University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

1973

Electronic spectra of erbium+(3) and praseodymium+(3) ions in calcium fluoride crystals.

V. P. Bhola University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Recommended Citation

Bhola, V. P., "Electronic spectra of erbium+(3) and praseodymium+(3) ions in calcium fluoride crystals." (1973). *Electronic Theses and Dissertations*. Paper 1910.

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

ELECTRONIC SPECTRA OF Er⁺³ AND Pr⁺³ IONS IN Caf CRYSTAL S

by

V. P. Bhola

A Thesis
Submitted to the Faculty of Graduate Studies through
the Department of Physics in Partial Fulfillment
of the Requirements for the Degree
of Doctor of Philosophy at
the University of Windsor

Windsor, Ontario

© Ved Parkash Bhola 1973

ABSTRACT

The optical absorption spectrum of CaF_2Er^{+3} (1%) at LNT has been studied in the spectral region 6600 cm⁻¹ to 65400 cm⁻¹. 4f¹¹ - 4f¹¹ and interconfiguration transitions 4f¹¹ + 4f¹⁰5d have been observed. The Er^{+3} ion levels $^2F_{7/2}$ and $^2F_{5/2}$ at 54795 cm⁻¹ and 63091 cm⁻¹, respectively, have also been observed. The positions of a number of energy levels above 31000 cm⁻¹ have been established.

The optical absorption spectrum of $\text{CaF}_2\text{Pr}^{+3}$ (1%) at LNT has been studied in the spectral range 4250 cm $^{-1}$ to 50000 cm $^{-1}$. The positions of the energy levels $^3\text{P}_2$, $^1\text{I}_6$, $^3\text{P}_1$ and $^3\text{P}_0$ have been established to be 22526 cm $^{-1}$, 21481 cm $^{-1}$, 21306 cm $^{-1}$ and 20777 cm $^{-1}$, respectively. It is suggested that energy levels $^3\text{P}_1$ and $^1\text{I}_6$ are brought into close proximity in the CaF_2 matrix. Also the presence of a mixture of site symmetries for the rare earth ions in CaF_2 has been established. The two symmetries manifest themselves in the thermoluminescence spectra, while usually one symmetry manifests itself in the luminescence emission spectra.

Employing luminescence excitation techniques, the excitation spectrum of $\text{CaF}_2\text{Er}^{+3}$ (0.1%) has been studied in the spectral range 18200 cm⁻¹ to 50000 cm⁻¹. The results are in agreement with the absorption spectrum as expected, indicating that both spectra are essentially of similar

origin. The excitation spectrum of CaF_2^{Pr} in the spectral region 23800 cm⁻¹ to 50000 cm⁻¹ has been carried out. A tentative scheme of transitions between energy levels has also been constructed, assuming a mixture of cubic and tetragonal symmetries as mentioned above.

Impurity concentration dependent bands at 2620 Å, 2740 Å, 3530 Å, 3660 Å and 3950 Å have been observed and tentatively identified. An attempt has been made to construct an energy level scheme assuming a cubic site symmetry in the case of ${\rm CaF_2Pr}^{+3}$. Under the influence of cubic site symmetry, the splitting of the ground state has, in this case, been found to be approximately 200 cm $^{-1}$. The position of $^3{\rm P_2}$ has been established to be at 22800 cm $^{-1}$. This one level does not manifest itself at the same position in the absorption spectrum of ${\rm CaF_2Pr}^{+3}$.

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to Professor M. Schlesinger for suggesting this problem and for his invaluable help and guidance throughout the course of the investigation.

I would also like to thank ${\tt Mr.}$ W. Grewe and his staff for their technical assistance.

Many thanks are due to my wife and daughter for their patience and sacrifice.

TABLE OF CONTENTS

•		Page
ABSTRACT	Γ	iii
ACKNOWLE	EDGEMENTS	v
LIST OF	FIGURES	ix
LIST OF	TABLES	χV
Chapter	1 INTRODUCTION	1
1.1	General Remarks	1
1.2	CaF ₂ Structure	2
1.3	Survey of CaF ₂ Pr ⁺³ and CaF ₂ Er ⁺³	. 7
1.4	Aim of the Present Study	12
Chapter	2 THEORY	13
2.1	Introductory Remarks	13
2.2	Classification of the States	14
2.3	Fractional Parentage	15
2.4	Calculation of Energy Levels	17
	(a) Electrostatic Interaction	18
	(b) Spin-Orbit Interaction	20
	(c) Crystal Field	21
2.5	Intensity and Transition Selection Rules for Rare-Earth Ions in Crystals	32
2.6	Configuration Interaction	35
Chapter	3 EXPERIMENTAL	41
	Excitation Spectra of CaF ₂ Er ⁺³ and CaF ₂ Pr ⁺³	41
3.2	Emission Spectra of CaF_2Er^{+3} and CaF_2Pr^{+3}	44

		Page
3.3	Thermoluminescent Spectra of CaF ₂ Er ⁺³ and CaF ₂ Pr ⁺³	79
Chapter	4 ABSORPTION SPECTRUM	106
4.1	Monochromator Model 225	106
4.2	(a) Vacuum U.V. Light Source	107
	(b) Xe, Ar Continuum and Operation	107
4.3	Absorption Spectra of CaF ₂ Er ⁺³ and CaF ₂ Pr ⁺³	113
	(a) In the U.V. Region	113
	(b) In the Visible and Infrared Regions	113
Chapter	5 DISCUSSION AND ANALYSIS OF RESULTS	144
5.1	Discussion of Absorption Spectra	144
	(a) CaF ₂ Er ⁺³	144
	(b) CaF_2Pr^{+3}	149
5.2	Discussion of Luminescence Excitation Spectra	152
	(a) CaF_2Er^{+3}	154
•	(b) CaF ₂ Pr ⁺³	155
5.3	Discussion of Emission Spectra	168
	(a) CaF ₂ Er ⁺³	168
	(b) CaF ₂ Pr ⁺³	170
5.4	Discussion of Thermoluminescent Spectra	173
	(a) CaF ₂ Er ⁺³	174
	(b) CaF ₂ Pr ⁺³	176
Chapter	6 CONCLUSIONS	181
6.1	CaF _O Er ⁺³	181

	Page
6.2 CaF ₂ Pr ⁺³	182
BIBLIOGRAPHY	184
/ITA AUCTORIS	192

LIST OF FIGURES

			Page
Fig.	1.1	Calcium fluoride lattice.	3
Fig.	3.1	Xenon continuum from 2000 Å to 6000 Å.	41
Fig.	3.2	Experimental set-up for excitation spectrum.	43
Fig.	3.3	Excitation spectrum of CaF ₂ Er +3 at LNT from 3000 Å to 5400 Å.	45.
Fig.	3.4	Excitation spectrum of CaF ₂ Er ⁺³ at RT from 5250 Å to 5500 Å.	47
Fig.	3.5	Excitation spectrum of CaF ₂ Er +3 at RT from 5100 Å to 5250 Å.	48
Fig.	3.6	Excitation spectrum of CaF ₂ Er +3 at RT from 4800 Å to 4900 Å.	49
Fig.	3.7	Excitation spectrum of CaF ₂ Er ⁺³ at RT from 4350 Å to 4600 Å.	50
Fig.	3.8	Excitation spectrum of CaF ₂ Er ⁺³ at RT from 4000 Å to 4150 Å.	51
Fig.	3.9	Excitation spectrum of CaF ₂ Er ⁺³ at RT from 3720 Å to 3820 Å.	52
Fig.	3.10	Excitation spectrum of CaF ₂ Er ⁺³ at RT from 3450 Å to 3700 Å.	53
Fig.	3.11	Excitation spectrum of CaF ₂ Er ⁺³ at RT from 2200 Å to 3200 Å.	54
Fig.	3.12	Excitation spectrum of CaF ₂ Er. (Optovac) at LNT from 5250 Å to 5500 Å.	55
Fig.	3.13	Excitation spectrum of CaF ₂ Er +3 (Optovac) at LNT from 5100 Å to 5250 Å.	56
Fig.	3.14	Excitation spectrum of CaF Er (Optovac) at LNT from 4800 Å to 4900 Å.	57
Fig.	3.15	Excitation spectrum of CaF ₂ Er +3 (Optovac)) 58

			Page
Fig.	3.16	Excitation spectrum of CaF ₂ Er ⁺³ (Optovac) at LNT from 4000 Å to 4100 Å.	59
Fig.	3.17	Excitation spectrum of CaF ₂ Er ⁺³ (Optovac) at LNT from 3720 Å to 3820 Å.	60
Fig.	3.18	Excitation spectrum of CaF ₂ Er ⁺³ (Optovac) at LNT from 3450 Å to 3650 Å.	61
Fig.	3.19	Excitation spectrum of CaF ₂ Er ⁺³ (Optovac) at LNT from 2200 Å to 3200 Å.	62
Fig.	3.20	Excitation spectrum of CaF ₂ Er ⁺³ (Harshaw) at LNT from 4350 Å to 4550 Å•	63
Fig.	3.21	Excitation spectrum of CaF ₂ Er ⁺³ (Harshaw) at LNT from 3500 Å to 3650 Å.	64
Fig.	3.22	Excitation spectrum of CaF ₂ Er ⁺³ (Harshaw) at LNT from 2200 Å to 3200 Å.	65
Fig.	3.23	Excitation spectrum of CaF_2Pr^{+3} at LNT from 3400 Å to 4500 Å.	70
Fig.	3.24	Excitation spectrum of CaF_2Pr^{+3} at RT from 4200 Å to 4500 Å.	72
Fig.	3.25	Excitation spectrum of CaF_2Pr^{+3} at RT from 3200 Å to 4200 Å.	73
Fig.	3.26	Excitation spectrum of CaF_2Pr^{+3} at LNT from 4200 Å to 4500 Å.	74
Fig.	3.27	Excitation spectrum of CaF_2Pr^{+3} at LNT from 3200 Å to 4200 Å.	75
Fig.	3.28	Excitation spectrum of CaF_2Pr^{+3} at LNT from 2200 Å to 3200 Å.	76
Fig.	3.29	Impurity concentration dependent bands of CaF ₂ Pr ⁺³ with concentration (a) 0.05% (b) 0.5% (c) 1%	78
Fig.	3.30	Emission spectrum of CaF ₂ Er ⁺³ at RT from 5350 Å to 5550 Å excited with 3750 Å.	81

			Page
Fig	. 3.31	Emission spectrum of CaF ₂ Er ⁺³ at LNT from 5350 Å to 5550 Å excited with 3750 Å.	82
Fig.	. 3.32	Emission spectrum of CaF ₂ Er ⁺³ at LNT from 5350 Å to 5550 Å excited with 3760 Å.	83
Fig.	3.33	Emission spectrum of CaF ₂ Er ⁺³ at LNT from 5350 Å to 5550 Å excited with 4810 Å.	84
Fig.	3.34	Emission spectrum of CaF Er ⁺³ at LNT from 5350 Å to 5550 Å excited with 3785 Å.	85
Fig.	3.35	Emission spectrum of CaF ₂ Pr ⁺³ at RT from 4750 Å to 4950 Å excited with 4382 Å.	88
Fig.	3.36	Emission spectrum of CaF ₂ Pr ⁺³ at LNT from 4750 Å to 4950 Å excited with 4382 Å.	89
Fig.	3.37	Emission spectrum of CaF ₂ Pr ⁺³ at LNT from 4750 Å to 4950 Å excited with 4448 Å.	90
Fig.	3.38	Emission spectrum of CaF ₂ Pr at LNT from 4750 Å to 4950 Å excited with 4428 Å.	91
Fig.	3.39	Emission spectrum of CaF ₂ Pr ⁺³ at LNT from 4750 Å to 4950 Å excited with 4308 Å.	92
Fig.	3.40	Emission spectrum of CaF ₂ Pr ⁺³ at LNT from 4550 Å to 4950 Å excited with 3665 Å.	93
Fig.	3.41(a) (b)	Variation of thermoluminescence Emission spectrum with temperature in CaF ₂ Er ⁺³	96
Fig.	3.42	Thermoluminescence glow curve for CaF ₂ Er ⁺³ .	99
Fig.	3.43	Thermoluminescence glow curve for CaF ₂ Pr ⁺³ .	100

•			Page
Fig.	3.44	Spectral composition of the thermo- luminescence in the green spectral region for CaF ₂ Er ⁺³ .	101
Fig.	3.45	Spectral composition of the thermo- luminescence in the blue-green spectral region for CaF ₂ Pr .	103
Fig.	4.1 .	U.V. light source.	108
Fig.	4.2	Xenon continuum from 1500 Å to 2000 Å.	110
Fig.	4.3	Argon continuum from 1800 Å to 2600 Å.	111
Fig.	4.4	Argon continuum from 1200 Å to 1400 Å.	112
Fig.	4.5	Experimental set-up for recording absorption spectrum.	114
Fig.	4.6	Absorption spectrum of CaF ₂ Er ⁺³ at RT from 1500 Å to 2000 Å.	116
Fig.	4.7	Absorption spectrum of CaF ₂ Er ⁺³ at RT from 1900 Å to 2800 Å.	117
Fig.	4.8	Absorption spectrum of CaF_2Er^{+3} at LNT from 1500 Å to 2000 Å.	118
Fig.	4.9	Absorption spectrum of CaF ₂ Er ⁺³ at LNT from 1900 Å to 2800 Å.	119
Fig.	4.10	Absorption spectrum of CaF_2Er^{+3} at LNT from 14400 Å to 16000 Å.	120
Fig.	4.11	Absorption spectrum of CaF ₂ Er ⁺³ at LNT from 7900 Å to 10300 Å.	121
Fig.	4.12	Absorption spectrum of CaF_2Er^{+3} at LNT from 6350 Å to 6650 Å.	122
Fig.	4.13	Absorption spectrum of CaF_2Er^{+3} at LNT from 5050 Å to 5450 Å.	123
Fig.	4.14	Absorption spectrum of CaF_2Er^{+3} at LNT from 4350 Å to 4950 Å.	124
Fig.	4.15	Absorption spectrum of CaF ₂ Er ⁺³ at LNT from 3500 Å to 4100 Å.	125

			Page
Fig.	4.16	Absorption spectrum of CaF ₂ Er ⁺³ at LNT from 2850 Å to 3150 Å.	126
Fig.	4.17	Absorption spectrum of CaF_2Er^{+3} at LNT from 2300 Å to 2750 Å.	127
Fig.	4.18	Absorption spectrum of CaF ₂ Pr ⁺³ at LNT from 21100 Å to 23500 Å.	135
Fig.	4.19	Absorption spectrum of CaF ₂ Pr ⁺³ at LNT from 17900 Å to 20300 Å.	136
Fig.	4.20	Absorption spectrum of CaF ₂ Pr ⁺³ at LNT from 13600 Å to 16000 Å.	137
Fig.	4.21	Absorption spectrum of CaF ₂ Pr ⁺³ at LNT from 9800 Å to 10400 Å.	138
Fig.	4.22	Absorption spectrum of CaF_2Pr^{+3} at LNT from 5700 Å to 6100 Å.	139
Fig.	4.23	Absorption spectrum of CaF ₂ Pr ⁺³ at LNT from 4300 Å to 4900 Å.	140
Fig.		Comparison of energy levels of CaF ₂ Er ⁺³ with those of ErCl ₃ .6H ₂ O.	145
Fig.	5.2	Comparison of energy levels of CaF ₂ Pr ⁺³ with those of aqueous solution and free ion. (a) free ion (b) aqueous solution (c) CaF ₂ Pr ⁺³ .	n 150
Fig.	5.3	Process for luminescence excitation.	153
Fig.	5.4	Semi-empirical energy levels transitions for CaF ₂ Er ⁺³ under tetragonal symmetry (excitation spectrum).	156
Fig.	5.5	Semi-empirical energy levels transitions for CaF ₂ Er ⁺³ under cubic symmetry (excitation spectrum).	162
Fig.	5.6	Semi-empirical energy levels transitions for CaF ₂ Pr ⁺³ under cubic symmetry (excitation spectrum).	166
Fig.	5.7	Semi-empirical energy levels transitions for CaF ₂ Pr ⁺³ under tetragonal symmetry (luminescence spectrum).	169

•			Page
Fig.	5.8	Semi-empirical energy levels transitions for CaF ₂ Pr 3 under tetragonal and cubic symmetries (from luminescence spectrum).	171
Fig.	5.9	Semi-empirical energy levels transitions for CaF ₂ Er ⁺³ under cubic symmetry (from thermoluminescent spectrum).	175
Fig.	5.10	Suggested model for thermoluminescent spectrum.	179

LIST OF TABLES

		Page
Table 2.1	Classification of States of f ² and f ¹¹ Configurations	16
Table 2.2	Splitting of Energy Levels of the Pr ⁺³ ion under O _h Symmetry	25
Table 2.3	Splitting of Energy Levels of the Pr^{+3} ion under C_{4v} Symmetry	26
Table 2.4	Splitting of Energy Levels of the Pr ⁺³ ion under C _{3v} Symmetry	27
Table 2.5	Splitting of Energy Levels of the Er^{+3} ion under O Symmetry	28
Table 2.6	Splitting of Energy Levels of the ${\rm Er}^{+3}$ ion under ${\rm C_{4v}}$ Symmetry	29
Table 2.7	Splitting of Energy Levels of the ${\rm Er}^{+3}$ ion under ${\rm C_{3v}}$ Symmetry	30
Table 2.8	Electric Dipole Transitions and Polarization for the Er 13 ion under $\mathrm{O_h}$ Symmetry	36
Table 2.9	Electric Dipole Transitions and Polarization for the Er ion under C _{3v} Symmetry	36
Table 2.10	Electric Dipole Transitions and Polarization for the Er ⁺³ ion under C _{4v} Symmetry	37
Table 2.11	Electric Dipole Transitions and Polarization for the \Pr^{+3} ion under O_h Symmetry	37
Table 2.12	Electric Dipole Transitions and Polarization for the \Pr^{+3} ion under C_{3v} Symmetry	38
Table 2.13	Electric Dipole Transitions and Polarization for the \Pr^{+3} ion under $C_{\Delta v}$ Symmetry	38

		Page
Table 3.1	Summary of the Figures Regarding the Excitation Spectrum of CaF ₂ Er +3	46
Table 3.2	Energy Values for Excitation Peaks of CaF ₂ Er ⁺³ at LNT	66
Table 3.3	Summary of the Figures Regarding the Excitation Spectrum of CaF ₂ Pr +3	71
Table 3.4	Energy Values for Excitation Peaks of CaF ₂ Pr ⁺³ at LNT	77
Table 3.5	Summary of the Figures Regarding the Emission Spectrum of CaF ₂ Er ⁺³	80
Table 3.6	Energy Values for Emission Peaks of CaF ₂ Er ⁺³	86
Table 3.7	Summary of the Figures Regarding the Emission Spectrum of CaF ₂ Pr ⁺³	87
Table 3.8	Energy Values for Emission Peaks of CaF ₂ Pr ⁺³	94
Table 3.9	Energy Values for Thermoluminescent Peaks of CaF ₂ Er	102
Table 3.10	Energy Values for Thermoluminescent Peaks of CaF_2Pr	104
Table 3.11	Activation Energies of Thermolumines- cent Peaks in CaF ₂ Er ⁺³	105
Table 3.12	Activation Energies of Thermolumines- cent Peaks in CaF ₂ Pr ⁺³	105
Table 4.1	Summary of the Figures Regarding the Absorption Spectrum of CaF ₂ Er ⁺³	115
Table 4.2	Energies of Absorption Peaks in CaF_2Er^{+3}	128
Table 4.3	Summary of the Figures Regarding the Absorption Spectrum of CaF ₂ Pr ⁺³	134
Table 4.4	Energies of Absorption Peaks in CaF_2Pr^{+3}	141
Table 5.1	Difference between Calculated and Experimentally Observed Energy Values for CaF ₂ Er ⁺³ under C ₄ Symmetry (from excitation spectrum)	159

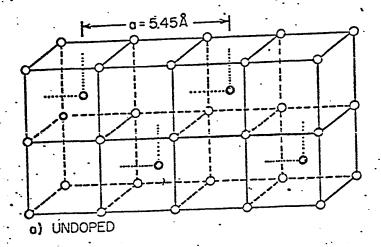
•		Page
Table 5.2	Difference between Calculated and Experimentally Observed Energy Values for CaF Er under O Symmetry (from excitation spectrum)	164
Table 5.3	Difference between Calculated and Experimentally Observed Energy Values for CaF ₂ Pr ⁺³ under O _h Symmetry (from excitation spectrum)	166
Table 5.4	Difference between Calculated and Experimentally Observed Energy Values for CaF Er 3 under C Symmetry (from luminescence spectrum)	169
Table 5.5	Difference between Calculated and Experimentally Observed Energy Values for CaF ₂ Pr under O _h Symmetry (from luminescence spectrum)	171
Table 5.6	Difference between Calculated and Experimentally Observed Energy Values for CaF ₂ Pr ⁺³ under C _{4v} Symmetry (from luminescence spectrum)	172
Table 5.7	Difference between Calculated and Experimentally Observed Energy Values for CaF Er ⁺³ under O _h Symmetry (from thermoluminescent spectrum)	175
Table 5.8	Comparison between Luminescence and Thermoluminescent Spectra of CaF ₂ Er +3	177
Table 5.9	Comparison between Luminescence and Thermoluminescent Spectra of CaF ₂ Pr ⁺³	 178

Chapter 1 INTRODUCTION

1.1 General Remarks

The rare-earth atoms have a common feature of $4f^N$ -shell with N=1 for cerium and increasing regularly to N=14 for lutecium. The spectra of these elements differ largely among themselves as each element has its own characteristic spectra both in the case of free atoms and ions and in the case of ions in solution and in crystals. Extensive studies on their spectral properties have been carried out in the past. These studies not only reveal the electronic structure of rare-earth atoms but also have opened up a new way for the study of the nature of solids.

earth ions is well shielded by the electrons in the 5s and 5p shells. As the number of electrons in the 4f shell increases from cerium to lutecium, the effective nuclear charge also increases and, due to increased effective nuclear charge, the electrons in the 4f shell are attracted towards the nucleus, thus producing Lanthanide Contraction (O). Due to Lanthanide Contraction, the ionic radii decrease as the atomic number is increased.


In a crystal the 4f electrons interact weakly with their surroundings. As a result of the interaction with the crystal field, some degree of degeneracy of the

free ions is removed and also some forbidden transitions become possible. Meanwhile, the essential structure of the free ion configuration is still preserved. During transitions between energy levels of rare-earth ions corresponding to the well shielded inner 4f shell, different characteristic spectra with a clearly discrete structure are obtained. This structure is closely related to the internal structure of the medium in which the ion is embedded. As a result, the investigation of rare-earth ions introduced into the crystal can serve as a sensitive probe.

1.2 CaF Structure

The main object of the present study is to investigate the crystal field spectra of \Pr^{+3} and \Pr^{+3} in the visible and UV spectral regions. The CaF_2 crystal is one of the most suitable hosts that can be used for studying the rare-earth ions in crystals. It is transparent from 1250 Å to 90,000 Å and can artificially be doped with rare-earth elements. CaF_2 crystals doped with tripositive rare-earth ions of different concentrations are available from the commercial manufacturers.

Calcium fluoride belongs to the O_h space group and its lattice structure is face-centred cubic, with a basis of one divalent calcium ion at (000) and 16 F ions at $(\pm 1/4, \pm 1/4, \pm 1/4)$ and $(\pm 3/4, \pm 3/4, \pm 3/4)$ as shown in Fig. 1.1(a). This may be regarded as a cubic lattice of fluorine ions in which every other body centre position is occupied

b) COMPENSATION BY INTERSTITIAL FLUORIDE

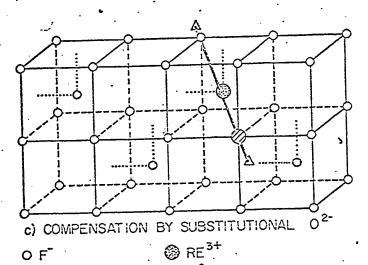


Fig. 1.1 Calcium fluoride lattice

by a divalent calcium ion. When the rare-earth trifluoride is added to CaF₂ melt, the tripositive ion replaces the divalent calcium ion, thus introducing an extra positive charge in the lattice. To preserve the charge neutrality, there must be an additional negative charge to compensate for the extra positive one. The symmetry about the rare-earth ion depends upon the various factors, among which the most important ones are the initial growing conditions, heat treatment given to the crystal, and type and amount of impurities, as all these affect the position of the charge compensator.

The charge compensation may be achieved by an interstetial F^- ion in one of the empty cubes adjacent to the rare-earth ion. The symmetry about the rare-earth ion then reduces from cubic to tetragonal (C_{4v}) , and the four-fold rotational axis C_4 will be in the [100] direction, as shown in Fig. 1.1(b). Using EPR techniques, Weber and Bierig (1) have observed this type of symmetry for Sm^{+3} , Er^{+3} and Yb^{+3} ions. Low (2) and various other investigators (3-6) have reported similar results for the other ions of the Lanthanide series. On the basis of this model, Stepanov and Feofilov (7) have explained the results of their optical spectra of Lanthanides in an oxygen-free crystal of CaF_2 (Type II).

Charge compensation can also be furnished by introducing an 0^{-2} ion into the lattice of the CaF $_2$ matrix. The 0^{-2} ion replaces one of the F $^-$ ions surrounding the

 Re^{+3} ion from the eight corners of the cube and results in trigonal symmetry (C3,,), Fig. 1.1(c). Due to an extra negative charge carried by 0^{-2} , the three fold axis (C_3) will point along the [111] direction. Forrester and Hempstead (8) have observed this type of symmetry for Tb+3. Low and Rosenberger (9) have detected the presence of trigonal symmetry after introducing the 0^{-2} ion into the crystal lattice of CaF₂Tb⁺³. They heated the crystal up to 1200°C in air for several hours. Vinokurov et al (10) and Makovsky (11) have reported similar results for Gd +3. Sierro (12), McLaughlan and Newman (13) have presented another kind of trigonal symmetry in which the charge compensation has been achieved by an OH on instead of an 0^{-2} ion. When the charge compensator is located several lattice spacings away from the rare-earth ion, the symmetry about the rare earth ion may be considered to be cubic. Evidence of such compensation has been found in the cases of Nd $^{+3}$ (14), Gd $^{+3}$ (15,16), Ce $^{+3}$ (17), Dy $^{+3}$ (18,19), and Yb^{+3} (20,21).

D. Marsh (41) has presented the calculations for ${\rm Tm}^{+2}$ trigonal centres formed by substituting an H $^-$ ion for an F $^-$ ion in a nearest neighbour position relative to a substitutional ${\rm Tm}^{+2}$ ion in alkaline earth fluoride lattices.

Charge mobility has been studied by Friedman and Low (23). Many investigators (25-29) have found that the divalent ions produced by ionizing the trivalent ions are mainly under the cubic symmetry. Merritt and co-workers

(30) found Pr⁺² in cubic sites after electrolysis.

From the spectral distribution of thermoluminescent glow peaks at 155, 206 and 333°K and the room temperature phosphorescence, Schlesinger and Whippey (24) have suggested that as the relative intensities of the various emission lines change from peak to peak, it gives an indication that the compensator associated with an Ho $^{+3}$ ion becomes mobile at about room temperature. The authors (39,40) have also pointed out that in the case of CaF₂Gd $^{+3}$, rare-earth ions in sites other than cubic are mainly responsible for the emission below RT. In the case of CaF₂Ho $^{+3}$, from excitation, emission and thermoluminescence spectra of the as received crystal and the heat treated crystal, Pai (22) has claimed that the symmetry surrounding the Ho $^{+3}$ ion in the as received crystal is predominantly cubic.

Rare-earth ions may be found at different sites in the same crystal. Examples of such symmetries for different rare-earth ions have been reported by many investigators (31-33). All the three types of symmetries have been observed for Sm $^{+3}$ and Dy $^{+3}$ (34,35). From thermoluminescence spectra of CaF $_2$ Dy $^{+3}$, Schlesinger and Kwan (38) have shown that sites of different symmetries are responsible for thermoluminescence emission, even at temperatures close to that of liquid nitrogen. Recently, by employing absorption, luminescence and thermoluminescence techniques, Schlesinger and Nara (36,37) have shown the existence of two different sites for CaF $_2$ Sm $^{+3}$ and CaF $_2$ Dy $^{+3}$ crystals.

The authors have also calculated the crystal field parameters for each site and have assigned an irreducible representation to each stark split level. They have also identified vibronic lines in CaF_2Dy^{+3} (42).

1.3 Survey of CaF2Pr+3 and CaF2Er+3

A comprehensive review of the spectra of the rareearth elements both in the gaseous state and that in some
host crystals has been made by El'Yashevich (43). An
extensive study of the spectra of rare-earth ions in
different host lattices has been carried out by Dieke et al
(44). These authors have given references dealing with the
subject dating as far back as 1906. Both theoretical and
experimental values of energy levels of tripositive rareearth ions in aqueous solution have been reported by
Carnall et al (45). Hence, in this section, only the
literature for Pr⁺³ and Er⁺³ in the matrix of CaF₂ will be
surveyed.

(a) CaF_2Pr^{+3}

The tripositive ion of Proseodymium has the electronic structure (Xe)4f² where (Xe) stands for the xenon configuration; $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$. The ground state of Pr^{+3} is 3H_4 . The luminescence spectrum of CaF_2Pr^{+3} was first reported by Stepanov and Feofilov (46). These authors have observed two types of spectra depending upon oxidizing and reduction conditions during growth of the crystal. In the second type of CaF_2Pr^{+3} , they observed

two strongest emissions, one in the blue green region and another in the red region. In type I, they were unable to see the emission from the blue green region. McClure and Kiss (47) have studied the divalent rare-earth ions produced by γ -irradiation of trivalent ions in the CaF₂ crystal.

By employing x-ray as the exciting source, luminescence spectrum studies of CaF_2Pr^{+3} were carried out by many investigators (48,49,50). From luminescence experiments, Low (49,50) has identified the position of the ${}^{1}S_{0}$ level at 46300 $\,\mathrm{cm^{-1}}$. Later on, Loh (51) claimed this level to be at 47200 ${\rm cm}^{-1}$ in the absorption spectrum of ${\rm CaF_2Pr}^{+3}$. Merz and Pershan (52) have studied the thermoluminescence spectrum of CaF₂Pr⁺³. These authors have reported that the excitation is only due to cubic sites, but the presence of another symmetry around the Pr +3 ion in the lattice of CaF_2 is possible. Recently, Hargreaves (61) has grown the crystal of CaF₂Pr⁺³ (1 %) under high vacuum conditions, with adequate F ions present during the growth. He carried out the absorption measurements with a McPherson Model 218 scanning monochromator. From his absorption measurements, he has calculated the crystal field parameters, Slater integrals and spin-orbit constant. The author has also established new positions for ^{3}P and ^{1}I multiplets.

Employing EPR techniques, Weber and Bierig (1) have carried out an extensive research work on the tripositive rare-earth ions. These authors have reported that the lowest stark split component of the ground state of Pr^{+3} is either

 Γ_1 or Γ_5 , depending upon the ratio of the crystal field parameters. U. Ranon (53) and LLW (54) have suggested that the lowest component of stark split level of the ground state under cubic symmetry is Γ_5 . Later on, by using EPR methods, McLaughlan (55) has observed the Pr $^{+3}$ ion in the CaF $_2$ matrix at the trigonal site. From the high field Zeeman effect, Masui (56) has found Pr $^{+3}$ ions at trigonal sites.

From infrared quantum counter experiments, Esterowitz and Noonan (57) have suggested an energy level scheme for CaF_2Pr^{+3} (1 %) at RT. Loh (58-60) has measured at RT and at LNT the UV absorption spectra of the Pr^{+3} ion in CaF_2 , SrF_2 and BaF_2 crystals. He has concluded that:

- l. Due to strong action of the crystal field, the ground state of the $4f^{n-1}5d$ configuration is lowered, thus the energy of the $4f \rightarrow 5d$ transition in the crystal environment is lowered by 18000 cm^{-1} as compared to that of the free ion $4f \rightarrow 5d$ transition.
- 2. At LNT because of increasing crystal field strength in the contracted lattice, the 4f \rightarrow 5d bands sharpen and shift \sim 200 cm⁻¹ towards the lower wavenumber.
 - 3. Interconfiguration transitions take place for
- (a) $4f^2 \rightarrow 4f5d$ between 4400 and 6900 cm⁻¹.
- (b) a possible $4f^2 \rightarrow 4f6s$ at 7600 cm^{-1} .
- (c) a charge transfer $F^{-}(2p^6) \rightarrow Pr^{+3}(6s)$ near 80000 cm⁻¹.

The author has also pointed out that the crystal field is dominant in the higher configurations 5d and 6s

due to the presence of electrons in the 5d and 6s shells which are not shielded from the outside as in the case of the $4 {
m f}^{\, N}$ configuration.

(b) CaF_2Er^{+3}

The triply ionized erbium ion has the electronic structure (Xe)4f¹¹ and its ground state is ⁴I_{15/2}. fluorescence of triply ionized erbium in fluorites was reported by various authors (62-64). Fluorescence experiments were also carried out by Stepanov and Feofilov (7) and they observed the green and red emissions in type II and only the green emission in type I. They attributed this difference to the presence of different charge compensators in CaF_2Er^{+3} . A survey of the spectra of divalent rare-earth ions in cubic crystals has been published by Kiss and McClure (47). Using γ -rays, these authors obtained divalent ions from the trivalent ions in CaF, crystals. They have shown that at higher energies the structure of the $4f^{N}$ configuration is destroyed by the broad band due to $4f^{N} \rightarrow 4f^{N-1}5d$ transitions. The x-ray luminescence spectrum of CaF_2Er^{+3} from 2800 Å to 10,000 Å at 300° K and 77° K has been described in reference (48).

Pollack (65) has photographed the absorption and emission spectra of $\text{CaF}_2\text{Er}^{+3}$ (0.1%) at 4°K , 77°K and 300°K . He has analysed his results by making a comparison with the spectrum of ErCl_3 . He has reported 23 distinct groups extending from 1.5 μ to 2300 Å and a continuous absorption whose edge starts around 1700 Å. The resolution of all of

these groups is poor and agreement of the levels above $36500~{\rm cm}^{-1}$ is not very good. The detailed structure of the groups and classification of individual lines according to certain symmetry surrounding the ${\rm Er}^{+3}$ ion in the ${\rm CaF}_2$ crystal is lacking. Rector et al (66) have studied the Zeeman splittings of the fluorescence of erbium in ${\rm CaF}_2$ and found that the emission from tetragonal site dominated the optical spectra. These authors did not classify the crystal-field split energy levels according to different site symmetries.

A great deal of research work on the EPR experiment has been carried out under the supervision of W. Low at the Hebrew University of Jerusalem. Many investigators (1,7,32,67-69) have reported different types of spectra due to the presence of the ${\rm Er}^{+3}$ ion at various site symmetries in the ${\rm CaF}_2$ crystal, and they have calculated the values of g. Under cubic symmetry, the lowest level of the crystal field split component of the ground state of the ${\rm Er}^{+3}$ ion in the ${\rm CaF}_2$ crystal is ${\rm \Gamma}_7$. This has been supported experimentally and theoretically by different authors (1,53,54).

Merz and Pershan (52) have carried out thermoluminescence experiments in which they claim that above RT emission is due to the presence of Er^{+3} ions at tetragonal sites. From cathodoluminescence experiments, cubic centres of the Er^{+3} ion in various crystals of fluorite types have been studied by Aizenberg et al (70).

Visible absorption spectrum of CaF₂Er⁺³ at liquid

oxygen temperatures has been carried out by Narasimhm et al (71). They have reported some new lines in E group (19104 to $18612~{\rm cm}^{-1}$), F group (19390 to 19180 ${\rm cm}^{-1}$), K group (26187 to $25878~{\rm cm}^{-1}$) and L group (26278 to 26197 ${\rm cm}^{-1}$). Concentration series and selective excitation methods have been employed by Voron'ko (74) to study the presence of various sites of the ${\rm Er}^{+3}$ ion in cubic crystals of the fluorite type. From absorption and luminescence spectra of the ${\rm Er}^{+3}$ ion in fluorite type crystals, Smirnov et al (72,73), Stolov et al (75) have constructed the stark levels of ${}^4{\rm S}_3/2$ and ${}^4{\rm I}_{15/2}$ under the trigonal symmetry.

Theoretical calculations of energy levels and transition schemes have been given by Judd and Loydon (76) and by Wybourne (77).

1.4 Aim of the Present Study

The present investigation is an attempt to study the spectroscopic properties of CaF_2Pr^{+3} and CaF_2Er^{+3} systems in general, and special considerations will be given to the following:

- 1. Absorption spectra in the spectral region of 1250 % to 2000 % by using electric discharge through different gases.
- 2. Luminescence excitation spectra in the spectral region of 2000 $^{\rm A}$ to 4500 $^{\rm A}$ in the case of CaF $_2$ Pr $^{+3}$ and that of CaF $_2$ Er $^{+3}$ from 2000 $^{\rm A}$ to 5500 $^{\rm A}$.
- 3. To identify the lines due to different symmetries surrounding the rare-earth ions.

Chapter 2 THEORY

2.1 Introductory Remarks

The theory of atomic spectra has been treated by Slater (1) and by Condon and Shortley (2). Racah (3-6) has extended the work of Condon and Shortley by developing the theory of tensor operator which is a powerful tool in dealing with the complex spectra such as that of rare earth atoms. Using group theory and quantum mechanics (7,8,9), crystal field theory has been developed by many other authors (10-17).

The theory usually starts with a system which is sufficiently simplified by omitting all types of interactions other than the central field, so that the energy levels of the system are obtained without much complications. Each additional interaction is then taken into account successively as a perturbation to the simplified system. In the central-field approximation, all states of a given configuration will have the same energy. The degeneracy for a N-4f electron system is $\binom{14}{N}$. of the degeneracy will be removed by considering the electrostatic interaction and spin-orbit interaction. the ion is placed in a crystal field, degeneracy will further be removed. Finally, by applying an external magnetic field (Zeeman effect) all the degeneracy may be

completely removed.

2.2 Classification of the States

Classification of states usually can be done by using three quantum numbers, namely L, S and J. However, for the f^N configuration, in certain cases there are some states having the same quantum number of L and S but with different energies. In order to distinguish those states having the same L and S values, additional quantum numbers other than L and S are needed.

Under certain symmetry operations, the wavefunctions of a state in the f^N configuration usually undergo a linear transformation. The irreducible representation of the symmetry operation, to which the function belongs, can serve as an additional quantum number. Furthermore, the properties of the symmetry group can be used to simplify the calculation of the matrix elements of the tensor operators, corresponding to a certain interaction. Based on this principle, Racah (6) has classified the states of f^N configuration by introducing the quantum numbers $W = (w_1, w_2, w_3)$ and $U = (U_1, U_2)$ such that $2 \ge w_1 \ge w_2 \ge w_3 \ge 0$ and $2 \ge U_1 \ge U_2 \ge 0$. Using these quantum numbers, the states of the f^N configuration may be further specified by writing the basis states as $|f^N \cap WUSL\rangle$ in which τ is a label to distinguish the remaining unseparated states.

According to the Pauli equivalence theorem, the classification of the states of the $\rm f^{14-N}$ configuration is

identical to those of the f^N configuration, and hence we have to enumerate the systems for $N \le 7$ only. The classification of the states for the f^2 and f^{11} configurations are given in Table 2.1.

2.3 Fractional Parentage

In a configuration, when three or more equivalent electrons are present, the number of multiplets becomes very large. For calculating the wavefunctions, an extremely large number of determinantal functions must be written down. Moreover, in this method there is no simple connection between the wavefunctions of ℓ^{N-1} and ℓ^{N} systems. In order to overcome these problems, the concept of fractional parentage (4-6,10,18) has been introduced. This is a powerful tool for constructing the antisymmetrised wavefunction for ℓ^{N} provided the wavefunctions of ℓ^{N-1} are known.

With this method, the eigenfunction of the \boldsymbol{f}^{N} configuration can be expressed as

$$\begin{split} \psi(\mathbf{f}^N \alpha L S) &= \sum_{\alpha', L', S'} \psi(\mathbf{f}^{N-1} \alpha' L' S'). \quad \bar{\phi}(\ell \text{sm}\ell \text{ms}) \mathbf{x} \\ & \langle \mathbf{f}^{N-1} \alpha' L' S' \mid \mathbf{f}^N \alpha L S \rangle \end{split}$$

where the summation extends over all the states $\psi(f^{N-1}\alpha^{\tau}L^{\tau}S^{\tau})$ of the complete set of the f^{N-1} configuration. α is a quantum number other than L and S. $\Phi(\ell_S m \ell_{MS})$ is the eigenfunction of the Nth electron which can be defined

TABLE 2.1 Classification of the States of the f^2 and f^{11} Configurations

· •				·
N .	v*	W	U	SL
. 2	2	(110)	(10)	3 _F
2	2	(110)	(11)	3 _P 3 _H
2	2	(200)	(20)	$^{1}D^{1}G^{1}I$
2	0	(000)	(00)	·¹s
3	3	(111)	(00)	⁴ s
3	3	(111)	(10)	⁴ F
3	3	(111)	(20)	4 D 4 G 4 I
3	3	(210)	(11)	2 _P 2 _H
3	3	(210)	(20)	$^2D^2G^2I$
. 3	3	(210)	(21)	$^{2}D^{2}F^{2}G^{2}H^{2}K^{2}L$
3	1	(100)	(10)	2 _F

 $[\]stackrel{\star}{v}$ is the seniority number.

$$\Phi(\ell s \ m\ell \ ms) = \frac{1}{r} R_{n\ell}(r) Y_{\ell}^{m\ell} (\theta \Phi). \quad \sigma(ms)$$

and
$$\langle f^{N-1}\alpha'L'S' \mid f^N\alpha LS \rangle$$

is the coefficient of fractional parentage (C.F.P.). The coefficient of fractional parentage describes how the state $\psi(f^N\alpha LS)$ is built from its parent state $\psi(f^{N-1}\alpha'L'S')$ and the coefficients can be used for the simplification of the matrix elements. For the f^N configuration C.F.P. have been calculated and tabulated by Nielson and Koster (19).

2.4 Calculation of Energy Levels

The system may be described by the non-relativistic Hamiltonian

in which the weak interactions such as spin-spin, orbitorbit, spin-other orbit, electron nuclear magnetic moment
interaction and the configuration interaction are neglected.
The first term H in (2.4.1) describes the independent
motion of each electron under the influence of field
produced by the nucleus plus fifty-four electrons of the
xenon structure.

The rest of the terms, H_1 , H_2 and H_3 are the

perturbations arising from the electrostatic interaction, spin-orbit interaction and crystal-field, respectively. As far as the energy level structure is concerned, the first term H contributes a common energy shift to all the levels in a given configuration, therefore, practically only the perturbation Hamiltonians are significant. For calculating the matrix elements of the perturbed Hamiltonian, one needs a complete set of basis states in some welldefined coupling scheme. However, in some cases, none of the well-defined coupling schemes will closely fit the real physical situation. The matrix elements of the Hamiltonian are therefore first calculated in terms of the basis states of a well-defined coupling scheme and then transformed to the actual coupling scheme at a later stage. For free ion energy levels, evaluation of the matrix elements of the Hamiltonian H_1 and H_2 are essential. detailed procedures are given in the following sub-sections (a) and (b). Evaluation of the crystal field Hamiltonian H_3 will be discussed in sub-section (c).

(a) Electrostatic Interaction

Matrix elements of the second term H_1 in equation (2.4.1) for the configuration f^N can be expressed in terms of tensor operator (2,6) and that the energy

$$E_{1} = \langle \tau SLJM_{J} \mid \sum_{i>j}^{N} \frac{e^{2}}{r_{ij}} \mid \tau' S'L'J'M_{J}' \rangle$$

$$= \sum_{k} e^{2} \langle \tau SL \mid \sum_{i>j} \frac{r^{k} <}{r_{k}^{k+1}} (C_{i}^{(k)} \cdot C_{j}^{(k)}) \mid \tau' SL \rangle \qquad (2.4.2.)$$

where r_{ij} is the distance between the two electrons, $r_{<}$ and $r_{>}$ is the distance to the nearest and farthest electron from the nucleus. The tensor operator $c_{\alpha}^{(k)}$ is defined as

$$C_{\mathbf{q}}^{(\mathbf{k})} = \left(\frac{4\pi}{2\mathbf{k}+1}\right)^{1/2} Y_{\mathbf{k}\mathbf{q}}^{(\theta \, \underline{\Phi})}$$

where Y_{kq} are the spherical harmonics.

The matrix elements so obtained are diagonal in L and S and are independent of J and M_J , as the Hamiltonian due to electrostatic interaction commutes with the operators L^2 , S^2 , J and M_J . The matrix elements can be further reduced in terms of Slater integrals F^K such that

$$E_1 = \sum_{k=0}^{3} e_k E^k$$
 (2.4.3.)

where $\mathbf{e}_{\mathbf{k}}$ are the matrices arising from the angular parts of the operators and are tabulated by Racah (6), and \mathbf{E}^{K} are defined

$$E^{\circ} = F_{\circ} - 10 F_{2} - 33 F_{4} - 286 F_{6}$$

$$E^{1} = \frac{70 F_{2} - 231 F_{4} - 2002 F_{6}}{9}$$

$$E^{2} = \frac{F_{2} - 3 F_{4} - 7 F_{6}}{9}$$

$$E^{3} = \frac{5 F_{2} - 6 F_{4} - 91 F_{6}}{3}$$

where

$$F_{k} = \frac{F^{k}}{D_{k}} = \frac{e^{2}}{D_{k}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} R_{n\ell}^{2}(r_{1}) R_{n\ell}^{2}(r_{2}) dr_{1} \cdot dr_{2}$$

and D_{K} are given in reference (2).

Assuming radial hydrogenic wavefunctions, the R.H.S. of equation (2.4.3) then can be written in terms of a single parameter F_2 such that $E_1 = (\text{constant}) \ F_2$. The parameter F_2 can be determined from experimental results. Slater radial integrals have been determined by Freeman and Watson (23). A complete tabulation of the electrostatic energy matrices for the f^N configuration has been made available by Nielson and Koster (19).

(b) <u>Spin-Orbit Interaction</u>

Using the tensor operator method of Racah (4), the J dependent matrix elements of spin-orbit interaction ${\rm H}_2$ for the ${\rm f}^N$ configuration may be expressed as

$$E_{2} = \langle f^{N} \alpha S L J M_{J} | \xi_{n \ell_{i}=1}^{N} (si \cdot \ell i) | f^{N} \alpha' S' L' J M_{J} \rangle$$

$$= \xi_{n \ell} (-1)^{J+L+S'} \begin{cases} L L' 1 \\ S' S J \end{cases} \times \langle f^{N} \alpha S L | \sum_{i=1}^{N} (si \cdot \ell i) | f^{N} \alpha' S' L' \rangle \qquad (2.4.4)$$

where $\xi_{n\ell}$ is the spin-orbit integral which is constant for a given configuration and is defined as

$$\xi_{n\ell} = \int_{0}^{\infty} R_{n\ell}^{2}(r) \xi(r) dr \quad \text{where}$$

$$\xi(r) = \frac{\hbar^{2}}{2m^{2}c^{2}ri} \frac{dU(ri)}{dri}$$

where U(ri) is the average potential experienced by the ith electron.

The spin-orbit Hamiltonian commutes with J^2 and M_J but not with L^2 and S^2 , hence its matrix elements are

diagonal in J. In the equation (2.4.4) { } is the 6-j symbol and are given in Ref. (20). Using equations (2-74, 2-35 and 2-49) of Ref. (15), the second term of the equation (2.4.4) can be simplified

$$\langle f^{N} \alpha SL | \sum_{i=1}^{N} (si \cdot \ell i) | f^{N} \alpha' S' L' \rangle$$

$$= \left[\text{$\ell(\ell+1)$ $(2\ell+1)$} \right]^{1/2} \times \langle \mathbf{f}^N \alpha \mathbf{SL} \parallel \mathbf{v}^{(11)} \parallel \mathbf{f}^N \alpha' \mathbf{S'L'} \rangle$$
 and values of $\langle \mathbf{f}^N \alpha \mathbf{SL} \parallel \mathbf{v}^{(11)} \parallel \mathbf{f}^N \alpha' \mathbf{S'L'} \rangle$

are tabulated in Ref. (19).

Several authors (21,22) have calculated the matrix elements of spin-orbit interactions for f^3 and f^4 configurations. The matrix elements for the $\ell^{4\ell+2-N}$ configuration are of the same magnitude but of opposite sign to that of ℓ^N configuration.

(c) Crystal Field

A free atom or ion possesses spherical symmetry and each J level is (2J + 1) fold degenerate. On placing the ion in the crystal, the spherical symmetry is destroyed. The degree up to which the (2J + 1) fold degeneracy of the free ion is removed, will depend upon the symmetry surrounding the ion in the crystalline matrix. For the rare earth ions, the effect of the crystal field is usually smaller than that of the Coulomb and spin-orbit interaction of the electrons, hence it may be evaluated by applying perturbation theory.

Assuming point charge model, the static crystalline

electric potential can be expanded in terms of tensor operators as:

$$V = \sum_{kq} B_{q \ i=1}^{k \ \Sigma} (C_{q}^{(k)})_{i}$$
 (2.4.5)

where the summation over k extends in principle from 0 to ∞ and that over q from -k to +k, i is the summation over the number of electrons in the f-shell and $B_{\mathbf{q}}^{\mathbf{k}}$ are parameters which can be determined experimentally by finding the best fit between the experimental and theoretical results. The tensor operator $C_{\mathbf{q}}^{(\mathbf{k})}$ is related to the spherical harmonics $Y_{\mathbf{k}\mathbf{q}}^{(\theta\Phi)}$ by the expression

$$C_{\mathbf{q}}^{(\mathbf{k})} = \left(\frac{4\pi}{2\mathbf{k}+1}\right)^{1/2} Y_{\mathbf{k}\mathbf{q}}(\theta\Phi)$$
 (2.4.6)

From equation (2.4.5), it appears that an infinite number of terms should be considered in the series expansion; however, for the f^N configuration, no more than fifteen terms are necessary for evaluation, since the matrix elements of V will be non-zero only if the following conditions are satisfied:

K should be even (Parity condition) $m'' - m' + q = 0 \text{ (otherwise the integral over } \Phi$ part will be zero.)

Once the appropriate form of the crystal field potential is decided, then the construction of the crystal field energy matrix can be performed. Under octrahedral,

tetragonal and trigonal symmetries, the crystal field potentials are

(a)
$$V_{(0_h)} = \sum_{i=1}^{N} B_o^4 \left[c_o^{(4)} + \left(\frac{5}{14} \right)^{1/2} \left(c_4^{(4)} + c_{-4}^{(4)} \right) \right] + B_o^6 \left[c_o^{(6)} - \left(\frac{7}{2} \right)^{1/2} \left(c_4^{(6)} + c_{-4}^{(6)} \right) \right]$$

where
$$B_4^4 = (\frac{5}{14})^{1/2} B_0^4$$
 and $B_4^6 = -(\frac{7}{2})^{1/2} B_0^6$.

$$(b) V(C_{4v}) = \sum_{i=1}^{N} \left[B_o^2 C_o^{(2)} + B_o^4 C_o^{(4)} + B_4^4 (C_4^{(4)} + C_{-4}^{(4)}) + B_4^6 C_o^{(6)} + B_4^6 (C_4^{(6)} + C_{-4}^{(6)}) \right]_i$$

$$(c) V(c_{3v}) = \sum_{i=1}^{N} [B_o^2 c_o^{(2)} + B_o^4 c_o^{(4)} + B_3^4 (c_{-3}^{(4)} - c_3^{(4)})$$

$$+ B_o^6 c_o^{(6)} + B_3^6 (c_{-3}^{(6)} - c_3^{(6)})$$

$$+ B_6^6 (c_{-6}^{(6)} + c_6^{(6)})]_{i}$$

From the above expressions, one can notice that only two B_q^k parameters are to be determined in the case of ${\rm O_h}$ symmetry, five for ${\rm C_{4v}}$ and six for ${\rm C_{3v}}$ symmetry.

From group theory considerations, one can infer

the number of components into which a "free ion" energy level under the crystalline environment of definite symmetry will split. The crystal field split levels may be designated by the appropriate irreducible representations. Under $\mathrm{O_h}$, $\mathrm{C_{4v}}$ and $\mathrm{C_{3v}}$ symmetries, the number of levels and the combinations of irreducible representation for Pr^{+3} and Er^{+3} ions are given in Tables 2.2 to 2.7, respectively.

The crystal field energy matrices can be calculated in terms of a basis $|\alpha SLJ^{\delta}\Gamma_{\mathbf{r}}\rangle$ involving the irreducible representation ${}^{\delta}\Gamma_{\mathbf{r}}$ of the point groups. The irreducible representation or the crystal quantum number $\mu=|\mathbf{q}|$ can be used as good quantum numbers as the $\alpha SLJJ_{\mathbf{Z}}$ scheme can usually no longer adequately specify the states.

By employing the tensor operator techniques (10,15,24-28) the matrix elements of the crystalline potential V for the $f^{\rm N}$ configuration can be expressed as

$$\langle \mathtt{f}^{\mathrm{N}} \mathtt{\alpha} \mathtt{SLJJ}_{\mathbf{z}} \ | \mathtt{V} | \ \mathtt{f}^{\mathrm{N}} \mathtt{\alpha}^{!} \mathtt{SL}^{!} \mathtt{J}^{!} \mathtt{J}^{!}_{\mathbf{z}} \ \rangle$$

$$= \sum_{k,q} B_q^k \langle f^N \alpha SLJJ_z \mid \sum_{i=1}^N (C_q^{(k)}) | f^N \alpha' S L'J'J_z' \rangle$$

$$= \sum_{\mathbf{k},\mathbf{q}} \mathbf{B}_{\mathbf{q}}^{\mathbf{k}} \langle \mathbf{f}^{\mathbf{N}} \alpha \mathbf{SLJJ}_{\mathbf{z}} | \mathbf{C}_{\mathbf{q}}^{(\mathbf{k})}(1) + \mathbf{C}_{\mathbf{q}}^{(\mathbf{k})}(2) + \dots + \mathbf{C}_{\mathbf{q}}^{(\mathbf{k})}(\mathbf{N}) | \mathbf{f}^{\mathbf{N}} \alpha^{\mathsf{T}} \mathbf{S} \mathbf{L}^{\mathsf{T}} \mathbf{J}^{\mathsf{T}} \mathbf{J}_{\mathbf{z}}^{\mathsf{T}} \rangle \times \langle \mathbf{f} \| \mathbf{C}^{(\mathbf{k})} \| \mathbf{f} \rangle$$

$$= \sum_{k,q} B_q^k \langle f^N \alpha SLJJ_z | U_q^{(k)} | f^N \alpha' SL'J'J_z' \rangle \times \langle f | | C^{(k)} | | f \rangle \qquad (2.4.7)$$

TABLE 2.2 . Splitting of Levels of Pr^{+3} Under $\operatorname{O_h}$ Symmetry

J	2J + 1	Irreducible Representations	No. of Levels
0	1 .	¹r ₁	1
1	3	3 _{r4}	1
2	5	${}^{2}\Gamma_{3} + {}^{3}\Gamma_{5}$	2
3	7	$^{1}\Gamma_{2} + ^{3}\Gamma_{4} + ^{3}\Gamma_{5}$	3
4	9	$\frac{1}{\Gamma_1} + \frac{2}{\Gamma_3} + \frac{3}{4} + \frac{3}{5}$	4
5	11	$^{2}_{7_{3}} + 2^{3}_{7_{4}} + ^{3}_{5}$	4
6	13	${}^{1}\Gamma_{1} + {}^{1}\Gamma_{2} + {}^{2}\Gamma_{3} + {}^{3}\Gamma_{4} + {}^{2}\Gamma_{5}$	6

TABLE 2.3 Splitting of Levels of \Pr^{+3} Under C_{4v} Symmetry

J	2J + 1	Irreducible Representations	No. of	Levels
0	1	¹ г	1	
1 .	3	1 _{r2} + 2 _{r5}	· · · 2	
2	5	$^{1}_{\cdot \Gamma_{1}} + ^{1}_{\Gamma_{3}} \div ^{1}_{\Gamma_{4}} \div ^{2}_{\Gamma_{5}}$	4	
3	7	$^{1}_{r_{2}} + ^{1}_{r_{3}} + ^{1}_{r_{4}} + ^{2}_{r_{5}}$. 5	
4	9	$2^{1}\Gamma_{1} + {^{1}\Gamma_{2}} + {^{1}\Gamma_{3}} + {^{1}\Gamma_{4}} + 2^{2}\Gamma_{5}$. 7	
5	11	$\frac{1}{\Gamma_1} + 2^{\frac{1}{\Gamma_2}} + \frac{1}{\Gamma_3} + \frac{1}{\Gamma_4} + 3^{\frac{2}{\Gamma_5}}$	8	
6	13	$2^{1}\Gamma_{1} + {^{1}}\Gamma_{2} + 2^{1}\Gamma_{3} \div 2^{1}\Gamma_{4} + {^{2}}\Gamma_{5}$	10	

TABLE 2.4 . Splitting of Levels of Pr^{+3} Under C_{3v} Symmetry

J	2J + 1	Irreducible Representations	No. of	Levels
0	1	¹ г ₁	1	
1	3	$r_2 + r_3$	2	
2	5	$^{1}\Gamma_{1} + 2^{2}\Gamma_{3}$	3	•
3	7 ·	$^{1}\Gamma_{1} + 2^{1}\Gamma_{2} + 2^{2}\Gamma_{3}$	5	
4	9	$2^{1}\Gamma_{1} + {^{1}}\Gamma_{2} + 3^{2}\Gamma_{3}$	6	
5	11	$^{1}\Gamma_{1} + 2^{1}\Gamma_{2} + 4^{2}\Gamma_{3}$. 7	. '
6	13	$3^{1}\Gamma_{1} + 2^{1}\Gamma_{2} + 4^{2}\Gamma_{3}$. 9 .	

TABLE 2.5 Splitting of Energy Levels of the ${\rm Er}^{+3}$ Ion Under ${\rm O_h}$ Symmetry

J	2J + 1	Irreducible Representations	No. of Levels
1/2	. 2	² r ₆	1
3/2	4	• 4 _{r8}	1
5/2	6	$^{2}\Gamma_{7} + ^{4}\Gamma_{8}$	2
7/2	. 8	$^{2}\Gamma_{6} + ^{2}\Gamma_{7} + ^{4}\Gamma_{8}$	3
9/2	10	² r ₆ + 2 ⁴ r ₈	3
11/2	12	${}^{2}\Gamma_{6} + {}^{2}\Gamma_{7} + {}^{2}\Gamma_{8}$	4
13/2	14	$^{2}\Gamma_{6} + 2^{2}\Gamma_{7} + 2^{4}\Gamma_{8}$	5
15/2	16	$^{2}\Gamma_{6} + ^{2}\Gamma_{7} + ^{3}\Gamma_{8}$	5

TABLE 2.6 . Splitting of Energy Levels of the ${\rm Er}^{+3}$ Ion Under C $_{4v}$ Symmetry

J	2J + 1	Irreducible Representations	No.	of	Levels
1/2	2	² г ₆		1	:
3/2	4	$^{2}\Gamma_{6} + ^{2}\Gamma_{7}$		2	
5/2	6	${}^{2}\Gamma_{6} + {2}^{2}\Gamma_{7}$		3	
7/2	. 8	$2^{2}\Gamma_{6} + 2^{2}\Gamma_{7}$		4	
9/2	10	$3^{2}\Gamma_{6} + 2^{2}\Gamma_{7}$		5	
11/2	12	$3^2\Gamma_6 + 3^2\Gamma_7$	•	6	
13/2	14	$3^2\Gamma_6 + 4^2\Gamma_7$		7	
15/2	16	$4^{2}\Gamma_{6} + 4^{2}\Gamma_{7}$		·8	

TABLE 2.7 Splitting of Energy Levels of the ${\rm Er}^{+3}$ Ion Under ${\rm C}_{3{\rm v}}$ Symmetry

	·	·		
J	2J + 1	Irreducible Representations	No. of	Levels
1/2	2	² r ₄	1	
3/2	4	$(^{1}\Gamma_{5} + ^{1}\Gamma_{6}) + ^{2}\Gamma_{4}$	2	
5/2	6	$({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 2{}^{2}\Gamma_{4}$	3	
7/2	8	$({}^{1}\Gamma_{5} + {}^{1}\Gamma_{6}) + 3{}^{2}\Gamma_{4}$	4	
9/2	10	$2(^{1}\Gamma_{5} + ^{1}\Gamma_{6}) + 3^{2}\Gamma_{4}$	5	:
11/2	12	$2(^{1}\Gamma_{5} + ^{1}\Gamma_{6}) + 4^{2}\Gamma_{4}$	6	
13/2	14	$2(^{1}\Gamma_{5} + ^{1}\Gamma_{6}) + 5^{2}\Gamma_{4}$	7	
15/2	16	$3(^{1}\Gamma_{5} + ^{1}\Gamma_{6}) + 5^{2}\Gamma_{4}$. 8	

where $U_q^{(k)}$ is the sum of N single particle tensor operators. The operators $C_q^{(k)}(1)$... $C_q^{(k)}(N)$ are the unit tensor operators defined as $C_q^{(k)} = \begin{pmatrix} 4\pi \\ 2k+1 \end{pmatrix}^{1/2} Y_{kq}(\theta \Phi)$ and each of them operates respectively on the corresponding electron orbital. The quantity

$$\langle \ell \| c^{(k)} \| \ell \rangle = (-1)^{\ell} [(2\ell + 1)(2\ell' + 1)]^{1/2} \begin{pmatrix} \ell & k & \ell \\ 0 & 0 & 0 \end{pmatrix} (2.4.8)$$
or
$$\langle 3 \| c^{(k)} \| 3 \rangle = (-1)^{3} [7 \times 7]^{1/2} \begin{pmatrix} 3 & k & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

Since the matrix elements of the tensor operators are diagonal in the spin and by using Wigner-Eckert theorem, equation (2.4.7) can be further simplified as

$$\langle \mathbf{f}^{N} \alpha \mathbf{SLJJ}_{\mathbf{z}} | \mathbf{U}_{\mathbf{q}}^{(\mathbf{k})} | \mathbf{f}^{N} \alpha^{\mathsf{T}} \mathbf{SL}^{\mathsf{T}} \mathbf{J}^{\mathsf{T}} \mathbf{J}_{\mathbf{z}}^{\mathsf{T}} \rangle = (-1)^{\mathbf{J} - \mathbf{J}_{\mathbf{z}}} \begin{pmatrix} \mathbf{J} & \mathbf{K} & \mathbf{J}^{\mathsf{T}} \\ -\mathbf{J}_{\mathbf{z}} & \mathbf{q} & \mathbf{J}_{\mathbf{z}}^{\mathsf{T}} \end{pmatrix} \times \langle \mathbf{f}^{N} \alpha \mathbf{SLJ} | | \mathbf{U}^{(\mathbf{k})} | | \mathbf{f}^{N} \alpha^{\mathsf{T}} \mathbf{SL}^{\mathsf{T}} \mathbf{J}^{\mathsf{T}} \rangle$$

$$(2.4.9)$$

where

$$\langle f^{N} \alpha S L J \| U^{(k)} \| f^{N} \alpha' S L' J' \rangle = (-1)^{S + L + J' + K} [(2J + 1)(2J' + 1)]^{1/2} \times \begin{cases} J & J' & K \\ L' & L & S \end{cases}$$

$$\langle f^{N} \alpha S L \| U^{(k)} \| f^{N} \alpha' S L \rangle \qquad (2.4.10)$$

The doubly reduced matrix elements of $U^{(k)}$ have been tabulated by Nielson and Koster (19) or they can be calculated by using the coefficients of fractional-

parentage (e.g. equation 2-92 of reference (15) can be used).

The values of 3-j () and 6-j $\{$ $\}$ symbols are also made available by Rotenberg et al (20). As all the quantities in the above equations are known, except $B_q^{k_1}$ s which are treated as parameters to be determined experimentally, hence one can calculate the matrix elements of the crystal field potential V.

Margolis (29) has diagonalized the complete crystal field energy matrices for $4f^2$ configuration including the effects of intermediate coupling and the crystal field mixing of the free ion levels. In order to get better agreement between the experimental and theoretical results, recently Carnall et al (30) have made calculations including configuration interaction for LaF_3Er^{+3} and $ErCl_3.6H_2O$.

2.5 Intensity and Transition Selection Rules for Rare Earth Ions in Crystals

Intensity of a spectral line emitted from a state $|\alpha JJ_z\rangle$ to state $|\alpha'J'J_z'\rangle$ depends upon (1) the transition probability $T(\alpha JJ_z,\alpha'J'J_z')$,. (2) $\bar{\nu}$ the wavenumber of the transition, and (3) the number of atoms $N(\alpha JJ_z)$ in the state $|\alpha JJ_z\rangle$.

i.e. $I(\alpha JJ_z, \alpha'J'J_z') = N(\alpha JJ_z) hc\overline{\nu} T(\alpha JJ_z; \alpha'J'J_z')$.

The total transition probability between two states is determined by the following three probabilities:

$$T_{\text{Dipole}} = \frac{64\pi^4}{3\text{h}} \, \bar{\nu}^3 \, | \, \langle \alpha J J_z | P | \alpha^{\dagger} J^{\dagger} J_z^{\dagger} \rangle |^2$$

$$T_{\text{Mag}} = \frac{64\pi^4}{3\text{h}} \, \bar{\nu}^3 \, | \, \langle \alpha J J_z | M | \alpha^{\dagger} J^{\dagger} J_z^{\dagger} \rangle |^2$$

$$T_{\text{Quad}} = \frac{32\pi^6}{5\text{h}} \, \bar{\nu}^5 \, | \, \langle \alpha J J_z | Q | \alpha^{\dagger} J^{\dagger} J_z^{\dagger} \rangle |^2$$

where P, M and Q are the electric dipole, magnetic dipole and electric quadrupole moments operators, respectively. h is Planck's constant and $\bar{\nu}$ is the wavenumber, corresponding to the transition.

Within the same configuration, for a free ion the electric dipole transitions are parity forbidden, so the transitions are made possible through the magnetic dipole and electric quadrupole. However, when the rare earth ion is placed into the composition of a crystal lattice, the electric dipole transition within f^{N} configuration becomes allowed through the mixing of states of opposite parity (31,32). Recent studies have indicated that for rare earth ions in crystal, electric dipole type transitions are predominant. Van Vleck (31) and Hoogschagen et al (32) have found that the intensity of quadrupole emission is less than the intensity of magnetic dipole emission, while the intensity of electric dipole emission is noticeably greater than the previous two. Hence, in the present work, only the electric dipole transition will be considered for the Pr^{+3} and Er^{+3} in the matrices of CaF_2 . Carnall

et al (34), Rahman (35) have treated the optical emission intensity for Er^{+3} ion in different host lattices. The transition probability can also be written in terms of the oscillator strength $f(\alpha J, \alpha^{i}J)$;

$$T(\alpha J J_z, \alpha' J' J_z') = \frac{8\pi^2 e^2 v^2}{mc^3} f(\alpha J, \alpha' J')$$

where
$$f(\alpha J, \alpha' J') = \frac{8\pi^2 mc}{3e^2 h\lambda} \frac{S(\alpha J; \alpha' J')}{2J+1}$$

 λ is the wavelength in A^O and $S(\alpha J, \alpha'J')$ is the linestrength. For electric dipole transitions, the linestrength has been given (15) as

$$S^{1/2}(\alpha J; \alpha' J') = (-1)^{J+L'+S+1} [(2J+1)(2J'+1)]^{1/2} x \begin{cases} J & 1 & J' \\ L' & S & L \end{cases} x$$

$$[-e\langle\alpha SL \| \sum_{i=1}^{r} C_{i}^{(1)} \| \alpha' SL'\rangle]$$

As pointed out previously, for a free ion, electric dipole transitions within the same configuration are parity forbidden, and thus any explanation of the observed spectra of inter configuration of crystals must concern itself with noncentro-symmetric interactions. Oflet et al (33) have derived selection rules which can be applied to crystal spectra. These rules are as follows:

$$\Delta \ell = \pm 1$$
, $\Delta S = 0$, $\Delta L \leq 2\ell$; $\Delta J \leq 6$

The first selection rule means that the f^N configuration can interact only with $4f^{N-1}5d$ or $4f^{N-1}5g$ configuration. In case of strong spin-orbit interaction, the second and

third selection rules may break down and for practical purposes only the fourth selection rule holds.

Since the stark-split components of the crystal spectra are also labelled by the crystal quantum number or by irreducible representation of a symmetry group, additional selection rules other than the ones given above are needed for the analysis of crystal spectra. It is known that the transition between two states is allowed if the direct product $\Gamma_{\bf i} \times \Gamma_{\bf o} \times \Gamma_{\bf f}$ contains the identity representation ${}^1\Gamma_{\bf l}$. Here $\Gamma_{\bf o}$ is the representation to which the particular transformation operator belongs, $\Gamma_{\bf i}$ and $\Gamma_{\bf f}$ are the initial and final states, respectively. The allowed transitions for \Pr^{+3} and \Pr^{+3} in some symmetries are given in Tables 2.8 to 2.13.

2.6 Configuration Interaction

For a given configuration, the energy levels obtained by the diagonalization of the combined electrostatic and spin-orbit interactions, usually deviate considerably from the observed energy levels (22,36-40). This difference is attributed to the configuration interaction. The configuration interaction has been divided into two types: (a) strong configuration interaction, and (b) weak configuration interaction depending upon the strength of the Coulomb field between the perturbed and perturbing configurations. For strong configuration interaction, all the electrostatic interactions within and between the

TABLE 2.8

Electric Dipole Transition and Polarization for Er⁺³ Under O_h Symmetry

	г ₆	Γ ₇	Γ8
г ₆	a	f	a
<u>Γ</u> ₇	f	a	а
Г ₈	a	а	а

TABLE 2.9

Electric Dipole Transition and Polarization for Er^{+3} Under C_{3v} Symmetry

		
	Γ ₄	$(\Gamma_5 + \Gamma_6)$
Γ ₄ .	π a σ	σ a
$(r_5 + r_6)$	σ a	π f

Allowed Transition

f Forbidden Transition
π,σ Respective Polarization

TABLE 2.10

Electric Dipole Transition and Polarization for Er^{+3} Under $\mathrm{C}_{4\mathrm{v}}$ Symmetry

	Γ ₆	Γ ₇
Γ ₆	π a σ	σ a
·r ₇	σ a	π a

TABLE 2.11

Electric Dipole Transition and Polarization For \Pr^{+3} Under O Symmetry

	Γ_1	Γ ₂	Γ ₃	Γ ₄	Γ ₅
$\Gamma_{\mathbf{l}}$	f	f	f	a	f
Γ ₂	f	f	f	f	a
Γ ₃	f	f	f	а	a
Γ ₄	a	f	a	a	a
Γ ₅	f	a	a	a	a

TABLE 2.12

Electric Dipole Transition and Polarization For \Pr^{+3} Under C_{3v} Symmetry

	Γ ₁	Γ2	Γ3
г ₁	π a .	f	σ a
r ₂	. f	α	a ^ơ
гз	a σ	a o	a π

TABLE 2.13

Electric Dipole Transition and Polarization For Pr^{+3} Under C_{4v} Symmetry

	Γ1.	Γ ₂	Г ₃	Γ ₄	Γ ₅
Γ	aπ	f	f	f	a σ
Γ ₂	f	aπ	f	f	a o
Γ ₃	f	f	aπ	f	a o
Γ ₄	f	f	f	π a	a σ
Γ ₅	aσ	a o	aσ	aσ	a n

connected configurations are taken into account, but the effect of weak configuration interaction can be considered by modifying the energy matrices of the principal electron configuration. The resultant eigenvectors obtained by diagonalization can be expressed in terms of linear combination of the states of the connected configurations.

In the case of free ion, configuration interaction occurs between the configurations of the same parity.

Crystal field couples configurations of both parities and it introduces an additional configuration mixing. Using the second order perturbation, Wybourne and Rajnak (41) have calculated the correction factor which is to be added to each electrostatic matrix element; i.e.

$$\Delta C(\alpha LS; \alpha' LS) = \sum_{k} P^{k} \langle f^{N} \alpha LS |_{\mathbf{i} \geq \mathbf{j}}^{N} (U_{\mathbf{i}}^{(k)} \cdot U_{\mathbf{j}}^{(k)}) |_{\mathbf{f}}^{N} \alpha' LS \rangle$$

where P^k are the parameters depending on the radial integrals and the excitation energy. For even values of k the effect has been included in the Slater radial integrals, but for odd k¹s the correction factor is modified as

$$\delta(\alpha LS; \alpha^{\dagger}LS) [\alpha L(L+1) + \beta G(G_2) + \gamma G(R_7)]$$

where α , β and γ are linear combinations of radial integrals and are treated as adjustable parameters which can be determined from the experimental results. $G(G_2)$ and $G(R_7)$ are the eigenvalues of Casimir's operators (10) for the groups G_2 and R_7 , which are used to classify the states

of the f^N configuration.

Eisentein (42-44) has shown that a single set of crystal field parameters is not sufficient for calculating the crystal field levels for the whole spectrum. The discrepancy is due to the configuration interaction as the crystal field parameters do change due to the configuration interaction (45). The influence of configuration interaction is taken into account by replacing each matrix element of the crystal field potential

$$\langle f^{N} \alpha SLJJ_{z} | B_{q}^{k} c_{q}^{(k)} | f^{N} \alpha' SL'J'J_{z}^{'} \rangle$$

by

$$(1 + \Delta c) \langle f^N \alpha SLJJ_z | B_q^k C_q^{(k)} | f^N \alpha' SL'J'J_z' \rangle$$

where Δc is the correction factor due to configuration interaction. The correction factor consists of two parts, one part corresponds to the configuration mixing purely by the crystal field and the second part corresponds to an electrostatically correlated crystal field interaction. Both these parts have been defined in equations (6) and (7) of reference (46). Recently, W. T. Carnall et al (33) have considered the effect of configuration interaction in the case of LaF₃Er⁺³ and ErCl₃6H₂O and have improved the agreement between the experimental and theoretical results.

Chapter 3 EXPERIMENTAL

3.1 Excitation Spectra of CaF₂Er⁺³ and CaF₂Pr⁺³

The crystals used in the present work were obtained from the Harshaw Chemical Company and from Optovac Inc. The exciting light from a 1000 watt xenon lamp, Oriel Model C-60-50, was focussed on the entrance slit of a 1 meter McPherson 225 monochromator (for a detailed description, see section 4.1). The light source has a continuum from 2000 Å to 6000 Å as shown in Fig. 3.1.

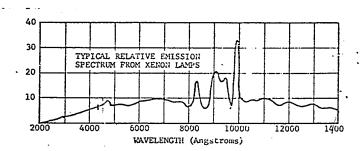


Fig. 3.1 Xenon continuum from 2000 to 6000 .

A crystal 12 \times 8 \times 2 mm was placed in the crystal holder of a custom built Andonian vacuum cryostat fitted with a copper-constant thermocouple for recording the temperature of the crystal. The light coming out from the exit slit of the monochromator was focussed on the large face of the crystal facing the monochromator. face (12 x 8 mm) of the crystal was facing the entrance slit of the home made grating spectrograph with a low fnumber about 2.5 and of medium resolution; i.e., better than 0.5 Å in the first order. The entrance slit of the spectrograph was always kept at 0.3 mm. A photomultiplier tube, type 9514S, supplied by the McPherson Company, was fixed on the exit slit of the spectrograph. The photocurrent from the photomultiplier was fed to a Keithley 410 micro-microammeter, the output of which was recorded by a strip chart recorder model 7128A supplied by Hewlett-Packard. The experimental set-up is shown in Fig. 3.2.

The home-made spectrograph was set for the green spectral region for CaF_2Er^{+3} (0.1%). The excitation spectrum in the range 2000 Å to 5500 Å was recorded at room and at liquid nitrogen temperatures. The experiment was performed with crystals obtained from Optov Inc. and Harshaw Chemical Co. The results were identical in both cases except that the intensity of some of the components were strong in one sample and weak in the other sample (Fig. 3.15, 3.18,3.20,3.21). One energy level, $^4D_{5/2}$ at 2600 Å, was absent in the sample obtained from Optov Inc. A complete

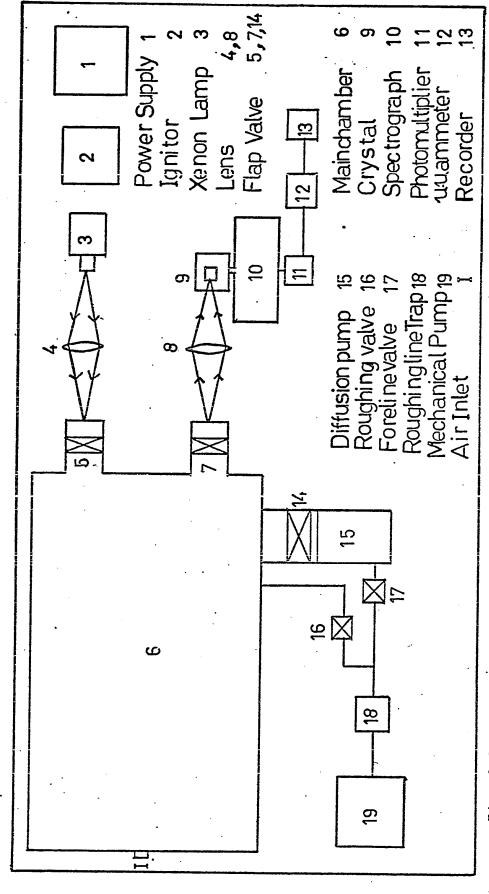


Fig. 3.2 Experimental set-up for excitation spectrum.

excitation spectrum of CaF₂Er⁺³ (0.1 %) from 3000 Å to 5500 Å at LNT is shown in Fig. 3.3, and its SLJ assignments are in accordance with reference (1). The results for individual groups, at RT and at LNT, are shown in figs. 3.4 to 3.19. Peaks are numbered for future use and their energy has been expressed in cm⁻¹ in Table 3.2.A summary of these figures, along with their experimental conditions, is presented in Table 3.1.

For recording the excitation spectrum of CaF₂Pr⁺³ (0.1 %), the home-made spectrograph was set for the blue green spectral region. The complete excitation spectrum of CaF₂Pr⁺³ from 3400 Å to 4500 Å at LNT is shown in Fig. 3.23. The SLJ assignments are made in accordance with energy levels in aqueous solution (2). The results for individual groups at LNT and RT are shown in Figs. 3.24 to 3.28. The experiment was repeated with different concentrations of the Pr⁺³ ion in the CaF₂ crystal and we found that the intensity decreased with increasing concentration of the Pr⁺³ ion. Peaks are numbered for future use and their energies have been expressed in cm⁻¹ in Table 3.4.A summary of these figures, along with their experimental conditions, is presented in Table 3.3.

3.2 Emission Spectra of CaF₂Er⁺³ and CaF₂Pr⁺³

For photographing the emission spectra of CaF_2Er^{+3} and CaF_2Pr^{+3} , the experimental set-up was the same as shown in Fig. 3.2, except that the photomultiplier was replaced

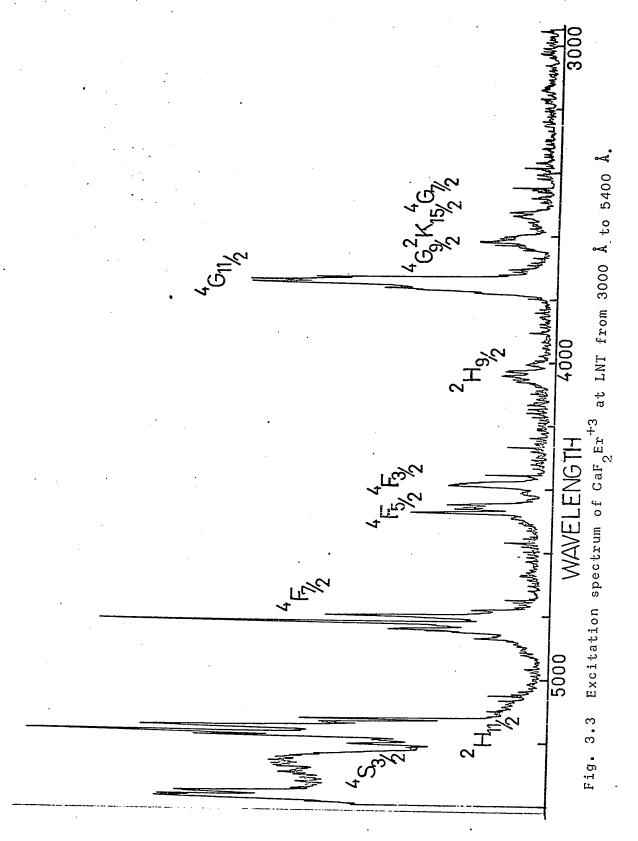


TABLE 3.1

Summary of the Figures Regarding the Excitation Spectrum of ${\tt CaF}_2{\tt Er}$

Fig. No.			Crystal		Temperature	Spectral	l Range
•	As-r	eceive	d crystal	(Optovac)	RT	•⊲	5500
•	=	=	=	=	z	• ~	5050
•	=	Ξ	=	=	=	·~	4900
3.7	=	=	=	=	=	4350 A to	4600 \$
•	=	=	=	=	=	∘ ⊲	4150
•	=	=	=	=	=	•	3820
٦,	=	=	=	=	÷	∘ ⊲	3700
•	=	=	=	=	=	•	3200
۲.	Ξ,	=	=	=	LNT	•⊲	5500
• 7	=	=	=	=	=	·~	5250
⁻.	=	=	=	=	=	•⊲	4900
• 1	=	=	z	=	=	•<	4550
۲.	=	=	=	=	=	•	4100
7	= :	=	=	=	=	·~	3820
٦.	=	=	=	z	=	·~	3650
7	=	=	=	=	=	·~	3200
c,	As-re	ceived	crystal	(Harshaw)	=	·	4550
3	=	=		=	=	;	3650
?	=	=	=	=	=	; o-	3000

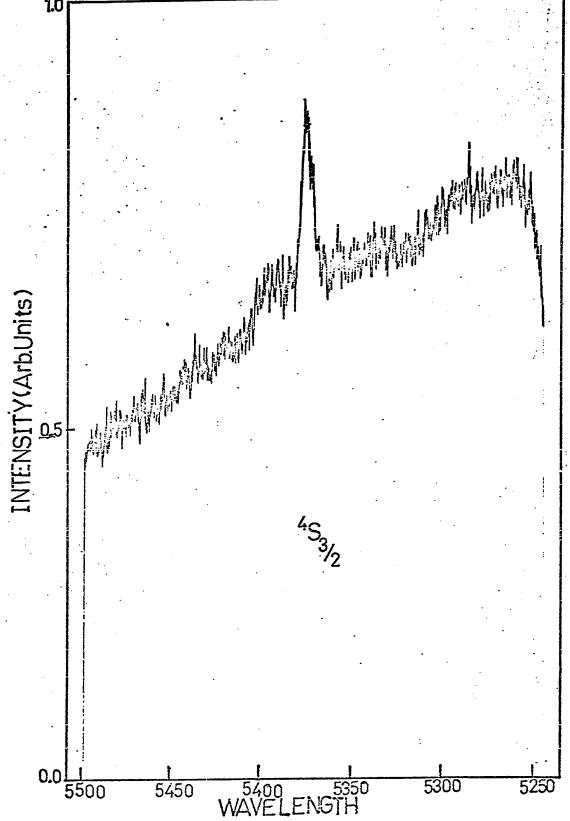


Fig. 3.4 Excitation spectrum of CaF $_2$ Er $^{+3}$ at RT from 5250 Å to 5500 Å.

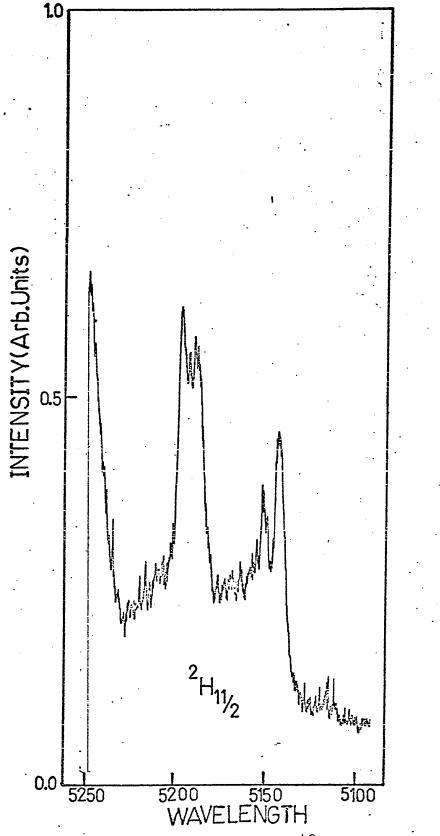


Fig. 3.5 Excitation spectrum of CaF₂Er. at RT from 5100 Å to 5250 Å.

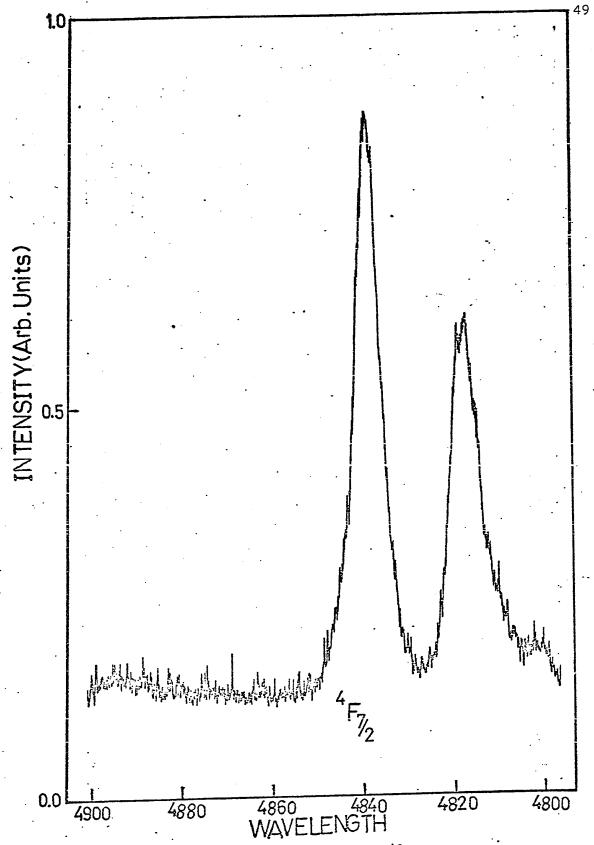


Fig. 3.6 Excitation spectrum of CaF₂Er at RT from 4800 Å to 4900 Å.

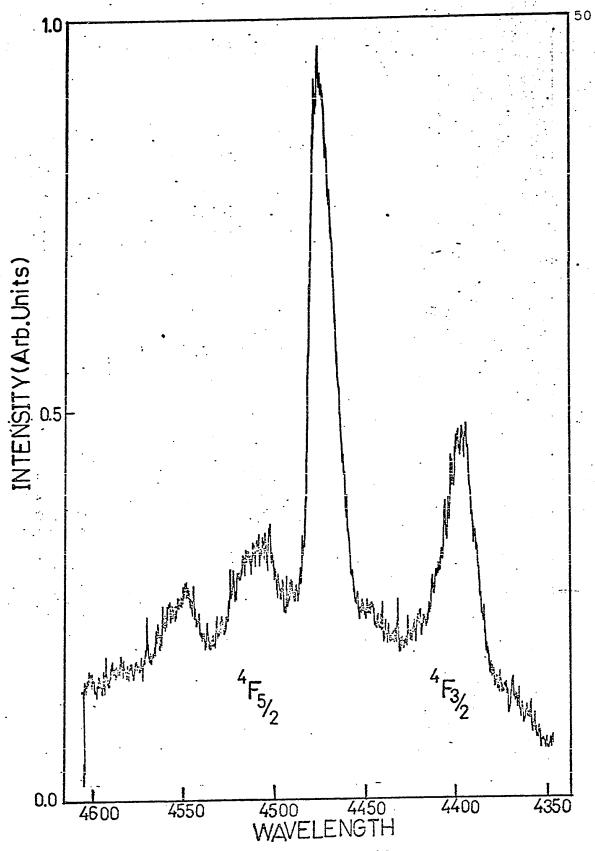


Fig. 3.7 Excitation spectrum of CaF₂Er⁺³ at RT from 4350 Å to 4600 Å.

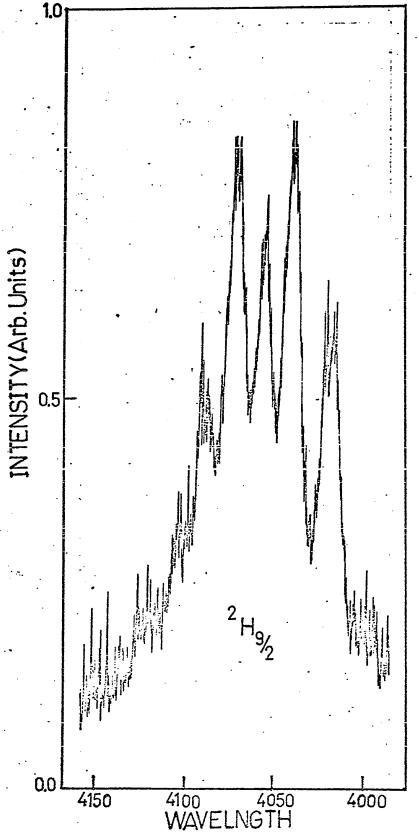


Fig. 3.8 Excitation spectrum of CaF₂Er⁺³ at RT from 4000 Å to 4150 Å.

Fig. 3.9 Excitation spectrum of CaF₂Er⁺³ at RT from 3720 Å to 3820 Å.

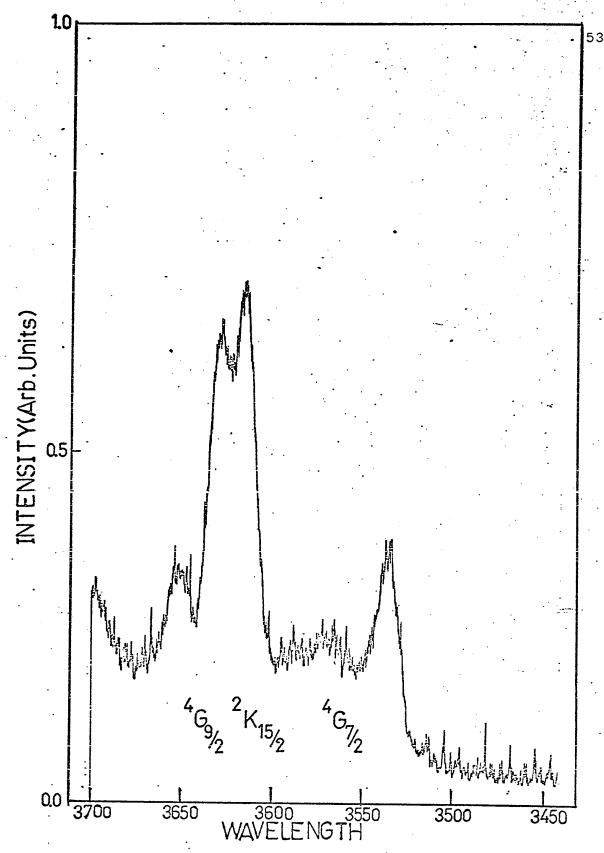
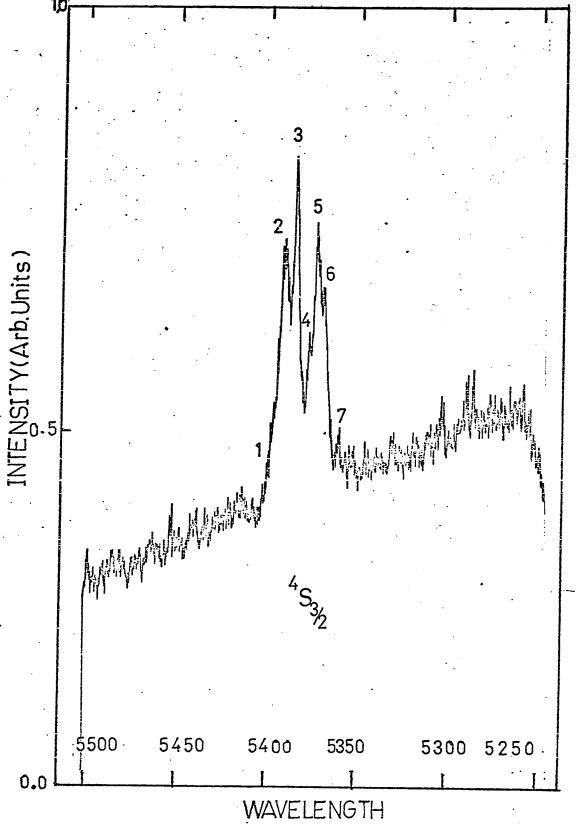



Fig. 3.10 Excitation spectrum of CaF₂Er⁺³ at RT from 3450 Å to 3700 Å.

54

Fig. 3.11 Excitation spectrum of CaF $_2$ Er $^{+3}$ at RT from 2200 Å to 3200 Å.

Excitation spectrum of CaF $_2$ Er $^+3$ at LNT from 5250 Å to 5500 Å. Fig. 3.12

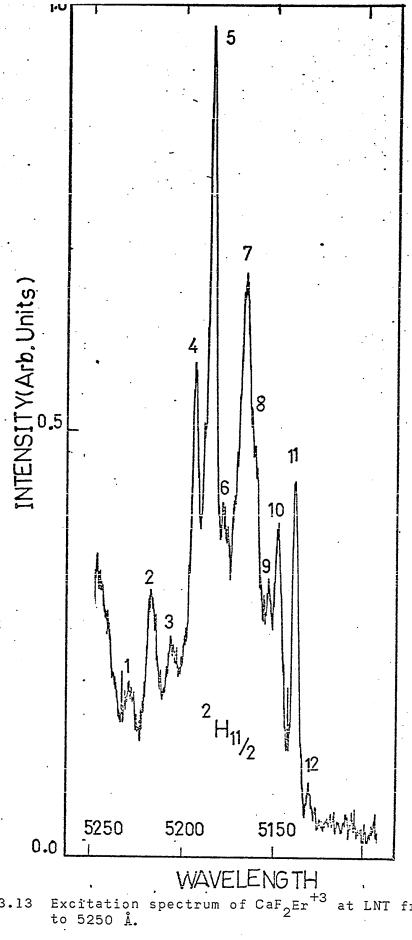


Fig. 3.13 at LNT from 5100 Å

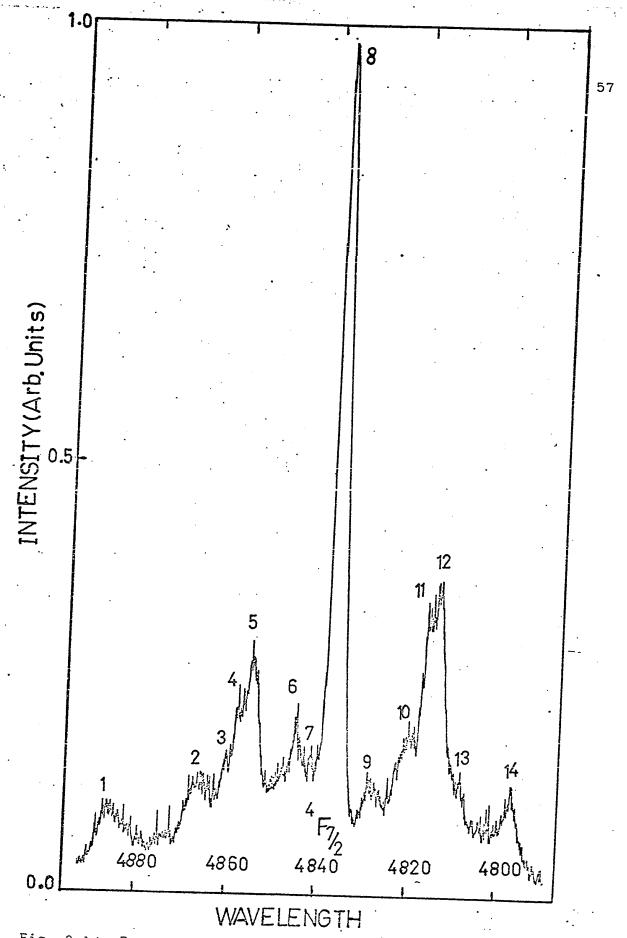


Fig. 3.14 Excitation spectrum of CaF_2Er^{+3} at LNT from 4800Å to 4900Å

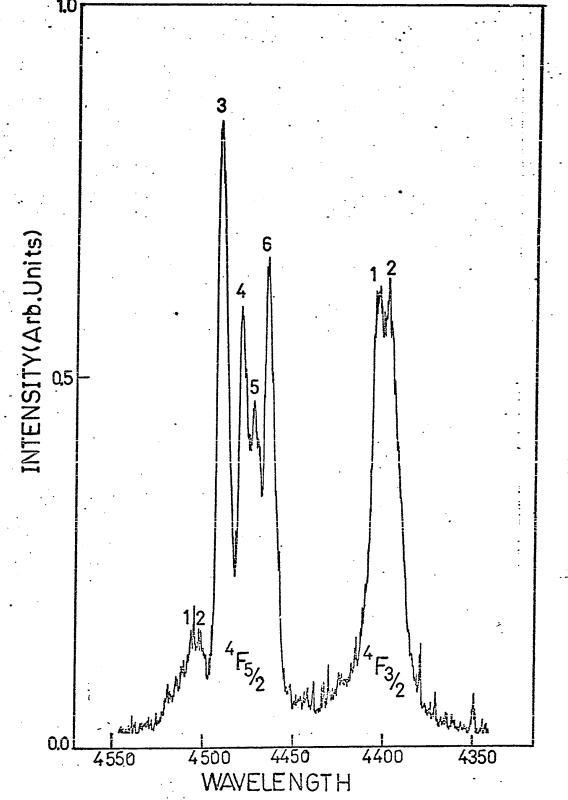


Fig. 3.15 Excitation spectrum of CaF $_2$ Er $^{+3}$ at LNT from 4350 Å to 4550 Å.

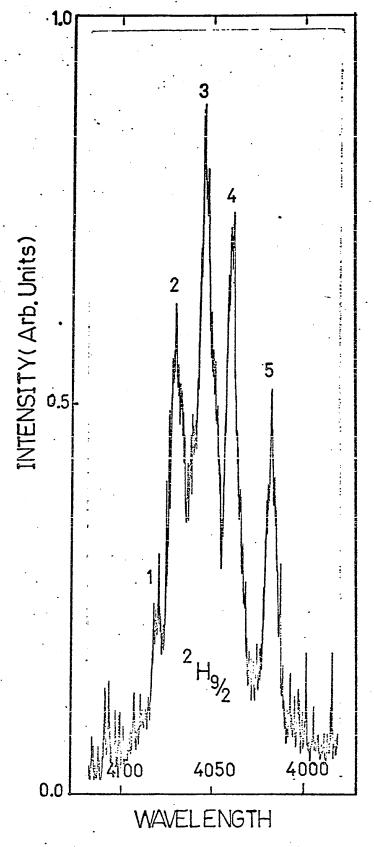


Fig. 3.16 Excitation spectrum of CaF₂Er⁺³ at LNT from 4000 Å to 4100 Å.

......

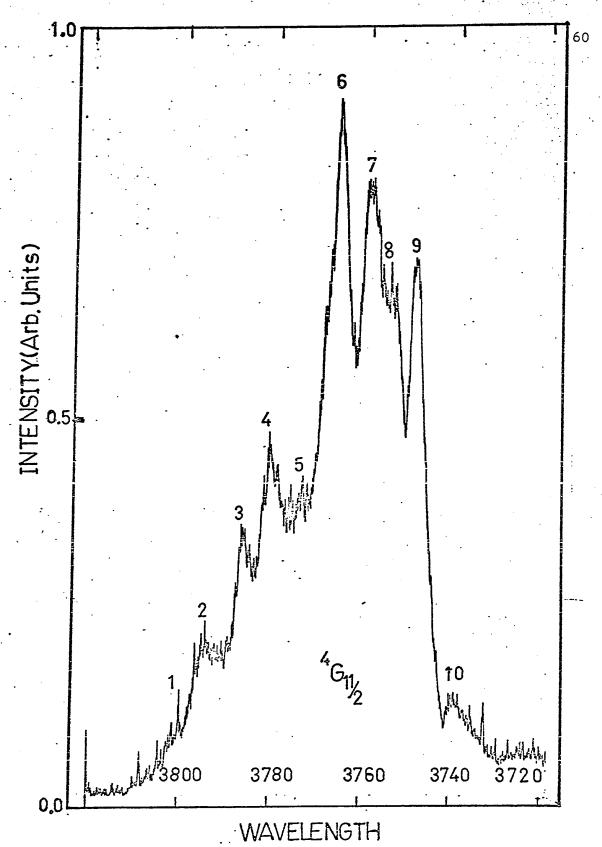


Fig. 3.17 Excitation spectrum of CaF_2Er^{+3} at LNT from 3720 Å to 3820 Å.

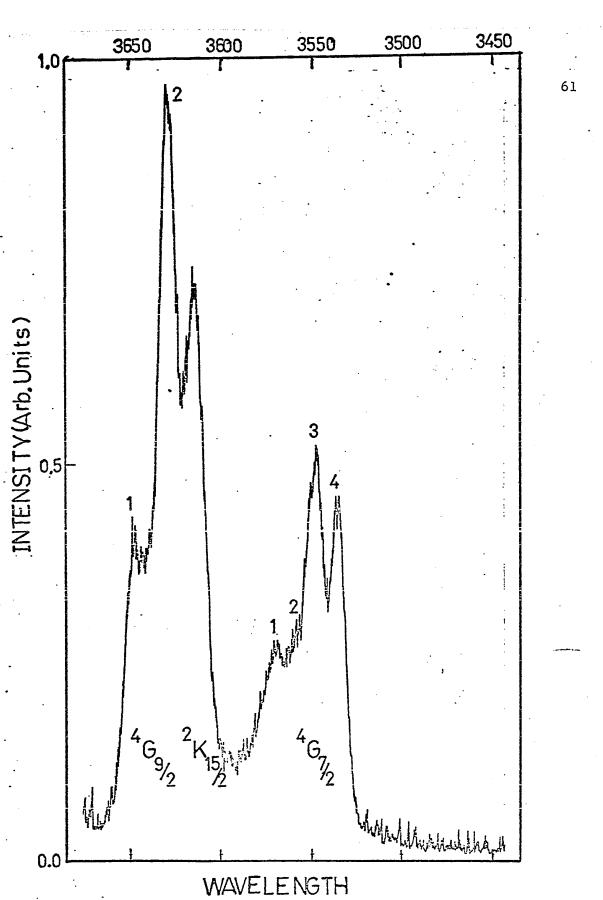


Fig. 3.18 Excitation spectrum of CaF₂Er⁺³ at LNT from 3450 Å to 3650 Å.

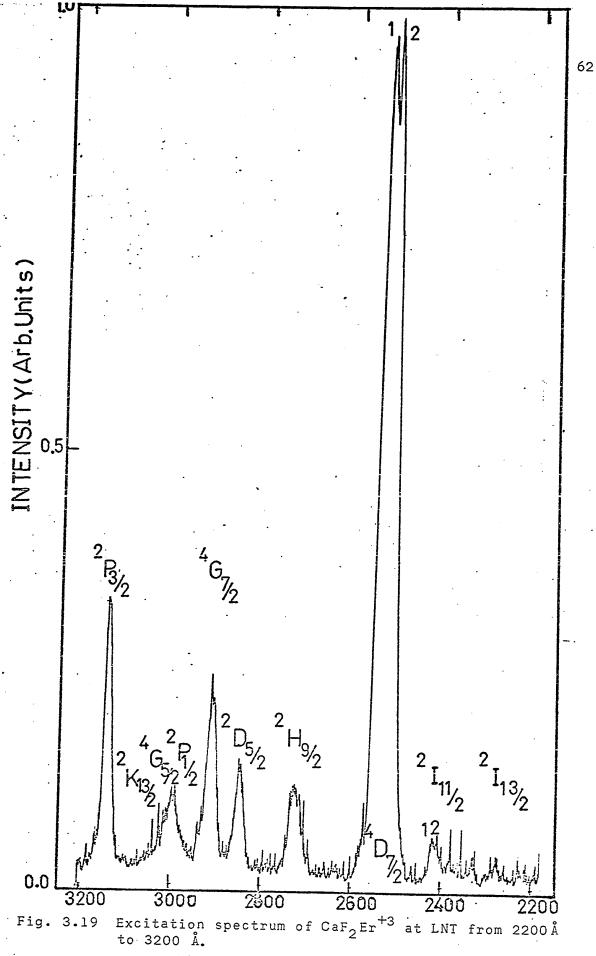


Fig. 3.19

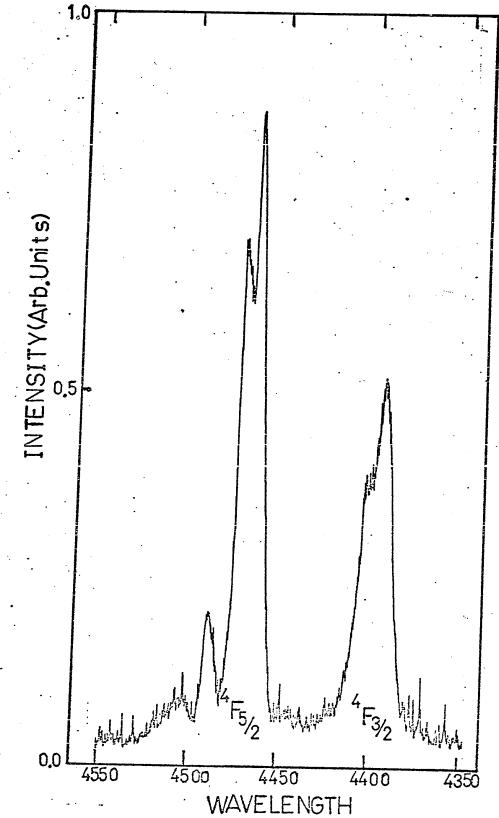


Fig. 3.20 Excitation spectrum of CaF_2E^{+3} (Harshaw) at LNT from 4350 Å to 4550 Å.

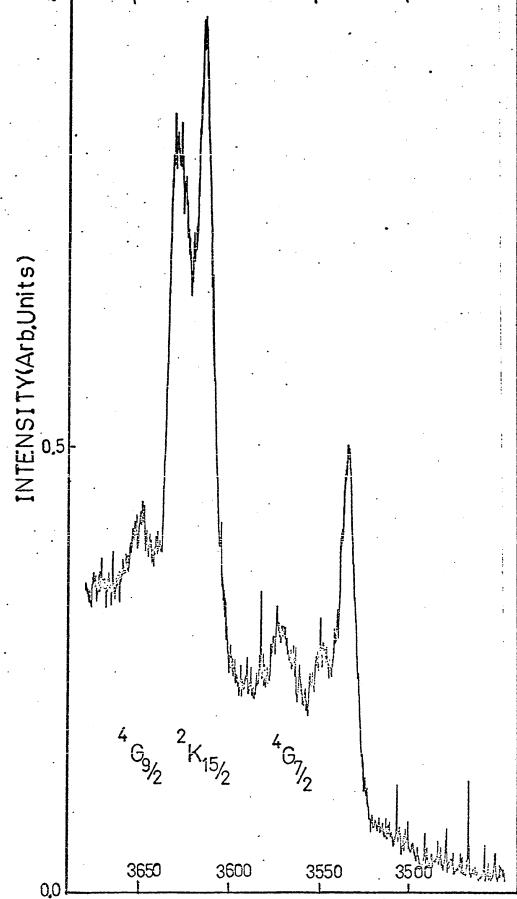


Fig. 3.21 Excitation spectrum of CaF₂Er⁺³ (Harshaw) at LNT from 3500 Å to 3650 Å.

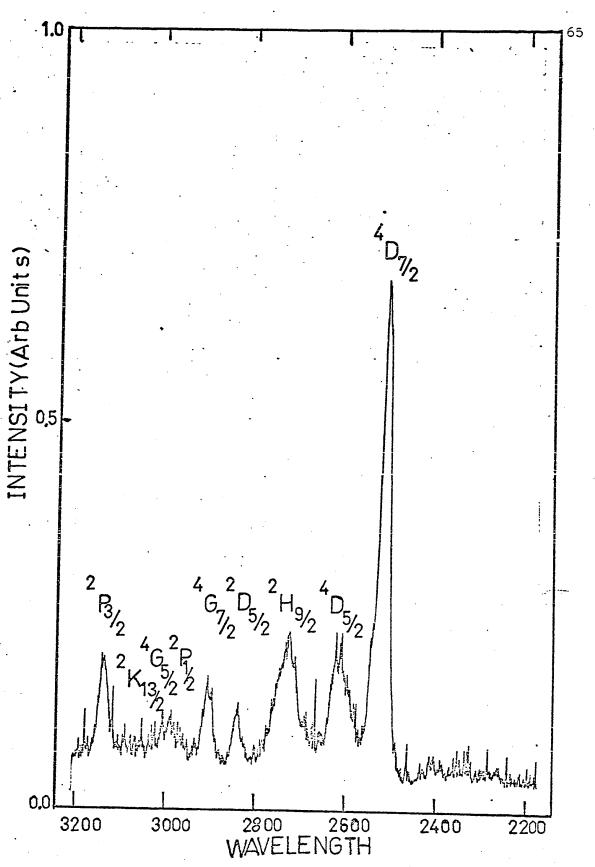


Fig. 3.22 Excitation spectrum of CaF $_2$ Er $^{+3}$ (Harshaw) at LNT from 2200 Å to 3200 Å.

TABLE 3.2

Luminescence Excitation Spectrum of ${\tt CaF}_2{\tt Er}^{+3}$ at $77^0{\tt K}$

Differences between Expt. and Calc. Energy Values (cm-1) Ref. (1)				124									99									•			84	
Centroid (cm-1)				18570									1.9322												20680	
Peak No.	-	2	က	4	ಸ	9	7	ч	7	က	4	ស	9	7	ω	0			12	٦	8	က	4	വ	9	
Wavelength λ (A)	40	39	5388	38	37	37	36	23	21	20	19	5185	17	16	16	15	1,4	13	~	∞	9	86	4858	85	4	
Excitation Peaks Energy (cm $^-1$)	851	853	18560	858	860	862	864	912	916	920	925	19286	932	935	938	941	942	946	948	046	055	057	20585	059	064	
SLJ Assignment				4S ₂ /5	7 / 6								² H ₁₁ /9	5 / 1 1				-			4	·		•	$^{4}F_{7/2}$	•

Table 3.2 (continued)

	· •			•
Differences between Expt. and Calc. Energy Values (cm ⁻¹)		95	218	06
Centroid (cm-1)		22326	22735	26569
Peak No.	7 8 8 8 10 10 11 11 11 11 11 11 11 11 11 11 11	⊣ 0 w 4 v o	-0 -004b	-1 0/ m 4 ₪
Wavelength λ (Å)	4842 4836 4829 4820 4816 4814 4808	4510 4505 4488 4477 4470 4462	4402 4395 4080 4070 4054 4040	3800 3794 3785 3779 3773
Excitation Peaks Energy (cm ⁻¹)	20653 20678 20708 20747 20764 20773 20799	22173 22198 22282 22336 22371 22411	22717 22753 24510 24570 24667 24752 24900	26316 26357 26420 26462 26504
SLJ Assignment	⁴ F ₇ /2	4 _F 5/2	⁴ F ₃ / ₂ ² H ₉ / ₂	⁴ _{611/2}

Table 3.2 (continued)

between Expt. nergy Values Ref. (1)		•							:					•					
Differences betwee and Calc. Energy (cm ⁻¹) Ref				•		801		-106		200	202		239	66	106	182	334	215	. 150
Centroid (cm ⁻¹)	·			•		0.00	0000	27662		79100	0		31847	33111	33333	33557	34305,	35088	36697
Peak No.	9	7	8	6	10	7	Ø			⊣ (Nω	4							
Wavelength λ (A)	3764	3757	3752	3747	3739	9	3632	. 3615	1	3570	3547	3538	3140	3020	3000	2980	2915	2850	2725
Excitation Peaks Energy (cm ⁻¹)	26567	26617	26652	26688	26745	27420	27533	27662	1	28011	28114	28265	31847	33111	33333	33557	34305	35088	36697
SLJ Assignment	4 _G ., /	11/2				7	2/6 _{9.}	2K15/2	1 /01	4~	. _G 2/2		² P ₃ /2	2 K $_{13}$ /2	⁴ G ₅ /2	2 P ₁ /2	4 ^G 7/2	2 _{D5/2}	$^{2}_{ m H_{9/2}}$

Table 3.2 (continued)

Differences between Expt. and Calc. Energy Values (cm-1) Ref. (1)		93	365	203
Peak Centroid Di	38759	39370	41414	43859
Peak No.		7 7	٦ _.	
Wavelength λ (A)	2580	2550 2530	2420 2410	2280
Excitation Peaks Energy (cm ⁻¹)	38759	39216 39525	41322 41493	43859
SLJ Assignment	⁴ D ₅ /2	⁴ D ₇ /2	2 _I $_{11/2}$	² 1 _{13/2}

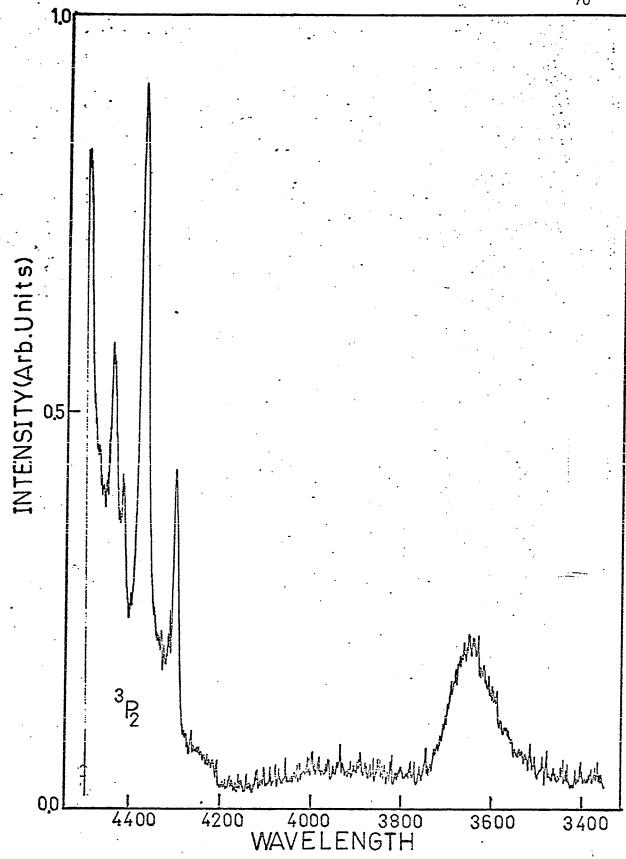
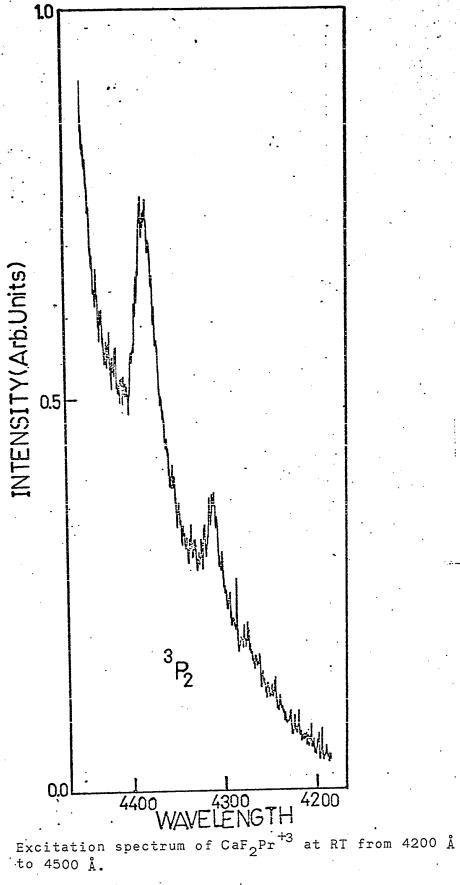



Fig. 3.23 Excitation spectrum of CaF_2Pr^{+3} at LNT from 3400 Å to 4500 Å.

TABLE 3.3 Summary of the Figures Regarding the Excitation Spectrum of $CaF_2^{Pr}^{+3}$

Fig. No.	Crystal	Temperature	Spectral Range
3.24	As-received	RT	4200 Å to 4500 Å
3.25	tt tt	tt	3200 Å to 4200 Å
3.26	tt 11	LNT	4200 Å to 4500 Å
3.27	ff tr	11	3200 Å to 4200 Å
3.28	11 27	**	2200 Å to 3200 Å

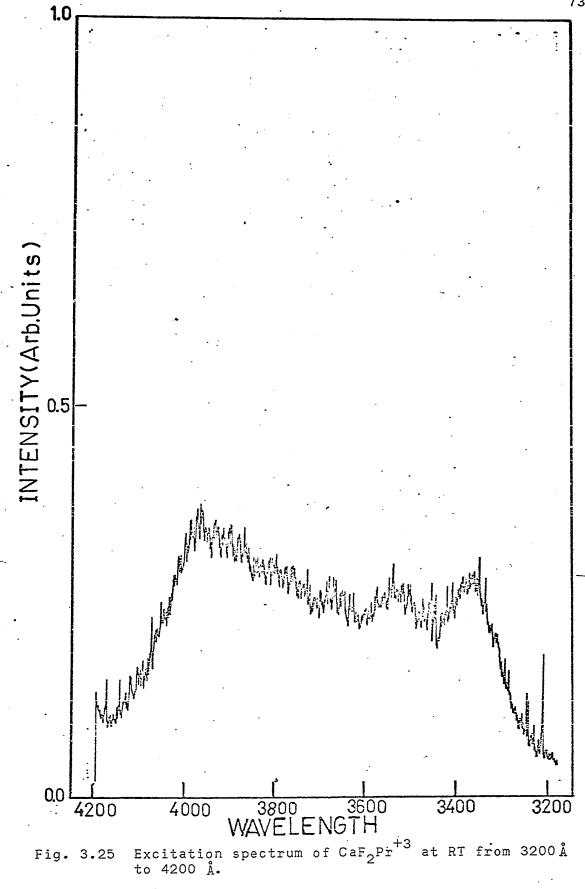
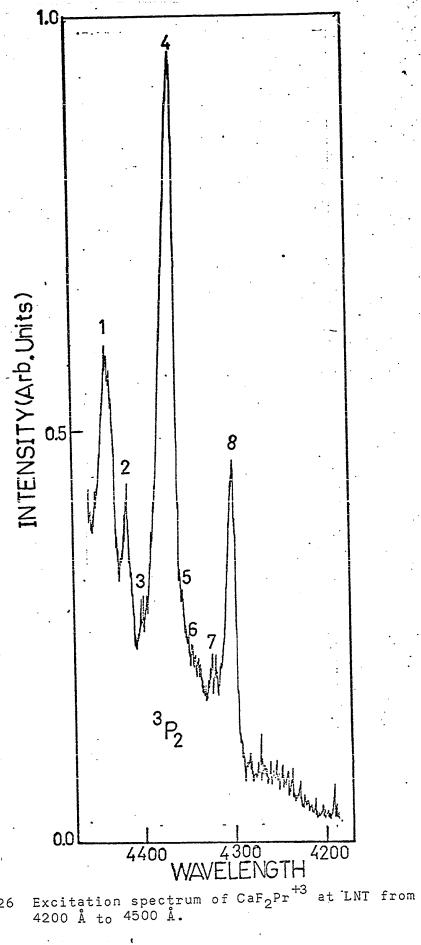
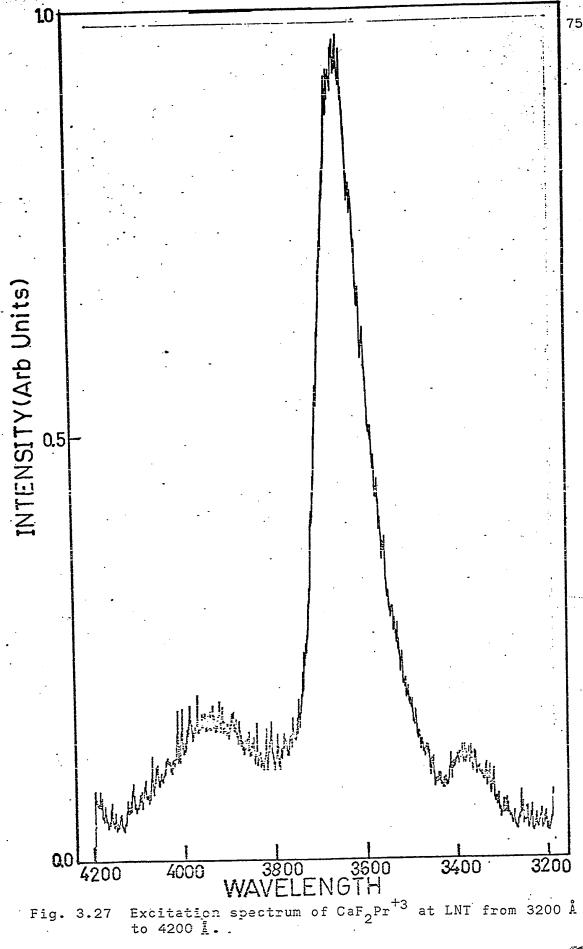




Fig. 3.25

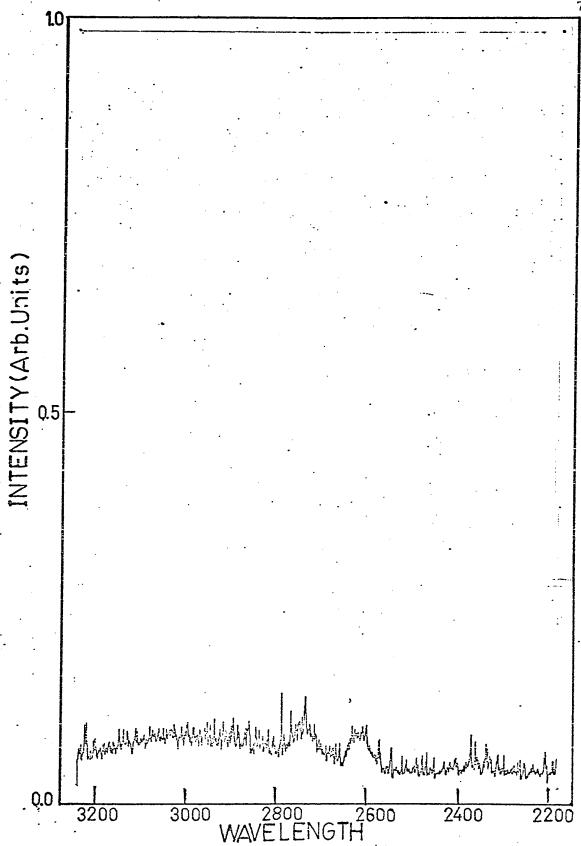
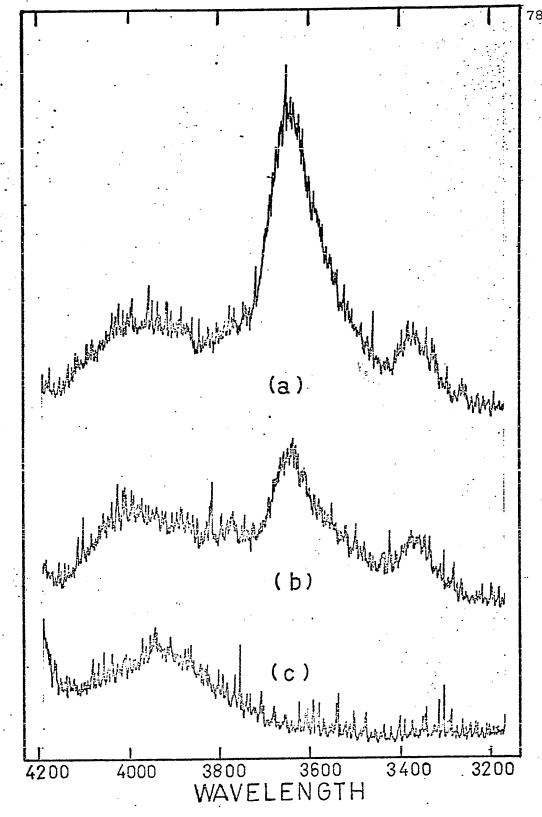



Fig. 3.28 Excitation spectrum of CaF_2Pr^{+3} at LNT from 2200 Å to 3200 Å.

TABLE 3.4

Luminescence Excitation Spectrum of $\mathtt{CaF}_2\mathtt{Pr} \overset{+3}{ ext{-}}\mathtt{at}$ LNT

SLJ Assignment	Excitation Peaks Energy (cm ⁻¹)	Wavelength λ (A)	Peak No.	Centroid (cm ⁻ 1)	Differences Between Expt. and Calc. Energy Values (cm ⁻¹)
	22497	4445	٦		
	22599	4425	7		
c	22696	4406	က		•
$^{3}_{P}$	22831	4380	4	22795	
7.	22946	4358	വ		
	22988	4350	9		
	23084	4332	7		
	23212	. 4308	ω		

Impurity concentration dependent bands of CaF_2Pr^{+3} . (a) 0.05% (b) 0.5% (c) 1% Fig. 3.29

by a home-made camera loaded with a 3-x Kodak film.

Different exciting wavelengths from the excitation spectrum were selected for exciting the crystal. The time of exposure varied from one-half hour to two hours. Standard wavelengths from the Hg lamp were superimposed on the film for calibrating the emission spectra.

The microdensitameter traces of emission spectrum of CaF_2Er^{+3} in the green and that of CaF_2Pr^{+3} in the blue green are shown in Figs. 3.30 to 3.40. The emission spectrum of x-irradiated crystals was also photographed in each case and the results obtained were identical to the ones observed before. Figs. 3.34 & 3.38 show that the intensities of the lines 5444 Å and 5393 Å in the case of CaF_2Er^{+3} was decreased, but for CaF_2Pr^{+3} , the intensity of the lines 4850 Å and 4826 Å was increased by exciting the crystals with different exciting wavelengths. The peaks have been numbered for future use and their energies are expressed in cm^{-1} in Tables 3.7 & 3.8, respectively. A summary of the figures, along with their experimental conditions, is tabulated in Tables 3.5 & 3.6, respectively.

3.3 Thermoluminescent Spectra of CaF₂Er⁺³ and CaF₂Pr⁺³

Crystals were placed in the crystal holder of an Andonian vacuum cryostat. They were fitted with a copperconstantan thermocouple for measuring the temperature. The holder was also fitted with a heater of nichrome-resistance wire for heating the crystal. The crystal was first cooled

TABLE 3.5

Summary of the Figures Regarding the Emission Spectrum of $\mathtt{CaF}_2\mathtt{Er}^{+3}$

	RT
LNT	
E	
=	
= .	

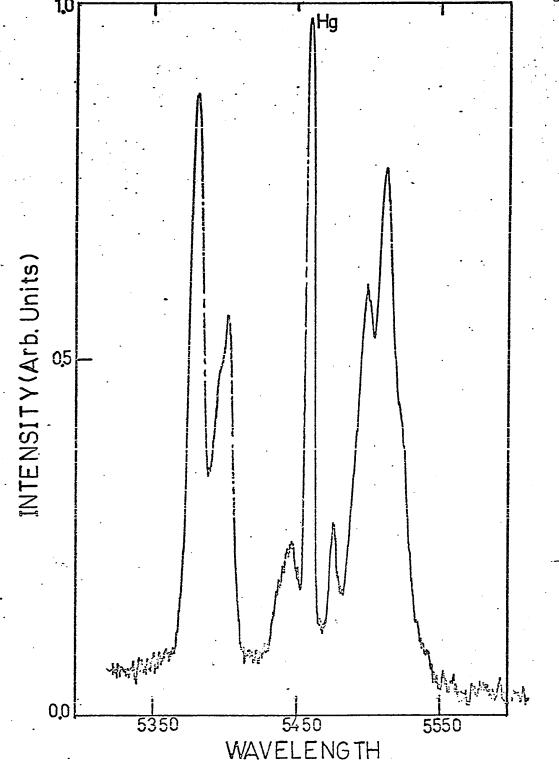


Fig. 3.30 Emission spectrum of CaF Er $^{+3}$ at RT from 5350 Å to 5500 Å excited with 3750 Å .

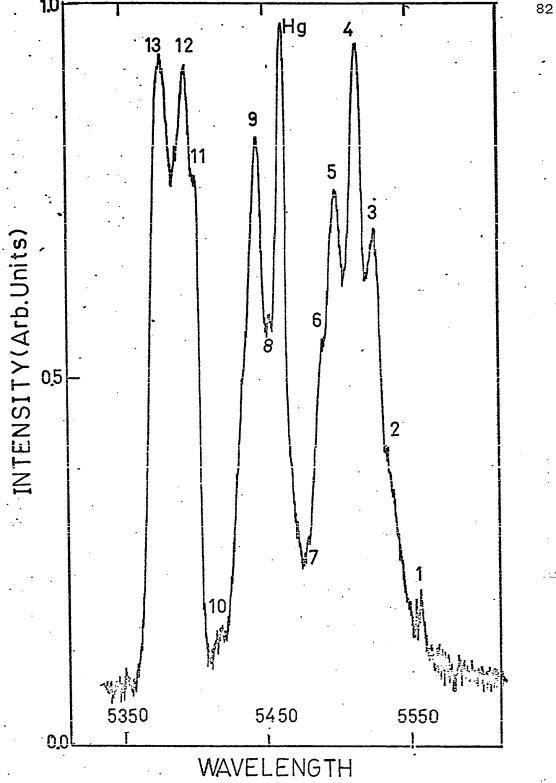


Fig. 3.31 Emission spectrum of CaF Er $^{+3}$ at LNT from 5350 Å to 5550 Å excited with 3750 Å.

Fig. 3.32 Emission spectrum of CaF Er $^{+3}$ at LNT from 5350 Å to 5550 Å excited with 3760 Å.

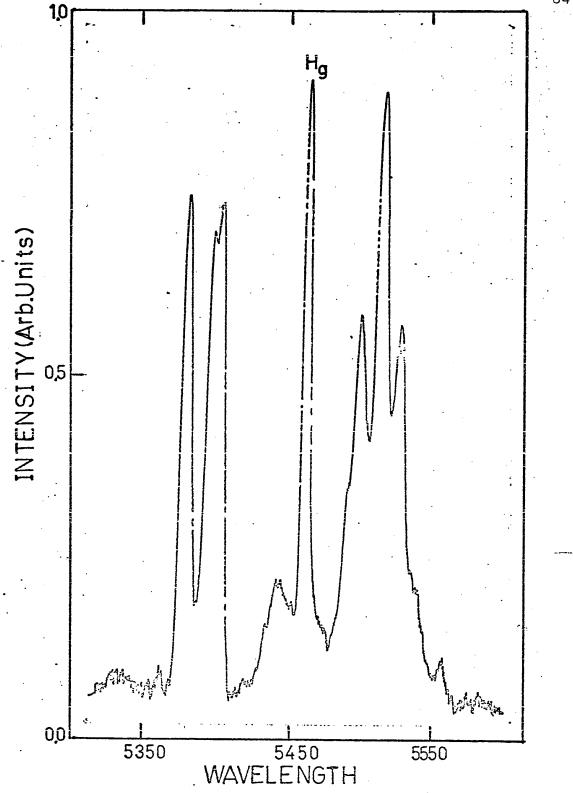


Fig. 3.33 Emission spectrum of CaF Er $^{+3}$ at LNT from 5350 Å to 5550 Å excited with 4810 Å.

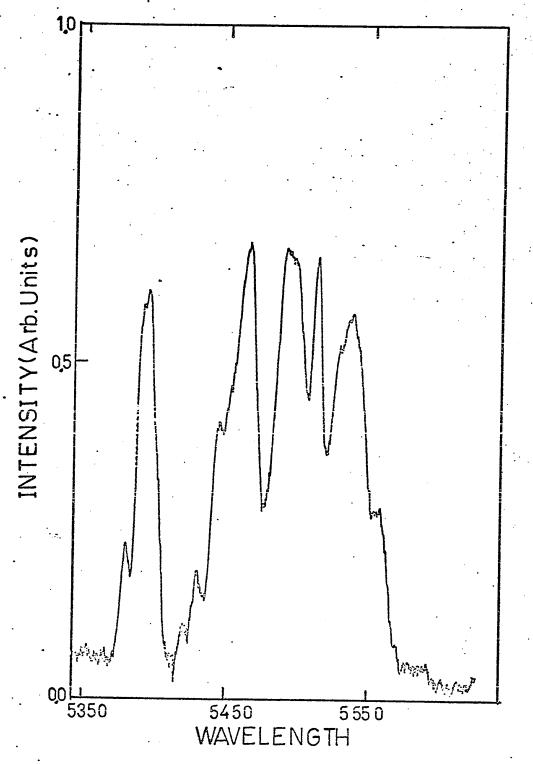


Fig. 3.34 Emission spectrum of CaF $_2$ Er $^{+3}$ at LNT from 5350 Å to 5550 Å excited with 3785 Å.

TABLE 3.6

Emission Spectrum of ${
m CaF}_2{
m Er}^{+3}$ at 77 $^{
m O}{
m K}$

Differences between Expt. and Calc. Energy Values (cm-1)			.•														
Centroid (cm ⁻¹)			•			-											
Peak No.	٦	: 0	10	2	4	ಬ	9	7	ω	6	10	11	12	13			
Wavelength λ (A)	,,	יו מי	2 (2	10	5500	4	5473	5452	44	5420	5400.6	39	37	5462	42	
Emission Peak Energy (cm ⁻¹)	70	10000		18084	18135	81	82		183	183	18450	18516	18543	18608	18308	18423	
Transition									⁴ S ₂ / ₂ ± ⁴ I 1 7 / ₂	7/61 7/8							

TABLE 3.7

Summary of the Figures Regarding the Emission Spectrum of $\operatorname{CaF}_2\mathrm{Pr}^{+3}$

Fig. No.	Gr	Crystal	Temperature	Exciting Light	Light	Spect:	ral	Spectral Range
3.35	As-r	As-received	RT	4382 Å	۰A	4750 Å to 4950 Å	to	4950 Å
3.36	=	Ξ	LNT	4382	•∢	4750 Å	ب	4750Å to 4950Å
3.37	=	=	Ξ	4448	•∢	4750 Å to	40	4950 Å
3.38	z	=	=	4428	ℴ⋖	4750 Å to	ڻ د	4950 Å
3.39	=	=	=	4308	۰¥	4750 Å to	to	4950 Å
3.40	z	=	Ξ	3665	۰₩	4550 Å	t 0	to 4950 Å

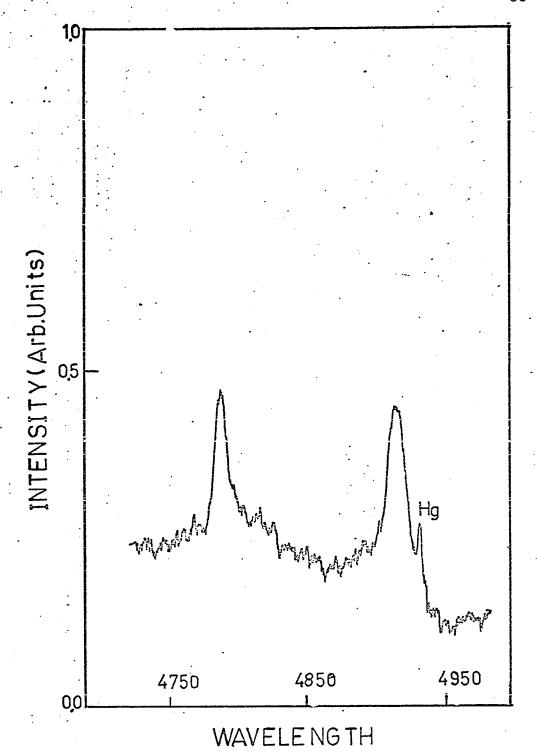
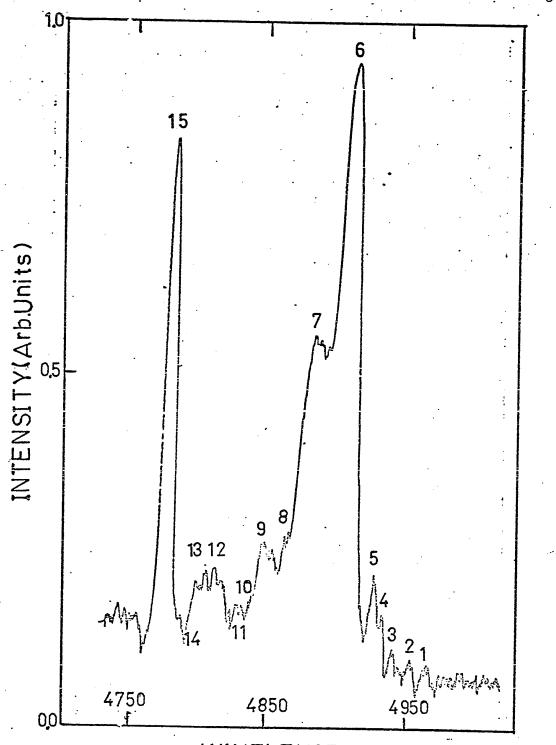



Fig. 3.35 Emission spectrum of CaF $^{\rm Pr}$ at RT from 4750 Å to 4950 Å excited with 4382 Å.

WAVELENGTH

. Fig. 3.36 Emission spectrum of CaF Pr^{+3} at LNT from 4750 Å to 4950 Å excited with 4382 Å.

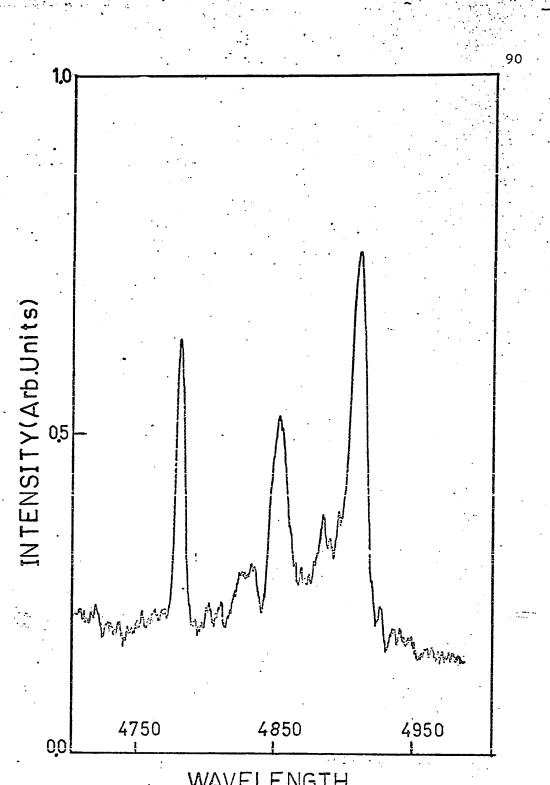


Fig. 3.37 Emission spectrum of CaF $_2\mathrm{Pr}^{+3}$ at LNT from 4750 Å to 4950 Å excited with 4448 Å.

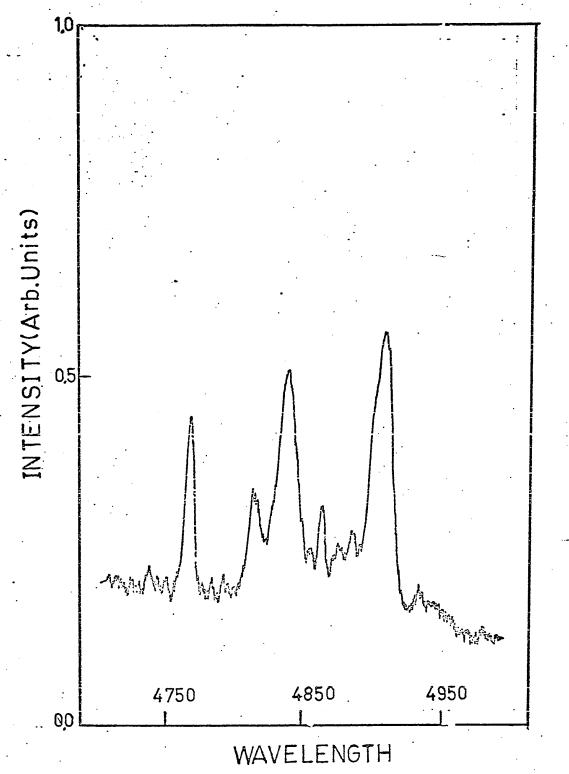


Fig. 3.38 Emission spectrum of CaF₂Pr⁺³ at LNT from 4750 Å to 4950 Å excited with 4428 Å.

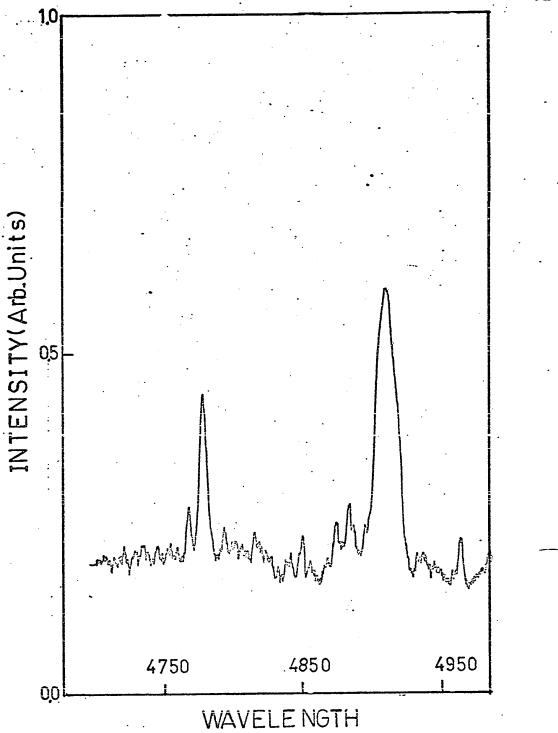


Fig. 3.39 Emission spectrum of CaF $_2$ Pr $_2$ at LNT from 4750 Å to 4950 Å excited with 4308 Å.

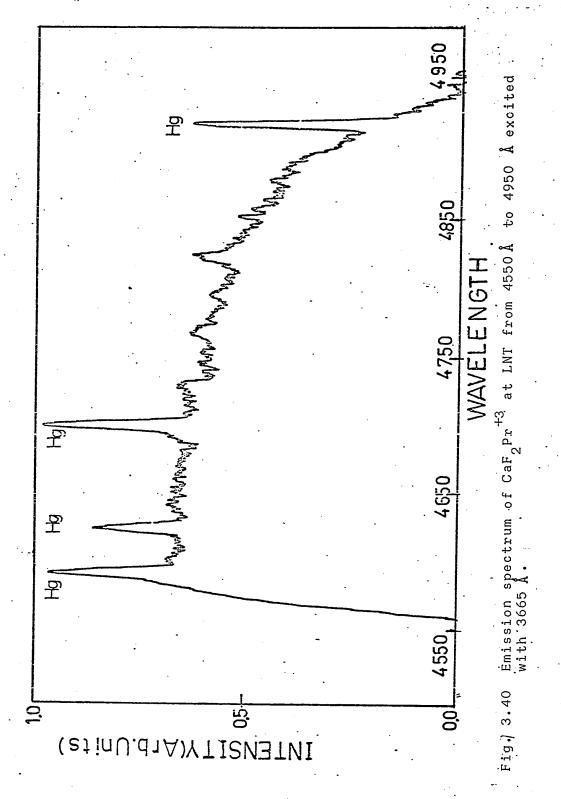


TABLE 3.8

Emission Spectrum of CaF₂Pr⁺³ at 77⁰K

SLJ Assignment	Emission Poaks Enorgy (cm ¹)	Wavelength	Peak No.	Centroid (cm ⁻¹)	Difference and Calc.	between Values (Expt.
			,		-		
	01	4963					•
	02	4950	Ø				
	02	4936	ო				
	20280	4931	4				
c	\circ	4926	ಸ				
o G	\circ	4905	9				
>	\circ	4881	7				
	20563	4863	ω				
	\circ	4850	6				
	$^{\circ}$	4836					
	\circ	4826					•
	\circ	4816	12				
ď	\circ	4803	13				
, P	\mathbf{c}	4794	14			e.	
-t	0	4773	15				
		•					

down to LNT and its temperature was recorded on a strip chart recorder. Then the crystal was x-irradiated at LNT for one hour to two hours, as indicated on the figures. The x-ray tube had a copper target and it was operated at 40 kV and 14 ma.

The general glow curve and its spectral composition were taken simultaneously in the following way: one of the windows of the cryostat was held as close as possible against the entrance slit of the home-made spectrograph, adjusted to the desired spectral range. An EMI 6256B type photomultiplier was placed against the opposite window. A specially designed camera loaded with 3-x Kodak film was fixed on the exit slit of the home-made spectrograph. This was done in order to get the spectral composition of emission at different glow peaks. temperature of the crystal was recorded continuously on the strip chart recorder. The photocurrent from the photomultiplier was fed to a Keithley type 410 micro-microammeter, the output of which was recorded by the Hewlett-Packard strip chart recorder. The heating rate during the experiment was kept constant at (dT/dt = 11 deg/min). For CaF₂Er⁺³ Fig. 3.41 shows the variation in emission with temperature. In the case of $CaF_{9}Pr^{+3}$ (0.1 %), emission was very weak and we could not record a satisfactory spectrum above 140°K. We were unable to observe the thermoluminescence spectrum of CaF₂Pr⁺³ with concentration; i.e., the highest concentration that we could go was 0.5 % and 1%.

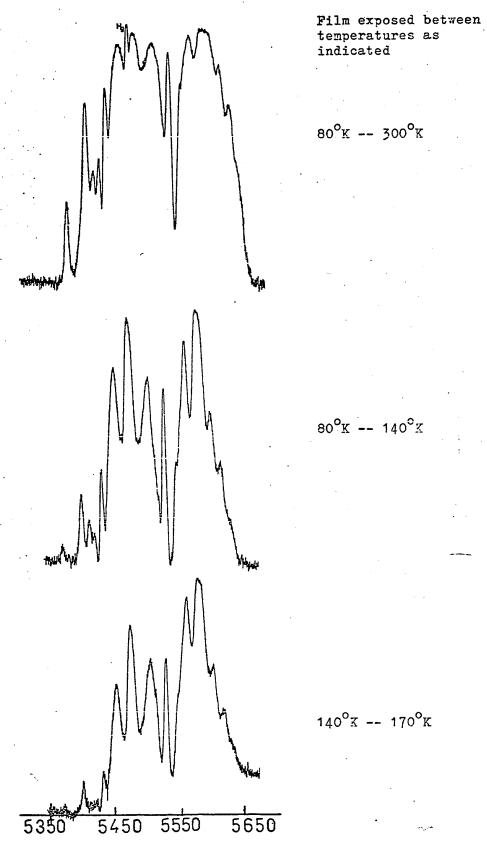
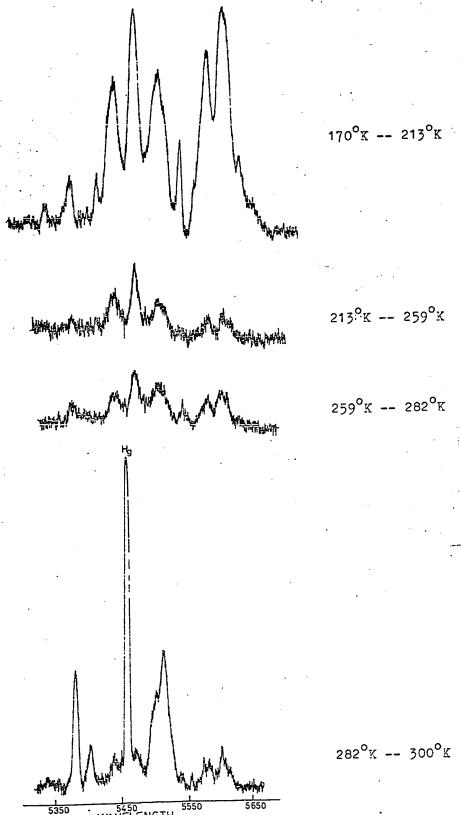



Fig. 3.41(a) Variation of thermoluminescence emission spectrum with temperature in CaF2:Er*

WAVELENGTH


Variation of thermoluminescence emission spectrum with temperature in CaF₂:Er⁺³. Fig. 3.41(b)

Fig. 3.42 is the glow curve of CaF_2Er^{+3} between $77^{\circ}K$ and $310^{\circ}K$. There are six main glow peaks at $114^{\circ}K$, $155^{\circ}K$, $192^{\circ}K$, $247^{\circ}K$, $272^{\circ}K$ and $301^{\circ}K$ in the glow curve. Fig. 3.43 is the glow curve of CaF_2Pr^{+3} between $77^{\circ}K$ and $300^{\circ}K$. There are three main peaks at $114^{\circ}K$, $157^{\circ}K$ and $235^{\circ}K$ in the glow curve. The microdensitometer traces of thermoluminescence emission spectrum of CaF_2Er^{+3} and that of CaF_2Pr^{+3} are shown in Figs.3.44 and 3.45, respectively. Peaks have been numbered for future use and their energies are expressed in cm^{-1} in Tables 3.9 and 3.10.

The activation energies for the thermoluminescent peaks were calculated by using the formula (3)

$$E = k T_g^2 / (T_2 - T_g) ,$$

where E (ev) is the activation energy, k is Boltzmann's constant, $T_g(k)$ is the temperature of the glow peak maximum and T_2 is the temperature at half intensity on the high temperature side of the peak. The value of activation energy for CaF_2Er^{+3} and CaF_2Pr^{+3} is presented in Tables 3.11 and 3.12, respectively. The varying activation energies corresponding to the different glow peaks show the presence of traps with different activation energies in the crystal.

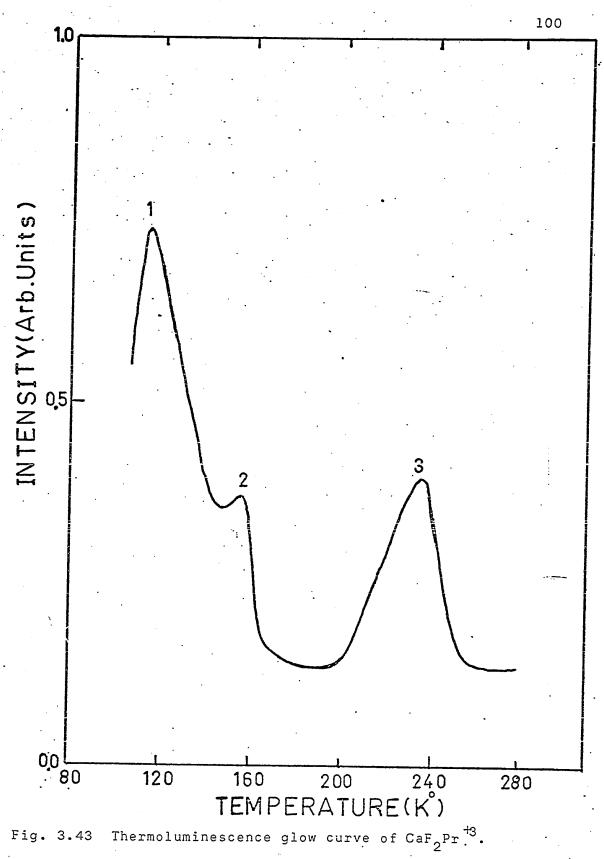


Fig. 3.43

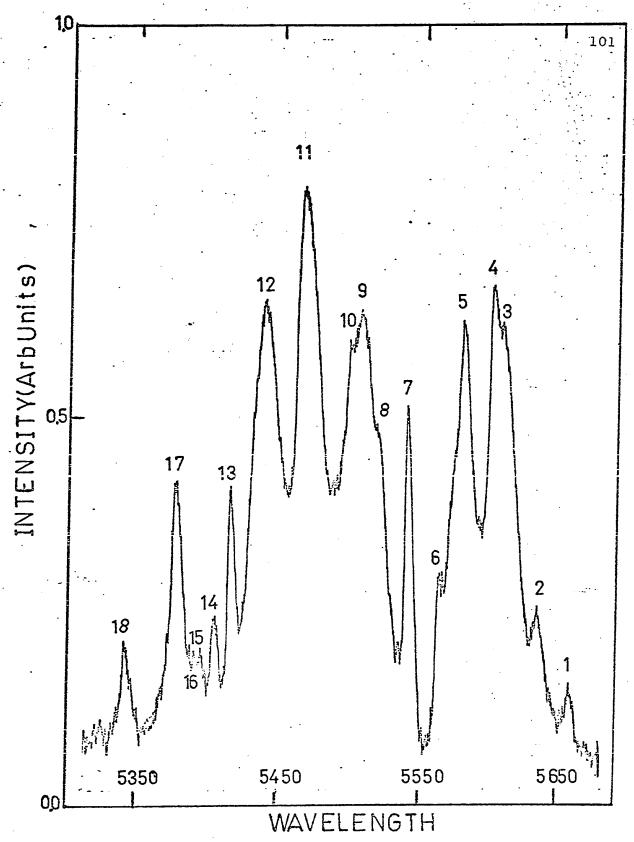


Fig. 3.44 Spectral composition of the thermoluminescence of CaF₂Er⁺³ in the green spectral region.

TABLE 3.9

Thermoluminescence Spectrum of CaF₂Er +3

Transition	Thermoluminescence Peaks Energy (cm-1)	Waveleggth λ (A)	Peak No.	Centroid (cm-1)	Differences between Expt. and Calc. Energy Values (cm-1)
	9	65	1		
	17736	5638	2	. •	
	79	62	က		
	81	61	4		
	90	58	٠ تى		
	94	57	9		
	03	54	. 7		
	1810	52	∞		
483/0 → 11,8/0	1813	51	6		
2/61 2/6	1815	50			
	$^{\circ}$	47	11		
	37	44			
	45	41			
	50	40			
	54	39			
	55	39			
	18608	37			
	73	33			

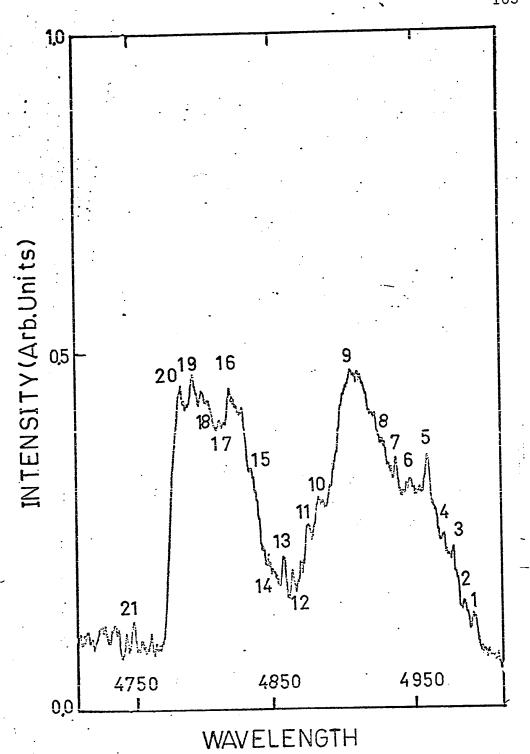


Fig. 3.45 Spectral composition of the thermoluminescence of CaF_2^{Pr} in the blue-green spectral region.

TABLE 3.10

Thermoluminescence Spectrum of $\operatorname{CaF}_2^{\ \ +3}$

SLJ Assignment	Thermoluminescence Peaks Energy (cm 1)	Wavelength \(\lambda\)	Peak No.	Centroid (cm-1)	Difference between Expt. and Calc. Values (cm ⁻ 1)
	00	l Cr	-		
	00	\sim	· 0	•	
	00	a.	ന		
	0]	_ C⊅-	4		
	20149	4963	ත		
	60	C.,	ଦ		-
	022	2	7		
Ţ	0,00		ဆ		
or Gr	03	-	6		
>	20488	ω	10		
	05	w	11		
	05	w	12		
	05	w	13		
	90	w	14		
	90	ω	15		•
	07	w	16		•
	07	w	17		
	80	w	18		
ď	80	-	19		
ر ^ب	0	1-	20		-
-i	7	4747	21		

TABLE 3.11

Activation Energies of Thermoluminescent

Peaks in CaF₂Er⁺³ (0.1%)

Peak No. (see Fig.)	T _g (°K)	T ₂ (°K)	Activation Energy (ev)
1 2 3 4 5 6	114 156 192 247 272 302	125 160 197 253 276	0.10 0.52 0.63 0.87 1.59

Peak No. (see Fig.)	T _g (°K)	T ₂ (°K)	Activation Energy (ev)
1	113	122	0.12
2	156	159	0.7
3	235	243	0.59

Chapter 4 ABSORPTION SPECTRA

4.1 Monochromator Model 225

The Model 225 spectrograph works on the principle that the grating is constrained to move along the bisector of the angle subtended by the slits, at the centre of the grating, while simultaneously the grating is rotated about a vertical axis tangent to its centre. The rotation of the grating provides the monochromatic action, whereas the linear motion of the grating determines the degree of focussing.

The Model 225 consists of a stainless steel chamber which can be pumped down to 3 x 10^{-7} torr by means of a high speed diffusion pump and mechanical pump. The flap valves with external controls are mounted in the entrance and exit slit housings in order to isolate the slit chambers from the main chamber while maintaining the vacuum in the main chamber. The monochromator is also equipped with a 600 lines/mm, MgF $_2$ coated grating of focal length one meter and an aperture ratio f/12. The wavelength can be read directly in angstroms and this model can be used from 300 Å to 6000 Å with an automatic focussing throughout the entire wavelength range. The angle between the normal to the grating and entrance slit or exit slit is 7° -30'.

4.2 (a) Vacuum U.V. Light Source

The light sources may be classified according to the spectrum they emit, as continuous or discontinuous. With the exception of synchroton radiation, there is no single light source which will satisfy all the experimental requirements for the vacuum ultraviolet region. The light source in the ultraviolet region must be able to operate either in the high vacuum or at the low pressure. choice of the source depends upon its application. light source which has been used in our experiment is a high vacuum U.V. Hinteregger type discharge lamp, Model 630 supplied by McPherson Instrument Corporation. The discharge lamp consists of a water cooled quartz capillary, a water cooled anode and a forced air cooled cathode. This discharge source is capable of handling 1000 watts of energy continuously and up to 800 watts intermittently. The source can be mounted directly on the entrance slit of the McPherson There are also separate provisions for the gas and water inlets and outlets, as shown in Fig. 4.1.

(b) Xe, Ar Continuum and the Operation

The light source was mounted on the entrance slit and a home-made cryostat was fixed on the exit slit of the monochromator. A photomultiplier, Model 650 supplied by McPherson Instrument Corporation, was fixed on the other side of the cryostat. The monochromator was evacuated with the diffusion pump, No. 0162-2 provided by N.R.C., and a mechanical pump, Model 500 supplied by Precision Scientific

Company. The pressure thus obtained was always better than . 10^{-7} torr at all times.

The light source and the cryostat were also evacuated by means of a diffusion pump and the mechanical pump, till the pressure in this system was better than 10^{-4} torr. The gas pressure in the light source was controlled by the throttling valve. Xe gas was supplied by Union Carbide Company while the argon gas was supplied by Liquid Carbonic Canadian Corporation. The purity of the gas claimed by each company was 99.9999%.

The cryostat was cut off from the vacuum line and the gas pressure in the light source was adjusted to less than 10 torr in order to start the source. The power needed for the light source was supplied from a DCR300-.5 power supply. After starting the source, the gas pressure was slowly increased to 200 torr, the voltage was adjusted to 2 kV and the current to 200 ma. Five to ten minutes later, the photocurrent from the photomultiplier Model 650 was fed to a Keithley type 410 micro-microammeter, the output of which was recorded by a strip chart recorder Model 7128A obtained from Hewlett-Packard. Fig. 4.2 shows the continuum of xenon in the spectral region 1500 $\overset{\text{O}}{\text{A}}$ to 2000 ${\rm \mathring{A}}$ and Fig. 4.3 shows the continuum of argon from 1800 ${\rm \mathring{A}}$ to 2600 Å. We did observe the continuum of argon from 1200 \H to 1500 \H by mounting the photomultiplier directly on the exit slit of the monochromator. Fig. 4.4 shows the continuum of argon from 1200 Å to 1500 Å.

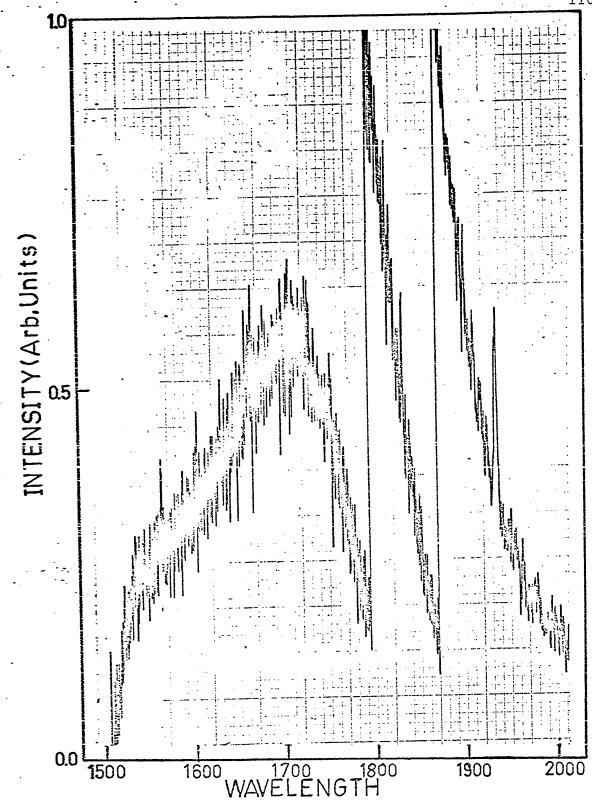
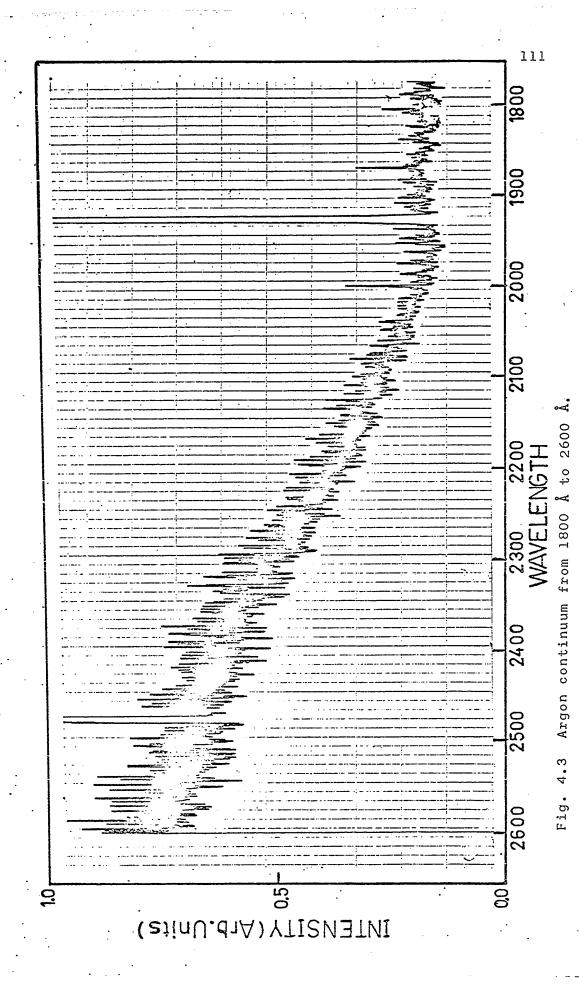



Fig. 4.2 Xenon continuum from 1500 Å to 2000 Å.

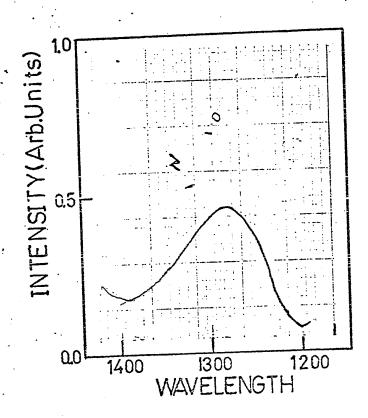
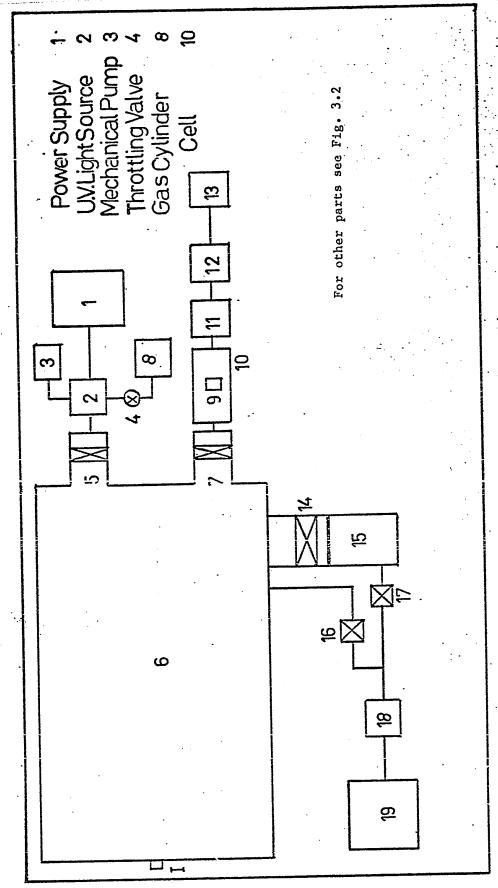


Fig. 4.4 Argon continuum from 1200 Å to 1400 Å.

4.3 Absorption Spectra of CaF₂Er⁺³ and CaF₂Pr⁺³

The experimental set-up for recording absorption spectrum is shown in Fig. 4.5. ${\sf CaF}_2$ windows were used on the entrance and exit slits of the monochromator,

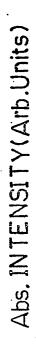
(a) In the U.V. Region


Crystals of CaF_2 doped with 1% Er^{+3} and 1% Pr^{+3} were obtained from Optov Incorporated. The crystal 10 x 4 mm was held in the crystal holder of the home-made vacuum cryostat. The absorption spectra of CaF_2Er^{+3} from 1500 to 1800 Å and from 1800 to 2600 Å were recorded at RT and LNT by using Xe gas and argon gas in the discharge lamp. The results are shown in Figs. 4.6 to 4.9. Peaks have been numbered and their energies are expressed in cm^{-1} in Table 4.2. A summary of these figures is given in Table 4.1.

The absorption measurements of ${\rm CaF_2^{\rm Pr}}^{+3}$ were also carried out at RT and LNT. The results were not satisfactory.

(b) In the Visible and Infrared Regions

The crystal 10 x 4 mm was held in the crystal holder of an Andonian custommade vacuum cryostat. The absorption spectra of $\text{CaF}_2\text{Er}^{+3}$ and $\text{CaF}_2\text{Pr}^{+3}$ were recorded at room temperature and at LNT with a Cary Model 14 spectrophotometer. The tail of the cryostat was adapted to fit the sample compartment of the spectrophotometer.


The absorption spectrum of CaF_2Er^{+3} from 2000 to 16000 Å at LNT is shown in Figs. 4.10 to 4.17. Peaks have been numbered and their values are expressed in cm⁻¹ in Table 4.2. A summary of these figures is given in Table 4.1.

Experimental set-up for recording absorption spectrum Fig. 4.5

TABLE 4.1 Summary of the Figures Regarding the Absorption Spectrum of ${\rm CaF_2Er}^{+3}$ (1%)

	· ·						
Fig. No.	C	rystal	Temperature	Spect	ral	Range	•
4.6	As-	received	RT	1500 Å	to	2000	Å
4.7		11	11	1900 Å	to	2800	Å
4.8	11	n ·	LNT	1500 Å	to	2000	Å
4.9	11	11	ıı	1900 Å	to	2800	Å
4.10	11	21	11	14400 Å	to	16000	Å
4.11	11	tt	11	7900 Å	to	10300	Å
4.12	11	ti	N	6350 Å	to	6650	Å
4.13	11	11	11	5050 Å	to	5450	Å
4.14	11	11	. n	4350 Å	to	4950	Å
4.15	11	n ·	11	3500 Å	to	4100	Å
4.16	11	11	11.	2850 Å	to	3150	Å
4.17	11	n	11	2300 Å	to	2750	Å
•							

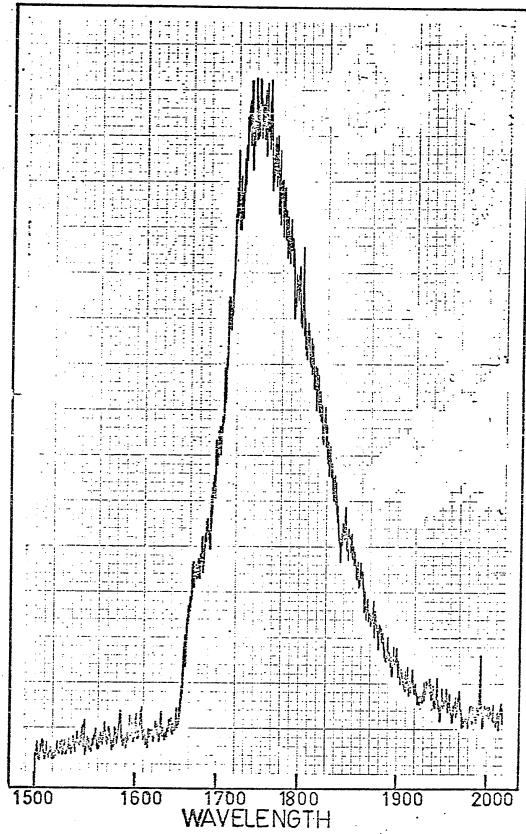


Fig. 4.6 Absorption spectrum of CaF $_2$ Er $^{\dagger 3}$ at RT from 1500 Å to 2000 Å.

Absorption spectrum of CaF $_2\mathrm{Er}^{+3}$ at RT from 1900 Å to 2800 Å .

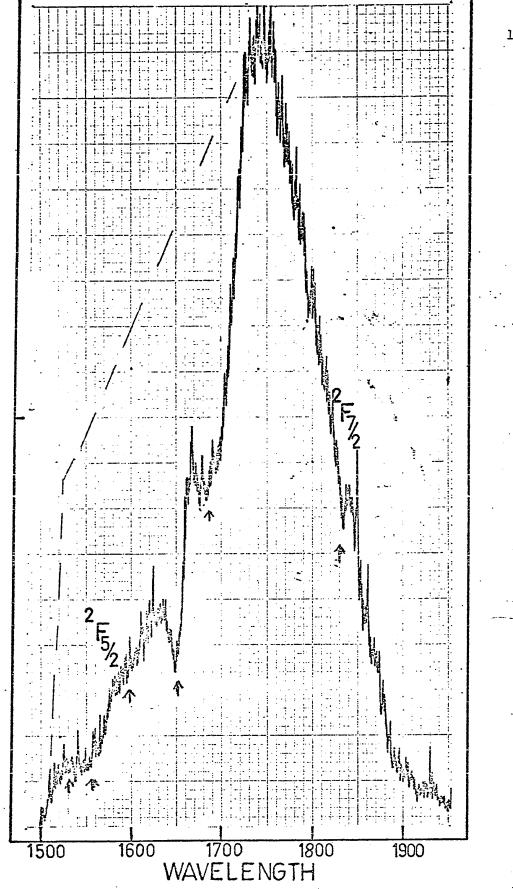


Fig. 4.8 Absorption spectrum of CaF₂Er⁺³ at LNT from 1500Å to 2000 Å.

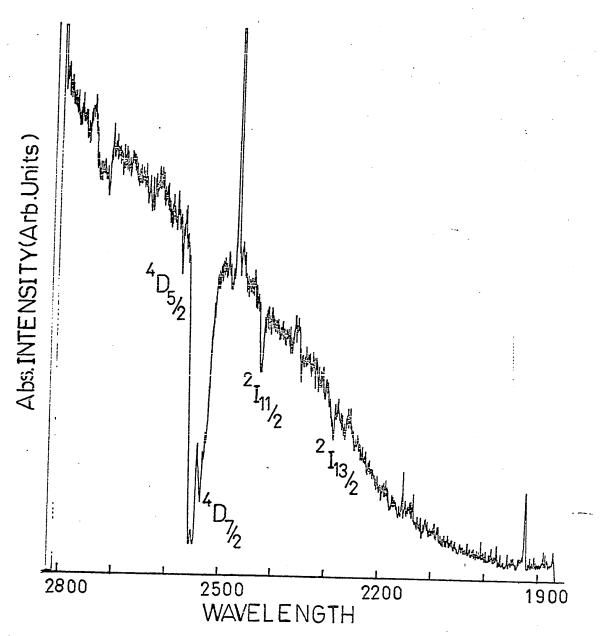


Fig. 4.9 Absorption spectrum of CaF₂Er⁺³ at LNT from 1900 Å to 2800 Å.

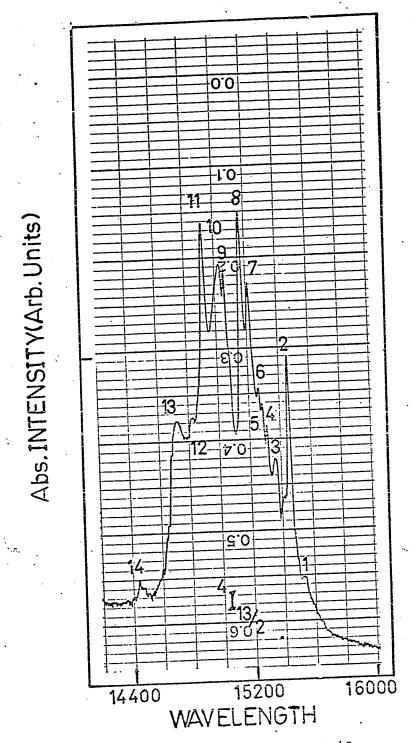
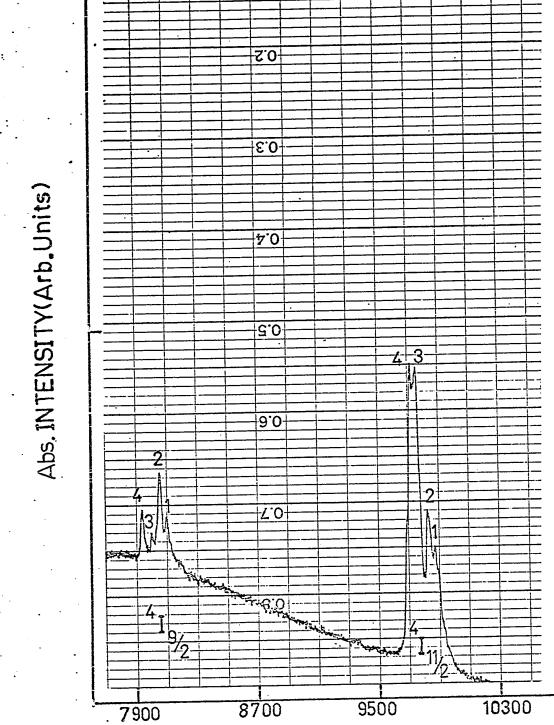



Fig. 4.10 Absorption spectrum of CaF_2Er^{+3} at LNT from 14400 Å to 16000 Å.

Absorption spectrum of CaF_2Er^{+3} 7900 Å to 10300 Å.

WAVELENGTH

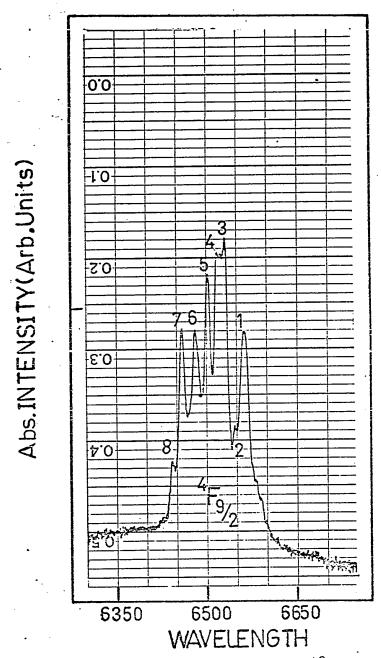


Fig. 4.12 Absorption spectrum of CaF $_2$ Er $^{+3}$ at LNT from 6350 $\mathring{\mbox{\i/}{A}}$ to 6650 $\mathring{\mbox{\i/}{A}}$.

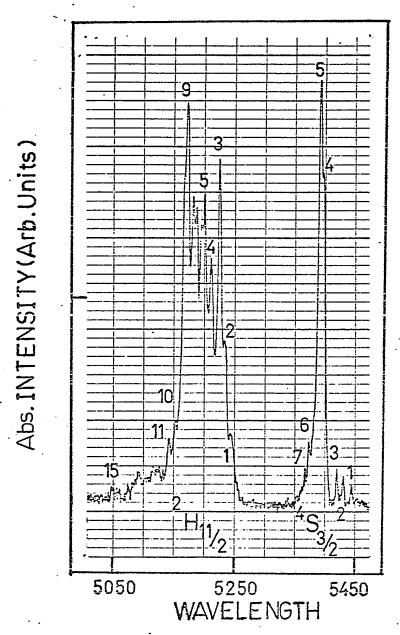
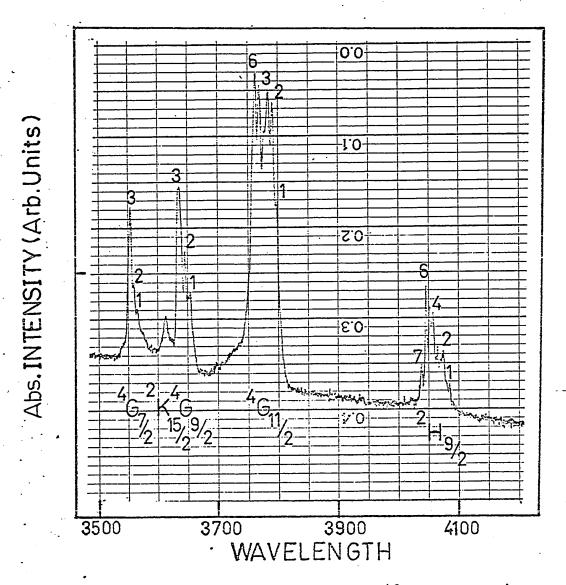



Fig. 4.13 Absorption spectrum of CaF $_2$ Er $^{+3}$ at LNT from 5050 Å to 5450 Å.

Fig. 4.14 Absorption spectrum of CaF_2Er^{+3} at LNT from 4350 Å to 4950 Å.

4.15 Absorption spectrum of CaF_2Er^{+3} at LNT from 3500 Å to 4100 Å.

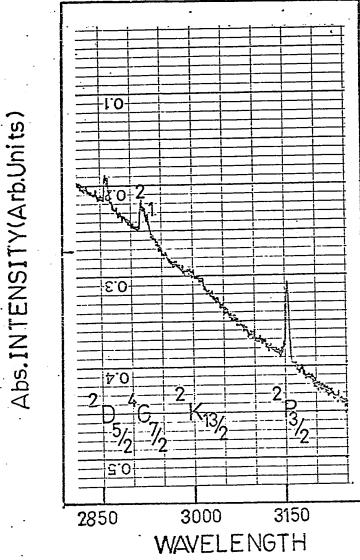


Fig. 4.16 Absorption spectrum of CaF₂Er⁺³ at LNT from 2850 Å to 3150 Å.

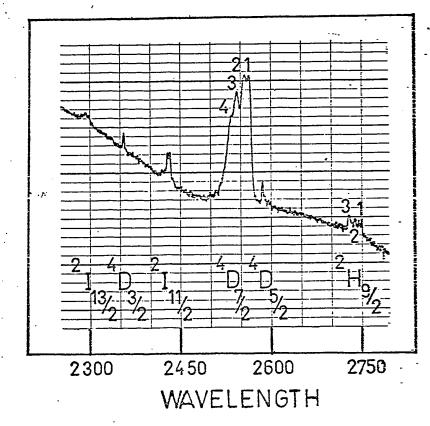


Fig. 4.17 Absorption spectrum of CaF₂Er⁺³ at LNT from 2300 Å to 2750 Å.

TABLE 4.2 Absorption Spectrum of $\mathrm{CaF}_2\mathrm{Er}^{+3}$ at LNT

⁴ I _{13/2}	wv0w4vb04v04w0	4 4 3 3 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	No. 100 88 7 7 8 9 11 11 11 11 11 11 11 11 11 11 11 11 1	(cm_) (cm_) (cm_)	and Calc, Energy Values Δ (cm-1) Ref. (1)
	10203 10290 10390	9801 9801 9718 9683	1 0 W 4	10263	50
	0070	8047 8000 7953 7882	1264	12546	95

Table 4.2 (continued)

. s .			
Differences between Exp and Calc, Energy Value \$\triangle{\alpha} \text{(cm}^{-1}\$) Ref. (1)	-16	75	2.1
Centroid (cm-1)	15366	18521	19273
Peak No.	00 0 4 10 0 b 00 €	1004507	1100843351
Wavelength \(\lambda \)	6562 6547 6530 6519 6503 6482 6459	5454 5430 5419 5397 5391 5374	5244 5232 5232 5212 5210 5191 5185 5185 5171 5153
Absorption Peaks Energy (cm ⁻¹)	15239 15274 15314 15340 15427 15482 15518	18335 18416 18454 18529 18549 18609	19069 19113 19135 19186 19231 19286 19339 19451 19539
SLJ Assignment	4 _{F9/2}	483/2	² H _{11/2}

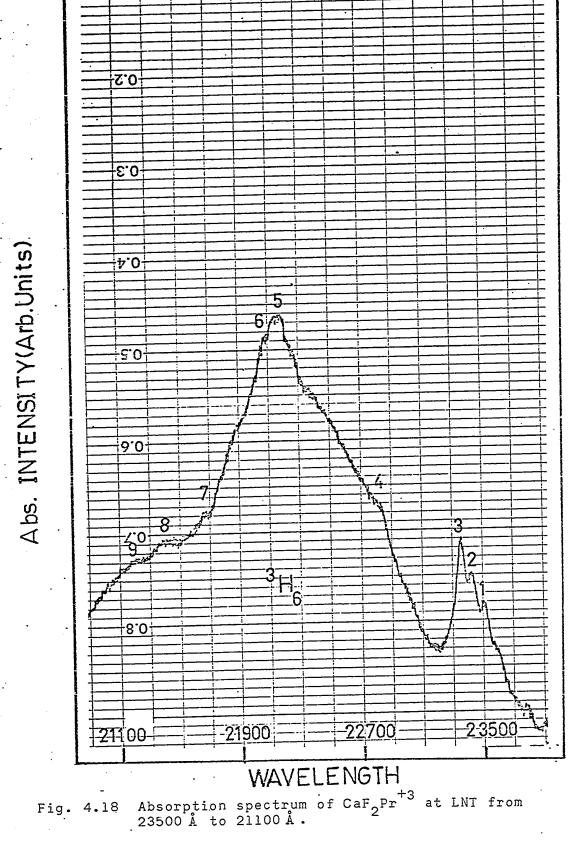
Table 4.2 (continued)

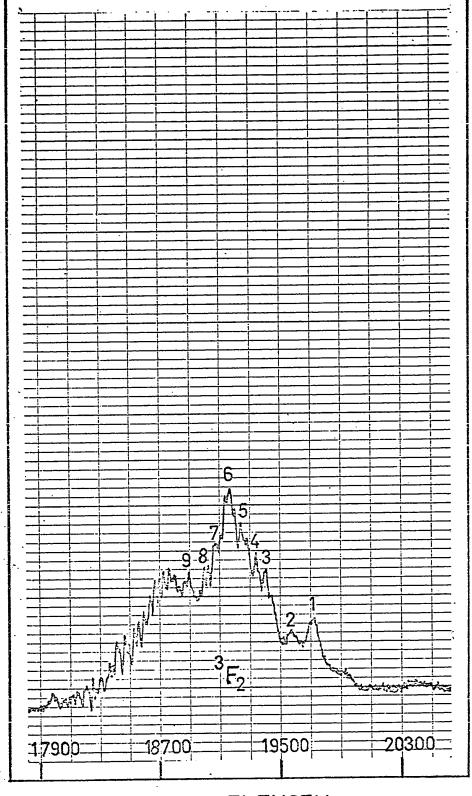
Assignment	Absorption Peaks Energy (cm ⁻¹)	Wavelength \(\lambda\)	Peak No.	Centroid (cm ⁻ l)	Differences between Expt. and Calc. Energy Values \$\triangle (cm-1) Ref. (1)
² H ₁₁ /2	19643	5091 5077 5050	13 14 15		
п	039 047 051	90	- 0 m z		
1.4/2	20618 20683 20730 20973	4835 4835 4824 4768	4 Ω O C B O (C O O O O	5
4 _F 5/2	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 100 100 100 100	7005	22277	46
⁴ F3/2	257 269 272	43 40 40	. H CH CH	22683	166
² H _{9/2}	24480 24549 24618 24655 24691	4085 4074 4062 4056 4056	- 0 c 4 c	24645	57

Table 4.2 (continued)

en Expt. Values							·	
Differences between and Calc. Energy $^{ m V}$ $^{ m \triangle}$ (cm ⁻¹) Ref.		-16	51	-83	43	78	271	141
Centroid (cm-1)		26463	27443	27685	28104	31686	34242	35041
Peak No.	9	100450	3 2 1		⊣ 0 €.		-1 0	H 2
Wavelength \(\lambda\)	4047	3797 3791 3782 3776 3771	3653 3647 3635	3612	3565 3559 3553	3156	2923	2859 2853
Absorption Peaks Energy (cm ⁻¹)	24710 24765	26337 26378 26441 26483 26521	27375 27420 27508	27685	28050 28098 28145	31686	34211 34270	34977 35051
SLJ Assignment	² H ⁹ /2	⁴ _{G11/2}	⁴ G ₉ /2	2 _{K15} /2	467/2	2p3/2	4 _{G7/2}	² D _{5/2}

Table 4.2 (continued)


		•								•	1
Differences between Expt. and Calc. Energy Values \$\triangle (cm^1) Ref. (1)	62	231	91 .	214	320	108	179	193			
Centroid (cm ⁻¹)	36609	38812	39368	41263	42608	43764	54795	59453	90909	63091	
Peak No.	- 0 E		- 0 c 4							٠	77
Wavelength \(\lambda\)	2741 2732 2722	2577	2553 2547 2532 2527	2424	2347	2285	1825	1682	1650	1585	1550 1530
Absorption Peaks Energy (cm ⁻¹)	36483 36603 36738	38812	. 39170 39262 39490 39580	41263	42608	43764	54795	59453	90909	63091	64516 65359
SLJ Assignment	² H ₉ /2	⁴ D ₅ /2	⁴ D ₇ /2	$^{2}_{11/2}$	4 ^D 3/2	$^{2}_{13/2}$	$^{2}\mathrm{F}_{7/2}$			$^2\mathrm{F}_{5/2}$	4f ¹¹ →4f ¹⁰ 5d Transition


The assignments of these peaks are made in accordance with reference (1).

The absorption spectrum of CaF_2Pr^{+3} from 2000 to 23500 Å at LNT is shown in Figs. 4.18 to 4.23. The peak values are expressed in cm^{-1} in Table 4.4 and they have been numbered for future use. The summary of all of these figures is given in Table 4.3. The peaks have been assigned in accordance with reference (2).

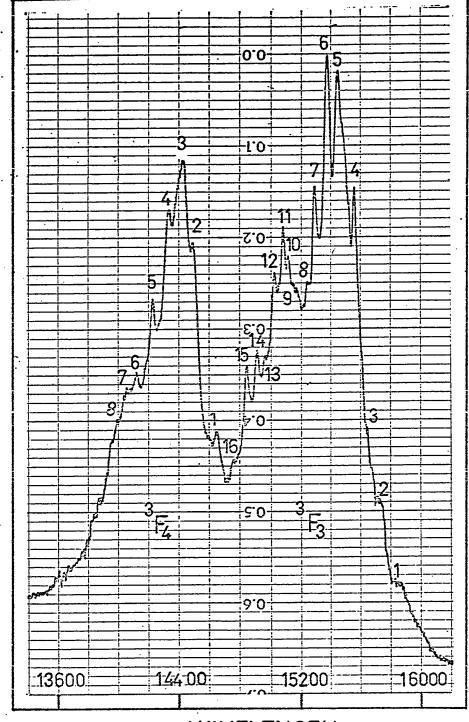
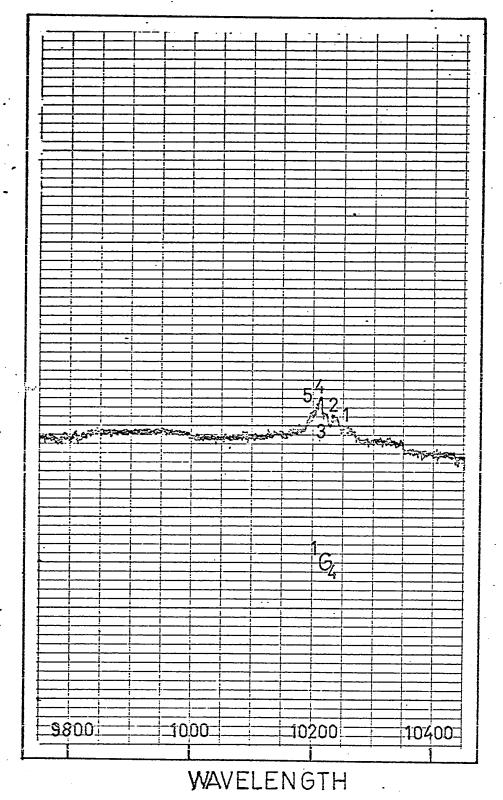
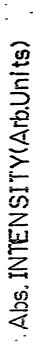

TABLE 4.3 Summary of the Figures Regarding the Absorption Spectrum of CaF_2Pr^{+3} (1%)

Fig. No.	С	rystal	Temperature	Spectral Range
4.18	As-:	received	LNT	21100 Å to 23500 Å
4.19	**	tf	11	17900 Å to 20300 Å
4.20	Ħ	tį	tt	13600 Å to 16000 Å
4.21	***	n	. 11	9800 Å to 10400 Å
4.22	Ħ	tı	tt	5700 Å to 6100 Å
4.23	11	н		4300 Å to 4900 Å



WAVELENGTH
Absorption spectrum of CaF₂Pr⁺³
17900 Å to 20300 Å. at LNT from



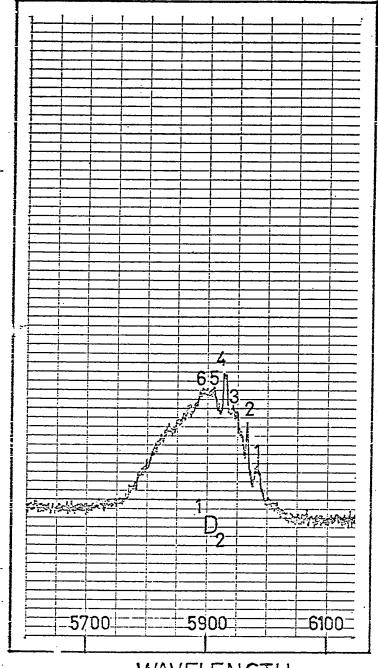
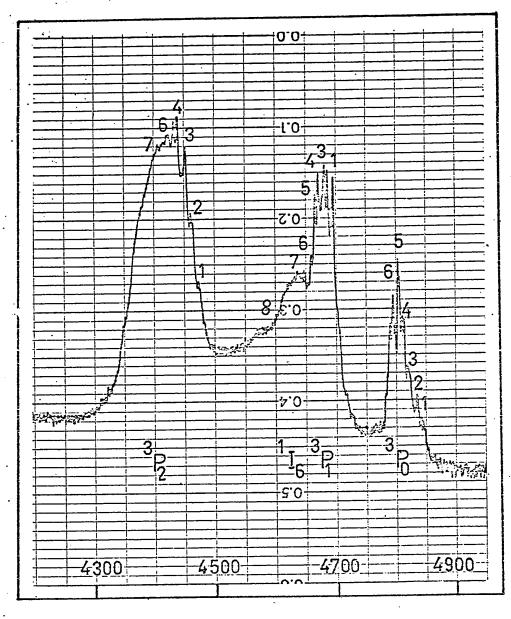

WAVELENGTH

Fig. 4.20 Absorption spectrum of CaF₂Pr⁺³ at LNT from 13600 Å to 16000 Å.


ig. 4.21 Absorption spectrum of CaF_2^{Pr} at LNT from 9800 Å to 10400 Å.

WAVELENGTH

Fig. 4.22 Absorption spectrum of CaF $^{\rm Pr}$ at LNT from 5700 Å to 6100 Å.

WAVELENGTH

Fig. 4.23 Absorption spectrum of CaF_2Pr^{+3} at LNT from 4300 Å to 4900 Å.

TABLE 4.4 Absorption Spectrum of ${\tt CaF}_2{\tt Pr}^{+3}$ at LNT

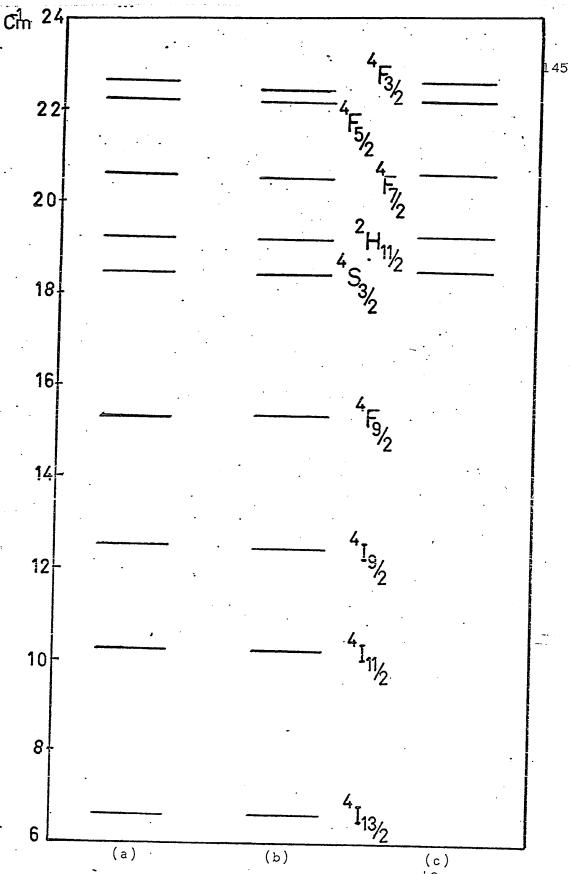
Differences between Expt. and Calc. Energy Values \$\triangle (cm^1) Ref. (2)	-12	55	17
Centroid (cm ⁻ 1)	4484	5204	6557
Peak No.	106459786	106450780	1264397
Wavelength \(\lambda\)	23512 23430 23360 22794 22170 22088 21665 21394	19723 19570 19406 19323 19241 19170 19076 18900	15900 15735 15700 15582 15465 15394 15312
Absorption Peaks Energy (cm ⁻¹)	4253 4268 4281 4281 4387 4510 4527 4616 4674	5070 5110 5153 5153 5175 5197 5242 5242 5291	6289 6355 6369 6418 6466 6531
SLJ Assignment	3 ^H 6	. e	ന പ്ര

Table 4.4 (continued)

8 4 0 0							•		÷				٠									
Differences between Expand Calc, Energy Value Δ (cm ⁻¹) Ref. (2)									36				•		1 ()	-105					97	
Centroid (cm ⁻¹)		,							4007						,	9780				•	16856	
Peak No.	8 6 0	111	13	15	16	ч	7	က	4	വ	9	7	ω	Н	0	က	4	Ŋ	1	7	თ .	4
Wavelength λ (A)	15277	510	499	485	476	465	14500	441	433	423	412	407	399	025	10235	022	021	020	98	96	5941	93
Absorption Peaks Energy (cm ⁻¹)	6546 · 6586	2 2 2	90	2 6	· [~	\sim	6897	ന	7	\sim	∞	0	4	74	77	78	79	9803	67	67	16832	68
SLJ Assignment	3 _F 3							,	ى ب	4					•		4				, D	7

Table 4.4 (continued)

Centroid Differences between Expt (cm-1) and Calc. Energy Values \triangle (cm-1) Ref. (2)		20777 71	21306 -24	. 21481	22525 -10
Peak No.	5	- 0 C 4 C O	7 7	ω 4 τυ 0 Γ α	1004507
Wavelength \(\lambda\)	5909 5894	4841 4831 4818 4812 4803 4794	4697 4690	4682 4671 4665 4659 4641 4585	4471 4459 4453 4441 4424 4424
Absorption Peaks Energy (cm ⁻¹)	16923 16966	20657 20700 20756 20781 20820 20859	21290	21358 21409 21436 21464 21547 21810	22368 22427 22457 22517 22542 22607
SLJ Assignment	$^{1}\mathrm{D}_{2}$	3 P O	3 P 1	116	3P_2


Chapter 5 DISCUSSION AND ANALYSIS OF RESULTS

5.1 Discussion of Absorption Spectra

When an ion in a crystal is excited by a source having a continuum in the desired spectral range, sharp lines characteristic of the ion can be observed on the continuous background. The transitions which give rise to the groups start from the lowest levels of the ground multiplet and terminate on various excited levels belonging to the $4f^N$ configuration of the rare-earth ion split by the crystal field. The absorption spectra of CaF_2Er^{+3} and that of CaF_2Pr^{+3} will be discussed in the subsections (a) and (b) of this section.

(a) CaF_2Er^{+3}

Fig. 5.1 shows the energy levels of ${\rm CaF_2Er}^{+3}$ (1%) at 77°K in the spectral range 6600 cm⁻¹ to 65400 cm⁻¹. In this figure, a comparison has been made between the calculated energy levels of ${\rm ErCl_3}^6{\rm H_2}{\rm O}$ and the mean energy levels in ${\rm CaF_2Er}^{+3}$. The SLJ assignments were made by comparisons with energy levels of ${\rm ErCl_3}.6{\rm H_2}{\rm O}$ (1). These energy levels are more accurate for comparison than those of free ion energy levels of ${\rm Er}^{+3}$ (2), as Carnall et al (1) have included the configuration interaction while calculating the energy levels of ${\rm ErCl_3}.6{\rm H_2}{\rm O}$. The mean energy levels in ${\rm CaF_2Er}^{+3}$ lie between the calculated energy

(a) (b) (c)

Fig. 5.1 Comparison of energy levels of CaF₂Er⁺³ with

ErCl₃.6H₂O.

(a) Absorption (b) ErCl₃.6H₂O (c) Excitation

(1.9/o)

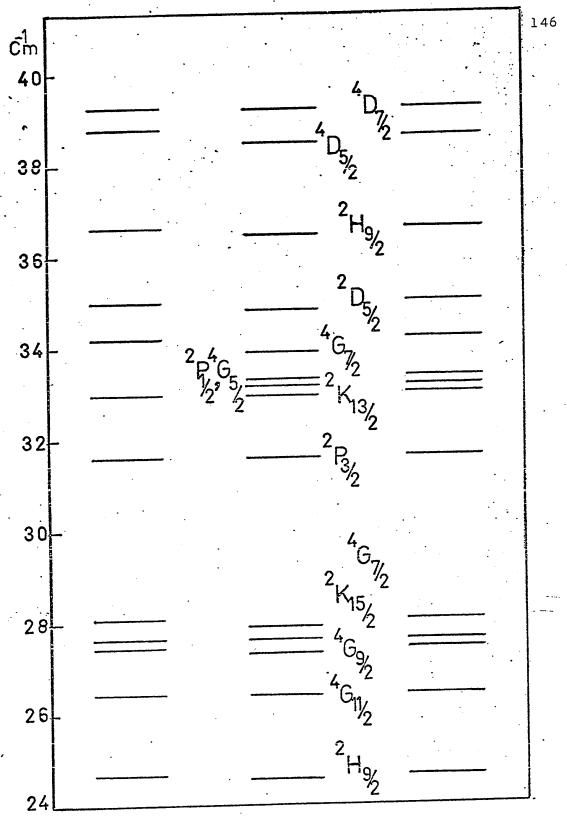


Fig. 5.1 Comparison of energy levels of CaF_2Er^{+3} with $ErCl_3 \cdot 6H_2^0$.



Fig. 5.1 Comparison of energy levels of CaF₂Er⁺³ with ErCl₃.6H₂O.

levels of LaF₃Er⁺³ (1%) and ErCl₃.6H₂O (1%). We believe that this difference is due to the Er⁺³ ion being in a different host lattice, and possibly in a different site symmetry. This difference should be responsible for a different amount of "total down shift" as discussed in (3). Nevertheless, it is remarkable that essentially the characteristic spectra are seen.

In Figure 3 of reference (4), the energy level ${}^4G_{9/2}$ at 36500 cm $^{-1}$ should be ${}^2H_{9/2}$ and, moreover, some of the energy levels in the spectral range 41000 cm $^{-1}$ to 43600 cm $^{-1}$ have not been assigned at all. In reference (5) no energy level above 31000 cm $^{-1}$ has been observed. In our results, two new energy levels, ${}^2F_{7/2}$ and ${}^2F_{5/2}$ at 54795 cm $^{-1}$ and 63091 cm $^{-1}$, respectively, are observed experimentally which have not been reported in the literature before. These values are comparable with the calculated values in (1). It should be noted that experimentally, Carnall et al(1) did not observe these levels either in LaF $_3$ Er $^{+3}$ or in ErCl $_3$.6H $_2$ O. The absorption around 33080 cm $^{-1}$ is very weak and the exact position of the energy level ${}^2K_{13/2}$ could not be marked accurately.

In our results, some interconfiguration transitions $(4f^{11} \rightarrow 4f^{10}5d)$ have been observed at 64516 cm⁻¹ and at 65359 cm⁻¹, and these are in good agreement with the result obtained by Loh (3). We have also observed a few more lines in the U.V. region around 59453 cm⁻¹ and 60606 cm⁻¹ and very weak absorption lines in the visible region

around 5050 Å, 5077 Å, 4768 Å, 4618 Å and 4568 Å. The origin of these lines is not yet known. Due to the very weak intensity of the xenon continuum in the region around 51182 cm $^{-1}$, we were unable to observe the expected energy level $^{2}\text{H}_{11/2}$. Below 1500 Å, xenon does not have a good continuum and we did not get satisfactory results. In the continuum of argan, there are too many impurity lines and to observe any meaningful absorption spectrum is difficult, unless double beam techniques are used. This is now under way in our laboratory.

The ground state of ${\rm Er}^{+3}$ is $^4{\rm I}_{15/2}$ and the observed results indicate that all the transitions obey the selection rules $\Delta {\rm J} \le 6$ and $\Delta {\rm L} \le 6$. This might indicate that the observed transitions are mainly electric dipole in character. From Figs. 4.16, 4.17, 4.13, 4.14, we see that energy levels $^2{\rm P}_{3/2}$ and $^4{\rm D}_{3/2}$ have not split while the levels $^4{\rm S}_{3/2}$ and $^4{\rm F}_{3/2}$ have split up. This might be caused by the presence of a mixture of symmetries surrounding the ${\rm Er}^{+3}$ ions in the ${\rm CaF}_2$ crystal, or the weaker transitions from $^4{\rm I}_{15/2}$ to $^2{\rm P}_{3/2}$ or $^4{\rm D}_{3/2}$ have not been observed. However, further work is obviously needed in order to have a conclusive interpretation on this aspect.

(b) CaF_2Pr^{+3}

The energy level scheme of CaF_2Pr^{+3} (1%) at LNT in the spectral region 4000 cm⁻¹ to 23000 cm⁻¹ is shown in Fig. 5.2. The mean energy levels of CaF_2Pr^{+3} have been compared with those of the free ion and with those of

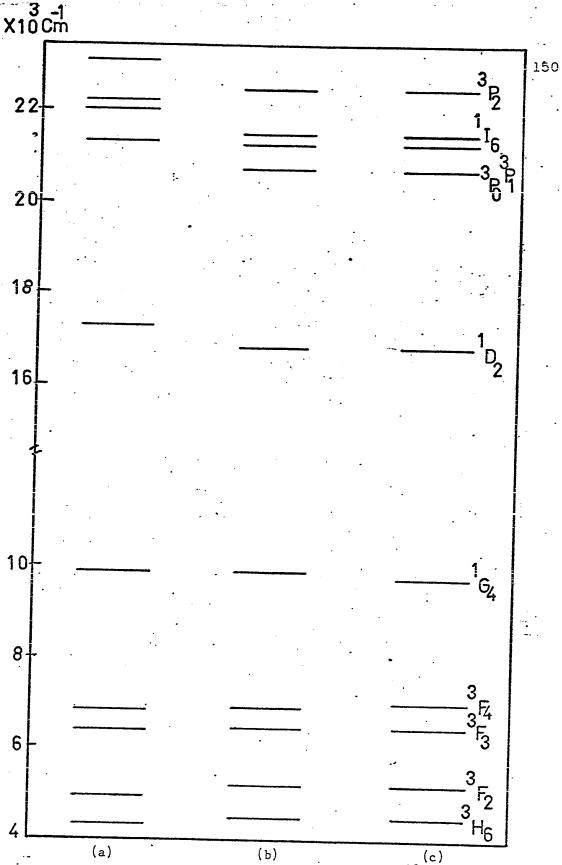


Fig. 5.2 Comparison of energy levels of CaF_2Pr^{+3} with +3.

(a) free ion (b) aqueous solution (c) CaF_2Pr^{-3} .

aqueous solution energy levels in the same figure. The SLJ assignments of these levels are made in accordance with reference (6). Our results are in agreement with the energy levels of \Pr^{+3} in aqueous solution. The absorption around 9900 cm⁻¹ is very weak and the mean energy level of ${}^{1}\text{G}_{2}$ could not be determined more accurately.

Recently, Hargreaves (7) has claimed that under the tetragonal symmetry, the positions of $^{3}P_{2}$, $^{1}I_{6}$ and $^{3}P_{1}$ are 22640 cm $^{-1}$, 21470 cm $^{-1}$ and 20830 cm $^{-1}$, respectively. No $^{3}P_{0}$ level was observed in his results. Also, there was a deviation of 300 cm $^{-1}$ from the calculated value of $^{3}P_{2}$.

Comparing our results of the mean energy levels with those of aqueous solution, we suggest that the positions of energy levels 3P_2 , 1I_6 , 3P_1 and 3P_0 should be 22526 cm $^{-1}$, 21481 cm $^{-1}$, 21306 cm $^{-1}$ and 20777 cm $^{-1}$, respectively. We have also noticed a disproportionate shift in the mean energy levels for 3P_2 , 1I_6 , 3P_1 and 3P_0 by making a comparison with the energy levels of free ions of Pr $^{+3}$ (8,9) This difference in the shift can be explained by considering the configuration interaction and mixing of energy levels due to crystal field. We further suggest that the energy levels from 1D_2 to 3P_2 should be treated separately from the group of energy levels 3H_4 to 1G_4 as the two groups are separated from one another by ≈ 7400 cm $^{-1}$. Detailed discussion regarding this aspect has been given by Schlesinger and Nara (10).

The ground state of Pr^{+3} is ${}^{3}H_{\Lambda}$ and all the

transitions except 1S_0 have been observed which follow the selection rules $\Delta J \leq 6$ and $\Delta L \leq 6$. This suggests that the observed transitions are also electric dipole in character.

The above did not exclude the presence of more than one symmetry but in absorption spectrum the transitions due to dominant symmetry are observed. Transitions due to weaker symmetry may be observed in thermoluminescence or luminescence spectrum which will be discussed later.

5.2 Discussion of Luminescence Excitation Spectrum

When a rare-earth ion in the CaF, matrix is irradiated with monochromatic radiation, the ion undergoes a transition from the ground state E_{α} to an excited state E. Subsequently, the ion will lose part of its energy in a radionless process or by cascade process, coming to an intermediate state E_{T} as shown in Figure 5.3. From the intermediate level E_T , it will decay to the ground state \mathbf{E}_{α} emitting electromagnetic radiations, which can be observed experimentally with relative ease. By changing the wavelength of exciting light, one gets an excitation spectrum. The intensity of light in absorption spectrum depends upon the thickness of the sample, but in luminescence excitation spectrum, it is independent of thickness. This method has proven to be better than absorption due to its strong intensity and good resolution. The luminescence spectra of CaF_2 Er^{+3} (0.1%) in the green region and that

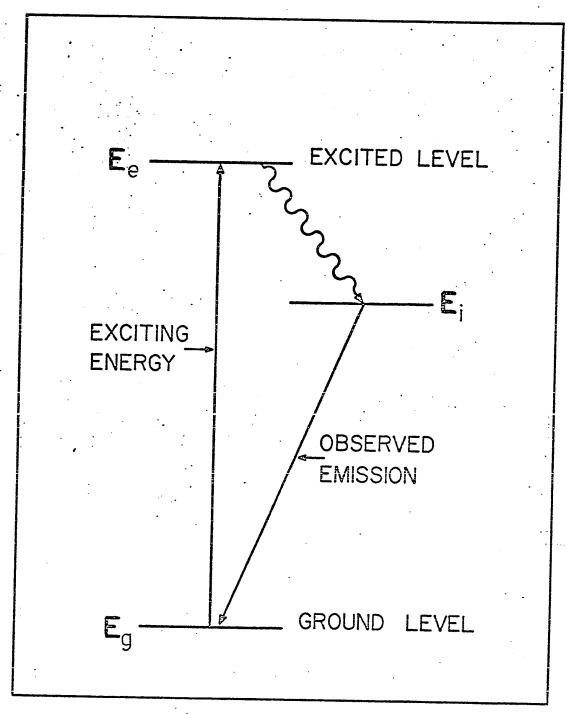
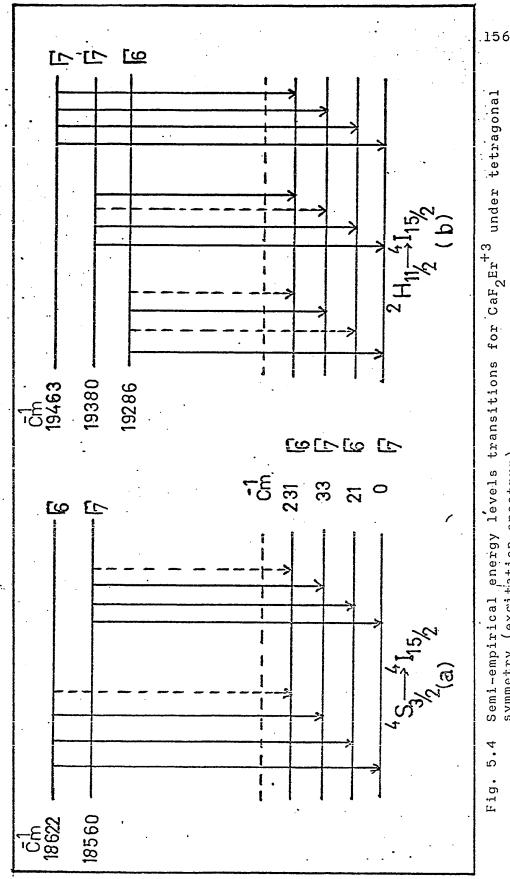


Fig. 5.3 Process for luminescence excitation.

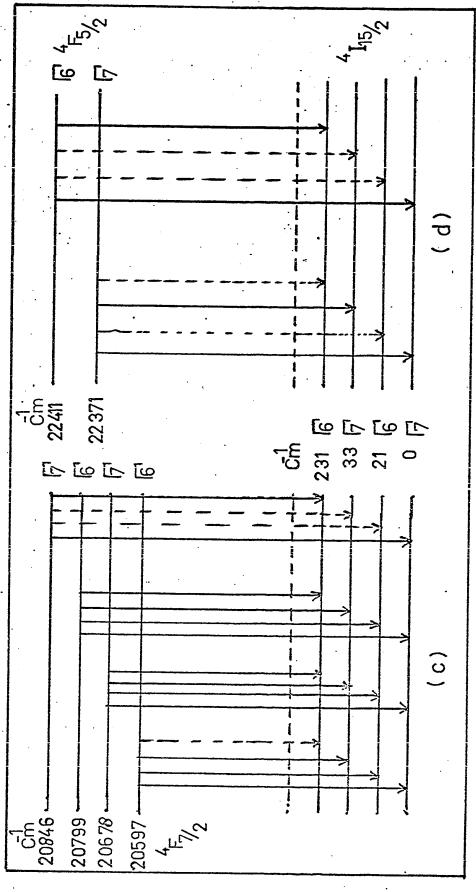
of CaF_2^{pr} (0.1%) in the blue-green region will be discussed in the subsections (a) and (b) of this section.

(a) CaF_2Er^{+3}

Fig. shows the energy levels of CaF_2Er^{+3} (0.1%) in the spectral range 18100 cm⁻¹ to 50,000 cm⁻¹. In the same figure the mean energy levels have been compared with those of ErCl₂.6H₂O and that of CaF₂Er⁺³ (1%) obtained by the absorption method. The maximum deviation observed is 365 ${\rm cm}^{-1}$ and the maximum splitting produced is 430 ${\rm cm}^{-1}$. It is evident from Fig. 5.1 that the results of absorption and excitation spectra are in good agreement, which means that both the spectra are of the same origin. In the absorption spectra we could not observe the energy levels 2 K_{13/2}, 4 G_{5/2} and 2 P_{1/2}. In the luminescence excitation spectrum we believe that the energy levels around 3000 $\overset{\text{o}}{\text{A}}$ consist of ${}^2K_{13/2}$, ${}^4G_{5/2}$ and ${}^2P_{1/2}$ levels. They are very close to each other and it is therefore difficult to draw an exact boundary for these levels. The effect of temperature on the spectrum can be seen by making a comparison of the spectrum obtained at room temperature with that obtained at liquid nitrogen temperature.

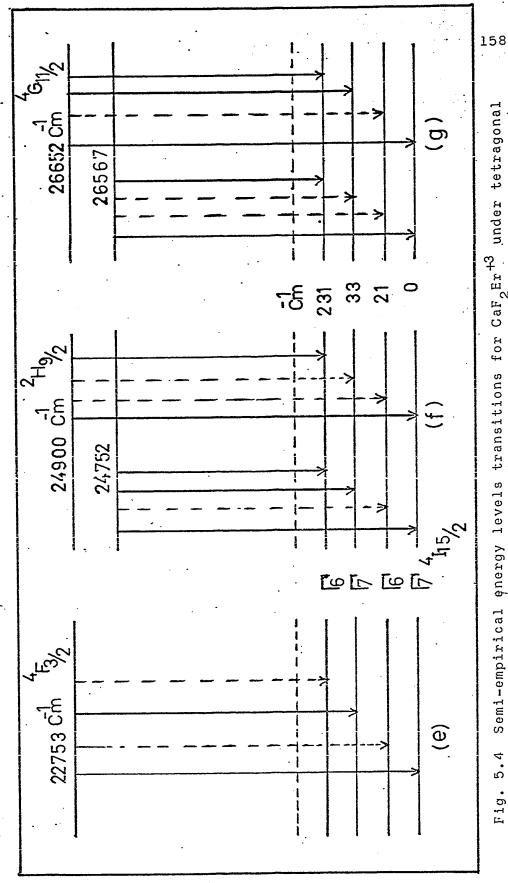

Some differences in intensity as well as in the number of components have been observed in the spectra obtained from crystals furnished by Harshaw Chemical Co. and Optovac Inc. There is a strong level at $\simeq 2600$ Å in the sample obtained from Harshaw Chemical Co. while a very weak shoulder at 2580 Å was observed in the Optov sample.

Since the concentrations of the Er⁺³ ion are the same in both samples, we believe that this difference is due to the presence of a mixture of symmetries in different proportion in the two respective samples.


An attempt has been made to construct an energy level scheme for the observed excited states of $\rm Er^{+3}$ in the tetragonal and cubic fields respectively, as shown in Figs. 5.4 and 5.5 . The lowest stark split component of the ground state $^4\rm I_{15/2}$ is $\rm \Gamma_7$ in both the symmetries. The next excited state occurs at 21 cm $^{-1}$ in the tetragonal field (5) and at 91 cm $^{-1}$ in the cubic field (11). The observed transitions are marked by solid lines and the unobserved transitions are marked by broken lines. The allowed transitions under different symmetries were obtained from Tables 2.8 and 2.10. Experimentally observed transitions under $\rm C_{4v}$ and $\rm O_h$ symmetries, along with their calculated values, and the differences between the two, are given in Tables 5.1 and 5.2.

(b) CaF_2Pr^{+3}

The excitation spectrum of CaF_2Pr^{+3} (0.1%) in the spectral region 2000 Å to 4200 Å has been carried out. We have observed bands at 2620 Å, 2740 Å, 3530 Å, 3660 Å and 3950 Å. We also observed the energy level 3P_2 and its estimated mean energy is \approx 22795 cm $^{-1}$. From Figs. 3.29 it was found that the intensity of the band at 3660 Å and that of the energy level 3P_2 decreases with increasing the concentration of the Pr^{+3} ion in the CaF_2 crystal. These



Semi-empirical energy levels transitions for ${\rm CaF}_2{\rm Er}^{+3}$ under tetragonal symmetry (excitation spectrum). 5.4 Fig.

Semi-empirical energy levels transitions for ${\rm CaF}_2{\rm Er}^{+3}$ under tetragonal symmetry (excitation spectrum). Fig. 5.4

157

Semi-empirical energy levels transitions for ${\tt CaF}_2{\tt Er}^{+3}$ under tetragonal symmetry (excitation spectrum). 5.4 Fig.

TABLE 5.1

From Luminescence Excitation Spectrum of ${\tt CaF}_2{\tt Er}^{+3}$ at LNT ${\tt C}_{4v}$ Symmetry. Splitting of Ground State $^4{\rm I}_{15/2}$ is according to (5).

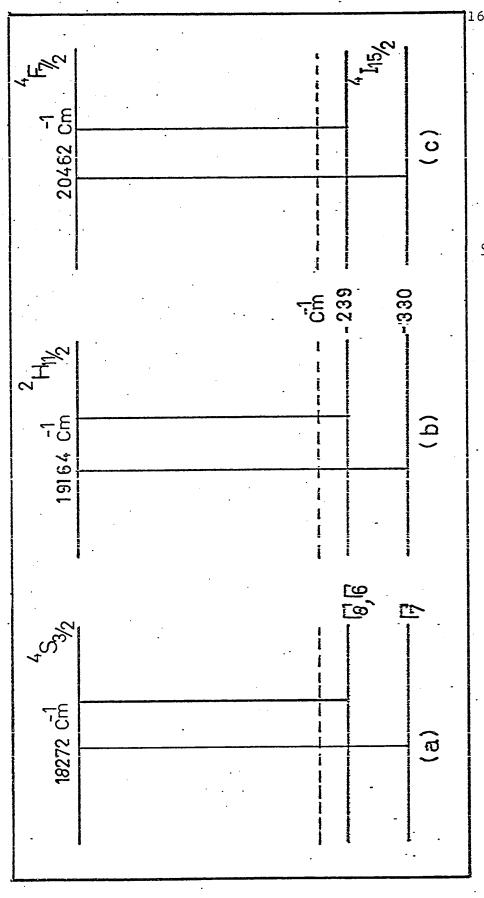

Transition	Electronic Line Energy Calculated (cm ⁻¹)	Expt. Observed (cm-1)	\triangle = Difference Between Obs. and Cal.	Peak No. in Figs.	Figure No.
⁴ S _{3/2} - ⁴ 1 _{15/2}	18622-0 = 18622 18622-21 = 18601 18622-33 = 18589 18622-231 = 18391	18622 18601 18587		ბ ღ 4	3.12
⁴ S _{3/2} → ⁴ 1 _{15/2}	18560-0 = 18560 18560-21 = 18539 18560-33 = 18527 18560-231 = 18329	18560 18539 18518 18335 Abs.	0069	r 7 7	3.12
² H _{11/2} → ⁴ I _{15/2}	19286-0 = 19286 19286-21 = 19265 19286-33 = 19253 19286-231 = 19055	19286 19264 Abs. .19257 19069 Abs.	0 - 1 4 4 1 4	ව 4ූ	3,13
² H _{11/2} - ⁴ 1 _{15/2}	19380-0 = 19380 19380-21 = 19359 19380-33 = 19347 19380-231 = 19149	19380 19350 19324 19164	100 120 120 120	7 7 8	3,13
² H _{11/2} → ⁴ 15/2	19463-0 = 19463 19463-21 = 19442 19463-33 = 19430 19463-231 = 19332	19463 19425 19410 19324	1 1 1 1 8	11 10 9	3.13

Table 5.1 (continued)

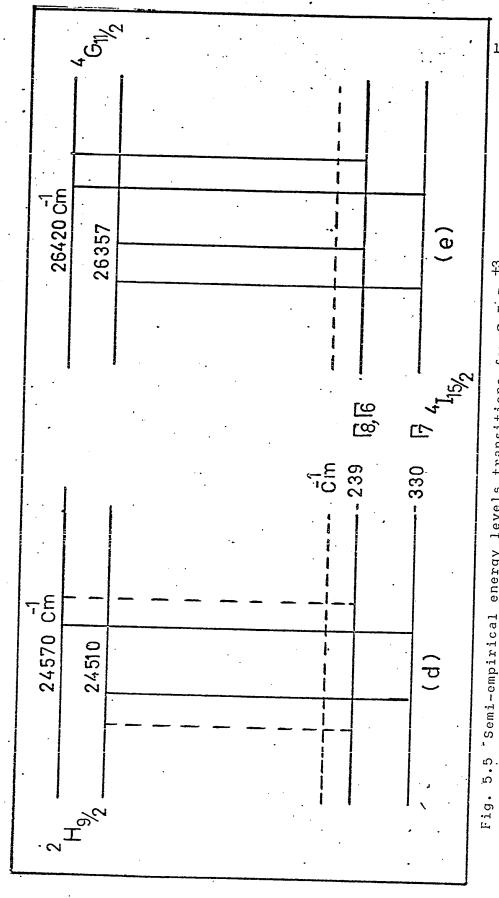

Transition	Electronic L Calculated	ine Engrgy 1 (cm ⁻ l)	Expt. Obseryed (cm ⁻ l)	Δ = Difference Between Obs. and Cal.	Peak No. in Figs.	Figure No.
⁴ F _{7/2} - ⁴ 1 _{15/2}	20678-0 20678-21 20678-33 20678-231	= 20678 = 20657 = 20645 = 20447	20678 20653 20640 20462	0 4 - 5 3 - 5	. 10 4 8	3.14
⁴ F7/2 - ⁴ 1 _{15/2}	20597-0 20597-21 20597-33 20597-231	= 20597 = 20576 = 20564 = 20366	20597 20572 20551	0 1 1 1 3 4 4	ភ ଓ ଓ	3.14
$^4F_{7/2} \rightarrow ^4I_{15/2}$	20799-0 20799-21 20799-33 20799-231	= 20799 = 20778 = 20766 = 20568	20799 20773 20764 20585	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	: 1123 1123	3.14
$^4F_{7/2} \rightarrow ^4I_{15/2}$	20846-0 20846-21 20846-33 20846-231	= 20846 = 20825 = 20813 = 20615	20846 20618 Abs.	· 0 m	14	3,14
⁴ F _{5/2} → ⁴ I _{15/2}	22371-0 22371-21 22371-33 22371-231	= 22371 = 22350 = 22338 = 22140	22371	0 7	υ 4	3.15
⁴ F _{5/2} - ⁴ I _{15/2}	22411-0 22411-21 22411-33 22411-231	= 22411 = 22390 = 22378 = 22180	22411 22381 Abs. 22173	0 - 6 - 1	. 6	3.15

Table 5.1 (continued)

Transition	Electronic Line Energy Calculated (cm 1)	Expt. Obseryed	Δ = Difference Between Obs. and Cal	100	Figure
		(~_wo)	5	. 1	• 0
	753-0 = 2275	275	0		
4 F3/0 → I1F/0	753-21 = 2273	22727	ភូព	Abs.	3.13
7/5		27.1	ဗု	8) ; ;
	= 2490	24900	. 0	ıΩ	
$^{2}_{H_{9/2}} \rightarrow ^{4}_{15/2}$	24900-21 = 24879 $24900-33 = 24867$		•	ı	3.16
	31 = 2466	24667	-2		
	2-0 = 2475	24752	0	4	
	24752-31 = 24731 24752-33 = 24719	24710	O _I	4	3.16
	2-231 = 2452	24510	-11	• C	<u>.</u>
4.2	6652-0 = 2665 6652-01 = 2665	26652		ω	
U11/2 115/2	26652-33 = 26619 26652-231 = 26421	26617	0 F	2	3.17
	567-0 = 2656	26567	н О !	უ დ	
⁴ G _{11/2} → ⁴ 1 _{15/2}	26567-21 = 26546 26567-33 = 26534	26521	-13	Abs.	3.17
	307-231 = 2033	დ ე	120	-Т	

Semi-empirical energy levels transitions for ${\tt CaF}_2{\tt Er}^{+3}$ under cubic symmetry (excitation spectrum). Fig. 5.5

Semi-empirical energy levels transitions for CaFzEr $^{+3}$ under cubic symmetry (excitation spectrum). હે. ઉ.

163

TABLE 5.2

Under $o_{\rm h}$ Symmetry from Luminescence Excitation Spectrum of CaF $_{
m 2}$ Er $^{+3}$ at LNT. Splitting of Ground State is according to (11). $^{\prime\prime}$

Transition						
	Electronic_Line Cal. (cm-1)	Obs. (cm ⁻¹)	$(cm^{\Delta}-1)$	Peak No. see Fig.	Fig. No.	
$^4S_{3/2} \rightarrow ^{4}I_{15/2}$	18272-(-330) = 18602 18272-(-239) = 18511	18601 18518	-1	1	3.12].
$^{2}_{\mathrm{H}_{11}/2} \stackrel{^{4}}{\scriptstyle \sim} ^{4}_{\mathrm{15}/2}$	19164-(-330) = 19494 19164-(-239) = 19403	19485	6-1	12 9	3,13	
$^4F_{7/2} \rightarrow ^4I_{15/2}$	20462 - (-330) = 20792 20462 - (-239) = 20701	20799	7	13	3.14	
$^{2}_{\text{H}_{9/2}} \rightarrow ^{4}_{\text{1}_{15/2}}$	24570 - (-330) = 24900 24570 - (-239) = 24809	24900	0	ហ	3.16	
	24510 - (-330) = 24840 24510 - (-239) = 24749	24752	ო	4	3.16	
$^4G_{11/2} \stackrel{4}{-} ^4_{15/2}$	26357-(-330) = 26687 26357-(-239) = 26596	. 26688 26567	1-29	67	3.17	
	26420-(-330) = 26750 26420-(-239) = 26659	26745 26652	1-5	10	3.17	

bands were not seen in the absorption spectrum of CaF_2Pr^{+3} . The strongest band was observed in emission spectrum (Fig. 3.40). We believe that these bands are either due to the interconfiguration transition $4f^2 \rightarrow 4f5d$ or due to the presence of divalent prosedymium.

Hargreaves (7) has claimed the position of ${}^{3}P_{2}$ at 22696 $\,\mathrm{cm}^{-1}$ but there is a difference of 300 $\,\mathrm{cm}^{-1}$ between his experimentally observed level and the theoretical calculated value. The difference between our observed $^{3}P_{2}$ level and that of Hargreaves could well be caused by the presence of relatively higher symmetry in our crystal. We have found a difference of approximately $270~\mathrm{cm}^{-1}$ in the positions of energy level $^3\mathrm{P}_2$ as observed from the luminescence excitation and absorption measurements. As pointed out by Schlesinger (12), in the presence of higher symmetry the mean energy levels move towards the higher energy side and vice versa. From the same crystal we have seen four more components in the higher energy side as compared with that of the absorption spectrum and, among those four, two components are very strong. We believe that efficiency of excitation of a certain type of symmetry depends upon the exciting light used. Support of this has been given by Schlesinger and Kwan (13).

An attempt has been made to construct an energy level scheme under the cubic symmetry by assuming that vibronic lines are also present. The results are shown in Fig. 5.6. The lowest stark split component of the

TABLE 5.3

Cubic Symmetry from Luminescence Excitation Spectrum of CaF2Pr

	$^{3}P_{2}$ will spansion	split into two components	its 2r	3 and 3 5 .	
Transition	E1	ectronic Line Cal. (cm ⁻¹)	-1)	Expt. (cm ⁻¹)	△ (cm ⁻¹)
3	2 L	23212-144 = 23068 23212-234 = 22978		23084 22988	16
	3 L 5	22831-144 = 22687 22831-227 = 22604 22831-234 = 22597		22696	o 0
		(4308 Å) 23212 cm ⁻¹ -			
		(4380 Å) 22831 cm ⁻¹ .			3 L
Fig. 5.6	Semi-empirical transitions for cubic symmetry	energy lgvels r CaF ₂ Pr ⁺³ under (excitation	23084 cm ⁻¹	T-mo 76622	•
		341 cm ⁻¹			- L
		234 cm ⁻¹ , 227 cm ⁻¹	7	>	6 2 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		[]			ო • ო

ground state of \Pr^{+3} under the cubic symmetry is Γ_5 and the other excited states are Γ_3 , Γ_4 and Γ_1 . The allowed transitions under different symmetries were obtained from Table 2.11. Experimentally observed transitions under O_h symmetry, along with their calculated values, and the differences between the two are given in Table 5.3.

5.3 Discussion of Emission Spectra

(a) <u>CaF</u>₂Er⁺³

The electron configuration of Er +3 is 4f11 with a ground state $^4I_{15/2}$. There exists an excited state $^4S_{3/2}$ approximately at 18300 cm⁻¹ in the free ion. The observed green emission corresponds to the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ stark split transitions. Working in the spectral region 17970 ${\rm cm}^{-1}$ to 18610 ${\rm cm}^{-1}$, our crystals were excited with different exciting energies. Figs. 3.31 to 3.34 show that the intensities of some of the emission lines change and some new lines have appeared in the emission. We suggest that this is due to the presence of a mixture of site symmetries of the Er^{+3} ion in the crystal. Specifically by exciting the crystal with different wavelengths, components belonging to a particular symmetry which happens to absorb in that wavelength will be excited more readily than in the other. Such was shown to be the case in CaF2:Dy+3 by Schlesinger and Kwan (13).

An attempt has been made to construct the transition scheme of energy levels for ${\rm CaF_2Er}^{+3}$ assuming tetragonal symmetry (see Fig. 5.7 and Table 5.4). The emission lines due to sites of cubic symmetry seem to be very weak. It should be noted that the splitting of the ground state $^4{\rm I}_{15/2}$ is in accordance with Reference (5).

TABLE 5.4

Under $\mathtt{C}_{4 extsf{v}}$ Symmetry from the Luminescence Spectrum of $\mathtt{CaF}_2\mathtt{Er}^{+3}$ at LNT. Splitting of the ground state is according to reference (5).

	Fig. No.	3.31	
• (0) • • • • • • • • • • • • • • • • • •	Peak No.	12 11 Thermo. 4 Thermo. 13 Lum. Excit. Thermo. 6 5 Thermo.	
H	(cm ² 1)	0 9 2 4 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2	
, G	Expt. obseryed line (cm 1)	18543 18516 18508 18135 18109 18084 18608 18587 18552 18372 18181	
	Calculated (cm 1)	18543-0 = 18543 18543-21 = 18522 18543-33 = 18510 18543-403 = 18140 18543-436 = 18107 18543-452 = 18091 18608-0 = 18608 18608-21 = 18587 18608-23 = 18575 18608-33 = 18575 18608-403 = 18205 18608-452 = 18172	18608 cm 18543 cm 1-empirical energy 436 cm els 4 ransitions for 403 cm 21 symmetry 231 cm ninescence spectrum). 33 cm
	Transition	⁴ S _{3/2} → ⁴ I _{15/2}	Fig. 5.7 Semi-em levels CaF Pr gonal s (lumine

We claim that at LNT the emission in the luminescence spectrum is mainly due to sites of tetragonal symmetry surrounding the Er⁺³ ion in the CaF₂ crystal. A comparison between luminescence and thermoluminescence spectra will be given in the next section, where it will be evident that in the thermoluminescence emission more than one symmetry can be observed.

(b) CaF_2Pr^{+3}

The electron configuration of \Pr^{+3} is $4f^2$ with a ground state 3H_4 . There exists an excited state 3P_1 approximately at 22000 cm $^{-1}$ in the free ion. The observed blue-green emission corresponds to the $^3P_1 \rightarrow ^3H_4$ transitions. Working in the spectral region 20400 cm $^{-1}$ to 22000 cm $^{-1}$, the crystal was excited with different wavelengths as shown in Figs. 3.35 to 3.39 . Our results are, once again, parallel to the conclusions drawn by Schlesinger and Kwan (13), who worked with P_2 doped CaF_2 .

An attempt has been made to construct energy level schemes for cubic and tetragonal site symmetries as shown in Figs. 5.8ab, Tables 5.5, 5.6. Under the influence of a crystal field of cubic symmetry, the ground state $^3\mathrm{H}_4$ of $^2\mathrm{Pr}^{+3}$ splits into four components $^2\mathrm{I}_1$, $^2\mathrm{I}_3$, $^2\mathrm{I}_4$ and $^2\mathrm{I}_5$ among which $^2\mathrm{I}_5$ is the lowest and $^2\mathrm{I}_1$ is the highest. All the electric dipole transitions from $^3\mathrm{P}_1$ to $^3\mathrm{H}_4$ are allowed (see Table 2.11). We suggest that under the influence of the cubic crystal field, the ground state will split to

341 cm⁻¹ 234 cm⁻¹ 227 cm⁻¹

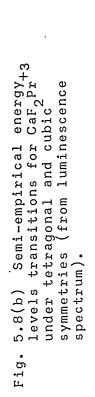
144 cm-1

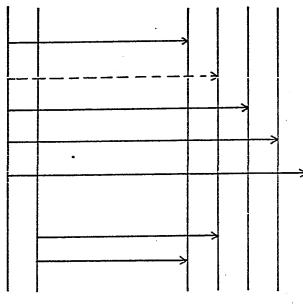
TABLE 5.5

Under O_h Symmetry from the Luminescence Spectrum

H
z
H
د
α
-
۲:
Ω,
N
[14
ಹ
S
44

Transition	Electronic Line Calc. (cm ⁻¹)	Experimentally Observed (cm ⁻¹)	$(cm^{\Delta}1)$	Peak No.	Fig. No.	
3 _{P1} → 3 _H	20951 - 144 = 20807 $20951 - 227 = 20724$ $20051 - 227 = 20724$	20820 20721	13	13	3,36	
·	51 - 341 =	20618	ω r	6		
³	20387 - 234 = 20153	20149	4-	1		
		20951 cm ⁻¹		.		$\frac{3}{\Gamma_4}$ (
		20287 cm - 1			-	
•8(a) nergy or Ce	Semi-empirical levels transitions pr dunder tetra-					1
(from	luminescence spectrum	-				


TABLE 5.6


Under C $_{4
m v}$ Symmetry from the Luminescence Spectrum of CaF $_2^2$ Pr at LNT. Splitting of the ground state is according to reference (7).

Transition	Electronic Line Energy Calculated (cm ⁻¹)	Experimentally Observed (cm ⁻¹)) (cm ⁻¹)	Peak No.	Fig. No.
	20764 - 0 = 20764	20764	0	12	
	64 - 35 =	20721	ω	77	
3 _р т 3 _н	20764 - 83 = 20681	20678	၉	10	3.36
1	64 - 99 =				
	64 - 134 =	20618	12	σ	
8	= 66 - 28	20280	ω 1	4	
F 0 T T 4	20387 - 134 = 20253	20259	9	က	

20951 cm⁻¹

20387 cm⁻¹

cm-1	cm-1.	cm-1	cm -1	cm-1
134	66	83	35	С

approximately 200 cm⁻¹. We did observe a strong line at 20387 cm⁻¹ and we believe that this is due to a $^{3}P_{o} \rightarrow ^{3}H_{4}$ transition as under the cubic symmetry there is only one allowed electric dipole transition from Γ_{1} to Γ_{4} (see Table 2.11).

Results indicate that at LNT in the as-received crystals, the emission observed in luminescence spectrum is due mainly to tetragonal sites for the \Pr^{+3} ion in the CaF_2 crystal. Indeed, while the main lines are due to tetragonal symmetry, lines due to cubic symmetry are also present but are very weak in intensity. Comparison between luminescence and thermoluminescence spectra will be given in the next section, where it will be evident that the "tetragonal" to "cubic" line intensity ratio is different.

5.4 Discussion of Thermoluminescent Spectra

In general, upon x-irradiation, some of the tripositive rare-earth ions are reduced to the divalent state, while the generated hole is trapped in a nearby site. Upon heating, the trapped hole is released and recombines with the extra electron on the rare-earth ion, thus reoxidizing it to an excited state of tripositive ion. The excited ion returns to its ground state, emitting its characteristic radiation. The thermoluminescent spectra of CaF_2Er^{+3} and CaF_2Pr^{+3} will be discussed in the subsections (a) and (b), respectively.

(a) <u>CaF</u>Er +3

The observed green emission in the thermoluminescent spectrum of CaF₂Er⁺³ corresponds to the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ stark split transition. The thermoluminescent spectrum of CaF₂Er⁺³ was studied by Merz and Pershan (15). They have proposed that all the thermoluminescent emission in rareearth doped CaF, below room temperature comes from ions in cubic lattice sites. A careful comparison between our with Fig. 7 of reference (15) reveals that we have an almost identical profile except with the difference that at RT we have less number of lines and also the general intensity decreases as the temperature increases. Based on the observed results and the comparison with luminescence emission, we propose that in the as-received crystal, even at LNT, there exists a mixture of site symmetries (O_h, C_{4v}) for the Er $^{+3}$ ions in the CaF $_2$ crystal. As the temperature is increased, the effect on different symmetries will be different and above room temperature, the lines observed in thermoluminescence spectrum are due to sites of cubic symmetry only. Some vibronic lines are also present.

Figs. 5.7 and 5.9 show the transition scheme due to cubic and tetragonal symmetries surrounding the Er⁺³ ion in CaF₂ crystal. Table 5.7 gives the comparison between the calculated and observed values. A careful comparison between the Figs. 3.44 and 3.31 reveals that the emission in the luminescence spectrum is mainly due to tetragonal

TABLE 5.7

From the Thermoluminescence Spectrum of ${
m CaF}_2{
m Er}^{+3}$ under ${
m o}_{
m h}$ Symmetry. Splitting of the ground state is according to reference (11).

	Fig. No.	3.44			$^4\Gamma_{ m s}$	o O	4 _r 3	$^4\Gamma_8$ $^2\Gamma_6$, $^4\Gamma_8$	
	Peak No. see Fig.	17 14 7 6	k No.	12 5 1		•	->		
	$(cm^{\Delta}]$	1 1 0 3 3 3 3 3 3 4 3 5 4 3 5 4 3 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-1) Peak					→	
	Obseryed (cm)	18608 18508 18034 17943	(cm ⁻¹)	18372 -1 17901 2 17812 4 17670 -3	1]				-1-
, , , , , , , , , , , , , , , , , , ,	y Expt. Line	18 18 18 17	(cm ⁻¹) Ob	373 183 899 179 808 178 673 176	18272 cm	.t	296 cm ⁻¹ -	228 cm ⁻¹ -239 cm ⁻¹ -	-330 cm ⁻¹ .
3	Line Energ d (cm ⁻¹)	0 = 18602 9 = 18511 8 = 18044 6 = 17976	s Cal. (c	= 183° = 178° = 178° = 176°		energy ‡gvels CaF ₂ Er under (frcm thermo-			
)	ectronic Calculate	18272 33(18272 23' 18272 - 22' 18272 - 29'	ic Line	8508 - 135 8034 - 135 7943 - 135 7943 - 270		al for sp			
6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tion El	4115/2	Vibron	188 173 177		Semi-empiric transitions cubic symmet			
	Transit	⁴ 83/2 → ⁴				Fig. 5.9			
	1		ı					•	

site symmetry while the emission in the thermoluminescence spectrum is due to cubic and tetragonal sites. Table 5.8 gives the comparison between the two. As noted earlier, Schlesinger and Kwan (13) have observed parallel results in the case of CaF_2Dy^{+3} .

(b) <u>CaF</u>2Pr+3

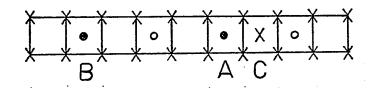
We have observed two groups in the thermoluminescent spectrum of $\text{CaF}_2\text{Pr}^{+3}$, one group belongs to the $^3\text{P}_1$ $^{-3}\text{H}_4$ transition and the other belongs to the $^3\text{P}_0$ $^{-3}\text{H}_4$ transition. We observed a larger number of components in the lower energy side as compared with the luminescence spectrum. We believe that this is due to excitation of ions in symmetry sites lower than cubic. Once again our results are consistent with the conclusion drawn by Schlesinger and Kwan (13).

Table 5.9 gives the comparison between luminescence and thermoluminescence spectra. Figs. 5.8 (a) and (b) show the transition schemes for cubic and tetragonal site symmetries. A careful comparison between Fig. 3.45 and 3.36 reveals that emission in luminescence spectrum is a true subset of that of thermoluminescence spectrum, which again means that in the luminescence we observe possibly one and in the thermoluminescence possibly two (or more) site symmetries.

TABLE 5.8 . Assignments of Peaks in Luminescence and Thermoluminescence Spectra Exhibited by ${\rm Er}^{+3}$ in ${\rm CaF}_2$. Peak Values are Expressed in cm⁻¹.

SLJ . Assignment	Luminescence	Thermoluminescence	Assig	nment
•		17670	Vi	.b
•	•	17736		
		17793		
		17812	Vi	b
		17901	Vi	
	•	17943	V I	
	17976	2.7.0	0	
	,,,,	18034	o{h}	
	18059	10004	0	
	18084		o_h	_
	2000.	18109		C _{4v}
	18135	18135		\circ_{4v}
	20200	18152		c_{4v}
	18181	10102		C .
	18212			C _{4v}
•	18272	18272	Λ	c_{4v}
	18308	10212	$o_{\mathtt{h}}$	<u></u>
	18342		Vi	C _{4v}
	18372	18372	VI	
	18423	10372		c_{4v}
	18450	18450		
	10-30	18508		c_{4v}
	18516	18308	0	
•	18543	18543	o_h	_
	10040	18552		$^{\circ}4v$
	18608	18608	0	$c_{ m 4v}$
	10000	18733	$o_{\mathtt{h}}$	$^{\circ}4v$

TABLE 5.9


Assignments of Peaks in Luminescence and Thermoluminescence Spectra

Exhibited by Pr^{+3} in CaF_2 .

Peak Values are expressed in cm -1.

SLJ Assignment	Luminescence	Thermoluminescence	Assignment
		003	
		005	
		008	
		011	
	20149	014	0
	20202	020	
		20251	Vibronic line to 20387 cm^{-1} (-135 cm ⁻¹)
	02		C _{4v}
	20280		C41
		20292	>
	20300		
-	20387	20387	Ç
	20488	20488	to 20618 cm ⁻¹
		20512	line to 20387 cm ⁻¹ (135 cm ⁻
	20563	20563	
		20584	Vibronic line to 20721 cm^{-1} (-135 cm ⁻¹)
	61)61	٥٠,
	.00	290	
	20721	0.72	0,50
	976	91C	
	382	082	o
	385	085	 C4v
	395	20951	h _o
		106	

5.5 A Possible Model for Thermoluminescence

+2 Ca +3 RE • F X

Fig. 5.10 Suggested model for thermoluminescent spectrum.

As shown in Fig. 5.10, the rare-earth ion at site A will be under the influence of C_{4v} symmetry. The rare-earth ion at site B, which is well separated from the charge compensator, will experience a cubic field. Thus, in this type of model, there exists a mixture of symmetries surrounding the rare-earth ions.

Upon x-irradiation, the rare-earth ion at site A is reduced to the divalent state, while the hole is trapped in a nearby site. After the reduction of the RE^{+3} ion to the RE^{+2} state, the compensator is no longer required. At RT the charge compensator at site C becomes mobile and RE^{+2} at site A may be left in the cubic site symmetry. On further heating, the hole is released from its trap and reoxidizes RE^{+2} at site A to an excited state $(\mathrm{RE}^{+3})^*$. The excited ion $(\mathrm{RE}^{+3})^*$ returns to its ground state, emitting

its characteristic radiation. Thus the emission above RT is characteristic of the RE⁺³ ion in the cubic sites, while the emission at lower temperatures are believed to originate from sites of mixed symmetries. A similar model was proposed by Schlesinger and Whippey (12).

Chapter 6 CONCLUSIONS

6.1 CaF₂Er⁺³

The optical spectrum of CaF $_2$ Er $^{+3}$ (1%) at LNT has been studied in the spectral region 6600 cm $^{-1}$ to 65400 cm $^{-1}$ and 4f \rightarrow 4f and interconfiguration transitions 4f 11 \rightarrow 4f 10 5d have been observed. In the case of CaF $_2$ Er $^{+3}$ two new energy levels 2 F $_7/2$ and 2 F $_5/2$ at 54795 cm $^{-1}$ and 63091 cm $^{-1}$ have been identified, which have not been observed previously in any host lattice. New lines at 59453 cm $^{-1}$ and 60606 cm $^{-1}$ have been observed but their origins are not well understood.

Employing luminescence excitation techniques, the excitation spectrum has been studied in the spectral region 18200 cm^{-1} to 50000 cm^{-1} . From the excitation spectrum, it is concluded that at LNT the emission is due to a mixture of symmetries $(0_h, C_{4v})$ surrounding the Er^{+3} ion in the matrix of CaF_2 . An attempt was made to construct an energy level scheme for an ion under the influence of cubic and tetragonal field symmetries. The excitation spectra obtained from the two samples obtained from Harshaw Chemical Company and Optovac Inc. are not identical. We suggest that this difference is due to the presence of mixed symmetries in different proportion in the two samples.

From luminescence experiments at LNT, it is concluded that the emission is predominantly due to tetragonal symmetry surrounding the ${\rm Er}^{+3}$ ion in the CaF $_2$ crystal while

the emission due to cubic symmetry is very weak. From the thermoluminescent spectrum exhibited by ${\rm CaF_2Er}^{+3}$, it is inferred that at LNT the emission is due to cubic and tetragonal symmetries, while the emission at RT is predominantly due to the ${\rm Er}^{+3}$ ion in cubic sites.

By comparing luminescence and thermoluminescence spectra of CaF₂Er⁺³, we claim that the lines observed in luminescence spectrum constitute a true subset of the lines observed in thermoluminescence spectrum. This is taken to be an indication that while the former is due to one symmetry, the latter might be attributed to more than one site symmetry.

6.2 CaF₂Pr⁺³

The optical spectrum of CaF₂Pr⁺³ (1%) has been studied in the spectral region 4250 cm⁻¹ to 50000 cm⁻¹. The mean energy levels obtained from absorption experiments are in agreement with those of the Pr⁺³ ion in aqueous solution. By comparing the mean energy levels of CaF₂Pr⁺³ with those of a free ion, we have noticed a disproportionate shift in the energy levels. This is claimed to be due to the presence of a strong field around the Pr⁺³ ion in the CaF₂ crystal, and also due to the configuration interaction. The positions of the energy levels ³P₂, ¹I₆, ³P₁ and ³P₀ have been established to be 22526 cm⁻¹, 21481 cm⁻¹, 21306 cm⁻¹ and 20777 cm⁻¹, respectively. It is suggested that energy levels ³P₁ and ¹I₆ are brought into close proximity

in the matrix of CaF2.

Excitation spectrum of CaF_2Pr^{+3} (0.1%) has been studied in the spectral region 23800 cm⁻¹ to 50000 cm⁻¹. Impurity concentration dependent bands at 3950 Å, 3660 Å, 3530 Å, 2740 Å and 2620 Å have been observed and are tentatively identified. The intensities of these bands decrease by increasing the concentration of the Pr^{+3} ion. An attempt has been made to construct an energy level scheme for ions in sites of cubic symmetry. The splitting of the ground state has been found to be approximately 200 cm^{-1} . The position of 3P_2 has been established to be at 22800 cm⁻¹ which does not agree with the value inferred from absorption spectrum.

Emission in the luminescence spectrum at LNT is mainly due to tetragonal symmetry around the \Pr^{+3} ion in the CaF_2 crystal, while the emission in thermoluminescence spectrum is due to both cubic and tetragonal site symmetries.

BIBLIOGRAPHY

Chapter 1

- 6. M. G. Mayer, Phys. Rev., 60, 184 (1941).
- M. J. Weber and R. W. Bierig, Phys. Rev., <u>134</u>, A1492 (1964).
- 2. W. Low, J. Phys. Soc. Japan, 17, Suppl. B-I, 440 (1962).
- B. Bleaney, P. M. Llewellyn and D. A. Jones, Proc. Phys. Soc. (London), <u>B69</u>, 858 (1956).
- J. M. Baker, W. Hayes and M. C. M. O'Brien, Proc. Roy. Soc. (London), <u>A254</u>, 273 (1960).
- 5. W. Low, Phys. Rev., <u>134</u>, A1479 (1964).
- 6. B. G. Berulava et al, Sov. Phys. JETP, 21, 228 (1965).
- V. Stepanov and P. P. Feofilov, Sov. Phys. Doklady, <u>I</u>, 350 (1956).
- 8. P. A. Forrester and C. F. Hempstead, Phys. Rev., <u>126</u>, 923 (1962).
- 9. W. Low and V. Rosenberger, Compt. Rend., 254, 1771 (1962).
- 11. J. Makovsky, Phys. Quantum Electronics Conf., (McGraw-Hill Co. Inc., New York, 1966).
- 12. J. Sierro, Helv. Phys. Acta, <u>36</u>, 505 (1963). ibid., J. Chem. Phys., <u>34</u>, 2183 (1961). ibid., Phys. Letters, <u>4</u>, 178 (1963).
- S. D. McLaughlan and R. C. Newman, Phys. Letters, <u>19</u>, 552 (1965).
- 14. Z. J. Kiss, J. Chem. Phys., 38, 1476 (1963).
- 15. W. Low, Phys. Rev., <u>109</u>, 265 (1958).

- 16. C. Ryter, Helv. Phys. Acta, 30, 353 (1957).
- 17. M. Dvir and W. Low, Proc. Phys. Soc. (London), <u>75</u>, 136 (1960).
- 18. W. Low, Phys. Rev., 134, A1479 (1964).
- 19. W. Low, Proc. Phys. Soc. (London), <u>76</u>, 307 (1960).
- 20. W. Low, Phys. Rev., 118, 1608 (1960).
- 21. W. Hayes and J. W. Twidell, J. Chem. Phys., <u>35</u>, 1521 (1961).
- 22. S. T. Pai, Ph.D. Thesis, University of Windsor, Windsor, Ontario (1970).
- 23. E. Friedman and W. Low, J. Chem. Phys., 33, 1275 (1960).
- 24. M. Schlesinger and P. W. Whippey, Phys. Rev., <u>177</u>, 563 (1969).
- 25. S. Kh. Batygov and V. V. Osiko, Sov. Phys. Solid State, 13, 1886 (1972).
- 26. W. Low and U. Ranon, <u>Paramagnetic Resonance</u> (Academic Press Inc., New York, 1963), p. 167.
- 27. W. Hayes and J. W. Twidell, J. Chem. Phys., <u>35</u>, 1521 (1961).
- 28. W. Hayes, G. D. Jones and J. W. Twidell, Proc. Phys. Soc. (London), 81, 371 (1963).
- 29. W. Hayes and J. W. Twidell, Proc. Phys. Soc. (London), 82, 330 (1963).
- 30. F. R. Merritt, H. Guggenheim and C. G. B. Garrett, Phys. Rev., <u>145</u>, 188 (1966).
- 31. B. Bleaney, J. Appl. Phys., 33, Suppl. I, 358 (1962).
- 32. J. M. Baker, W. Hayes and D. A. Jones, Proc. Phys. Soc. (London), 73, 942 (1959).
- 33. J. M. Baker, B. Bleaney and W. Hayes, Proc. Roy. Soc. (London), <u>A247</u>, 141 (1958).
- 34. T. F. Ewanizky and P. J. Kaplan and J. R. Pastore, J. Chem. Phys., <u>43</u>, 4351 (1965).
- 35. R. W. Bierig and M. J. Weber, Phys. Rev., <u>132</u>, 164 (1963).

- 36. M. Schlesinger and H. Nara, Phys. Rev., 3, 58 (1971).
- 37. M. Schlesinger and H. Nara, J. Phys. C. Solid State Phys., <u>5</u>, 606 (1972).
- 38. M. Schlesinger and C. T. Kwan, Phys. Rev., <u>3</u>, 2852 (1971).
- 39. M. Schlesinger and P. W. Whippey, Phys. Rev., <u>162</u>, 286 (1967).
- 40. M. Schlesinger and M. Nerenberg, Phys. Letters, <u>26A</u>, 109 (1968).
- 41. D. Marsh, J. Phys. C., 5, 863 (1972).
- 42. M. Schlesinger and H. Nara, Solid State Communication, 9, 1247 (1971).
- 43. M. A. El'Yashevich, <u>Spectra of the Rare-Earths</u> (State Publishing House of Technical-Theoretical Literature, Moscow, 1953).
- 44. G. H. Dieke et al, <u>Spectra of Rare Earth Ions in Crystals</u> (John Wiley and Sons, New York, 1968).
- 45. W. T. Carnall et al, J. Chem. Phys., 49, 4424 (1968).
- 46. I. V. Stepanov and P. P. Feofilov, Doklady Abad. Nauk., $\underline{\underline{I}}$, 350 (1957).
- 47. S. D. McClure and Z. Kiss, J. Chem. Phys., <u>38</u>, 1037 (1963).
- 48. Y. K. Voron'ko et al, Sov. Phys. Solid State, <u>13</u>, 1842 (1972).
- 49. W. Low, J. Makovsky and S. Yatsiv, Quantum Electronics, Vol. I, p. 655 (Columbia University Press, New York, 1964).
- 50. W. Low, J. Makovsky and S. Yatsiv, Phys. Letters, 2, 186 (1962).
- 51. E. Loh, Phys. Rev., <u>140</u>, A1463 (1965).
- 52. J. L. Merz and P. S. Pershan, Phys. Rev., <u>162</u>, 217 (1967).
- 53. U. Ranon, J. Phys. Chem. Solids, <u>25</u>, 1205 (1964).
- 54. K. R. Lea, M. J. Leask and W. P. Wolf, J. Phys. Chem. Solids, <u>23</u>, 1381 (1962).

- 55. S. D. McLaughlan, Phys. Rev., 150, 118 (1966).
- 56. H. Masui, J. Phys. Soc. Japan, 22, 1387 (1967).
- 57. J. Noonan and L. Esterowitz, Optical Properties of Ions in Crystals (John Wiley and Sons, New York, 1967).
- 58. E. Loh, Phys. Rev., <u>147</u>, 332 (1966).

- 59. E. Loh, Phys. Rev., 158, 273 (1967).
- 60. E. Loh, Phys. Rev., 175, 533 (1968).
- 61. W. A. Hargreaves, Phys. Rev., B6, 3417 (1972).
- 62. H. W. Morse, Astrophysics J., 21, 410 (1905).
- 63. G. Urbain, Ann. Chim. Phys., 18, 222 (1909).
- 64. N. Chatterjee, Z. Physik, 113, 96 (1939).
- 65. S. A. Pollack, J. Chem. Phys., 40, 2751 (1964).
- 66. C. W. Rector et al, J. Chem. Phys., 45, 171 (1966).
- 67. U. Ranon and W. Low, Phys. Rev., <u>132</u>, 1609 (1963).
- 68. A. I. Smirnov et al, Sov. Phys. Solid State, <u>8</u>, 1750 (1967).
- 69. G. M. Zverev, Sov. Phys. Solid State, 6, 2225 (1965).
- 70. I. B. Aizenberg et al, Sov. Phys. Solid State, <u>13</u>, 2155 (1972).
- 71. K. V. Narasimham, Indian J. Pure Appl. Phys., <u>7</u>, 653 (1969).
- 72. A. I. Smirnov et al, Sov. Phys. Solid State, <u>9</u>, 1586 (1968).
- 73. A. I. Smirnov et al, Sov. Phys. Solid State, <u>12</u>, 590 (1970).
- 74. Y. K. Voron'ko et al, Sov. Phys. JETP, 23, 10 (1966).
- 75. A. L. Stolov et al, Sov. Phys. Solid State, <u>10</u>, 1595 (1969).
- 76. B. R. Judd and R. Loudon, Proc. Roy. Soc. (London), A251, 127 (1959).
- 77. B. G. Wybourne, J. Chem. Phys., <u>32</u>, 639 (1960).

Chapter 2

- 1. J. C. Slater, Phys. Rev., <u>34</u>, 1293 (1929).
- 2. E. U. Condon and G. H. Shortley, <u>The Theory of Atomic Spectra</u> (University Press, Cambridge, 1963).
- 3. G. Racah, Phys. Rev., <u>61</u>, 186 (1942).
- 4. G. Racah, Phys. Rev., 62, 438 (1942).
- 5. G. Racah, Phys. Rev., <u>63</u>, 367 (1943).
- 6. G. Racah, Phys. Rev., <u>76</u>, 1352 (1949).
- 7. R. J. Elliot, Proc. Roy. Soc. (London), <u>A240</u>, 509 (1957).
- 8. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill Book Company Inc., New York, 1964).
- 9. V. Heine, <u>Group Theory and Quantum Mechanics</u> (Pergamon Press, London, 1960).
- 10. B. R. Judd, Operator Technique in Atomic Spectroscopy (McGraw-Hill Book Company Inc., New York, 1963).
- 11. B. R. Judd, Phys. Rev., 141, 4 (1966).
- 12. B. R. Judd, Physica, 33, 174 (1967).
- 13. B. R. Judd, Phys. Rev., <u>162</u>, 28 (1967).
- 14. B. R. Judd, Advan. Chem. Phys., 14, 91 (1968).
- 15. B. G. Wybourne, Spectroscopic Properties of Rare-Earths (John Wiley and Sons, New York, 1965).
- 16. D. S. McClure, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 9.
- 17. C. J. Ballhausen, <u>Introduction</u> to <u>Ligand Field Theory</u> (McGraw-Hill Book Company Inc., New York, 1962).
- 18. T. I. Ishidogu and Shin-Ya, Phys. Soc. Japan, <u>5</u>, 142 (1950).
- 19. C. W. Nielson and G. F. Koster, <u>Spectroscopic Coefficients</u> for pⁿ, dⁿ and fⁿ Coefficients (M.I.T. Press, Cambridge, Mass., 1964).

- 20. M. Rotenberg, R. Bireins, N. Metropolis and J. K. Wooten, <u>The 3-j and 6-j Symbols</u> (M.I.T. Press, Cambridge, Mass., 1959).
- B. R. Judd and R. Loudon, Proc. Roy. Soc. (London), A251, 127 (1959).
- 22. M. H. Crozier and W. A. Runciman, J. Chem. Phys., <u>35</u>, 1392 (1961). ibid., <u>36</u>, 1088 (1962).
- 23. A. J. Freeman and R. E. Watson, Phys. Rev., <u>127</u>, 2058 (1962).
- 24. B. R. Judd, Proc. Phys. Soc. (London), 74, 330 (1959).
- 25. B. R. Judd, Proc. Roy. Soc. (London), A250, 562 (1959).
- 26. R. Sarup and M. H. Crozier, J. Chem. Phys., <u>42</u>, 371 (1965).
- 27. J. C. Slater, The Quantum Theory of Atomic Structure Vol. II, (McGraw-Hill Book Company Inc., New York, 1960).
- 28. M. Schlesinger and H. Nara, Phys. Rev., 3, 58 (1971).
- 29. J. S. Margolis, J. Chem. Phys., <u>35</u>, 1367 (1961).
- 30. W. T. Carnall et al, J. Chem. Phys., <u>57</u>, 43 (1972).
- 31. J. H. Van Vleck, J. Phys. Chem., 41, 67 (1937).
- 32. L. Broer, C. Gorter and J. Hoogschagen, Physica, <u>11</u>, 231 (1945).
- 33. G. S. Ofelt, J. Chem. Phys., <u>37</u>, 511 (1962).
- 34. W. T. Carnall et al, J. Chem. Phys., 42, 3797 (1965).
- 35. H. U. Rahman, J. Phys. C., 5, 306 (1972).
- 36. W. A. Runciman and B. G. Wybourne, J. Chem. Phys., <u>32</u>, 1149 (1959).
- 37. W. A. Runciman, J. Chem. Phys., <u>36</u>, 1481 (1962).
- 38. G. S. Ofelt, J. Chem. Phys., <u>38</u>, 2171 (1963).
- 39. B. G. Wybourne, J. Chem. Phys., <u>32</u>, 639 (1960).
- 40. B. G. Wybourne, J. Chem. Phys., 36, 2301 (1962).

- 41. K. Rajnak and B. G. Wybourne, Phys. Rev., <u>132</u>, 280 (1963).
- 42. J. C. Eisentein, J. Chem. Phys., 39, 2128 (1963).
- 43. J. C. Eisentein, J. Chem. Phys., <u>39</u>, 2134 (1963).
- 44. J. C. Eisentein, Symposium on Paramagnetic Resonance, W. Low, Ed., (Academic Press, New York, 1963), Vol. I, p. 253.
- 45. W. T. Carnall et al, Phys. Rev., B2, 3526 (1970).
- 46. K. Rajnak and B. G. Wybourne, J. Chem. Phys., <u>41</u>, 565 (1964).

Chapter 3

- 1. W. T. Carnall et al, J. Chem. Phys., <u>57</u>, 43 (1972).
- 2. W. T. Carnall et al, J. Chem. Phys., 49, 4424 (1968).
- 3. A. Halperin and A. A. Braner, Phys. Rev., <u>117</u>, 408 (1960).

Chapter 4

- W. T. Carnall et al, J. Chem. Phys., 57, 43 (1972).
- W. T. Carnall et al, J. Chem. Phys., 49, 4424 (1968).

Chapter 5

- 1. W. T. Carnall et al, J. Chem. Phys., <u>57</u>, 43 (1972).
- 2. G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Interscience-Wiley, New York, 1968).
- 3. E. Loh, Phys. Rev., <u>147</u>, 332 (1966).
- 4. S. A. Pollack, J. Chem. Phys., <u>40</u>, 2751 (1964).
- 5. C. W. Rector et al, J. Chem. Phys., 45, 171 (1966).
- 6. W. T. Carnall et al, J. Chem. Phys., 49, 4424 (1968).

- 7. W. A. Hargreaves, Phys. Rev., <u>B6</u>, 3417 (1972).
- 8. J. Sugar, Phys. Rev. Letters, 14, 731 (1965b).
- 9. J. Sugar, J. Opt. Soc. Am., <u>55</u>, 1058 (1965c).
- 10. M. Schlesinger and H. Nara, Phys. Rev., 3, 58 (1971).
- 11. I. B. Aizenberg, B. Z. Malkin and A. L. Stolov, Sov. Phys. Solid State, 13, 2155 (1972).
- 12. M. Schlesinger and P. W. Whippey, Phys. Rev., <u>177</u>, 563 (1969).
- 13. M. Schlesinger and C. T. Kwan, Phys. Rev., 3, 2852 (1971).
- 14. M. Schlesinger and P. W. Whippey, Phys. Rev., <u>162</u>, 286 (1967).
- 15. J. L. Merz and P. S. Pershan, Phys. Rev., <u>162</u>, 235 (1967).

VITA AUCTORIS

November 4, 1938	Born in Talagung (Pakistan)
1959	Graduated from Punjab University with
	B.Sc. degree.
1959–1962	Taught in D. N. College HISSAR
	HARYANA (India)
1964	Graduated from Vikram University,
	UJJAIN with M.Sc. degree.
1964-1967	Taught in D. N. College Hissar,

1967-1969 Enrolled at St. Francis Xavier University,

Antigonish, Nova Scotia for M.Sc.

degree.

1969-1973 Enrolled at the University of Windsor for further studies.

HARYANA (India).