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Abstract

This dissertation provides the reader with the theory and mathematical background to understand

the working principal of a wound rotor induction machine under double supply to effectively capture

the power provided by a wind turbine. The dynamic model proposed by P. Vas is presented in

equation form and in Matlab scripts and functional Simulink blocks that provide the reader with a

working simulation immediately. The control of the system employs the well established stator flux

oriented vector control method with improvements proposed by Tapia el al. to track the maximum

power available from the wind turbine. The model is completely validated through comparison of

characteristics to published literature.
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dtλ

est
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θm rotor position from reference axis [elec. rad]
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∗
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ierrrd , i
err
rq d and q-axis rotor current errors [A]
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Kr rotor winding factor [Ks/Kr dimensionless]
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Pcu,s stator winding copper loss in one phase [W]
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′
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xvi



vKIrd , v
KI
rq d and q-axis inner loop PI integrator outputs [V]

vrq,comp q-axis compensation rotor voltage components [V]

vsD, vsQ D and Q-axis stator voltage components (referred to stator frame) [V]
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Chapter 1

Introduction

Although the amount of energy derived from the wind is relatively small compared to that of other

sources [1], the install capacity of wind turbines is increasing at an accelerating pace in various parts

of the world [2]. The Global Wind Energy Council has reported an increase over tenfold since the

turn of the century [3].

The doubly-fed induction generator (DFIG) has established itself as the standard generator configu-

ration used by industry. Despite the recent trend towards permanent magnet generator solutions, the

DFIG remains a relevant and important technology for the wind industry, accounting for roughly

50% of the installed capacity in 2011 [4]. Three of the top six turbine manufacturers, Sinovel,

Goldwind and GE, offer a doubly-fed solution.

The main advantage of this machine over any other configuration is the ability to use a partial sized

converter in the rotor to control the power flowing through the whole machine [5]. This, coupled

with the added ability of precisely controlling the reactive power flow and thus power factor make

the DFIG a competitive choice for turbine manufacturers.

1.1 Standard Wind Turbine Generator Configurations

Wind turbines can be categorized into two main groups: fixed speed and variable speed. Although

simple and robust, fixed speed turbines suffer from the unavoidable disadvantage that they cannot

operate to efficiently capture the energy in the wind [6]. This is because they can only operate

at one speed and wind speed is variable. Every turbine has aerodynamic characteristics similar to

those shown in Figure 1.1. For each wind speed there is a certain turbine shaft speed that produces

maximum power. A fixed speed turbine can only operate at maximum aerodynamic efficiency for

one particular wind speed. As the wind varies from this speed the efficiency of the wind turbine is

reduced. Therefore to capture the most amount of power from the wind, the turbine must be made

to operate at variable speeds and to follow the curve of maximum power extraction.

Most generator types have a fixed relationship between the frequency of the power they produce
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Figure 1.1: General Turbine Characteristics: A variable speed turbine capable of tracking the max-
imum power curve will extract more power than a fixed speed turbine for every wind speed except
one, (B = B’) in the diagram.

and the speed of their shafts.

fgrid =
nm · Pp

60
, (1.1)

where fs is the output frequency in Hz, nm is the speed of the shaft in rpm, and Pp is the number

of pole pairs. Keeping the frequency a steady 50 or 60 Hz to match the power grid is a requirement

for the wind turbine to connect to the grid. However, if the speed of the shaft is varying along with

the wind speed, then so will the frequency. This means a power converter needs to be placed in

between the turbine’s generator and the grid. Figure 1.2 shows this configuration. This converter

needs to handle the entire power that the turbine produces. This type of configuration is necessary

for wound rotor and permanent magnet synchronous generators.

Full-Scale
Converter

GridTransformer
PMSG or SG

50 or 60 Hz
Variable

Frequency

Figure 1.2: Turbine Configuration Using Full-Scale Converters and Synchronous Generators

1.1.1 The Doubly-Fed Induction Generator Configuration

A significant improvement in terms of converter size can be made by employing the use of a wound

rotor induction machine (WRIM). In this machine, the windings on the rotor are taken out through
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terminals by the use of slip rings. Direct access to the rotor windings increases the flexibility of

the control of this generator. The major drawback of other types of generators is that their rotors

have a fixed field, exerted by permanent magnets or direct currents. That means whatever speed

their rotors are turned is the same speed that the rotor field will sweep over the stator windings

and thus the frequency of the power available at the stator windings is directly related to that rotor

speed. With the ability to directly inject variable frequency alternating current into the spinning

rotor windings, the WRIM can ensure that the addition of the variable speed shaft and its field add

to a constant 60 or 50 Hz. This will be explained in Section 2.1.2. The consequence is that the

stator can be directly connected through a converter to the grid, as can be seen in Figure 1.3. The

advantage of moving the converter from the stator to the rotor is that its size can be dramatically

reduced, making it cheaper. The next section explains this in detail.

GridTransformer

DFIG
50 or 60 Hz

Variable
Frequency 50 or 60 Hz

Partial-Scale
Converter

Figure 1.3: DFIG Configuration Using Partial-Scale Converters

1.1.1.1 The Advantage of a DFIG Configuration

As stated, the main advantage of employing a DFIG is that the converter needed to control the

machine is moved to the rotor, and the rotor can be made to handle significantly less power than

the stator but still be able to control the power through the stator.

The power handled by the rotor is roughly proportional to the slip or relative speed difference from

synchronous speed. This will be shown in Section 2.2.1. The relationship between the frequency

and rotor speed of a WRIM is the same as that of any other machine, given in Equation 1.1, if its

rotor is supplied with direct currents. As the rotor speed spins slower or faster than synchronous,

the slip begins to increase. The power flowing stays proportional to this slip and everything keeps

working if the proper frequency alternating currents are injected into the rotor. Now by limiting the

speed range around synchronous, the power flow through the rotor is limited as well. If the speed

range was extended all of the way to zero, or all of the way to twice synchronous, then the rotor

would have to handle full power and the advantage would be lost. Fortunately, to cover the normal

range of wind speeds that exist in nature, it has been found that the slip range only needs to extend

about 30% above or below synchronous, so the power converter can be reduced to 30% as well [7].

Beyond the main advantage of reduced power converter size, the power flow that naturally occurs

in the machine is ideally suited to wind energy conversion. This stems from the fact that the DFIG
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can generate both below and above synchronous speed [7]. In Section 2.3.1 it will be explained how

the DFIG can generate power from its stator for all speeds. Above synchronous speed additional

power is generated by the rotor (supersynchronous generation) and below synchronous speed power

is required to be injected into the rotor to sustain generation (subsynchronous generation). The

fraction of power flowing through the rotor in either direction is related to the slip or speed difference

from synchronous speed. This division of power through the rotor and stator is ideal for wind energy

conversion.

More power is dealt with by the system as a whole for supersynchronous generation because the

wind speed, generator speed and power in the wind are higher here. In fact, it will be demonstrated

in Chapter 4 how the maximum power in the wind is proportional to the cube of the generator shaft

speed. Therefore all stresses and limits imposed on the system’s power handling capabilities are set

in this region.

The generator and turbine are sized together so that the rated power of the generator is not exceeded.

Since a known proportion of the power will be carried by the rotor, the generator can be sized smaller

than the maximum target turbine power by that same proportion. For example, see Figure 1.4, if a

generator is rated at 2MW and the rotor converter is sized to handle 30% of that (600 kW), then

the generator as a whole can be expected to produce 2.6 MW in total. The generator’s shaft speed

is chosen through a gearbox ratio to achieve this target power at a speed that corresponds to 30%

over synchronous. By setting this condition, the turbine and generator are now matched up well

to gather maximum power for a large range of wind speeds. In the supersynchronous region, the

power is split between the stator and rotor. At the rated wind speed the turbine is delivering its

maximum target power, the stator provides most of it with its rated power and the rotor converter

handles the rest, operating near its maximum capacity as well. Any speed in the supersynchronous

region below this maximum speed results in a lower power level overall which does not overload

either component.

When the wind speed falls low enough that the system enters the subsynchronous region, to sustain

the generation, power must be injected into the rotor. This injected power is not wasted by the

generator, rather it is recovered at the other side, through the stator terminals. Now the stator needs

to handle the mechanical power from the wind and that of the rotor converter, which has been pulled

from the grid to sustain the generation. It is not overloaded however because in this region, the

total power available from the wind is far less than the stator’s rated power, so it can easily handle

the added load. Note also that since the power is so low, there is no risk of overloading the rotor

converter, so it can operate at a much lower speed (higher slip) then it could in the supersynchronous

region. Thus the DFIG can generate all the way down to the lowest usable wind speed that the

turbine can operate with, often at a slip as high as 0.5 [6]. Furthermore, note that neglecting losses,

regardless of the complicated power flow, the grid is supplied with the power converted from the

wind.
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Figure 1.4: A generator rated at 2MW is connected to a wind turbine. The rated power of the
generator is selected approximately 30% lower than the rated output of the turbine and it is not
overrated. The extra power at high wind speeds is processed by the rotor. At low speeds the rotor
needs to be injected with power to sustain generation. The stator also needs to process this extra
power, but is not overloaded because the mechanical input power is smaller as well.
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1.2 Control Strategies for DFIGs

A few main control methodologies have become popular for DFIGs in wind turbine applications.

The most prevalent in literature are vector control, and direct torque or power control. Control of

the torque constitutes control of any rotating machinery [8]. Direct torque control is a technique

that aims to control the magnitude and angle of the rotor flux, to directly control torque. Since

torque is the cross product of stator and rotor flux, and since the stator is connected to the grid, the

stator flux is almost constant, and thus the rotor flux is the chosen control variable. This technique

has been applied with success [9]. Its main drawback is the non-constant switching frequency it

imposes on the converter [7].

1.2.1 Vector Control

Vector control was the first technique proposed for DFIGs in wind applications [10] and is still the

most common in literature [7]. In this technique the rotor current is separated into two components,

one responsible for the torque and the other for the magnetization of the machine. In this way the

aim is to emulate the simple control structure of a DC machine [11]. To break the current into two

components different reference frames can be used. The two most common are aligning to the stator

flux [10] or the stator voltage [12]. Stator flux oriented vector control is the classical method and

will be studied in Chapter 5.

Once the torque and flux are under control, the currents are related to the real and reactive powers

of the machine. This is easier to do if the stator voltage reference frame has been used [7], but it

has been achieved in the stator flux oriented frame by several researchers including Tapia et al. [13].

This decoupling or separate control of power is ideal for a wind turbine. The real power can be set to

extract the maximum available power from the turbine and the power factor can be independently

regulated [6].

1.3 Thesis Overview

In the textbook “Advanced Electric Drives: Analysis, Control and Modeling using Simulink®,”

Mohan et al. establishes a working model of a vector controlled induction machine [8]. In that work,

the gaps between theory and practical simulation are completely filled with clear explanations.

The simulations are proven with provided scripts and models. This makes learning the subject

manageable for new students in the area. The undertaking in this dissertation aims to extend this

treatment to a DFIG wind turbine system. It is the intention of the author to quickly get the reader

familiar with the mathematical constructs, the basic physics of the machines and the control theory

necessary to construct a working model. Provided along with the theory is a working simulation

model in the Simulink® environment with initializing scripts, on the accompanying CD-ROM.

Every chapter is geared towards understanding the system for simulation purposes. First, in Chap-

ter 2, the steady state of the DFIG is studied to provide an understanding of the basic working

6



principals and also to solve the steady state operating point for the system. Next in Chapter 3, the

mathematical concept of space vectors and reference frames, which are central to the simulation are

presented. Furthermore the dynamic equations of the DFIG are derived. The model of the wind

turbine is given in Chapter 4, along with a discussion on how to populate it with manufacturer data.

The control equations are derived in Chapter 5, along with a controller design procedure proposed

by Tapia et al. that has been proven effective [13]. Chapter 6 provides details on the simulation

blocks and initialization script. Finally, Chapter 7 validates the model by comparing simulation

results to published literature.
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Chapter 2

Steady State Analysis

There are two main purposes for studying the steady state operation of the system. The first is

purely for a deeper understanding of the characteristics, modes of operations and power flow. The

second is to solve for a steady state operating point and calculate the values of all variables needed

to initialize the dynamic model. This initialization procedure will be covered in Section 2.5.

2.1 The Steady State Equivalent Circuit of a DFIG

The steady state equivalent circuit of an induction machine is a widely known topic cover thoroughly

by many authors. Figure 2.1 shows the standard model for a caged machine [14, 15, 16]. The

Rs jωsLls jωsLlr Rr

Rr
1−s
sjωsLm

Is Ir

Im

Vs

Figure 2.1: Caged Rotor Induction Machine Equivalent Circuit

modification for a doubly fed operation is simply to include the rotor voltage Vr, see Figure 2.2,

[7, 6]. Note that it is necessary to divide it by the slip to bring the frequency of the rotor to that of

the stator. Furthermore notice that all rotor parameters are referred in magnitude to the stator by

an equivalent turns ratio. This concept will be detailed in Section 2.1.3.
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Figure 2.2: Doubly Fed Induction Machine Equivalent Circuit

2.1.1 Elementary Two Pole Machine

Due to symmetry, the same interaction of variables occurs in each set of the machine’s poles. Cal-

culations of the electrical variables for all sets of poles would be redundant, so they are done on just

one pole pair. Mechanically the speed and torque of the machine depend on all the poles, so their

quantities need to be adjusted.

Mathematically, this simplification is implemented by defining a new angle in “electrical radians” to

replace the physical angle measured in “mechanical radians”;

θm = Ppθmech, (2.1)

where Pp is the number of pole pairs in the machine, θm is the position of the machine shaft in

electrical radians and θmech is the actual position of the machine shaft in mechanical radians. This

has the effect of stretching one pole pair over the circumference of the whole machine, see Figure 2.3.

As a consequence, the electrical phase lag angle of sinusoids in the machine will correspond one to one

with the position of the space vector representing them, see Section 3.3.1.3. It is important to note

that for the remainder of the thesis every angular position and consequently every angular velocity

has been defined in this fictitious two pole environment. When it is necessary to find the machine’s

speed or torque, they need to be scaled by the appropriate Pp constant. Thus the mechanical speed

of the shaft is given by

60 ◦mechanical 180 ◦electrical

Figure 2.3: Two Pole Fundamental Machine
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Quantity Mechanical Radians per Second Electrical Radians per Second
rotor angular velocity ωmech ωm

rotor angular frequency ωrotor ωr
stator angular frequency ωstator ωs

synchronous angular frequency ωsync ωg

Table 2.1: Angular Velocity and Frequency Notations

ωmech =
ωm
Pp

, (2.2)

where ωm is the angular velocity of the machine shaft in electrical radians per second and ωmech

is the actual angular velocity of the machine shaft in mechanical radians per second. To be clear,

Table 2.1 denotes the notations used for the angular velocities and frequencies that are expressed in

both mechanical and electrical radians per second.

The torque derived in Section 2.4 and Section 3.4.4 must have the constant Pp as well because

it is derived from 2-pole variables. Each pole pair will contribute the same amount of torque so

multiplying the torque for two poles by the number of pole pairs will give the total machine torque.

2.1.2 Slip and Frequency Relations

The frequency of the waveforms in the stator and rotor winding are related to the speed of the

machine. In the most general sense the relationship is expressed by [17],

ωmech = ωstator ± ωrotor (2.3)

where ωmech is the angular velocity of the shaft and ωstator and ωrotor are the angular frequencies

of the waveforms in the stator and rotor windings respectively. The negative sign applies when the

phase sequence of the rotor is the same as the stator and the positive sign applies when the stator

and rotor are in phase opposition.

With a wound rotor induction machine, both the stator and rotor are free to be injected directly

with any frequency or phase sequence desired and the resulting shaft speed is given by Equation 2.3.

In the doubly fed configuration for wind turbine applications, see Figure 1.3, the stator terminals

are tied to the grid and the shaft is connected to the turbine. The rotor terminals are connected to

an inverter capable of injecting any frequency or phase sequence.

Since the stator is tied directly to the grid, its frequency is constant and determined by the frequency

of the grid. The stator excitation establishes the rotating magnetic field in the machine, and the

speed at which it rotates is known as synchronous speed. Its speed depends also on the number of

poles in the machine [14],

ωstator = ωsync =
2πfgrid
Pp

, (2.4)

where ωsync is the synchronous speed in mechanical radians per second, fgrid is the grid frequency

in Hz and Pp is the number of pole pairs in the machine.
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With the stator frequency and shaft speed determined, the rotor frequency that should be injected

can be determined by rearranging Equation 2.3,

ωrotor =

ωmech − ωsync, phase equivalence

ωsync − ωmech, phase opposition
. (2.5)

The need for the rotor frequency to switch phase sequence is illustrated in Figure 2.4. The stator

ωm

ωsync

stator field

rotor shaft

ωm < ωsync ωm > ωsync

ωsync − ωm ωm − ωsync

Subsynchronous Supersynchronous

A

stator field stator field

C

B

A

C

B

phase sequence: A-B-C phase sequence: A-C-B

Figure 2.4: Reversal of Rotor Phase Sequence as Rotor Crosses Synchronous Speed

field rotates counter-clockwise at ωsync. The rotor also rotates counter-clockwise at ωmech. The

speed at which the rotor spins relative to the stator field is important, it determines which mode the

11



machine is working in. The images at the bottom of Figure 2.4 are referenced to the rotor. That is

the observer is placed on the rotor and thus the rotor is viewed as stationary. Now the observer will

see the stator field rotating at a relative speed. In the first case the rotor is spinning slower than

synchronous speed. The rotor would see the stator field, still travelling counter-clockwise but at the

slower relative speed ωsync−ωmech. The stator field would sweep over the rotor coils in the sequence

A-B-C and induce voltages of that sequence. For the second case, the rotor is spinning faster than

the stator field. Now an observer on the rotor would see the stator field travelling clockwise at a

speed of ωmech−ωsync relative to the stationary rotor, even though it is actually travelling counter-

clockwise relative to the stator. Thus the stator field would sweep over the rotor coils in the sequence

A-C-B, and reverse the phase sequence of the induced voltages.

The relative speed difference from synchronous is so important to the operation of an induction

machine that a new variable denoted as slip (s) is defined [14],

s =
ωsync − ωmech

ωsync
. (2.6)

Notice that if the rotor speed is less than synchronous speed, the slip is positive and if the rotor speed

exceeds synchronous speed the slip becomes negative. It is useful to express angular frequencies and

velocities to each other using the slip for derivations later on,

ωrotor = sωsync, (2.7a)

ωr = sωs, (2.7b)

ωmech = (1− s)ωsync, (2.7c)

ωm = (1− s)ωs. (2.7d)

2.1.3 Equivalent Turns Ratio

Throughout this work, the rotor voltages and currents will be calculated with the parameters shown

in Figure 2.2. However, the magnitudes will not be what actually exists in the machine. The rotor

parameters Rr and Llr are referred to the stator. This is standard practice for an induction machine;

the rotor’s parameters usually have to be measured on the stator side because there is no access to

the rotor. The rotor parameters of a WRIM can be measured directly from the rotor’s terminals.

However it is still beneficial to refer the rotor parameters to the stator to simplify the calculations.

A definite turns ratio exists between the stator and rotor windings [7],

EMFs
EMFr

= s
krNr
ksNs

=
s

TR
, (2.8)

where EMFs and EMFr are the induced electromotive forces (emfs) in the windings, Ns and Nr are

the number of turns of the windings, Ks and Kr are winding factors which depend on the geometry

of the machine and are slightly smaller than 1, s is the slip and TR is the equivalent turns ratio.

Note that the quotient ks
kr
≈ 1 and the slip s depends on the speed of the machine; at standstill
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s = 1 and the turns ratio of the windings is expressed as,

TR =
KsNs
KrNr

≈ Ns
Nr

, (2.9)

The actual value of the rotor’s parameters are

Rr,act =
Rr

(TR)2
, (2.10)

and

Llr,act =
Llr

(TR)2
. (2.11)

Since all calculations are done with the referred values, the only purpose of these equations would

be to refer the rotor parameters to the stator side if they were measured directly from the rotor’s

terminals. The actual voltages and currents in the rotor are important. The machine’s rotor windings

are rated for specific voltages and currents, so determining what the coils are actually subjected to

is necessary. The actual voltage and current in the rotor can be calculated with

Vr,act =
Vr
TR

, (2.12)

and

Ir,act = Ir · TR. (2.13)

As a final note, all calculations done in this work use the rotor parameters referred to the stator,

thus Equations 2.12 and 2.13 would be necessary for practical implementation.

2.1.4 Steady State Equations

The equations can be found by applying Kirchoff’s voltage and current laws to the equivalent circuit

in Figure 2.2. The stator voltage is given by,

Vs = RsIs + jωsλs, (2.14)

where λs is the stator flux linkage phasor. The rotor voltage is given by,

Vr = RrIr + jωrλr, (2.15)

where λr is the rotor flux linkage phasor. The stator and rotor flux linkages are given by,

λs = Lm(Is + Ir) + LlsIs

= LsIs + LmIr, (2.16)
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where Ls = Lls + Lm and,

λr = Lm(Is + Ir) + LlrIr

= LmIs + LrIr, (2.17)

where Lr = Llr + Lm. These four equations fully describe the interaction of voltage, current and

flux linkage in the machine. Often it is useful to solve for the current explicitly,

Is =

∣∣∣∣∣λs Lm

λr Lr

∣∣∣∣∣∣∣∣∣∣Ls Lm

Lm Lr

∣∣∣∣∣
=
Lrλs − Lmλr
LsLr − Lm2 = λs

1

σLs
− λr

Lm
σLsLr

, (2.18)

Ir =

∣∣∣∣∣Ls λs

Lm λr

∣∣∣∣∣∣∣∣∣∣Ls Lm

Lm Lr

∣∣∣∣∣
=
Lsλr − Lmλs
LsLr − Lm2 = λr

1

σLr
− λs

Lm
σLsLr

, (2.19)

where σ = 1− L2
m

LsLr
is the total leakage factor.

2.2 Power Balance Relations

The equivalent circuit in Figure 2.2 completely neglects any mechanical power losses and the electrical

core losses. This model has been chosen to match up with the complexity of the dynamic model

required for control [7], so that it can be used in Section 2.5 for initialization of the model through

a steady state solution. It is still more than detailed enough to describe the basic power balance

and flow through the machine. The purpose of this section is to give an idea how power flows in the

four different modes introduced in Section 2.3.

2.2.1 Active Power Balance

This discussion will concentrate on the active power in the machine. Figure 2.5 shows where each

power is accounted for in the equivalent circuit and shows the direction which corresponds to the

power flow that results when the respective power is positive.

First of all there are three places active power can be injected or removed from the machine; the stator

terminals, the rotor terminals and the rotor shaft. Additionally some active power is dissipated as

heat from the stator and rotor winding resistances. Notice the assumed current directions in Figure

2.5, both stator and rotor currents are assumed to be entering the machine, that is they are in

motoring convention. This means that a positive Ps or Pr implies the machine is consuming power

from the respective terminals and negative Ps and Pr implies the machine is supplying power from

the respective terminals,

Ps = 3Re{Vs Is
∗}, (2.20)
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Rs jωsLls jωsLlr Rr Rr
1−s
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jωsLm
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Im

Vs Vr
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1−s
s

Ps Pr

Pcu,s Pcu,r Pmech,Rr Pmech,Vr

Pmech

Figure 2.5: Active Power Associated with Each Equivalent Circuit Parameter

Pr = 3Re{Vr Ir
∗}. (2.21)

In the motoring convention, Pmech is chosen positive for motoring power; that is Pmech > 0 implies

that the machine is producing mechanical torque. Pmech < 0 implies that the machine requires

mechanical power from an outside source, the prime mover. In the equivalent circuit Pmech is

represented by the two terms with slip in them; Rr
(
1−s
s

)
and Vr

(
1−s
s

)
. Care must be taken when

writing the expression for mechanical power modelled by this source. The mechanical power modelled

by the resistor Rr
(
1−s
s

)
is

Pmech,Rr = 3|Ir|2Rr
(

1− s
s

)
. (2.22)

When Pmech,Rr is positive it represents dissipation of electrical power, which matches the definition

of Pmech where electrical power is converted to mechanical for positive values. Note that a nega-

tive value of slip will make Pmech,Rr negative, which means it is supplying electrical power. The

mechanical power modelled by the voltage source Vr
(
1−s
s

)
is

Pmech,Vr = 3

(
1− s
s

)
Re{Vr Ir

∗}. (2.23)

Notice the voltage is in source convention; the current is leaving the positive terminal. This is in

opposition to the definition of Pmech since a positive value of Pmech,Vr means electrical power is

injected into the circuit. The reason for choosing this polarity for Vr
(
1−s
s

)
was to match with the

polarity of Vr when separating Vr
s into Vr and Vr

(
1−s
s

)
. Now the full expression for mechanical

power can be written,

Pmech = Pmech,Rr − Pmech,Vr

= 3|Ir|2Rr
(

1− s
s

)
− 3

(
1− s
s

)
Re{Vr Ir

∗}. (2.24)
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Finally, the power dissipation from the stator and rotor winding resistances are given as,

Pcu,s = 3|Is|2Rs, (2.25)

and

Pcu,r = 3|Ir|2Rr. (2.26)

respectively.

The power in the stator and rotor pass to each other through the air gap. For motoring convention,

positive power at the air gap implies power flowing from the stator to the rotor. On the stator side,

Pag = Ps − Pcu,s, (2.27)

on the rotor side,

− Pag = Pr − Pcu,r − Pmech, (2.28)

therefore the power balance of the entire machine is,

Ps + Pr = Pcu,r + Pcu,s + Pmech. (2.29)

All power on the stator side is electrical in nature while the rotor is host to both mechanical and

electrical power. Electrical power in the rotor is sometimes referred to as slip power [18],

Pslip = Pcu,r − Pr
= 3|Ir|2Rr − 3Re{Vr Ir

∗}. (2.30)

because its magnitude is proportional to slip. The balance of mechanical power in the rotor can be

seen by comparing Equations 2.30 and 2.24 to the total power passing through the rotor, (see Figure

2.1),

− Pag = 3|Ir|2
Rr
s
− 3Re{Vr Ir

∗}1

s
. (2.31)

Now it is apparent to see,

Pslip = sPag, (2.32)

and,

Pmech = (1− s)Pag. (2.33)

2.2.2 Reactive Power Balance

Reactive power is necessary to magnetize the machine windings. Unlike a conventional induction

machine that must draw reactive power from its stator, the DFIG can inject reactive power through

the rotor to better utilize the copper in its windings. That is the reactive power load of the machine,

which constitutes an increase in current can be shared by both windings [13]. By looking at the
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Figure 2.6: Reactive Power Associated with Each Equivalent Circuit Parameter

equivalent circuit it is seen where reactive power flows in the machine. Figure 2.6 shows which

elements consume reactive power and where it is injected in the model. The leakage and magnetizing

inductances Lls, Llr and Lm consume reactive power denoted by QLls , QLlr and QLm respectively.

The stator and rotor terminals are ports that can exchange (either consume or supply) the reactive

power Qs and Qr. Additionally there is a voltage source Vr
1−s
s which can exchange the reactive

power Qvir. By analysing the model in a completely mathematical sense, the reactive power balance

is seen as,

QLls +QLlr +QLm = Qs +Qr +Qvir, (2.34)

where,

Qs = 3Im{Vs Is
∗}, (2.35)

Qr = 3Im{Vr Ir
∗}, (2.36)

QLls = 3|Is|2ωsLls, (2.37)

QLlr = 3|Ir|2ωsLlr, (2.38)

QLm = 3|Is + Ir|2ωsLm, (2.39)

Qvir = 3Im{ 1−ss Vr Ir
∗}. (2.40)

Note that QLls , QLlr , QLm , Qs and Qr have physical meaning, where as Qvir is more obscure.

According to [19] the term Qvir which arises from the voltage source 1−s
s Vr is a virtual effect of the

external circuit and is necessary to include when the circuit manipulations to reduce the rotor to

the stator are applied. The reactive power introduced to the circuit from this modelling element

actually comes from the external circuit (the power converter).

2.3 Modes of Operation

A wound rotor induction machine is able to operate in modes that a caged induction machine cannot

because of the added flexibility provided by the access to the rotor terminals. It is able to achieve

a full four quadrant operation for a uni-directional shaft rotation. This is different from the usual

definition of four quadrant operation. All machines are capable of working in the four quadrant
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operation depicted on the left of Figure 2.7, provided they are connected to a capable drive. That is

they can motor and generate in the forward and reverse directions. The ability to reverse direction

0
Tem

ωm

subsynchronous
motoring

ωm
Tem

ωm
Tem ωm

Tem

ωm
Tem

ωsync
0

Tem

ωm

motoring forwardgenerating forward

motoring reverse generating reverse

ωm
Tem

ωm
Tem

ωm
Tem

ωm

Tem

subsynchronous
generation

supersynchronous
motoring

supersynchronous
generation

Figure 2.7: Left: Standard Definition of Four Quadrant Operation, Right: Four Quadrant Operation
in One Direction

is unnecessary in wind turbine applications; the turbine blades will always spin the shaft in the

same direction. There is however still a relevant four quadrant operating region that can be defined

for uni-directional rotation, see the right of Figure 2.7. Induction machines are designed to operate

around their synchronous speed. When the shaft spins slower than synchronous speed it is known

as subsynchronous operation and the machine can only motor. When the shaft spins faster than

synchronous speed it is known as supersynchronous operation and the machine can only generate.

This is because the direction of the induced torque in an induction machine depends on the speed.

A wound rotor machine can be made to generate or motor above or below synchronous speed and

thus achieves this sort of four quadrant operation.

2.3.1 Power Flow

The exchange of power through the terminals of a wound rotor machine can be explained by ex-

amining Equations 2.32 and 2.33. It will be seen that the intrisic nature of the flow is well suited

for variable speed generation. For this discussion, the dissipated power in the stator and rotor

resistances will be neglected to simplify the explanation and make the fundamental points clear.

2.3.1.1 Subsynchronous Motoring

This mode is characterized by Pmech > 0, that is mechanical power is available at the shaft, and a

slip in the range of 0 < s < 1. From Equation 2.33,

Pag =
Pmech
1− s ⇒ Pag > 0 and |Pag| > |Pmech|.

From Equation 2.32,

Pslip = sPag ⇒ Pslip > 0.

18



Therefore power flows across the air gap from stator to rotor side. There is more power at the air

gap than available at the shaft, and the extra power is present at the rotor terminals.

Ps
Pslip

Pag

Pmech

Figure 2.8: Power Flow in the Subsynchronous Motoring Mode

2.3.1.2 Supersynchronous Motoring

This mode is characterized by Pmech > 0 and a slip in the range of −1 < s < 0. From Equation

2.33,

Pag =
Pmech
1− s ⇒ Pag > 0 and |Pag| < |Pmech|.

From Equation 2.32,

Pslip = sPag ⇒ Pslip < 0.

As with subsynchronous motoring, Pag is still positive, it flows across the air gap from the stator to

the rotor. This time it is less than Pmech and the power required to sustain motoring must be input

to the rotor; this is seen by Pslip becoming negative.

Ps
Pslip

Pag

Pmech

Figure 2.9: Power Flow in the Supersynchronous Motoring Mode

2.3.1.3 Supersynchronous Generating

This mode is characterized by Pmech < 0, that is mechanical power needs to be input to the shaft,

and a slip in the range of −1 < s < 0. From Equation 2.33,

Pag =
Pmech
1− s ⇒ Pag < 0 and |Pag| < |Pmech|.

From Equation 2.32,

Pslip = sPag ⇒ Pslip > 0.
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The main input to the system is in the rotor now, reversing the direction of Pag to transfer power

to the stator. The input mechanical power is greater than the air gap power and the extra power is

available from the rotor terminals.

Ps
Pslip

Pag

Pmech

Figure 2.10: Power Flow in the Supersynchronous Generating Mode

2.3.1.4 Subsynchronous Generating

This mode is characterized by Pmech < 0 and a slip in the range of 0 < s < 1. From Equation 2.33,

Pag =
Pmech
1− s ⇒ Pag < 0 and |Pag| > |Pmech|.

From Equation 2.32,

Pslip = sPag ⇒ Pslip < 0.

As with supersynchronous generation Pag < 0 and power is transferred from the rotor to the stator.

This time the mechanical power is less than the air gap power and extra power must be injected

into the rotor to sustain the generating mode. Electrical power in the rotor is sometimes referred to

as slip power.

Ps
Pslip

Pag

Pmech

Figure 2.11: Power Flow in the Subsynchronous Generating Mode

2.4 Steady State Torque

The torque is one of the most important variables to consider when studying any machine as it is

the connection between mechanical and electrical domains. Mechanically torque is defined in terms
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of power and speed,

Tem =
Pmech
ωmech

. (2.41)

The simplest way to derive the torque in terms of electrical quantities is described in [7]. The

mechanical power is written in terms of currents only employing Equations 2.24, 2.17 and 2.15. The

result is derived in Appendix A.1,

Tem = 3PpLmIm{Is Ir
∗}. (2.42)

It is also possible to express the torque in terms of flux linkage. This way the expression can be

directly compared to the dynamic torque equation, Equation 3.36 in Section 3.4.4. Using Equations

2.18 and 2.19,

Tem = 3Pp
Lm

LsLrσ
Im{λs λr

∗}. (2.43)

The derivation is also given in Appendix A.1.

2.5 Steady State Solution

The complete steady state solution of the DFIG is obtained from solving Equations 2.14 through

2.19 and then solving for the power or torque desired. Since the actual machine is excited by

applying voltages at the stator and rotor terminals, it seems logical to start with Vs and Vr as

known input values and then calculate the current and flux linkage. This solution path is not useful

for the purpose of initializing the dynamic model because the rotor voltage will be determined by a

controller and depends on other known values. In the dynamic model, the stator voltage is known

and the rotor voltage will be controlled to achieve a target stator real and reactive power set point.

To start the solution, all parameters of the machine must be known. Since this is a steady state

solution, a speed must be chosen as well. After the model for the wind turbine has been specified,

the speed of the generator and its developed power will be derived from its characteristics. For this

analysis, this amounts to s and Ps being known values. Additionally the desired reactive power

Qs which can be chosen to make the machine conform to any power factor must be specified. The

stator voltage is also known, because it is fixed to the grid voltage, it will be taken as reference in

the calculations.

Step 1: The stator phase voltage is specified from the rms line-to-line voltage of the grid, VLL,rms

and set as the reference:

Vs =
VLL,rms√

3
0◦. (2.44)

Step 2: The stator current is calculated from the reference power requirements, the total complex

power exchanged at the stator is

P refs + jQrefs = 3Vs Is
∗
. (2.45)

Rearranging, the current is found,

Is =
P refs − jQrefs

Vs
∗ (2.46)
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Step 3: Using Equation 2.16, the stator flux linkage is found:

λs =
Vs −RsIs

jωs
(2.47)

Step 4: Using Equation 2.19, the rotor current is found:

Ir =
λs − LsIs

Lm
(2.48)

Step 5: Using Equation 2.17, the rotor flux linkage is found:

λr = LmIs + LrIr (2.49)

Step 6: Using Equation 2.15, the rotor voltage is found:

Vr = jωrλr +RrIr (2.50)

Once these six variables are known, calculating any power or torque is trivial. Finding the steady

state rotor voltage to achieve a particular P refs and Qrefs also sets the stage for the machine initial-

ization procedure in Section 6.3.1.
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Chapter 3

Dynamic Model of a Wound Rotor

Induction Machine

3.1 Brief Introduction to the Model

The dynamic model chosen for this work is a standard used for induction machines by many authours

in the field of machine analysis [8, 11, 20]. Like all dynamic models it consists of coupled differential

equations. The model is of fifth order; four equations describe the interaction of electrical variables

and one is used to characterize the mechanical subsystem. Electromagnetic torque is the single most

important variable as it is the link between electrical and mechanical subsystems. The number of

equations used to define each aspect shows that this model favours the electrical side and treats the

mechanical side as fundamentally as possible.

3.2 Simplifing Assumptions

The end purpose of this model is to be used for the control of the machine. As such it is idealized

to contain only the most important interaction of variables and ignores complicating features.

The machine is treated as though it is symmetrical down its entire axis, no end effects are taken

into account. This allows for all information about the machine to be contained in two dimensions,

in a cross section of the machine. The air gap is considered smooth with no slotting effects. The

windings are idealized as being perfectly sinusoidally distributed. The flux in the air gap is directly

entirely radially. The permeability of iron is infinite and their are no iron losses. There are no

mechanical losses, friction or any forms of saturation taken into account.

Furthermore the machine is considered to be perfectly symmetrical and balanced, all waveforms

entering or leaving it are assumed to be balanced three phase sets.
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3.3 Mathematical Concepts

This model relies on the use of space vectors and reference frames to define the variables in the

equations. Many authors treat these concepts slightly differently. This section will serve to introduce

these concepts, describing what they physically represent in the machine, and how they are used in

the model. Furthermore it will clearly denote all notations and conventions for the rest of the thesis.

3.3.1 The Space Vector

The dynamic analysis and control of any electric machine is greatly aided by the mathematical

construct known as a space vector. Mathematically a space vector is identical to any arbitrary

vector, having a length and angle. It will be shown that they can be used to simultaneously represent

the flux linkage, current or voltage in three phases allowing for compact equations. Furthermore

they prove useful for easily writing the equations for the control of the machine and actually form

the basis for the technique of vector control applied in this thesis.

3.3.1.1 Physical Interpretation of a Space Vector

The flux density in the air gap from an ideally sinusoidally distributed, two pole coil is shown in

Figure 3.1. It is sinusoidally distributed and directed radially [8]. The region of maximum flux

density defines the direction for the axis of the coil; the positive direction is chosen for flux pointing

from the rotor to the stator. A space vector is used to represent this complex distribution. The

direction of the vector is pointed along the axis of the winding; the space where the flux density

is highest. The length or magnitude of the vector is proportional to the flux density of the field

at a particular time. That is, a space vector is an instantaneous quantity, capable of representing

variables at each instant of time, as they change. Note that the fact that the field is sinusoidally

distributed around its peak is unimportant for the dynamic model leading to the control of the

machine, and does not need to be represented by the space vector; only the magnitude of the field

density and its position are of concern. Also note that the distributed coil is treated as a single

concentrated winding.

Since the stator is unmoving and the windings are mounted inside it, the axis for any coil is also

reference axis

Figure 3.1: Physical Definition of a Space Vector
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locked in position. As a sinusoidal excitation is applied to the winding, the peak flux density remains

in the same direction, but the magnitude varies sinusoidally, see Figure 3.2.

ωt

i

ωt = 0◦ ωt = 45◦ ωt = 90◦ ωt = 135◦

(1) (2) (3) (4)

(1) (2) (3) (4)

Figure 3.2: Space Vector Representing Instantaneous Field Density from One Winding

The machine under study in this work is a three phase wound rotor induction machine. It contains

three windings on the stator and rotor. The machine is constructed such that the axis of the coils

will be separated 120◦ electrically from each other, see Figure 3.3.

a-axis

b-axis

c-axis

−→
Fa

−→
Fb

−→
Fc

120◦

240◦

Figure 3.3: Three Phase Axis Placement in Electrical Degrees

Each winding can only create a flux distribution peaking along its own axis as before. The resultant

field will be the sum of all component fields. By representing each component field by a space vector

it is now an easy task to perform vector addition and find the resultant field distribution. Figure

3.4 demonstrates how three component fields situated 120◦ apart, when excited with a three phase

excitation create a rotating magnetic field, and how this is easily represented with space vectors.

Note that at each instant of time the three space vectors add to a resultant that is the same length

at every time instant and that changes position in space by the same number of degrees as the
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Figure 3.4: Three Phase Rotating Space Vector

electrical phase lag in the excitation waveforms.

Although only the magnetic fields physically exist in space, the space vector concept can extend to

describe current and voltage. Note in Figure 3.4 that the three windings can be replaced with just

one fictitious winding that is larger and oriented to the resultant field. Now a fictitious current and

voltage in and across this coil, that would be responsible for this resultant field can be defined. For

modelling purposes these space vectors are a tool which allow the machine equations to be written

compactly, with contributions from all three phases in just one variable. The instantaneous value of

any variable can quickly be found by projecting the space vector back onto each respective axis and

multiplying it by a constant as defined in the following sections.

3.3.1.2 Definition of Space Vector Notation

For this work space vectors are used to represent three phase flux linkage (λ), voltage (v) and current

(i) on both the stator (s) and rotor (r). The angle of the space vector must be referenced to some

axis or known position to make sense. For this purpose coordinate axes, known as reference frames

are used. The frames themselves will be described in detail in Section 3.3.2.3. Space vectors will

be referenced to either the stator (s), the rotor (r) or a synchronously rotating general vector (g).

The letter (g) will be replaced with the specific vector that is being aligned to, or it will be kept

as (g) if the vector is not aligned to any particular vector. The notation is written with an arrow

over the variable, the member of the machine subscripted and the reference frame superscripted. An

example of the notation showing the stator voltage referenced to the rotor’s reference frame is seen
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in Figure 3.5.

−→vsr
reference frame: s, r, g

machine member: s, r

variable: λ, v, i

Figure 3.5: Space Vector Notation

3.3.1.3 Mathematical Description of a Space Vector

A space vector, having a magnitude and phase is expressed as a complex number, and is similar to

the well known time phasor. The first major difference is that the magnitude varies with time, so

it is a function of time. Secondly, the phase represents a physical angular displacement and must

be referenced to some axis in space. For the stator, the positive a-axis is taken as the reference, see

Figure 3.3. Therefore, the space vector components along each phase axis are1

−→vas = va(t) 0◦ = va(t)ej0, (3.1a)

−→vbs = vb(t) 120◦ = vb(t)e
j 2π

3 , (3.1b)

−→vcs = vc(t) 240◦ = vc(t)e
j 4π

3 . (3.1c)

The space vector is found by adding the contributions from each phase

−→vss = −→vas +−→vbs +−→vcs

= va(t)ej0 + vb(t)e
j 2π

3 + vc(t)e
j 4π

3

= vs(t)e
jθvs . (3.2)

Now va(t), vb(t), vc(t) are a balanced set;

va(t) = V cos(ωt+ φ), (3.3a)

vb(t) = V cos(ωt+ φ− 2π
3 ), (3.3b)

vc(t) = V cos(ωt+ φ− 4π
3 ). (3.3c)

Substituting Equation 3.3 into 3.22,

1stator voltage is taken for example
2see Appendix A.2 for the complete derivation
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−→vss = V cos(ωt+ φ)ej0 + V cos(ωt+ φ− 2π
3 )ej

2π
3 + V cos(ωt+ φ− 4π

3 )ej
4π
3

= 3
2V e

j(ωt+φ). (3.4)

First it is important to note that the magnitude of the space vector is 3
2 that of the peak of the

input sinusoids. Second, the position of the space vector depends on time, and thus is rotating

counter-clockwise at an angular speed ω. Figure 3.6 shows the space vector at an arbitrary time t.

Note that any phase shift in the input sinusoids shows up as the initial position of the space vector

at time t = 0, this property will be exploited in Section 3.3.3 to find the correspondence between a

space vector and the time phasor.

a-axis

b-axis

c-axis

−→vs s, t = 0

φ

−→vs s, t > 0

V

|32V
|

ωt

ω

Figure 3.6: Graphic Representation of Space Vector in Equation 3.4

3.3.2 Reference Frames and the Two-Axis Transformation

Examining a space vector, it is clear that the contributions from three axes can be represented with

just two; a space vector contains the information from three axes in two dimensional space. The

equations needed to describe the three phase machine windings can be reduced if the space vector

is projected onto a set of two axis instead of onto the set of three axis physically present in the

machine. Furthermore it has been known for almost a century since R.H. Park [21] first referred

stator variables to the rotor that choosing an appropriate frame of reference can simplify machine

equations immensely. The reason is an electric machine is basically comprised of electric circuits in

relative motion linked by mutual inductances. The inductances vary with rotor position through

time, however if the frame of reference is rotated at the proper speed the inductances will appear

constant and the machine model is simplified. P.C Krause [20] has a thorough treatment of reference

frame theory. His transformation matrices simultaneously reduce to two axes and apply the proper

rotation to the desired reference frame. It has been found beneficial to separate these two steps and

thus this thesis follows the work laid out by P. Vas [11] and N. Mohan [8, 22].
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3.3.2.1 Clarke Transformation

The Clarke transformation is probably the simplest form of two-axis transformation available. It

maps the contributions from three axes directly to two. Figure 3.7 shows the axis placement for the

Clarke transformation for stator and rotor quantities. For the stator, the D-axis is directly in line

with the a-axis; the Q-axis leads it by 90◦. The matrix which maps the components is

[
FD

FQ

]
= c

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]FaFb
Fc

 , (3.5)

where F is just a general variable which could represent voltage, current or flux linkage. The entries

in the matrix are easy to understand. The D-axis is directly in line with the a-axis so its contribution

is 1. The b and c axes are both 30◦ off the perpendicular to the D axis, in the opposite direction so

they both contribute − sin(30◦) = − 1
2 . The Q-axis is completely orthogonal to the a-axis so there is

0 contribution. The b and c axes are 30◦ off the positive and negative Q-axis respectively, so their

contributions are cos(30◦) =
√
3
2 and − cos(30◦) = −

√
3
2 respectively.

a

D

b

c

Q

30◦

30◦

α

β

B A

C

Figure 3.7: Stator and Rotor Reference Frames Overlaid on their Respective Three Phase Axes

There is a constant of proportionality c in Equation 3.5 which has not been defined yet. By trans-

forming 3 axes to 2, the variables in their equations no longer represent real magnitudes. In fact the

transformation creates a fictitious calculation environment which is separate from the real world; as

long as the relative magnitudes of the components remain proper, when they are converted back with

the inverse transform, everything will work out. This leaves a degree of freedom when performing

the transformation, it can be scaled by any number and it will work when transformed back. There

are however advantages to choosing certain values and the most prevalent are c = 2
3 and c =

√
2
3 .

The first choice allows the peak values of the variables in the two axis frame to equal those in the

three axis frame. Recall Equation 3.4 where the space vector for a balanced three phase set was

derived. Its magnitude was 3
2 that of the peak of the input sinusoids, so by choosing c = 2

3 , this
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effect is cancelled out and the peak of the two axis components are equal to the peak values of the

phase quantities. One disadvantage of this is that the power will not be the same in the two axis

frame as it was in the three axis frame. It can be shown, see Appendix A.3, that choosing c =
√

2
3

will ensure the power is equal, but loses the convenience of the peak values being equal. In the end

some value for c must be chosen and in this work uses c = 2
3 to follow the original definition of the

Clarke transform [23]. This means that power and torque formulae in any two axis environment will

have an extra constant of proportionality of 3
2 as will be seen in Section 3.4.4. Appendix A.3 also

details how that number arises.

The inverse Clarke transform will take the two axis components back to the real abc frame. It is

derived by taking the inverse3 of equation 3.5 with c = 2
3 ,

FaFb
Fc

 =

 1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

[FD
FQ

]
. (3.6)

a

b

c

Fa

Fb

Fc

−→
Fs

s

D

Q

2
3

−→
Fs

s

FD

FQ

Clarke Transformation

Inverse Clarke Transformation

D

Q

FD + jFQ

FD

FQ

a

b

c

Fa

Fb

Fc FD + jFQ = 2
3

−→
Fs

s

Figure 3.8: Graphical Representation of Clarke Transformation and its Inverse

Graphically the Clarke transformation is shown in Figure 3.8. The abc components are added into a

space vector, then the space vector is scaled by 2
3 and then projected onto the D, Q axes. Similarly

for the inverse Clarke transformation, given the D and Q components, a space vector is made, and

projected back onto the abc axes. From Figure 3.8 it can be seen that the components in either

3see Appendix A.3 to take the inverse of a non-square matrix

30



frame can be visualized as space vectors but it is not necessary to do this as the Clarke transform

goes directly from one set of axes to the other. The space vector is just a concept that visualizes

these components.

The Clarke transformation has been shown thus far for stator quantities. It forms a two axis

representation referenced to the stator, that is the two components are locked to the stator’s reference

frame, along the D and Q axes shown in Figure 3.7. If the Clarke transform is used on a rotor

quantity, it performs a similar function. The two axis components are now in the rotor’s reference

frame. Recall that in a wound rotor machine that the rotor also has a three phase winding, locked to

the moving rotor. The rotor’s reference frame is defined in a similar way to the stator’s, the α-axis

is in line with the rotor’s A-axis and the β axis leading by 90◦, see Figure 3.7. The transformation

matrices are exactly the same for both the rotor and stator, it just needs to be kept in mind that the

Clarke transformation will automatically reference any stator quantity to the stator and any rotor

quantity to the rotor.

3.3.2.2 Rotational Transform

The Clarke transform was able to take a three axis quantity and represent it in two axes. Furthermore

it automatically references the quantities to their natural reference frames; the stator reference frame

for stator quantities and the rotor reference frame for rotor quantities. To simultaneously solve

equations of a system, they must all be written in the same frame. Also there are advantages for

operating in certain reference frames, this will be explained in Section 3.3.2.3. For these reasons,

being able to write quantities and equations in any reference frame is necessary. At any instant of

time, the only difference between reference frames is the angle that they are aligned to, so to change

from one to another all that is required is a rotational transform.

D

Q

D

Q

α

β

α

β

λsD

λsQ

2
3

−→
λs

s

λsα

λsβ

θm

2
3

−→
λs

r

Figure 3.9: Changing from Stator to Rotor Reference Frames

Before looking into the mathematics of the rotational transform, it can be visualized easily with space

vectors. Given the components in one frame, a space vector is constructed, then it is projected onto

the axes of the new frame. Consider the situation depicted in Figure 3.9. Suppose the quantity

shown represents stator flux linkage. In the first image the stator flux is referenced to the stator’s

reference frame, as if it had just been transformed with the Clarke transform from abc quantities.

In the next image the position of the rotor is seen to be θm radians clockwise from the stator. The
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rotor’s reference frame, being locked to the rotor is also at this position. To obtain the stator flux

referenced to the rotor, the space vector is simply projected onto the rotor reference frame axes. It

is important to note that the physical alignment of the stator flux never moved only the frame of

reference changed to be aligned with the rotor.

Mathematically this operation is defined as

ejθ =

[
cos θ − sin θ

sin θ cos θ

]
, (3.7)

which is usually interpreted as having the property of rotating a vector counter-clockwise by θ

radians, without scaling the magnitude. However as noted above, space vectors represent some

quantity and its position in space, and the quantity does not change position as the observer changes

their frame of reference. It is better to interpret a rotational transform as rotating the frame of

reference in the opposite direction (clockwise) by θ. Figure 3.10 demonstrates that rotating a vector

counter-clockwise by θm radians produces the same results as rotating the reference frame in the

opposite direction (clockwise) by the same angle θm, that is, the magnitudes of the components

after the transformation are the same in both cases4. It is just that interpreting the operation as

a rotation of reference frame instead of a rotation of the vector better matches what is physically

happening, see Figure 3.9.

D

Q

β

α

θm

D

Q

α

β

θm

θm

CCW Rotation of Vector CW Rotation of Reference Frame

Q

D

Figure 3.10: Different Interpretations of the Rotation Transformation

4of course they have to be since the same operator ejθ is being applied in both cases
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3.3.2.3 Definition of Reference Frames

A reference frame in this work refers to a set of two orthogonal axes on which space vectors are

defined. Two reference frames have already been introduced. The stator reference frame which is

unmoving and locked to the stator and the rotor reference frame which is locked to the moving

rotor, and therefore rotates at the rotor’s angular velocity ωm. There is one more reference frame

of interest, the general synchronous reference frame.

The general synchronous reference frame is distinguished by its speed, which is synchronous angular

velocity in the two pole environment, ωg = ωs. This speed is defined by the speed of rotation of

the stator’s magnetic field. For an induction machine this speed is very important because under

balanced conditions and when referenced to the stator, all quantities will rotate at synchronous

speed, regardless of which member of the machine they exist in. Since this frame rotates at the

same speed as all space vectors in the machine, the components of all vectors are constant, instead

of sinusoidal. This is an important fact that is exploited for control later. Notice that the initial

position of the synchronous frame has not been defined yet. That is why this frame is denoted in

the superscript by the letter (g)5, it is left undefined so it can be aligned to any vector. By aligning

this frame with an arbitrary space vector at time t = 0, the reference frame will always stay aligned

to that vector because they are both rotating at synchronous speed.

Some authours, including “P. Vas,” [11], define another reference frame called the general reference

frame, which they use for aligning to arbitrary vectors. They do this to cover the case in which

everything is not balanced, and the vectors do not spin at synchronous speed. Since this work

assumes only balanced conditions, all vectors will rotate at synchronous speed when viewed from

the stator, so a separate general reference frame with an arbitrary speed of rotation is unnecessary.

D

Q

β

α

d

q

ref
a-axis of stator

θm

θg

stator

rotor

synchronous

ω = 0

ω = ωm

ω = ωg = ωs

(g)

(r)

(s)

Figure 3.11: Definition of Reference Frames

To be explicit and clear, two properties fully define a reference frame; its angular velocity and its

initial alignment at t = 0. Figure 3.11 defines all frames and their notations. The stator reference

frame axes are labelled with DQ and it is denoted as the superscript (s) when referred to in a space

vector. It is not moving, (ω = 0[ radsec ]). and it is initialized at θ = 0[rad], where 0[rad] is defined

as the positive a-axis of the stator. The rotor reference frame is labelled with αβ and is assigned

5g stands for general
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From↓ To→ stator rotor synchronous
stator - e−jθm e−jθg

rotor ejθm - e−j(θg−θm)

synchronous ejθg ej(θg−θm) -

Table 3.1: Rotational Transforms to Change Between Reference Frames

the superscript (r) in the space vector notation. It is spinning at ω = ωm[ radsec ]. The displacement

from the stator reference frame is measured by θm. The rotor is free to spin and its initial position

for this work is unimportant and is arbitrarily chosen to coincide with the a-axis of the stator at

t = 0, that is θm(0) = 0[rad] which means that the rotor’s A-axis is chosen to be in line with the

stator’s a-axis at t = 0. The general synchronous reference frame, labelled with dq and superscripted

with (g), rotates at ω = ωg = ωs[
rad
sec ]. Its initial alignment θg(0) is left undefined so that it can

be aligned to whatever space vector is necessary for the analysis. Table 3.1 gives the rotational

transform necessary to convert from one reference frame to another.

3.3.3 The Relationship Between Time Phasors and Space Vectors

The reason for finding the relationship between phasors and space vectors is for the initialization of

the model from any steady state. The steady state solution of an induction machine is easily solved

with phasors, then the results can be applied to initialize all the space vectors in the machine [8].

Equation 3.2 and Figure 3.6 show the correspondence. In terms of magnitude a space vector is 3
2

larger than the peak of the input sinusoids. A phasor’s magnitude is the rms quantity of an input

sinusoid. Recall Equation 3.3

va(t) = V cos(ωt+ φ), (3.3a)

vb(t) = V cos(ωt+ φ− 2π
3 ), (3.3b)

vc(t) = V cos(ωt+ φ− 4π
3 ). (3.3c)

The space vector for this three phase set is, (Recall equation 3.4)

−→vss = 3
2V e

j(ωt+φ). (3.4)

Its magnitude is

|−→vss| = 3
2V. (3.9)

The phasor for Equation 3.3a is

V a = V√
2
φ. (3.10)

Its magnitude is

|V a| = V√
2
. (3.11)

Thus the relationship between magnitudes is

|−→vss| = 3√
2
|V a|. (3.12)
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The phase angle φ in the phasor is equal to the space angle φ of the space vector at t = 0. After

t = 0 the space vector begins rotating and the correspondence is lost, but for initialization, the

relationship only needs to hold at t = 0. The phase angle is equal to the space angle at t = 0,

but this holds true only if everything is defined the way it has been. For instance the three phase

balanced set is referenced to cosine, which has it’s positive peak for an argument of zero. This causes

the space vector to develop in the direction of the a-axis at t = 0. If the three phase set was defined

with sine instead, it would develop 90◦ lagging the a-axis and this shift would have to be accounted

for.

Therefore, ensuring that the input three phase balanced sinusoids are referenced to cosine, the

magnitudes of the time phasor and space vector are related by Equation 3.12 and the space angle is

equal to the phase shift of the a-phase phasor at time t = 0.

3.4 Interaction of Electrical Variables

The main purpose of the electrical subsystem is to define the relationship between the electrical

variables in the machine and the torque, so it can be connected to the mechanical subsystem. Ad-

ditionally it is important that all intermediate electrical variables are characterized instantaneously

through time so that information of energy flow in the machine is known for all time. The machine

under study, being a wound rotor induction machine, has a three phase winding set with terminal

access on both the stator and rotor, the latter through slip rings. All windings are characterized by

their self and mutual inductances, which interact magnetically with other windings in the machine.

The voltages (v) subjected to or developed from the coils, along with the currents (i) flowing through

them and the magnetic flux linked (λ) are the principal electrical variables of interest.

3.4.1 Electrical Equations in their Natural Reference Frames

The derivation of the electrical equations of an induction machine is a topic covered extensively by

many authours [8, 11, 20]. Both [11] and [20] explicitly show the position varying mutual inductances

that link each winding and how using a proper reference frame removes this complication. [8] skips

this and goes directly to into space vectors and avoids the complex arithmetic. This work follows

that approach and the voltage and flux equations written with space vectors will be the starting

point.

The model takes voltage to be the input and then will calculate the currents and flux linkages.

The voltage across the stator and rotor windings is written as a voltage drop across the winding

resistance and the voltage due to a change in flux linkage through the winding [8];

−→vss = Rs
−→
is
s

+ d
dt

−→
λs
s
, (3.13)

−→vrr = Rr
−→
ir
r

+ d
dt

−→
λr
r
, (3.14)

where Rs and Rr are the resistance of the stator and rotor windings in one phase respectively. Note
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that in the stator voltage equation, the voltage current and flux linkage are referenced to the stator

and similarity in the rotor, they are referenced to the rotor. Next the relationship between the

current and flux linkage is given as [8]

−→
λs
s

= Ls
−→
is
s

+ Lm
−→
ir
s
, (3.15)

−→
λr
r

= Lm
−→
is
r

+ Lr
−→
ir
r
, (3.16)

where Lm is the per phase magnetizing inductance, Ls = Lls + Lm is the total stator inductance,

Lls is the stator leakage inductance, Lr = Llr +Lm is the total rotor inductance and Llr is the rotor

leakage inductance.

3.4.2 Electrical Equations in the General Synchronously Rotating Refer-

ence Frame

The equations are simple when written in their natural reference frames, but they cannot be solved

simultaneously in this form. They must be brought to the same frame. Some equations are in

the stator reference frame, Equations 3.13 and 3.15, and others are in the rotor reference frame,

Equations 3.14 and 3.16. Instead of transforming the stator referenced equations to the rotor, or the

rotor referenced equations to the stator, all equations will be referenced to a general frame. This will

make it simple to change reference frames and align to particular space vectors. As stated before

in Section 3.3.2.3 this general reference frame rotates at synchronous speed and is not aligned to

any particular vector, until necessary. The rotational transformations to take the stator or rotor

referenced equations to the general synchronous reference frame can be found in Table 3.1.

The stator quantities are brought to the general synchronous reference frame by multiplying them

by the rotational transform e−jθg ;

−→vsg = −→vsse−jθg =⇒ −→vss = −→vsgejθg , (3.17a)

−→
is
g

=
−→
is
s
e−jθg =⇒ −→is

s
=
−→
is
g
ejθg , (3.17b)

−→
λs
g

=
−→
λs
s
e−jθg =⇒ −→λs

s
=
−→
λs
g
ejθg . (3.17c)

Similarly the rotor quantities are brought to the synchronous frame with the rotational transform

e−j(θg−θm);

−→vrg = −→vrre−j(θg−θm) =⇒ −→vrr = −→vrgej(θg−θm), (3.18a)

−→
ir
g

=
−→
ir
r
e−j(θg−θm) =⇒ −→ir

r
=
−→
ir
g
ej(θg−θm), (3.18b)

−→
λr
g

=
−→
λr
r
e−j(θg−θm) =⇒ −→λr

r
=
−→
λr
g
ej(θg−θm). (3.18c)

The flux linkages of the stator and the rotor in their own frames from Equations 3.15 and 3.16 can

be expressed in the same frame:
−→
λs
g

= Ls
−→
is
g

+ Lm
−→
ir
g
, (3.19)
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−→
λr
g

= Lm
−→
is
g

+ Lr
−→
ir
g
. (3.20)

These expressions will be useful to develop the control equations later.

Now the transformed variables in Equations 3.17 and 3.18 are substituted into the voltage Equations

3.13 and 3.14;

−→vsgejθg = Rs
−→
is
g
ejθg + d

dt (
−→
λs
g
ejθg ), (3.21)

−→vrgej(θg−θr) = Rr
−→
is
g
ej(θg−θr) + d

dt (
−→
λr
g
ej(θg−θr)). (3.22)

The derivatives are important and lead to the motional electromotive force (emf) terms in the final

equations, their step by step solutions are given in Appendix A.4. The voltage equations become

−→vsg = Rs
−→
is
g

+ d
dt

−→
λs
g

+ jωg
−→
λs
g, (3.23)

−→vrg = Rr
−→
ir
g

+ d
dt

−→
λr
g

+ j(ωg − ωm)
−→
λr
g. (3.24)

At this point a choice must be made for the state variables. Either currents or flux linkages (or a

combination of both) must be chosen. In the end, only four variables are needed to describe the

system of electrical equations because it is fourth order. Through experience it has been determined

that choosing flux linkage as the state variables has a considerable advantage. The flux linkage varies

much slower than the currents and thus time steps for the simulation can be chosen larger and the

simulation speed can be drastically improved. Equations 3.15 and 3.16 are solved for
−→
is
g

and
−→
ir
g
,

−→
is
g

=

∣∣∣∣∣
−→
λs
g

Lm−→
λr
g

Lr

∣∣∣∣∣∣∣∣∣∣Ls Lm

Lm Lr

∣∣∣∣∣
=
Lr
−→
λs
g
− Lm

−→
λr
g

LsLr − Lm2 =
−→
λs
g 1

σLs
−−→λr

g Lm
σLsLr

, (3.25)

−→
ir
g

=

∣∣∣∣∣Ls
−→
λs
g

Lm
−→
λr
g

∣∣∣∣∣∣∣∣∣∣Ls Lm

Lm Lr

∣∣∣∣∣
=
Ls
−→
λr
g
− Lm

−→
λs
g

LsLr − Lm2 =
−→
λr
g 1

σLr
−−→λs

g Lm
σLsLr

, (3.26)

where σ = 1 − L2
m

LsLr
is the total leakage factor. Substituting

−→
is
g

and
−→
ir
g

from Equations 3.25 and

3.26 into Equations 3.23 and 3.24 yields the voltage equations in the general synchronous frame in

terms of flux linkage;

−→vsg =

(−→
λs
g 1

σLs
−−→λr

g Lm
σLsLr

)
Rs +

d

dt

−→
λs
g

+ jωg
−→
λs
g

=
d

dt

−→
λs
g

+

(
Rs
σLs

+ jωg

)−→
λs
g

+
LmRs
σLsLr

−→
λr
g
, (3.27)
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−→vrg =

(−→
λr
g 1

σLr
−−→λs

g Lm
σLsLr

)
Rr +

d

dt

−→
λr
g

+ j(ωg − ωm)
−→
λr
g

=
d

dt

−→
λr
g

+

(
Rr
σLr

+ j(ωg − ωm)

)−→
λr
g

+
LmRr
σLsLr

−→
λs
g
. (3.28)

3.4.3 Electrical Equations in Scalar Form

Writing the equations as space vectors allowed for easy manipulation and alignment to the gen-

eral synchronous reference frame. However the equations are not in a form suitable for computer

simulation. Furthermore the variables must be scalar to perform standard control laws on them.

Decomposing the equations is a trivial task, it involves projecting them onto the axes (dq) of the

reference frame they are aligned to. First the voltage equations are written in standard form for a

set of first order differential equations, that is the derivatives of flux linkage are isolated in Equations

3.27 and 3.28,
d

dt

−→
λs
g

=
−→
λs
g
(
− Rs
σLs

− jωg
)

+
−→
λr
g
(
LmRs
σLsLr

)
+−→vsg, (3.29)

d

dt

−→
λr
g

=
−→
λs
g
(
LmRr
σLsLr

)
+
−→
λr
g
(
− Rr
σLr

− j(ωg − ωm)

)
+−→vrg. (3.30)

Next the equations are projected onto the dq axes. Each space vector is broken down into its

component vectors; for example
−→
λs
g

= λsd + jλsq.

d

dt
(λsd + jλsq) = (λsd + jλsq)

(
− Rs
σLs

− jωg
)

+ (λrd + jλrq)

(
LmRs
σLsLr

)
+ (vsd + jvsq), (3.31)

d

dt
(λrd+jλrq) = (λsd+jλsq)

(
LmRr
σLsLr

)
+(λrd+jλrq)

(
− Rr
σLr

− j(ωg − ωm)

)
+(vrd+jvrq). (3.32)

The d and q axes are orthogonal in space, so any value on one axis has no effect on the other. The

result is that a separate differential equation of flux linkage can be written for each axis on both the

stator and rotor, making four scalar differential equations. The brackets in Equations 3.31 and 3.32

are expanded and the result is separated by grouping all real terms with the d-axis equations and

all imaginary terms with q-axis equations;

d

dt
λsd = − Rs

σLs
λsd + ωgλsq +

LmRs
σLsLr

λrd + vsd, (3.33a)

d

dt
λsq = −ωgλsd −

Rs
σLs

λsq +
LmRs
σLsLr

λrq + vsq, (3.33b)

d

dt
λrd =

LmRr
σLsLr

λsd −
Rs
σLr

λrd + (ωg − ωm)λrq + vrd, (3.33c)

d

dt
λrq =

LmRr
σLsLr

λsq − (ωg − ωm)λrd −
Rs
σLr

λrq + vrq. (3.33d)
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In matrix form, the state equations for the electrical subsystem are

d

dt


λsd

λqd

λrd

λrq

 =


− Rs
σLs

ωg
LmRs
σLsLr

0

−ωg − Rs
σLs

0 LmRs
σLsLr

LmRr
σLsLr

0 − Rs
σLr

ωg − ωm
0 LmRr

σLsLr
−(ωg − ωm) − Rs

σLr



λsd

λqd

λrd

λrq

+


vsd

vqd

vrd

vrq

 . (3.34)

3.4.4 Electromagnetic Torque Equation

As stated before, the electromagnetic torque is the single most important variable of the induction

machine. It forms the link between electrical and mechanical systems. Physically torque arises from

the forces present when a current carrying conductor passes through a magnetic field. Torque is

proportional to the cross product of the rotor flux linkage space vector and the rotor current space

vector in any general reference frame [11],

Tem = − 3
2Pp
−→
λr
g
×−→ir

g
. (3.35)

The factor of 3
2 is necessary for power equivalence between two axis and three axis variables, see

Appendix A.3. The torque is directly proportional to Pp, the number of pole pairs, because the space

vectors only account for one pole pair as explained in Section 2.1.1. The negative sign is necessary

to ensure the cross product conforms with the conventions taken by the author in [11] and creates

a torque which acts in the counter-clockwise direction when positive. The cross product is formally

defined for three dimensional vectors but can also be applied to two dimensional space vectors, see

Appendix A.5. Since the state variables were chosen as flux linkage, it is advantageous to calculate

the torque directly from these variables. The torque expression can easily written in terms of any

desired variables by using the flux and current relations given explicitly in Equations 3.15, 3.16, 3.25

and 3.26. Replacing the rotor current in Equation 3.35 with the expression in Equation 3.26 yields

Tem = −3

2
Pp
−→
λr
g
×
(−→
λr
g 1

σLr
−−→λs

g Lm
σLsLr

)
= −3

2
Pp

(−→
λr
g
×−→λr

g 1

σLr
−−→λr

g
×−→λs

g Lm
σLsLr

)
=

3

2
Pp

Lm
σLsLr

−→
λr
g
×−→λs

g

=
3

2
Pp

Lm
σLsLr

(λrdλsq − λrqλsd). (3.36)
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3.4.5 Dynamic Power Expressions

To complete the model it is necessary to compute the real and reactive power in the stator and rotor.

The equations are similar to the steady state forms, see Equations 2.5, 2.5, 2.5 and 2.5, with the

exceptions of the factor of 3
2 explained in Appendix A.3. The dynamic power expressions in terms

of space vectors and their components are:

Ps =
3

2
Re
{−→vsg −→is g} =

3

2
(vsdisd + vsqisq), (3.37)

Qs =
3

2
Im
{−→vsg −→is g} =

3

2
(vsqisd + vsdisq), (3.38)

Pr =
3

2
Re
{−→vrg −→ir g} =

3

2
(vrdird + vrqirq), (3.39)

Qr =
3

2
Im
{−→vrg −→ir g} =

3

2
(vrqird + vrdirq). (3.40)

3.5 The Mechanical Subsystem

The mechanical subsystem is treated as simply as possible, as it is not the focus of this model. Only

the most basic interaction between the acceleration and torque balance is considered [20],

Tem − Tload = J
d

dt
ωmech. (3.41)

where Tload is the torque on the shaft originating from mechanical means and J is the inertia on the

shaft. Substituting ωm for ωmech using Equation 2.2 puts the equation into the 2-pole domain and

allows it to be directly coupled with the electrical equations,

d

dt

ωm
Pp

=
1

J
(Tem − Tload)

d

dt
ωm =

Pp
J

(Tem − Tload) . (3.42)

Notice that Tem has been chosen positive and Tload has been subtracted from it, to emphasize the

fact that these torques are always in opposition to each other. The convention is that a positive Tem

and Tload correspond to the motoring mode and a negative Tem and Tload correspond to a generating

mode. Of course a machine can be made to motor or generate in either direction but this model is

intended to be used with a wind turbine which is always made to spin in the same direction, assumed

counter-clockwise in this model. Thus when Tem > 0 then it is in the counter-clockwise sense, the

torque and angular velocity are in the same direction and the machine is motoring. When Tem < 0

then it is in the clockwise sense, opposite to the direction of the angular velocity and the machine

is generating. This also implies that applying a load torque for motoring to the machine requires

Tload > 0 and applying a prime mover torque for generating requires Tload < 0.

40



3.6 The Complete Fifth Order Model

This section brings together all equations necessary for the simulation. The electrical and mechanical

equations given in Equations 3.33 and 3.42 form the state equations of the machine:

d

dt
λsd = − Rs

σLs
λsd + ωgλsq +

LmRs
σLsLr

λrd + vsd, (3.33a)

d

dt
λsq = −ωgλsd −

Rs
σLs

λsq +
LmRs
σLsLr

λrq + vsq, (3.33b)

d

dt
λrd =

LmRr
σLsLr

λsd −
Rs
σLr

λrd + (ωg − ωm)λrq + vrd, (3.33c)

d

dt
λrq =

LmRr
σLsLr

λsq − (ωg − ωm)λrd −
Rs
σLr

λrq + vrq, (3.33d)

d

dt
ωm =

Pp
J

(Tem − Tload) . (3.42)

The torque in terms of the flux, Equation 3.36, is an axillary equation which links the two systems;

Tem =
3

2
Pp

Lm
σLsLr

(λrdλsq − λrqλsd). (3.36)

3.7 Wound Rotor Induction Machine Parameters

To use the dynamic model presented in this chapter, it is necessary to populate it with parameters.

Obtaining the required parameters from manufacturer nameplates or data sheets is not sufficient.

Parameter determination experiments must be run on the machine to determine the equivalent

circuit parameters. Instead, the values reported by Abad et al. for a 2MW wound rotor induction

machine are used in this work [7]. They are shown in Table 3.2.

A 2 MW generator was chosen as it will be of sufficient size to be matched to a multi-megawatt

turbine, which will be chosen in Section 4.4. This machine is also ideally suited for doubly-fed

operation. As explained in Section 1.1.1.1, DFIGs realize their main advantage by limiting their

slip about 30% around synchronous speed. According to Equation 2.8, the stator and rotor voltages

(neglecting voltage drops across Rs and Rr) are related by,

Vs

Vr
=

s

TR
. (3.44)

Thus at its maximum operating speed the rotor voltage is approximately 30% of the stator voltage,

if the turns ratio is one. This presents a problem of mismatched voltage level requirements for the

stator and rotor windings. The rotor does not generate or require as much voltage as the stator, and

a transformer is needed between the connection of the back to back converter attached to the rotor

and the grid [7]. To balance the voltages, a wound rotor induction machine intended for doubly-

fed configuration will normally be built with an effective turns ratio of about 0.3. Removing the

transformer is not the only advantage of the higher rotor turns; by stepping up the rotor voltage, the
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Parameter Symbol Value Unit
rated power Prated 2 MW
rated stator frequency fs 50 Hz
rated stator current (rms) Is,rated 1760 A
rated stator voltage (line-to-line, rms) VLLrms 690 V
rated rotor voltage (line-to-line, rms) Vr,rated 2070 V
effective turns ratio TR 0.34 dimensionless
number of pole pairs Pp 2 dimensionless
stator resistance Rs 2.6 mΩ
stator leakage inductance Lls 0.087 mH
rotor resistance (referred) Rr 2.9 mΩ
rotor leakage inductance (referred) Llr 0.087 mH
magnetizing inductance Lm 2.5 mH
system inertia J 98.26 Kg · m2

Table 3.2: Wound Rotor Induction Generator Parameters [7, 6].

machine becomes easier to control. As the speed of the system approaches synchronous, the rotor

voltage diminishes in proportion. However, all control is done through the rotor, and if the voltage

becomes to low, approaching zero, control is lost. This problem has been addressed by Cadirci et

al. [24], and is alleviated by increasing the rotor voltage magnitude. Note that the rotor voltage

winding rating is about three times as high as the stator’s to accommodate triple the voltage which

could be impressed upon the rotor if the machine came to stop (s = 1) while connected to the grid.

The inertia J presented is a fictitious value that has been redued from the real value to speed up

simulations [6]. Large MW scale turbines have very large moments of inertia because of the heavy

spinning blades and hub assembly attached to their rotor; in turn the speed changes very slowly.

Thus to see dynamics in the system, very long simulations in the order of minutes need to be run.

Reducing J will allow the same dynamic behaviour in much less time, on the order of a few seconds;

the results must be interpreted with this in mind.
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Chapter 4

Aerodynamic Model of the Wind

Turbine

The complex behaviour of the atmosphere and wind patterns is not of concern in the this work.

Any aerodynamic phenomenon present in the turbine beyond what is necessary for the simulation

is ignored. Only the most simplified and basic characteristics are accounted for.

The turbine is the prime mover of the system. The power extracted from the wind is seen by the

generator as an input torque. The torque provided by the turbine depends on the parameters of the

turbine itself, the speed of its own shaft and the speed of the wind.

4.1 Turbine Construction

The basic features of a modern wind turbine are necessary to understand its capabilities and how

it is controlled under different circumstances. Figure 4.1 depicts the main components. The nacelle

is the housing for the generator. It is able to rotate about its yaw axis so that the wind turbine is

always squarely facing the direction of the incoming wind. In the equations, this simply means that

the direction of the wind is not a variable.

Another feature is the ability to pitch the blades in and out of the wind. Pitching means twisting

the blades about the hub. If the pitch angle (β) is 0, it means the blades are facing so they gather

as much wind as possible. As β increases the blades are turned out of the wind so they gather

less power. The pitching of blades is necessary when the wind becomes so strong that the turbine

would spin above its rated speed, and the power needs to be shed. The angle does effect the turbine

characteristics as will be seen in the equations. However in this work β will always be kept at zero so

that the blades are always capturing as much wind as possible and the pitch angle does not appear

in the model.

The turbine shaft is much slower than that of the generator’s rated speed, so a gear box is necessary.

The gear ratio is fixed, there is no transmission, so the variable speed is handled by the generator
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Figure 4.1: Main Structural Features of a Wind Turbine

and converter. The blades always spin in the same direction.

4.2 Turbine Operating Regions

Depending on wind speed the turbine is controlled differently with different goals and set points.

There are four main regions [6], shown in Figure 4.2.

Region 1: There is a minimum wind speed that the turbine can operate with. Below the cut-in

speed the turbine cannot cover its own losses or the small power that is produced is not profitable.

In this area the turbine is held stationary with a mechanical brake.

Region 2: For the wind speeds between cut-in and rated, the turbine is controlled to extract the

maximum power possible from the wind. It is known as the Maximum Power Point Tracking (MPPT)

region. At the rated wind speed the turbine delivers its rated power.

Region 3: Here the wind speed is increasing, providing more power, but the rated power of the

turbine is already being produced. The extra power is shed by pitching the turbine blades out of

the wind.

Region 4: At the cut-out speed, the wind is too strong for safe operation of the turbine, and it is

stopped completely with a mechanical brake.

This work concentrates on Region 2 and the MPPT problem exclusively. This means the control of

the wind turbine’s pitch to shed power is not covered.
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Figure 4.2: Operating Regions of a Wind Turbine

4.3 Aerodynamic Turbine Model

The purpose of this study is to come up with an expression of torque at the shaft of the generator

from the wind turbine.

The power contained in the air is given by [25],

Pwind = 1
2ρAvw

3 = 1
2ρπrt

2vw
3. (4.1)

Where ρ is the density of air in kg/m3, vw is the air speed in m/s, rt is the radius of the wind turbine

(length of blade) in m and A = πrt
2 is the cross sectional area of wind swept by the blades.

The power extracted by a wind turbine is always only a fraction of what exists in the wind. No

turbine can extract all of it; the portion is expressed by the coefficient of performance Cp,

Pt = CpPwind = 1
2Cpρπrt

2vw
3. (4.2)

The coefficient of performance depends on the geometry of the turbine, the speed of the turbine’s

shaft, the speed of the wind and the pitch of the blades β. The first three parameters are combined

into one variable known as the tip speed ratio,

λ =
rtωt
vw

, (4.3)

where ωt is the angular velocity of the wind turbine shaft measured in mechanical radians per second.

λ is dimensionless, and expresses a ratio of how fast the tip of the blade is moving relative to how

fast the wind is blowing. It is a convenient parameter that manufacturers use to plot and convey

the coefficient of performance for each particular turbine. The relationship between Cp, λ and β

is nonlinear and is obtained by curve fitting experimental data. A curve fit for the MOD-2 type
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turbine is given in [26], and will be used to show the effect of pitch angle,


1
λi

= 1
λ+0.08β − 0.035

β3+1 ,

Cp(λ, β) = 0.5176
(

116
λi
− 0.4β − 5

)
e
−21
λi + 0.0068λ.

(4.4)

Figure 4.3 shows the function in Equation 4.4 plotted for several values of β. Note that as β increases

the coefficient of performance generally decreases. This is how power is shed in the high wind region,

by making the air turbine less aerodynamically efficient in capturing the power of the wind. This

work does not deal with this region so for the remainder of the text the wind turbine will only be

examined at its highest efficiency where β = 0◦. By evaluating Equation 4.2, using Equation 4.3 and

4.4 for all values of wind speed and turbine angular velocity, a set of power curves for the turbine can

be found. They will be very similar in shape to the Cp vs λ characteristic since it is a major factor

in Equation 4.2. Before the power curves can be evaluated, the parameters from the manufacturer

need to be known, a topic which will be covered in Section 4.4. However without evaluating the

curves specifically the torque available at the turbine shaft can be calculated from the power,

Tt =
Pt
ωt
. (4.5)
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Figure 4.3: Coefficient of Performance Vs Tip Speed Ratio for Several Pitch Angles
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4.3.1 Turbine Gearbox

The torque and speed of the turbine, Tt and ωt, are converted through a gear box to the torque and

speed at the generator shaft, Tmech and ωmech. The gearbox is assumed to be ideal, with no friction

or power losses, therefore,

Pmech = Pt. (4.6)

The gearbox will gear down the turbine’s shaft to the generator’s shaft. That is, the turbine shaft

has high torque and low speed, and the gearbox increases the speed by the same factor it decreases

the torque as it transmits the same power to the generator’s shaft. This factor is known as the gear

ratio, GR. The torques and angular velocity on both sides of the gearbox are given by,

Tmech =
Tt
GR

, (4.7)

wmech = GRwt. (4.8)

Where variables subscripted with “mech” are on the generator side and variables subscripted with

“t” are on the turbine side. A gearbox is necessary because a large turbine spins much slower than

the rated speed of any standard generator, and also has a much higher torque.

4.4 Modelling a Wind Turbine From Manufacturer Data

Wind turbines are designed together with a specific generator type and size. Manufacturers usually

provide minimal data for the turbine and its generator as noted by [7]. It is possible to come up

with the simple aerodynamic model of the turbine using just the Cp vs. λ characteristic and a few

other mechanical parameters. Unfortunately the generator data provided is not complete enough

to parametrize the model of Section 3.6. Thus the approach taken in this work is to select the

parameters of a generator from an alternative source, see Section 3.7, and then match a turbine of

similar power to it as best as possible.

The generator chosen in Section 3.7 is rated at 2 MW. Since in supersynchronous operation a DFIG

is normally operated to a maximum speed of 30% over synchronous, the maximum power that the

machine will produce out of both the stator and rotor can be roughly seen by applying Equations

2.27 , 2.32 and 2.29 and ignoring losses,

Pr + Ps ≈ Pmech = Pag(1− s) ≈ Ps(1− s) = 2M(1 + 0.3) = 2.6 MW. (4.9)

Therefore a turbine that can deliver around 2.6 MW around the generator’s maximum speed within

its rated wind speed range should be roughly matched. Relevant data for the wt2000df turbine

from AMSC’s Windtec Solutions [27] is provided in table 4.1. The coefficient of performance, shown

in Figure 4.4 is found in a related document [28] for the D49 Blades used in the turbine. For

the purpose of modelling the wind turbine, a curve fit will not be necessary since the result will

eventually be put into a numerical look-up table anyway. The data is extracted from the plot and

stored as an array; see the file CpVsTSR 49.xlxs on the accompanying CD. To calculate the power
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Figure 4.4: Coefficient of Performance Vs Tip Speed Ratio for D49 Blades

Parameter Description Value Units
rt blade length 48.63 m

ωt,rated rated rotational speed 15.7 rpm
ρ air density 1.21 kg/m3

vw,in cut in wind speed 3 m/s
vw,out cut out wind speed 20 m/s
vw,rated rated wind speed 11 m/s

Table 4.1: Parameters of the wt2000df Turbine, from: [27] and [28]

curves the wind speed will be varied from 3 to 11 m/s. Beyond 11 m/s, the turbine enters the third

control region, see Figure 4.2, where power needs to be shed. To get the complete curves, the range

for the turbine shaft’s angular velocity can be found from Equation 4.3. λ ranges from 2 to 16 and

vw ranges from 3 to 11. Therefore the smallest and largest value of ωt is:

ωt =
λvw
r

=⇒
[

2 · 3
48.63

,
16 · 11

48.63

]
= [0.1234, 3.6192] rad/sec.

With these ranges for vw and ωt the power curves for the turbine are calculated by evaluating

Equation 4.2 over both independent variables. The code to perform the calculation is provided in

Appendix B; the results are plotted in Figure 4.5.

The final parameter needed to connect the turbine to the generator is the gear ratio, which was not

given in the data sheet. This is fine as it can be chosen to ensure that the speeds of the generator

and turbine match properly. The generator has 4 poles, supplying a grid with 50 Hz frequency.

Limiting the slip to 30% and using Equations 2.4 and 2.7c gives a speed range of 1050 to 1950 rpm.

The peak of the power curves reach 2.6 MW around ωt = 18.9 rpm. The gear ratio will be chosen

so that 18.9 rpm on the turbine translates to about 1950 rpm on the generator, from Equation 4.8,

GR =
ωmech
ωt

=
1950

18.9
= 103.2.

Therefore the gear ratio is chosen as GR = 103.2. The torque and speed on both sides of the gearbox,
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at the turbine and the generator, are calculated using Equation 4.5 and are shown in Figure 4.6.

Turbine Shaft Speed [rpm]

P
[M

W
]

Power Curves for the wt2000df Turbine

11m/s

10m/s

9m/s

8m/s

3m/s

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

Figure 4.5: Power Curves for the wt2000df Turbine
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Figure 4.6: Torque Curves for wt2000df Turbine - Left: Torque on turbine shaft, Right: torque on
generator’s shaft after transformation through the gearbox with gear ratio of 103.2. Note that the
curves correspond to the wind speeds marked on the power curves in Figure 4.5

.

4.5 Maximum Power Point Tracking (MPPT)

As explained in [6], the goal of the control strategy of a wind turbine is to extract the most amount

of power from the wind as possible, when the wind speed is low enough that the turbine extracts less

than rated power. From Figure 4.5 it can be seen that for every wind speed the turbine produces
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the maximum power at a specific rotational speed. By finding the rotational speed that yields the

maximum power at each wind speed, the maximum power point curve is found, see Figure 4.7. The

set of points follows a cubic regression, which can be explained by the fact that the maximum power

in the wind is proportional to the cube of wind speed, see Equation 4.1. The data is fit to the
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Figure 4.7: Maximum Power Point Tracking Curve

following function,

PMPPT (ωt) = Koptωt
3, (4.10)

where Kopt is the coefficient which satisfies the curve for a specific turbine characteristic. For the

wt2000df wind turbine in Figure 4.5 cubic regression yields,

Kopt = 3.364× 105. (4.11)

4.5.1 Turbine Operation and Stability

To understand how a turbine operates under varying wind conditions, it is helpful to map the

maximum power point curve into torque by dividing it by the rotational speed and superimposing

it on the torque curves, this is done in Figure 4.8. The system will settle at the intersection of this

curve and the curve of the turbine torque corresponding to the particular wind speed. For instance,

if the wind speed is 8 m/s the turbine will be operating at point A. If the wind speed suddenly

changes to 11 m/s the inertia of the blades and generator will not allow for a sudden change in shaft

speed, so the operating point will be moved to point B. Here the turbine torque is greater than the

back torque of the generator so the system will speed up. As it speeds up the turbine produces
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Figure 4.8: Turbine Operation through Wind Speed Change - The torque of the turbine follows
the black dotted line along the path A-B-C. The torque of the generator follows the blue curve
corresponding to the MPPT profile along the path A-C.

torque according to its curve and the generator according to its own curve imposed by the MPPT

algorithm. At point C these curves intersect and the torque is balanced again, at the new steady

state operating point.

It is important to note that the operation of a wind turbine around its maximum power point curve

is dynamically stable [7]. That is, for a small variation in the turbine speed, the system will naturally

tend back towards the set operating point. If the speed becomes slightly too high, then the generator

torque becomes greater than the turbine torque and results in the system tending back toward the

set operating point. Similarly if the speed becomes slightly slower the generator torque will drop

below that of the turbine causing a natural increase in speed and negating the disturbance.
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Chapter 5

Vector Control of the DFIG and

Wind Turbine System

The control of an electromechanical machine ultimately comes down to the control of the electro-

magnetic torque [8]. The torque of any machine arises as the cross product of the flux in the rotor

and the stator. The fluxes are closely related to the currents and the torque is maximized when the

two fluxes are perpendicular to each other. In a DC machine, the torque is relatively easy to control;

the field flux and armature magneto-motive force (mmf) are developed completely apart from each

other with separate field and armature currents. The two fluxes can be kept perpendicular by the

mechanical commutator. This means that the torque can be controlled in a linear fashion just by

varying one of the current magnitudes.

Obtaining this type of simple control performance for an AC machine is not directly possible. This

is because controlling the torque in an AC machine is not trivial. The system inherently has a lot

of coupling and interaction between its fluxes and currents which makes it difficult to find a linear

relationship between a control variable and the torque. Additionally, without a commutator, the

field flux and the armature mmf have to be spatially separated with electronic control instead of

with a mechanical structure. It becomes necessary to control not only the magnitude, but also the

phase angle of the current [11]. The control of both the magnitude and phase of the control variable

means that the complete space vector is controlled. Therefore vector control is a strategy whereby

AC machines are forced by electronic control to closely match the characteristics of DC machines in

order to achieve a fast torque response and hence full command of the machine.

5.1 Vector Control Principals of the Grid Connected DFIG

It was shown in Section 3.3.1.1 that any three phase quantity, whether it be a voltage, current or

flux linkage, can be expressed as a single rotating vector. Vector control acts to control these space

vectors in magnitude and phase. As shown in Section 3.4.4, the torque is proportional to the cross

product of the stator and rotor flux linkages space vectors. It was also shown that it is possible to
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express the torque as the cross product of any two different currents, flux linkages or combinations

of both. Which two variables are chosen to be the control variables is dependent on the type of

machine being controlled, and how it is excited. Many different combinations can work and they

each have advantages and disadvantages. For the grid connected DFIG, it is most common to choose

the stator flux
−→
λs
g

and the rotor current
−→
ir
g
. The reason for this is explained as follows. Since the

stator terminals are directly connected to the grid where the voltage is fixed and constant, the stator

flux will be relatively easy to hold constant as well. Also since the stator is connected directly to

the grid, the stator currents cannot be controlled through that side of the machine. All control must

be done where the inverter is, at the rotor terminals, by varying the voltages applied there. The

impressed voltages cause currents to flow which interact with the stator currents and ultimately

dictate the operation of the machine, thus the rotor current is chosen as the control variable.

The basic idea is to mathematically separate the portion of current that contributes to the field flux

or magnetization of the machine and the portion which is perpendicular to it which is responsible for

the armature mmf and torque production. For a detailed physical explanation please refer the work

of Mohan et al. [8]. In order to achieve this, the position of the stator flux vector must be found,

while the machine is running. The rotor currents can then be separated into two components, the

one in line with the stator flux, ird, which is responsible for contributing to it, and the other, irq,

which is orthogonal, see Figure 5.1. The torque can be controlled by varying the magnitude of irq

while keeping ird, and the field flux constant. To do this the magnitude and phase angle with respect

to the stator flux vector must be controlled. In this way there is a linear relationship between torque

and the control variable. It will be shown that irq can further be related to the real power and ird

to the reactive power, allowing for decoupled control of these important variables.

q-axis

2
3

−→
λs

reference axis

2
3

−→
ir

ird
irq

θλs

d-axis

Figure 5.1: Basic Diagram of Vector Control

5.2 Cascaded Control Methodology

The cascaded control system is widely used in the machine control industry due to its flexibility and

simplistic design [22]. The complex non-linear machine model is broken down into subsystems which
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Figure 5.2: Standard Cascading Control Structure - Top: The inner loop is designed with outer
loop variables viewed as constants; Bottom: the outer loop is designed neglecting the inner loop
dynamics and assuming the references are met in reality instantaneously

are simple and assumed to be linear around their steady state operating points. The controllers can

then be designed with linear control theory and applied to the machine successfully. For example,

one reason the equations of an induction machine are non-linear is that the mechanical speed, a

state variable, is multiplied with the current and fluxes which are also state variables. However the

currents and flux vary so much faster than the mechanical speed of the machine, that they can be

controlled with such a high bandwidth, that the speed can be taken as a constant. Once the current

and flux, and hence the torque is under control, the speed or other slowly changing variables can be

dealt with separately in an outer loop with another controller. This controller can safely ignore the

dynamics of the inner loop because they are happening so fast in comparison. Figure 5.2 shows this

standard cascading structure, and how the outer loop is isolated from the inner loop.

For the DFIG there are two of these cascaded control loops, see Figure 5.3. Vector control acts on the

inner loop and regulates the fastest changing electrical variables. The torque producing component

irq can then be related to real power in the outer loop. The flux producing component ird is related

in the outer loop to the reactive power of the machine. In this way decoupled control of active and

reactive power is achieved.

Outside the outer loop on the q-axis the reference real power P refs is derived from the MPPT

characteristic, so that the maximum power is extracted from the turbine. It is important to note

that the speed is an input to this block and thus the speed and real power of the DFIG are related

by this curve. It is not possible to independently control the speed and the real power. The reference

reactive power Qrefs is directly related to the desired power factor of the machine; no third loop is

required on this axis.

The cascaded control structure works because the dynamics in the inner loop are orders of magnitude

faster than their encompassing loops. In this way the outer loops disregard the inner loop dynamics
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Figure 5.3: Cascaded Control Structure of the DFIG - Top: the d-axis control loop regulating Qs;
Bottom: the q-axis control loop regulating Ps

and each stage is designed as a low order system. This method is adopted by many prominent

authours including [8] and [11]. A slight modification and improvement to this method is provided

by Tapia et al. [13] in their work with DFIGs. Instead of completely ignoring the inner loops, they

approximate them by simple first order systems. In this way the control loops are still separated in

a cascaded manner, and development of the control law is still simple, but the inner loop dynamics

are seen by the outer loop. This method has proven to be effective and will be followed in this work.

5.3 Vector Control Equations of the DFIG

As stated previously, the control of the grid connected DFIG is done completely through the rotor

side, because that is where the converter is. It is not surprising then, that the control equations

are derived by eliminating all the stator variables, currents and flux linkage, in the rotor voltage

equation, replacing them with the rotor current. To make this substitution possible the equations

must be aligned to a particular space vector, in this case the stator flux linkage. To perform this

alignment the stator flux magnitude and phase which defines the position of the reference frame

must be estimated. The estimating equations form naturally by applying the same manipulations

to the stator voltage equation that were applied to the rotor voltage.

The end purpose to all of these manipulations is to find the transfer function clearly relating the

rotor current dynamics to the rotor voltage. Eventually, in the outer loops, variables Ps and Qs are

related to this rotor current. Knowing how to set the rotor voltage properly to impress these desired

rotor currents and in turn the real and reactive power of the machine constitutes full control of the

system.
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5.3.1 Stator Flux Orientation

As stated in the previous discussion, the control equations come by finding and separating compo-

nents of the current that are responsible for magnetizing the machine and generating the torque.

This work chooses the variable of stator flux linkage for the reference frame alignment, because it

is the most common in the literature [7] and was the first proposed for the DFIG in wind energy

systems [10]. Alignment to other space vectors is possible, for instance the stator voltage or rotor

flux linkage.

Alignment to the stator flux simply means that the d-axis of the reference frame is chosen to coincide

with the stator flux vector. This causes the q-axis component to be zero in the equations,

−→
λs
λs

= λsd + j0 = λsd = |−→λs|. (5.1)

That is, the stator flux linkage aligned to itself lies completely long the d-axis. To perform this

alignment on-line, while the machine is running, an estimator must be present to calculate the angle

of the stator flux and its magnitude. The estimator will be derived in Section 5.3.2.2.

Off-line, the stator flux angle can be computed from the D and Q-axis components (stator flux

vector aligned to stator’s reference frame),

θλs = arctan

(
λsQ
λsD

)
. (5.2)

This relationship will be useful to perform the stator flux alignment during initialization of the

simulation.

This stator flux alignment simplifies the stator flux linkage equation allowing a fundamental rela-

tionship to be derived between the stator and rotor currents. Aligning Equation 3.19 by applying

the expression in Equation 5.1,

−→
λs
λs

= λsd = Ls
−→
is
λs

+ Lm
−→
ir
λs

=⇒ −→is
λs

=
λsd
Ls
− Lm
Ls

−→
ir
λs
. (5.3)

Breaking down the expression along the d and q axes,

isd =
λsd
Ls
− Lm
Ls

ird, (5.4)

isq = −Lm
Ls

irq. (5.5)

These expressions are central to vector control, allowing the stator current to be expressed in terms

of the rotor current and the stator flux, which is kept constant.
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5.3.2 Rotor Voltage Dynamics

The rotor voltage dynamics are derived by aligning the rotor voltage equation to the stator flux.

First the rotor voltage is written in terms of current by replacing
−→
λr
g

in Equation 3.24 with the

expression in Equation 3.19:

−→vrg = [Rr + j(ωg − ωm)]
−→
ir
g

+ Lr
d
dt

−→
ir
g

+ j(ωg − ωm)Lm
−→
is
g

+ Lm
d
dt

−→
is
g
. (5.6)

Next the stator current is eliminated by applying Equation 5.3, which at the same time will align

the equation to the stator flux linkage,

−→vrλs = [Rr + j(ωλs − ωm)]
−→
ir
λs

+ Lr
d
dt

−→
ir
λs

+ j(ωλs − ωm)Lm

(
λsd
Ls
− Lm
Ls

−→
ir
λs
)

+ Lm
d
dt

(
λsd
Ls
− Lm
Ls

−→
ir
λs
)
,

= [Rr + j(ωλs − ωm)σLr]
−→
ir
λs

+ σLr
d
dt

−→
ir
λs

+ j(ωλs − ωm)
Lm
Ls

λsd +
Lm
Ls

d
dtλsd. (5.7)

Breaking down the expression along the d and q axes:

vrd =

v′rd (d-axis dynamics)︷ ︸︸ ︷
Rrird + σLr

d
dt ird −

vrd,comp (d-axis compensation terms)︷ ︸︸ ︷
cross coupling term︷ ︸︸ ︷
σLr(ωλs − ωm)irq +

disturbance term︷ ︸︸ ︷
Lm
Ls

d
dtλsd (5.8)

vrq = Rrirq + σLr
d
dt irq︸ ︷︷ ︸

v′rq (q-axis dynamics)

+σLr(ωλs − ωm)ird︸ ︷︷ ︸
cross coupling term

+ (ωλs − ωm)
Lm
Ls

λsd︸ ︷︷ ︸
disturbance term︸ ︷︷ ︸

vrq,comp (q-axis compensation terms)

(5.9)

These expressions explicitly separate the dynamics of the rotor currents and show how they affect

the rotor voltages on the same axis. The actual dynamics are simple, linear, first order systems

and are the same for both axes. The compensation terms arise from the cross-coupling of the

equations. They do not contain the control variables for their respective axis and thus will be seen

as a disturbance for the controller. The block diagram for the machine (plant) of the rotor dynamics

is shown in Figure 5.4. The compensation terms need to be dealt with in order for the system to

have the expected dynamic performance.

5.3.2.1 Feed-Forward Cancellation

The compensation terms are nullified with a technique known as feed-forward cancellation. The

unknown variables are estimated, and then added or subtracted after the controller to cancel their

effect and expose the underlying dynamics so the controllers can operate as intended. Figure 5.5

shows how the controller dynamics produce the references v′∗rd and v′∗rq. The compensation terms

are added or subtracted to create the the d and q-axis rotor voltage references v∗rd and v∗rq. These

references are fed to an inverter which creates them and in turn feeds the machine. Note that

in real applications and in a simulation the d and q-axis components must be converted back to
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Figure 5.4: Rotor Voltage Dynamics of the Machine (plant)

three phase quantities and produced through pulse width modulation (PWM) techniques. This

treatment ignores these complications and treats the inverter as ideal. That is, whatever voltage

that is commanded is produced perfectly, with no harmonic content. That is why the inverter is

just modelled as a gain block of one. Figure 5.6 shows the effect after feed-forward cancellation: the

simple rotor dynamics are exposed.

vrq

irq

1
Rr+sσLr

ird

Lm
Ls

d
dtλsd

vrd

1
Rr+sσLr

(ωλs
− ωm)σLr

(ωλs
− ωm)σLr

(ωλs − ωm)LmLs λsd

vrq
′

vrd
′

(ωλs
− ωm)σLr

(ωλs
− ωm)σLr

Lm
Ls

d
dtλsd
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irq
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i∗rd
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v′∗rd

v′∗rq

1

1
v∗rq
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Ideal
Inverter

Figure 5.5: Feed-Forward Cancellation

5.3.2.2 Estimator

The estimator has two important functions. First, it computes the stator flux angle θλs and its speed

ωλs . This information is necessary to align the d-axis of the reference frame. Secondly, it calculates

the variables needed for the feed-forward compensation, that is λrd and d
dtλrd. Since λrd is held
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constant by the vector control, d
dtλrd is almost always zero, unless λrd is undergoing a transition.

For this reason, many vector control algorithms ignore this term [8], [11]; this work will however

calculate it for completeness.

It is important to note that the estimator must do all of its calculations with physically measurable

quantities. The measured variables required by the estimator are the rotor currents, stator voltages

and rotor speed. The physical quantities need to be measured with voltage and current sensors and

an encoder respectively. There is an approximation many authours make to approximate the stator

voltage and remove the need for the voltage sensors; the assumptions are discussed at the end of this

section. The equations are derived by applying the same procedure in Section 5.3.2 to the stator

voltage equation.

First the stator voltage in Equation 3.23 is written in terms of currents by replacing
−→
λs
g

with the

expression in Equation 3.19,

−→vsg = (Rs + jωg)
−→
is
g

+ Ls
d
dt

−→
is
g

+ jωgLm
−→
ir
g

+ Lm
d
dt

−→
ir
g
. (5.10)

Next the stator current is eliminated by applying Equation 5.3, which also aligns the expression to

the stator flux at the same time,

−→vsλs = (Rs + jωλs)

(
λsd
Ls
− Lm
Ls

−→
ir
λs
)

+ Ls
d
dt

(
λsd
Ls
− Lm
Ls

−→
ir
λs
)

+ jωλsLm
−→
ir
λs

+ Lm
d
dt

−→
ir
λs
,

=
−→
ir
λs
(
−Lm
Ls

Rs

)
+ λsd

(
Rs
Ls

+ jωλs

)
+ d

dtλsd. (5.11)

Breaking down the expression along the d and q axes yields,

vsd = −Lm
Ls

Rsird +
Rs
Ls
λsd + d

dtλsd, (5.12)

vsq = −Lm
Ls

Rsirq + ωλsλsd. (5.13)
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From Equation 5.12, the d-axis stator flux and its derivative are found by solving the differential

equation,

d
dtλsd +

Rs
Ls
λsd = vsd +

Lm
Ls

Rsird. (5.14)

From Equation 5.13, the stator flux angular velocity and hence reference frame speed ωλs is found,

ωλs =
vsq
λsd

+
Lm
Ls

Rs
λsd

irq. (5.15)

To calculate the stator flux angle θλs , all that is required is to integrate the speed ωλs . It should

be noted that most authours assume Rs ≈ 0 and thus vsq = |−→vs | and vsd = 0. This means

that the practical implementation would not need the voltage sensors. Since this work is purely

simulation based, the assumption will not be made unless is significantly reduces the complexity of

the equations.

5.3.3 Inner Loop Controller Design

The simplest controller possible is purely proportional. If this approach is used and the compensation

in the feed-forward section is not perfect, it will lead to steady state errors. Since the compensation

is based on estimation, there will certainly be errors, and thus integral action is compulsory.

5.3.3.1 Inner Loop Controller Structure

Figure 5.6 shows that the rotor dynamics are actually identical on both the d and q axes, so the

design is only done for one and duplicated on the other. Many authors and researchers use a standard

proportional-integral (PI) controller to satisfy the inner and outer loops independently according to

the method of cascaded control. In this way they completely isolate the control design for each

successive loop. As mentioned in Section 5.2, this work will follow that of Tapia et al. [13] which

uses a slightly modified version of the PI controller. The proportional part is fed directly from the

measured value instead of from the error signal. Figure 5.7 shows the standard PI control structure

and Tapia’s modification.

i∗rd v′∗rd = v′rd ird1
Rr+sσLr

KP1 + KI1
s

i∗rd v′∗rd = v′rd ird1
Rr+sσLr

KI1
s

KP1

Standard
PI

Configuration

Tapia’s
Modified

Configuration

ierrrd

ierrrd

vKIrd

Figure 5.7: PI Controller Structures for the Inner Loop
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The advantage to this structure is that the transfer function of the dynamics will be in standard

second order form, as opposed to the standard PI structure which leads to a zero in the transfer

function. Appendix A.6 derives the inner loop transfer functions for the modified structure in Figure

5.7, the end results are presented here,

standard:
ird(s)

i∗rd(s)
=

KP1s+KI1

s2σLr + s(Rr +KP1) +KI1
(5.16)

Tapia:
ird(s)

i∗rd(s)
=

KI1
σLr

s2 + s (Rr+KP1)
σLr

+ KI1
σLr

(5.17)

Notice that Tapia’s structure results in a transfer function in the standard 2nd order form of,

G(s) =
ωn

2

s2 + 2ζωns+ ωn2
. (5.18)

where ωn is the natural frequency and ζ is the damping ratio. The inner loop dynamics can now be

subjected to known simple control criteria to determine the values of KP1 and KI1.

5.3.3.2 Calculation of Inner Loop Controller Constants KP1 and KI1

The first criterion that Tapia’s method requires is that the system is critically damped. This sets

the following condition,

ζ = 1. (5.19)

The inner loop must be critically damped so that it exhibits no overshoot and its second order

dynamics can later be approximated accurately with a first order system.

The second criteria that Tapia suggests is to specify the natural frequency ωn by demanding a

reasonable settling time. According to [29], the time for a standard second order system to settle

with 2% of its final value is,

Ts =
4

ζωn
. (5.20)

Of course the settling time cannot be chosen too low otherwise the bandwidth of the controller will

be too high to realize with a practical inverter. According to [22], the bandwidth of the system

should be at least one order of magnitude less than the switching frequency of the inverter. Once

the power rating of the inverter is known, a realistically achievable frequency can be determined.

This work will assume that requiring an inverter to switch over 5 kHz at the MW power level would

be unrealistic. Thus the bandwidth of the inner loop should be less than 500 Hz. According to [29],

for a second order system with ζ = 1,

ωB ≈ 0.65ωn, and ωB < 2π500, (5.21)

where ωB is the bandwidth of the closed loop system.
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Comparing coefficients in Equations 5.17 and 5.18, KP1 and KP2 are determined,

ωn1
2 =

KI1

σLr
, (5.22)

2ζωn1 =
Rr +KP1

σLr
. (5.23)

Imposing the criteria from Equations 5.19 and 5.20 in Equations 5.22 and 5.23 yields,

KP1 =
8

Ts1
σLr −Rr, (5.24)

KI1 =
16

Ts1
σLr. (5.25)

Tapia suggests an inner loop settling time of Ts1 = 40 ms. Checking the bandwidth criterion in

Equation 5.21,

ωB ≈ 0.65
4

Ts1
= 0.65

4

0.04
= 65 < 2π500 (5.26)

This settling time is more than conservative enough to be achieved with a 5 kHz inverter.

5.3.4 Outer Loop Controller Design

The outer control variables are selected to be the real and reactive power of the stator. These are

ideal for a wind turbine as decoupled control of the power is a desired feature. It will allow the

turbine to follow the MPPT curve and do so at any desired power factor.

5.3.4.1 Outer Loop Control Equations

The real and reactive power at the stator is given by Equations 3.37 and 3.38,

Ps =
3

2
Re
{−→vsg −→is g} =

3

2
(vsdisd + vsqisq), (3.37)

Qs =
3

2
Im
{−→vsg −→is g} =

3

2
(vsqisd − vsdisq). (3.38)

The effect of stator flux orientation is examined on the expressions. Aligning the stator voltage in

Equation 3.23 by applying the expression in Equation 5.1,

−→vsλs = Rs
−→
is
λs + d

dtλsd + jωλsλsd (5.27)

To further simplify the stator voltage expression a few assumptions are made. First of all, the term
d
dtλsd can be considered zero. Under vector control λsd is held constant so its derivative is zero,

unless there is a change to the set point of isd. While this will happen as the reactive power reference

changes, the effect is small as all authors who adopt this method ignore it [7, 8, 11]. Secondly, the

stator resistance is considered small enough that Rs ≈ 0. Using these assumptions,

−→vsλs = jωλsλsd, (5.28)
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which implies that,

vsd = 0, (5.29)

vsq = jωλsλsd = |−→vs |. (5.30)

It can be inferred from these equations that under stator flux orientation and neglecting Rs, the

stator voltage vector is perpendicular to the stator flux. This simplification can also be applied to

the estimator in Section 5.3.2.2 to remove the need for voltage sensors at the stator. Using Equations

5.4, 5.5, 5.29 and 5.30, the expressions for Ps and Qs are simplified,

Ps = −3

2

Lm
Ls
|−→vs |irq (5.31)

Qs =
3

2
|−→vs |

(
λsd
Ls
− Lm
Ls

isd

)
=

3

2

λsd
Ls
|−→vs | −

3

2

Lm
Ls
|−→vs |ird (5.32)

Therefore after a few assumptions the approximate dynamics between the rotor current and the

stator real and reactive power can be found. Note that the reactive power has a term that does not

depend on rotor current. It is left to the controller to deal with this term as a disturbance, and no

feed-forward structure will be used to cancel it out [13].

5.3.4.2 Outer Loop Controller Structure

The dynamics for the real and reactive power loops are considered to be identical, once the dis-

turbance term in Qs is ignored. The most important feature to observe is the negative static gain

− 3
2
Lm
Ls
|−→vs | between the current component and its respective power. This means that in order to

achieve a negative feedback structure, the references must be subtracted from the actual value [13].

Appendix A.7 proves this fact.

As stated before, the inner loop will be approximated with a first order system. This is possible

because it was tuned to be critically damped, with no overshoot. The approximation of the inner

loop dynamics is given by [13],
ird(s)

i∗rd(s)
=
irq(s)

i∗rq(s)
=

1

1 + Ts1
4 s

(5.33)

The outer control loops are shown in Figure 5.8. Note that the reactive power loop is slightly

different because of its disturbance term.

5.3.4.3 Calculation of Outer Loop Controller Constants KP2 and KI2

As noted before, the dynamics on both outer loops are the same if the disturbance in Qs is neglected.

Again the design will be done for one axis (q-axis) and duplicated on the other axis (d-axis). The

transfer function for the outer loop is derived in Appendix A.8 and is shown here,

Ps(s)

P refs (s)
=

Qs(s)

Qrefs (s)
=

6LmLs
|−→vs|
Ts1

KI2

s2 +
(

4
Ts1

+ 6LmLs
|−→vs|
Ts1

KP2

)
s+ 6LmLs

|−→vs|
Ts1

KI2

. (5.34)
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Figure 5.8: Outer Control Loops - Top: reactive power loop; Bottom: real power loop

Again, the transfer function is in standard form for a general second order system. The same

procedure applied to the inner loop is used to calculate KP2 and KI2. This time the settling time

is selected to be longer than it was for the inner loop. It does not have to be orders of magnitude

larger, because the inner loop dynamics have been accounted for in the outer loop transfer function.

Tapia suggests 70 ms for the outer loop settling time.

Comparing coefficients in Equation 5.34 and Equation 5.18,

ωn2
2 = 6

Lm
Ls

|−→vs |
Ts1

KI2, (5.35)

2ζωn2 =
4

Ts1
+ 6

Lm
Ls

|−→vs |
Ts1

KP2, (5.36)

Imposing the criteria in Equations 5.19 and 5.20,

KP2 =
2

3

(
2Ts1 − Ts2

Ts2

)
Ls
Lm

1

|−→vs |
, (5.37)

KI2 =
8

3

Ts1

Ts2
2

Ls
Lm

1

|−→vs |
. (5.38)

5.3.5 Implementation of MPPT Control

The final step is to cascade one more loop on the real power. The real power reference depends

on the turbine speed according to the MPPT curve. The power is proportional to the cube of the

mechanical shaft speed, according to Equation 4.10,

P refs = Koptωt
3, (5.39)
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where Kopt is a coefficient generated by curve fitting the MPPT curve to a cubic function of turbine

shaft speed, see Section 4.5. The diagram for the MPPT control loop is given shown in Figure 5.3.

The turbine shaft speed ωt is determined from the generator’s mechanical speed by using Equation

4.8.
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Chapter 6

Simulation Model Description

This chapter brings together all the relevant equations from Chapters 2 through 5 that are necessary

to simulate the entire system including the wound rotor generator, the wind turbine and its associated

control. It is the intention of this work to provide the reader with a thorough explanation of the

model. This model is realized in the Matlab/Simulink environment and is constructed from basic

blocks available in the student version of the software. This allows for easy modification of the

system at the most basic level. The model is provided in its entirety on the accompanying CD-ROM

with the model file “DFIG Wind Turbine.mdl” and its initialization script “Init System.m”.

6.1 Description of Simulink Model

There are two main parts to the simulation model. The wind turbine and the generator which con-

stitute the physical subsystems that are being simulated, and the associated control blocks which are

governing their behaviour. The physical generator is simulated and then the measurable outputs are

fed to the machine estimator, which computes the values of other variables which are not measurable

but are necessary for the control. It is important to keep this distinction between physical system

and virtual control clear or the user may become confused. This is because every signal in the model

is treated as the same and looks the same whether it is a real power signal or an estimated value

that would only exist in a microcontroller in the real world.

The boundaries of these environments in the real world are the inverter at the input and the sensors

at the output. The inverter dynamics are not studied in this work, so they appear in the model as

simply a gain of one. The input to this inverter would be the desired rotor voltage waveforms. Then

through PWM techniques the inverter would replicate the signals at the desired power levels, with

some harmonic distortion. This reality is neglected by the simulation; the control blocks calculate

the required rotor voltage and it is fed directly to the machine. At its output, the generator model

calculates every variable within the machine: the torque, speed, flux and current. In reality it is only

practical to measure some of these variables: the current, the rotor speed and perhaps the voltages.

This is why only these variables are fed back to the estimator and the control. It would be useless
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to design a control system that requires all of the variables. Again, any dynamics in the sensors and

any realistic concerns such as sampling and analogue to digital conversion are ignored by the model

as well. Therefore this model must be taken for what it is: an ideal functional description of a wind

turbine connected to a DFIG that treats each component in the most simple and fundamental way

possible.

6.1.1 System Overview

The two physical components, the generator and the wind turbine, have their shafts coupled by

a gearbox. The quantities these systems interchange are the torques and speed of their common

shaft. The turbine calculates its torque and outputs it to the generator model based on a wind

speed profile and the speed of its shaft. The information of its shaft speed comes from the generator

model which computes the speed based on an inertial model and the balance of its own back torque

and the torque input of the turbine. Figure 6.1 shows the exchange of torque and speed variables

at the gearbox connection between the generator and wind turbine.

Grid
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Inverter
and

Control

Gearbox

Generator

Wind Turbine
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Tt
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Tt

ωmech

Tmech

Tem
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Figure 6.1: Overview of the Simulation

The generator model computes the back torque of the generator Tem which sets the speed of the

system based on the control voltages applied at the rotor. Electrically, the real and reactive power

flow of the machine is computed at the same time.

6.2 Detailed Description of Simulink Blocks

In this section each block in the simulation is described in detail. A table at the beginning of each

subsection quickly shows the block input and output signals, the parameters it needs to calculate

them and also any initial conditions that the block requires. Some outputs are used as signals to

connect to other blocks and some are just output for display.

6.2.1 Input Stator Voltage Block

The grid is modelled as an ideal voltage source that can supply or receive infinite power without a

change in voltage. It is directly connected to the stator so the stator voltages are considered grid
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Inputs Outputs Parameters Initial Conditions
none vas, vbs, vcs VLL,rms, fs none

Table 6.1: Simulation Variables of Stator Voltage Input Block

Out Amp Freq Phase Bias

vas

√
2
3VLLrms 2πfs

π
2 0

vbs

√
2
3VLLrms 2πfs

π
2 − 2π

3 0

vcs

√
2
3VLLrms 2πfs

π
2 + 2π

3 0

Table 6.2: Simulink Parameters for the Voltage Input Block

voltages.

The equations for stator voltage are given in Equation 3.3. Here V is the peak phase voltage which

is related to the rms line to line voltage with

V =

√
2VLLrms√

3
. (6.1)

The angular frequency ω is related to the grid frequency

ω = 2πfs. (6.2)

The phase angle φ is taken as zero. The consequence is that the stator voltage space phasor starts

at the reference position. It is fully aligned with the a-axis of the stator at t = 0. In Simulink the

sine wave block is used to implement these equations. Its form is

O(t) = Amp ∗ sin(Freq ∗ t+ Phase) +Bias. (6.3)

Thus to generate the voltages of Equation 3.3, Table 6.2 gives the values of all the arguments.

6.2.2 Clarke Transformation Blocks

Inputs Outputs Parameters Initial Conditions
Fa, Fb, Fc FD, FQ none none

Table 6.3: Simulation Variables of Clarke Transformation Block

Input Outputs Parameters Initial Conditions
FD, FQ Fa, Fb, Fc none none

Table 6.4: Simulation Variables of Inverse Clarke Transformation Block

These blocks are required whenever three-axis variables need to be converted to the two-axis variables

or vice versa. This occurs any time a real world three phase signal is converted to the fictitious two-

axis environment. They are thus required on both sides of the machine model, to bring the fictitious
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control variables to the real world at the inverter and to convert the real measured variables to

two-axis control variables at the machine output. Furthermore they are used in the internal model

of the real machine, to bring that model to a fictitious two-axis environment and speed up the

calculations. Note that the Clarke transformation and its inverse apply to all three phase variables,

on any member of the machine. These blocks directly implement Equations 3.5 and 3.6.

6.2.3 Vector Rotation Block

Inputs Outputs Parameters Initial Conditions
θ, Fx, Fy Fx2

, Fy2 none none

Table 6.5: Simulation Variables of Vector Rotation Block

The purpose of the vector rotation block is to align space vectors (their two-axis components) to the

desired reference frame. This is done by realizing which reference frame the variable is currently in

and rotating it by the angular difference θ to get to the next reference frame. Thus the block takes

in the two-axis variables and an angle θ that describes the angular separation between the frames

and uses Equation 3.7 to perform the calculations. Table 3.1 along with Figure 3.11 defines all the

rotation angles required to change between any frame. These blocks are always paired with a Clarke

or inverse Clarke block to complete the transformation to the two-axis calculation environment.

6.2.4 Wind Turbine Block

Inputs Outputs Parameters Initial Conditions
ωmech Tmech GR, rt, ρ vwind(0)
vwind Cp vector

λ vector
vwind vector
ωt vector
Tt matrix

Table 6.6: Simulation Variables of the Wind Turbine Block

Figure 6.2: Simulink Block Diagram of Wind Turbine

This block implements the aerodynamic model of the wind turbine. The characteristic torque based

on wind speed and shaft speed is calculated based on Equations 4.2, 4.3 and 4.5, using the Cp vs λ
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characteristic in Figure 4.4. It is stored in the matrix Tt matrix and implemented in the Simulink

model as a look-up table. Also required by the look-up table are the wind speed and turbine speed

vectors. The calculations for all these vectors and the matrix are described in Section 4.4 and

performed in the initialization script. The gearbox equations in 4.7 and 4.8 are implemented in gain

blocks around the look-up table. Also note that the torque is multiplied with −1 before it exits this

subsystem. This is because the turbine torque is actually a prime mover torque and the machine

model is expecting a negative load torque. The block diagram for the wind turbine is shown in

Figure 6.2.

6.2.5 Wound Rotor Induction Machine Block

Inputs Outputs Parameters Initial Conditions
vas, vbs, vcs iar, ibr, icr VLL,rms, fs ωm(0)
var, vbr, vcr ωmech Pp, J, TR λsd(0), λsq(0)
θg, ωg ias, ibs, ics Rs, Rr λrd(0), λrq(0)
Tmech Tem Ls, Lr

λsd, λsq Lm, σ
λrd, λrq

Table 6.7: Simulation Variables of the Wound Rotor Induction Machine

Figure 6.3: Simulink Block Diagram of Two-Axis Wound Rotor Induction Machine

This block models the actual wound rotor machine dynamics. To the control blocks it is seen as a

black box which accepts inputs and has measurable outputs. How the model calculates the outputs

is of no concern to the rest of the model. The speed and position of the reference frame used in this

block are completely independent of any other block. The two-axis representation of the machine is

used because it is quick to calculate, but no particular alignment is necessary as it is in the control

blocks. Note that its reference frame has been chosen to be the stator frame which is aligned to the

reference axis at t = 0. The reason for this choice is that it is the simplest reference frame, defined

by zero speed and a zero initial angle. Only real variables are exchanged through the input and

output ports and fictitious two-axis variables remain inside the black box. Clarke transformations
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and vector rotations are required on both the input and output to create the fictitious calculation

environment. In between, the two-axis model of the wound rotor induction machine resides. Figure

6.3 shows the internal workings of this block. The flux subsystem implements Equation 3.34. The

current subsystem implements Equations 3.25 and 3.26. These space vector equations were realized

in matrix form for the simulation, similar to how the flux was in Equation 3.34. The torque subsystem

calculates the torque using Equation 3.36. Finally, the mechanical subsystem implements the inertial

mechanical model which relates electromagnetic torque to turbine torque using Equation 3.42.

6.2.6 Estimator Block

Inputs Outputs Parameters Initial Conditions

vas, vbs, vcs λestsd ,
d
dtλ

est
sd Rs, Lm, Ls, Pp λsd(0)

iar, ibr, icr ωestλs , θ
est
λs θλs(0)

ωmech ωm, θm

Table 6.8: Simulation Variables of the Estimator Block

The estimator block is responsible for calculating the position of the reference frame and all parame-

ters that will be needed in the feed-forward control scheme. In reality, the inputs of this block would

have to be measured with sensors. The initial conditions would also need to be calculated online, so

when the control was turned on, the estimator could start working. Note that the initial position

of the rotor is arbitrary and will not affect the operation of the estimator, so it is just initialized to

zero. The estimator block realizes Equations 5.14 and 5.15, and is shown in Figure 6.4.

Figure 6.4: Simulink Block Diagram of Estimator
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6.2.7 Feed Forward Cancellation Block

Inputs Outputs Parameters Initial Conditions
ird, irq v∗rd, v

∗
rq Ls, Lr, Lm none

ωestλs , ωm σ
λestsd ,

d
dtλ

est
sd

v′∗rd, v
′∗
rq

Table 6.9: Simulation Variables of the Feed Forward Cancellation

The feed-forward block implements the compensation terms vrd,comp and vrq,comp found in Equations

5.8 and 5.9, and is shown in Figure 5.5.

6.2.8 PI Controller Blocks

Inputs Outputs Parameters Initial Conditions

Outer loop Qerrs , Qs i∗rd KP2,KI2 iKIrd (0)
P errs , Ps i∗rq Ts1, Ts2, Ls, Lm, |−→vs | iKIrq (0)

Inner Loop ierrrd , ird v′∗rd KPI ,KI1 vKIrd (0)
ierrrq , irq v′∗rq Ts1, σ, Lr, Rr vKIrq (0)

Table 6.10: Simulation Variables of the PI Controller Block

There are four separate PI controllers, one for each axis on the inner and outer loops. The structure

of the PI controllers is shown for the inner loop in Figure 5.7 and for the outer loop in Figure 5.8.

Unlike conventional PI controllers there are two inputs: the error signal and the measured value.

The proportional and integral constants KP1, KI1, KP2, and KI2 are calculated in Equations 5.24,

5.25, 5.37 and 5.38 respectively. Additionally, there are four integrators for the integral terms, so

they must be initialized.

6.2.9 MPPT Block

Input Output Parameters Initial Conditions
ωmech P refs GR,Kopt none

Table 6.11: Simulation Variables of the MPPT Block

Equation 5.39 is realized in this block. It is necessary to calculate the turbine shaft speed from

the generator speed using the gear ratio GR. The value of Kopt is pre-calculated by curve fitting

the MPPT characteristic as explained in Section 4.5. Also note that the power reference must be

multiplied by −1 so that the reference power is negative which implies generating.

6.3 Initialization of the Model

The methodology behind this model follows that of Mohan et al. in their work [8]. He describes

in detail how to simulate a vector controlled, caged rotor machine. Here, his work is extended to a
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wound rotor induction machine with a the wind turbine.

An important distinguishing feature of this type of modelling is that the simulation is not started

from rest. In this way, the complicated start-up routines of the system and vector control can be

avoided; the focus is on the transitions between usable operating points. This type of simulation

is necessary in this work because, as mentioned in Section 4.2, only the MPPT region is studied.

Starting from any steady-state operating point allows the system to start directly in Region 2,

bypassing the start up routine of the turbine.

To perform the system initialization, first a steady-state operating point of the system needs to be

calculated. Section 2.5 is used for this purpose. Next the dynamic model must be populated with

the initial conditions corresponding to that operating point. Using the relationship in Section 3.3.3,

the voltage phasors from the steady-state solution are related to space vectors at time t = 0, and

the initial conditions are solved. This entails solving the value at t = 0 for every variable which exits

from an integrator in the model, including those in the control and those in the machine models.

Furthermore, the turbine model needs to be initialized with its characteristics.

6.3.1 System Initialization

The turbine is the first system that must be initialized. This is because the wind is the first variable

that sets the system in motion and all other initial conditions are derived from it. Before choosing

a starting wind speed, the turbine characteristics must be loaded into the two-dimensional look-up

table in the model. This procedure is described in Section 4.4.

The first step is to choose an initial wind speed vwind(0). It should be chosen between the cut in

and rated speeds as this is the region for which the simulation is designed. This directly dictates

the power that the turbine will produce and the speed of the whole system. Since the turbine is set

to follow the MPPT curve, initial power of the turbine is computed as the maximum value for that

particular wind speed and the corresponding turbine speed is found as well.

The next step is to load the parameters of the generator. Table 3.2 shows them for the sample

generator chosen in this work. Since the initial turbine speed is known, it is related to the angular

velocity of the generator ωm(0) through the gear ratio and pole pair relationships of Equations 4.8

and 2.2.

Next the initial power of the turbine is translated to a reference power by multiplying it by −1. This

is because the generator model expects negative values for generating. At this point the reference

value for reactive power must be chosen. It is selected at zero so that the stator operates at unity

power factor.

With the real and reactive power and operating speed known from the turbine initialization, the rotor

voltage injection required to achieve them can be deduced. Section 2.5 details the phasor solution

of the steady state operating point, and these equations embody the next step in the initialization

procedure.

Once the rotor and stator voltage phasors are known they are converted to their respective space
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phasors at time t = 0 using the information in Section 3.3.3 and the Clarke Transformation. The

Clarke Transformation refers the space vectors to their own reference frames: the stator reference

frame for the stator voltage and the rotor reference frame for the rotor voltage. To use these values

in the same equation, they must be brought to the same frame. The rotor space vector should be

rotated to the stator frame. At time t = 0 the rotor’s frame is aligned with the stator frame, that is

θr = 0. It was chosen this way because the rotor angle has no effect on the steady state behaviour

of the machine, and it can be chosen arbitrarily.

Next, with the stator and voltages defined in the stator’s reference frame, the flux linkages are

directly computed by using Equation 3.34. Since it is a steady state operating point, the derivative

vector can be set to zero and the flux components computed by inverting the matrix. Following

that, the initial space vectors for the currents can be computed with Equations 3.25 and 3.26.

These variables would be sufficient to initialize the wound rotor induction machine block in the

model; any consistent frame of reference will work for this block. However, the control blocks are

computed in the stator flux oriented frame so all the space vectors need to be aligned to this vector

at t = 0.

To do this, first the stator flux angle needs to be computed using Equation 5.2. Note that this result

could also be obtained directly from the phasor solution of λs because the phase angle of a phasor

is the same as the space angle of a space vector at t = 0, see Section 3.3.3.

Once this angle is known, using Equation 3.7 and Table 3.1 the space vectors are aligned to the stator

flux. The last part of the initialization procedure calculates the PI gains as described in Sections

5.3.3.2 and 5.3.4.3. Lastly, the initialization script calculates the values necessary to initialize the

controller integrators. This will be described in the next section.

6.3.2 Calculation of the Initial Conditions for System Integrators

The model is built from differential equations, represented in integral form. This means that each and

every dynamic equation in the system contains an integrator. According to the method presented in

[8], every integrator requires an initial condition. This is because the simulation is solved numerically

with integrators that compute by adding to a previous value. Furthermore, the simulation is not

started at rest, where most variables are zero, but at some steady state operating point while the

machine is running. Thus the simulation can only be fully initialized once these integrators are fed

with their initial conditions.

The model has fourteen integrators to initialize; fortunately, most of them can be supplied with

values already computed by the initialization script for the system. The initial condition for a

particular integrator is the value at time t = 0 of the signal at its output.

6.3.2.1 Wound Rotor Induction Machine Initial Conditions

Seven of the integrators are related to the wound rotor induction machine block. The integrator

responsible for computing the reference frame dictates the alignment of the block and the internal
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integrator initial conditions are dependant on it. This is because although any reference frame can be

used for the calculation of this block, once a particular one is chosen it must be consistent throughout

the subsystem. The space vectors for the stationary and stator flux oriented synchronously rotating

reference frame were computed in Section 6.3.1, so they are the best choice. The stator reference

frame is chosen because it allows for the simpler initialization, with zero chosen for the reference

frame integrator. This choice forces the use of stator reference frame oriented initial conditions for

the four flux integrators. These were solved directly from Equation 3.34: vsD(0), vsQ(0), vrD(0) and

vrQ(0). Inside the wound rotor induction machine’s mechanical subsystems are two more integrators,

one for the speed and another for the rotor angle. As commented on before, the initial position of

the rotor has no effect on any equation because the rotor is assumed to be uniform with no saliency.

It is still imperative to keep track of the angle once the simulation starts; it is needed to convert

rotor quantities to other frames. For the initial condition any value can be chosen, so zero is taken.

The rotor speed is not zero, since it is a steady state operating point, so its integrator must be

initialized with the rotor speed in electrical radians per second, ωm(0), which was also computed in

the initialization script. Notice that neither the rotor speed nor position initial conditions depend

on the chosen reference frame as the flux did.

6.3.2.2 Estimator Initial Conditions

Since the estimator is derived from half of the machine model, it contains integrators as well. There

are three integrators, however one is for rotor position, and as described in the previous section,

this can safely be taken as zero. The estimator block also requires the d-axis stator flux linkage

initial condition, λsd(0) as well. It must in the stator flux oriented frame, because the estimator

was derived on that reference frame. Finally, the initial stator flux position, θλs(0) must also be

provided. Both of these initial conditions were calculated in the initialization script.

6.3.2.3 PI Controller Initial Conditions

The initial conditions for the PI controllers are not so apparent to solve. Technically, the simulation

will work without these initial conditions; the controllers will respond to correct the system, but not

without a large initial transient.

The initial condition for each of the four PI controllers is different. The signal to solve for can be

seen on the block diagram as the signal exiting the integrator. Figure 5.7 explicitly shows the signal

to be initialized as vKIrd . From the diagram it can be seen that,

vKIrd (0)−KP1ird(0) = v′rd(0), (6.4)

and v′rd(0) can be computed using Equation 5.8, therefore

vKIrd (0) = KP1ird(0) + vrd(0) + σLr [ωλs(0)− ωm(0)] irq(0)− Lm
Ls

d
dtλsd(0). (6.5)
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Similarly the q-axis inner loop PI signal to be initialized is vKIrq ,

vKIrq (0)−KP1irq(0) = v′rq(0). (6.6)

Since the q-axis has different feed-forward terms, its initial condition will be different than the d-axis.

Applying Equation 5.9 to solve for v′rq(0),

vKIrq (0) = KP1irq(0) + vrq(0) + σLr [ωλs(0)− ωm(0)] ird(0)− Lm
Ls

(ωλs(0)− ωm(0))λsd(0). (6.7)

To solve Equation 6.5 and 6.7, the initial conditions ωλs(0) and d
dtλsd(0) are needed. These can be

solved with the estimator using equations 5.14 and 5.15,

ωλs(0) =
vsq(0)

λsd(0)
+Rs

Lm
Ls

isq(0)

λsd(0)
, (6.8)

d
dtλsd(0) = −Rs

Ls
λsd(0) + vsd(0) +

Lm
Ls

Rsird(0). (6.9)

Figure 5.8 shows the two signals that need to be solved for in the outer loops, iKIrd and iKIrq ,

iKIrd = ird(0)−KP2Qs(0), (6.10)

iKIrq = irq(0)−KP2Ps(0). (6.11)

Applying Equations 5.31 and 5.32,

iKIrd (0) = ird(0)
(

1 + 3
2
Lm
Ls
|−→vs |KP2

)
− 3

2
|−→vs|
Ls
λsd(0)KP2, (6.12)

iKIrq (0) = irq(0)
(

1 + 3
2
Lm
Ls
|−→vs |KP2

)
. (6.13)

It must be noted that the variable |−→vs | is evaluated by applying Equations 3.9 and 6.1 to yield,

|−→vs | =
3

2
V =

3

2

√
2√
3
VLLrms =

√
3√
2
VLLrms. (6.14)

Equations 6.7, 6.5, 6.12, 6.13, 6.8 and 6.9 must be included in the initialization script to finally

complete the initialization procedure of the entire system.
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Chapter 7

Model Validation, Testing and

Discussion

This chapter puts the model to the test. First, the main components, the WRIM, the wind turbine

and the vector control are validated to ensure they properly represent their respective systems. Once

this point has been established the model is used in a case-study for its intended purpose, maximum

power point tracking of a wind turbine. The results are presented and discussed with respect to

experiments carried out by others in the field. Finally the model deficiencies are discussed, with

suggestions for improvements and recommendations on how to extend the work towards a practical

implementation.

7.1 Validation of System Components

To ensure that the major subsystems are working properly, several simulations will be employed

whose results are compared to those published in literature.

7.1.1 Validation of the Wound Rotor Induction Machine Model

Two tests will be conducted that will investigate the model’s ability in dynamic and steady state

conditions. It must be understood that the inputs to the model are stator and rotor voltages

and the load torque, so the tests have to revolve around these types of inputs. For example, the

voltage developed at the stator terminals due to a known rotor excitation and rotor speed cannot

be simulated since that requires rotor speed as an input and stator voltage as an output.
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7.1.1.1 Free Acceleration Test

In their well respected book, “Analysis of Electric Machinery and Drive Systems,”, P.C. Krause et

al. develop a 5th order simulation model of an caged induction machine [20]. To demonstrate its

operation they provide the free acceleration characteristics, which trace the speed, torque and other

variables as the machine is started from rest. A properly working induction machine model should

exhibit the same characteristics for the same inputs and parameters.

The free acceleration test is conducted as follows:

� The parameters of Krause’s 2250 hp induction machine are loaded into the model.

Parameter Symbol Value Unit
rated power Prated 2250 hp
rated stator frequency fs 60 Hz
rated stator voltage (line-to-line, rms) VLLrms 2300 V
number of pole pairs Pp 2 dimensionless
stator resistance Rs 29 mΩ
stator leakage inductance Lls 0.6 mH
rotor resistance (referred) Rr 22 mΩ
rotor leakage inductance (referred) Llr 0.6 mH
magnetizing inductance Lm 34.6 mH
system inertia J 63.87 Kg · m2

Table 7.1: Krause’s Parameters for a 2250 hp IM [20].

� The model is loaded with all initial conditions set to zero, the speed is at rest and there is no

flux build up in the machine.

ωm(0) = 0; λsD(0), λsQ(0), λrD(0), λrD(0) = 0

� The model is excited with the same inputs: the rotor voltages set to zero and the stator

energized with line voltage.

vas =
√

2
3VLLrmscos (2πfst)

vbs =
√

2
3VLLrmscos

(
2πfst− 2π

3

)
vcs =

√
2
3VLLrmscos

(
2πfst+ 2π

3

)
var = 0

vbr = 0

vcr = 0

Figure 7.1 compares Krause’s calculations of torque vs speed with those from the model. The results

match up as expected.

7.1.1.2 Initialization of the System to a Stable Doubly Fed Operating Point

The previous test treated the induction machine as a caged machine that is singly fed. To fully verify

the model, it seems natural that it should be tested under double supply. Finding an appropriate

doubly fed dynamic test to subject the machine model to for verification is not trivial. Since just
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Figure 7.1: Left: Krause’s torque and speed for a 2250 hp IM published in “Analysis of Electric
Machinery and Drive Systems” [20], Right: The same characteristic computed by the model.

the machine model itself is under test, it should not require any control, so it must be done in

open loop. However the DFIG is never used without control; no practical system uses it in open

loop. This point is made resoundingly clear in the work of J.C. Prescott et al. who showed how an

induction machine under double supply is inherently unstable [30]. Some dynamic simulations of a

DFIG model are presented in the work of G. Abad et al. [7], however even there a speed controller

is used to stabilize the system.

Despite this issue, it is possible to verify the model under double supply in open loop. As discussed

before, the methods of simulation in this dissertation follow those of Mohan et al. [8]. Therein,

the model is proved to be working when it can be initialized to a steady state operating point, and

then hold that position without deviation from it. With this strategy it is sufficient to find a well

documented and stable steady state operating point for a DFIG in literature, and ensure the model

can be initialized to it and hold the steady state indefinitely.

In open loop, like any induction machine, a DFIG is stable if the operating point falls in the stable

region of the torque speed characteristic, between the breakdown and pullout torque [7]. This stable

region is defined as the region that torque decreases almost linearly for an increase in speed [14].

In their recently published IEEE Press book “Doubly Fed Induction Machine: Modeling and Control

for Wind Energy Generation”, G. Abad et al. explicitly calculate a stable operating point for a

DFIG under open loop double supply [7]. Therefore this validation test checks if the model can

be initialized to and hold this steady state operating point without deviation. It is conducted as

follows:

� The machine model is loaded with the parameters of Abad’s machine, see Table 3.2.
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� The model is initialized to the published operating point:

Vs =
VLLrms√

3
0◦

Vr = 0.1
VLLrms√

3
1.5◦

ωm = 0.93ωs

� To verify these conditions will indeed constitute a stable point, the steady state solution is

solved with the above inputs. To do this, Equations 2.14 through 2.19 and 2.43 are solved

for the complete range of −1 < s < 1. The torque is then plotted versus the speed, refer to

Figure 7.2. The operating point is indeed in the stable portion between breakdown and pullout

indicated in blue. This computation is compared to the published torque speed characteristic.

Note that the published work is displayed in per unit, so for the comparison, the computed

torque speed characteristic was converted to per unit as well with base values:

ωbase = ωs = 2π50 = 314.1593 [elec. rad/sec]
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=
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Figure 7.2: Left: Abad’s steady state torque speed curve for a 2 MW DFIG published in “Doubly
Fed Induction Machine: Modeling and Control for Wind Energy Generation” [20], Right: The same
characteristic computed by the initialization script for the model.

� Now that the steady state point has been proven stable, the initial conditions for the model

are computed as described in Section 6.3.1. This results in:

ωm(0) = 292.1681 [elec. rad/sec]

λsD(0) = −0.0160 [wb·turns]

λsQ(0) = −1.8140 [wb·turns]

λrD(0) = 0.4270 [wb·turns]

λrQ(0) = −2.2199 [wb·turns]

� These initial conditions are loaded into the model and it is ran for one second. Figure 7.3 shows
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the torque and speed verses time. Both values are completely steady from time t = 0 indicating

that the model is properly initialized and is holding the operating point. Furthermore the value

of torque computed by the dynamic model is −13.728[kN·m] or −1.0252 p.u. which matches

up well with the published value.

Therefore the WRIM model has demonstrated its ability to compute dynamically under doubly fed

conditions as well.
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Figure 7.3: Both the torque and speed hold their steady state values with no fluctuations indicating
that the dynamic model was initialized and is computing properly.

7.1.2 Validation of the Wind Turbine Model

The data for the wind turbine model was taken from manufacture data sheets for commercial wind

turbines [27, 28]. To validate the model, its characteristics must be compared against those found

in the data sheets. The most common characteristic provided by manufacturers is the output power

verses wind speed. This curve corresponds to the maximum power curve. Until now, the wind

turbine power curves have always been plotted against turbine shaft speed for several wind speeds.

By plotting them against wind speed for several turbine shaft speeds, the results can be compared to

the data sheet characteristic. Figure 7.4 plots the turbine output power curves against wind speed

for several turbine shaft speeds. Superimposed on top is the maximum power curve vs wind speed in

green, and the turbine output power stated in the data sheet in red. Note that the real power output

is slightly less than the power computed by the model. This is because it is real data that has been

measured by experiment and practical mechanical losses have occurred that the model does not take

into account. Also note that the real turbine stops producing power at 2 MW, where as the model

continues on its increasing trend. This is because at this wind speed the turbine has entered the

third region, see Section 4.2 where it sheds power by pitching the blades. This region is out of the

scope of the simulation, so this feature is not accounted for in the model. Despite these points, the

model shows that it is able to adequately represent the turbines aerodynamic characteristics over

the operating range of the simulation.
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Figure 7.4: The output power of wind turbine according to manufacturer data sheet [27], is predicted
well by the MPPT curve obtained from the model.

7.1.3 Validation of the Vector Control Subsystem

The vector control subsystem consists of the inner and outer loop PI controllers, and the feed-forward

compensation. Validation of any control system can be done without comparison to other’s work or

data, the control system must be shown to achieve what it was designed to.

7.1.3.1 Validation of the Inner Loop Vector Control

The goal of the inner control loop was to achieve decoupled control of the d and q-axis rotor current

components. A properly working vector control scheme should be able to independently change one

axis without effecting the other. Thus the acid test for vector control is to cause a step change in i∗rd
and i∗rq at different times, and ensure that the dynamics are both decoupled and follow the designed

criteria. Recall that the inner loop dynamics were designed to meet two requirements: a critically

damped response and a settling time of 40 ms. The test of the inner loop is conducted as follows:

� The wind turbine and MPPT blocks are removed from the simulation, only the WRIM and

the control is needed.

� The connections of the outer loop and inner loop are severed and step inputs are used to set

the d and q-axis current references directly.
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� The initialization script is modified to remove the wind turbine, an arbitrary power reference

is chosen:

P refs = −2 MW

Qrefs = 1 MVAR

The rotor currents needed to achieve this set point will be the references. they are calculated

in the script by finding the rotor current in the stator flux oriented frame:

i∗rd = ird(0) = −486.1 A

i∗rd = irq(0) = 2455.6 A

� The PI controllers are directly fed with step inputs that start from the current references and

jump to half of their respective value at t = 1.1 sec for th d-axis and t = 1.2 sec for the q-axis.

� The response is shown in Figure 7.5. Note that the two axis are completely decoupled, the

step change on the d-axis has no effect on the q-axis and vice-versa. Furthermore the responses

exhibit no overshoot indicating that they are critically damped. On both axes the currents

settle within 50 ms, which is close to the designed value of 40ms.
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Figure 7.5: Top: the d-axis response, Bottom: the q-axis response

To check the effectiveness of the feed-forward block, it is bypassed and the same test is conducted.

Figure 7.6 shows the response. Notice that it is degraded; there is coupling between the two axes,
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overshoot is present and the responses even struggle to settle to the references. This simple test

validates the feed-forward compensation block.

Acid Test Without Feed Forward Compensation
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Figure 7.6: Top: the d-axis response, Bottom: the q-axis response

7.1.3.2 Validation of the Approximation of the Inner Loop Dynamics

To design the outer control loops, an important step in the method proposed by Tapia et al. [13]

was to approximate the second order inner loop dynamics with a first order system. The accuracy

of this approximation can be shown by plotting the step responses of the actual inner loop dynamics

with its approximation. The second order transfer function is given in Equation 5.17, its first order

approximation is given in Equation 5.33. Figure 7.7 compares the step responses. Notice that they

are very similar thanks to the fact that the second order system was tuned to be critically damped

with a specific settling time, and act like a first order system; hence the approximation is justified.

7.1.3.3 Validation of the Outer Loop Vector Control

The same procedure that was followed for the inner control loop is repeated for the outer control

loop by forcing the real and reactive power to follow step responses. The test is conducted as follows:
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Figure 7.7: Since the second order dynamics were tuned to behave like a first order system, they
can be accurately approximated by one.

� The references to the outer loop PI controllers are again arbitrarily chosen as:

P refs = −2 MW

Qrefs = 1 MVAR

� Since only the outer loop is under test, but the inner loop is a necessary component, they

are reconnected. The feed-forward system is employed so that the outer control loop sees the

dynamics it was designed for.

� The PI controllers are directly fed with step inputs that start from the power references and

jump to half of their respective value at t = 1.2 sec for th d-axis and t = 1.4 sec for the q-axis.

� The response is shown in Figure 7.8. Note that the two axis are completely decoupled, the

step change on the d-axis has no effect on the q-axis and vice-versa. Furthermore the responses

exhibit no overshoot indicating that they are critically damped. On both axes the currents

settle within about 90ms, which is close to the designed value of 70ms.
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Figure 7.8: Top: the d-axis response, Bottom: the q-axis response

7.2 Case Study

In this case study the simulation model as a whole is put to the test. The main parameters used for

the simulations in this section are given in Tables 3.2 and 4.1. The purpose of this set of tests is to

show how the system accurately represents a wind turbine and doubly fed generator set.

First the system will be studied under steady wind conditions; during subsynchronous operation in

low wind conditions and during supersynchronous operation in high winds. It will be shown that in

its current configuration, the system is not ideally suited to handle the doubly-fed configuration, but

is still operating as expected. A simple modification proposed by Tapia et al. is implemented and

the improved performance is shown. Finally the dynamic system response to a step change in wind

speed that causes the system to transition from the subsynchronous to supersynchronous operation

is compared to the simulations of others in literature to demonstrate the ability of the model to

describe the phenomena present in a DFIG coupled to a wind turbine.

7.2.1 Initialization to a Subsynchronous Operating Point

All the simulations in this section will focus on the real power flow in the machine, thus the reactive

power reference is always set to zero, Qrefs = 0, for unity power factor operation for each test. To put

the simulation into the subsynchronous mode, a wind speed must be chosen so that the maximum

power at that wind speed corresponds to a shaft speed under synchronous. The turbine shaft speed
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(in rpm) that corresponds to synchronous speed is:

ωt,sync =
ωs
GR

=
1500

103.2
≈ 14.5 [rpm]

In Figure 4.5 it can be seen that wind speeds in the range of 3 < vwind < 6 [m/s] will result in a

shaft speed slower than ωt,sync. Therefore, the initial wind speed chosen is 5 [m/s]. The simulation

is ran for 5 seconds and Figure 7.9 shows the system response. The plot shows the turbine power
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Figure 7.9: The system speeds up from its initialized operating point following the path from point
A to B.

characteristics, the MPPT curve and the system response. The initial wind speed of 5 [m/s] is

shown as a bold curve. The initial operating point is at A where the MPPT curve intersects the

5 [m/s] turbine power curve. It may be expected that the system would stay at this operating

point since it was carefully initialized here, but nonetheless, the locus of the stator power moves up

the MPPT curve to point B along the dynamic path shown in magenta. At first this may seem

confusing; how can the system be generating more power than the turbine is extracting? The answer

is simple: this behaviour is due to the natural power flow required for a DFIG to sustain generation

at subsynchronous speeds. Refer to Figure 1.4, in the subsynchronous region the rotor must inject

power from the grid to sustain the generation. The stator must also carry this additional power,

so it actually has to carry both the mechanical power of the turbine and the injected power of the

rotor, |Ps| ≈ |Pmech|+ |Pr|. At the initialized point the net power has not been taken into account.

The MPPT algorithm forces the stator power along the curve of maximum power that the turbine

can produce, without taking into account the rotor power that the stator must also carry. To satisfy

the needs of the DFIG, the speed of the system increases until the point where the mechanical power
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plus the required rotor power equal a stator power on the MPPT curve. It must be stressed that

the turbine is not providing this extra power, it is being supplied by the grid, and actually since the

speed has changed from the optimal value to extract maximum power, the power extracted from

the wind is actually a bit lower at the new operating point. This can be seen by tracing along the 5

[m/s] power curve to the new speed (green curve). Notice at the new operating point, slightly less

power is extracted. The net power is plotted in black and it can be seen that the turbine settles at

the new operating point when the net power equals the turbine output power as expected from the

physics of the power flow in the machine.

7.2.2 Initialization to a Supersynchronous Operating Point

The same test is conducted, this time with a wind speed that will drive the system into the su-

persynchronous generation mode, according to Figure 4.5, vwind = 10 [m/s] will suffice. Again the

simulation is run for 5 seconds and Figure 7.10 shows the system response. This time the system
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Figure 7.10: The system slows down from its initialized operating point following the path from
point A to B.

slows and moves down the MPPT curve. The reason for this is the same as the subsynchronous

case: the natural power flow in the DFIG. Again referring to Figure 1.4, it is seen that the stator

actually handles a portion of the turbine power, less by about the same amount as the rotor power.

Thus the MPPT algorithm forces the system to an operating point (point B) where the mechanical

power of the turbine minus the rotor power equals the stator power. In the process it moves the
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operating point away from the maximum power point for the 10 [m/s] wind and actually slightly

reduces the amount of power being captured by the turbine.

7.2.3 Modification of the MPPT Reference to Improve Wind Power Cap-

ture for DFIG Power Flow

As it can be seen from Figures 7.9 and 7.10, the response for a steady wind does not completely

maximize capture of wind power because the MPPT algorithm bases its reference on the stator

power when the DFIG also utilizes the rotor for power flow. This drop in captured power is quite

small as noted by Tapia et al. [31]:

“It should be noted that, once this outer control-loop has been correctly implemented,

the amount of Pr active power interchanged between the grid and the DFIG through its

rotor side, turns out to be only a short fraction of the wind turbine Pnet active power.

Consequently, the stator side active power does not differ significantly from Pnet.”

The simulation results corroborate the fact that the drop in captured power ends up being very low

but disagrees with the reasoning that it is because the rotor power is so low that it is negligible.

Rather it is clear that the reason is that the machine changes speed to satisfy the power requirements

of a DFIG and this balancing act only moves the operating point slightly up or down the turbine’s

output power curve, even though the rotor power is quite significant. Regardless of the explanation

for the phenomenon it is quite clear that making the MPPT algorithm actuate the net power Pnet

will rectify the situation. This is precisely the solution proposed by Tapia et al. [31]:

P refnet = P refs − Pr. (7.1)

Of course to implement this in practice the rotor power would need to be estimated, but this should

not be an issue since rotor current is measured and rotor voltage is impressed for control. Figure 7.11

shows the slightly improved performance achieved by making this modification. The speed stays

much closer to initialized value which results in the machine operating much closer to the intended

maximum power point. Notice that in both cases at the new steady state operating point C that it

is the net power Pnet which is tracking the MPPT curve instead of the stator power.
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Figure 7.11: By forcing the net power Pnet to track the MPPT curve instead of the stator power,
the operating point C settles much closer to the maximum power point A, then it did before (point
B). Left: subsynchronous operation. Right: supersynchronous operation.

7.2.4 Dynamic Response Through Synchronous Speed

One of the most revealing experiments for a DFIG wind turbine system is to observe how it handles

the transition from subsynchronous to supersynchronous generation. As mentioned in Section 3.7,

a practical system will face the issue of loss of control as the rotor voltage becomes very low in mag-

nitude and frequency. The simulation does not face these practical issues and can thus be compared

to other researcher’s systems and simulations. The idea is to identify a few key characteristics which

occur in all DFIG systems, as they transition from subsynchronous to supersynchronous operation,

and inspect the waveforms to ensure the simulation models them. The following is a list of the

expected characteristics:

� As noted by Pena et al., [10] during one of the first experiments with DFIGs, the rotor currents

should decrease in frequency around synchronous speed proportionally to the slip.

� Furthermore the phase sequence of rotor voltage and current should reverse on both sides of

synchronous speed.

� The rotor power direction should switch from consuming in the subsynchronous mode to

generating in the supersynchronous mode.

� Throughout the entire range the rotor power should be proportional to slip and stator power.

At steady state the power in the machine should balance according to Equation 2.29.

The test is conducted as follows:

� The improved power reference of Section 7.2.3 is used so that the net power tracks the MPPT

curve.

� The simulation is initialized to 5 m/s and is given 1 second to stabilize due to the new power

reference.
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� At t = 5 seconds, the wind is increased to 10 /s in a step fashion to emulate a strong gust of

wind applied to the turbine.

The ability of the system to track the maximum point is shown in Figure 7.12. Figures 7.13 through

7.18 plot the most relevant traces of the test for the 5 second time window 4.5 < t < 9.5 which

contains the transition at t = 5.92 seconds. On each diagram the time when the system passes

synchronous speed is marked with a dashed line. In Figure 7.12 the effectiveness of the MPPT

Dynamic Response to a 5[m/s] to 10[m/s] Gust of Wind
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Figure 7.12: The net power tracks the MPPT curve from point A through synchronous speed and
stabilizes when it matches power output of the turbine at point B.

algorithm is clearly demonstrated. At point A, the net power starts below the MPPT curve but

immediately adjusts to track it. This means that the stator power must rise above the MPPT curve

by the same amount since it needs to carry this rotor power. The gust of wind can be seen as a sharp

increase in mechanical power jumping from the 5 m/s turbine power curve to the 10 m/s curve. The

increased power and hence torque from the turbine causes the system to accelerate towards point

B. Throughout the duration of the gust of wind the net power continues to track the MPPT curve.

When the system crosses synchronous speed, the stator power falls below the net power, indicating

that it is no longer carrying the rotor power, rather that the rotor power has reversed direction and

is being supplied by the rotor itself.

Figure 7.13 traces the speed through the wind gust event. It smoothly transitions through syn-

chronous speed and stabilizes at the new steady state within about 4 seconds. It is important to

note that a response this fast would not be possible in an actual MW scale wind turbine. A reduced

inertia is used so that the system can be simulated in a reasonable amount of time. The waveforms
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Figure 7.14: Generator and Turbine Torque Response to a 5m/s Wind Gust

would exhibit the same characteristics but over a longer time scale.

Figure 7.14 shows the torque imbalance between the turbine and generator during the wind gust

that gives rise to the system acceleration. At t = 5 seconds the turbine gives a step input in prime

mover torque, the system responds with a smooth transition.

Figure 7.15 shows the power balance in the machine throughout the wind gust. The stator and rotor

copper losses are not shown because they are negligible at the scale of the figure, combined they

peak around 34 kW. First it is seen that the rotor power does switch direction through synchronous

speed. In the subsynchronous mode it is positive, which means it is injected into the machine. As

the speed crosses synchronous, the rotor power tends to zero and then becomes negative in the

supersynchronous region, indicating that the rotor is indeed generating. The net power is equal to

the mechanical power of the turbine in both steady state regions indicating that the generator is

converting the full mechanical power of the wind. During the transition, the imbalance of power is

used to accelerate the system. The stator clearly handles both the turbine and the rotor power in

the subsynchronous region. In the supersynchronous region the stator handles less power than the

turbine provides by the same amount of the rotor power, indicating that the system has split the
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Figure 7.15: Power Balance Through a 5m/s Wind Gust

power between the two machine members. This allows the machine to produce on a whole over 2.5

MW while it is only rated for 2 MW without overloading any winding.

The increased power translates to an increase in stator current magnitude. Figure 7.16 shows that

the current in the stator peaks out at 2.1 kA, or about 1485 A(rms). This is significantly less

than the rated current of the stator, Is,rated = 1760 A(rms), showing again that the stator is not

overloaded.

Figures 7.17 and 7.18 show the three phase rotor current and rotor voltage waveforms. It is important

to note that these are the values directly applied to or produced from the simulation. Due to the turns
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Figure 7.16: Stator Current Response to a 5m/s Wind Gust
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Figure 7.18: Rotor Voltage Response to a 5m/s Wind Gust

ratio of the machine, the actual rotor voltages would be about three times as high and the currents

about three times as low. The frequency of both current and voltage reduce around synchronous

speed. Furthermore the phase sequence reverses from a-b-c to a-c-b as expected. Finally note that

the rotor voltage magnitude is also proportional to the slip, approaching zero as the machine passes

synchronous speed.

This case study corroborates with the operating principals and phenomenon observed by researches

who have experimented with actual DFIG systems [31, 10].

7.3 Future Work

The model presented is the simplest possible description of a DFIG and wind turbine that can

reproduce the phenomena needed for dynamic control. There are however serious deficiencies in the

model which can be improved upon.
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7.3.1 Deficiencies in the Model

Loss in the generator model is treated lightly. Only the stator and rotor copper losses are considered.

Modelling the mechanical, core and hysteresis losses taking into consideration saturation of the iron

would not be difficult to add to the model. However it would greatly increase the complexity of the

control equations, obscuring any gain. This path is not recommended, it would be far better to look

into control schemes that are robust enough to handle these degrading effects.

The wind turbine model could be improved in two ways. First pitch control could be added by

allowing the variable β to be included in the description, instead of just setting it to zero. This

would result in a three dimensional lookup table for the turbine torque but would allow the system

to operate over the entire wind speed spectrum, instead of just the MPPT region.

The biggest area of improvement for the model is the converter. Currently it is modelled as com-

pletely ideal, whatever rotor voltage it is commanded it reproduces exactly. A proper pulse width

modulated scheme would greatly enhance the simulation of the harmonics present. The reader is

referred to Chapter 2 of “Doubly Fed Induction Machine: Modeling and Control for Wind Energy

Generation” [7] for an solid introduction to the subject. With the inclusion of the converter would

come the necessity to add grid and rotor side filters to mitigate the harmonic content of the wave-

forms. Other axillary equipment such as the crowbar and breakers could be added to allow for study

on the start up and synchronization process of the system.

7.3.2 Towards a Practical Implementation

The ultimate goal of future work should be a small scale prototype of the system. The amount of

hurdles faced cannot be predicted but it can be quite certain that it will be a much more difficult task

than a working simulation. The reader is referred to “Vector Control of Three-Phase AC Machines:

System Development in the Practice,” as a starting point [32]. It contains a practical treatment of

a DFIG system that could be of some aid.

7.4 Conclusion

With the deficiencies in the model clearly explained the end result of this dissertation is a working

model of a doubly fed induction generator connected to a wind turbine which achieves maximum

power point tracking by employing stator flux oriented vector control. Each component has been

validated through comparison to published results in literature and the system as a whole conforms

with experimental results of other researchers as well. To extend this work and complete the model

of all practical wind turbine subsystems it will be necessary to obtain the parameters of a real

system, most preferably through collaboration with a local wind farm.
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Appendix A

Derivations

A.1 Equations 2.42 and 2.43: Steady State Torque Equations

Starting with Equation 2.41 for mechanical torque,

Tem =
Pmech
ωmech

, (2.41)

expressions for Pmech and ωmech are found that contain electrical variables only. First, the rotor

voltage is expressed in terms of currents by substituting Equation 2.17 into Equation 2.15:

Vr = RrIr + jωr(LmIs + LrIr).

This expression for voltage is substituted into the expression for Pmech found in Equation 2.24:

Pmech = 3|Ir|2Rr
(

1− s
s

)
− 3

(
1− s
s

)
Re{Vr Ir

∗} (2.24)

= 3|Ir|2Rr
(

1− s
s

)
− 3

(
1− s
s

)
Re
{[
RrIr + jωr(LmIs + LrIr)

]
Ir
∗}

= 3

(
1− s
s

)[
Rr|Ir|2 − Re

{
Rr|Ir|2 + jωrLmIs Ir

∗
+ jωrLr|Ir|2

}]
= 3

(
1− s
s

)
ωrLmIm{Is Ir

∗}.

Note that the identity Re{jz} = Im{z}, where z ∈ C was applied in the final step. Next the

mechanical angular velocity is written in terms of the rotor’s angular velocity in electrical radians

per second using Equations 2.2, 2.7b and 2.7d:

wmech =
ωm
Pp

(2.2)

=
(1− s)ωs

Pp
=

(
1− s
s

)
ωr
Pp
.
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Substituting the derived expressions for Pmech and ωmech into the expression for Tem yields:

Tem =
Pp
ωr

(
s

1− s

)
· 3
(

1− s
s

)
ωrLmIm{Is Ir

∗}

= 3PpLmIm{Is Ir
∗}

To express this in terms of flux linkage to arrive at Equation 2.43, Is and Ir are replaced with

Equations 2.19 and 2.19:

Tem = 3PpLmIm{Is Ir
∗}

= 3PpLmIm

{(
λs

1

σLs
− λr

Lm
σLsLr

)(
λr

1

σLr
− λs

Lm
σLsLr

)∗}
= 3PpLmIm

{
λs λr

∗

σ2LsLr
+
Lm

2λs
∗
λr

σ2Ls
2Lr

2 −
Lm|λs|2
σ2Ls

2Lr
− Lm|λr|2
σ2LsLr

2

}

= 3PpLmIm

{
λs λr

∗
(

1

σ2LsLr
− Lm

2

σ2Ls
2Lr

2

)}
= 3PpLmIm

{
λs λr

∗
(
LsLr − Lm2

σ2Ls
2Lr

2

)}
= 3PpLmσ

1

LsLrσ2
Im{λs λr

∗}

= 3Pp
Lm

LsLrσ
Im{λs λr

∗}.

Note that the identity Im{z∗} = Im{−z} where z ∈ C was applied to simplify the expression.

A.2 Equation 3.4: Space Vector from Three Phase Compo-

nents

Substituting equation 3.3 into 3.2:

−→vss = V cos(ωt+ φ)ej0 + V cos(ωt+ φ− 2π
3 )ej

2π
3 + V cos(ωt+ φ− 4π

3 )ej
4π
3

Applying Euler’s formula, ejθ = cos θ + j sin θ:

−→vss = V [cos(ωt+ φ) + cos(ωt+ φ− 2π
3 ) cos( 2π

3 ) + j cos(ωt+ φ− 2π
3 ) sin( 2π

3 )

+ cos(ωt+ φ− 4π
3 ) cos( 4π

3 ) + j cos(ωt+ φ− 4π
3 ) sin( 4π

3 )]
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Applying the trigonometric equality, cos(α+ β) = cosα cosβ ∓ sinαsinβ:

−→vss = V {cos(ωt+ φ) + cos( 2π
3 )[cos(ωt+ φ) cos( 2π

3 ) + sin(ωt+ φ) sin( 2π
3 )]

+ j sin( 2π
3 )[cos(ωt+ φ) cos( 2π

3 ) + sin(ωt+ φ) sin(2π
3 )]

+ cos( 4π
3 )[cos(ωt+ φ) cos( 4π

3 ) + sin(ωt+ φ) sin( 4π
3 )]

+ j sin( 4π
3 )[cos(ωt+ φ) cos( 4π

3 ) + sin(ωt+ φ) sin(4π
3 )]}

−→vss = V {cos(ωt+ φ) − 1
2 [cos(ωt+ φ)(− 1

2 ) + sin(ωt+ φ)(
√
3
2 )]

+ j
√
3
2 [cos(ωt+ φ)(− 1

2 ) + sin(ωt+ φ)(
√
3
2 )]

− 1
2 [cos(ωt+ φ)(− 1

2 ) + sin(ωt+ φ)(−
√
3
2 )]

− j
√
3
2 [cos(ωt+ φ)(− 1

2 ) + sin(ωt+ φ)(−
√
3
2 )]}

Simplifying:

−→vss = 3
2V [cos(ωt+ φ) + j sin(ωt+ φ)]

= 3
2V e

j(ωt+φ)

A.3 Equation 3.5: Choosing c

The inverse Clarke transform is given in Equation 3.6 with c = 2
3 . If c is left arbitrary the effect it

has on equations will become apparent. To find the inverse Clarke transform the matrix in Equation

3.5 must be inverted. However it is not a square matrix and thus has no inverse. The reason it is not

square is because of a simplifying assumption. The input waveforms were assumed to be completely

balanced, and thus have no zero sequence components. If it is generalized so that there can be zero

sequence components, another row is added to the bottom of Equation 3.5. When using c = 2
3

the values of the entries in the matrix for the zero sequence can be found to be 1
2 as seen in [20].

Factoring out the constant of 2
3 and replacing it with a general constant c leaves the entries for the

zero sequence row to be 1
3c . Now the Clarke transform becomes:

FDFQ
F0

 = c

 1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1
3c

1
3c

1
3c


FaFb
Fc


Now the inverse is readily found to be:

FaFb
Fc

 =
1

c


2
3 0 c

− 1
3

1√
3

c

− 1
3

1√
3

c


FDFQ
F0
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Discarding the last column (assuming everything is balanced) and explicitly writing out the abc

quantities in terms of DQ components:

Fa = 1
c
2
3FD

Fb = 1
c (− 1

3FD + 1√
3
FQ)

Fb = 1
c (− 1

3FD − 1√
3
FQ)

The power in the abc frame is given by:

Pabc = vaia + vbib + vcic

In terms of two axis components:

Pabc = 1
c
2
3vD

1
c
2
3 iD + 1

c (− 1
3vD + 1√

3
vQ) 1

c (− 1
3 iD + 1√

3
iQ) + 1

c (− 1
3vD − 1√

3
vQ) 1

c (− 1
3 iD − 1√

3
iQ)

=
1

c2
2

3
(vDiD + vQiQ)

Choosing c =
√

2
3 :

Pabc = vDiD + vQiQ = PDQ

The power is now the same in both frames.

Choosing c = 2
3 :

Pabc = 3
2 (vDiD + vQiQ) = 3

2PDQ

Power (and torque) equations must be multiplied by 3
2 for equivalence in three and two axis frames.

This work uses c = 2
3 so this extra factor of 3

2 is seen in all power and torque relations.

A.4 Equations 3.21, and 3.22: Solution to Derivatives

In equation 3.21 the derivative is solved with the product rule:

d
dt (
−→
λs
g
ejθg ) = d

dt

−→
λs
g
· ejθg +

−→
λs
g
· jejθg ddtθg

= d
dt

−→
λs
g
· ejθg +

−→
λs
g
· jωgejθg

Where it is recognized that d
dtθg = ωg. Also recognizing d

dtθm = ωm, the derivative in 3.22 is solved

in a similar manner:

d
dt (
−→
λr
g
ej(θg−θm)) = d

dt

−→
λr
g
· ej(θg−θm) +

−→
λr
g
· jej(θg−θm) d

dt (θg − θm)

= d
dt

−→
λr
g
· ej(θg−θm) +

−→
λr
g
· j(ωg − ωm)ej(θg−θm)
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A.5 Equation 3.36: Cross Product of Space Vectors

Recall the cross product operation in general three space, R3:

Let:

~A = Axx̂+Ay ŷ +Az ẑ

~B = Bxx̂+By ŷ +Bz ẑ

Then:

~A× ~B =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣ =

∣∣∣∣∣Ay Az

By Bz

∣∣∣∣∣ x̂−
∣∣∣∣∣Ax Az

Bx Bz

∣∣∣∣∣ ŷ +

∣∣∣∣∣Ax Ay

Bx By

∣∣∣∣∣ ẑ
= (AyBz −ByAz)x̂− (AxBz −BxAz)ŷ + (AxBy −BxAy)ẑ

Note that space vectors are two dimensional, the information they contain can be described with

just the x and y axis, and they have no z-axis components. It is clear that setting Az and Bz in the

previous equation reduces the cross product to:

~A× ~B = (AxBy −BxAy)ẑ

The direction ẑ becomes unimportant, since the space vectors are located in the same plane, the

cross product is perpendicular and a scalar value fully describes the quantity:

~A× ~B = AxBy −BxAy

Applying the concept to space vectors, the x and y components are replaced with real and imaginary

components. As long as both space vectors are in the same frame the general results for cross product

apply. For example:
−→
λr
g

= λrd + jλrq

−→
λs
g

= λsd + jλsq

−→
λr
g
×−→λs

g
= λrdλsq − λsdλrq

100



A.6 Equations 5.17: Transfer Functions the Modified Inner

Loop Control Structure

Referring to Figure 5.7, three equations can be readily determined:

ierrrd (s) = i∗rd(s)− ird(s)

v′rd(s) = ierrrd (s)
KI1

s
− ird(s)KP1

ird(s) = v′rd(s)
1

Rr + σLss

Substituting the first two expressions into the third one yields:

ird(s) =

[
ierrrd (s)

KI1

s
− irdKP1

]
1

Rr + σLrs

=

[
(i∗rd(s)− ird(s))

KI1

s
− irdKP1

]
1

Rr + σLrs

Grouping like terms:

ird(s)

[
1 +

(
KI1

s
+KP1

)
1

Rr + σLrs

]
= i∗rd(s)

KI1

s(Rr + σLrs)

Dividing output by input:

ird(s)

i∗rd(s)
=

KI1

s(Rr + σLrs)

1

1 + KP1s+KI1
s(Rr+σLrs)

=
KI1

s2σLr + s(Rr +KP1) +KI1

=
KI1
σLr

s2 + s (Rr+KP1)
σLr

+ KI1
σLr

A.7 Ensuring a Negative Feedback Structure in the Presence

of a Negative Static Loop Gain

If the open loop system has negative static gain, the closed loop system will exhibit positive feedback,

if the standard control structure is applied. Figure A.1 shows the situation.

Y (s)

X(s)
=

−kG(s)

1 + (−kG(s)H(s))
=

−kG(s)

1− kG(s)H(s)

To fix this, Tapia et al. [13] suggests subtracting the reference value from the actual value instead.

Figure A.2 shows the modification, from which the following equations can be written:

101



E(s)

G(s)-K

X(s) Y (s)

H(s)

Figure A.1: Standard Feedback Control Structure

E(s)

G(s)-K

X(s) Y (s)

H(s)

Figure A.2: Modified Feedback Control Structure

E(s) = H(s)Y (s)−X(s)

Y (s) = −kG(s)E(s)

Substituting the first expression into the second:

Y (s) = −kG(s)[H(s)Y (s)−X(s)]

Grouping like terms:

Y (s)[1 + kG(s)H(s)] = kG(s)H(s)

Dividing the output by the input:

Y (s)

X(s)
=

kG(s)

1 + kG(s)H(s)

The standard negative feedback system is obtained.
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A.8 Derivation of Equation 5.34: The Outer Loop Transfer

Function

From Figure 5.8, the following equations are written:

irq(s) = i∗rq(s)
1

1 + Ts1
4 s

i∗rq(s) = P errs (s)
KI2

s
+KP2Ps(s)

P errs (s) = Ps(s)− P ∗s (s)

Ps(s) = −3

2

Lm
Ls
|−→vs |irq(s)

Substituting the third equation into the second:

i∗rq(s) = [Ps(s)− P ∗s (s)]
KI2

s
+KP2Ps(s)

Substituting in the first equation:

irq(s)
1

1 + Ts1
4 s

= Ps(s)

(
KP2 +

KI2

s

)
− P ∗s (s)

KI2

s

Substituting in the fourth equation:

Ps(s)

− 3
2
Lm
Ls
|−→vs |
· 1

1 + Ts1
4 s

= Ps(s)

(
KP2 +

KI2

s

)
− P ∗s (s)

KI2

s

Collecting terms:

Ps(s)

KP2 +
KI2

s
+

1

1+
Ts1
4 s

3
2
Lm
Ls
|−→vs |

 = P ∗s (s)
KI2

s

Dividing output by input:

Ps(s)

P ∗s (s)
=

KI2
s(

KP2 + KI2
s +

1

1+
Ts1
4
s

3
2
Lm
Ls
|−→vs|

)

=
6LmLs

|−→vs|
Ts1

KI2

s2 +
(

4
Ts1

+ 6LmLs
|−→vs|
Ts1

KP2

)
s+ 6LmLs

|−→vs|
Ts1

KI2
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Appendix B

Initialization Script

This section gives in hard copy form, the Matlab code necessary to run the model. All code is also

provided on the accompanying CD-ROM in the file Init System.m.

% Initialize DFIM and Wind Turbine Simulation

% Author: Matthew Hurajt

% Last Modified: July 16th, 2013

close all

clear

clc

%% Turbine Model Initialization

% Load Turbine Characterisitic into the model

% Turbine Parameters

GR = 103.2; % gear box ratio

R = 48.63; % turbine radius [m]

rho = 1.21; % air density [kg/mˆ3]

A = pi*Rˆ2; % swept area in [mˆ2]

% tip speed ratio from manufacturer datasheet

TSR vector = xlsread('CpVsTSR D49.xlsx',1,'A2:A67');

Cp vector = xlsread('CpVsTSR D49.xlsx',1,'B2:B67');

% Turbine Performace Curves (used in look−up tables)

vwind vector = linspace(3,11,15); % vector of wind speeds [m/s]

wt vector = linspace(.1234,3.6192,1000);% vector of turbine shaft speeds

% [mech rad/sec]

[X,Y]=meshgrid(vwind vector,wt vector); % X stores v, Y stores w

% v increases RIGHT, w increases DOWN

L = R*Y./X; % tip speed ratio [dimensionless]

Cp = interp1(TSR vector,Cp vector,L); % performance factor [dimensionless]

Pt = (1/2)*rho*A*X.ˆ3.*Cp; % Turbine power [W]

Tt matrix = Pt./Y; % Turbine torque [Nm]

Tt matrix(isnan(Tt matrix)) = 0; % remove NANs

Tmech = Tt matrix/GR; % Torque available at shaft of

% generator [Nm]
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% Maximum Power Point Tracking

MPPT = zeros(1,length(vwind vector)); % vector of maximum power points [W]

MPPT w = zeros(1,length(vwind vector)); % vector of turbine shaft speeds

% that correspond to the maximum

% power point [mech rad/sec]

for i = 1:1:length(vwind vector);

[MPPT(i),IND MAX] = max(Pt(:,i)); % find maximum power points

MPPT w(i) = wt vector(IND MAX);

end

% fitting the function MPPT = Kopt * (wt)ˆ3 yields:

% Curve fitting done offline using Matlab Curve Fit Toolbox

Kopt = 3.364e5;

% Initialization Starts Here %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Choose Wind Speed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

vw 0 = 5; % initial wind speed [m/s]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial Turbine Parameters calculated from initial wind speed

L 0 = R*wt vector/vw 0; % initial tip speed ratio

Cp 0 = interp1(TSR vector,Cp vector,L 0); % inital performance factor

Pt 0 = (1/2)*rho*A*vw 0ˆ3.*Cp 0; % initial turbine power curve

%Initial values of MPPT

[MPPT 0,IND MAX] = max(Pt 0);

MPPT w 0 = wt vector(IND MAX);

% Initialization of turbine for a particular wind speed

Pt init = MPPT 0;

wt init = MPPT w 0;

% Plot Wind Turbine Data

figure(1)

hold on

grid on

for i = 1:1:length(vwind vector)

plot(wt vector*60/(2*pi)*GR,Pt(:,i),'b−','Linewidth',1)
end

plot(wt vector*60/(2*pi)*GR,Pt 0,'b−','Linewidth',3)
plot(MPPT w*60/(2*pi)*GR,MPPT,'r−','Linewidth',1)
hold off

%% Initialize Wound Rotor Machine

% Load Parameters of Generator

VLLrms = 690; % line to line, rms, stator voltage [V]

fs = 50; % line frequency [Hz]

Pp = 2; % number of poles pairs [dimensionless]

J = 98.26 ; % system inertia (reduced for short simulation) [kg mˆ2]

TR = 0.34; % equivalent turns ratio [dimensionless]

105



Rs = 2.6e−3*1; % stator resistance [ohms]

Rr = 2.9e−3*1; % referred rotor resistance [ohms]

Lls = 87e−6; % stator leakage inductance [H]

Llr = 87e−6; % referred rotor leakage inductance [H]

Lm = 2.5e−3; % magnetizing inductance

Ls = Lm+Lls; % stator inductance [H]

Lr = Lm+Llr; % rotor inductance [H]

sig = 1−Lmˆ2/(Ls*Lr); % leakage factor [dimensionless]

% Conversion Multipliers

D2R = pi/180; % degrees to radians [rad/deg]

R2D = 180/pi; % radians to degrees [deg/rad]

%% Starting Point

% Starting Speeds

ws = 2*pi*fs; % synchronous angular frequency in [electrical rad/sec]

w mech = wt init*GR; % rotor shaft angular frequency in [mechanical rad/sec]

wm 0 = Pp*w mech; % rotor shaft angular frequency in [electrical rad/sec]

s = (ws − wm 0)/ws; % slip [dimensionless]

wr = s*ws; % rotor angular frequency in [electrical rad/sec]

% P and Q references

Ps ref = −Pt init; % real stator power reference, three phase, [W]

Qs ref = 0; % reactive stator power reference, three phase, [VAR]

%% Solve for rotor voltage accounting for Rs, and Rr, aiming for P and Q ref

% Step 1: solve for stator current from P and Q power ref

% line to neutral rms stator voltage magnitude [V]

Vs mag = VLLrms/sqrt(3);

% stator voltage taken as reference [rad]

Vs ang = 0;

% stator voltage phasor, rms [V]

Vs phasor = Vs mag*exp(1i*Vs ang);

% stator current phasor, rms [A]

Is phasor = (Ps ref/3 −1i*Qs ref/3)/Vs phasor;

Is mag = abs(Is phasor);

Is ang = angle(Is phasor);

% Step 2: solve for all other phasors

% stator flux linkage phasor, rms [wb−turns]
Fs phasor = (Vs phasor − Rs*Is phasor)/(1i*ws);

Fs mag = abs(Fs phasor);

Fs ang = angle(Fs phasor);

% rotor current phasor, rms [A]

Ir phasor = (Fs phasor − Ls*Is phasor)/Lm;

Ir mag = abs(Ir phasor);

Ir ang = angle(Ir phasor);

% rotor flux linkage phaso, rms [wb−turns]
Fr phasor = Lm*Is phasor + Lr*Ir phasor;
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Fr mag = abs(Fr phasor);

Fr ang = angle(Fr phasor);

% rotor voltage phasor, rms [V]

Vr phasor = 1i*wr*Fr phasor + Rr*Ir phasor;

Vr mag = abs(Vr phasor);

Vr ang = angle(Vr phasor);

% Power (positive consuming)

Ps = 3*real(Vs phasor*conj(Is phasor)); % real stator power [W]

Pr = 3*real(Vr phasor*conj(Ir phasor)); % real rotor power [W]

Qs = 3*imag(Vs phasor*conj(Is phasor)); % reactive stator power [Var]

Qr = 3*imag(Vr phasor*conj(Ir phasor)); % reactive rotor power [Var]

Ps cu = 3*Is magˆ2*Rs; % stator copper loss [W]

Pr cu = 3*Ir magˆ2*Rr; % rotor copper loss [W]

% electromagnetic torque [Nm]

Tem = 3*Lm/(sig*Lr*Ls)*Pp*imag(conj(Fr phasor)*Fs phasor);

nm = w mech*30/pi; % rotor speed [rpm]

P mech = Tem*w mech; % mechanical power [W]

disp( '−−−−−−−−−− Initial Steady State Operating Point −−−−−−−−−')
disp( '−−−−−−−−−−−−−−−−−−−− Phasor Solution −−−−−−−−−−−−−−−−−−−−')
disp([' Vs | ',num2str(Vs mag),' / ',num2str(Vs ang*R2D),' V'])

disp([' Vr | ',num2str(Vr mag),' / ',num2str(Vr ang*R2D),' V'])

disp([' Is | ',num2str(Is mag),' / ',num2str(Is ang*R2D),' A'])

disp([' Ir | ',num2str(Ir mag),' / ',num2str(Ir ang*R2D),' A'])

disp([' Fs | ',num2str(Fs mag),' / ',num2str(Fs ang*R2D),' wb−turns'])
disp([' Fr | ',num2str(Fr mag),' / ',num2str(Fr ang*R2D),' wb−turns'])
disp( '−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp([' Ps | ',num2str(Ps),' W'])

disp([' Pr | ',num2str(Pr),' W'])

disp([' Qs | ',num2str(Qs),' VAR'])

disp([' Qr | ',num2str(Qr),' VAR'])

disp([' Ps cu | ',num2str(Ps cu),' W'])

disp([' Pr cu | ',num2str(Pr cu),' W'])

disp( '−−−−−−−−−−−−−−POWER BALANCE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp([' Ps + Pr | ',num2str(Ps+Pr),' W'])

disp([' Pmech + Pcu | ',num2str(Ps cu + Pr cu + P mech),' W'])

disp( '−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp([' Tem | ',num2str(Tem),' Nm'])

disp([' nm | ',num2str(nm),' rpm'])

disp([' P mech | ',num2str(P mech),' W'])

disp( '−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')

%% Initialize Dynamic model from Phasor Solution (align to stator flux)

% Phasor of Stator and Rotor Voltages are related to their space vectors at

% t=0 using Equation 3.10 from Section 3.3.3

%Stator Voltage

vas 0 = sqrt(2)*Vs mag*cos(Vs ang); % a phase stator voltage at t=0

vbs 0 = sqrt(2)*Vs mag*cos(Vs ang−2*pi/3); % b phase stator voltage at t=0
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vcs 0 = sqrt(2)*Vs mag*cos(Vs ang−4*pi/3); % c phase stator voltage at t=0

vsD 0 = (2/3)*(vas 0 − 0.5*vbs 0 − 0.5*vcs 0); % D−axis stator voltage

vsQ 0 = (2/3)*(sqrt(3)/2*vbs 0 − sqrt(3)/2*vcs 0); % Q−axis stator voltage

Vs s 0 = vsD 0 + 1i*vsQ 0; % stator voltage space vector (stator frame)

%Rotor Voltage

var 0 = sqrt(2)*Vr mag*cos(Vr ang); % a phase rotor voltage at t=0

vbr 0 = sqrt(2)*Vr mag*cos(Vr ang−2*pi/3); % b phase rotor voltage at t=0

vcr 0 = sqrt(2)*Vr mag*cos(Vr ang−4*pi/3); % c phase rotor voltage at t=0

vaph 0 = (2/3)*(var 0 − 0.5*vbr 0 − 0.5*vcr 0); % alpha−axis rotor voltage

vbet 0 = (2/3)*(sqrt(3)/2*vbr 0 − sqrt(3)/2*vcr 0);% beta−axis rotor voltage

Vr r 0 = vaph 0 + 1i*vbet 0; % rotor voltage space vector (rotor frame)

% Initial rotor angle taken as 0

Vr s 0 = Vr r 0*exp(−1i*(0)); % rotor voltage space vector (stator frame)

vrD 0 = real(Vr s 0); % D−axis rotor voltage

vrQ 0 = imag(Vr s 0); % Q−axis stator voltage

% Using the voltage space vector aligned to the stator frame, the flux is

% calculated using Equation 3.34, with the derivative vector set to zero

FM = [ −Rs/(sig*Ls), ws, Lm*Rs/(Ls*Lr*sig), 0; ...

−ws, −Rs/(sig*Ls), 0, Lm*Rs/(Ls*Lr*sig); ...

Lm*Rr/(Ls*Lr*sig), 0, −Rr/(sig*Lr), wr; ...

0, Lm*Rr/(Ls*Lr*sig) ,−wr, −Rr/(sig*Lr)];

Flux 0 = −inv(FM)*[vsD 0,vsQ 0,vrD 0,vrQ 0]';

fsD 0 = Flux 0(1);

fsQ 0 = Flux 0(2);

frD 0 = Flux 0(3);

frQ 0 = Flux 0(4);

Fs s 0 = fsD 0 + fsQ 0*1i; % stator flux space vector at (stator frame)

Fr s 0 = frD 0 + frQ 0*1i; % rotor flux space vector at (stator frame)

% Currents are calculated with Equations 3.25 and 3.26

Is s 0 = Fs s 0/(sig*Ls) − Fr s 0*Lm/(Ls*Lr*sig);

Ir s 0 = Fr s 0/(sig*Lr) − Fs s 0*Lm/(Ls*Lr*sig);

isD 0 = real(Is s 0);

isQ 0 = imag(Ir s 0);

irD 0 = real(Ir s 0);

irQ 0 = imag(Ir s 0);

% Stator Flux Alignment

th fs 0 = angle(fsD 0+ 1i*fsQ 0); % stator flux angle

% voltage, flux and current in the stator flux oriented reference frame

Vs fs 0 = Vs s 0*exp(−1i*(th fs 0));

vsd 0 = real(Vs fs 0);

vsq 0 = imag(Vs fs 0);
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Vr fs 0 = Vr s 0*exp(−1i*th fs 0);

vrd 0 = real(Vr fs 0);

vrq 0 = imag(Vr fs 0);

Fs fs 0 = Fs s 0*exp(−1i*th fs 0);

fsd 0 = real(Fs fs 0);

fsq 0 = imag(Fs fs 0);

Fr fs 0 = Fr s 0*exp(−1i*th fs 0);

frd 0 = real(Fr fs 0);

frq 0 = imag(Fr fs 0);

Is fs 0 = Is s 0*exp(−1i*th fs 0);

isd 0 = real(Is fs 0);

isq 0 = imag(Is fs 0);

Ir fs 0 = Ir s 0*exp(−1i*th fs 0);

ird 0 = real(Ir fs 0);

irq 0 = imag(Ir fs 0);

%% Controller Initialization

% controller gains

% using Tapia's Method

% critically damped with Tset = 40ms

T1 = 40e−3; % settling time for inner loop

KI1 =(4/T1)ˆ2*sig*Lr;

KP1 = 2*(4/T1)*sig*Lr−Rr;

% initialize the PI contoller integrators

w fs 0 = vsq 0/fsd 0+Rs*Lm/Ls*irq 0/fsd 0;

Dfsd 0 = −Rs/Ls*fsd 0 +Lm*Rs/Ls*ird 0+vsd 0;

% Inner loop PI controller initial condtions

vrd tapia = vrd 0 + sig*Lr*(w fs 0−wm 0)*irq 0 − Lm/Ls*Dfsd 0 + KP1*ird 0;

vrq tapia = vrq 0 − sig*Lr*(w fs 0−wm 0)*ird 0...

− (w fs 0−wm 0)*Lm/Ls*fsd 0 + KP1*irq 0;

% Tapia's outer loop

T2 = 70e−3; % settling time for outer loop

KI2 = 8/3*T1/(T2ˆ2)*Ls/Lm/(VLLrms*sqrt(3/2));

KP2 = 2/3*(2*T1−T2)/T2*Ls/Lm/(VLLrms*sqrt(3/2));

% Outerloop PI controller initial condtions

ird tapia IC = ird 0*(1+KP2*3/2*Lm/Ls*VLLrms*sqrt(3/2))...

− KP2*3/2/Ls*VLLrms*sqrt(3/2)*fsd 0;

irq tapia IC = irq 0*(1 + KP2*3/2*Lm/Ls*VLLrms*sqrt(3/2));
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