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Abstract

In parallel computing, accurate prediction of speedup is important for job schedulers 

with adaptive resource allocation. The predicted speedup determines the expected 

runtime on a certain number of nodes and the efficiency by which the resources 

are used. Among the existing speedup prediction models, the Downey model [5, 6] is 

simple but promising. However, the prediction accuracy of the Downey model needs to 

be investigated in realistic scenario setups. In this thesis, we use the NAS benchmarks 

and synthetic benchmarks [19] to generate scenarios in which the performance of the 

Downey model is examined. Based on these experiments, conditions are suggested 

for the successful application of the Downey model.
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Chapter 1

Introduction

In recent years, computer clusters play a more and more important role in 

high performance computing. Basically, a computer cluster can be viewed as a su­

percomputer consisted of multiple nodes. A node in a supercomputer may have one 

or more CPUs, it also includes memory modules, maybe disks and is usually capable 

of communicating with other nodes and possible upper-level controllers. As a result, 

multiple nodes in a computer cluster can operate simultaneously and cooperate with 

each other. This makes it possible to process a job using multiple nodes instead of 

using a single node. Compared with using a single node, the much stronger processing 

power of multiple nodes should lead to a much shorter processing time for the same 

job.

In a computer cluster, a job scheduler uses a scheduling algorithm to manage 

the cluster resources and assign them to jobs. A good scheduling algorithm should 

achieve high efficiency for the computer cluster, it should also minimize the waiting 

time for incoming jobs. While jobs compete with each other for priority and more 

resources so that they can be processed as quickly as possible, the job scheduler has 

to balance among all the jobs so that a global optimal scheduling should be achieved. 

However, this good scheduling requires accurate information on the processing time

1
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Chapter 1 Investigation o f Downey Model fo r  Speedup Prediction

versus resource allocation choices for each job. In other words, the scheduler needs 

to know how fast a job can be processed using different numbers of nodes. The 

availability of this information enables the use of advanced job scheduling methods, 

such as flexible time sharing and adaptive resource allocation [17].

In the literature, the information on the processing time versus resource allo­

cation choices for a job is described in the concept of speedup. Speedup is defined 

as the ratio of job processing time using a single node to the processing time using 

n nodes. It indicates how much faster a job can be done using n nodes compared to 

that using one node. Ideally, when a job is processed by n nodes, the processing time 

should be 1/n compared with using a single node. In reality, this relationship does not 

hold. Nodes participating in the processing of a common job need to communicate 

with each other for synchronization, data exchange, scheduling, and so on. Hard­

ware factors such as memory hierarchy bandwidth and latency, job instruction mix 

structure, communication frequency, bandwidth and serialization all have influence 

on these additional processing overheads [13]. As a result, accurate computation of 

speedup is very difficult and often impossible. Instead, in the literature models are 

used to predict speedup. Examples of speedup prediction models include Dowdy’s 

Model [4] and its two modified versions proposed by Chiang et al. [3] and Brecht and 

Guha [2, 9], the Downey Model [5], the model proposed by Smirni et al. [16] and the 

recent model proposed by Lafreniere et al. [10]. The model built by Lafreniere et al. 

uses the knowledge of the application structure which is different from others. All of 

these models use parameters to summarize characteristics of the processing system. 

Records on executed jobs in the past are used to tune the models. Well-tuned models 

are then used to predict speedup for future jobs.

Among the aforementioned speedup prediction models, the Downey model

2
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Chapter 1 Investigation o f Downey Model fo r  Speedup Prediction

is simple, promising, and its parameters have physical meanings and are easy to 

obtain from existing job execution data. However, the applicability of the Downey 

model to the speedup prediction problem under realistic system scenarios needs to be 

investigated in detail.

In this thesis, we use the NAS parallel benchmarks (NPB) [1] and synthetic 

benchmarks developed by our research group to generate scenarios in which the 

Downey model is applied for speedup prediction. The NAS parallel benchmarks [1] 

are a famous suite of benchmarks in the high performance computing community. It is 

developed by the NASA Advanced Supercomputing (NAS) Division. The benchmarks 

have been used by a number of authors to evaluate computing system performances 

[5, 10]. Our synthetic benchmarks are another suit of parallel benchmarks [19]. Com­

pared with the well-established NAS parallel benchmarks, our synthetic benchmarks 

can measure the communication time as well as the running time of the system, while 

most of the NAS parallel benchmarks overlap the communication.

In our experiments, the two benchmarks are applied on the SHARCNET 

(Shared Hierarchical Academic Research Computing Network) [15] which links a 

number of high performance clusters built for universities and colleges in Canada. 

For each generated scenario, we applied the Downey model using the Levenberg- 

Marquardt (LM) algorithm [12] to estimate parameters. The model is then used for 

the prediction of speedup for desired sub-cluster sizes.

From the experimental results obtained through the aforementioned approach, 

we find that the predicted speedup values by the Downey model match with the 

speedup measurements generated by the benchmarks. This validates the application 

of the Downey model in practice. However, to achieve a better speedup prediction, 

the Downey model should be provided with speedup measurements with at least three

3
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measurements, which should correspond to a small n in the linear part, a large n close 

to the peak speedup point, and a n in the transition section between the linear and 

nonlinear parts.

The thesis is organized as follows: Chapter 2 explains the importance of 

speedup prediction and motivates the thesis; Chapter 3 provides a brief literature 

summary on existing speedup prediction models and explains the Downey model in 

detail; in Chapter 4 we introduce the two benchmarks (the NPB and synthetic bench­

marks) used in our experiments; and introduce the implementation of the Downey 

model in Chapter 5; the test plan and test results are provided and analyzed in 

Chapter 6; and finally, Chapter 7 concludes the whole thesis.

4
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Chapter 2

M otivation

In modern parallel job scheduling for a processing system with multiple pro­

cessing units, a job can be allocated with a number of available processing units. 

Compared with single processing unit allocation, multiple processing unit allocation 

can better utilize the processing capacity of the system and speed up the processing 

of a job. These allocated units work on the same job simultaneously, usually com­

municate with each other during the process. If we call each processing unit a node, 

then the whole processing system can be viewed as a cluster of nodes. Consequently, 

the allocated units for a particular job form a sub-cluster in the system.

When multiple jobs need to be processed, optimal scheduling becomes a key 

element to achieve high efficiency of the system. However, optimal scheduling needs 

the basic information on the relationship between job processing time and available 

sub-cluster sizes. This relationship is summarized in the concept of the so-called 

speedup, which is defined as the ratio of job processing time on a single node to the 

processing time using n node. Speedup (defined in Section 1) indicates how much 

faster a job can be done using n nodes compared to that using one node.

In traditional job scheduling, accurate information on speedup for various jobs 

has been shown to be helpful on reducing average job response time and improving

5
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performance of scheduling algorithms. In modern job scheduling, the speedup infor­

mation is important for new job scheduling approaches including flexible time sharing 

and adaptive resource allocation [17]. In flexible time sharing, if jobs can be well 

matched, global job control can be abandoned, or global synchronous gang schedul­

ing can be relaxed [18, 8]. In adaptive resource allocation, sub-cluster size can be 

adaptively adjusted during the processing of a job. In both approaches, information 

on job processing time versus sub-cluster size is crucial for the scheduling decisions.

Under ideal conditions, when a job is processed by a sub-cluster (with n nodes), 

each node performs 1 /n  of the total processing steps. Here it is assumed that there 

is no additional processing step, i.e., all the performed processing steps by each node 

in the sub-cluster are necessary for the job itself. Obviously, the speedup equals to 

n. This value actually represents the theoretical upper bound of speedup.

However, parallel job processing in the real world usually includes additional 

processing steps, communication among nodes in the sub-cluster, synchronization 

among nodes, and so on. These processing steps are necessary for a job to be suc­

cessfully processed by a sub-cluster, but are not performed otherwise if the job is 

handled by a single node. Moreover, it is observed from practical applications that 

the processing overhead incurred by these additional processing steps increase with 

the number of involved nodes (n), and as a result the ratio of speedup to number of 

nodes decreases as n becomes bigger. Eventually, the speedup reaches a maximum 

value at some specific nmax value. If more than nmax nodes are allocated to the job, 

the overhead becomes too big and the speedup value decreases as n increases. These 

phenomenon are clearly shown in the following example.

Example 2.1

In this example we use NPB (NASA Advanced Supercomputing Division Par­

6
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Chapter 2 Investigation o f Downey Model fo r  Speedup Prediction

allel Benchmarks) to generate speedup values on SHARCNET [15]. SHARCNET 

(Shared Hierarchical Academic Research Computing Network) links a number of high 

performance clusters built for universities and colleges in Canada. The detailed in­

troduction to NPB and SHARCNET are provided in Section 4.1 and 6.1 respectively. 

The NPB benchmarks are a suit of eight benchmarks. Here we use the SP (Penta- 

diagonal Solver) benchmarks to obtain the speedup values on SHARCNET. In our 

experiment, the SP benchmarks generate speedup values for number of nodes n =  k2 

where k is a positive integer. Figure 2.1 shows the speedup versus n curve for the 

range k € [1,12]. We also show the theoretical speedup upperbound in the figure for

comparison purposes. From the figure, we have the following observations:

50 

45 

40 

35 

a  30
T>
® 25

15 

10 

5 

0
0 50 100 150

Number of nodes

Figure 2.1: Speedup curve

1. When n is small, for example, n=4, 9, 16, the speedup value is very close to the 

theoretical upperbound. This is mainly because that when n is small, the corre­

sponding overhead caused by the inter-operation between nodes is also small.

2. As n becomes bigger (n=25, 36, 49, ), the speedup value keeps increasing, but

7
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Chapter 2 Investigation o f Downey Model fo r  Speedup Prediction

the ratio of speedup to n decreases for bigger n. This phenomenon corresponds 

to the fact that as more nodes are involved in the job, communication overhead 

is needed for each node.

3. The speedup reaches its maximum value (30.75) at n=100. For n values bigger 

than 100, the speedup values decreases as n increases. Obviously, in this case 

adding more nodes for the job results in too much more processing overhead and 

does not have any benefit on speedup any more

In fact, the curve shown in Figure 2.1 is very typical for speedup. Specifically, a 

typical speedup curve is consisted of three parts, namely the linear part, the nonlinear 

part, and the decline part. With n increasing from 1 to a very large number, the 

speedup travels along the speedup curve, passing in turn through the linear part, 

then the nonlinear part, and finally the decline part. The linear part of the speedup 

curve corresponds to small n values. As discussed in the above example, the speedup 

curve in this part increases almost linearly with n. In comparison, in the nonlinear 

part of the curve, the speedup increases nonlinearly with n till reaching the maximum 

speedup point. Finally, the decline part of the speedup curve represents the part in 

which the speedup decreases with n, this happens when too many nodes are assigned 

to a job and the overhead is so high that increasing n has a negative effect on speedup.

In order to obtain accurate speedup values for a given number of nodes al­

located for a job, we must know information on the processing overhead. However, 

in practice, the processing overhead is influenced by many factors. Memory hierar­

chy bandwidth and latency, job instruction mix structure, communication frequency, 

bandwidth and serialization are some examples which have influence on the processing 

overhead [13]. As a result, accurate computation of speedup is very difficult and of­

ten impossible. Instead, in the literature, models are used to predict speedup. These

8
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models use parameters to describe the algorithms. Records on executed jobs in the 

past are used for the tuning of the models. Well-tuned models are then applied on 

future jobs to predict speedup for different sub-cluster sizes.

Among the existing speedup prediction models, Dowdy’s model [4] is the earli­

est and simplest model, it has two variations proposed by Chiang et al. [3] and Brecht 

and Guha [2, 9]. Smirni et al. proposed another model [16] to facilitate speedup anal­

ysis. Parameters in these models do not have physical meanings and are therefore 

difficult to determine from observation data. Recently, a so-called ScoPred model is 

proposed [10]. The model requires both historical running information and the users’ 

own knowledge of his or her parallel applications.

Compared with the aforementioned speedup prediction models, the model pro­

posed by Downey [5, 6] is simple, accurate, and can be used to interpolate between 

existing speedup measurements. The Downey model uses two parameters to summa­

rize the processing system: the so-called average parallelism of the program (denoted 

by A), and the variance in parallelism (denoted by V). The two parameters have 

physical meanings and are easy to determine from historical application execution 

data. In addition, the model does not require any information based on users’ expe­

rience. However, although Downey illustrated the application to speedup prediction 

in his papers [5, 6], the prediction performance of the model in realistic application 

scenarios is not thoroughly investigated. For successful application of the Downey 

model to real world systems, the model needs to be tested under typical scenarios, 

its prediction performances need to be analyzed, and guidelines need to be proposed.

In this thesis, the Downey model is applied to a standard job-execution system 

running primarily MPI based applications. Furthermore, we use two benchmarks (the 

NAS parallel benchmarks and our own synthetic benchmarks) to generate simulated

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 Investigation o f Downey Model fo r  Speedup Prediction

testing scenarios. The Downey model is applied to these scenarios and its performance 

is evaluated and analyzed. Based on the experimental results, we then propose some 

suggestions on the application of the Downey model.

10
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Chapter 3

Speedup prediction

3.1 Some existing speedup models

The simplest speedup prediction model is proposed by Dowdy [4]. This model 

is based on Amdahl’s law. In this model, the job execution time on a sub-cluster with 

n nodes T(n) is modeled as

T{n) =  cl +  c2/n, (3.1)

where cl and c2 are model coefficients. Specifically, cl is called the sequential com­

ponent, c2 is called the parallel component. The above model can be understood as 

follows. In parallel computing, the processing executed at each node can be separated 

into two parts: processing for the job itself, and additional processing for synchro­

nization, message exchange with other nodes, scheduling and so on. Execution time 

for the former part decreases when more nodes are allocated for the job, in other 

words, the corresponding processing time is reversely related with n. This time is 

represented by the second term in Eq. (3.1). In comparison, the first term cl repre­

sents the processing overhead in the parallel processing of the job. The corresponding 

execution time for this part is believed to be constant for different sub-cluster sizes.

11
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It is represented by the first term in Eq. (3.1).

Based on the same rational, Chiang proposed the following speedup model [3]:

S(n) = (1 +  f3)n/(n +  (5). (3.2)

Here, /3 > 0 represents a program characteristic indicating whether the program can 

be efficiently executed in parallel. Specifically, for a sequential program job, 3 equals 

to 0 and S(n)=l. In other words, adding more nodes to the job does not lead to 

any saving in the execution time. This is because the program cannot be executed 

on more than one node in parallel. In comparison, for a program perfectly suited for 

parallel execution, (3 approaches infinity, and S(n) approaches n. Note that this is the 

case of perfect parallel processing in which the theoretical upper bound for speedup 

is reached.

Perhaps the biggest problem with the above models is that the parameters do 

not have physical meanings and are difficult to determine from speedup measurements 

(or observations in short) obtained from practical applications. This reduces the 

accuracy of speedup prediction in practice.

Another example that lack physical meaning for its parameter is the model 

proposed in [16]. The running time for this model is

S(n) = ( l - r " ) / ( l - r ) .  (3.3)

Here, 0 < r  < 1. The model was designed to facilitate analysis. Again, the parameter 

r has no real meaning.

Compared with the above models, the model proposed by Downey [5] uses 

parameters which have concrete physical meanings. The model uses two parameters, 

the so-called average parallelism of the program, and the variance in parallelism. The 

parameters can be evaluated using historic speedup data. The Downey model has 

two sub-models to characterize speedup more accurately. Moreover, it matches the

12
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theoretical speedup bounds. For detailed introduction on the Downey model, please 

refer to Section 3.2.

Recently, a new speedup prediction method is proposed [10]. It is called Sco- 

Pred. ScoPred uses two kinds of information: historical running information and the 

users’ own knowledge of his or her parallel application. ScoPred uses multiple linear 

regression technique for the prediction of runtime on different number of nodes and 

for different problem sizes. The prediction result includes mean values, confidence, 

and prediction intervals. Once well-tuned, its scalable prediction can be very accu­

rate. However, though very helpful for speedup prediction, the users’ knowledge may 

be difficult to obtain.

3.2 The Downey model

The Downey model was proposed by Allen B. Downey [5, 6]. The model is 

based on two parameters: the so-called average parallelism of the program (denoted 

by A), and the variance in parallelism (denoted by V). The model aims to find the 

speedup curve corresponding to the A and V values. As introduced in previous 

sections, the speedup is defined as the ratio of job running time on a single node 

(denoted by T (l)) to the running time using n nodes (denoted by T(n)), it indicates 

how much faster a job can be done using n nodes compared to using one node. 

Correspondingly, the speedup curve is defined as the T (l)/T (n ) vs. n curve. Figure

3.1 and 3.2 show some typical speedup curves predicted using the Downey model.

The parameters A and V describe the basic characteristics of a job. Basically, 

the average parallelism of the program A is a measure of the maximum speedup 

achievable for a job. A larger value of A corresponds to a larger speedup a job can 

achieve in a parallel processing system. In comparison, the variance in parallelism

13
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V indicates the closeness to linearity for the speedup curve. V=0 corresponds to 

a linear speedup curve, and a larger V corresponds to a greater deviation from the 

linear case. Given the values of A and V, the so-called coefficient of variation CV 

can be given as C V  = W / A .  Downey also defined a  as an approximation of CV, 

a is related to A and V as V  =  a (A — l)2. From the above, we get C V 2 = V /A 2. 

If substituting V = a (A — l)2 into this formula in the right-hand side, we obtain
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C V 2 =  a(A  — I)2/ A 2. If A is large enough, C V 2 can be approximated by a. For 

many applications, a is in the range between 0 and 2 [6]. Obviously, the Downey 

model is determined by A and one of the three parameters V, CV and a. In the rest 

of the thesis, we use A and a to characterize the Downey model.

The Downey model is divided into two sub-models, the so-called Low variance 

model and the High variance model. The two sub-models correspond to different 

ranges of a , where a is the approximation of the coefficient of variance in parallelism. 

The Low variance model has a < 1 while the High variance model has a > 1. In the 

following sections, we introduce the two sub-models in detail.

3.2.1 Low variance model

2A-1

E m
a>
«
co A
C L

o 
<u
CD 

O)
CDQ

1

sigma/2 1 -sigma/2 1
Time

Figure 3.3: The parallelism profile for the low variance speedup model (sigma=cr)

In this sub-model, the total job time is divided into three sections: for a 

period of a/2  , the degree of parallelism is 1, for a second period of <r/2 , the degree 

of parallelism is 2A-1, and for the rest of the job time 1 - a ,  the parallelism is A. Figure 

3.3 shows the above three time periods and their corresponding degree of parallelism

15

—  Low variance model
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values. Under this hypothetical parallelism profile, the run time T(n) can be written 

as (3.4):

/

(A — a /2) /n  +  a/2,  1 < n < A,

T(n) = — l / 2 ) /n  +  1 — a/2, A  < n < 2A — 1, (^-4)

1, n > 2A — 1.

Here, n is the number of participating nodes. Note that T(1)=A and 'T(oc) =  1.

Therefore T(n) is actually the normalized run time for sub-cluster size n. The speedup

S(n)=T (l)/T (n) can be expressed as

A n / (A  +  cr/2(n — 1)), 1 < n < A,

S(n) = < An/(a(A  — 1/2) +  n (l — cr/2)), A < n < 2A — 1,

A, n > 2A — 1.

3.2.2 High variance model

(3.5)

E
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0
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Time
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Figure 3.4: The parallelism profile for the high vaariance speedup model (sigm a=a)
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The High variance model corresponds to large a values a > 1. The total job 

time is divided into two sections: a period of with degree of parallelism equal to 1, 

and a period of 1 with degree of parallelism value A  +  Aa  — a . This hypothetical 

parallelism profile is shown in Figure 3.4. As a result, the run time T(n) is

a +  (A +  Aa — a)/n,  1 < n < A +  Aa  — a,
T(n) =  (3.6)

(7 +  1, n > A + Aa — a.

Obviously, T (l) =  A(a  +  1) and T(oo) = a + 1. Consequently, the speedup can be 

obtained as

i
nA(a + l) / (a (n  +  A  — 1) +  A), 1 < n < A  + Aa — a,

(3.7)

A, n > A  +  Aa  — a.

It is easy to verify that when a = 1, the S(n) values resulted from the two 

sub-models are identical.

A very favorable feature of the Downey model is that in the two extreme cases 

where a = 0 and a approaches infinity respectively, the speedup resulting from the 

model match with the corresponding theoretical bounds. Specifically, when <7 =  0, 

the resulting speedup curve matches the theoretical upper bound for speedup. Here 

the curve is first bounded by the hardware limit (a 45 degree line), and after the curve 

reaches the value of A, it is bounded by the software limit (average parallelism A). In 

comparison, when a approaches infinity, the speedup curve provided by the Downey 

model approaches the theoretical lower bound on speedup [7]:

Siow(n) = A n / (A  + n -  1). (3.8)

In Figure 3.1 and 3.2, the two figures correspond with different A values (A=32 

and A=64) respectively. In each figure, the speedup curves corresponding with differ­

ent values are shown. Note that different a values may result in the use of different

17
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sub-models. However, when <7 =  1, curves from the two sub-models are identical 

with each other. In addition, the figures clearly show the limiting cases of <7 =  0 and 

cr —► oo , when the curves match with theoretical bounds.

18
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Chapter 4

NAS and synthetic benchmarks

In the literature, performance of clusters is evaluated through the use of so- 

called benchmarks. In our approach, we use two kinds of benchmarks. The first 

are the famous parallel NAS benchmarks [1]. They have been used by a number of 

authors to evaluate computing system performances [5, 10]. The second, the synthetic 

benchmarks, are another suit of parallel parallel benchmarks [19]. Compared with 

the well-established NAS parallel benchmarks, our synthetic benchmarks can measure 

the communication time as well as the running time of the system, while most of the 

NAS parallel benchmarks overlap the communication. In the following sections, we 

introduce the two benchmarks in detail.

4.1 NAS parallel benchmarks

The NAS parallel benchmarks, or NPB in short, are a suite of well-known 

benchmarks in the high performance computing community. The benchmarks are 

developed by the NASA Advanced Supercomputing (NAS) Division. They are de­

signed to measure the performance of parallel supercomputers. From its first version

19
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(NPB1), the suite of NAS parallel benchmarks have been updated several times; the 

most recent version is NPB3.2.1.

NPB 3.2.1 includes eight individual benchmarks: Embarrassingly Parallel 

(EP), Pentadiagonal Solver (SP), 3-D FFT PDE (FT), Block Tridiagonal Solver (BT), 

Multgrid (MG), LU Solver (LU), Conjugate Gradient (CG), and Integer Sort (IS). 

According to the specifications given by NAS, SP solves Navier-Stokes equations in 

3-D by Gaussian elimination without pivoting and its resulting system is scalar pen­

tadiagonal. BT solves Navier-Stokes equations using the Beam-Warming method. 

MG solves Poisson’s equation using a V-cycle multigrid algorithm. LU solves Navier- 

Stokes equations in 3-D by LU decomposition and successive over-relaxation. FT 

solves a specified partial differential equation with FFTs. IS sorts N keys created by 

the sequential key generation algorithm in parallel. CG solves an unstructured sparse 

linear system with the conjugate gradient algorithm. EP creates pairs of Gaussian 

random deviates.

Each of the above benchmarks can be applied to clusters with different num­

bers of nodes (denoted by M). However, M should follow certain rules. Specifically, 

BT and SP can only be run with M  =  K 2, where K  > 1 is an integer. IS, CG, MG, 

FT, and LU require that M  = 2k, with K  > 0 as an integer. EP has no restriction 

on the value of M.

In addition, NPB 3.2.1 specifies six classes of problem sizes, namely, Class S, 

Class W, Class A, Class B, Class C, and Class D. The problem becomes bigger from 

Class S to Class C. These problem sizes (except Class D) can be applied to all the 

aforementioned benchmarks.

20
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4.2 Synthetic benchmarks

Our own research group presented another suit of efficient benchmarks for 

performance measurement, it is called the synthetic benchmarks [19].

In MPI and other applications, a number of nodes in a cluster may be grouped 

together to perform a certain operation. Our synthetic benchmarks specified six dif­

ferent patterns based on the ways messages are distributed among the nodes in a 

sub-cluster. In the patterns, they include communication, computation and intial- 

ment.The six patterns in the synthetic benchmarks are:

• Master-Slave Pattern: a pre-defined master node sends and returns messages 

to/from all other nodes (slave nodes) in the sub-cluster.

• Stream Pattern: in this pattern, a message can only be transferred node-by-node 

organized as a pipe line.

• Nearest Neighbor Pattern: a node exchanges messages with its pre-defined neigh­

boring nodes in the sub-cluster

• Random Pattern: a node sends a message to another randomly chosen node in 

the sub-cluster. Note that the receiving node is chosen randomly on a message- 

by-message base. In other words, messages from the same node may be sent to 

different nodes.

• Broadcast Pattern: A node sends the same messages to all other nodes.

• All-to-All Pattern: a node sends its messages to all other nodes in the sub-cluster. 

It also receives messages from all the other nodes.

Similar to the NAS parallel benchmarks, the synthetic benchmarks can also 

specify different problem sizes. The sizes are based on information such as computa-

21
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tion assumed in the problem, number of loops assumed in computation, and size of 

messages.

22
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Chapter 5

Implementation

In this chapter, we introduce some important implementation issues in our 

experiments. First of all, the two parameters A  and a in the Downey model are 

estimated using the Levenberg-Marquardt (LM) algorithm [12]. The LM algorithm is 

introduced in Section 5.1, its application to the estimation of parameters A  and a is 

given in Section 5.2. The last section of the chapter introduces implementation issues, 

including speedup measurement generation using the NAS parallel benchmarks and 

the synthetic benchmarks, parameter estimation for the Downey model, and speedup 

prediction by the Downey model.

5.1 Levenberg-Marquardt algorithm

In the implementation, the key step is to estimate parameters A and a in 

the Downey model. Obviously, the accuracy on the estimation of these parameters 

directly influences the speedup prediction accuracy. Here we use the Levenberg- 

Marquardt (LM) algorithm for the estimation [12] already as proposed by Downey 

[5]. The LM algorithm is a popular method to solve nonlinear least-squares problem. 

It is an iterative algorithm to locate the minimum summation of squares of nonlinear

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 Investigation o f Downey Model fo r  Speedup Prediction

functions. The algorithm is a combination of the steepest descent method and the 

Gauss-Newton method. Specifically, when the interim solution in an iteration is far 

from the optimal solution, LM drives the solution towards the optimal point in a 

manner similar to the steepest descent method. However, when the interim solution 

approaches the optimal point, the LM algorithm converges in a similar way as the 

Gauss-Newton method [12].

In the following, we briefly introduce the LM algorithm. For details of the 

algorithm, please refer to [12].

Suppose we have a measured vector x  € 5?M, we would like to approximate x  

by an estimate vector x  € 3 given by x  =  / ( p). Here p e  $lK is the parameter 

vector, and /(•) is the estimation function. Let e =  x —x represents the error between 

x  and its estimate x, the LM algorithm aims to find the optimal parameter vector 

p + which minimizes the square estimation error eTe.

To achieve the above objective, the LM algorithm starts from a initial parame­

ter vector po, and iteratively update the parameter vector to converge to the optimal 

p +. Suppose that at the i’th  iteration, the interim parameter vector is denoted by 

p i, the interim estimate is x2 =  /(p*), the estimation error is e* =  x  — x*, and the
r\ p /  \

Jacobian matrix of / ( p) is J t = ^  |Pl . Also suppose that we update the parame­

ter vector to p ,+i =  p, +  APi. Then for a small enough value of ||APi|| (|| • || denotes 

the 2-norm), we can approximate f ( p i+1) by the first two terms of its Taylor series 

expansion, i.e.,

f(Pi+i) «  f (P i ) +  J*APi. (5.1)

Consequently, the squared estimation error for the i+ l ’th  iteration can be approxi­

mated as

®i+iei+i =  ||x  — f(Pi  T APj)|| Ri ||x —/(p j)  — JjA Pi || =  ||ej — JjA Pi || . (5-2)

24
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Minimization of ||e* — JjA Pi||2 is the well-known least-squares problem, and the op­

timal APi satisfies the condition that e,: — JA Pi is orthogonal to J*. In other words, 

the optimal solution of APi can be obtained through the following normal equations:

Note that the APi solved from Eq. 5.3 only minimizes an approximation of the 

squared estimation error. Taking this into consideration, the LM algorithm solves 

the following slight variation of Eq. 5.3 instead:

which is called the augmented normal equations. Here, N* G $tKxK, and its elements 

are identical to the corresponding elements of J f  J«, except the diagonal elements 

which are given by

Here, ft > 0 is called the damping term. When fi is large, N t is close to diagonal, 

and the obtained APi is near the steepest descent direction. Note that a large ft also 

reduces the magnitude of APi. In comparison, when /j is small, the solution of the 

augmented normal equations is close to that of Eq. 5.3.

In each iteration of the LM algorithm, the damping term is adjusted adap­

tively: a one dimensional optimization process is performed to determine the optimal 

value of ft which leads to the largest reduction of eTe. The use of the damping term 

enables the LM algorithm to have the similar convergence behavior of both the steep­

est decent algorithm when the interim solution is far from p +, and the Gauss-Newton 

method when the interim solution is near p +.

(5.3)

N*APi — e*, (5.4)

[Ni] jj — H +  [J j J i]jj ■ (5.5)
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5.2 Estimation of the Downey model parameters

The parameters A  and a in the Downey model are estimated using the LM 

algorithm introduced in the previous section. The implementation is taken from the 

source [11]. Here, we first obtain a number of speedup measurements using the two 

benchmarks introduced in the previous chapter, and then estimate A  and a through 

the minimization of the squared error between the predicted speedup by the Downey 

model and the measured values.

Suppose that from some benchmark we obtain M  speedup measurements Si,

. . . ,  sM corresponding to sub-cluster sizes n i ,  . . . ,  nA,/. In other words, the measure­

ment vector x  =  [si s2 • • • sm]t - Similarly, the estimated measurement vector 

x  =  [si(ni,M ,a) s2(n2,A ,a )  ■■■ sM(nM,A,a)]T, where sm(nm,A ,a )  is the esti­

mated speedup by the Downey model. With nm given, sm(nm, A. a) is a function of 

A  and a. The parameter vector is p =  [A a]T. The Jacobian matrix J  6 !RMx2 is 

given by
ds i(n i ,A ,a)  dsi(rii ,A,a)

dA da
ds2(n2,A, a) ds2(n2, A, a)

J  = dA da

dsM(nM,A,a ) dsM{nM,A, a)
L 8A da

By applying the above parameters to the LM algorithm, we can obtain the 

optimal A  and a which minimize the squared estimation error eTe where e =  x  — x.

5.3 Implementation issues

There are three important parts in our implementation: speedup measurement 

generation, parameter estimation for the Downey model, and speedup prediction 

using the optimally tuned Downey model.

26
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In the speedup measurement generation part, we use the NAS parallel bench­

marks (NPB) and the synthetic benchmarks. The NAS parallel benchmarks have 

a version number. In our implementation, we use the latest version NPB 3.2.1 ob­

tained from the NAS website [14]. The benchmarks need a simple installation and 

compilation procedure for the MPI applications in our case. To generate the desired 

speedup measurements, we need to specify which benchmark to use (recall that the 

NPB are a suite of different benchmarks), the number of nodes in the sub-cluster, 

and the class name. The class name specifies one of the six problem sizes used in 

the specified benchmark. Note that the generated measurements are job run time 

values on specific sub-cluster sizes, speedup measurements are obtained by dividing 

T (l) (the run time on single node) by the run time data.

Speedup measurement generation of the synthetic benchmarks are similar to 

the NAS parallel benchmarks. Here, we specify parameters such as problem size 

and inter-node communication pattern. A very important feature of the synthetic 

benchmarks is that it can obtain runtime measurements on computation and com­

munication separately for the same job. This is achieved by first measuring the com­

munication run time, and then obtaining the computation run time by subtracting 

the communication run time from the total run time. The communication run time 

can be obtained by blocking the computation part in the MPI code of the benchmark. 

Similar to NPB, the synthetic benchmarks only generate run time measurements, we 

need to perform a simple transformation to obtain speedup measurements.

The parameter estimation part uses the LM algorithm to estimate parame­

ters A  and a for the Downey model. The input to the algorithm includes speedup 

measurements and initial values of the two parameters. Here we initiate the pa­

rameters as do =  max(.s1, . . . ,  sM) and a0 =  0. Among all the speedup measure-
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ments, m ax(si,. . . ,  s m ) is the closest to the theoretical speedup upperbound, i.e., 

m ax(si,. . . ,  sM) is the closest to the optimal value of A. This rationalizes the use of 

m ax(si,. . . ,  Sm ) as the initial value of A. We have mentioned that in Section 3.2 that 

a is in the range between 0 and 2 for many applications, so we chose 0 as the initial 

value of a.

The LM algorithm uses an iteration processes to update interim parameter 

values towards the optimal solution. In each iteration of the estimation process, we 

need to determine the damping term n . As introduced in Section 5.1, this can be 

achieved through a one-dimensional optimization procedure. However, because there 

is no analytic solution to the optimal p, we would apply another iteration process to 

search for the optimal damping term. Obviously, searching for the accurate value of 

optimal /i involves too much computation and is not necessary. Instead, a sub-optimal 

value of /i which leads to steady update towards the optimal parameter vector provides 

a good trade-off between computation and LM algorithm convergence performance. In 

our implementation, we apply this sub-optimal approach by increasing or decreasing 

the interim ^  by a pre-defined factor a (for example, a = 10) according to the change 

in the squared estimation error.

There are a number of practical criteria for the termination of the iteration 

in the LM algorithm. The criterion used in our implementation is to terminate the 

iteration when the relative change in the squared estimation error drops below a 

pre-defined threshold, for example, 0.01.

LM is applied to two different variations of the Downey model, the low variance 

model and the high variance model. The model can deal with phase function.

The above implementation issues are clearly illustrated in the following exam­

ple.
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Example 5.1

In this example, we use the NAS parallel benchmarks to generate speedup 

measurements. The specific benchmark is the LU solver (introduced in Section 4.1) 

for class W, the number of nodes are 2, 4, 8, 16, 32, 64 (recall that the LU solver 

require that n = 2k, with k > 0 as an integer). The generated speedup measurements 

are listed as follows,______________

No. of nodes 2 4 8 16 32 64

Measured speedup 2.00 3.92 7.25 13.29 20.23 24.95

Predicted speedup 1.97 3.83 7.24 13.07 20.77 24.70

Table 5.1: The generated speedup and predicted speedup in Example 5.1 

With these measured speedup values, the LM algorithm estimates the optimal 

parameters as A = 24.70 and a — 0.74. Accordingly, we can obtain the speedup 

prediction for number of nodes range from n = 2 to n = 64. The predicted speedup 

corresponding to n — 2,4,8,16,32,64 are listed in the above table. The fitting of 

the prediction to the measurement is also shown in Figure 5.1. Not surprisingly, the 

predicted speedup matches well with the measured speedup values.
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Figure 5.1: Fit of predicted speedup to measured speedup in Example 5.1
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Chapter 6

The experiments

In this chapter, we introduce the experiments on the Downey model. The ex­

periments aim to test the fitting of the Downey model to the measured speedup values 

on sub-clusters of different sizes. We first introduce the experiment environment in 

Section 6.1, then propose the experiment test cases in Section 6.2. Sections 6.3, 6.4 

and 6.5 present the experiment results for the three test cases. Finally, Section 6.6 

summaries the observations obtained from the experiments.

6.1 Test environment

We perform all our experiments on SHARCNET (Shared Hierarchical Aca­

demic Research Computing Network) [15]. SHARCNET links a number of high per­

formance clusters built for universities and colleges in Canada. In total, SHARCNET 

includes thousands of processors. All of our experiments are run on the HP narwhal 

cluster (which is one of the clusters in SHARCNET). Narwhal has 267 nodes and 

each contains one AMD 2.20 GHz dual core CPU with 8 GB memory but we only 

use one core of each CPU. The nodes in narwhal are interconnected by Myrinet G2 

high speed network. The operating system for narwhal is HP Linux XC 3.1. The

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 Investigation o f Downey Model fo r  Speedup Prediction

MPI package we used is MPICH 1.2.

6.2 Test cases

We designed several test cases to investigate the performance of the Downey 

model. The test cases are introduced as follows.

• Case 1: fitting of the Downey model on the same range of speedup measurements. 

In this test case, we first generate measured speedup values for some pre-selected 

sub-cluster size (n). The sub-cluster sizes cover a specific range of n of our in­

terest. Note that the selection may not cover all the three parts of the speedup 

curve, namely the linear part, nonlinear part and the decline part. The Downey 

model is then applied to provide speedup prediction for the same range of n. 

Comparison of the predicted speedup with the measured speedup enables us to 

test the fitting of the Downey model in the same range of available measurements.

• Case 2: speedup prediction with a small number of speedup measurements. 

Intuitively, decreasing the amount of available measured speedup data leads to 

under-tuning of the speedup prediction model, and in turn leads to a loss of 

accuracy in speedup prediction. Moreover, when the number of available mea­

surement points is small, the distribution of n has significant influence on the 

accuracy of the tuned model. For example, if all the available measurement 

points are located in the linear part of the speedup curve, then the measurement 

data provide little information on the speedup curve in the nonlinear part and 

the decline part. As a result, the tuned model may not fit well in these two 

parts. In this test case, we limit the number of measurement points to a small 

number (typically three or four), and test the Downey model under several typ-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 Investigation o f Downey Model fo r  Speedup Prediction

ical distributions of n.

• Case 3: separate speedup prediction for communication and computation.

In the previous test cases, computation and communication are not separated for 

a job. In this case, we separate these two elements and test the Downey model 

for speedup prediction on communication and computation separately. The test 

case is based on the synthetic benchmarks which can generate speedup mea­

surements on computation and communication separately. Note that speedup 

on communication is directly related to the pattern in which messages are dis­

tributed in the sub-cluster.

Obviously, the above test cases cover typical practical scenarios to which the 

Downey model may be applied. From the experimental results in these test cases, 

we can draw some conclusions on the applicability of the Downey model to practical 

applications.

6.3 Experimental results in Test Case 1

As introduced in Section 6.2, Test Case 1 is proposed to test the fitting of the 

Downey model in the same sub-cluster size range of the available measured speedup. 

For a better understanding of the behavior of the Downey model in this case, we 

investigate the following four scenarios.

First, we assume that the measured speedup data only covers the linear part of 

the speedup curve. We expect the Downey model to fit well with the measurement in 

the same sub-cluster size range. This is confirmed in the experimental results shown 

in Figure 6.1. In this experiment we use the NAS-BT benchmarks with class B to 

generate speedup measurements for the range n=4 to n=144. This range roughly
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corresponds to the linear part of the speedup curve. Note that at n=121 and n=144, 

the error between the measurement and prediction is larger than those at other n 

values. We believe that this is caused by the fact that these sub-cluster sizes are

located at the transition part between the linear and nonlinear parts.

120
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Figure 6.1: Test Case 1: measurement data cover linear part of speedup curve

Secondly, we assume that the measured speedup covers the full range of the 

linear part and the nonlinear part of the speedup curve. The fitting of the Downey 

model is illustrated in Figure 6.2. Here, we use the NAS-BT benchmarks with class 

W to generate speedup measurements for sub-cluster size n = l, 4, 9, 16, 25, 36, 49, 

64. Note that in this case the sub-cluster size is required to satisfy condition n =  k2 

with k > 0 to be an integer. For this particular case the maximum speedup value 

is located at n=64. As can be seen from the figure, the predicted speedup curve fits 

well with the measurement data.

Next we test the Downey model using measurements in the range of the full 

linear part and a portion of the nonlinear part of the speedup curve. Intuitively, since
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Figure 6.2: Test Case 1: measurement data cover linear and nonlinear parts of speedup curve 
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Figure 6.3: Test Case 1: measurement data cover linear part and partial nonlinear part of speedup

curve

only a portion of the nonlinear part is covered in the measurement data, we expect 

the predicted curve fits better with the measurements in the linear part than in the 

nonlinear part. A typical experiment result is shown in figure 6.3. The measurement
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data are generated by NAS-CG benchmarks with Class A. The range of n is from 2 

to 128, with n  =  2k where k is a positive integer. The results shown in the figure 

match with our intuition by showing larger estimation error in the nonlinear part.

The last scenario corresponds to the case in which the measurement data 

covers all three parts of the speedup curve, i.e., the linear, nonlinear and the decline 

parts. The results are shown in Figure 6.4. Here, the measurement data are generated 

by NAS-SP benchmarks with class A. The range of sub-cluster size is from 4 to 144 

with n = k2, where A; is a positive integer. As shown in the figure, the predicted 

curve fits well with measurement data in the linear and nonlinear part. However, the 

estimation error is large in the decline part. This certainly is caused by the fact that 

the Downey model only models the linear and nonlinear parts of the speedup curve. 

The measurements in the decline part, if used for the tuning of the model, have only 

destructive effort on the accuracy of the tuned model.
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Figure 6.4: Test Case 1: measurement data cover linear, nonlinear and decline parts of speedup 

curve
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6.4 Experimental results in Test Case 2

In the Test Case 2 proposed in Section 6.2, the number of measurement points 

are small (typically three or four). As pointed out in Section 6.2, the distribution 

of the n values has a crucial influence on the prediction accuracy. This test case 

is important for the application of the Downey model. On one hand, in practice, 

environmental conditions often prevent the availability of speedup measurement data 

on more than a few sub-cluster sizes. As a result, the speedup prediction has to be 

based on a few measurement points. On the other hand, a good prediction model 

should have the capability to capture key characteristics in the speedup behavior in 

the system through the use of as few measurement points as possible.

In this section, we test the Downey model for this test case, and show the 

prediction behavior of the model with the following typical distributions of n:

• Scenario A: all the measurement points are located in the linear part of the 

speedup curve;

• Scenario B: there is one measurement point in the nonlinear part of the speedup 

curve, all the other points are in the linear part;

• Scenario C: the generated measurement points cover both linear and nonlinear 

parts of the speedup curve, but only half of the measurement points (one of every 

two neighboring measurement points) are used for the tuning of the model, in 

other words the measurements used for model tuning contain information on the 

speedup curve in the whole range of n;

• Scenario D: for the same measurement set in Scenario C, choose three measure­

ments corresponding to the smallest n, the largest n, and the medium n.

The experimental results for these scenarios are shown as follows.
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For comparison purposes, we use the same set of speedup measurements for all 

four scenarios. The measurements are generated by the NAS-CG benchmarks with 

class A, the sub-class sizes are n=2, 4, 8, 16, 32, 64, 128.

Figure 6.5 shows the tuned Downey model using measurements at n=2, 4, 8. 

These three points are all in the linear part of the speedup curve. In other words, 

this experiment is of Scenario A. As can be seen from the figure, the tuned Downey 

model only matches the measurements in the linear part of the curve. Obviously, this 

is because with the three measurement points, there is no information on the speedup 

curve outside the linear part.
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Figure 6.5: Test Case 2, Scenario A: Downey model tunning using measurements at n=2,4,8.

To test for Scenario B, we add one more measurement to the three points used 

in Scenario A. Specifically, we use measurements at n=2, 4, 8, 16 to tune the Downey 

model. The result is shown in Figure 6.6. The tuned model only matches with the 

four used measurements, and does not fit with the other measurements. Obviously, 

adding one measurement point in the nonlinear part is not enough for the tuning of
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the model.
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Figure 6.6: Test Case 2, Scenario B: Downey model tunning using measurements at n=2,4,8,16.

Scenario C requires half of the available measurement points. Here we choose 

the measurements at n=2, 8, 32, 128. The tuned Downey model is shown in Figure 

6.7. From the figure we see that the model fits well with the measurements in the 

whole range of n from 2 to 128.

As for the last scenario, we use the three measurements at n=2, 16 and 128. 

Figure 6.8 shows the resulting model. The model is almost identical with the one 

in Figure 6.7 (which is also show in Figure 6.8). We believe that the distribution of 

the three measurements ensures that the measurements contain the key characteristic 

information for the speedup curve. This in turn ensures the good fitting of the resulted 

prediction model.
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Figure 6.7: Test Case 2, Scenario C: Downey model tunning using measurements at 11=2,8,32,128. 
30

25

20

CL

"D
® 15
Q.O)

10

•

"

/sy's/t)
O

s
A’'A*'r

* •>ib- / ........6J

o Speedup measurements
* Measurements used for model tuning
• Predicted speedup by the Downey model 

—  Downey model from previous scenario

20 40 60 80 100 120
Number of nodes

Figure 6.8: Test Case 2, Scenario D: Downey model tunning using measurements at n=2,16,128.

6.5 Experimental results in Test Case 3

In this test case, we use the synthetic benchmarks to separate the run time 

used for computation and communication in a job. The objective is to test the 

Downey model on the prediction for computation and communication.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 Investigation o f Downey Model fo r  Speedup Prediction

60 r

50

40

Ql13I 30
Q.w

20

10

o

.....

a'• /
•///

•/

Js
✓

° Measured speedup 
• Predicted speedup by the Downey model 

—  Prediction by the Downey model (without decline part)
20 40 60 80 100 120

Number of nodes

Figure 6.9: Test Case 3, broadcast pattern: speedup measurements and predictions

First we use the synthetic benchmarks with the broadcast communication 

pattern, the problem size is chosen in such a way that the run time for communication 

is comparable with that for the computation. If the run time for communication is 

too small, the speedup curve would lack information on the nonlinear part and the 

decline part. On the contrary, if the run time for communication is too long, the 

speedup curve would have too much emphasis on the decline part. The run time 

measurements correspond to sub-cluster sizes n = l, 2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 

128. All the measurements are used in the tuning of the Downey model. Figure 6.9 

shows the speedup measurements and the prediction curve by the Downey model. 

The measured speedup clearly shows all the three parts, i.e., the linear, nonlinear 

and decline parts. The predicted speedup matches with the measurements in all 

three parts, but has significant error at the speedup peak point (n = 64). This 

phenomenon is similar to that in the last scenario of Test Case 1 (Figure 6.4). Recall 

tha t the Downey model does not model the speedup reduction in the decline part.
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Figure 6.10: Test Case 3, broadcast pattern: speedup measurements and predictions for computation  
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Figure 6.11: Test Case 3, broadcast pattern: run tim e measurements for communication

Consequently, using measurements in the decline part has destructive effect on the 

accuracy of the model.

As for the computation involved in the job, we define the speedup for compu­

tation as the S’c(n) Tc( 1)
Tc(n)

, where Tc(n) is the run time for computation. Figure

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 Investigation o f Downey Model fo r  Speedup Prediction

6.10 shows the speedup measurements and prediction for computation. Obviously, 

the job simulated in the synthetic benchmarks is well-suited for parallel processing. 

For each simulated sub-cluster size n, the computation performed on each node is 

approximately — of the total computation. In other words, the speedup curve for71
computation of the synthetic benchmark increases linearly with n. Maybe in the fu­

ture, we could try to use another benchmark whose speedup curve for computation 

increases nonlinearly with n.

We show the run time for communication in Figure 6.11. The communication 

time increases with n while the time decreases with n in the Downey model, so we can 

not use the Downey model to predict communication time. As discussed in Chapter 

2, the communication in a job is influenced by a number of factors which are difficult 

to model.
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Figure 6.12: Test Case 3, all-to-all pattern: speedup measurements and predictions

The above results are confirmed in the second experiment. Here we use the 

all-to-all communication pattern in the synthetic benchmarks. The measurements are
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for the same set of sub-cluster sizes in the above experiment.

Figure 6.12 shows the speedup measurements and the Downey model predic­

tions. The measurement curve covers the linear, nonlinear and decline parts. Similar 

to the prediction curve in Figure 6.9, the measurements in the decline part negatively
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Figure 6.13: Test Case 3, all-to-all pattern: speedup measurements and predictions for computation  
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Figure 6.14: Test Case 3, all-to-all pattern: run time measurements for communication
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influences the prediction accuracy.

The speedup measurements and prediction for computation is shown in Fig­

ure 6.13. Again, the job is well-suited for parallel processing, and the computation 

speedup shows a linear relationship with respect to the sub-cluster size.

The run time for communication is shown in Figure 6.14. The curve, especially 

the part for small sub-cluster sizes, show changes which are difficult to explain and 

model.

The decline part of the speedup curve happens when too many nodes are 

assigned to a job and the communication overhead is so high that increasing n has 

a negative effect on speedup. Maybe in the future, we can find a model for the 

communication, thus we can model the decline part of the speedup curve.

6.6 Some observations from experimental results

In the previous sections, we tested the Downey model for three test cases. In 

each case, we generate run time measurements using the NAS parallel benchmarks 

or the synthetic benchmarks for some typical scenarios, and examine the fitting of 

the optimally tuned Downey model. From the experimental results, we obtain the 

following observations.

1. Since the Downey model does not model the speedup reduction in the decline 

part of the speedup curve, using measurements in the decline part reduces the 

prediction accuracy of the tuned model. The biggest prediction error corresponds 

to the transition section between the nonlinear part and the decline section. 

This is the neighborhood of n corresponding to the peak value of speedup. This 

phenomenon can be clearly seen in the last scenario of Test Case 1 and the two 

experiments in Test Case 3.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 Investigation o f Downey Model fo r  Speedup Prediction

2. Model tuning using measurements in the linear part only results in good pre­

diction in the linear part, this can be seen in the first scenario in Test Case 1. 

However, the tuned model does not result in good prediction for the nonlinear 

and decline parts. This can be seen from Scenario A in Test Case 2. Obviously, 

the remedy to this problem is to add measurements in the nonlinear part of 

curve, as shown in the second scenario of Test Case 1. However, Scenario B in 

Test Case 2 and the third scenario in Test Case 1 suggest that a large enough 

amount of measurements in the nonlinear part is necessary for good prediction.

3. If a sufficient amount of measurements covers the full range of the linear and 

nonlinear parts of the speedup curve, the tuned model provides good prediction. 

However, Scenario C and D in Test Case 2 suggest that the model can be accu­

rately tuned using a small number of measurement points. Needless to say, in 

this case the distribution of n corresponding to the measurements is crucial for 

the accuracy of the tuned model. Prom Scenario D of Test Case 2, it is suggested 

that for the optimal tuning of the Downey model, as few as three measurements 

is sufficient. However, the three measurements should correspond to a small n 

in the linear part, a large n close to the peak speedup point, and a n in the 

transition section between the linear and nonlinear parts.

4. As for the separated computation and communication, we find that jobs gener­

ated by the synthetic benchmarks are well-suited for parallel processing. The 

communication run time is difficult to model. This is due to the fact that the 

communication time is influenced by multiple complicated system mechanisms.

From the above observations, we find that the Downey model can be accurately 

tuned using as few as three carefully located measurement points. In comparison, the 

speedup model in the ScoPred job scheduler can also be accurately tuned with a few
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measurement points. In experiments, cases exist in which as few as two measurement 

points are used to achieve good tuned model in ScoPred. In addition, the distribution 

of the sub-cluster sizes for the measurements are not as crucial for the model accuracy 

as for the Downey model case.
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Figure 6.15: Comparison of the Downey model and the ScoPred

For the comparison of the two models, we choose one of the experiments intro­

duced in [10]. It is easy to see that in all the experiments used in [10], the measured 

speedup points used for the tuning of ScoPred predictor are in the linear part. The 

experiment we choose uses three points with n=2, 4, 8. The tuned ScoPred predictor 

then predicts speedup for n=16 and 32. Figure 6.15 shows the measurements and 

predictions of ScoPred. Using the same set of measurements at n=2, 4, and 8, we 

obtained the Downey model. The resulting predicted speedup curve is also shown 

in the figure. Obviously, in this case ScoPred out-performs the Downey model for 

scalable predication. However, this experiment is of Scenario B in Test Case 2 intro­

duced in Section 6.4. The reason for the poor prediction performance of the Downey
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model, as explained in Section 6.4, is that the three measurements do not contain 

speedup information in the nonlinear part. For ScoPred, the lacked information is 

well-compensated by the experience input on the system. For the Downey model, 

adding another carefully chosen measurement is enough to obtain accurate speedup 

model.

From the above example, it is clear that ScoPred put more effort to include 

system information into the model in exchange for a lower requirement on the mea­

surement set used for model tuning. In comparison, the Downey model emphasizes 

the simplicity of the model and obtain the key characteristics only from actual mea­

surements. This fundamental difference between the Downey model and the ScoPred 

suggests the application of the two models for different scenarios.
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Chapter 7

Conclusions and future research

In this thesis, we addressed the speedup prediction problem and investigated 

the performance of the Downey model for practical speedup prediction applications. 

We use the NAS parallel benchmarks and our synthetic benchmarks to generate run 

time measurements on the SHARCNET system, and apply the LM algorithm to 

tune the Downey model. Our experiments cover some typical scenarios in several 

proposed test cases, for each scenario prediction performance of the tuned Downey 

model is obtained and analyzed. Prom the experimental results, we find that the 

Downey model can capture the key characteristics of the speedup versus sub-cluster 

size curve. Satisfactory tuning of the model can be achieved by using very few speedup 

measurement points. However, the measurement points should provide information 

on both the linear and nonlinear parts of the speedup curve. Moreover, since the 

Downey model does not model the speedup reduction in the decline part of the 

speedup curve, we should avoid using measurements in this part for the tuning of 

the model. In the extreme case, the model can be accurately tuned using just three 

measurement points at carefully chosen sub-cluster sizes.

The experiment results suggest several related research problems. First of all,
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our experiments show that the distribution of the measurements used for the tuning 

of the model has crucial influence on the accuracy of the model. This leads to the 

need to select the optimal set of measurements for the tuning of the Downey model. 

In the simplest sense, we should remove measurements in the decline part of the 

speedup curve. Another possible research problem concerns the LM algorithm. The 

LM algorithm we use in our experiments minimizes the summation of all the squared 

error on each measurement point. It treats each measurement data equally. However, 

in some cases some measurements may be more important than the others. Therefore 

emphasis measurements with different weighting factors may improve the accuracy of 

the tuned model. Other possible research topics include the use of system information 

in the speedup modeling (an idea similar to the ScoPred), and better tuning methods 

other than the LM algorithm.
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