

in the olfactory epithelium which project to the olfactory bulb. The apical dendrite of the 

OSN extends either cilia or micrivilli onto the mucosal surface of the olfactoiy 

epithelium, which is the site of signal transduction. The projection of numerous OSNs to 

particular neuropil in the olfactory bulb forms the olfactory bulb glomeruli. The olfactory 

bulb glomeruli are spherical, typically 50-100 pm in diameter, and contain OSN 

terminals. Here the axons of OSNs project onto mitral cells, which in turn carry 

information to higher brain centers (Figure 1). In fish, projection of second-order 

neurons (mitral cells) to the telencephelon forms the olfactoiy tract. In teleosts, the 

olfactoiy tract is divided into medial and lateral components. The medial olfactory tract 

is composed of fibres projecting from the medial olfactory bulb; the lateral olfactory tract
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is composed of fibres projecting from the lateral olfactory bulb (Laberge and Hara, 

2001). In many terrestrial vertebrates, a separate chemoreceptive structure is also 

present, the vomeronasal organ (VNO). The epithelium of the VNO contains its own 

OSNs that form the vomeronasal nerve that projects to glomeruli in the accessory 

olfactory bulb (AOB) (Halpem, 1987).

Figure 1. The organization of the primary olfactory pathway. The primary olfactory 
pathway consists of olfactory sensory neurons (OSNs) that cover the olfactory epithelium 
which converge together to form the olfactory nerve that projects onto the olfactory bulb. 
OSNs as well as supporting sustentacular cells comprise the olfactory epithelium. The OSNs 
converge to form the olfactory nerve and project to the olfactory bulb glomeruli where they 
synapse onto mitral cells. In mammals, it has been shown that axons from all OSNs 
expressing a particular receptor converge onto the same glomerular unit. In mammals, mitral 
cells leaving the olfactory bulb project to higher brain centers; in fish, mitral cells project to 
the telencephelon. The projections of mitral cells forms the olfactory tract (Adapted from 
Firestein, 2001).

Olfactory
cilia

O toetoy ' sereeqMi 
neuron j

‘Basement
membrane

To lateral olfactory tract

OLFACTORY
EPITHELIUM

OLFACTORY
BULB

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4

1.3 Sensory transduction of olfactory information

Olfaction is an attractive sense to study since the organization of signaling 

pathways in olfactory systems appears to be evolutionarily conserved (Hildebrand and 

Shepherd, 1997). Signal transduction occurs within the membrane of the OSN, and 

commences when a receptor binds an odourant molecule. G proteins (located on the 

intracellular surface of the cell membrane) are linked to receptor proteins that extend to 

the exterior surface of the cell. GTP-binding proteins (G proteins) are heterotrimers 

(aPy) that couple the OSN membrane-bound receptor to second-messenger enzymes or 

ion channels (Jones and Reed, 1989). The a subunit gives the identity to the 

heterotrimer; the a subunit governs the specificity of the interaction with receptor and 

effector molecules such as second messengers (Jones and Reed, 1989). G proteins in the 

OSN use second messengers such as cyclic AMP (cAMP), and inositol triphosphate (IP3) 

to affect the activity of ion channels. Consequently, there are many different subtypes of 

the a subunit expressed in OSNs. For example, Gooif is expressed in mammalian (Jones 

and Reed, 1989) and fish (Belanger et al., 2003; Frontini et al., 2003; Hansen et al, 2003) 

OSNs. As well, the expression of Go*,, Gan in OSNs has also been indicated in both 

mammals and fish (Dellacorte et al., 1996).

The G protein, Gaoif is an olfactory specific subtype shown to be present in 

agnathans (Frontini et al., 2003), teleosts (Hansen et al, 2003), amphibians (Mezler et al., 

2001) and mammals (Jones and Reed, 1989). It is cAMP dependent and linked to 

olfactory receptors which mediate olfactory signaling (Jones and Reed, 1989). The signal 

transduction cascade commences when an extracellular odourant molecule binds the 

receptor protein on the surface of the OSN, which activates the G protein Gaoif (Jones and
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Reed, 1989). In turn, Gaoif activates adenylyl cyclase (Pace, 1986). The cyclase converts 

the intracellular ATP into cAMP, a molecule that has numerous signalling roles in cells. 

The cAMP binds to the intracellular face of an ion channel, allowing the conduction of 

Na+ and Ca+2 into the cell (Firestein et al., 1991) (Figure 2, adapted from Firestein, 2001). 

Inactive OSNs maintain a resting voltage across their plasma membrane of about -65mV 

(inside with respect to the outside). The influx of Na+ and Ca+2 ions causes the inside of 

the cell to become less negative compared to the outside. If enough ion channels remain 

open for an extended period of time, and the membrane potential becomes about 20mV 

less negative than the outside, the cell reaches threshold and generates an action potential 

in the axon hillock. The action potential propogates along the axon of the OSN until it 

meets the axon terminal and forms a synaptic junction with second order neurons (such as 

mitral cells) in the olfactory bulb. Hence, the cAMP pathway is imperative for the 

functioning of OSNs. Inositol triphosphate (IP3) is another second messenger system that 

has been implicated in signal transduction in OSNs (Restrepo et al., 1993). It has been 

shown that different G proteins regulate different second messenger systems and that 

selected second messengers are activated by specific odourants (Breer and Boekhoff, 

1991). For example, floral and putrid odourants selectively activate the cAMP and IP3 

second messenger systems, respectively (Breer and Boekhoff, 1991). Responses to most 

odourants probably involves both second messenger systems whereby calcium mediates 

crosstalk between these two major olfactory signal transduction cascades (Anholt, 1993). 

Hence, the study of the expression of G proteins within the olfactory system can provide 

much insight into olfactory coding mechanisms.
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Figure 2. Sensory transduction within the membrane of an olfactory sensory 
neuron. The Ga subtype, Gaoif, is linked to the cAMP second messenger. An 
odourant molecule binds to the receptor molecule and the receptor-odorant complex 
activates a G-protein (Gaoif), causing binding to a GTP molecule, which releases a 
molecule of GDP. The activated G-protein dissociates and activates a cyclase which 
converts the intracellular ATP into cyclic AMP (cAMP), a molecule that has 
numerous signaling roles in cells. The cAMP binds to the intracellular face of an ion 
channel, allowing the conduction of Na+ and Ca+2 into the cell (Adapted from 
Firestein, 2001).

1.4.1 The organization of the olfactory system

The primary olfactory pathway consists of the OSNs in the olfactory epithelium 

which project to the olfactory bulb glomeruli. Olfactory bulb glomeruli are formed by 

the convergence of OSN axons from the olfactory nerve. Studies in fish olfaction have 

indicated that the processing of odourant information begins in the olfactory epithelium 

and continues in the olfactory bulb and higher brain centers (see the discussion that 

follows).
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1.4.2 The organization of the olfactory system: the use of G-proteins

Throughout evolution, G-proteins have been implemented in organizing olfactory 

information in the olfactory system (Hansen et al., 2003; Jia and Halpem, 1996; Juilfs et 

al., 1997; Frontini et al., 2003). From early craniates such as the jawless fishes (lampreys 

and hagfishes), which evolved over 400 million years ago, to mammals which evolved 

190 million years ago, the use of G proteins in the olfactory system seems to be a 

common element. The expression of various G-proteins in subsets of OSNs in the 

olfactory epithelium appears to be fundamental for odourant discrimination in the 

olfactory system of vertebrates (Frontini et al., 2003; Jia and Halpem, 1996; Hansen et 

al., 2003). The differential expression of G proteins in the olfactory system indicates the 

use of alternate signal transduction mechanisms in odourant detection. Since the lamprey 

evolved much before mammals and many other vertebrates, these living jawless fishes 

provide a window of insight into the earliest vertebrate olfactory systems. In the sea 

lamprey, which is a living representative of early vertebrate evolution, of the 7 

glomerular territores present, one glomerular territoiy, the medial glomeruli, does not 

express the G protein Gaoif (Frontini et al., 2003). This indicates that alternate olfactoiy 

signal transduction cascades may be implemented in early craniate radiations. Further 

evidence of the use of alternate G proteins in the olfactory system exists in the 

gnathostomes (jawed vertebrates). In the catfish (Ictalurus punctatus), a jawed 

vertebrate, the expression of the Ga subtypes, Gao, Gaq/n and Gaoif is present in 

segregated regions of the primary olfactory pathway (Hansen et al., 2003). In the 

Xenopus laevis, an amphibian, two different Ga subtypes are expressed in the olfactory 

epithelium: Gooi in the lateral diverticulum and G^ in the medial diverticulum (Mezler et
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al., 2001). In the mammalian vomeronasal organ, receptor neurons that express the G 

proteins Gia 2 and Go« project to segregated glomeruli within the accesory olfactory bulb 

(Jia and Halpem, 1996). Taken together, the differential expression of G proteins and the 

use of alternate signal transduction mechanisms seems to be an underlying principle in 

the olfactory system which developed in ancient vertebrate ancestors in the agnathan 400 

million years ago.

1.4.3 The organization of the olfactory system: spatial projections of OSN 

terminals from the olfactory epithelium in the nose to the olfactory bulb.

Many studies in vertebrates have been conducted to determine the importance of 

topographic projections between the olfactory epithelium and the olfactory bulb. In the 

hamster, the presence of spatial projections of OSNs in the olfactory epithelium onto 

olfactory bulb glomeruli was detected through micro-injections into specific olfactory 

bulb glomeruli and subsequent back-filling of OSNs in the olfactory epithelium. It was 

concluded that OSNs in specific zones of the olfactory epithelium project onto specific 

areas of the olfactoiy bulb (Schoenfeld et al., 1994). This zone-to-zone “spatial 

topographic” mapping has been termed rhinotopy (Schoenfeld et al., 1994). The 

presence of a zonal map in mammals has been confirmed through determining the 

expression of specific olfactory receptor genes in OSNs. It has been shown that OSNs 

that express a specific olfactory receptor gene is expressed within one of four zones in the 

olfactory epithelium (Ressler et al., 1993; Vassar et al., 1993); furthermore, OSNs in 

each zone project to specific glomeruli in the olfactory bulb (Mori et al., 1999). Hence, 

OSNs that express a certain receptor converge onto distinct glomeruli (Mombaerts, 1999; 

Mori et al., 1999). Therefore, in mammals, a zonal map is formed whereby specific
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areas of the olfactory epithelium (containing OSNs that express distinct olfactory 

receptor genes) projects to distinct glomeruli. This implies that OSN afferents segregate 

by odourant responsiveness and that local regions of the olfactory bulb receive input from 

OSNs with similar odourant response properties (Mori et al., 1999) (Figure 3).

Figure 3. Schematic diagram showing the axonal connections between the olfactory 
epithelium in the nose and the main olfactory bulb (MOB). The accessory olfactory 
bulb (AOB) receives axonal inputs from the vomeronasal organ (VNO). The VNO 
contains its own vomeronasal receptor cells and is separate from the olfactory epithelium. 
In mice, extensive studies have indicated that the OE is divided into four zones, based on 
the expression of odourant receptors. OSNs in a specific zone of the OE project to 
glomeruli located in a corresponding zone of the MOB. Axons of OSNs expressing the 
same odourant receptor converge to defined glomeruli. (Adapted from Mori et al., 1999)

Although a strict zone-to-zone pattern of projection between the olfactory 

epithelium and the olfactoiy bulb has been established in mammals, not all olfactory 

systems display this. In fish, the Atlantic salmon (Salmo salar), rainbow trout 

(Oncorhynchus mykiss) and the zebrafish (Danio rerio) appear to have a slightly different 

method of olfactory coding. OSNs with common odourant receptors are randomly

Olfactory epithelium Olfactory Bulb

OSNs Glomerulus
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dispersed in the olfactory epithelial sheet and converge onto common glomeruli. In the 

zebrafish, the existence of distinct zones of the epithelium projecting to distinct zones of 

the olfactory bulb was not apparent (Baier et al., 1994). Retrograde tract studies 

indicated that regardless of which olfactory bulb glomeruli were micro-injected with a 

neuronal tract tracer, back-filled OSNs in the olfactory epithelium were widely dispersed 

over the olfactory epithelium (Baier et al., 1994). Likewise in the rainbow trout, 

projections from the olfactory epithelium to the olfactory bulb were non-topographically 

ordered (Riddle and Oakley, 1991). Anterograde tract tracing in the rainbow trout 

indicated that regardless of where the dye was applied in the OE, labeled axons were 

never restricted to a subregion of the glomerular layer (Riddle and Oakley, 1991). 

Furthermore, retrogradely in the rainbow trout, regardless of which glomerulus was 

injected, labeled OSNs were widely dispersed in the OE (Riddle and Oakley, 1991).

All the previous species discussed here (section 1.3 .3) were all jawed 

gnathostomes: teleost fish and mammals. In Chapter 2 of this thesis, the objective was to 

determine whether the spatial projections in the primary olfactory pathway of the sea 

lamprey, a jawless agnathan, possess diffuse projections like the teleost model or 

topographically ordered projections like mammals.

1.4.4 The organization of the olfactory system: the spatial division of the olfactory
system and neural pathways for chemoreception.

In both fish and mammalian olfactory systems alike, research has indicated the 

presence of independent neural pathways for the chemoreception of pheromones 

(Friedrich and Korsching, 1998; Hara and Zhang, 1996; Halpem, 1987; Kyle et al., 1987; 

Laberge and Hara, 2003; Stacey and Kyle, 1983; Sorensen et al., 1991; Weltzien et al.,
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2003). Sex pheromones are defined as “a substance, or mixture of substances, which is 

released by an individual and which evokes a specific and adaptive reproductive response 

in conspecifics, the expression of which does not require specific learning” (Sorensen and 

Stacey, 1999). Mammals possess a separate chemoreceptive structure, the VNO, which 

is located at the base of the nasal septum of most terrestrial vertebrates (Halpem, 1987). 

The vomeronasal system consists of a peripheral organ, the VNO, which contains its own 

sensory neurons that project to the accessory olfactory bulb (AOB). This is separate from 

the olfactory epithelium, which contains sensory neurons that project to the main 

olfactory bulb (MOB). The processing of pheromonal information in many mammalian 

species has been shown to occur in the VNO (Halpem, 1987). The VNO also mediates 

the detection of non-pheromonal compounds (Halpem, 1987). On the contrary, although 

fish do not possess a VNO, the vomeronasal system may be present in some fishes in a 

form that has not yet been recognized (Eisthen, 1992). The functional division of the 

olfactory system into medial and lateral components in fish may be analogous to the 

functional division of the VNO and the olfactory system in mammals (Eisthen, 1992; 

Dulka, 1993). In the goldfish, the medial olfactory tract, responsive to reproductive sex 

pheromones, may be functionally analogous to the tetrapod VNO; the lateral olfactory 

tract, responsive to amino acids, may be functionally analogous to the tetrapod main 

olfactory system (Dulka, 1993).

Similar to the goldfish, many other teleost fish display a similar functional 

division of the olfactory system (Hansen et al., 2003; Laberge and Hara, 2003; Stacey 

and Kyle, 1983; Kyle et al., 1987; Sorensen et al., 1991; Friedrich and Korsching, 1998; 

Hara and Zhang, 1996; Weltzien et al., 2003). In zebrafish (Danio rerio), the medial
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glomeruli respond to stimulation by bile acids; the medial ventral glomeruli respond to a 

reproductive protaglandin pheromone; and the anterior and lateral glomeruli respond to 

amino acids (Friedrich and Korsching, 1998). Likewise, in the catfish (Ictalurus 

punctatus), the medial region of the olfactory bulb is bile salt receptive, and ventral area 

is amino acid receptive (Hansen et al., 2003). In the Atlantic salmon (Salmo salar) and 

the rainbow trout (Ocorhynchus mykiss), bile acids stimulate the medial olfactory bulb 

and amino acids stimulate the lateroposterior olfactory bulb (Hara and Zhang, 1996). 

When the medial olfactory tract of the crucian carp was cut, reduced reproductive 

behavior was displayed; this indicates that the medial olfactory tract mediates 

reproductive behavior (Weltzien et al., 2003). Furthermore, in lake whitefish (Coregonus 

clupeaformis), putative reproductive pheromones stimulated a transition area in the 

olfactory bulb-telencephelon area (Laberge and Hara, 2003).

Therefore, in both fish and mammals, two phylogenically divergent vertebrates, 

there are spatially segregated pathways for the detection of discrete odourants in the 

olfactory system The possibility exists that the medial olfactory system in fish is 

functionally homologous to the vomeronasal system of higher vertebrates.

1.5 The lamprey as a model of olfaction

The goal of Chapter 2 was to implement the larval sea lamprey model to study 

evolutionarily conserved characteristics of the olfactory system The sea lamprey is a 

living jawless fish, which represents the only vestiges of a large and diverse group of 

early craniates which flourished nearly half a billion years ago. Comparing the jawless
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fishes with gnathostomes can not only aid in determining which characteristics are 

primitive, but can provide much insight into the earliest vertebrates (Braun, 1996).

In comparison to the gnasthostome radiation, the sea lamprey offers an inherently 

simple olfactory system to study. In mammals, 1000 different olfactory receptor genes 

are expressed by OSNs (Buck and Axel, 1991) and the olfactory bulb contains 

approximately 2400 glomeruli (Meisami et al, 1993). In teleosts, the number of putative 

olfactoiy receptor genes is only about 100 (Ngai, et al., 1993), with approximately 80 

glomeruli (Baier and Korsching, 1994; Friedrich and Korsching, 1998). In the lamprey, 

the family of olfactory receptor genes is considerably smaller than in mammals, and may 

be even smaller than that of teleost fish (Freitag et al., 1999). Hence, lampreys respond 

only to a few odourants: basic amino acids and bile acids (Li et al., 1995). The total 

number of glomeruli in the larval sea lamprey ranges from 41-65 (Frontini et al., 2003). 

Furthermore, a convenient feature of the lamprey olfactory system is that the entire 

primary olfactory pathway of OSNs is located in the same horizontal plane (Zaidi et al., 

1998). A horizontal section through the primary olfactory pathway of the larval sea 

lamprey displays dendrites and cell bodies in the olfactory epithelium, axons in the 

olfactory nerve and olfactory bulb (Figure 4). Due to this apparent simplicity in the 

larval sea lamprey, it is an excellent model for studying olfaction.

The glomerular territories that exist in the larval sea lamprey have been 

established (Frontini et al., 2003). The fact that the G protein G0if, is lacking in the 

medial glomeruli of the larval sea lamprey (Frontini et al., 2003), gives way to 

determining the role of alternate G proteins in odourant coding. Finally, since a 

reproductive pheromone has been identified in the sea lamprey (Li et al., 2002), studies

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



14

can be conducted to study pheromone activation in the primary olfactory pathway in the 

agnathan.

i i m h c l i u m

O l U k ' T i i r N

o lhk- inn  
hul l* * *

Figure 4. The primary olfactory pathway in the larval sea lamprey. This micrograph 
shows a primary olfactory pathway after the application of GSIB4 lectin histochemistry. 
This staining technique highlights the olfactory bulb glomeruli (filled arrowheads) in the 
olfactory bulb and the surface of the OSNs in the olfactory epithelium.
Scale bar is 0.5 mm.

1.6.1 The use of reproductive pheromones in fish

Fish reside in an aqueous universal solvent in an environment that is dimly lit. 

The aqueous environment of fishes provides them with a vehicle for transmitting body 

metabolites. Research has revealed that fish use chemical signals (i.e. pheromones) 

which mediate reproductive behavior. In fish, the detection of pheromones is mediated 

through olfaction, which reflects a specialization of this neural system (Sorensen and 

Stacey, 1999). The study of pheromones can provide much insight into evolutionarily 

conserved patterns in the vertebrate endocrine system; furthermore, it can provide 

insights into the functioning of afferents of cranial nerve one (i.e. the olfactory system)
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(Stacey and Sorensen, 2002). Fish olfactory systems are responsive to four chemical 

classes of odourants: amino acids, bile acids, sex steroids and prostaglandins (Zielinski 

and Hara, 2000). Bile acids, steroids and protaglandins have long been indicated as 

reproductive pheromones produced in fish (Colombo et al., 1977; Li et al., 2002; 

Sorensen et al., 1988).

1.6.2 Fish Pheromones: Prostaglandins

Prostaglandins are lipid derived molecules which act as physiological regulators, 

this includes mediating reproductive functions. Prostaglandins are C20 compounds 

(Figure 5). In the goldfish, F type protaglandins (PGFs) have been shown to be strong 

olfactory stimulants and are part of the postovulatory female sex pheromone system 

(Sorensen et al., 1988). The ovulated female goldfish releases PGFs to the water where 

they are detected by the male olfactoiy system and stimulate male spawning behaviour 

(Sorensen et al., 1988). Olfactory epithelial sensitivity to prostaglandins has also been 

exhibited in the common carp (Cyptinus carpio) (Irvine and Sorensen, 1993). (See 

section 1.7 for the complete discussion of prostaglandin mediation in the goldfish sex 

pheromone system).

In the lake whitefish, putative pheromonal prostaglandins selectively stimulate a 

transition area in the olfactory bulb-telencephelon transition area (Laberge and Hara, 

2003); in zebrafish, the medial ventral glomeruli respond to a reproductive protaglandin 

pheromone (Friedrich and Korsching, 1998).
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Figure 5. Prostaglandins are C20 compounds.
The prostaglandin shown here is PGF2a.

1.6.3 Pheromones: Bile acids

Bile acids are synthesized in the liver from cholesterol and contain the steroid 

nucleus with a branched side chain of three to nine carbon atoms ending in a carboxyl 

group. Bile acids are amphipathic molecules, having both hydrophobic and hydrophilic 

portions. Bile acids are C24 compounds; various substituents at the Ri and R2 positions 

on the compound yields different bile acids with unique chemical identities (Figure 6 ). In 

the mammalian duodenum, bile salts surround lipid droplets, forming an emulsion that 

aids in digestion. Studies have indicated that bile acids elicit olfactory epithelial 

responses in teleosts such as the brown trout (Salmo trutta), channel catfish, and goldfish 

(Sorensen and Caprio, 1997, Table 2).

Bile acids act as pheromonal compounds in the jawless sea lamprey (Li et al., 

2002; Siefkes et al., 2003). In the sea lamprey, the bile acid 7a,12a,24-trihydroxy-5a- 

cholan-3-one 24-sulfate, has been implicated as a reproductive sex pheromone produced 

and secreted by the male (Li et al., 2002, Siefkes et al., 2003) (See section 1. 8  discusion).
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Figure 6. Bile acids are C24 compounds. Various substituents at the Ri and
R2 positions on the compound yield unique bile acids.

1.6.4 Fish Pheromones: Steroids

Androgen steroids are C19 compounds and oestrogen steroids are Ci8 compounds. 

Progestogens are C21 steroids (Rime, 1993). Numbering of the steroid nucleus is 

required in order for precise nomenclature (Figure 7). Substituents lying below the plane 

of the ring are referred to as a, whereas those that lie above the plane are referred to as p.

26

Figure 7. The steroid skeleton indicating the numbering of the rings.
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To determine the reproductive steroids that are produced in fish, typically suitable 

radiolabelled precursors are implemented. This technique is implemented in Chapters 3 

and 4 of this thesis, with the in vivo incubation of gonadal tissue from the round goby 

(using [3H]-17-hydroxyprogesterone and [3H]-androstenedione precursors). Tritiated 

precursors such as [3H]-progesterone, [3H]-17-hydroxyprogesterone, [3H]- 

androstenedione are incubated with minced tissue and the identity of the products formed 

is determined by chromatography and microchemical reactions (Kime, 1993). The 

minced tissue are artificial systems and may not reflect the in-vivo situation, where 

products are continually removed by circulation(Kime, 1993). Although there are 

limitations, incubation with labeled steroid precursors does give an indication of the 

enzyme systems present in the tissue and may indicate the presence of novel steroids 

(Kime, 1993).

Since the studies of Chapters 3 and 4 are focused on the steroid production of 

putative steroidal reproductive pheromones in the male gonads of the round goby, the 

discussion here will be limited to reproductive steroids and steroid biosynthesis in the 

gonads of male fish. In male fish, reproductive steroids are typically 5a and 50 reduced. 

Reduction at the 5th position is very prevelant in perciforms. 50 reduced metabolites 

predominated when testicular tissue was incubated with either C19 or C21 precursors of 

the two periforms, Rhabdosrgus sarba (Yeung and Chan, 1985) and Gobius jozo 

(Colombo et al., 1977). 5a reduction predominates in Glossogobius olivaceus (Gobiidae) 

(Asahina et al., 1985) and Brachydanio rerio (van den Hurk et al., 1987). Numerous 

androgen steroids have been identified in fish, but the main ones with known hormonal 

(i.e. endocrine) roles are testosterone (T) and 11-ketotestosterone (11-KT; Kime, 1993).
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The former is found in both male and female fish and is responsible for positive feedback 

control of pituitary gonadatropin synthesis during gonadogenesis (Crim & Evans, 1983). 

The latter is only normally found in males and is responsible for stimulating 

spermatogenesis and male secondary characteristics (Miura et al., 1991).

The addition of a sulfate or glucuronide group at the third postion forms a steroid 

conjugate. Studies have indicated that steroid conjugates produced in the gonads of the 

male fish possess pheromonal properties (Colombo et al., 1979; Schoonen and Lambert, 

1986; Schoonen et al., 1987, 1988). Both 5P-reduction and the conjugation of steroids 

are usually mechansims to abolish hormonal activity (Colombo et al., 1980; Kime, 1993). 

Typically, in mammals, both 5{3-reduction and the conjugation of steroids are typically 

hepatic in location and usually lead to excretion and deactivation of the steroid hormone 

(Colombo et al., 1980; Kime, 1993). In the larval sea lamprey, a bile acid, petromyzonal 

sulfate was shown to be produced in the liver (Polkinghome et al., 2001). Fish are 

unique in that enzymes for conjugation can be very active within the gonad itself (Kime, 

1993). Etiocholanolone glucuronide, produced within the testis of the black goby (Gobius 

jozo=G.niger) has been shown to be an attractant to females (Colombo et al., 1980). 

Since steroids that are conjugated are more water soluble than the free steroids, 

conjugated steroids are potentially more likely to be utilized as pheromones in the 

aqeuous environment of the fish (Scott and Vermeirssen, 1994; Vermeirssen and Scott,

1996).
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1.7 Pheromonal systems In fish: the goldfish (Carassius auratus) model system -  the 
use of prostaglandins and steroids.

The most well studied model of a vertebrate pheromonal system is that of the 

goldfish (Carassius auratus). This model suggests the release of specific protaglandins 

and steroid pheromones by the female gonads to which the male respond. The female 

releases specific pheromones before and after ovulation; this initiates spawning activity 

in males. The following five pheromonal compounds have been shown to be released by 

the female goldfish to induce physiological and behavioral responses in males: 

androstenedione (AD), 17,20P-Dihydroxy-4-pregnen-3-one (17,2O0P), 17,200-

Dihydroxy-4-pregnen-3-one-sulfate (17,2O0P-S), Prostaglandin F2° (PGF2a), 15Keto- 

Prostaglandin F2“ (15KPGF2a). In the afternoon and before ovulation, female pituitary 

gonadotropins stimulate the release of preovulatory AD by the female into the water. 

Later a surge of preovulatory 17,2O0P is released into the water, this dominates the 

steroidal mixture. Still in the preovulatory phase, the female proceeds to release 

17,2O0PS; the presence of 17,2O0PS now dominates the steroidal mixture presented to 

the male. By the end of the night, males have greatly increased sperm levels due to 

exposure to 17,2O0P. Hence, the principle function of 17,2O0P is to increase male 

steroidogenesis and milt production, thereby giving exposed males increased fertility by 

the time of spawning (Dulka et al., 1987a; Sorensen et al., 1989, 1990; Zheng and Stacey, 

1997). The reproductive cycle proceeds and females ovulate and steroid levels drop in 

the plasma. Circulating PGF2a increases in the female which stimulates female 

reproductive behaviour. Finally, the two postovulatory pheromones, PGF2a and its 

principle metabolite, 15KPGF2a are released by the female in urine; these two 

compounds act together as sex pheromones with strong effects in the male (Sorensen et
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al., 1998). Free steroids appear to be released nearly exclusively across the gills in 

goldfish, and conjugated (glucuronidated and sulfated forms) are released in the urine 

(Sorensen et al., 2000). The possibility of male goldfish releasing pheromones in which 

females are responsive to has received little attention and there is no evidence that 

ovulation is influenced by the presence of males (Stacey et al., 1979b). Therefore, in the 

goldfish, a complete synchrony of events has been established, whereby the female 

stimulates male spawning behavior.

1.8 Reproductive Pheromonal systems in fish: the Sea Lamprey -  the use of bile 
acids

In the mature male sea lamprey (Petromyzon marinus), a bile acid sex pheromone, 

7a, 12a,24-trihydroxy-5a-cholan-3-one-24-sulfate is excreted from the gills which acts as 

a potent sex pheromone for females (Li et al., 2002; Siefkes et al., 2003). Since this bile 

acid is present in the liver of spermiating males, this is where it is likely synthesized (Li 

et al., 2002; Siefkes et al., 2003). The exit of this sulfated bile acid to the aqueous 

environment may represent an evolutionary adaptation and the transport of this 

compound from the liver to the gills seems to be very efficient. Hepatic veins carry 

blood directly to the heart and all blood from the heart passes immediately through the 

gills. The gills possess specialized glandular cells to facilitate placement of the 

pheromone into the environment (Siefkes et al., 2003).

1.9 Reproductive Pheromonal systems in fish: developments in the Gobiidae -  the 
use of sex steroids

Other evidence for the use of reproductive pheromones is present in species from 

the subfamily Gobiidae. In Chapters 3 and 4, the objective is to elucidate the chemical 

structure of a reproductive pheromone(s) that is released by the male to attract females to

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22

its nest during mating. This could offer a means of species management of this invasive 

species through interfering with its pheromone communication system. Evidence from 

species of the subfamily Gobiidae indicates that males release reproductive pheromones 

that attract females.

In the male black goby (Gobius jozo), it has been shown that the male releases a 

pheromone that induces reproductive behaviour in the female (Colombo et al., 1979, 

1980,1982). The testes of the black goby has been shown to contain a cluster of Leydig 

cells (i.e. steroid secreting cells), which forms the mesorchial gland. The mesorchial 

gland is concentrated in the region where the testis is suspended from the body wall by 

lengthwise mesenteries known as mesorchia (Colombo et al., 1974, 1977,1982). 

Furthermore, the mesorchial gland was capable of transforming radioactive pregnenolone 

into conjugated and 50-reduced steroids (Colombo et al., 1970, 1977) (see figure 4 for 

structure). One of the steroids shown to be synthesized in this mesorchial gland, 

etiocholanolone glucuronide, was shown to act as an attract ant to gravid females 

(Colombo et al., 1980). The work of Murphy et al. (2001) indicated that the olfactory 

system of the round goby is particularly responsive to 50 reduced androgens. Therefore, 

based on the work of Colombo et al. (1970,1977) and Murphy et al. (2001), the search for 

reproductive pheromones in the round goby (as carried out in Chapters 2  and 3 ), was 

focused towards the identification of 50 reduced C19 androgens that were produced in the 

gonads of the male.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



23

References

Anholt, R.R.H. (1993) Molecular neurobiology of olfaction. Critical reviews of 
Neurobiol. 7, 1-22.

Asahina, K., Suzuki, K., Aida, K., Hibiya, T., Tamaoki, B. (1985). Relationship between 
the structures and steroidogenic functions of the testes of the urohaze-goby 
(Glossogobius olivaceus). Gen. Comp. Endocrinol. 57,281-292.

Baier, H. and Korsching, S. (1994) Olfactory glomeruli in the zebrafish form an 
invariant pattern and are identifiable across animals. J Neurosci. 14, 219-230.

Baier, H., Rotter, S., Korsching, S. (1994) Connectional topography in the zebrafish 
olfactory system: Random positions but regular spacing of sensory neurons projecting to 
an individual glomerulus. Proc. Natl. Acad. Sci. USA. 91,11646-11650.

Belanger, R.M., Smith, C.M., Corkum, L.D., and Zielinski, B.S. (2003) Morphology 
and histochemistry of the peripheral olfactory organ in the round goby (Neogobius 
melanostomus). J Morphology. 251, 62-71.

Braun, C.B. (1996) The sensory biology of the living jawless fishes: a phylogenetic 
assessment. Brain Behav. Evol. 48,262-276.

Breer, H., Boekhoff, I. (1991) Odorants of the same odor class activate different second 
messenger pathways. Chemical Senses. 16,19-29.

Buck, L. and Axel, R. (1991) A novel multigene family may encode odorant receptors: 
a molecular basis for odor recognition. Cell. 65,175-187.

Colombo, L., Belvedere, PC., Marconato, A. (1979). Biochemical and functional 
aspects of gonadal biosynthesis of steroid hormones in teleost fish. Proc. Indian Natn. 
Acad. Sci. B45, 443-451.

Colombo, L., Belvedere, P.C., Marconato, A., Bentivegna, F. (1982). Pheromones in 
teleost fish. In. Richter, C.J.J., Goos, H.J.T. (Eds ), Proceeding of the Second 
International Symposium on Reproductive Physiology of Fish, Pudoc, The Netherlands, 
pp. 84-94.

Colombo, L., Belvedere, P.C., Pilati, A. (1977). Biosynthesis of free and conjugated 5p- 
reduced androgens by the testis of the black goby, Gobius jozo L. Boll. Zool. 44, 131- 
144.

Colombo, L., Burighel, P. (1974). Fine structure of the testicular gland of the black goby, 
Gobius jozo L. Cell Tiss. Res. 154, 39-49.

Colombo, L., Lupo di Prisco, C., Binder, G. (1970). Metabolism of pregnenolone-4-14C 
by the testis of Gobius paganellus (Teleostei). Gen. Comp. Endocrinol. 15,404-419.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

Colombo, L., Marconato, A., Belvedere, P C., Frisco, C. (1980). Endocrinology of 
teleost reproduction: a testicular steroid pheromone in the black goby, Gobius jozo L. 
Boll. Zool. 47,355-364.

Corkum, L.D., Maclnnis A.J., Wickett, R.G. (1998). Reproductive habits of the round 
gobies. Great Lakes Research Review. 3,13-20.

Crim, L.W., Evans, DM. (1983) Influence of testosterone and/or luteinizing hormone 
releasing hormone analogue on precocious sexual development in the juvenile rainbow 
trout. Biol. Reprod. 29,137-142.

Dellacorte, C., Restrepo, D., Menco, B.PH.M., Andreini, I., Kalinoski, D.L. (1996) 
Goq/Gaii: Immunolocalization in the olfactory epithelium of the rat (.Rattus Rattus) and 
the channel catfish (Ictalurus Punctatus). Neuroscience. 74,261-273.

Dulka, J.G. (1993) Sex pheromone systems in goldfish: comparisons to vomeronasal 
systems in tetrapods. Brain Behav. Evol. 42,265-280.

Dulka, J.G., Stacey, N.E., Sorensen, P.W., van der Kraak, GJ. (1987a) A sex steroid 
pheromone synchronizes male-female spawning readiness in goldfish. Nature (London). 
325,251-253.

Eisthen, H.L. (1992) Phytogeny of the vomeronasal system and of receptor cell types in 
the olfactory and vomeronasal epithelia of vertebrates. Microscopy research and 
technique. 23,1-21.

Firestein, S., Darrow, B., Shepherd, G.M. (1991) Activation of the sensory current in 
salamander olfactory receptor neurons depends on a G protein-mediated cAMP second 
messenger system Neuron. 6, 825-835.

Firestein, S. (2001) How the olfactory system makes sense of scents. Nature. 413, 
211-218.

Freitag, J., Beck, A., Ludwig, G., Von Buchholtz, L. and Breer, H. (1999). On the origin 
of the olfactory receptor family: receptor genes of the jawless fish (Lampetra fluviatilis). 
Gene. 226, 165-174.

Friedrich, R.W. and Korsching, S.I. (1998) Chemotopic, combinatorial, and 
noncombinatorial odorant representations in the olfactory bulb revealed using a voltage- 
sensitive axon tracer. JNeurosci. 18,9977-9988.

Frontini, A., Zaidi, A.U., Hua, H., Wolak, T.P., Greer, C.A., Karitz, K.W., Li, W., 
Zielinski, B.S. (2003) Glomerular territories in the olfactory bulb from the larval stage 
of the sea lamprey Petromyzon marinus. J Comp. Neurol. 465, 27-37.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



25

Halpem, M. (1987) The organization and function of the vomeronasal system Ann Rev 
Neuroscience. 10, 325-62.

Hansen, A., Rolen, S.H., Anderson, K., Morita, Y., Caprio, J., and Finger, T.E. (2003) 
Correlation between olfactory receptor cell type and function in the channel catfish. J 
Neurosci. 23, 9328-9339.

Hara, T.J. and Zhang, C. (1996) Spatial projections to the olfactoiy bulb of functionally 
distinct and randomly distributed primary neurons in salmonid fishes. Neuroscience Res. 
26, 65-74.

Hildebrand, J.G. and Shepherd, G.M. (1997) Mechanisms of olfactory discrimination: 
converging evidence for common principles across phyla. Annual Reviews 
Neuroscience. 20, 595-631.

Hurk, R. van den, Schoonen, W.G.E.J., van Zoelen, G.A., Lambert, J.G.D. (1987) The 
biosynthesis of steroid glucuronides in the testis of the zebrafish, Brachydanio rerio, and 
their pheromonal function as ovulation inducers. Gen. Comp. Endocrinol. 68,179-88.

Irvine, I.A.S. and Sorensen, P.W. (1993) Acute olfactory sensitivity of wild common 
carp, Cyprinus carpio, to goldfish hormonal pheromones is influenced by gonadal 
maturity. Can. J. Zool. 71,2199-2210.

Jia, C., Halpem, M. (1996) Subclasses of vomeronasal receptor neurons: differential 
expression of G proteins (Gio2 and Goa) and segregated projections to the accessory 
olfactory bulb. Brain Res. 719,117-128.

Jones, D.T. and Reed, R.R. (1989). G0# an olfactory neuro-specific G-protein involved 
in signal transduction. Science. 244, 790-796.

Juilfs, D.M., Fulle, H-J., Zhao, A.Z., Houslay, M.D., Garbers, D.L., Beavo, J.A. (1997) 
A subset of olfactory neurons that selectively express cGMP-stimulated 
phosphodiesterase (PDE2) and guanylyl cylclase-D define a unique olfactory signal 
transduction pathay. Proc. Natl. Acad. Sci. USA. 94, 3388-3395.

Kime, D. E. (1993). “Classical” and “non-classical” reproductive steroids in fish. Rev. 
Fish Biol. Fish. 3,160-180.

Kyle, A.L., Sorensen, P.W., Stacey, N.E., Dulka, J.G. (1987) Medial olfactoiy tract 
pathways controlling sexual reflexes and behavior in teleosts. Ann NY Acad Sci. 519, 
97-107.

Laberge, F. and Hara, T.J. (2001) Neurobiology of fish olfaction: a Review. Brain 
Research Reviews. 36,46-59.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



26

Laberge, F. and Hara, T.J. (2003) Non-oscillatory discharges of an F-prostaglandin 
responsive neuron population in the olfactory bulb-telencephalon transition area in lake 
whitefish. Neuroscience. 116, 1089-1095.

Li, W., Sorensen, P.W. and Gallaher, D.D. (1995) The oflactory system of migratory 
adult sea lamprey (Petromyzon marinus) is specifically and acutely sensitive to unique 
bile acids released by conspecific larvae. J Gen Physiol. 105, 569-587.

Li, W., Scott, A.P., Siefkes, M.J., Yan, H., Liu, Q., Yun, S-S., Gage, D.A. (2002) Bile 
acid secreted by male sea lamprey that acts as a sex pheromone. Science. 296,138-141.

Mezler, M., Fleischer, K., Conzelmann, S., Korchi, A., Widmayer, P., Breer, H., and 
Boekhoff, I. (2001) Identification of a nonmammalian G0if subtype: functional role in 
olfactory signaling of airborne odorants in Xenopus laevis. J Comp Neurol. 439,400- 
410.

Meisami, E. and Sendera T.J. (1993) Morphometry of rat olfactory bulbs stained for 
cytochrome oxidase reveals that the entire population of glomeruli forms early in the 
neonatal period. Brain Res Dev Brain Res. 71, 253-257.

Miura, T., Yamauchi, K., Takahashi, H., Nagahama, Y. (1991) Hormonal induction of 
all stages of spermatogenesis in vitro in the male japanese eel (Anguilla japonica). Proc. 
Natl. Acad. Sci. USA. 88, 5774-5778.

Mombaerts, P. (1999). Seven-transmembrane proteins as odorant and chemo sensory 
receptors. Science. 286,707-711.

Mori, K., Nagao, H., Yoshihara, Y. (1999) The olfactory bulb: coding and processing 
of odor molecule information. Science. 286,711-715.

Murphy, C.A., Stacey, N.E., Corkum, L.D. 2001. Putative steroidal pheromones in the 
round goby, Neogobius melanostomus: olfactory and behavioral responses. J. Chem. 
Ecol. 27, 443-470.

Ngai, J., Dowling, M.M., Buck, L., Axel, R., Chess, A. (1993). The family of genes 
encoding odorant receptors in the channel catfish. Cell. 72, 657-666.

Pace, U., Hanski, E., Salomon, Y., and Lancet, D. (1986) Odorant sensitive adenylate 
cyclase may mediate olfactory reception. Nature. 316, 255-258.

Polkinghome, C.N., Olson, J.M., Gallaher, D.G., Sorensen, P.W. (2001) Larval sea 
lamprey release two unique bile acids to the water at a rate sufficient to produce 
detectable riverine pheromone plumes. Fish Physiol. Biochem. 24, 15-30.

Restrepo, D., Boekhoff, I., Breer, H. (1993) Rapid kinetic measurements of second 
messenger formation in olfactory cilia from channel catfish. American J. Physiol. 264, 
C906-C911.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



27

Ressler, K.J., Sullivan, S.L., and Buck, L.B. (1993). A zonal organization of odorant 
receptor gene expression in the olfactory epithelium. Cell. 73, 597-609.

Riddle, D R. and Oakley, B. (1991) Evaluation of projection patterns in the primary 
olfactory system of rainbow trout. J Neurosci. 11,3752-3762.

Schoenfeld, T.A., Clancy, A.N., Forbes, W.B., Macrides, F. (1994) The spatial 
organization of the peripheral olfactory system of the hamster. Part I: receptor neuron 
projections to the main olfactory bulb. Brain Res. Bull. 34,183-210.

Siefkes, M.J., Scott, A.P., Zielinksi, B., Yun, S-S., Li, W. (2003) Male sea lampreys, 
Petromyzon marinus L., excrete a sex pheromone from gill epithelia. Biol, of Reprod.
69,125-132.

Scott, A.P., Vermeirssen, E.L.M. (1994) Production of conjugated steroid by teleost 
gonads and their role as pheromones. In: Davey, K.G. Peter, R.E., Tobe, S.S. (Eds), 
Perspectives in Comparative Endocrinology, National Research Council of Canada, 
Ottawa, pp. 645-654.

Sorensen, P.W., Caprio, J. (1997) Chemoreception in fish. In: The physiology of 
fishes, 2ed (Ed. By R.E. Evans). pp375-406. Boca Raton, FL: CRC Press.

Sorensen, P.W., Chamberlain, K.J., Stacey, N.E. (1989) Differing behavioral and 
endocrinological effects of two female sex pheromones on male goldfish. Horm. Behav. 
23, 317-332.

Sorensen, P.W., Christensen, T.A., Stacey, N.E. (1998) Discrimination of pheromonal 
cues in fish: emerging parallels with insects. Curr. Opin. Neurobiol. 8,458-467.

Sorensen, P.W., Scott, A.P., Kihslinger, R.L. (2000) How common hormonal 
metabolites function as relatively specific pheromonal signals in goldfish. In 
“Proceedings of the Sixth International Symposium on the Reproductive Physiology of 
Fish” (B.Norberg, O.S. Kjesbu, G.L. Teranger, E. Anderson, and S O. Stefansson, eds), 
pp. 125-128. John Greig AS, Bergen.

Sorensen, P.W., Hara, T.J., Stacey, N.E. (1991) Sex pheromones selectively stimulate 
the medial olfactory tracts of male goldfish. Brain Res. 558, 343-347.

Sorensen, P.W., Hara, T.J., Stacey, N.E., Dulka, J.G. (1990) Extreme olfactory 
specificity of the male goldfish to the preovulatory steroidal pheromone 17a,20(3- 
dihydroxy-4-pregnen-3-one. J. Comp. Physiol. A. 166, 373-383.

Sorensen, P.W., Hara, T.J., Stacey, N.e., Goetz, F.W.M. (1988) F prostaglandins 
function as potent olfactory stimulants that comprise the postovulatory female sex 
pheromone in goldfish. Biology of reproduction. 39,1039-1050.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



28

Sorensen, P.W., Stacey, N.E. (1999) Evolution and specialization of fish hormonal 
pheromones. In “Advances in chemical signals in vertebrates” (R.E. Johnston, D. 
Muller-Schwarze, and P.W. Sorensen, eds.), pp. 15-47. Kluwer Academic/Plenum Press, 
New York

Stacey, N.E., Cook, A.F., Peter, R.E. (1979b) Spontaneous and gonadotropin-induced 
ovulation in the goldfish, Carassius auratus L.: Effects of external factors. J Fish Biol. 
15, 349-361.

Stacey, N.E., Kyle, A.L. (1983) Effects of olfactory tract lesions on sexual and feeding 
behavior in the goldfish. Physiol. Behav. 30, 621-628.

Stacey, N.E., Sorensen, P.W. (2002) Hormonal pheromones in fish. In: Hormones, 
Brain and Behavior. D. Pfott, A. Arnold, A. Etgen, S. Fahrback and R. Rubin, eds. 
Elsevier Science, USA, Vol. 2: p375-434.

Vassar, R., Ngai, J., Axel, R. (1993) Spatial segregation of odorant receptor expression 
in the mammalian olfactory epithelium. Cell. 74, 309-318.

Vermeirssen, E.L.M., Scott, A.P. (1996) Excretion of free and conjugated steroids in 
rainbow trout {Oncorhynchus mykiss): evidence for branchial excretion of the 
maturation-inducing steroid, 17,20|3-dihydroxy-4-pregnen-3-one. Gen. Comp.
Endocrinol. 101, 180-194.

Weltzien, F-A., Hoglund, E., Hamdani, E.H., Doving, K.B. (2003) Does the lateral 
bundle of the medial olfactory tract mediate reproductive behavior in male crucian carp? 
Chemical Senses. 28, 293-300.

Yeung, W.S.B., Chan, S.T.H. (1985) The in vitro metabolism of radioactive 
progesterone and testosterone by the gonads of the protandrous Rhabdosargus sarba at 
various sexual phases. Gen. Comp. Endocrinol. 59, 171-83.

Zaidi, A., Kafitz., K.W., Greer, C.A., Zielinski, B.S. (1998) The expression of tenascin- 
C along the lamprey olfactory pathway during embryonic development and following 
axotoomy-induced replacement of the olfactory receptor neurons. Brain research dev. 
Brain Res. 109,157-168.

Zheng, W., Stacey, N.E. (1997) A steroidal pheromone and spawning stimuli act via 
different neuroendocrine mechanisms to increase gonadotropic nad milt volume in male 
goldfish, Carassius auratus. Gen. Comp. Endocrinol. 105, 228-238.

Zielinski, B., Hara, T.J. (2000) The neurobiology of fish olfaction. In: Sensory biology 
of jawed fishes, B.G. Kapoor and T.J. Hara, eds. Science Publishers, Inc., USA, p347- 
366.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

CHAPTER 2: Olfactory epithelial localization of G0if negative olfactory sensory 
neurons projecting to medial olfactory bulb glomeruli in the larval 
sea lamprey (Petromyzon marinus L.)

2 .1  Introduction

The sea lamprey, Petromyzon marinus, is a jawless vertebrate fish belonging to 

the class Agnatha. It is monorhinic with the single nostril located on the dorsal surface of 

the head. The nose of the sea lamprey contains the olfactory epithelium with olfactory 

sensory neurons (OSNs) on the posterior surface of the ventral region of the nasal cavity. 

The OSNs are bipolar, possessing axons that extend caudally and converge into the 

olfactory nerve. The olfactory nerve projects into glomerular units of the olfactory bulb, 

where OSN axon terminals form synapses with dendrites of mitral cells.

The olfactory glomeruli are believed to function as basic modules in information 

processing and odourant detection (Shepherd, 1994), but a full understanding of the 

principles of glomerular organization is lacking (Hildebrand and Shepherd, 1997; 

Friedrich and Korsching, 1998; Xu et al., 2000). Six organizational glomerular territories 

exist in the larval sea lamprey: dorsal cluster (40-100 pm depth), dorsal ring (100-200 

pm depth), anterior plexus (225-475 pm depth), lateral chain (225-475 pm depth), medial 

(350-575 pm depth), ventral ring (500-675 pm depth), and ventral cluster (700-775 pm 

depth) (Frontini et al., 2003). All glomerular territories except the medial glomeruli are 

Goif-IR (Frontini et al., 2003). This suggests a spatial organization of glomerular units 

that is dictated by functional parameters. The olfactory GTP binding protein, G0if, is 

cAMP dependent and linked to olfactory receptors (Jones and Reed, 1989); and has been 

shown to be fundamental in olfactory sensory trandsduction and olfactory responses 

(Belluscio et al., 1998). The OSN projections into these discrete medial glomeruli may
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be spatially segregated in the olfactory epithelial sheet of the peripheral olfactory organ. 

Information is lacking with respect to the spatial organization of olfactory information 

within subsets of glomeruli and within the peripheral olfactory organ. In the present 

study, the OSN projections into the medial, G0if-non-IR glomeruli are examined. This 

will further our understanding of the spatial organization of olfactory information 

between the olfactory bulb and the peripheral olfactory organ.

2.1.2 Odourant signal transduction and the presence of G-protein coupled receptors 

in OSNs

The G-protein, G0if is essential for olfactory responses in mammals (Belluscio et 

al., 1998). The G0if protein is expressed in many vertebrate OSNs such as the amphibian 

Xenopus laevis (Mezler et al., 2001) and teleost fish (Hansen et al., 2003). In vertebrate 

olfactory systems, alternate G proteins are expressed in different sub-populations of 

OSNs that extend axons into spatially distinct glomerular units (Jia and Halpem, 1996; 

Hansen et al., 2003). This would indicate the presence of different sub-populations of 

OSNs in the olfactory epithelium that implement different signal transduction 

mechanisms for the detection of different odourant molecules. In the catfish (Ictalurus 

punctatus), the projections of ciliated GoirIR OSNs are primarily to medial (bile salt 

receptive) and ventral (amino acid receptive) regions of the olfactory bulb (Hansen et al., 

2003). Furthermore, in this catfish, microvillous OSNs that express Gao and Goq/n project 

to the dorsal region of the olfactory bulb where responses to amino acids and nucleotides 

predominate (Hansen et al., 2003).

In the mammalian vomeronasal organ, receptor neurons that express the G 

proteins Gio2 and Goa project to segregated glomeruli within the accesory olfactory bulb
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(Jia and Halpem, 1996). In mammals, the accessory olfactory bulb is located on the 

dorso-posterior surface of the main olfactory bulb (Jia and Halpem, 1996). Also, in 

mammals, a subset of OSNs that selectively express elements of the cyclic guanosine 

monophosphate (cGMP) signal transduction pathway project to a distinct group of 

glomeruli in the olfactory bulb, the “necklace glomeruli”, which resemble a beaded 

necklace encircling the caudal region of the olfactory bulb (Juilfe et al., 1997). This 

indicates that cGMP in these OSNs that project to the necklace glomeruli may have an 

important function in olfactory signaling. These “necklace glomeruli” are unique since 

they have been associated with pheromone induced responses in rat pups (Teicher et al., 

1980; Greer et al., 1982). In the lamprey {Lampetra fluviatilis), the immunocytochemical 

distribution of calretinin, a calcium-binding protein, was localized within sub-populations 

of OSNs in the olfactory epithelium and within some olfactory bulb glomeruli (Pombal et 

al., 2002). Four groups of glomeruli were identified in the olfactory bulb of the lamprey 

(Lampetra fluviatilis), whereby variable levels of calretinin-IR are displayed, ranging 

from strong IR to no IR (Pombal et al., 2002). Likewise, in the larval sea lamprey, there 

exists a unique pattern of expression of G0if throughout the olfactory system, in that G0if 

is not being expressed in the medial glomeruli (Frontini et al., 2003). This indicates a 

possible subpopulation of neural innervation from the olfactory epithelium to the medial 

glomeruli that does not use G0if in signal transduction. Since G0if is absent in medial 

glomeruli of the olfactory bulb, this suggests a putative independent pathway for 

odourant coding in the olfactory bulb. The medial olfactory bulb glomeruli and the 

medial olfactory tract has been associated with pheromone perception in teleosts (Stacey 

and Kyle, 1983; Kyle et al., 1987; Sorensen et al., 1991; Friedrich and Korsching, 1998;
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Weltzien et al., 2003). Therefore, the medial glomeruli and the corresponding OSNs of 

the OE may represent an independent pathway for detecting pheromonal compounds in 

lampreys.

2.1.3 The organization of the olfactory system: topographic projections between
the olfactory epithelium and the olfactory bulb

Rhinotopy occurs when OSNs in a particular region of the epithelium innervate a 

distinct part of the olfactory bulb. In the hamster, fluorescent retrograde tracing 

(implementing fluorescent stilbene isothiocyanates) studies have indicated the presence 

of rhinotopy in the mammalian olfactory system (Schoenfeld et al., 1994). In the 

mammalian olfactory system, OSNs in the ventral-medial olfactory epithelium project to 

the glomeruli in the ventral-medial main olfactory bulb, OSNs in the dorsal-medial 

olfactory epithelium projects to the dorsal-medial main olfactory bulb, dorsal-lateral to 

dorsal-lateral main olfactory bulb, etc. (Schoenfeld et al., 1994). Rhinotopy describes 

this zonal mapping of OSN projections to the olfactory glomeruli in the olfactory bulb. 

Such topographic projections from the nose to the bulb may be fundamental in forming a 

sensory space and a spatial code that organizes odourant quality in the olfactory system 

(Schoenfeld et al., 1994).

The connectional topography between the olfactory epithelium and the olfactory 

glomeruli also has been studied in the zebrafish (Danio rerio) olfactory system through 

implementing retrograde tract tracers (l,r-dioctadecyl-3,3,3’,3’- 

tetrameylindocarbocyanine perchlorate, Dil) (Baier et al., 1994). In the adult zebrafish, 

the glomerular layer consists of 80 glomeruli, categorized into 18 glomerular groups, that 

are invariant from animal to animal (Baier and Korsching, 1994). OSN projections to the 

olfactory bulb are random in the zebrafish; the existence of distinct zones of the
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epithelium projecting to distinct zones of the olfactory bulb glomeruli was not apparent. 

Specifically, in the zebrafish, it was found that OSNs projecting into the ventroposterior 

glomerulus were widely dispersed over the olfactory epithelium (Baier et al., 1994).

These researchers chose to use the ventroposterior glomerulus for practical reasons. 

Relative to the other glomerular units, it is large (Baier and Korsching, 1994: Table 1). 

Also, it is easily accessible for microinjection since it is isolated from the rest of the 

glomeruli in the ventral-posterior aspect of the olfactory bulb which restricts the dye label 

to this particular glomerulus (Baier et al., 1994). These findings in the zebrafish are 

consistent with findings in the rainbow trout (Oncorhynchus mykiss). In the rainbow 

trout, anterograde tracing studies indicated that regardless of where horseradish 

peroxidase was applied in the peripheral olfactory organ (i.e. olfactoiy epithelium), 

labeled axons were never restricted to a subregion of the glomerular layer (Riddle and 

Oakley, 1991). Furthermore, retrograde tracing studies indicated that regardless of which 

glomerular sites were injected (Lumafluor injections included anterior medial, anterior 

lateral, lateral or posterior lateral region of the dorsal half of the olfactory bulb) labeled 

OSNs were widely dispersed in the olfactory epithelium (Riddle and Oakley, 1991).

These studies indicate that in both the rainbow trout and the zebrafish, projections from 

the olfactory epithelium to the olfactory bulb are non-topographically ordered, and the 

organization of odourant information seems to begin in the glomerular units of the 

olfactory bulb. In zebrafish, the medial glomeruli respond to stimulation by bile acids; 

the anterior and lateral glomeruli respond to amino acids; and the medial ventral 

glomeruli respond to a reproductive prostaglandin pheromone (Friedrich and Korsching,

1997). Furthermore, in rainbow trout, the lateroposterior region of the olfactory bulb is
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specifically responsive to amino acids and the medial area of the olfactory bulb is 

specifically responsive to bile acids (Hara and Zhang, 1996). Therefore, these data in the 

zebrafish and the rainbow trout indicate that OSNs with common odourant receptors are 

dispersed within the olfactory epithelium converge on common glomeruli located in 

segregated regions of the olfactory bulb. This contrasts to the topographic ordering 

observed in mammals such as the rodent (Schoenfeld et al., 1994). Some early evidence 

in the carp (Cyprinus carpio) indicated a spatial segregation of OSNs from specific areas 

of the olfactory epithelium projecting to particular regions of the olfactory bulb (Sheldon, 

1912). Specifically, the medial bundle of the olfactory nerve is derived from the rostral 

lamellae and the lateral bundle is derived from the caudal lamellae (Satou et al., 1983). 

Besides this early study conducted in the carp, studies in fish indicate an olfactory model 

whereby topographic projections between the olfactory bulb and olfactory epithelium is 

lacking (Hara and Zhang, 1996). It is the objective of this study to determine whether the 

larval sea lamprey, an organism shown to differentially express G0if in its olfactory 

system (Frontini et al., 2003), possesses diffuse projections like the zebrafish and 

rainbow trout, or topographically ordered projections like the rodent.

Studies from conventional neuroanatomical tract tracing studies in mammals have 

established a zonal map between the epithelium and the olfactory bulb (i.e. Schoenfeld et 

al., 1994). The idea of a zonal map in the olfactory system has been extended through 

determining the expression of odourant receptor genes and cell surface molecules which 

are concentrated on olfactory axons (Mori et al., 1999; Yoshihara et al., 1997). The 

presence of sharply bounded zones was demonstrated using monoclonal antibodies 

reactive to specific cell surface proteins, which differentially label the dorsomedial versus
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the ventrolateral olfactory epithelium and the axonal projection onto the bulb (Mori et al., 

1999; Yoshihara et al., 1997; Schwob and Gottlieb, 1988). In the mouse it has been 

indicated the neural cell adhesion molecule, OCAM, is strongly expressed in the ventral 

olfactory epithelium which projects to the ventral and lateral glomeruli in the olfactory 

bulb. Furthermore, the dorsolateral olfactory epithelium, which does not express OCAM, 

projects to the dorsomedial olfactory bulb (Christensen et al., 2001). In mammals, the 

OE is divided into four zones; each zone contains OSNs that express specific olfactory 

receptor genes (Ressler et al., 1993; Vassar et al., 1993). Furthermore, this model of 

zonal gene expression suggests that OSNs that express a certain olfactory receptor 

converge onto distinct glomeruli (Mombaerts, 1999). This idea is consistent to the zonal 

mapping depicted in the hamster, implementing neuronal tract tracers, whereby OSNs in 

specific areas of the olfactory epithelium project to distinct glomerular units in the 

olfactory bulb (Schoenfeld et al., 1994).

Taken together, many studies have indicated that the olfactory system is 

organized on the basis of spatial division of OSN populations that project to the distinct 

olfactory glomeruli. OSNs in the olfactory epithelium segregate on the basis of odourant 

receptor type and olfactory bulb glomeruli may receive inputs from OSNs that respond to 

similar odourants. Physiological data also support the spatial projection of OSNs onto 

specific olfactory glomeruli; for example, in zebrafish, the medial and lateral glomeruli 

are responsive to different odourant molecules (Friedrich and Korsching, 1997).
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2.1.4 The organization of the olfactory system: the use of anatomical space for 

chemoreception

The vomeronasal organ (VNO) is a chemoreceptive structure located at the base 

of the nasal septum of most terrestrial vertebrates (Halpem, 1987). The vomeronasal 

system consists of a peripheral organ, with epithelium that contains its own sensory 

neurons that form the vomeronasal nerve that projects to glomeruli in the accessory 

olfactory bulb (AOB) (Halpem, 1987). The epithelium of the VNO is separate from the 

olfactoiy epithelium, which also contains sensory neurons that project to the main 

olfactory bulb (MOB). It is this spatially separated vomeronasal system that has been 

implicated in processing pheromonal information in many mammalian species (Halpem, 

1987). Unlike vertebrates, fish do not have a VNO; however, there is the possibility that 

the vomeronasal system is present in some fishes in a form that has not yet been 

recognized (Eisthen, 1992). The functional division of the olfactory system in teleosts 

may indicate the presence of an analogous system, similar to the VNO identified in many 

mammals (Eisthen, 1992). The spatial division of the olfactory system into medial and 

lateral functional elements in teleost fish may be similar to the functional division 

observed between the olfactory and vomeronasal systems (Eisthen, 1992). In the goldfish 

olfactory system, the medial olfactory tract responds to reproductive sex pheromones and 

may be considered homologous to the tetrapod VNO; furthermore, the lateral olfactory 

tract may be considered homologous to the tetrapod main olfactory system (Dulka, 1993). 

The medial olfactoiy tract is responsible for reproductive behaviour in male goldfish 

(Stacey and Kyle, 1983; Kyle et al., 1987). Furthermore, the medial olfactory tract of the 

male goldfish selectively elicits electrical activity in responce to sex pheromones
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(Sorensen et al., 1991). As well, goldfish were also found to be unable to distinguish 

between different amino acids after cutting the lateral olfactory tract (von Rekowski and 

Zippel, 1993). The olfactory system of other teleost fish has displayed an anologous 

functional and spatial division (Friedrich and Korsching, 1997; Hara and Zhang, 1996; 

Laberge and Hara, 2003; Wehzien et al., 2003). In the zebrafish, a very different 

response pattern in the medial and lateral olfactory bulb glomeruli has been observed.

The medial glomeruli respond to stimulation by bile acids; the anterior and lateral 

glomeruli respond to amino acids; and the medial ventral glomeruli respond to a 

reproductive prostaglandin pheromone (Friedrich and Korsching, 1997). Likewise, in 

the Atlantic salmon {Salmo salar)and the rainbow trout (Ocorhynchus mykiss), it has 

been shown that amino acids selectively stimulate the lateroposterior olfactory bulb and 

bile acids selectively stimulate the medial olfactory bulb (Hara and Zhang, 1996). In the 

lake whitefish (Coregonus clupeaformis), putative reproductive pheromones have been 

shown to selectively stimulate a transition area in the olfactory bulb-telencephelon 

transition area (Laberge and Hara, 2003). When the medial olfactory tract of the crucian 

carp (Carassius carassius) is cut in males, they exhibited reduced reproductive behaviour 

(Weltzien et al., 2003). This suggests that the medial olfactory tract of the crucian carp 

mediates reproductive behaviour. It has also been shown that the lateral olfactory tract 

mediates feeding responses in the crucian carp (Hamdani et al., 2001).

Taken together, odourant coding for putative pheromones in fish is processed 

through independent, spatially segregated pathways in the olfactory system. It is possible 

that the medial olfactory system in teleosts is functionally homologous to the 

vomeronasal system of higher vertebrates. Whether the medial olfactory bulb glomeruli
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in the sea lamprey, which lack GoirIR, represents such a unique functional subset in the 

olfactory system is yet to be determined.

In this study, we investigated the olfactory epithelial distribution of OSNs 

projecting to the medial glomeruli, that do not express Goif Micro-injections of 

fluorescent dextran (3000MW) into this distinct area of the olfactory bulb was completed. 

Since the medial glomeruli do not express G0if, their corresponding OSNs in the olfactory 

epithelium is not expected to express G0if. Dextran labeling was colocalized with respect 

to the G-protein, G0if, in the olfactory glomeruli and the OSNs in the peripheral olfactory 

organ. The jawless sea lamprey represents a divergent line of evolution and the 

organization of its olfactory system may be very different from jawed teleosts. Hence, 

we predict that the medial, non-G0if expressing glomeruli projects from discrete areas of 

the olfactory epithelium. This expectation would be consistent to what is known in other 

olfactory systems, whereby alternate G proteins are expressed in different sub

populations of OSNs that extend axons into spatially distinct glomerular units (Hansen et 

al., 2003; Jia and Halpem, 1996).

2.2 Materials and Methods

2.2.1 Experimental animals

Year III class larval sea lamprey, Petromyzon marinus, were used in this 

experiment. These specimens were collected by staff of the Sea Lamprey Control Centre 

(Department of Fisheries and Oceans), Sault Ste Marie, Canada, from four Lake Huron 

tributaries (Brown’s Creek and Root, Garden, and Mindemoya rivers) using an 

electroshocker. The animals were maintained in flow-through dechlorinated water at 11-
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15 °C in the Department of Biological Sciences at the University of Windsor. Forty 

animals (n=40) were used in this study. The weight range of these animals was 1.13g- 

5.60g and the length range was 9.20 cm-17.7 cm.

2.2.2 Retrograde labeling of OSNs

The larvae were anesthetized with MS222 (0.05%, Argent Chemical 

Laboratories, Inc.) and the primary olfactory pathway (olfactory epithelium, olfactory 

nerve, and olfactory bulb) was exposed via dissection in lamprey Ringer’s solution 

(130mM NaCl, 3mM KC1, 2mM MgCL, lOmM HEPES, 2mM CaCfe,5mM glucose), and 

placed in a perfusion chamber mounted onto the stage of a microscope (Zeiss Axioskop 

2FS). The rostral aspect of the preparation was pinned into Sylgard with a needle (Figure 

8). The melanocytes and dura were carefully removed with needle forceps. Before the 

injection process, approximately 100 g.1 of a 0.05% Triton-X solution in lamprey Ringer’s 

solution was applied to the olfactory bulbs in order to facilitate dye loading in the 

olfactory bulb glomeruli. The exposure of the olfactory bulbs to the Triton-X treatement 

lasted approximately 60 seconds. This was followed by thoroughly rinsing the tissue 

preparation with lamprey Ringer’s solution that lacked Triton-X.

Dextran solution (1-mg/mL dextran in 0.1MNaHCC>3, fluorescein, 3000MW 

anionic, lysine fixable, D3306, Molecular Probes) was injected into specific olfactory 

bulb territories with a glass micropipette under pressure (lOpsi, 9ms pulse) applied by a 

Picospritzer II (Parker Hannifin Corp.). The glass micropipettes were prepared with a 

vertical pipette puller (KOPF™ model 720; 31/2” Drummond capillaries #3-000-203- 

G/X). Tips were broken-off to a diameter of approximately 50 fxm under a dissecting
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microscope and filled with the dextran solution through capillary action. The dye was 

injected into medial glomeruli (G0irnon-IR), located at depth range of 350 pm to 550 pm 

(Frontini et al., 2003). Non-medial (G0if-IR) glomeruli (which included the dorsal cluster, 

dorsal ring, anterior plexus, lateral chain and ventral ring) in control animals were also 

injected. Our hypothesis is that medial glomeruli will back-fill a spatially distinct subset 

of OSNs in the olfactory epithelium. As a means of comparison, non-medial glomeruli 

were also injected to determine the location of back-filled OSNs in the olfactory 

epithelium. The OSN projections into medial and non-medial glomeruli are expected to 

be spatially segregated in the olfactory epithelium. During the microinjection process, 

the medial area of the olfactory bulb was punctured with the pulled glass micro-pipette 

and injected with the dextran. Non-medial glomerular injections were completed in a 

similar fashion (Figure 8).

To allow retrograde movement of the dye into the olfactory epithelium, the 

injected olfactory pathway preparation was incubated in lamprey Ringer’s solution for 24 

hours at 4 °C in the fridge in 1 inch diameter petri dish wells. The tissue was then fixed 

in 4% paraformaldehyde (see appendix) solution for 24 hours, cryoprotected in a sucrose 

gradient solution (10-20-30% in phosphate buffer, see appendix) and sectioned with a 

cryostat (Microm, Heidelberg), with sections 20 pm thick. The position of the dextran 

labeling in the olfactory bulb glomeruli was confirmed by fluorescence microscopy. Of 

the 40 animals used in this study, 9 of the animals had successful back-filling of OSNs.

In many of the injections, they were considered unsuccessful since either the tissue 

became necrotic, inappropriate regions of the olfactory bulb were injected (i.e. outside 

glomerular territories) or back filling of OSNs did not occur (see appendix for mass,
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length and sex of these injected preparations). Five preparations (M1-M5) were 

successfully injected into medial glomeruli. Four preparations (NM1-NM4) were 

injected into the non-medial glomeruli (which included the dorsal cluster, dorsal ring, 

anterior plexus, lateral chain and ventral ring) (Table 1).

Table 1. Details of the specimens used In this study. “Preparation number” indicates 
the code given for each specimen, given on the basis of the specimen having either a 
medial (M) or non-medial (NM) glomerular injection. “Animal code” refers to an 
internal coding system used for tracking the length and weight of each larval sea lamprey 
used in any study (including this one) within the Zielinski Laboratory. The olfactory 
bulb injected was indicated for each animal in this study.

Preparation
Number

Animal Code Sex Weight
(g)

Length
(cm)

Olfactory Bulb 
Injected (Right/Left)

Ml L6003 Female 2.42 12.1 Right

M2 L7003 Female 1.54 11.0 Left

M3 L6403 Male 1.38 10.1 Right

M4 L6503 Male 1.85 11.4 Right and Left

M5 L6303 Female 1.73 10.8 Right and Left

NM1 L5903 Female 1.52 10.8 Left

NM2 L6703 Female 2.07 11.5 Right and Left

NM3 L7103 Male 1.58 10.9 Right

NM4 L6603 Female 1.85 10.5 Left

2.2.3 Analysis of tissue sections

After the injected olfactory bulbs and the olfactory epithelium were sectioned on 

the cryostat, tissue sections were analyzed using a Biorad 1024 laser scanning confocal 

microscope, with an Argon/Krypton laser. The olfactory bulb glomeruli injected with
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dextran were identified and the corresponding labeling of OSNs was localized within the 

olfactory epithelium.

2.2.4 Analysis of tissue sections.
Olfactory Bulb Analysis - morphometric analysis of the dextran injection.

Morphometry was used to determine the dextran labeling of the olfactory bulb. 

Every tissue section was analyzed and the dextran labeling data was compiled onto 

templates of the olfactory bulb. The templates of the olfactory bulb consisted of images 

of horizontal sections through the olfactory bulbs at an interval of every 60 pm depth 

(Figure 9). The location of the dextran labeling was compiled onto each representative 

section on the template (Figure 9). The glomeruli were categorized into 7 territories 

(Figure 10), according to Frontini, et al. (2003), using diagrams of the olfactory bulb 

depicting glomerular territories. The shape of the injection was constructed by 

transposing information garnered from the olfactory bulb templates (Figure 9) (see 

results, Figures 12-20).

2.2.5 Analysis of tissue sections.
Olfactory bulb analysis - the co-localization of the dextran injection with
respect to olfactory bulb glomeruli using GS-1 isolectin B4 histochemistry.

After the micro-injection of dextran into the olfactory bulb, and after the fixation 

and sectioning processes, GS-1 isolectin B4 histochemistry was implemented with 

selected preparations (Tobet et al., 1996). GS-1 isolectin B4 histochemistry labels all of 

the olfactory bulb glomeruli in the larval sea lamprey (Frontini et al., 2003). This 

labeling technique co-localized the olfactory bulb glomeruli with the dextran injection 

site; hence, this double label technique highlighted which glomeruli were labeled. The 

sections were washed in 0.1 M PBS (see appendix) with three ten minute intervals in
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between each step. The slides were treated with avidin/biotin blockers for 15 minutes to 

eliminate any lectin binding to endogenous avidin. GS-1 isolectin B4 biotin-conjugated 

(Griffonia simplicifolia lectin I-isolectin B4 , Vector, Burlingame, CA, B1205; lOug/mL 

in 0.1M PBS, pH 7.5) was applied onto the sections overnight at 4°C. After rinsing, the 

slides were incubated with Texas Red avidin-fluorescein DCS (1:100, Vector, A2016) 

for 1 hour, washed in PBS three times in the dark, and mounted with Vectashield ™ 

(Vector, Burlingame, CA).

2.2.6 Analysis of tissue sections.
Olfactory bulb, olfactory epithelium analysis -  co-localization of dextran 
labeled glomeruli and OSNs with respect to G0ir immunoreactivity.

After the micro-injection of dextran into the olfactory bulb, and after the fixation

and sectioning processes, G0if immunocytochemistry was performed on all injected

preparations in order to determine if the dextran injection site contained G0if-IR OSNs in

the olfactory bulb glomeruli and the olfactory epithelium. We expected to find the G0ir

non-IR OSNs in the olfactory epithelium in preparations with back-filled medial

glomeruli (G0if-non-IR). Slides with tissue sections were incubated in diluted normal goat

serum for 20 minutes, then in primary antiserum raised in rabbits against G0if (1:500;

Santa Cruz Biotechnology, Santa Cruz, CA) in 0.1M PBS, pH 7.4, containing 0.1%

Triton X-100 overnight at 4°C. The sections were rinsed in PBS, incubated in Alexa 568

goat antirabbit IgG (Molecular Probes, Eugene, OR; 1:100 in PBS, pH 7.4) for 1 hour

and rinsed in PBS.

The analysis of the spatial distribution of dextran back-filled OSNs that were either 

GoifTR OSNs or G0if-non-IR in the olfactory epithelium was completed after the 

application of the G0if immunocytochemistry. The olfactory epithelium was divided into
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four regions according to morphological differences at four different depths: region 1 

(dorsal: 0-120 pm), region 2 (dorsal: 120-300 pm), region 3 (olfactory nerve: 300-420 

pm), and region 4 (ventral: 420-720 pm) (Figure 11). Region 3 and 4 are distinct. The 

olfactory nerve projects caudally in region 3. The accessory olfactory organ protrudes 

from the caudal surface of region 4. In each region of the olfactory epithelium, the 

distribution dextran back-filled OSNs and their G0irIR (negative IR or positive IR) was 

determined. This indicated the spatial distribution of G0if-IR and G0if-non-IR OSNs that 

were back-filled with dextran. Dextran back-filled OSNs in the olfactory epithelium that 

are G0ir IR should have a green interior (indicating dextran back-filling) and should have 

red outlining the cell membrane (indicating Goif positive reaction). Dextran back-filled 

Goi^non-IR OSNs should have a green interior and lack red outline of the cell membrane 

(indicating a G0if negative reaction) (see results, Figure 21).

2.2.7 Analysis of tissue sections.
A triple label indicating the dextran micro-injection is exclusively into medial,
Goif-non-IR glomeruli

With selected animals, a triple label was implemented that was composed of the 

dextran micro-injection (green, 488nm absorbance), GSIB4 lectin histochemistry (red, 

568nm absorbance), and G0if immunocytochemistry (647nm absorbance). For this triple 

label, the dextran micro-injection was performed first, followed by GS1 B4 lectin 

histochemistry. Lastly, G0if immunocytochemistry was completed by implementing 

Alexa fluor 647 Cy5 goat antirabbit IgG as explained in section 2.2.6 (Molecular Probes, 

Eugene, OR; 1:100 in PBS, pH 7.4; 1 hour and rinsed in PBS). Negative controls, with 

primary antibody omitted from the staining procedure were included with each 

immunocytochemical preparation. The GS1B4 lectin histochemistry and Goif
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immunocytochemistry labeling was implemented to confirm the micro-injection of G0if  

non-IR medial glomeruli. The GSIB4 lectin histochemistry labeled all glomerular units. 

The Goif immunocytochemistry labeled all glomerular units except for the medial G0if- 

non-IR glomeruli. Therefore, dextran labeling of the medial glomerular units was 

confirmed when the medial glomeruli double labeled with dextran and GSIB4  lectin (a 

Goif negative reaction is displayed). The remainder of the glomeruli (dorsal cluster, 

dorsal ring, anterior plexus, laterial chain, ventral cluster, ventral ring) were expected to 

double label with both a GS1 B4 positive reaction and GoirlR.

2.2.8 Production of micrographs

The confocal images of the olfactory bulb glomeruli and the OSNs were obtained 

using a Biorad 1024 laser scanning confocal microscope, with an Argon/Krypton laser. 

The BioRad PIC format was converted to TIFF format with Confocal Assistant. The 

photomicroscope images were assembled into figures and labeled with Adobe Photoshop 

(Mountain View, CA).
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Figure 8. Preparation of the olfactory pathway for the micro-injection procedure.
Injection into the medial glomeruli was directed towards the area indicated as “M” in the 
picture. Injection into non-medial glomeruli was directed towards the area indicted as 
“NM” in the picture. The olfactory nerves (filled arrowheads) are shown projecting from 
the monorhinic nostril to the olfactory bulb. Most of the meninges were carefully 
removed in this picture with needle forceps. Image was obtained at 5X magnifaction. 
Scale Bar is 0.5mm. The micro-injection process was completed in the field of view 
shown here, as viewed by a Zeiss Axioscope 2FS.
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Figure 9. The template of the olfactory bulb used for identifying glomerular 
territories labeled with dextran. Pictures of serial horizontal sections were taken every 
60 pm of the olfactory bulb (OB) and olfactory epithelium (OE). The location of dextran 
labeling from 3 sections (each 20 pm) was compiled onto each image. Images were 
obtained at 5X magnifaction, with a Zeiss Axioscope 2FS. Scale bar=0.5mm (at bottom 
left).
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Figure 10. A schematic diagram of a cross-section of the olfactory bulb indicating 
the depth of the olfactory bulb glomeruli. From the information gained in Figure 1, the 
shape of the dextran injection was transposed onto this cross-section of the olfactory 
bulb.
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Figure 11. Schematic diagrams of horizontal sections of the olfactory epithelium.
Each depth designated has a signature characteristic shape. Each 20 pm section was 
analyzed and all OSNs labeled with dextran from each animal was compiled onto these 
diagrams of the olfactory epithelium. The representative olfactory epithelial depth is 
indicated next to each of the four depths. The dorsal hemisphere includes the most dorsal 
aspect of the olfactory epithelium until a depth of 300 pm. The ventral hemisphere 
begins at olfactory nerve layer (300 pm) and includes the most ventral aspect of the 
olfactory epithelium
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2.3 Results

The olfactory epithelial location of OSNs that project into medial glomeruli and 

non-medial glomeruli of the olfactory bulb in the larval sea lamprey was established. 

This was accomplished by injecting specific glomerular territories with fluorescent 

dextran and back filling OSNs. Histochemical and immunocytomical techniques were 

implemented to co-localize the dextran micro-injection in the olfactory bulb glomeruli 

and the OSN axon terminals.

The depth of the each injection in the olfactory bulb was determined and the 

dextran labeled glomeruli were recorded (Figures 12-20). The position of dextran labeled 

OSNs in the olfactory epithelium and their respective G0if-IR was mapped onto zonal 

representations of the olfactory epithelium that was based on depth. From this, the 

olfactory epithelial distribution of G0i^IR and G0ir non-IR OSNs was determined for 

each injection (Table 2, Table 3, Figures 12-20).

2.3.1 A subset of G0irnon-IR OSNs in the ventral hemisphere of the olfactory 
epithelium projects to the medial glomeruli

Goif-non-IR OSNs were spatially segregated in the ventral hemisphere of the 

peripheral olfactory organ (Table 2; Figures 12-16). Medial injections (n=5) displayed 

Goif-non-IR OSNs exclusively localized in the ventral hemisphere (300-720 pm) of the 

olfactory epithelium (Table 2, Figures 12-16). G0if-non-IR OSNs were found only 

between depths of 300-720 pm of the olfactory epithelium (Table 2, Figures 12-16). This
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indicates that the medial, G0ur non-IR glomeruli project to a spatially conserved subset of 

OSNs in the ventral hemisphere of the peripheral olfactory organ.

Preparations M1-M5 all had medial glomerular injections, however, each of these 

preparations had at least one other glomerular territory injected (Table 2, Figures 12-16). 

In these preparations, the G0if antibody was applied to the entire primary olfactory 

pathway, in order to indicate dextran back filled G0irnon-IR OSNs in the olfactory 

epithelium (Figure 21) which project into dextran labeled medial glomeruli (G0if-non-IR). 

In each of the medial injection preparations (Ml, M2, M3, M4, M5), all clusters of G0if 

non-IR OSNs extended from the ventral hemisphere (300-720 pm depth) of the olfactory 

epithelium Each medial glomerular injection preparation had a minimum of 3 G0if non- 

IR back filled OSNs and a maximum of 12 Goif-non-IR OSNs back filled in the ventral 

aspect (300-720 pm) of the olfactory epithelium. This disparity of labeling of OSNs 

upon a medial glomerular injection could be due to a differing quantity and pattern of 

labeling of the medial glomeruli in the various preparations. As well, the dextran likely 

did not equally label all OSN axons evenly.

Preparations M2, M3, M4 and M5 (with medial and non-medial glomerular 

injections) displayed GoirIR OSNs dispersed throughout the olfactory epithelium; these 

back filled G0irIR OSNs were assumed to project exclusively to the non-medial, G0i^IR 

glomeruli that were dextran labeled. In preparation M l, only the medial glomeruli (G0if- 

non-ER) and the anterior plexus (Goi^IR) were injected. In preparation Ml, G0if-IR OSNs 

were detected in the 300-720um depth of the OE which are assumed to project to the G0if- 

IR anterior plexus glomeruli; G0if-non-IR OSNs were detected in the 420-720um depth of 

the OE, which are assumed to project to the G0iHion-IR medial glomeruli. Hence,
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preliminary data in this one preparation indicates that the anterior plexus may also project 

exclusively to the ventral aspect of the OE.

Preparations Ml through M5 indicate that Goif-non-IR OSNs are present 

exclusively in 300-720 pm depth of the OE; preparation Ml indicates that the anterior 

plexus projects from the ventral aspect (300-420 pm) of the OE. Data indicating that the 

medial glomeruli project from the ventral aspect of the OE was confirmed in five animals 

(Table 2, Figures 12-16). Data indicating that the anterior plexus projects to the ventral 

aspect of the OE was present only in preparation Ml (Table 2, Figure 12). The fact that 

the medial glomeruli and the anterior plexus may both project to the ventral aspect of the 

olfactory epithelium is consistent with the fact that these two glomerular territories are 

located within overlapping depths of the olfactory bulb.

In summary, the ventral aspect of the olfactory epithelium contains OSNs that 

project to the medial glomeruli (n=5); OSNs in this region of the OE may also selectively 

project to the anterior plexus (n=l). It is highly likely that the ventral aspect of the 

olfactory epithelium is occupied by G0irIR OSNs that project to other non-medial 

glomerular (G0w-IR) territories; the data garnered fromNMl andNM2 indicates labeling 

of dorsal glomeruli (dorsal cluster and dorsal ring) and subsequent labeling of OSNs in 

the ventral OE (Figures 17,18).

2.3.2 Non medial glomeruli project from diffuse regions of the peripheral olfactory 
organ.

In preparations with non-medial (GoirIR) glomerular injections, G0irIR  OSNs 

were found throughout the olfactory epithelium (ranging from the most dorsal surface of 

the peripheral olfactory organ to the most ventral surface; Table 2, Figure 8A-D). Four 

preparations (NM1-NM4) were injected into non-medial (G0ifTR) glomeruli; this served
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as a comparison to the medial glomerular injections. Goif-non-IR OSNs were not detected 

in the olfactory epithelium in these four preparations, as expected.

The Goif-IR OSNs were widely dispersed in the OE in preparations M2, M3, M4, 

and M5 (Table 1). The clustering of Goif-non-IR OSNs into the ventral aspect of the OE 

following medial glomerular injections is not simply an artifact of the preparation 

implemented in this study: preparations M2, M3, M4, M5, NM1, NM2 possess G0ifTR 

OSNs in the dorsal aspect (0-300 pm) of the OE that project to non-medial glomeruli 

(Tables 2, 3; Figures 13,14,15,16,17,18). Since G0if-IR OSNs in the dorsal hemisphere of 

the OE were back filled with dextran in this study when non-medial glomeruli were 

injected, the results that indicate that the medial glomeruli project exclusively from the 

ventral hemisphere of the OE, is not simply experimental artifact. Therefore, these 

preparations that display OSN labeling in the dorsal aspect of the OE disproves the 

possibility that the dorsal primary olfactory pathway may have been damaged in this 

experimental preparation.

Although preparation NM1 may indicate that the dorsal ring glomeruli project to 

all depths of the OE, preparation NM2 contradicts this (Table 2); further investigation is 

required if this is to be resolved. In preparation NM2, both the dorsal cluster and dorsal 

ring were injected and dextran back-filled OSNs were found only within the 0-120 pm 

and 420-720 pm depths of the OE. This contradicts preparation NM1, whereby the 

dorsal cluster was labeled and all depths of the OE contained dextran back-filled OSNs.

It should be noted that different glomeruli of the dorsal ring could have been injected in 

preparations NM1 and NM2 which could have resulted in the differential labeling of the 

OSNs of the depths of the OE.
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All non-medial glomerular injections (except preparation NM1) had more than 

one glomerular territory injected. Since none of the non-medial glomeruli were 

biochemically distinct from one another (i.e. such as the medial Goif-non-IR glomeruli 

that are biochemically distinct from the G0irIR non-medial glomeruli), establishing a 

distinct pattern of OSN projection to any individual non-medial glomerular territory was 

not possible. Taken together the results indicated that G0i^IR glomeruli projected 

diffusely throughout all depths of the olfactory epithelium

In summary, G0irnon-IR OSNs, which are segregated in the ventral hemisphere of 

the peripheral olfactory organ, likely project exclusively to the G0i^non-IR medial 

glomeruli in the olfactory bulb. Furthermore, this study suggests that G0if-IR OSNs are 

widely dispersed in the olfactory epithelium and that they innervate onto G0if-IR 

glomerular units of the olfactory bulb.
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Table 2: The distribution of OSNs in the olfactory epithelium following medial 
glomerular injections. The distribution of dextran labeled OSNs in the olfactory 
epithelium was determined with respect to G0if immunoreactivity. Dextran labeled 
glomeruli are indicated as follows: Dorsal Cluster (DC), Dorsal Ring (DR), Lateral 
Chain (LC), Anterior Plexus (AP), Medial Glomeruli (MG), Ventral Ring (VR) and 
Ventral Cluster (VC). The distribution of OSNs that are present in the OE were 
recorded at four equal depths. The number of dextran labeled OSNs that were G0if 
immunoreactive and G0tr non-immunoreactive were recorded in within each depth. 
Dextran labeled and G0irimmunoreactive OSNs are designated as “D+/G0ifF”; 
dextran labeled and G^non-immunoreactive OSNs are designated as “D+/G0ir“

Dextran
Glomeruli
Labeled

OLFACTORY E
0-120 pm

MTHELIUM REC 
120-300 pm

JIONS LABELED 
300-420 pm

depth) 
420-720 pm

D+7
G0if+

D +/
Gotr

D+y
G0if,

D +/
Goir

D +/
Goin

D+7
G„,r

D-+/
G0if+

D+y
G0ir

M l (L6003) 
Glomerular 
territories 
labeled:

2
Cells

8
Cells

4
Cells

M2 (L7003) 
Glomerular 
territories 
labeled:
A P ,i(§ ,V R

8
Cells

27
Cells

104
Cells

26
Cells

3
Cells

M3 (L6403) 
Glomerular 
territories 
labeled:
DC, DR, MG, 
VR

127
Cells

127
Cells

639
Cells

6
Cells

326
Cells

1
Cell

M4 (L6503) 
Glomerular 
territories 
labeled:
DC, DR, AP, 
H I , VR, VC

42
Cells

41
Cells

70
Cells

4
Cells

5
Cells

7
Cells

M5 (L6303) 
Glomerular 
territories 
labeled:
DR, AP, MG, 
VR, VC

14
Cells

27
Cells

184
Cells

9 Cells 377
Cells

3
Cells

Total No. 
Cells Labeled 
in  A ll
Preparations

191
Cells

222
Cells

999
Cells

19
Cells

742
Cells

18
Cells
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Table 3: The distribution of OSNs in the olfactory epithelium following non- 
medial glomerular injections. The distribution of dextran labeled OSNs in the 
olfactory epithelium was determined with respect to G0tf immunoreactivity. Dextran 
labeled glomeruli are indicated as follows: Dorsal Cluster (DC), Dorsal Ring (DR), 
Lateral Chain (LC), Anterior Plexus (AP), Ventral Ring (VR) and Ventral Cluster 
(VC). The distribution of OSNs that are present in the OE were recorded at four 
equal depths. The number of dextran labeled OSNs that were G0if immunoreactive 
and Goif non-immunoreactive were recorded in within each depth. Dextran labeled 
and Goirimmunoreactive OSNs are designated as “D+/G0if+”; dextran labeled and 
Goirnon-immunoreactive OSNs are designated as “D+/G0ir“

Dextran
Glomeruli
Labeled

OLFACTORY I 
0-120 pm

iPITHELIUM RE 
120-300 pm

GIONS LABELE 
300-420 pm

D (depth) 
420-720 pm

D+7
G0io

D+7
Goir

D+7
G„if,

D+7
G0ir

D+7
G0if+

D+7
G0ir

D+7
G0if+

D+7
Goir

NM1 (L5903) 
Glomerular 
territories 
labelled:
DR

1
Cell

7
Cells

39
Cells

56
Cells

NM2
(L6703):
Glomerular
territories
labeled:
DC, DR

3
Cells

8
Cells

NM3 (L7103) 
Glomerular 
territories 
labeled:
DC, DR, AP, 

VR

2
Cells

11
Cells

NM4 (L6603) 
Glomerular 
territories 
labeled:
DR, AP, LC

33
Cells

Total No. 
Cells Labeled 
in All
Preparations

4
Cells

7
Cells

41
Cells

108
Cells
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2.3.3 The identification of G„irIR and G0ir-non-lR OSNs in the olfactory 
epithelium

Dextran back-filled OSNs in the olfactory epithelium that were G0if-IR had a 

green interior (indicating dextran back-filling) and were outlined with red (indicating 

G0if-IR) (Figure 21). Since G0if is a G protein that resides on the intracellular surface 

of the OSN, Goif labeling is only on the membrane of the OSN. These G0ifTR OSNs 

in the olfactory epithelium project to non-medial, G0i^IR glomeruli in the olfactory 

bulb. Goif-non-IR OSNs that were dextran back-filled in the olfactory epithelium had 

a green interior (indicating dextran back-filling) and lacked a red outline (a G0if 

negative reaction) (Figure 21). These G0if-non-IR, OSNs localized in the ventral 

hemisphere of the olfactory epithelium, project to the G0if-non-IR medial glomeruli in 

the olfactory bulb.

2.3.4 A triple label Indicating the dextran micro-injection is exclusively into 
medial, Goif-non-IR glomeruli

With selected preparations that had dextran injections into the medial, Goif-non-IR 

glomeruli, G0if immunocytochemistry and GS1B4 lectin histochemistry were 

implemented to confirm the specific labeling of this medial subset with dextran and 

the absence of G0if-IR. The medial glomeruli show a G0if negative reaction (G0if-non- 

IR) and are single labeled with the dextran injection (Figure 22A) when G0if 

immunocytochemistry is employed. This indicates that the medial glomeruli are 

labeled with dextran (Figure 22A). The medial glomeruli double labeled with dextran 

(green) and GS1B4 lectin (red), which stains all glomeruli (Figure 22B). This double 

label is displayed as a slight yellow hue, which is the result of the colour merge of red 

and green (Figure 22B). The remaining anterior and lateral glomeruli (that are G0if-
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IR) double label with both GSIB4 lectin (red) and G0if (blue). This double label 

displayed as purple/pink (Figure 22C).
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Figure 12. Preparation M l: The ventral hem isphere of the olfactory epithelium  projects to  the 
m edial, G0if-non-IR glom eruli. Hatched white area in the olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates G0ir IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0if-non-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



60

0-120 fin

300420 |ira

120-300 urn

DORSAL

Dorsal Cluster Gou

Cr0]f negative OSNs 

Go)f positive OSNs

420-720 pin

Dorsal Ring Ggn

Lateral
Chain Anterior Plexus

G«*

Vantn'iPiftgOci,

Ventral Cluster

VENTRAL

Figure 13. Preparation M 2: The ventral hem isphere o f the olfactory epithelium  projects to  the 
m edial, G0if-non-IR glom eruli. Hatched white area in the olfactory bulb indicates die shape o f the 
dextran injection. Grey indicates G„ir IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0irnon-IR glomeruli and OSNs in die olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.
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Figure 14. Preparation M 3: The ventral hem isphere of the olfactory epithelium  projects to  the 
m edial, Gair-non-IR glom eruli. Hatched white area in the olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates G0ir IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates Goif-non-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.
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Figure 15. Preparation M 4: The ventral hem isphere o f the olfactory epithelium  projects to  the 
m edial, Gai(-non-IR glom eruli. Hatched white area in the olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates G0u- IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0irnon-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.
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Figure 16. Preparation M 5: The ventral hem isphere of the olfactory epithelium  projects to  the 
m edial, G0irnon-IR  glom eruli. Hatched white area in the olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates GoU- IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0irnon-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



64

0-120 fim 120-300 pm

► Go)f  negative OSNs 

I Golf  positive OSNs

420-720 pm
DORSAL

100
Dors si Rv>e C v

200

300

Medial
G l o m e r u l i

no G ,-r500

Ventral Ring Go(,600

700
Ventral C luster Gqh

800
VENTRAL

Figure 17. Preparation NM1: A ll depths o f the peripheral olfactory organ project to  the non- 
m edial, G0ir IR  glom eruli. Hatched white area in die olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates G0ir IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0irnon-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f 
OSNs is represented in these templates as a compilation o f OSNs at the designated depths in the 
olfactory epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position 
with respect to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic 
drawings.
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Figure 18. Preparation NM2: The 0-120 pm depth and the 420-720 pm depth of the peripheral 
olfactory organ project to  the non-m edial, G0ir IR  glom eruli.
Hatched white area in the olfactory bulb indicates die shape o f the dextran injection. Grey indicates 
G0if-IR glomeruli and OSNs in the olfactory epithelium. Black indicates G0ir-non-IR glomeruli and 
OSNs in the olfactory epithelium. The spatial distribution o f OSNs is represented in these templates as a 
compilation o f OSNs at the designated depths in the olfactory epithelium. The dots placed in the 
olfactory epithelium represent OSN clusters; the position with respect to the basal and apical surface o f 
the olfactory epithelium is irrelevant in these schematic drawings.
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Figure 19. Preparation NM 3: The 300-720 pm depths of the peripheral olfactory organ project to 
the non-m edial, G0irIR  glom eruli. Hatched white area in the olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates G0ir IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0if-non-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.
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Figure 20. Preparation NM4: The 420-720 pm depth of the peripheral olfactory organ projects to 
the non-m edial, G0ir IR  glom eruli. Hatched white area in the olfactory bulb indicates the shape o f the 
dextran injection. Grey indicates G0ir IR glomeruli and OSNs in the olfactory epithelium. Black 
indicates G0if-non-IR glomeruli and OSNs in the olfactory epithelium. The spatial distribution o f OSNs 
is represented in these templates as a compilation o f OSNs at the designated depths in the olfactory 
epithelium. The dots placed in the olfactory epithelium represent OSN clusters; the position with respect 
to the basal and apical surface o f the olfactory epithelium is irrelevant in these schematic drawings.
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Figure 21. Olfactory epithelium containing dcxtran back-filled OSNs.
Dcxtran labeled OSNs back-filled from the olfactory bulb are either Goif-IR (filled arrowheads) 
or Goii-non-IR (empty arrow heads). G„irIR OSNs arc indicated by a green interior (dextran 
back-filling) and a red outline o f the cell membrane (G<ltrIR); Goir non-IR OSNs are indicated 
by a green interior only.
(A) Shows two G0irlR  OSNs on the left, and one G^f-non-IR OSN on the right 
Tlte olfactory epithelium (OE) and the olfactory nerve fasicles (ONF) are displayed.
(B) Shows one G„irIR OSN.
Scale bar is 25 pm.
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Figure 22. The co-localization o f a m edial dcxtran injection w ith respect to  G„irIR glom eruli.
This is  a confocal image o f a horizontal section from the mid region o f the olfactory bulb. Scale bar 
in each panel is 100 pm.
(A) Shows the labeling o f dextran injected medial Goif-non-IR glomeruli (green) and o f medial G(,ir  
non-lR glomeruli (blue; G0|f immunocytochemistry), this indicates that only medial G0,rnon-1R 
glomeruli are labeled with dextran.
(B) Shows the doulble labeling o f dextran injected medial G^-non-lR glom enili and the labeling o f 
all glomerular territories in red (GS1B4 lectin labeling); this indicates the doulble label o f dextran into 
the medial glom enili (yellow  hue).
(C) Shows panels A and B merged. The medial glomeruli (MG, filled arrowheads) are G„ir non-lR, 
shown in red (GS1B4 lectin labeling), overlapped with the green dextran injection. The double 
labeled medial glomeruli (green dextran injection overlapped with the red GS1B4 lectin) displays a 
yellow  colour. The anterior and lateral glomeruli (pink) arc Gt,ir-1R. These anterior and lateral 
glomeruli are double labeled with GS1B4 and are G(jrIR This shows the dextran injection is 
specifically in the medial glomeruli, which are G„ir non-IR.
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2.4 Discussion

This study displays a topographic projection from the peripheral olfactory organ 

to a discrete glomerular territory in a fish species. This is a significant finding, given that 

previous studies have failed to show this in any fish species. Previous studies have 

indicated a model of teleost fish olfaction whereby topographic projections between the 

olfactory bulb and olfactory epithelium is absent (Hara and Zhang, 1996). This finding in 

the primary olfactory pathway of the larval sea lamprey parallels the spatial organization 

of OSNs in mammals (Juilfs et al., 1997; Mombaerts, 1999; Ressler et al., 1993; 

Schoenfeld et al., 1994; Vassar et al., 1993). Hence, this study may provide new insight 

into the currently accepted concepts in fish olfactory biology. The fact that the sea 

lamprey, a jawless vertebrate, may organize olfactory information in a different fashion 

than teleost fish species may be indicative of its unique evolutionary history.

In this study with the larval sea lamprey, a jawless agnathan, a topographic 

projection between the olfactory epithelium and the olfactory bulb has been indicated. 

This study is the first to show that a subset of G0if-non-IR OSNs, localized exclusively in 

the ventral hemisphere of the peripheral olfactory organ, converges onto the medial 

glomerular territories in the olfactory bulb in any fish species. G0if-IR OSNs throughout 

the peripheral olfactory organ projected into the remaining glomerular territories. Other 

than one study in a teleost (common carp, Cyprinus carpio) that indicated a spatial 

projection of specific regions of the OE to the olfactory bulb (Sheldon, 1912), this finding 

in the non-teleost sea lamprey is novel in fish. In carp, the medial bundle of the olfactory 

nerve is derived from the rostral lamellae and the lateral bundle is derived from the 

caudal lamellae (Satou et al., 1983). Therefore, a spatial division of OSNs, as defined by
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differing signal transduction cascades, is present in the olfactory epithelium and the 

olfactory bulb.

The expression of alternate G-proteins in OSN subtypes seems to be a 

fundamental principle underlying the olfactory system of vertebrates. In the catfish 

(Ictalurus punctatus), ciliated G0i^IR OSNs projected to medial and ventral regions of the 

olfactory bulb; and microvillous OSNs that express Gao and Gaq/n projected to the dorsal 

region of the olfactory bulb (Hansen et al., 2003). In the lamprey (Lampetra Jluviatilis), 

OSNs with differeing levels of calretinin-IR extend to particular glomerular locations 

(Pombal et al., 2002). In the mammalian VNO, receptor neurons that express Gia2 and 

Go« projected to segregated glomeruli in the accessory olfactory bulb (Jia and Halpem, 

1996). The existence of distinct sub-populations of OSNs with alternate G protein 

expression, which project to discrete glomelular units is consistent with the findings of 

this study.

The presence of the medial glomeruli in the larval sea lamprey which lack the 

expression of Goif and project to a spatially conserved subset of OSNs in the olfactory 

epithelium suggests an indepenedent medial pathway. Previous studies have shown that 

the medial area of the olfactory bulb is associated with the perception of reproductive sex 

pheromones in many teleosts (Stacey and Kyle, 1983; Kyle et al., 1987; von Rekowski 

and Zippel, 1993; Friedrich and Korsching, 1997; Hara and Zhang, 1996; Laberge and 

Hara, 2003; Weltzien et al., 2003). This medial olfactory system in teleosts may 

“functionally” correspond to the accessory olfactory system (VNO) in higher vertebrates 

(Satou, 1990); it has been suggested that a vomeronasal system is present in some fishes, 

but in a form not yet recognized (Eisthen, 1992). In the goldfish, the medial olfactory
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tract, which is responsive to reproductive sex pheromones may be a homologue of the 

tetrapod VNO, and the lateral olfactory tract, to the tetrapod main olfactory system 

(Dulka, 1993). Therefore, this G0irnon-IR OSN subset that exists in the larval sea 

lamprey, which likely implements an alternate signal transduction cascade, may be 

functionally similar to the tetrapod VNO. Further studies are required to determine the 

functional responses of these medial glomeruli in the sea lamprey.

The spatial segregation of a subset of Goi^non-IR OSNs in the peripheral 

olfactory organ and the topographic projection onto a discrete glomerular territory is a 

novel finding. Randomly dispersed OSNs in the olfactory epithelium that possess distinct 

G protein-IR have been shown to converge onto discrete glomeruli in teleost fish (Hansen 

et al., 2003); however, these biochemically distinct OSNs have not localized to a specific 

region of the peripheral olfactoiy organ as in the larval sea lamprey. It appears that in 

the rainbow trout (Oncorhychus mykiss), Channel Catfish (Ictalurus punctatus), the 

crucian carp (Carassius carassius L.), Atlantic salmon (Salmo salar) the zebrafish 

(Danio rerid), the presence of point-to-point topography is lacking (see discussion that 

follows). In the rainbow trout (Oncorhychus mykiss), labeled OSNs were widely 

dispersed in the olfactory epithelium upon injection into discrete glomeruli (Riddle and 

Oakley, 1991). In the channel catfish (Ictalurus punctatus), morphologically distinct 

OSNs, each expressing unique G proteins, are widely dispersed in the olfactory 

epithelium and project to spatially segregated areas of the olfactory bulb (Hansen et al., 

2003). Also, in situ hybridization studies in catfish has shown that neurons expressing 

specific receptors are distributed randomly within the olfactory epithelium (Ngai et al., 

1993a,b). These two studies indicated the absence of any specific topography in the
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peripheral olfactory organ. Likewise, in the crucian carp (Carassius carassius L.), the 

projection of morphologically distinct OSNs that are randomly distributed throughout the 

olfactory epithelium project to discrete parts of the olfactory bulb. In both the Atlantic 

salmon (Salmo salar) and rainbow trout (Oncorhyncus mykiss), OSNs that responded to 

specific odourants are dispersed in the olfactory epithelium and converge onto common 

glomeruli located in segregated regions of the olfactory bulb (Hara and Zhang, 1996). In 

these two salmonid fishes, the OSNs responsive to amino acids and taurocholic acid were 

found to be randomly distributed throughout the olfactory epithelium, but they 

specifically project to the lateroposterior and the medial areas of the olfactory bulb, 

respectively (Hara and Zhang, 1996). In the zebrafish (Danio rerio), the positions of 

OSNs in the olfactory epithelial surface also does not predict glomerular specificity 

(Baier et al., 1994). The projection of G0i^non-IR OSNs located in the ventral 

hemisphere of the olfactory epithelium to the medial glomeruli is a significant and novel 

finding in the larval sea lamprey; this is likely indicative of the sea lamprey’s divergent 

evolutionary history from teleosts.

The evidence for discrete point-to-point topographic projections lies in mammals 

and invertebrates (Christensen et al., 1995, Juilfs et al., 1997; Mombaerts, 1999; Ressler 

et al., 1993; Schoenfeld et al., 1994; Vassar et al., 1993). In invertebrates such as the 

sphinx moth (Manduca sexta), distinct populations of olfactory receptor axons in the 

antennal lobe project to specific glomeruli (Christensen et al., 1995). Axons of sex- 

pheromone-selective receptor cells in the male-specific type-I trichoid sensilla project 

exclusively to the sexually dimorphic macroglomular complex (Christensen et al., 1995). 

Studies in mammals indicate the presence of specific, sharply bounded zones in the
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olfactory epithelium that each express specific olfactory receptor genes or G proteins 

which project to distinct glomeruli in the olfactory bulb (see specific details in the 

introduction). Likewise, in this study of the larval sea lamprey, OSNs localized in a 

specific region of the olfactory epithelium have been shown to project to specific 

glomeruli in the olfactory bulb. Although this study in the larval sea lamprey has not 

shown sharply bounded zones in the olfactory epithelium as is present in mammals, the 

projection from the medial glomeruli does indicate the presence of a single point-to-point 

projection in an agnathan. A clear boundry dividing the olfactory epithelium based on 

OSN subtypes that differentially express G0if may exist in the larval sea lamprey; 

however, the neuronal tract tracer technique implemented in this study is limited. In 

mammals, the presence of roughly bounded zones of epithelium projecting to distinct 

glomeruli was detected using neuronal tract tracers (Schoenfeld, et al., 1994). However, 

the presence of sharply bounded zones of epithelium projecting to specific glomeruli was 

detected using monoclonal antibodies that selectively label specific cell surface proteins 

(Mori et al., 1999; Yoshihara et al., 1997; Schwob and Gottlieb, 1988). This 

differentially labeled specific subsets of OSNs in the olfactory epithelial sheet and their 

specific projections onto distinct glomeruli (Mori et al., 1999; Yoshihara et al., 1997; 

Schwob and Gottlieb, 1988). Likewise, in the sea lamprey, antibodies against specific cell 

surface markers and olfactory receptors could be implemented to detect if sharply 

bounded zones of the epithelium does exist. Hence, the sea lamprey, mammals, and 

invertebrates do implement point-to-point topographic projections in their olfactory 

systems. The presence of point to point topography in the olfactoiy system seems to be 

an evolutionarily conserved principle in these phylogenically divergent sensory systems.
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In conclusion, a subset of G0i^non-IR OSNs has been identified in the ventral 

hemisphere of the olfactory epithelium that extends axons exclusively to the medial, 

Goif-non-IR glomeruli. This implies the presence of a functionally distinct medial 

pathway that implements an alternate G protein for signal transduction. Since the medial 

olfactory pathway and medial olfactory tract in many fishes is known to selectively 

process pheromonal information, these G0if-non-IR OSNs in the ventral hemiphere of the 

olfactory epithelium may be specialist OSNs for the detection of pheromones. Hence, 

this study indicates that the differential spatial expression of alternate G proteins within 

the primary olfactory pathway in vertebrates may have evolved before gnathostome 

radiation or in parallel.
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CHAPTER 3: The in vitro biosynthesis of novel 50 reduced steroids in the testis of 
the round goby, Neogobius melanostomus

3.1 Introduction

The parental male round goby (Neogobius melanostomus), a bottom-dwelling 

teleost fish, maintains and guards a nest into which many females deposit eggs (Wickett 

and Corkum, 1998; Maclnnis and Corkum, 2000). It has been hypothesized that male 

round gobies release a pheromone (or a mixture of pheromones) to attract reproductive 

females to their nests, and that this pheromone is a steroid originating in the testes 

(Murphy et al., 2001). Strong evidence to support this hypothesis comes from studies on 

another species from the subfamily Gobiidae, the black goby, Gobius jozo (=G. niger). 

Male black gobies have been shown to emit a pheromone that attracts females to their 

nests (Mozzi, 1968). Colombo et al. (1977; 1982) have shown that the testes of black 

gobies contain prominent Leydig (steroid-secreting) cells, concentrated in the region 

where the testis is suspended from the body wall by lengthwise mesenteries known as 

mesorchia, and hence termed the ‘mesorchial gland’. Colombo et al. (1970; 1977) 

showed that the mesorchial gland was capable of transforming radioactive pregnenolone 

into predominantly conjugated and 50-reduced steroids. The most prevalent of these was 

17-oxo-5|3-androstan-3a-yl glucuronide (etiocholanolone glucuronide; ETIO-g). This 

steroid was also shown to act as an attractant to gravid females (Colombo et al., 1980).

Previous studies of the round goby support the view that this species also releases 

steroids with pheromonal properties. Murphy et al. (2001) examined olfactory epithelial 

(electro-olfactogram, EOG) responsiveness of the round goby to over 100 steroids and 

prostaglandins. The prostaglandins were all inactive, however, 19 steroids elicited
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responses. Cross-adaptation studies with these steroids, revealed that there were four 

classes of olfactory receptors that Murphy et al. (2001) named: E l, E2-3-g, ETIO and 

DHEA-s, after the steroids that gave the highest response to each class of receptor 

(estrone [El], 17|3-estradiol 3-glucuronide [E2-3g], etiocholanolone [ETIO] and 17-oxo- 

androst-5-en-3(3-yl sulfate [dehydroepiandrosterone sulfate; DHEA-s]. Murphy et al. 

(2 0 0 1 ) discovered that males markedly increased their gill ventilation rate in response to 

steroids that acted on the E l, E2-3g and ETIO receptors, while females only responded to 

steroids that acted on the ETIO receptor. In a subsequent study (Murphy and Stacey, 

2002), females responded to El and E2-3g following treatment with methyl testosterone, 

suggesting that these classes of receptors were involved in female-to-male 

communication.

The aims of the present study were: firstly, to establish whether the testis of the 

round goby also contains a homolog of the mesorchial gland; secondly, to determine 

whether this gland was able to convert radioactive androstenedione (androst-4-ene-3,20- 

dione; Ad) and 17-hydroxypregn-4-ene-3,20-dione (17-P) into other steroids in vitro; 

thirdly, to determine the identity of these steroids. Due to time constraints, identification 

studies were mainly restricted to the steroids that were formed from tritiated Ad. 

Underlying this decision was the fact that there are a relatively small number of other 

steroids into which Ad (a C19 steroid) can be converted, compared with when 

pregnenolone or 17-P (both C21 steroids) are used as precursors. There is a risk to this 

strategy in that the pheromone may actually be a C21 steroid or even a 5-ene steroid. 

However, although Murphy et al. (2001) have shown that round gobies gave an EOG 

response to six 5(3-reduced C21 steroids, this response was much weaker than that to
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ETIO and could also be significantly reduced by cross-adaptation with ETIO. The work 

on the black goby (see above) also strongly implicates 5 (3-reduced C19 steroids as 

pheromones.

The importance of this work lies in the fact that the round goby has invaded the 

Great Lakes of North America and is posing a threat to native fish species (Corkum et al., 

1998). If a male sex pheromone can be identified in this species, it may possibly be 

useful for trapping females and/or disrupting their spawning.

3.2 Materials and methods

3.2.1 Experimental animals

Round gobies were obtained from the Detroit River (Windsor, ON, Canada) by 

angling and were maintained at a water temperature of 18 to 20°C in dechlorinated tap 

water. Spermiating males were captured in June 2002 (fish I and IV) or July 2003 (fish II 

to V). Spermiating males were identified by swollen cheeks and black coloration 

(Maclnnis and Corkum, 2000). Furthermore, the presence of active sperm and 

histological examination of the testis was completed in this study to confirm reproductive 

maturity. The fish were anaesthetized with MS222, killed and the testes dissected and 

placed in ice-cold Leibowitz LI 5 medium (Sigma-Aldrich, USA).

In July 2003, two males (fish II and III) were injected with 101.U./g body weight 

of human chorionic gonadotropin (HCG) -  dissolved in saline at a concentration of 250 

I.U./ml. The testes were dissected out 12 hours after the HCG injection. These HCG 

injections were performed to determine if it would have any noticeable effect on the 

types and relative amounts of steroids that were produced.
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3.2.2 Histological prepartions

Following deep anesthesia of two spermiating round gobies in MS 222, the testes 

were removed and immediately immersed into Kamovsky fixative (0.075M cacodylate 

buffer, 2.2% paraformaldehyde, 2% glutaraldehyde) overnight, then cut into 1 mm slices 

by hand, on the following morning, and immersed into fresh fixative for 2 hours. The 

fixed tissue slices were post-fixed in 1% osmium tetroxide (in 0.075M cacodylate buffer), 

dehydrated through an ascending series of ice-cold ethanol, passed through propylene 

oxide and embedded into epoxy resin. Serial semi-thin (1 pm) sections were taken on an 

ultramicrotome, stained with 1% toluidine blue (in 1% sodium tetraborate), viewed by 

brightfield microscopy and photographed on an Zeiss Axioscope 2 FS.

Testes from a further ten round gobies were prepared into paraffin, sectioned 

serially at 3 pm, and were also examined. This procedure, which was less time 

consuming and less technically demanding than the plastic method, confirmed the same 

cellular organization in all of the animals that were examined. Here, we present the data 

obtained from the plastic sections because of clarity and high resolution by brightfield 

light microscopy.

3.2.3 In vitro Incubation of testes with tritiated precursors

Five pairs of testes (fish I to Y) were incubated with [1,2,6,7-3H] androst-4-ene-3,17- 

dione (including those from the two fish that had been injected with HCG) and one pair 

of testes (fish VI) with 17-hydroxy[l,2,6,7-3H] progesterone. Both radiochemicals were 

purchased from Amersham Biosciences. The diffuse spatial arrangement of the Leydig
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cells in the round goby testis, as seen at high power in the histological preparations, 

precluded selection of regions that were rich in Leydig cells (cf. mesorchial gland of the 

black goby: Columbo, 1970,1977,1982) for in vitro incubation. The testes were thus 

dissected from the fish, separated and then finely minced, suspended in ice-cold 

Leibowitz LI 5 medium (Sigma) and transported on ice from the University of Windsor to 

Michigan State University (ca. 3 h). Here, the bits of tissue were distributed to fresh 50 

ml plastic tubes containing 10 ml Leibowitz LI 5 medium and 10 to 50 pCi tritiated Ad or 

17-P. The tubes were laid on their side and gently agitated at 16 °C for a further 6 h 

(Kime and Scott, 1993). At the end of the incubation period, the medium was filtered 

and then passed through a Sep-Pak C-18 cartridge (Waters Chromatography, Millipore, 

Milford, MA, USA). This was washed with 5 ml distilled water and then eluted with 5 

ml methanol. The extract was stored at -20 °C.

3.2.4 Separation of tritiated metabolites from reproductive male round goby by 
High-Performance Liquid Chromatography (HPLC)

The methanol extracts from the Sep-Pak C-18 cartridges were dried down either 

under a stream of nitrogen at 45°C or in a rotary evaporator, mixed with 10 pg each of 

Ad and 11-oxo-T, reconstituted in 1 ml acetonitrile/water/trifluoroacetic acid (28/72/0.01; 

v/v/v) and then loaded onto an analytical reverse-phase HPLC column (Rainin Dynamax 

Microsorb; 5pm octadecylsilane; 4.6mm x 25 cm; fitted with a 1.5 cm guard module). 

Two pumps were used to deliver solvents through the column at a rate of 0.5 ml/min. 

Solvent A was 0.01% trifluoroacetic acid (TFA) in distilled water and solvent B was 70% 

acetonitrile and 0.01% TFA in distilled water: 0-10 min, 28.6% B; 10-60 min, 28.6- 

100% B; 60-80 min, 100% B; 80-82 min, 100-28.6% B; 82-100 min, 28.6% B. One 

minute fractions were collected between 20 and 70 minutes. A volume of 5 pi from each
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HPLC fraction was then counted in a scintillation counter and fractions that formed 

distinct peaks on HPLC were saved for identification studies. Part of the identification 

criteria for metabolites involved the position that they eluted on HPLC. This was 

established for the synthetic standards by running 10 or 20 pg of each on the HPLC 

column under the same running conditions as above and monitoring the eluate with a 

diode-array detector. Steroids with a 4-ene configuration (e.g. Ad and 11-oxo-T) gave a 

strong peak of UV adsorption at ca. 248 nm. Steroids with a C=0 group (or groups) gave 

a much weaker, but nevertheless distinct, peak of UV adsorption at ca. 200 nm

3.2.5 Identification of steroids: Thin-Layer Chromatography (TLC) of HPLC
Fractions

The standard synthetic steroids used in this study (Table 4) were purchased from 

Sigma Chemical Company or Steraloids. I tried to obtain all the steroids into which Ad 

might be converted via ‘well-established’ biosynthetic pathways. Using this criterion, we 

might expect there to be metabolites with either androst-4-ene, 5a-androstan or 50- 

androstan configurations. In the 5a- and 50-reduced steroids, we might expect to find 

either a 3-oxo, a 3a-hydroxyl or a 30-hydroxyl group. In the androst-4-ene steroids, we 

would expect to find only a 3-oxo group. We would not expect to find 3-reduced 

androst-4-ene steroids as, to our knowledge, direct reduction of the 3-oxo group of 4-ene 

steroids has not been demonstrated in any vertebrate (although such steroids may be 

formed when 5-ene steroids are used as intermediates; Inaba et al., 1966). We might 

expect the 17-oxo group to be either retained or reduced to form a 170-hydroxyl (but not 

17a-hydroxyl) group. We might expect the 11-carbon to remain as it is or to be 11- 

oxygenated to form an 110-hydroxyl (but not lla-hydroxyl) group and then also further

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



87

oxidized to form an 11-oxo group. All these possible combinations are shown in Table 4 

(including eight steroids that we were unable to obtain).

There is always the possibility that Ad will be converted to Cis (estrogen-like) 

steroids. However, we have not included these in Table 4 as estrogen formation by testes 

has not been reported in teleosts (Fostier et al., 1983). No estrogen formation was found 

in previous studies on the testes of black goby (Colombo et al., 1977) or urohaze-goby 

Glossogobius olivaceus (Asahina et al., 1985).

We might also expect that any steroid in Table 4 that has either a 3a-oxo, 3(3-oxo 

or 17|3-oxo group could be glucuronidated or sulfated. Only four examples (that are 

referred to within the present chapter) are shown in Table 4. Identification of conjugated 

steroids normally involves their deconjugation through either enzyme hydrolysis (which 

works on glucuronides and some sulfates) or acid solvolysis (which works on sulfates 

only) (Scott and Vermeirssen, 1994). Only the latter method was applied in the present 

study (see below).

All steroids were dissolved in ethanol at a concentration of 500 pg/ml. At the 

outset of the identification work, 10 pg of each steroid was combined with 10 pg 

testosterone (T), spotted onto separate lanes of the TLC plates and developed with 

chloroform/methanol (50/2, v/v). The positions of the androst-4-ene steroids (e.g. Ad, T, 

11-oxo-T) were detected by shining a UV lamp at the plate. Steroids with reactive 

hydroxyl groups (e.g. 3a-hydroxy-5J3-androstane-1117-dione; 11-oxo-ETIO) were 

detected by spraying with a solution of phosphomolybic acid in ethanol (10% w/v) and 

heating the plate for 5 min at 150°C. Steroids with no reactive hydroxyl groups (e.g. 5(3- 

androstane-3,1117-trione) were detected by spraying with concentrated sulfuric acid in
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methanol (10% v/v) and heating the plate for 5 min at 150°C. After the bands were 

revealed, their distance to the origin was measured to the nearest millimeter. The relative 

position of each steroid in relation to that of T was then calculated. This ratio (R t) 

formed the basis of a table (Table 4) against which the relative elution positions of 

radioactive bands could subsequently be compared.

To determine the identity of the radioactive steroids in the various peaks, ca. 

20,000 dpm was mixed with 10 pg T, dried down, reconstituted in 30 pi ethyl acetate and 

spotted and run on TLC as described above. The position of T was marked with a pencil 

and each lane then divided into 5 mm strips that were scraped off, mixed directly with 7 

ml scintillation fluid and counted. The position of the radioactivity relative to that of T 

was then compared with the Rt values in Table 4. By doing this, it was possible to 

narrow down the range of possible matching standards for each HPLC peak. A more 

precise match was obtained by mixing 20,000 dpm of radioactive steroid with 10 pg each 

of those steroids that had the most similar Rt values and then running them together on 

TLC. After the bands had been revealed, they were marked and scraped off, as was 2 x 

0.5 cm of silica gel from either side of the bands. All the scrapes were mixed with 

scintillation fluid and counted. In any situation where the radioactivity was > 90% 

associated with a band, microchemical studies were then carried out to further establish 

the co-identity of radioactive metabolite and standard steroid.
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Table 4: Standard synthetic steroids against which the tritiated metabolites were 
compared. Rt is the relative position of each steroid in relation to testosterone (T) when 
run on TLC. HPLC elution times were only determined for steroids of interest.

HPLC
Steroid* Common name R ib elation
______________________________________________________________________________________ (minutes)

Available steroids:

3a,170-dihydroxy-50-androstan-l 1-one 0.12

5a-androstane-3p,l 10,170-triol 0.14
11 p, 17p-dihydroxyandrost-4-en-3-one 110-OH testosterone 0.16 40
30,11 p-dihydroxy-5a-androstan-l 1-one 0.27
17P-hydroxyandrost-4-ene-3,11-dione 11-oxo-testosterone (1 l-oxo-T)° 0.4 40
30 ,110-dihydroxy-5a-androstan-17one 0.44
3 a ,l ip-dihydroxy-5p-androstan-17-one 0.45
5 0-androstane-3a, 170-diol 0.48
170-hydroxy-50-androstane-3,11-dione 0.48 45
3 a ,110-dihydroxy-5a-androstan-17-one 0.53
30,110-dihydroxy-5p-androstan-17-one 0.57
17 p-hydroxy-5a-androstane-3,11-dione 0.58
3a-hydroxy-5p-androstane-l 1,17-dione 11-oxo-etiocholanolone 0.67 47

(11-oxo-ETIO)
11 p-hydroxyandrost-4-ene-3,17-dione 110-OH androstenedione 0.72 43

(110-OH-Ad)
5a-androstane-3a, 17p-diol 0.72
3a-hydroxy-5a-androstane-l 1,17-dione 0.77
5a-androstane-30 ,170-diol 0.78
30-hydroxy-5a-androstane-l 1,17-dione 0.79
5 p-androstane-30,170-diol 0.86
170-hydroxyandrost-4-ene-3-one Testosterone (T) 1.0 52

3a-hydroxy-50-androstan-17-one Etiocholanolone (ETIO) 1.0 60
110-hydroxy-5a-androstane-3,l 7-dione 1.03
110-hydroxy-50-androstane-3,17-dione 1.06
170-hydroxy-50-androstan-3-one 1.12
3 0 -hydroxy-5a-androstan-17-one 1.14
3a-hydroxy-5a-androstan-l 7-one 1.20
170-hydroxy-5a-androstan-3-one 1.28
30-hydroxy-50-androstan-17-one 1.28

50-androstane-3,l 1,17-lrione 1.33 48
androst-4-ene-3,11,17-trione 11 -oxo-androstoiedione; 1.38 45

androstenetrione
5a-androstane-3,l 1,17-trione 1.49 47

androst-4-ene-3,17-dione Androstenedione (Ad) 1.70 55
50-androstane-3,17-dione 1.82
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5a-androstane-3,17-dione 1.94

Conjugated steroids:
17-oxo-5p-androstan-3a-yl glucuronide Etiocholanolone glucuronide 0 44

(ETIOg)
17-oxo-5 p-androstan-3a-yl sulfate Etiocholanolone sulfate (ETIOs) 0 37
11,17-dioxo-5p-androstan-3a-yl 11 -oxo-etiocholanolone 0 38
glucuronide glucuronide

(11-oxo-ETIOg)
ll,17-dioxo-5p-androstan-3a-yl sulfate 11-oxo-etiocholanolone sulfate 0 30

(11-oxo-ETIOs)

Steroids (in same range as above) that 
were not available for testing:
5a-androstane-3a, l ip , 17p-triol 
5p-androstane-3p,l ip,17P-triol 
5P-androstane-3a, 11 p,17p-triol 
3a, 17p-dihydroxy-5a-androstan-3-one 
11 p, 17p-dihydroxy-5a-androstan-3-one 
3p, 17p-dihydroxy-5p-androstan-l 1-one 
1 ip, 17p-dihydroxy-5p-androstan-3-one
3P-hydroxy-5P-androstane-ll,17-dione_________________________________________________________
a the nomenclature of steroids in this chapter follows that recommended by IUPAC 
(Kime, 1995; www.chem.qmul.ac.uk/iupac/steroid) and not that used by Steraloids Inc. 
(www.steraloids.com), Sigma-Aldrich (www.sigma-aldrich.com) or Murphy et al. 
(2001).
b the Rt values and HPLC elution times shown in Table 4 are only approximate and are 
expected (and were found) to differ slightly in response to temperature and exact 
composition of solvents; however, approximate Rt provided a useful ‘first step’ in the 
identification of products from incubation of testis with tritiated Ad. 
c also known incorrectly as 11-keto-testosterone
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3.2.6 Microchemical reactions

Prior to each microchemical reaction, the radioactive metabolite (ca. 20,000 dpm) 

and the cold standard (10 to 20 pg) were mixed together and evaporated under a stream 

of nitrogen at 45°C. In some situations, in addition to the above, the radioactive steroid 

was treated in the absence of cold standard and then mixed with 10 pg of the ‘expected’ 

product prior to being run on TLC.

Enzymic oxidation: The steroid was redissolved in 1 ml 0.05M Tris-HCl (pH 9) 

containing 1.5 mg NAD (Sigma N-1511) and 1.2 mg Hydroxysteroid Dehydrogenase 

(HSD; Sigma H-8879). The reaction mixture was left overnight at room temperature and 

then extracted twice with 4 ml ethyl acetate.

Enzymic reduction: The steroid was redissolved in 1 ml 0.05M Tris-HCl (pH 7.6) 

containing 3.3 mg HSD (Sigma, H8879) and 2.4 mg NADH (Sigma, N-8179). The 

reaction mixture was left overnight at room temperature and then extracted twice with 4 

ml ethyl acetate.

Chemical oxidation: The steroid was redissolved in 100 pi glacial acetic acid and 60 pi 

of chromium trioxide solution (20 mg/ml of distilled water). The reaction mixture was 

left overnight at room temperature and then extracted twice with 4 ml ethyl acetate, 

which was washed twice with 1 ml sodium bicarbonate and twice with 1 ml distilled 

water before being evaporated.

Acetylation: The steroid was redissolved in 100 pi pyridine and 100 pi acetic anhydride 

and left overnight. The pyridine and acetic anhydride were removed by drying down 

with a stream of nitrogen at 45°C. The plates were developed with chloroform/ethanol 

50/1 ( v/v) to prevent potential acetylated products from migrating too far up the plate.
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Acid Solvolysis: Acid solvolysis was carried out to remove sulfate groups from sulfated 

steroids. The radioactive steroid was dissolved in 5 ml ethyl acetate/trifluoroacetic acid 

(100 ml/1,4ml, v/v) and incubated overnight at 45 °C. The solvents were removed by 

drying down under a stream of nitrogen at 45°C.

3.2.7 Recrystallization (performed by Dr. A.P. Scott, The Center for 
Environment, Fisheries and Aquaculture Sciences, Weymouth, U.K.)

Definitive evidence for the identity of several of the radioactive steroids was obtained by

mixing them with 15 to 20 mg of standard steroid and then repeatedly crystallizing them

with either acetone/water or ethanol/water. A portion of steroid was removed after each

crystallization, dried and carefully weighed and then redissolved in ethanol and counted

to determine specific radioactivity (dpm/mg).

3.2.8 DEAE ion exchange protocol (performed by Dr. A.P. Scott, The Center for 
Environment, Fisheries and Aquaculture Sciences, Weymouth, U.K.)

The column was made from two 1 ml HiTrap™ DEAE FF cartridges (Amersham 

Biosciences) linked in series. There were two buffer solutions. Solution A consisted of 

Tris-HCl 0.05M (pH 7.8) made up in a mixture of 1250 ml deionised water and 250 ml 

ethanol. Solution B consisted of 0.5 M NaCl made up in the same buffer as solution A. 

The column was equilibrated with solution A at a flow rate of 0.15 ml/min. The test 

compound (20,000 dpm) was mixed with 10 pg each o f free, sulfated and glucuronidated 

17,20P-dihydroxypregn-4-en-3-one dissolved in 1 ml of solution A. This was injected 

on to the column at 0.15ml/min. After 5 ml of solution A had passed through the column, 

a gradient of 0% solution B to 100% solution B over 10 min was then applied. The
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eluate was monitored at 254 nm and 500 pi fractions were collected between 0 and 5 ml 

and 1 ml fractions between 5 and 15 ml. These were mixed with scintillation fluid and 

counted.

3.3. Results

3.3.1 Histology

The structure and cellular organization of the testis was the same in all samples 

that were examined in this study. The testes of the spermiating round goby were, as in 

many other fish, paired, elongated white-colored organs. When a testis was viewed in a 

cross-sectional plane, the mesorchial region, located where mesenteries extend to the 

body wall, was recognized by a deep fold (Figure 23A). Seminiferous tubules, filled with 

spermatic cells, radiated from the center of the testis (Figure 23 A, B). The mesorchium 

contained mesentery tissue that extended into the fold, and contained prominent blood 

vessels, nerve fascicles and loose aggregates of round pale-staining cells with central 

nuclei (Figure 23 B,C). The staining properties and shape of these cells within the 

mesentery resembled erythrocytes, seen within blood vessels (Figure 23 C, arrow). Three 

regions with putative Leydig cells were recognized in the testes of the round goby. 1) A 

vascularized aggregate of cells, characteristic of endocrine cells (polyhedral cells 

arranged in cords and clumps, with intertwining capillaries), lined one side of the fold 

adjacent to the mesorchial mesentery (Figure 23 B, D). 2) A second mass of putative 

Leydig cells was located adjacent to the spermatic (efferent) duct, located at the base of 

the fold (Figure 23 B, E). 3) Clusters of Leydig -like cells were present in the center of 

the testis (Figure 23 F). These were arranged into cords with capillaries coursing among
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the cells (Figure 23 D, E, F). The toluidine blue staining intensity of the cytoplasm 

ranged from moderate (Figure 23 D) to dark (Figure 23 F). Examination of serial 

sections revealed that these Leydig-like cell aggregates formed “islands”, rather than an 

uninterrupted arrangement along the length of the testis. Sperm were abundant within the 

spermatic (efferent) duct (Figure 23 E) and filled the lumina of seminiferous tubules 

(Figure 23 G). The ‘pockets’ of Leydig cells were not visible upon dissection, unlike the 

large single mass of glandular tissue in the black goby testis (Columbo and Burighel, 

1974), thus making it infeasible to incubate the Leydig cells separately from the 

seminiferous tubules. Hence, whole testes (a mixture of glandular and spermatogenic 

tissues) were used for incubation studies.

3.3.2 Incubation of testes with [H3]-androstenedione

Following HPLC separation (Figure 24), the incubation medium from fish I testes 

yielded seven prominent peaks of radioactivity (labeled A, C, D, D’, E, F and G) and a 

region of indistinct, relatively minor peaks (labeled B). The incubation media from the 

testes of other four testes yielded a similar pattern of peaks. However, peak A was only 

present in one fish, and there was a new peak (labeled F’) that was not present in fish I. 

Peak D’ was evident only in fish I. The HCG-injected fish did not have an overtly 

different pattern from the non-HCG-injected fish (perhaps slightly higher amounts ofF’). 

In all cases, Ad was > 95% converted to other steroids. In all cases also, > 90% of the 

radioactivity in each of the peaks (excluding region B) formed single major bands on 

TLC.
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Identification studies were concentrated on steroids that were produced by testes 

from fish I. It proved possible through HPLC, TLC and microchemistry to match all the 

peaks to known C19 steroids (Table 4), except for D’ and for one component of the B 

region (Table 5). The compound in the D’ peak had an Rt value of 0.12. Although this 

value was close to that of three of the standards (Table 4), none of them co-migrated with 

the radioactive steroid after they had been mixed together and run on TLC. All the 

steroids that were identified had either an androsten-4-ene or a 5(3-androstane 

configuration. None of the radioactive steroids co-migrated with any of the available 5a- 

androstane steroids. Microchemistry implemented in the identification of the incubation 

products is described in Table 6 .

It was established that >90% of peak A and 50% of region B remained at the 

origin when run on TLC, by counting radio-activity at the origin . This made it likely 

that these steroids were conjugated to either a sulfate or a glucuronide group (making 

them too hydrophilic to chromatograph on TLC). In order to establish the nature of the 

conjugating group(s) in peak A, some of the radioactivity was run on an anion-exchange 

column with 10 pg each of the free, glucuronidated and sulfated forms of 17,20p~P. The 

bulk of the radioactivity eluted in a position (Figure 25) that was consistent with the 

steroid having a sulfate group (i.e. it was too strongly charged to be a glucuronide). This 

was confirmed by the fact that acid solvolysis turned > 90% of the radioactivity into a 

free steroid that was found to have the same mobility on TLC as peak E (11-oxo-ETIO). 

Acid solvolysis of fraction 37 (in region B) also released a steroid that had the same 

chromatographic properties as ETIO. Acid solvolysis would not have been expected to 

deconjugate glucuronide groups.
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The identities of the main peaks from fish II testes were confirmed in the same 

way as for the first incubation (i.e. TLC plus microchemistry). Partial characterization 

(TLC with and without acetylation) was also carried on the steroid in peak F’ to show 

that it was most probably testosterone. The identities of the steroids in the main peaks 

from testes in fish III, IV and V were only checked by co-migration on TLC.

Finally, the identities of solvolyzed peak A (11-oxo-ETIO), peak C (11-oxo-T), 

peak E (11-oxo-ETIO) and peak G (ETIO) were confirmed by recrystallization to 

constant specific activity (Table 7).

3.3.3 Incubation of a single testis (fish VI) with [H3]-17-P

A single incubation was carried out with tritiated 17-P. HPLC separation of the 

incubation medium yielded at least nine peaks (Figure 26). Only a few of these peaks 

could be matched to the C19 steroids shown in Table 4. Also two of the peaks (D and E) 

yielded two prominent bands on TLC. Peak A had the same properties as peak A from 

testis I (i.e. it could be solvolyzed to a steroid that had the same mobility as 11-oxo- 

ETIO). Peak F  also had the same mobility as 11 -oxo-ETIO. The identities of these two 

steroids were confirmed by recrystallization to constant specific activity (Table 7).
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Figure 23. The testis from a spermiating round goby. Semi-thin plastic section 
stained with toluidine blue.

A. A low power cross-sectional view of the testis. The black arrow points to a 
prominent fold located on the mesorchial side of the testis. Rectangles D, E and 
F show locations with glandular cells, shown in high power in panels D, E and F. 
The periphery of the testis (outlined with black squares) contains abundant 
seminiferous tubules filled with sperm. Rectangle G outlines a seminiferous 
tubule, shown at high power in panel G. A high power view of the mesorchial 
fold from a different specimen (outlined by a rectangle B) is shown in B.

B. The tissue surrounding the fold located on the mesorchial side of the testis. The 
arrow points to this fold. There are seminiferous tubules (st) located beside the 
fold, on one side, and a region with glandular cells on the opposite surface, 
enclosed by rectangle D, which is shown at high power in panel D. The tissue 
beneath the fold contains a spermatic duct (sd) and adjacent glandular cells, 
enclosed by rectangle E, enlarged in panel E. The region at the base of the fold, 
enclosed by an oval, contains structures shown at high power in panel C.

C. A high power view of mesentery, with an arteriole (a), nerve fascicle (nf) and 
polyhedral cells which appear to form part of the mesorchium, extending into the 
fold (arrow).

D. Glandular cells (putative Leydig cells, L) located beside the fold at the mesorchial 
surface (area 1 in B) shown at high power. Capillaries (c) with single 
erythrocytes are visible (arrows). The glandular cells are polyhedral, and 
arranged into cords and clumps. Seminferous tubules (st) are seen adjacent to the 
glandular cells.

E. Glandular cells (putative Leydig cells, L) located beneath the spermatic duct (sd), 
which is filled with sperm (sp). These round cells are arranged in a sizeable 
clump, with a single capillary (c) passing through this large cellular aggregate. 
The staining of these cells ranges from pale to moderate.

F. “Islands” of strongly basophilic putative Leydig cells (L) located in the center of 
the testis (location shown by a white arrow in A). In these cells, the cytoplasm is 
as strongly basophilic as the nucleus, and the nucleus is not distinguishable. 
Capillaries (c), containing erythrocytes, are prominent. Sperm (sp) within 
seminiferous tubules are beside these Leydig cell islands.

G. A high power view of a seminiferous tubule shows spermatic cells (sp) filling the 
lumen of the tubule. The small arrows outline the follicular cells of the 
seminiferous tubule.
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Figure 23
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Figure 24. HPLC separation of media from round goby testes incubated with [3H]- 
Ad. Each plot represents a single male (2 testes per plot). Fish II and III were injected 
with HCG the previous day. Decay per minute (dpm) is along the y axis and elution 
minutes along the x axis. See Table 2 for identities of the steroids that were found in 
each of the labeled peaks.
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Figure 25. DEAE-Sephadex (anion-exchange) separation of peak A from incubation 
of testes with [3H]-Ad. The continuous curved line shows the elution position of 
radioactivity. The light grey curved line shows the UV absorption (at 254 nm) of free (F), 
glucuronidated (G) and sulfated (S) 17,20p-P. The continuous straight line shows the 
gradient. The elution position of the radioactivity is consistent with the radioactive 
compound being a sulfate.
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Figure 26. HPLC separation of media from testes of a single round goby male 
incubated with [3H]-17-P. Tentative identifications were made of 11-oxo-T in peak D 
and Ad in peak H. Definitive identifications were made of 11-oxo-ETIO-s in peak A and 
11-oxo-ETIO in peak F. The other steroids were not identified.
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Table 5. Main steroids produced by incubation of testes of the round goby with 
[3H]-Ad. Percent yields indicated in this table are expressed as a total of the radioactivity 
of all peaks made by testis I (Fig. 2)___________________________________________

PRODUCT PEAK % YIELD

ll,17-dioxo-5p-androstan-3a-yl sulfate (lloxo-ETIO-s) A 13.5

3 a-hydroxy-17-oxo-5 P-androstan-3 a-yl sulfate (ETIO-s) B 1.4
(1.7 unidentified)

17p-hydroxyandrost-4-ene-3,11-dione (11-oxo-T) C 16.0

11 p-hydroxyandrost-4-ene-3,17-dione (1 ip-OH-Ad) D 18.3
(D’ = 12.3% unidentified)

3a-hydroxy-5p-androstane-l 1,17-dione (11-oxo-ETIO) E 28.5

androst-4-ene-3,17-dione (Ad) F 3.9

3 a-hydroxy-5 P-androstan-17-one (ETIO) G 4.33
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Table 6. Identification evidence for peaks from testis 1. Microchemical reactions used 
were acetylation, oxidation, reduction and solvolysis. HPLC and TLC elution positions 
of each peak are also given.

Peak HPLC
(min)

R t* Identified Metabolite Microchemistry
Performed

28-30 origin 11,17-dioxo-5 {l-androstan-3 a-yl
sulfate (11-oxo-ETIO-s)

Following solvolysis: 
acetylation products 
comigrate
on TLC; enzyme and 
chemical
oxidation products have 
same mobility as 
5(5-androstane-3,11,17- 
trione cm TLC.

B 37 origin 3a-hydroxy-17-oxo-5p-
androstan-3a-yl sulfate (ETIO-s)

39,40 0.67 17p~hydroxyandrost-4-ene-3,11-
dione (11-oxo-T)

Following solvolysis: 
Acetylation products 
comigrate on TLC

acetylation products 
comigrate on TLC; 
chemical oxidation product 
has same mobility as 
androst-4-ene-3,l 1,17- 

trione

D 43 0.66 lip-hydroxyandrost-4-ene-3,17-
dione,
(llp-OH-Ad)

D ’ 44 0.12 Unidentified

E 47 0.84 3a-hydroxy-5p-androstane-
11,17-dione 
(11-oxo-ETIO)

failure to acetylate; 
enzyme reduction products 
comigrate on TLC; 
chemical oxidation product 
has same mobility 
as androst-4-ene-3,11,17- 
trione 
n/a

acetylation products co
migrate on TLC 
enzyme and chemical 
oxidation products 
have same mobility as 
5p-androstane-3,11,17- 
trione
on both TLC and HPLC

F

G

53,54 1.70 Androst-4-eae-3,17-dione (Ad) failure to acetylate

59,60 1.03 3a-hydroxy-5p-androstan-17-
one (ETIO)

acetylation products 
comigrate on TLC 
enzyme oxidation product 
has same mobility 
as 5P-androstan-3,17-dione

A, due to day-to-day differences in TLC running conditions (e.g. temperature), these RT values do not 
necessarily exactly match the values shown in Table 4.
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Table 7. Results of recrystallization of several standard steroids with radioactive 
metabolites derived from incubation of round goby testes with either tritiated Ad or 
17-P.

Recrystallization number:
Cold standard Radioactive 

steroid peak2:
1 2 3 4

Testosterone (T) E (original 1628e 176 74 69

Testosterone
dpm=10750)b 
tritiated Tc 6337 6147 6206 5532

11-oxo-ETIO E 4698 4421 4315
11-oxo-ETIO solv. A 9831 8985 8960 8383
11-oxo-ETIO F* 9689 8733 8588 8763
11-oxo-ETIO solv. Ad 2401 1988 1850 1829
ETIO G 2010 2153 1905 2331
11-oxo-T C 5100 4576 4533

a, letters refer to labeled peaks on HPLC (Fig. 24).
b, this was done as a negative control.
c, this was done as a positive control; tritiated testosterone was purchased from Amersham 
Pharmacia
d, these two steroids were derived from fish VI (17-P incubation; Fig. 26); solv. = solvolyzed
e, all values are in dpm/mg o f  crystal.
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3.4 Discussion

Histological analysis showed that the testis of the round goby is similar to that of 

the black goby (Colombo and Burighel, 1974), of the rock goby Gobius paganellus 

(Stanley et al., 1965) and of the urohaze goby (Asahina et al., 1985), in possessing 

concentrations of Leydig cells. In these other species, the endocrine portion of the testis 

was found in a large glandular mass running along the mesorchium, as well as in smaller 

aggregates adjacent to the seminiferous tubule. The three spatially distinct zones with 

Leydig cells in the round goby match localizations previously observed in other gobiid 

species. The accumulation of Leydig cells adjacent to the fold facing the mesorchium in 

the round goby, parallels the large glandular mass (mesorchial gland) running along the 

mesorchium in the black goby (Colombo and Burighel, 1974) and the rock goby (Stanley 

et al., 1965) and in the central region of the urohaze goby testis (Asahina et al., 1985). 

Leydig cells concentrated beside the sperm duct have also been observed in the black 

goby, where the large mesorchial mass of Leydig cells extends as far as the collagenous 

sheath surrounding the deferent duct (Columbo and Burighel, 1974). The third location 

of Leydig cells in the round goby, scattered in pockets throughout the middle of the 

testes, is also an arrangement that has previously been observed in the rock goby 

(Stanley, 1965) and black goby (Colombo and Burighel, 1974; Rasotto and Mazzoldi, 

2002). In the urohaze goby, cord-like processes with glandular cells extend between 

seminiferous tubules from the main central glandular mass (Asahina et al., 1985). The 

spatially distinct localization of Leydig cells in the testis of gobiids is different from the 

Leydig cell distribution in most vertebrate species, where the steroid producing endocrine 

Leydig cells are interstitial to the seminiferous compartment (e.g. Ross et al., 1989).
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Circumstantial evidence that the glandular tissue in the testis is involved in the 

synthesis of pheromones in gobies comes from the work of Rasotto and Mazzoldi on the 

black goby (2002). These authors showed that there are two types of male -  parents and 

‘sneakers’. Because the latter “sneak” fertilizations and do not guard or maintain nests, 

they do not presumably need to emit pheromones to attract females. Underlining this 

difference in behavior, the large glandular masses of Leydig cells are absent from the 

testes of the sneaker males. Furthermore, only the milt (ejaculate) of parental males has 

been shown to excite aggression in other parental males (Locatello et al., 2002).

The incubation of testes with [3H]-Ad yielded steroids that either retained their 

androst-4-ene configuration or were 5P-reduced. Many were also 11-oxygenated. The 

presence of 5p-reductase, 11-hydroxylase and 1 lp-HSD enzymes in teleost testes is well- 

established (Borg, 1994; Fostier et al., 1983; Kime, 1993). Nevertheless, despite 

numerous reports of the synthesis of 11-oxo-T and ETIO in the testes of a variety of 

species, the synthesis of 11-oxo-ETIO does not appear to have been previously reported 

in any teleost, apart from a study on the tilapia Sarotherodon mossambicus (Kime and 

Hyder, 1983). However, in that study, the precursor steroid was already oxygenated at 

the 11-position (i.e. [3H]-11-oxo-Ad), making it unclear whether tilapia would normally 

form it if the precursor had been Ad In the present chapter, we have replicated this 

finding five times. We have also demonstrated the synthesis of this steroid from 17-P as 

well as from Ad.

There were only two other products from the 17-P incubation that we were able to 

match to any of the steroids in Table 4. These were 11-oxo-T and Ad (limited

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



108

identification only). The other peaks were not identified (through lack of resources). 

Some of them probably represent C2i metabolites.

In common with the black goby, the testes of the round goby produce an 

abundance of 5p-reduced steroids. Some of the steroids in the two species are the same 

(e.g. ETIO and ETIO-s). However, there are two major differences between the species. 

One difference is that the black goby seems to lack 1 lp-HSD activity. Although 

Colombo et al. (1977) found lip-hydroxysteroids, they found no 11-oxo-steroids in the 

black goby incubations. Although this difference could be due to differences in protocol 

(different handling procedures, incubation media and precursors), it is unlikely. In the 

round goby, 11-oxo-ETIO and 11-oxo-T are not minor products. They form a large 

proportion of the metabolites in the incubation media -  suggesting the presence of a lot of 

11P-HSD activity. It is unlikely that Colombo et al. (1977) would have failed to find 

such activity in the black goby if it existed. The situation in vivo may be entirely 

different. There are several species in which it appears that it is common for C19 steroids 

to be secreted ‘half-formed’ from the testis and transformed to their final product by 

enzymes in either the blood cells (e.g. conversion of 11-oxo-Ad to 11-oxo-T in the 

stickleback Gasterosteus aculeatus\ Mayer et al., 1990) or liver (e.g. conversion of 11P- 

OH-testosterone to 11-oxo-T in African catfish Clarias gariepinus, Cavaco et al., 1997).

The other difference between the round goby and the black goby is the apparent 

low amount of steroid conjugation in the round goby incubations. Although we found 

small amounts of the sulfated forms of ETIO and 11-oxo-ETIO, we were unable to 

conclusively demonstrate the presence of their glucuronidated forms (although they may 

have been present in trace amounts). In view of the results of Colombo et al. (1970;
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1977), who found substantial production of both glucuronides and sulfates in both the 

rock goby and black goby, it seems surprising that we were unable to demonstrate the 

synthesis of ETIO-g. However, we caution against the interpretation that the necessary 

enzyme, steroid-UDP-glucuronosyl-transferase, is missing from the testes of the round 

goby. In one of their studies on the seminal vesicle of the African catfish, Clarias 

gariepinus, Schoonen and Lambert (1986) detected large amounts of steroid glucuronide 

formation. In a later study (Schoonen et a l, 1987) they found hardly any at all. In this 

second study, they noted that there was a two hour delay between the capture of the 

animals and the incubation of their seminal vesicles and speculated that the capacity for 

producing glucuronides was lost more rapidly than the capacity for 5P-reduction and nP- 

hydroxylation. In the present study, there was a relatively large (and unavoidable) 3 h 

delay between sacrifice of the animals and incubation of the testes. There was also 

evidence that steroid sulfotransferase activity might be labile; as 11-oxo-ETIO-s appeared 

to be low (or absent) in three of the incubations.

In several other species, temperature has been shown to influence glucuronide 

formation (Kime, 1980). However, the temperatures at which we and other authors have 

maintained the fish and subsequently carried out the incubations have been within the 

normal range for the species.

HCG injection was included within this study to determine whether it might 

radically alter the production of the steroids. However, although it only involved two 

fish, there was no clear indication that the HCG injection had any effect (perhaps a slight 

enhancement of T formation). It was therefore not investigated fiirther.
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Although there are similarities in steroid biosynthetic pathways between the black 

goby and the round goby, there appear to be very few between the urohaze-goby and the 

other two species. The urohaze-goby glandular tissue predominantly synthesized 5a- 

reduced steroids (Asahina et al., 1985). These were notably absent in the present study. 

However, in at least one species, the sailfin molly, Poecilia latipinna, Kime and Groves 

(1986) have demonstrated the production of both 5a- and 5P-reduced androgen within a 

single testis. Furthermore, both these types of androgen were present with either 3 a- or 

3p-hydroxyl groups.

One criticism that can be leveled at the present study is that incubations were 

carried out with whole testes, while Colombo et al. (1977) used just the mesorchial gland 

and Asahina et al. (1985) used separate ‘glandular tissue’ and ‘seminiferous tissue’. I 

do not believe this is a problem. Firstly, apart from the fact that the structure of the testis 

in the round goby makes the clean dissection of glandular and seminiferous tissue 

infeasible, Asahina et al (1985) did in fact find no difference in the types of steroid 

produced by the testis of the urohaze goby - only in their yields.

One result for which there is no reasonable explanation is the presence of an 

unidentified metabolite (R t= 0 . 12; peak D’) in the incubation medium from the testis of 

fish I, but its absence in testes from II through V. The relative mobility of the steroid 

suggests that it has at least two hydroxyl groups (of which there were several in Table 4 

that we were unable to test). Since the incubation of testes from fish I was carried out in 

a different year and a different month from the others, the difference may be seasonal.

Conjugated steroids are more soluble in water than free steroids and therefore 

potentially more likely to be utilized as pheromones (Scott and Vermeirssen, 1994;
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Vermeirssen and Scott, 1996). In mammals, conjugation is usually hepatic in origin and 

typically leads to excretion and deactivation of the steroid hormone (Kime, 1993). 

Colombo et al. (1979) showed not only that the testis of the male goby produced ETIO-g, 

but the steroid also induced behavioral activity when it was added to the water. Although 

we failed to establish the production of this particular steroid in the round goby testis, we 

have identified ETIO by itself and also, tentatively, ETIO-s, also identified in Gobius 

jozo by Colombo et al. (1977).

The probable route of excretion of free steroids is via the gills (Vermeirssen and 

Scott, 1996) and of sulfated and glucuronidated steroids via the urine and feces (Scott and 

Vermeirssen, 1994). The milt (Locatello et al., 2002) and seminal vesicle fluid 

(Schoonen and Lambert, 1986) are also potential sources of the pheromone. However, 

immunoassays first need to be developed for ETIO and 11K-ETIO in order to investigate 

these various possibilities.

More evidence that would point towards a pheromonal role for either 11-oxo- 

ETIO-s or ETIO-s is their elution positions on HPLC. Currently, water that has been 

conditioned by reproductive male round gobies has been separated by HPLC and each 

fraction has been tested against female round gobies for physiological activity (Belanger 

et al., in press). The highest EOG activity came between fractions 30 to 40. This is a 

potentially significant finding, in that 11-oxo-ETIO-s, ETIO-s (and 11-oxo-ETIO-g) elute 

on HPLC between 30 and 40 min. None of these steroids was tested for EOG activity by 

Murphy et al. (2001). However, we have carried out preliminary studies on 11-oxo- 

ETIO, 11-oxo-ETIO-g and ETIO-s and found that they evoke an EOG response at least at 

10"10M (own unpublished data). However, 11-oxo-ETIO-s remains to be tested for EOG

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



112

activity and all four steroids remain to be tested for behavioral activity. Also, it still 

needs to be established that these steroids are actually produced, and released into the 

water, in vivo and that they also modify the behavior of the animals.

In conclusion, we have shown that the testis of the sexually mature male round 

goby contains islets of steroid-synthesizing glandular tissue. We have discovered that, in 

vitro, the testes produce at least four 5|3-reduced C19 steroids (two of them novel). These 

findings lend further support to the hypotheses of Colombo et al. (1977) and Murphy et 

al. (2001) that sexually mature male gobies secrete pheromones that attract females and 

that these pheromones are derived from the testes and are probably steroids with a 5|3- 

reduced configuration.
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CHAPTER 4: The in vitro biosynthesis of novel 50 reduced steroids in the seminal 
vesicle of the round goby, Neogobius melanostomus

4.1 Introduction

The parental male round goby {Neogobius melanostomas) is a benthic teleost fish 

that maintains and guards a nest into which many females deposit eggs (Wickett and 

Corkum, 1998; Maclnnis and Corkum, 2000). It is likely that the male round goby 

releases a pheromone(s) to attract reproductive females to their nests, and that this 

pheromone(s) is a steroid originating in the gonads (Arbuckle et al., 2004; Murphy et al., 

2001). Both 11-oxo-ETIO and 11-oxo-ETIO-s are two putative pheromones that are 

produced in the testis (Arbuckle et al., 2004). The seminal vesicle is a paired organ 

attached to the testes which are found in many species of the family Gobiidae (Moiseyeva 

et al., 1973; Fishelson, 1991; Lahnsteiner et al., 1992). They are lobular organs that have 

high secretory activity, which empty into the spermatic duct which leads to the genital 

papillae (Fishelson, 1991). Previous studies in fish have indicated that the seminal 

vesicle, an accessory male gonadal structure, also produces steroidal pheromones, as well 

as a mucoid fluid (Schoonen and Lambert, 1986; Schoonen et al., 1987,1988).

Strong evidence exists to support the hypothesis that the male round goby releases 

a pheromone (or a mixture of pheromones) that attracts reproductive females to their 

nests. In the black goby, Gobius jozo {=G. niger), from the family Gobiidae, males have 

been shown to emit a pheromone that attracts females to their nests (Mozzi, 1968). 

Colombo et al. (1974; 1977; 1980; 1982) have shown that the testes of black goby 

contains prominent Leydig (steroid-secreting) cells that produce predominantly 

conjugated and 50-reduced steroids. The most prevalent of these was 1 7 - 0 X 0 - 5 0 -
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androstan-3a-yl glucuronide (etiocholanolone glucuronide; ETIO-g). This steroid was 

also shown to act as an attractant to gravid females (Colombo et al., 1979; 1980). 

Furthermore, olfactory epithelial (electro-olfactogram, EOG) responses of the round goby 

indicated selective and strong responses to 5(3 reduced steroids (Murphy et al., 2001). As 

well in the round goby, EOG responses have indicated that reproductive male water is a 

strong olfactory stimulant in reproductive females, but not in non-reproductive females 

(Belanger et al., 2004, in press). Taken together, research supports the view that the 

round goby releases steroids with pheromonal properties.

Previous incubations of the testis with [H3]-androstenedione has indicated the 

production of two novel compounds, 11-oxo-etiocholanolone and 11-oxo- 

etiocholanolone sulfate (Arbuckle et al., 2004). These two steroids likely possess 

pheromonal activity in the round goby, given that the carbon A ring has a 5(3- 

configuration that is linked with olfactory sensitivity (Murphy et al., 2001) and behavior 

induction (Colombo, 1980) in two species of gobies. Furthermore, the production of a 

conjugated steroid (11-oxo-etiocholanolone sulfate) is significant, since conjugated 

steroids are more soluble in water than free steroids and therefore more likely to be 

utilized as pheromones (Scott and Vermeirssen, 1994; Vermeirssen and Scott, 1996). In 

this study, the gonadal biosynthesis of steroidal compounds in the seminal vesicle of the 

round goby was examined in light of recent findings in the testis.

The main functions that have been attributed to the seminal vesicle are the 

temporary storage of sperm cells, the production of glycoproteins to facilitate fertilization 

and the production of reproductive pheromones (Nawar, 1960; Lahnsteiner et al., 1992; 

Schoonen and Lambert, 1986; Schoonen et al., 1987,1988). Although the first
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description of the seminal vesicle was given by Eggert (1931), few studies have provided 

conclusive functional explanations for this accessory reproductive organ. The seminal 

vesicles are lined with excetory epithelium that contains columnar cells, excretory cells 

and interstitial, Leydig-type cells that may be part of the mesorchial gland (Fishelson et 

al., 1991). In the grass goby (Zosterisessor ophiocephalus), the seminal vesicle consists 

of secretory cells responsible for sialoglycoprotein secretions that are released together 

with spermatazoa to facilitate fertilization and adherence of eggs to sea grass 

(Lahnsteiner et al., 1992). The mucoid fluid produced by the seminal vesicle may 

function in plug formation after fertilization (von Ihering, 1937) and nutrition for the 

sperm cells (van Tienhoven, 1983). In the African catfish, Leydig type cells of the 

seminal vesicle are known to produce 5p reduced steroid glucuronides that function as 

sex pheromones (Schoonen and Lambert, 1986; Schoonen et al., 1987,1988); the 

secretions of the seminal vesicle may serve as a vehicle for excretion of this compound 

(Schoonen and Lambert, 1986b; Lambert et al., 1986; van Oordt, 1986; Resink et al., 

1985). In the seminal vesicle of the grass goby, steroid producing cells are absent 

(Lahnsteiner et al., 1992). On the contrary, in the Gobius paganellus and Gobius 

bucchichi, groups of interstitial Leydig type cells are present between the tubules, 

embedded into the connective tissue of the boundary layers (Stanley et al., 1965). In the 

seminal vesicle in the round goby, interstitial tissue has been detected (Moiseyeva et al., 

1973). Both the seminal vesicle and the testis develop from the embryonic genital ridge 

(van den Hurk and Resink, 1992). It is likely that the differentiation of the genital ridge 

into the testis and the seminal vesicle varies from species to species (Schoonen and
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Lambert, 1986), this could account for the differing functions observed in the seminal 

vesicle in various teleosts.

Preliminary histology on the round goby testis and seminal vesicle indicates that 

the arrangement of the seminal vesicle with respect to the testis is parallel to that of other 

gobiids (Dr. S. Jasra, unpublished data). Each testis terminates into sperm ducts, where 

the seminal vesicles appear as paired organs (Fishelson, 1991). From here, the seminal 

vesicle and testis share a common genital pore which opens to the genital papillae 

(Lahnsteiner, 1992). Although a histological analysis has yet to be completed, a similar 

arrangement is likely in the round goby (Figure 27).

Testis

Spermatic duct

Genital pore

Seminal vesicle

Figure 27. The arrangement of the male reproductive system in the family Gobiidae (adapted from 
Fishelson, 1991; Lahnsteiner, 1992 and personal observation).

The goal of this study was to determine if the seminal vesicle of the round goby 

possesses steroidogenic functions. This study addresses whether this accessory gonadal 

structure functions in conjunction with the testes in production and export of putative 

steroidal pheromone(s) into the aqueous environment. We determined the ability of the 

seminal vesicle to convert radioactive androstenedione (androst-4-ene-3, 20-dione; Ad) 

into other steroids in vitro. The identification studies were restricted to steroids formed
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from tritiated Ad, since the relatively small number of other steroids into which Ad (a C19 

steroid) can be converted, compared to other C21 precursors. The possibility exists that 

pertinent C21 steroids could be formed. However, previous studies have indicated that 

round gobies have specific and selectively strong responses to 50 reduced C19 steroids 

(Murphy et al., 2001); furthermore, work in the black goby indicated the abundant 

production of 50-reduced C19 steroids which have pheromonal activity (Colombo et al., 

1977; 1979; 1980; 1982).

The round goby is an invasive species of the Great Lakes and poses a threat to 

native fish species (Corkum et al., 1998). The identification of a male sex pheromone 

could possibly be implemented in a benign trap to attract females and disrupt spawning.

A full understanding of the reproductive apparatus of the male round goby is required in 

order to accomplish this goal.
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4.2 Materials and methods

4.2.1 Experimental animals

Round gobies were obtained from the Detroit River (Windsor, ON, Canada) by 

angling and were maintained at a water temperature of 18 to 20°C in dechlorinated tap 

water. Spermiating males were captured in June 2002 (sample I) or July 2003 (sample 

II). Spermiating males were identified by swollen cheeks and black coloration (Maclnnis 

and Corkum, 2000). Furthermore, the presence of active sperm and histological 

examination of the testis was completed, confirming reproductive maturity. The fish 

were anaesthetized with MS222, killed, and the testes dissected and placed in ice-cold 

Leibowitz LI 5 medium (Sigma-Aldrich, USA). The seminal vesicles were identified as 

per Fishelson (1991) and Lahnsteiner et al. (1992).

4.2.3 In vitro incubation of the seminal vesicle with [3H-Ad]

Four pairs of seminal vesicles were incubated with [1,2,6,7-3H] androst-4-ene- 

3,17-dione; this radiochemical was purchased from Amersham Biosciences. The seminal 

vesicles were dissected from the fish, separated from the testis, finely minced, suspended 

in ice-cold Leibowitz LI 5 medium (Sigma) and transported on ice from the University of 

Windsor to Michigan State University (ca. 3 h). Here, the bits of tissue were distributed 

to fresh 50 ml plastic tubes containing 10 ml Leibowitz L15 medium and 10 to 50 pCi 

tritiated Ad. The tubes were laid on their side and gently agitated at 16 °C for a further 6  

h (Kime and Scott, 1993). At the end of the incubation period, the medium was filtered 

and then passed through a Sep-Pak C-18 cartridge (Waters Chromatography, Millipore,
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Milford, MA, USA). This was washed with 5 ml distilled water and then eluted with 5 

ml methanol. The extract was stored at - 2 0  °C.

4.2.4 Separation of tiitiated metabolites from reproductive male round goby by 
High-Performance Liquid Chromatography (HPLC)

The methanol extracts from the Sep-Pak C-18 cartridges were dried down either 

under a stream of nitrogen at 45°C or in a rotary evaporator, mixed with 10 pg each of 

Ad and 11-oxo-T, reconstituted in 1 ml acetonitrile/water/trifluoroacetic acid (28/72/0.01; 

v/v/v) and then loaded onto an analytical reverse-phase HPLC column (Rainin Dynamax 

Microsorb; 5pm octadecylsilane; 4.6mm x 25 cm; fitted with a 1.5 cm guard module). 

Two pumps were used to deliver solvents through the column at a rate of 0.5 ml/min. 

Solvent A was 0.01% trifluoroacetic acid (TFA) in distilled water and solvent B was 70% 

acetonitrile and 0.01% TFA in distilled water: 0-10 min, 28.6% B; 10-60 min, 28.6- 

100% B; 60-80 min, 100% B, 80-82 min, 100-28.6% B; 82-100 min, 28.6% B. One 

minute fractions were collected between 20 and 70 minutes. A volume of 5 pi from each 

HPLC fraction was then counted in a scintillation counter and fractions that formed 

distinct peaks on HPLC were saved for identification studies. Part of the identification 

criteria for metabolites involved the position that they eluted on HPLC. This was 

established for the synthetic standards by running 10 or 20 pg of each on the HPLC 

column under the same running conditions as above and monitoring the eluate with a 

diode-array detector. Steroids with a 4-ene configuration (e.g. Ad and 11-oxo-T) gave a 

strong peak of UV adsorption at ca. 248 nm. Steroids with a C=0 group (or groups) gave 

a much weaker, but nevertheless distinct, peak of UV adsorption at ca. 200 nm
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4.2.5 Identification of steroids: Thin-Layer Chromatography (TLC) of HPLC
Fractions

The standard synthetic steroids used in this study (Table 8) were purchased from 

Sigma Chemical Company or Steraloids. We tried to obtain all the steroids into which 

Ad might be converted via ‘well-established’ biosynthetic pathways. Using this criterion, 

we might expect there to be metabolites with either androst-4-ene, 5a-androstan or 5p- 

androstan configurations. In the 5a- and 5p~reduced steroids, we might expect to find 

either a 3-oxo, a 3a-hydroxyl or a 3p-hydroxyl group. In the androst-4-ene steroids, we 

would expect to find only a 3-oxo group. We would not expect to find 3-reduced 

androst-4-ene steroids as, to our knowledge, direct reduction of the 3-oxo group of 4-ene 

steroids has not been demonstrated in any vertebrate (although such steroids may be 

formed when 5-ene steroids are used as intermediates; Inaba et al., 1966). We might 

expect the 17-oxo group to be either retained or reduced to form a 17P-hydroxyl (but not 

17a-hydroxyl) group. We might expect the 11-carbon to remain as it is or to be 11- 

oxygenated to form an 1 ip-hydroxyl (but not 1 la-hydroxyl) group and then also further 

oxidized to form an 11-oxo group. All these possible combinations are shown in Table 8 

(including eight steroids that we were unable to obtain).

There is always the possibility that Ad will be converted to Cig (estrogen-like) 

steroids. However, we have not included these in Table 8 as estrogen formation by testes 

has not been reported in teleosts (Fostier et al., 1983). No estrogen formation was found 

in previous studies on the testes of black goby (Colombo et al., 1977) or urohaze-goby 

Glossogobius olivaceus (Asahina et al., 1985).
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We might also expect that any steroid in Table 8 that has either a 3a-oxo, 3p-oxo 

or 17p-oxo group could be glucuronidated or sulfated. Identification of conjugated 

steroids normally involves their deconjugation through either enzyme hydrolysis (which 

works on glucuronides and some sulfates) or acid solvolysis (which works on sulfates 

only) (Scott and Vermeirssen, 1994). Since neither glucuronidated or sulfated steroids 

were identified in this study, neither of these techniques were employed.

All steroids were dissolved in ethanol at a concentration of 500 pg/ml. At the 

outset of the identification work, 10 pg of each steroid was combined with 10 pg 

testosterone (T), spotted onto separate lanes of the TLC plates and developed with 

chloroform/methanol (50/2, v/v). The positions of the androst-4-ene steroids (e.g. Ad, T, 

11-oxo-T) were detected by shining a UV lamp at the plate. Steroids with reactive 

hydroxyl groups (e.g. 3a-hydroxy-5P-androstane-ll,17-dione; 11-oxo-ETIO) were 

detected by spraying with a solution of phosphomolybic acid in ethanol (10% w/v) and 

heating the plate for 5 min at 150°C. Steroids with no reactive hydroxyl groups (e.g. 5p- 

androstane-3,11,17-trione) were detected by spraying with concentrated sulfiiric acid in 

methanol (10% v/v) and heating the plate for 5 min at 150°C. After the bands were 

revealed, their distance to the origin was measured to the nearest millimeter. The relative 

position of each steroid in relation to that of T was then calculated. This ratio (Rx) 

formed the basis of a table (Table 8) against which the relative elution positions of 

radioactive bands could subsequently be compared.

To determine the identity of the radioactive steroids in the various peaks, ca. 

20,000 dpm was mixed with 10 pg T, dried down, reconstituted in 30 pi ethyl acetate and 

spotted and run on TLC as described above. The position of T was marked with a pencil
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and each lane then divided into 5 mm strips that were scraped off, mixed directly with 7 

ml scintillation fluid and counted. The position of the radioactivity relative to that of T 

was then compared with the Rt values in Table 8. By doing this, it was possible to 

narrow down the range of possible matching standards for each HPLC peak. A more 

precise match was obtained by mixing 20,000 dpm of radioactive steroid with 10 pg each 

of those steroids that had the most similar Rt values and then running them together on 

TLC. After the bands had been revealed, they were marked and scraped off, as was 2 x 

0.5 cm of silica gel from either side of the bands. All the scrapes were mixed with 

scintillation fluid and counted. In any situation where the radioactivity was > 90% 

associated with a band, microchemical studies were then carried out to further establish 

the co-identity of radioactive metabolite and standard steroid.
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Table 8: Standard synthetic steroids against which the tritiated metabolites were 
compared. Rt is the relative position of each steroid in relation to testosterone (T) when 
nm on TLC. HPLC elution times were only determined for steroids of interest.

Steroid* Common name Rxb HPLC
elution

_______________________________________________________________________________(minutes)

Available steroids:
3a, 17 P-dihydroxy-5 (5-androstan-11-one 0.12
5a-androstane-3p,l ip,17p-triol 0.14
11P, 17P-dihydroxyandrost-4-ai-3-one 11 p-OH testosterone 0.16 40
3P,1 ip-dihydroxy-5aandrostan-l 1-one 0.27
17p-hydroxyandrost-4-ene-3,l 1-dione 11-oxo-testosterone (1 l-oxo-T)c 0.4 40
3P,1 ip-dihydroxy-5a-androstan-17one 0.44
3a, 1 lp-dihydroxy-5P-androstan-17-one 0.45
5 p -androstane-3a, 17P-diol 0.48
17p-hydroxy-5p-androstane-3,11-dione 0.48 45
3a ,l ip-dihydroxy-5a-androstan-17-one 0.53
3p ,l ip-dihydroxy-5p-androstan-17-one 0.57
17p-hydroxy-5a-androstane-3,11-dione 0.58
3a-hydroxy-5 P-androstane-11,17-dione 11-oxo-etiocholanolone 

(11-oxo-ETIO)
0.67 47

11 p-hydroxyandrost-4-ene-3,17-dione 11 P-OH androstenedione 
(lip-O H -Ad)

0.72 43

5a-androstane-3a, 17p-diol 0.72
3a-hydroxy-5a-androstane-l 1,17-dione 0.77
5a-androstane-3p, 17p-diol 0.78
3p-hydroxy-5a-androstane-l 1,17-dione 0.79
5p-androstane-3p,17p-diol 0.86
17P-hydroxyandrost-4-ene-3-one Testosterone (T) 1.0 52
3a-hydroxy-5p-androstan-17-one Etiocholanolone (ETIO) 1.0 60
1 ip-hydroxy-5a-androstane-3,17-dione 1.03
1 ip-hydroxy-5P-androstane-3,17-dione 1.06
17p-hydroxy-5P-androstan-3-one 1.12
3 p-hydroxy-5a-androstan-17-one 1.14
3a-hydroxy-5a-androstan-17-one 1.20
17P-hydroxy-5a-androstan-3-<»ie 1.28
3p-hydroxy-5p-androstan-17-one 1.28
5p-androstane-3,11,17-trione 1.33 48
androst-4-ene-3,11,17-trione 11-oxo-androstenedione; 

androstenetrione
1.38 45

5a-androstane-3,11,17-trione 1.49 47
androst-4-ene-3,17-dione Androstenedione (Ad) 1.70 55
5 p-androstane-3,17-dione 1.82
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5a-androstane-3,17-dione 1.94

Conjugated steroids:
17-oxo-5p-androstan-3a-yl glucuronide Etiocholanolone glucuronide 0 44

(ETIOg)
17-oxo-5p-androstan-3a-yl sulfate Etiocholanolone sulfate (ETIOs) 0 37
11,17-dioxo-5 P-androstan-3 a-yl 11-oxo-etiocholanolone 0 38
glucuronide glucuronide

(11-oxo-ETIOg)
11,17-dioxo-5 P-androstan-3 a-yl sulfate 11-oxo-etiocholanolone sulfate 0 30

(11-oxo-ETIOs)

Steroids (in same range as above) that 
were not available for testing:
5a-androstane-3a, l ip , 17p-triol 
5p-androstane-3p,l ip, 17p-1riol 
5p-androstane-3a,l ip,17P-triol 
3a, 17p-dihydroxy-5a-androstan-3-one 
1 ip,17p-dihydroxy-5a-androstan-3-one 
3p, 17p-dihydroxy-5P-androstan-l 1-one 
1 ip , 17p-dihydroxy-5p-androstan-3-one
3P-hydroxy-5P-androstane-l 1,17-dione__________________________________________________________
a the nomenclature of steroids in this chapter follows that recommended by IUPAC 
(Kime, 1995; www.chem.qmul.ac.uk/iupac/steroid) and not that used by Steraloids Inc. 
(www.steraloids.com), Sigma-Aldrich (www.sigma-aldrich.com) or Murphy et al. 
(2001).
b the Rt values and HPLC elution times shown in Table 8 are only approximate and are 
expected (and were found) to differ slightly in response to temperature and exact 
composition of solvents; however, approximate Rt provided a useful ‘first step’ in the 
identification of products from incubation of testis with tritiated Ad.
0 also known incorrectly as 11-keto-testosterone
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4.2.6 Microchemical reactions

Prior to each microchemical reaction, the radioactive metabolite (ca. 20,000 dpm) 

and the cold standard ( 1 0  to 2 0  pg) were mixed together and evaporated under a stream 

of nitrogen at 45°C. In some situations, in addition to the above, the radioactive steroid 

was treated in the absence of cold standard and then mixed with 1 0  pg of the ‘expected’ 

product prior to being run on TLC.

Enzymic oxidation: The steroid was redissolved in 1 ml 0.05M Tris-HCl (pH 9) 

containing 1.5 mg NAD (Sigma N-1511) and 1.2 mg Hydroxysteroid Dehydrogenase 

(HSD; Sigma H-8879). The reaction mixture was left overnight at room temperature and 

then extracted twice with 4 ml ethyl acetate.

Enzymic reduction: The steroid was redissolved in 1 ml 0.05M Tris-HCl (pH 7.6) 

containing 3.3 mg HSD (Sigma, H8879) and 2.4 mg NADH (Sigma, N-8179). The 

reaction mixture was left overnight at room temperature and then extracted twice with 4 

ml ethyl acetate.

Acetylation: The steroid was redissolved in 100 pi pyridine and 100 pi acetic anhydride 

and left overnight. The pyridine and acetic anhydride were removed by drying down 

with a stream of nitrogen at 45°C. The plates were developed with chloroform/ethanol 

50/1 ( v/v) to prevent potential acetylated products from migrating too far up the plate.
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4.3 Results

4.3.1 Incubation of seminal vesicle with [H3]-androstenedione

Following HPLC separation (Figure 28), the incubation medium from samples I and 

H yielded four prominent peaks of radioactivity (labeled A, B, C, and D). In both

incubations, Ad was >95% converted into other steroids. In order of abundance, the
-2

following steroids were produced from the conversion of [H ]-Ad:

11-oxo-androstenedione, 11-oxo-testosterone, and 11-oxo-etiocholanolone. All of the 

steroid metabolites identified had either a 5P-androstane or androsten-4-ene 

configuration. Furthermore, all steroids produced were 11-oxygenated. This would 

indicate the presence of an abundance of lip-HSD in the seminal vesicle.

The metabolites produced by the seminal vesicles of samples I and II were 

determined by implementing HPLC, TLC and microchemistry. It was possible to match 

all of the peaks to the known C19 steroids (Table 9). Microchemistry implemented in this 

study consisted of acetylation, enzymatic oxidation or enymatic reduction (Table 10). In 

the incubation of the seminal vesicle, no conjugated steroids were detected.
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Figure 28. HPLC separation of media from round goby seminal vesicle incubated 
with [3H]-Ad. Each plot represents two pairs of seminal vesicles (four individual 
seminal vesicles) from two reproductive males. Sample I is from two fish in the summer 
o f2002. Sample II is from two fish from the summer of 2003. Decay per minute (dpm) 
is along the y axis and elution minutes along the x axis. See Table 19 for identities of the 
steroids that were found in each of the labeled peaks.
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Table 9. Main steroids produced by incubation of the seminal vesicle of the round goby with [H3]- 
Ad. Percent yields indicated in this table are expressed as a total o f  die radioactivity o f  all peaks o f  seminal 
vesicle I (Figure 27).______________ ___________________________________ ___________________________

PRODUCT PEAK % YIELD

4-Androsten-17P-ol-3,11-dione (11-oxo-testosterone) A 12.3
4-Androsten-3,11,17-trione (11 -oxo-androstenedione) B 78.4
5P-Androstan-3a-ol-l 1,17-dione (11-oxo-etiocholanolone) C 5.3
4- Androsten-3,17-dione (Androstmedione) D 4.1

Table 10. Microchemistry implemented in  the identification of incubation products from the seminal 
vesicle of the round goby. Microchemical reactions used were acetylation, oxidation, and reduction. 
Microchemistry performed to confirm identification is outlined. HPLC and TLC elution positions o f  each 
peak are given.

Peak HPLC
(min)

Rx* Identified Metabolite Microchemistry Performed

A 39,40,41 0.56 4-Androsten-17p-ol-3,11-dione 
(11-oxo-testosterone)

Acetylation products comigrate 
on TLC

B 42,43,44 1.23 4-Androsten-3,11,17-trione 
(11-oxo-androstenedione)

Neither standard or radioactive 
metabolite acetylate on TLC

C 47 0.74 5p-Androstan-3a-ol-l 1,17-dione 
(11-oxo-etiocholanolone)

Enzymatic reduction product 
has die same mobility as 
4-androstene-17p-ol, 3,11- 
dione on TLC
Enzymatic oxidation has the 
same mobility as 5P-androstan- 
3,11,17 trione on TLC

D 54 1.38 4-Androsten-3,17-dione 
(Androstenedione)

Enzymatic reduction has the 
same mobility as 4-androsten- 
17p-ol-3-one

A, due to day-to-day differences in TLC running conditions (eg. Temperature), these RT values do not 
necessarily exactly match the values shown in Table 8.
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4.4 Discussion

The incubation of the seminal vesicle with [3H]-Ad yielded steroids that either 

retained their androst-4-ene configuration or were 5|3-reduced. All steroid metabolites 

produced were 11-oxygenated. The presence of 5(3-reductase, 11-hydroxylase and 1 lp- 

HSD enzymes in teleost testes (Borg, 1994; Fostier et al., 1983; Kime, 1993) and seminal 

vesicle has been established (Schoonen et al., 1987). Besides a study in the testes of the 

tilapia Sarotherodon mossambicus (Kime and Hyder, 1983), it seems that the synthesis of 

11-oxo ETIO has not been indicated in any teleost. Furthermore, in the Sarotherodon 

mossambicus, the precursor steroid was already oxygenated at the 11-position (i.e. [3H]- 

11-oxo-Ad); whether the tilapia would form 11-oxo-ETIO from a non-oxygenated 

compound such as Ad was not determined. We found this compound during two different 

reproductive seasons (summers o f2002 and 2003) in the seminal vesicle. Furthermore, 

this compound was also identified in the testis from the conversion of both [3H]-Ad and 

[3H]-17-P (Arbuckle, et al., submitted, 2004) during the summer of 2002 and 2003.

Since both the seminal vesicle and the testis develop from the embryonic genital 

ridge (van den Hurk and Resink, 1992), it is likely that the differentiation of the genital 

ridge into the testis and seminal vesicle varies from species to species (Schoonen and 

Lambert, 1986). This could account for the fact that the division of functions between the 

seminal vesicle and the testis tends to be slightly different in various species (African 

catfish, Schoonen and Lambert, 1986b; Schoonen et al., 1987,1988; zebrafish, van den 

Hurk, et al., 1987c). In the African catfish, the seminal vesicle is known to synthesize a 

larger amount of steroid glucuronides and a greater variety of them, than the testes; these 

compounds have known pheromonal functions (Schoonen and Lambert, 1986b;
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Schoonen and Lambert, 1986; Schoonen et al., 1987,1988). In fish without seminal 

vesicles, the steroid hormones and the steroid glucuronides are synthesized solely in the 

testis (eg. zebrafish; van den Hurk, et al., 1987c). In the Gobius jozo and Gobius 

paganellus, which have well developed seminal vesicles, the synthesis of steroid 

conjugates (glucuronides) was reported only in the testes (Colombo et al., 1970,1977). 

Hence, the Gobius jozo and Gobius paganellus can be paralleled to the round goby. We 

have shown in a previous study (Arbuckle et al., 2004), that steroid conjugates are 

produced in the testes. In this study in the seminal vesicle, no conjugated steroids were 

detected. In a previous study on the testis of the round goby, clusters of Leydig cells 

produced 1 1 -oxo-etiocholanolone-sulfate, which is a putative pheromone (Arbuckle, et 

al., submitted, 2004). Hence, there is a varied division of function with respect to steroid 

biosynthesis in the testes and seminal vesicle of teleosts.

Many functions have been attributed to the seminal vesicle. This includes the 

temporary storage of sperm cells (Nawar, 1960) and the production of a glycoprotein 

secretions that are released with the sperm to facilitate fertilization and adherence of eggs 

to sea grass (Lahnsteiner et al. 1992). In males of the family Gobiidae, these 

glycoproteins have been shown to mix with sperm, whereby males produce sperm trails 

in the nest before and after egg deposition (Marconato et al., 1996). In the African 

catfish, the fluid produced by the seminal vesicles has been suggested to be a vehicle for 

steroid glucuronides to be excreted and act as pheromones (Schoonen and Lambert, 

1986b; Lambert et al., 1986; von Oordt, 1986; Resink et al., 1985). Furthermore, in the 

African catish, the seminal vesicles have been implicated in the production of

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



135

pheromones (Schoonen and Lambert, 1986; Schoonen et al., 1987,1988). These are all 

possible functions of the round goby seminal vesicle.

The seminal vesicle and testis share a common genital pore which opens to the 

genital papillae (Lahnsteiner, 1992). In the Buenia jeffreysii and Pterogobius virgo the 

testis and seminal vesicle tissue mingle at their point of junction with the sperm duct 

(Fishelson, 1991). In the Gobius niger, the transition from the testicular to seminal 

vesicle tissue along the sperm duct is gradual. A similar arrangement is highly likely in 

the round goby. Hence, the free 11-oxo-ETIO produced in the seminal vesicle could 

possibly become conjugated along its path towards the genital pore, leading to the 

aqueous environment. The epithelium of the sperm duct could possibly conjugate 11- 

oxo-ETIO. As well, the point of junction at the sperm duct where the testis and seminal 

vesicle tissue “mingle” could conjugate 11-oxo-EHO. A concentration of Leydig cells 

around the sperm duct (the posterior end of the testis, which attaches to the seminal 

vesicle), has been shown in the round goby (Arbuckle et al, 2004). This area that 

composes testis and seminal vesicle at their point of junction is likely to be dense with 

steroid sulfotransferase, as testicular tissue near this junction has been suggested to 

produce 11-oxo-ETIO-sulfate (Arbuckle et al, 2004). Hence, this is a probable site of 

conjugation of the free 1 l-oxo-ETIO produced in the seminal vesicle. The other two 

steroids produced in the seminal vesicle, 1 1 -oxo-testosterone and 1 1 -oxo- 

androstenedione could also contribute to the pheromonal mileu putatively secreted from 

the male round goby. 11-oxo-testosterone has known hormonal functions (Kime, 1993) 

and is responsible for stimulating spermatogenesis and male secondary characteristics 

(Miuraetal., 1991).
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The production of conjugated steroids in fish is significant, since they are more 

water soluble than free steroids and therefore are potentially more likely to be utilized as 

pheromones (Scott and Vermeirssen, 1994; Vermeirssen and Scott, 1996). The likely 

route of excretion of free steroids is via the gills (Vermeirssen and Scott, 1996) and of 

sulfated and glucuronidated steroids is via the urine and feces (Scott and Vermeirssen, 

1994). In mammals, enzymes for the conjugation of steroids are typically located in the 

liver (Colombo et al., 1980; Kime, 1993); fish are unique in that many of these enzymes 

for conjugation are located within the gonad itself (Kime, 1993). Conjugated steroids 

have been shown to be produced in the gonads of the round goby, black goby and the 

African catfish (Colombo et al., 1974,1977,1980,1982; Schoonen and Lambert, 1986; 

Schoonen et al., 1987, 1988; Arbuckle et al., 2004). Furthermore, conjugated steroids 

produced in the gonads of the African catfish and the black goby possess pheromonal 

properties (Colombo et al., 1980; Schoonen and Lambert, 1986; Schoonen et al., 1987, 

1988). It appears that in teleost fish, the gonads are specialized in producing conjugated 

pheromonal steroids; hence in the round goby, the conjugation of steroids hepatically, 

although possible, is highly unlikely. Immunoassays need to be developed in order to 

investigate the various possibilities proposed here. Furthermore, immunocytochemical 

and histochemical studies co-localizing key steroid enzymes (especially steroid 

sulfotransferase) with respect to the seminal vesicle, testis and the spermatic duct is 

required in order to validate these possibilities.

This study has shown that the seminal vesicle is steroidogenic, in that it converts 

[3H]-Ad into other steroids. In-vitro, the seminal vesicle produced steroids that were 

either androst-4-ene configuration or were 5(3-reduced C19 steroids. All three steroids
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produced were 11-oxygenated. One of these steroids, 11-oxo-etiocholanolone, was in 

fact novel. Further studies are required to confirm the possible pheromonal functions of 

these compounds produced in-vitro, on the premise that the 5p reduced steroid 

configuration elicits strong physiological responses in females (Murphy et al., 2001).
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CHAPTER 5: General Conclusions

The objective of this thesis was to study the production and olfactory detection of 

pheromones in the round goby and the sea lamprey. Both are invasive species in the 

Great Lakes (Corkum et al., 1998; Li et al., 2002); furthermore, pheromone 

communication seems to fundamental their reproductive success and population 

expansion (Li et al., 2002; Murphy et al., 2001). The separate studies presented here 

provide insight to the understanding of pheromone communication in vertebrates; this 

knowledge could possibly lead to an environmentally benign method of species control.

In chapter 2, the spatial organization of the olfactory system in the sea lamprey 

was studied using neuronal tract tracers. This study indicated that medial, non-G0if-IR 

glomeruli projects topographically to a specific ventral region of the olfactory epithelium 

Hence, a medial-ventral pathway in the larval sea lamprey seems to exist, as defined by 

functional and spatial parameters.

This finding is significant for many reasons. Firstly, in most fish species, 

topographic projections between the olfactory bulb and olfactory epithelium is absent 

(Hara and Zhang, 1996). Secondly, the projection of a specifc glomerular subset with 

unique G-protein expression (i.e. G0if negative) to a specific region of the peripheral 

olfactory organ has never been shown before in the sea lamprey. Furthermore, these 

findings are significant because the medial olfactory pathway and tract has been 

implicated in the detection of pheromones in many fish species (Hara and Zhang, 1996; 

Friedrich and Korsching, 1998; Weltzien et al., 2003). The medial olfactory tract in fish 

may be functionally similar to the VNO in the olfactory system of mammals (Eisthen, 

1992; Dulka, 1993). Taken together, this study indicates that the differential spatial
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expression of alternate G proteins within the primary olfactory pathway in vertebrates 

may have evolved before gnathostome radiation or in parallel.

In Chapters 3 and 4, the production of putative reproductive pheromones in the 

round goby was studied. The round goby is an invasive species of the Great Lakes and 

poses a threat to native fish species (Corkum et al., 1998). The identification of a male 

sex pheromone could possibly be implemented in a benign trap to attract females and/or 

disrupt spawning. A full understanding of the reproductive apparatus of the male round 

goby is essential to gamer insight into pheromonal communication. Both the testis and 

seminal vesicle were incubated with tritiated precursors to determine the in vivo 

production of steroids in this species. Results indicated the production of primarily 50- 

reduced C19 steroids, which included two novel compounds, 11-oxo-ETIO and 11-oxo- 

ETIO-s. The production of 11-oxo-ETIO-s was indicated only in the testis; the free form 

of this compound was present in both reproductive structures. These two compounds are 

likely pheromonal candidates given that the carbon A ring has a 50-configuration, that 

has been linked with olfactory sensivity and behavior induction in two species of gobies 

(Murphy et al., 2001; Colombo et al., 1980). The in vivo production of these compounds 

and pheromonal activity remains to be established. In summary, this study indicates the 

production of putative steroidal pheromones in the male round goby which may be useful 

for trapping females and/or disrupting their spawning activities.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



145

References

Colombo, L., Marconato, A., Belvedere, PC., Frisco, C. (1980) Endocrinology of teleost 
reproduction: a testicular steroid pheromone in the black goby, Gobius jozo L. Boll.
Zool. 47,355-364.

Corkum, L.D., Maclnnis A.J., Wickett, R.G. (1998) Reproductive habits of the round 
gobies. Great Lakes Research Review 3,13-20.

Dulka, J.G. (1993) Sex pheromone systems in goldfish: comparisons to vomeronasal 
systems in tetrapods. Brain Behav. Evol. 42,265-280.

Eisthen, H.L. (1992) Phylogeny of the vomeronasal system and of receptor cell types in 
the olfactory and vomeronasal epithelia of vertebrates. Microscopy research and 
technique. 23,1-21.

Friedrich, R.W. and Korsching, S.I. (1998) Chemotopic, combinatorial, and 
noncombinatorial odorant representations in the olfactory bulb revealed using a voltage- 
sensitive axon tracer. JNeurosci. 18,9977-9988.

Hara, T. J. and Zhang, C. (1996) Spatial projections to the olfactory bulb of functionally 
distinct and randomly distributed primary neurons in salmonid fishes. Neuroscience Res. 
26, 65-74.

Li, W., Scott, A.P., Siefkes, M.J., Yan, H., Liu, Q., Yun, S-S., Gage, D.A. (2002) Bile 
acid secreted by male sea lamprey that acts as a sex pheromone. Science. 296,138-141.

Murphy, C.A., Stacey, N.E., Corkum, L.D. (2001) Putative steroidal pheromones in the 
round goby, Neogobius melanostomus: olfactory and behavioral responses. J Chem. 
Ecol. 27,443-470.

Weltzien, F-A., Hoglund, E., Hamdani, E.H., Doving, K.B. (2003) Does the lateral 
bundle of the medial olfactory tract mediate reproductive behavior in male crucian carp? 
Chemical Senses. 28,293-300.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



146

Appendix 1: Recipes

Stock A = 27.6g sodium phosphate monobasic (NalfePC^) in 1L distilled water 

Stock B = 53.7g sodium phosphate dibasic (Na2HPC>4) in 1L of distilled water

0.2M Phosphate Buffer (PB), pH=7.4
190 mL of stock A 
810 mL of stock B

0.1M Phosphate Buffer, pH=7.4
1L of 0.2M Phosphate buffer 
1L of distilled water

0.1M Phosphate Buffered Saline (PBS), pH=7.4
8g Sodium Chloride (NaCl)
0.2g Potassium Chloride (KC1)
1L of 0.1M Phosphate buffer

1° Antibody Diluent for GS-1 isolectin B4, pH=7.5
lOmMHEPES 
0.15MNaCl 
0.2% Triton-X

2° Antibody Diluent for GS-1 isolectin B4, pH=7.5 (Texas Red avidin-fluorescein 
DCS)
1:100 antibody dilution, composed of lOp.1 of 2° Antibody added to 990pl dilution buffer 
(0.1M sodium bicarbonate, 0.15M NaCl)

Sucrose solutions
10% sucrose: 10 g sucrose in 100 mL of 0.1M PB 
20% sucrose: 20 g sucrose in 100 mL 0.1M PB 
30% sucrose: 30 g sucrose in 100 mL 0.1MPB

4% Paraformaldehyde
4 g paraformaldehyde 
50 mL distilled water 
50 mL 0.2M phosphate buffer, pH=7.4
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Lamprey ringer’s solution, pH=7.2
Add the following constituents to 1L distilled water:
7.6 g NaCl 
0.22377 gKCl 
0.4066 gMgCl2 
2.383 g HEPES 
0.294 g CaCl2 
0.901 g glucose

Osmium tetroxide(l% OSO4)
2mL 4% O s04
2mL 0.225 sodium cacodylate buffer
4mL distilled H20
this yields 8mL o f  1% O s04

Karnovsky’s fixative
Immerse tissue in Karnovsky’s:

16% Paraformaldehyde Solution: 13mL
50% Glutaraldehyde EM Grade:........5mL
0.2M Sodium Phosphate Buffer:....... 50mL
Distilled Water:......................32mL
Final mixture is 2% Paraformaldehyde, 2.5% Glutaraldehyde and 0.1M Buffer.
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Appendix 2

Table 11. Details of all larval sea lampreys used in the study of Chapter 2.
“Animal code” refers to an internal coding system used for tracking the length and 

weight of each larval sea lamprey used in any study (including this one) within the 
Zielinski Laboratory.

Animal Code Sex Weight
(g)

Length
(cm)

L5003 n/a 2.30 11.8
L5103 n/a 1.74 10.4
L5203 n/a 1.76 11.3
L5303 male 1.92 11.5
L5403 n/a 1.22 10.1
L5503 female 2.64 12.5
L5603 female 2.26 10.7
L5703 male 2.0 10.0
L5803 female 2.08 11.6
L5903 Female 1.52 10.8
L6003 Female 2.42 12.1
L6103 male 1.63 10.7
L6203 male 1.78 10.4
L6303 Female 1.73 10.8
L6403 Male 1.38 10.1
L6503 Male 1.85 11.4
L6603 Female 1.85 10.5
L6703 Female 2.07 11.5
L6803 male 1.22 10.5
L6903 female 1.61 10.4
L7003 Female 1.54 11.0
L7103 Male 1.58 10.9
L7203 female 1.13 9.2
L7303 male 1.36 10.0
L7403 male 1.55 10.6
L7503 female 1.15 9.90
L7603 female 1.33 10.1
L7703 n/a 1.35 9.50
L7803 n/a 1.25 10.0
L3903 n/a 2.73 12.8
L4003 n/a 2.01 11.8
L4103 n/a 3.27 14.2
L4203 n/a 2.18 12.5
L4303 n/a 2.77 12.4
L4403 n/a 3.06 13.3
L4503 n/a 3.24 12.0
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Animal Code Sex Weight
(e)

Length
(cm)

L4603 n/a 1.84 10.5
L4703 n/a 1.49 10.2
L4803 n/a 1.58 11.0
L4903 n/a 1.42 10.9
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Appendix 3.

Table 12. Details of all male round gobies used in the study of Chapters 3 and 4.

Season 
Used and 
Study Used

Whole body 
mass (g)

Length (cm) Total gonad 
mass (testis 
and seminal 
vesicle) (g)

Testis mass 
(g)

Seminal 
Vesicle 
mass (g)

Gonadal 
Somatic Index 
(gonad weight/ 
body
weight* 100)

Julv 2003

Used for in- 
vitro testis 
and seminal 
vesicle 
incubation

44.2 14.5 0.77 0.565 0.205 1.74

Used for in- 
vitro testis 
incubation

51.5 16.5 0.832 0.35 0.482 1.61

Used for in- 
vitro testis 
incubation

47.7 15.5 0.88 0.80 0.08 1.84

Used for in-
vitro
seminal
vesicle
incubation

61.15 15.5 0.473 0.343 0.13 0.77

Histology: 
plastic 
sections 
(Chapter 3)

41.9 15.2 0.83 0.72 0.11 1.98

Histology: 
plastic 
sections 
(Chapter 3)

62.2 16.5 0.96 0.71 0.25 1.54

Julv 2002

Used for in- 
vitro testis 
incubation

43.8 14.9 0.99 n/a n/a 2.26

Used for in- 
vitro testis 
incubation

35.8 13.9 0.81 n/a n/a 2.26

Usedybr in- 
vitro testis 
and seminal 
vesicle 
incubation

35.6 13.8 0.75 n/a n/a 2.11

Used for in-
vitro
seminal
vesicle
incubation

40.1 13.8 1.05 n/a n/a 2.62

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



151

Appendix 4

Table 13. Structures of steroids identified in Chapters 3 and 4. These structures 
were obtained from Steraloids Inc. (www.steraloids.com).

Steroid Name Structure and 
molecular weight

1 l,17-dioxo-5P-androstan-3a-yl sulfate 
(1 loxo-ETIO-s)

NaSOjO

MW = 406.47 g/mol
3 a-hydroxy-17-oxo-5P-androstan-3 a-yl sulfate 
(ETIO-s)

CfŜko3so* ' ^ £ ^

MW = 408.59 g/mol

17P-hydroxyandrost-4-ene-3,11 -dione 
(11-oxo-T)

MW = 302.41 g/mol

1 lp-hydroxyandrost-4-ene-3,17-dione 
(lip-OH-Ad)

MW = 302.41 g/mol
3a-hydroxy-5 p-androstane-11,17-dione 
(11-oxo-ETIO)

MW = 304.42 g/mol
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Steroid Name Structure and 
molecular weight

androst-4-ene-3,17-dione 
(Ad)

MW = 286.41 g/mol

3 a-hydroxy- 5 p-androstan-17-one 
(ETIO)

MW = 290.44 g/mol
4-Androsten-3,11,17-trione 
(11-oxo-androstenedione)

MW = 300.39 g/mol
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