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Abstract

Artificial Neural Networks (ANNs) are parallel processors capable of learning from a
set of sample data using a specific learning rule. Such systems are commonly used in
applications where human brain may surpass conventional computers such as image
processing, speech/character recognition, intelligent control and robotics to name a

few.

In this thesis, a mixed-signal neural network architecture is proposed employs
a high resolution Multiplying Digital to Analog Converter (MDAC) designed using
Delta Sigma Modulation (DSM). To reduce chip are, multiplexing is used in addition

to analog implementation of arithmetic operations.

This work employs a new method for filtering the high bit-rate signals using
neurons nonlinear transfer function already existing in the network. Therefore, a
configuration of a few MOS transistors are replacing the large resistors required to
implement the low-pass filter in the network. This configuration noticeably decreases

the chip area and also makes multiplexing feasible for hardware implementation.
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Chapter 1

Introduction

1.1 Inspiration: Biological Neural Networks

Biological neural networks are the main inspiration in artificial neural network re-
search. Researchers in this area have always been interested in the way human brain
receives information from outside environment, processes those information and at
the end outputs their corresponding responses. It has been estimated that the hu-
man brain includes 10'° neurons and 10° - 10° synapses. Dendrites in a neural cell
act as the receiver and receive the input signals and transfer them to the neurons.
The neurons, sum and threshold the upcoming signals and transfer the result to the
axon through a long fiber which acts as the output terminal. The point in which the
axon of one neural cell meets dendrites of another cell is called synapse. Signals are
communicated across these synapses by chemical ion transport and the strength of
this communication depends of the density of those ions. Any neural network of any

size and configuration is defined by strength of the synapses and the arrangement of
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neural cells which depends on its application.

1.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are processors designed based on the operation of
human brain and nervous system with massive number of nodes and interconnections

but simple computational building blocks.

There are three main computational block in every neural networks: multiplier,
adder and nonlinear transfer function. Multiplier in an artificial neural network acts
as synapse in biological networks and defines the strength of the signals it receives.
Adder and non-linear transfer function play the role of neuron in human brain to sum

and threshold the upcoming data.

1.3 A Brief History

The first neural network was introduced by McCulloch and Pitts in 1943 [1] based on
neurology concepts. Their proposed network was only capable of solving basic logic
problems such as OR and AND functions. In 1958 Rosenblatt succeeded to present
Perceptron, a neural network with three layers. Followed by that, in 1960 Widrow
and Hoff [2] introduced ADALINE (ADAptive LInear Element) neural network using
simple analog blocks and Least Mean Square (LMS) learning rule.

In 1969 Minsky and Papert published a book about limitations on neural network
research [3] which caused reductions in funds and interests in this field. However, sev-

eral researchers kept working in the area which leaded to outstanding results during
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70s and 80s. Werbos in 1974 [4] developed the backpropagation algorithm for neural
networks which by far was the most common learning rule. Also, Grossberg founded

founded a school of thought in 1988 in which resonating algorithms are developed.

Nowadays, neural network research attracts a lot of interest and neural network

chips are capable of solving complex problems.

1.4 Hardware-Friendly Learning Algorithms

Backpropagation has been one of the most common learning algorithms for neural
network training for a long time. However, despite the fast convergence speed, it may

not be a suitable choice for training neural networks implemented in hardware.

The first limitation is the need to design bi-directional paths for the data to flow
in forward and backward directions. The need to design the derivative of the nonlin-
ear transfer function is the second reason for not choosing backpropagation for neural
network hardwares. Finally, in a neural network trained using this learning algorithm,

the parameters can not be adjusted depending on the circuit offsets and non-idealities.

1.4.1 Perturbation Learning Rules

The basic idea in perturbation-based learning rules is to add a slight perturbation to
the network and calculate the gradient of the error based on the amount of that per-
turbation, the actual and the desired output values. Node perturbation and weight

perturbation are two common perturbation-based algorithms.
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Node Perturbation

Madaline Rule ITII (MRIII) [5] is the most popular node perturbation training scheme.
In this algorithm, weights are initially set to a small random value and the pertur-
bation signal is applied to each node value in the network sequentially. The error
is calculated after a forward path and consequently, the weight values are updated.
The direction of the weight vectors is opposite of the direction of the gradient of the

calculated error in the forward path.

Unlike the backpropagation, this method does not require implementation of back-
ward paths as well as implementation of the derivation of nonlinear activation func-
tion. In addition to that, the network is capable of learning the non-idealities existing
in the network for online training configurations. However, designing extra circuitries
is required for training the network using this algorithm. These additional blocks
include multipliers and addressing modules to choose between different nodes in the
network. Moreover, the sequential nature of this algorithm makes the training process

relatively slow.

Weight Perturbation

This algorithm [6] is similar to MRIII. Weight perturbation is simpler than MRIII
in terms of required circuitry for addressing. However, MRIII requires less complex
computational circuitry since weight perturbation rule needs additional blocks to cre-

ate random perturbations which increases overhead area.
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1.4.2 Learning Rules With Locally Accessed Information

There is one category of learning rules in which information in the network is pro-
cessed locally. Unlike the backpropagation algorithm in which the error is accessed
globally, this category of algorithms are easier to be implemented in hardware. As an
example, in anti-Hebbian learning rule [7], the synaptic weights are updated based
on the input and the output of each neuron. Additionally, Brandt in [8] uses only the
rate by which the synaptic weights change to estimate the error vector. Hence, the
information used as error data are accessed locally within each neuron. However, the
calculation of the rate of changes in synaptic weights is complex and requires high

accuracy.

1.5 Training Configurations

Training configuration is defined as the way a learning algorithm is implemented in
order to train the network based on the existing sample data. There are three main
learning configurations for an artificial neural network: Off-line Training, Chip-In-

the-Loop and Online training.

Off-line Training

In this training configuration, a host computer runs the learning algorithm and
weights are calculated and updated by the host computer. Final values of weights
are later downloaded into the chip [9]. An advantage to this configuration is less
amount of required circuitry and therefore, smaller chip area. The most important
advantage in this training configuration is accurate weight calculations. On the other

hand, weight truncation might be required since the non-idealities of the chip are not




1. INTRODUCTION

taken into consideration for weight calculations and this can lead to poor network
performance. This method is not suitable for neural networks used in tasks such as
automated control. Such systems, known as adaptive neural networks, have to be

able to change their weights depending on the changes in the environment conditions.

Chip-In-The-Loop Training

In this configuration, the host computer calculates and updates the synaptic weights
based on the learning algorithm, actual and the targeted outputs. The difference
between this configuration and the Off-line configuration is that, the computer is in
a loop with the network. Therefore, it receives chip outputs, compares them with the

targeted output and readjusts the synaptic weights.

The most important advantage of this method is the ability of the network to learn
the offsets and mismatches existing in the network. Additionally, the reacquired chip
area is relatively smaller than a network with online training configuration, which
will be explained later. The only drawback in this method is the slow training speed

due to the periodic weight update [10-12].

Online Training

In this configuration, all of the weight calculations and updates are performed on
the neural network chip. Therefore, there is a need for designing an arithmetic block
for training calculations. Among implemented networks reported in literature, [13]
implemented in analog is used for smart sensing applications, [14] implemented in
digital for optical character recognition, [15] implemented in mixed-signal for pixel

pattern recognition and [16] and [17] implemented using FPGA for smart olfactory
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system and non-linear control, respectively. This method is the most appropriate
configuration for adaptive neural systems and the training is relatively fast. How-
ever, the required chip area increases due to the training circuities. Moreover, design
of the training circuitry adds to the network complexity. This in turn makes the
design a challenging task for circuit designers since some learning algorithms, such
as backpropagation, are more difficult to be implemented in hardware. Moreover,
non-convergence and inaccurate network operations have been reported due to low
accuracy of this method for implementing learning algorithms such as backpropaga-
tion [18,19]. However, perturbation methods are among the most compatible learning

rules for hardware implementation training circuitries.

1.6 Hardware Implementation of Neural Networks

Nowadays, it is more common to implement neural networks in software on a host
computer. In this way, the software is basically a neuro-simulator which running on a
conventional computer. This method was first introduced by Rochester in 1956 with
a Hebbian learning neural network [20]. This type of implementation makes neural
network design more flexible and gives the designers the advantage of changing net-
work parameters, such as architecture, learning rule and number of layers, depending
on their application. In addition to that, software implementation of neural networks
can be done in various user-friendly environments providing the designer with a bright

insight to the network architecture and performance.

On the other hand, the parallel nature of computations in neural systems can be
best realized using hardware implementation. Moreover, in some applications it is not
possible to install a PC/workstation to run the neural network software such as toys

and autonomous robots for industrial and exploration applications. Also, running
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neural calculations on conventional serial computers is slow and costs a lot in terms

of power.

Nowadays, there is a tremendous growth in portable devices with limited battery
life which will increase the need for custom low power solutions. Running a neural
network software on a portable device like a smart phone consumes a lot of power
due to the parallel nature of calculations. Consequently, one option to overcome this
problem might be to use a host computer to perform the calculations and transmit
the data back to the portable device. This might however, cause data security issues.
Moreover, some special applications require the neural network on a small piece of
hardware to perform the neural calculations independently, such as neurochips used
in silicon retinas [21,22] and silicon cerebral cortex [23]. In addition to all, hard-
ware neural networks are a more suitable choice for applications where environmental
changes require the network to be trained over and over again for a long period of
time. In this case, it is worth mentioning that the caculations for a forward path using

a regular Pentium takes about 1ms which is considered very slow for such applications.

In the next section 4 categoriesof hardware neural network implementation meth-

ods are explained briefly including: Analog, Digital, Mixed-Signal and FPGA.

1.6.1 Analog Neural Networks

In Analog Neural Networks (Analog NN) [10,11,24-28] there are efficient methods
for implementing neurons using simple non-linear analog components. Moreover, ad-
dition operation can be performed by simple nodal summation of currents as long as

it can drive the next stage of circuits.
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On the other hand, accuracy of analog circuits has always been a limiting factor
for realization of large size Analog NNs. Although neural networks are capable of
recovering from network deficiencies, for off-line training such imperfections cause
instability and errors at the output. Additionally, the network needs to store a large
number of synaptic weights typically stored on capacitors in analog implementation.
The weight values will decay due to capacitor leakage currents and therefore, requires
refreshing circuitries. This causes limitation in size and complexity of such Analog
NNs. In addition, network performance is affected by the reduced noise margin, vari-

ations in power supply and low resolution (maximum 6 to 7 bits) of analog circuitries.

1.6.2 Digital Neural Networks

Digital Neural Networks [29-31] on the other hand, can have extended resolution and
higher accuracy. However, generating smooth neural activation function in digital
requires complex and large look up tables [32-34]. Another important design issue is
the high number of interconnections which in a typical digital neural network, is much
higher than an analog neural network. It is also worth mentioning that, in digital
implemented neural networks there may be the need to convert the analog signals at
the input to digital for processing, and convert them back to analog at the output

stage. This can clearly increase the overhead area and circuit complexity.

1.6.3 Mixed-Signal Neural Networks

There has recently been an interest in mixed-signal implementation of neural net-
works [13,35-37]. In such systems, advantages from both analog and digital domains
are used to overcome the design challenges. Mixed-signal implementation benefits

from smaller area, lower power consumption, higher speed and easy activation func-
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tion realization which all come form analog domain. On the other hand, there are
some advantages in digital domain which can be included in mixed-signal, such as
RAM weight storage. Consequently, there is no need to have capacitors and refresh-
ing circuitrie to prevent charge leakage. It is also worth mentioning that due to the
susceptibility of analog circuitries to process variations, mixed-signal architectures
stand between analog and digital in terms of accuracy. However, this type of imple-

mentation is proved to be more flexible for various network sizes.

Pulse Stream

Many signals in biological neural systems are transmitted in the form of electrical
spikes [38,39]. Murray and Smith introduced the first pulse stream implementation
of neural networks back in 1987 [39,40]. In this type of mixed-signal implementa-
tion, the network data is coded in digital pulse streams, but processed using analog
components. This has raised interest in the area of neural computation because of
inaccuracy of analog signals and the fact that digital signals are robust against noise
and process variations. In addition to that, small area and high speed of analog
computations from one hand, and large area and high power consumption in digital
computations on another hand increased the interest in pulse stream implementa-
tion methods. There are different methods for encoding information such as Pulse
Amplitude Modulation (PAM), Pulse Width Modulation (PWM), Pulse Frequency
Modulation (PFM) and Pulse Phase Modulation (PPM).

Using pulse streams in neural network implementation have many advantages such

as:

e Low susceptibility to noise and circuit variations: Usually in a hardware imple-

mented neural network the main cause of error is the multiplication operation

10
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and transmission of data.
e Low power consumption

e Simpler multiplexing: In some network architectures it is required to pass dif-
ferent sets of data along the same path. For these cases, pulse stream signals

are a better option due to their digital nature rather than analog signals.
e Simpler connection to analog and digital blocks within the chip

Pulse streams in general can have two types of applications in the area of neural
networks. The first type of application is to use them in computational blocks to
increase the performance of the calculations [41-43]. The second type of application
is using pulse streams to implement the neurons and replace pulse modulators with
stochastic logic [44-49]. In this thesis, we will focus on the first type of application of
pulse streams in neural networks and take advantage of their features in our network

architecture.

1.6.4 FPGA

Reconfigurability of FPGAs is its most important advantage as an implementation
method for artificial neural networks. In addition to that, these platforms are easily
available in market with a wide range of variety and a cost much lower than any
fabrication process. However, large area and high power consumption are one of the
major drawbacks in this type of implementation. It should be noted that choosing
an appropriate neural network model to use optimal hardware resources can always

be a challenge.

Among the networks implemented using FPGA, Tisan [16] has proposed an ol-

faction system using seven gas sensors. Seul in [17] has implemented a cost effective

11
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nonlinear control system by implementing the neural network on a DSP board, and

the rest of the subsystems such as control algorithm, counter and PWM signal gen-

erator on a FPGA board.

1.7 Real-World Applications

Despite the fact that artificial neural networks implemented in software are more flex-
ible and user-friendly, there are some important neural network hardwares currently
working in real-world applications. Table 1.1 shows examples of neural network hard-

ware in real-world applications.

1.8 Objective

In a neural network hardware, multipliers usually consume the largest portion of space
on the chip. Multipliers implemented in digital specially require a large amount of
circuitry because of the parallel nature of computational operations. Consequently,
many designers try to reduce the amount of circuitry in their neural network by
reducing the resolution of synaptic weights to 4-6 bits and therefore, reducing the
resolution of calculations. For example, binary weighted current mirrors can be used
to convert digital synaptic values to analog. This way multiplication is combined
with a low-resolution digital to analog conversion scheme in a Multiplying Digital to
Analog Converter (MDAC) block [35-37]. It should be noted that, this method limits
the resolution of synaptic calculations since the transistors can enter the saturation

region quite fast in low power CMOS technologies.

Our objective is to design and implement a feed-forward neural network using

12
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Implementation Application Reference

Image processor [50]
Visual collision detector [51]

Analog
Finger print feature extraction [52]
Feedback controller [53]
Real time image processing [54]
Autonomous robotics [55]

Digital
Real-time controller [56]
Assignment problem solver [57]
Video Processor [58]
Vision system for intelligent vehicles [59]

Mixed-Signal

Robotics [60]
Robotics [61]
Real-time image processor for mobile robot vision [62]
Image segmentation 63
FPGA 53
Robotics [64]
Real-time hand tracking system [65]

Table 1.1: Hardware neural networks in real-world applications

high resolution mixed-signal components. Encoding synaptic information in pulse
streams and performing neural calculations in pulse domain ensures higher accuracy
and high resolution in the network. On the other hand, several techniques, such as
multiplexing, a compact filtering and area-efficient analog computational blocks using
minimum size MOS transistors has been employed to compensate for the additional
area usage due to the high resolution synaptic weights stored in registers. Using

these methods reduces the number of interconnections and the amount of circuitries

13
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required for a high resolution neural network. At the same time, we can take advan-

tage of low power consumption of analog components and pulse stream calculations.

The network architecture proposed in this work is trained off-line as the first step
to a high resolution neural network. In this work synaptic weights are calculated and
updated off the chip. However, high accuracy training is feasible using high resolution

synaptic weights and accuracy inherent in pulse stream calculations.

1.9 Thesis Organization

Chapter 2 provides explanations on the proposed architecture and includes general
descriptions on the role that each building block plays and the way they are connected
in this architecture. Mathematical descriptions and all the parameter calculations for

each building block are included in this chapter.

In Chapter 3, a more detailed description of every building block used in the
proposed architecture is presented. Each component is discussed in circuit level. Dif-
ferent simulations results, such as DC, transient and Monte Carlo, are included in

this chapter as well.

Chapter 4 shows how the proposed neural network architecture is used in an XOR
problem. The final network configuration and the corresponding simulation results
are included in this chapter as well as general network features. Comparison between
the proposed network and other reported networks which describes its distinguishing

characteristics is carried out in this chapter as well.

Finally, Chapter 5 includes conclusions, summary and suggested future work.
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Chapter 2

Proposed Architecture

2.1 Introduction

In this chapter, an optimized architecture for a high resolution feed-forward neural
network is proposed. In order to obtain the desired level of accuracy, the proposed ar-
chitecture exploits high resolution Multiplying Digital to Analog Converter (MDAC)
modules. to achieve this goal, synaptic calculations are performed in pulse stream
domain. After a brief overview on the proposed architecture, the system level con-
figuration for one layer of the network is presented. In continuation, each building

block in the proposed architecture is presented and discussed in more details.

In general, an Artificial Neural Network (ANN) consists of three main building
blocks: multiplier, adder and nonlinear transfer function. In this architecture, mul-
tiplication operation between the synaptic weights and the layer inputs is performed

in analog domain. However, the weights are stored in registers. Synaptic weights
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2. PROPOSED ARCHITECTURE

are converted to high bit rate pulse streams using a delta sigma modulator and then
multiplied by layer’s input through an analog multiplier. The delta sigma modulator
is implemented entirely in digital since it processes digital synaptic values at their

input. The adders and neuron nonlinear transfer functions are fully analog.

Multiplexing [66,67] compensates for the increased chip area due to the increased
network resolution. It reduces the number of interconnections as well as required
circuitry for synaptic calculations and information processing. Although time multi-
plexing increases the overall delay of the network, arithmetic operations are performed
in a relatively high speed due to the full custom nature of the circuits. System-level

configuration of the network is presented in the next section.

2.2 Multiplexing

Figure 2.1 shows how multiplexing can reduce number of modules and interconnec-
tions. Diagrams (a) and (b) show general configurations of a 3 —3 — 2 neural network
without and with multiplexing, respectively. Both networks are fully connected and
have 3 inputs, 2 outputs and 15 different synaptic weights in their configuration. Ba-
sically without multiplexing, 9 and 6 multiplier modules are required for a 3 — 3 — 2
network in its first and second layer, respectively. However, this numbers are reduced
to 3 and 3 using the multiplexing method employed in the proposed architecture.
As it can be seen, the number of interconnections in the network has also been noti-

cably reduced since the same path of data has been used for different synaptic weights.
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Figure 2.1: Comparison between number of interconnections and multiplier blocks in
a sample 3 — 3 — 2 neural network configuration: (a) without multiplexing and (b)

with multiplexing

2.3 System-Level Configuration

Figure 2.2 shows the block diagram representation of one layer of the proposed net-
work. The network can be expanded by connecting desired number of this layers in
series. High resolution Multiplying Digital to Analog Converter (MDAC) blocks play
the main role in this network architecture. Other network components include reg-
isters, multiplexers, current switches, tri-state buffers and signal conditioning blocks

which operate as the final stage of each layer in the network.

The number of MDAC blocks in each layer is equal to the number of inputs to that
layer. For example for a network of size 3 — 2 — 1, there are 3 and 2 MDAC blocks
at the first and second layers, respectively. As shown in Figure 2.2, each MDAC
block is connected to an input and a memory element through a local data bus. Each

memory element consists of two sections: the weight registers (of 12-bit size for a 12-

18



2. PROPOSED ARCHITECTURE

counter Input] — MDAC1 —

‘ n
A

ENIy T .

>
HN%: W12

HNnt Win

Input2 ™MP—> MDAC2 }—»[2]——7%,—@» 02
‘ n R A P
SignReg 1 ’/ 12 ®
L ANENLy 377 ¢
P NEN2Y W1
MUX1 |s M : : EN% :
° 04 ° .
LTV END; Win =gl On
[
[ ]
[
Inputm ———PMp—p MDACm —
‘ n
SignReg 1 12
LN ENLy 57T }
LNEN2y w12
RIEE
hNn; Win ‘

Figure 2.2: The block diagram of the proposed architecture

bit-resolution network) and one sign register. In block diagram of Figure 2.2, weight
registers are named as W,,,,, where m and n represent the number of corresponding
neuron and its input, respectively. The sign register is shown as SignReg,,, where m

refers to the number of its corresponding neuron.

The number of required weight registers in each memory element is equal to the
number of neurons in that layer. The weight registers in each memory element are
connected to the local data bus through tri-state buffers shared with the MDAC.
There is only one sign register for each memory element which is indicative of the

synaptic weight sign. Therefore, The number of weight registers in each memory
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2. PROPOSED ARCHITECTURE

element is reflective of the number of neurons in that layer.

Each MDAC block can access the network’s memory to access synaptic weights
are stored in a time-multiplexed fashion. Therefore, each MDAC can read only one
set of data from the memory at a time. Multiplexer’s delay mainly depends on the
clock frequency of the delta sigma modulator used in the MDAC block as well as the
propagation delay of its digital components. Although the digital values fed to the
MDAC blocks change by time, analog inputs to the MDAC do not change in all times.

In the proposed architecture shown in Figure 2.2, there is one multiplexer in each
layer. Access to weight registers is controlled by the multiplexer in that layer. This
way, each register can pass its information on the local data bus when its enable
signal is triggered by the multiplexer. All of the multiplexers in the network are
synchronized and are set when the multiplexer in their previous layer resets. This is
to synchronize all of the outputs in a layer (which in another words, are the inputs
to the next layer) to be summed together at the same time in the next layer after

multiplied by their corresponding weight values.

Initially, the multiplexer, shown as MU X1 in Figure 2.2, activates EN1 allowing
the weight values stored in registers Wiy, Wy, and W,,; to be available on the local
data buses. After the multiplication operation is done by all the m MDACsS, the re-
sults are added together in a summation block whose output is connected to the first
neuron as long as EFN1 is active. At this time, the result is stored in the first neuron,
waiting for the rest of the outputs to be calculated. When FN2 is activated a second
round of calculations is started and Registers Wis, Was and W5 are connected to
MDACs. This time, the summation block output passes through the second neuron

with EN2 active. This process repeats n times until all the inputs to the next layer
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2. PROPOSED ARCHITECTURE

are calculated and are ready.

The aim in the proposed architecture is to include the multiplication operation
inside the Digital to Analog Converter (DAC) block in order to reduce the number
of required MDAC modules. This increases the modularity of the proposed method
and makes it easier for this architecture to be adjusted for different network sizes. As
it will be discussed later, the MDAC module is designed for high resolution synaptic

calculations using pulse stream approach.

2.4 Multiplying Digital to Analog Converter Ar-
chitecture

In any hardware implementation of neural networks the multiplication module is the
dominant building block in terms of size and required circuitries. In particular, par-
allel addition and multiplication consume large chip areas in digitally implemented
neural networks. Hence, reducing the synaptic weights’ resolution may seem an ac-
ceptable solution for many designers in order to decrease the chip area. However,
low resolution synapse values can make it difficult for some network architectures to

converge reliably [68].

The Multiplying Digital to Analog Converter (MDAC) in the proposed architec-
ture consists of two main blocks: a Digital to Analog Converter (DAC) that receives
the synaptic weights directly from the memory, and an analog multiplier to perform

linear multiplication operation between the inputs and the synaptic weights.

The DAC operates based on Delta Sigma Modulation (DSM) in order to convert
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synaptic weights to high bi rate delta sigma pulse streams. It has been proved that
using pulse streams in neural networks can efficiently improve the accuracy of neural
computations due to their increased resolution [39,40]. The low-bit quantizer in delta
sigma modulator guarantees the accuracy of computations performed in the network.
DSM pulse stream has some similarities to Pulse Width Modulation (PWM) pulse
stream. However, several reasons contribute to the fact that DSM technique is used

instead of PWM.

e To implement a Pulse Width Modulator, it is required to implement a ramp
signal generator and in order to do so, an Operational Transconductance Am-
plifier (OTA) is required as well as a sample-and-hold block. Faulty OTA design

can cause instability problems for the network.

e The output pulse stream in a Pulse Width Modulator has lower frequency than
delta sigma pulse stream which makes filter design more difficult for PWM. For
a lower output frequency, higher time constant is required to keep the desired
voltage ripple at filter’s output. A low-pass filter with larger time constant is

larger in terms of chip area.

e Unlike Pulse Width Modulation, Delta Sigma Modulation is capable of moving
quantization noise to a higher frequency band which is a very important char-
acteristic of this type of modulation. The noise can be removed or attenuated

using a low-pass filter.

e Regarding circuit implementation, Delta Sigma Modulation is a better option
when the inputs to the system are digital. PWM implementation for digital in-
puts, particularly for larger word lengths, is a challenging. However, DSM has
simpler and less complex circuit implementation since it is entirely in digital

domain.
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Figure 2.3: The general block diagram representation of the proposed MDAC archi-

tecture

The analog multiplier is the final stage in the MDAC module and changes the
level of the pulse streams coming from the DSM stage depending on the input values.
The most important factor that should be taken into consideration while designing
the multiplier, is its linearity. Assume equation z = Kzy, where x and y are the mul-
tiplier’s inputs, z is the multiplication output and K is the multiplication constant.
In a linear multiplier, K is constant in all conditions and does not change in time
domain. The final output of a layer in the network is obtained by adding the mul-
tiplication products of synaptic pulse streams and their analog input and averaging

the result in time domain.

Figure 2.3 is a detailed representation of the MDAC block. The MDAC consists of
an accumulator, a quantizer block, digital adders and an analog multiplier at the final
stage. The first adder computes the difference between the input and the output of
the DAC. An accumulator in a delta sigma DAC behaves exactly like an integrator in

a delta sigma ADC and accumulates sums of the differences calculated in its previous
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stage. This will force the average of the modulator output to follow the input value.
The quantizer acts as a comparator and performs quantization by selecting the digital

values representing V DD and ground depending on DAC oyt signal.

Delta sigma DACs are generally implemented using a modulator and a Low-Pass
Filter (LPF) in order to convert the pulse stream resulting from the modulation to a
smooth voltage level. Consequently, the digital to analog conversion is usually ended
with a LPF stage. However in the proposed architecture, the filtering stage is com-
bined with the non-linear activation function. Hence, the averaging takes place after
the multiplication is performed instead of right after the modulation stage. The ad-
vantage of this feature is that, it makes the LPF implementation more efficient since
it employs the neurons which already exist in the network architecture. A typical
RC implementation of LPF requires large capacitor and resistor values which is not
desirable due to limited chip area. This filter is feasible to be implemented using
neurons in much smaller chip area using few MOS transistors with the same time

constant.

Filtering the result in the middle of calculations will cause resolution loss. This
is because the multiplication operation is performed after decoding synaptic infor-
mation using the LPF. The encoded signal can still contain ripples that can affect
the multiplication result. In this architecture, all the arithmetic operations are per-
formed in a coded and high resolution fashion and the averaging takes place when all
the calculations are done. This will make the operations more accurate which is the

second advantage of this method.
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2.5 Neuron and Low Pass Filtering

For designing the suitable low pass filter several factors should be taken into consider-
ation. First of all, it should be noted that the maximum allowable voltage drop after
filtering the sigma delta pulse stream is 1 LSB which is calculated using Equation

2.1.

+ _ —
1LSB = w (2.1)

where N is the number of bits of resolution and Vi, and Vg, are equal to 1.8V

and 0V in CMOS 180nm Technology, respectively.

Table 2.1 shows maximum acceptable attenuation for different resolutions in terms
of Volts and dB, based on Equation 2.1. Hence, as long as the ripple voltage on the
output of low-pass filter is less than the values shown in Table 2.1, it will not be

interpreted as a different digital value.

Bits of Resolution | Maximum Attenuation (V') | Maximum Attenuation (dB)
8 0.007031 —43
10 0.001757 —55.1
12 0.000439 —67.1
14 0.000109 —79.2
16 0.000027 —91.2

Table 2.1: Maximum acceptable attenuation for different resolutions in terms of Volts

and dB

The discrete time representation for a low-pass filter is obtained using equations
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2.2, where V;, is the input voltage and V,,; is the output voltage of the system.

Appendix B contains more details regarding how these equations are derived.

Voul) = (1576 ) W) 4 Visln = 0 = (15 g ) Vealn = 1) (22)

By making the simple assumption that both input and output, V,,[n| and Vj,[n],

were initially zero for small values of n, then repeating equation 2.2, the output signal

Vout[n] for any given input signal V;,[n] can be determined.

Furthermore, the transfer function of a low-pass filter in Laplace domain can be

calculated as follows.

1
1+ (RCw)?

‘/out o
‘/i =

Hw) = ‘ (2.3)

In Equation 2.3, H is the amplitude of the low-pass filter transfer function as a
function of frequency (w = 27 f), RC is the filter time constant which is the amount

of time required for filter output to settle around its final value.

The value of maximum acceptable voltage drop from Table 2.1 can be replaced
with H in Equation 2.3 to calculate the suitable time constant (RC') value for the
low-pass filter. In order to do so, Equation 2.3 can be rearranged as follows.

1

— 1 (2.4)

1
RC’—; 2B

By combining equations 2.4 and 2.1, an expression for time constant in terms of

bits of resolution N, Vrg and frequency can be derived.
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where, Vg is the full scale voltage which is equal to Vipr — Vagpe.

Figure 2.4 shows how time constant changes in terms of resolution, assuming that
the frequency is constant. The minimum required RC' value changes exponentially
regarding the number of bits of resolutions. The time constant has a slight change

for resolutions between 6 to 11 bits where it starts to have a rapid increase.
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Figure 2.4: Time constant changes in terms of resolution

Table 2.2 is obtained using Equation 2.5 and includes minimum required time con-
stant values for different resolutions and frequencies. As shown in Table 2.2, smaller
time constant values are required for higher frequencies with the same resolution

which leads to smaller filter designs.

It should also be noted that resolution is the second factor that affects the size of

filter. As shown in Table 2.2 for a higher resolution network larger time constant at
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the filtering stage is required operating at the same frequency.

Bits of Maximum Frequency of Minimum Required Time
Resolution | Ripple (mV') | operation (M H z) Constant (us)
10 1.757 10 9.06
10 1.757 100 0.90
12 0.439 10 36.25
12 0.439 100 3.62
14 0.109 10 146.01
14 0.109 100 14.60

Table 2.2: Minimum required time constant for different resolutions and frequencies

of operation

It can be concluded from Table 2.2 that the proposed architecture can be adjusted
to be used in networks with resolutions higher than 12 bits at some costs. There are
two factors that put restrictions on how much the resolution can be increased: the
maximum frequency that the network can be designed for and the available chip
area. Larger time constant values are required for networks with higher resolution.
This leads to larger area occupied by the low-pass filter circuit due to larger capac-
itors required. However, increasing the frequency of operation can help reduce the
size of the filter at the same resolution. Therefore, the extra increase in the size of

the filter due to the increase in resolution can be compensated by rising the frequency.

In the proposed architecture, the low-pass filter is implemented using the existing
neurons in the network to take advantage of features such as smaller area and easier

multiplexing scheme. In order to complete the design of the low-pass filter in this
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section, it is required to include the neuron output impedance in the time constant
calculations. Hence, the required capacitor value can be easily calculated. In Chapter
3, the neuron circuit will be introduced in details and its output impedance based on

MOS transistors small signal model will be calculated.

2.6 Calculations in Pulse Stream Domain

There are two types of calculations performed in pulse stream domain in the proposed

neural network architecture:

e Multiplication between a pulse stream and a constant voltage
In this architecture the synaptic weights are encoded in time domain to maintain
high resolution and high accuracy computations. Hence, this information can
be decoded by averaging the bit streams in time domain. According to this,
after multiplying the bit stream by a constant voltage, the average of the bit

stream after filtering is multiplied by that constant voltage.

I / u(t)dt = / Tu(t) dt (2.6)

where, I is the constant input voltage, v(t) is the time varying pulse stream in
which the synaptic data are encoded and 7 is the time frame in which the the

output pulse stream is being averaged.

e Addition between two or more pulse streams

In general, there are two ways to add two pulse stream signals:

1. OR operation using digital components. This method can be useful when
the network is restricted to include only digital components. The OR tech-

nique is based on the fact that for signals that have information encoded in
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their time domain, the OR operation can be a good approximation for ad-
dition between those signals. However, it has been shown that this addition

method is not accurate and is only suitable for small-sized networks [69].

2. Pulse stream addition in analog domain. In general, this type of addition
can be performed in current-mode or voltage-mode. Vividly, current-mode
addition can most of the times be the prefferd method since it requires
simpler circuitries. The resulting pulse stream is no longer a pure delta
sigma modulated signal because its amplitude is doubled in some parts as

a result of addition between two high signals.

Figure 2.5 shows how addition between pulse streams is performed in current-
mode and digital domain using OR operation. It also demonstrates a compar-
ison on how the average values of pulse streams are affected in each of these
domains. Graphs (a) and (c) are two input pulse streams with different duty
cycles on which the addition operation is being performed. Graphs (b) and
(d) are the average values of (a) and (c), respectively, after the filtering stage.
(b) settles at 0.55V and (d) settles at around 0.8V. Graph (e) is the addition
result between the two pulse streams in current-mode domain. As it can be
seen, the amplitude of this signal is doubled when both signals (a) and (c) are
high. Graph (f) is the current-mode addition result after passing the filter stage
which settles at around 1.35V. As it can be seen, the average of the addition
result is equivalent to adding the averages of the two input pulse streams. Plot
(g) shows the result of addition between (a) and (c) in digital domain using OR
operation and (h), is the average of (g) over time. As it can be seen, (h) settles
at around 1V which gives a different result from (f). Hence, current-domain
seems to be a more appropriate choice for performing addition between pulse

streams.
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2.7 Summary

In this chapter, the proposed architecture for a mixed-signal neural network was
explained in system level which include MDAC blocks, registers, adders, neurons,
multiplexers and current switches. After that, MDAC, neuron and adder were dis-
cussed in more details as fundamental building blocks in the proposed neural network
architecture. Arithmetic operations are performed in pulse stream domain in order
to maintain accurate and high resolution calculations for the network. In addition to
all, multiplexing scheme was applied to the network in order to reduce the number of

multiplier blocks and interconnections.
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Figure 2.5: Comparison between different pulse stream addition methods: (a) First
sample pulse stream, (b) The average value of first sample pulse stream after filtering,
(c) Second sample pulse stream, (d) The average value of second sample pulse stream
after filtering, (e) The addition result between the first and the second pulse stream
using current-mode method, (f) The average of the addition result between the first
and the second pulse stream using current-mode method after filtering, (g) The addi-
tion result between the first and the second sample pulse streams using OR operation,
(h) The average value of the addition result between the first and the second sample

pulse streams using OR operation after filtering
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Chapter 3

Circuit Designs and Simulation

Results

In this chapter, the circuit-level configuration of each building block used in the pro-
posed architecture is presented. Circuit topologies and simulation results including
transient, Monte Carlo and corner analysis for each building block are presented and
discussed in details. All the simulation results reported in this chapter are done on
full custom layouts, presented in Appendix A, and under non-ideal conditions. All
the parasitic capacitors are taken into consideration to make sure that all the circuits
are tested in real conditions. The circuits are simulated and laid out in TSMC CMOS

180nm technology.
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3.1 Multiplying Digital to Analog Converter

Multiplying Digital to Analog Converter (MDAC) block plays an essential role in the
proposed network architecture. The delta sigma modulator employed in this block
encodes 12-bit synaptic weights into time domain which is later multiplied by the net-
work’s input using an analog multiplier. Delta sigma modulator is capable of moving
quantization noise to a higher frequency band. In addition to that, efficient filtering
of the output signal is feasible due to the high frequency pulse stream at the delta
sigma modulator. The MDAC module can be divided into two main blocks: the delta

sigma modulator and the analog multiplier.

3.1.1 Delta Sigma Modulator

Delta sigma modulator and low-pass filter are essential building blocks in any type
of delta sigma data converter, either Digital to Analog Converters (DAC) or Analog
to Digital Converters (ADC). The modulator is implemented digitally due to digital
input signals, otherwise it is implemented by analog components. The same rule ap-
plies to the low-pass filter implementation. The implementation domain of the LPF
changes depending on the modulator’s output signal, which is digital and analog in

ADCs and DACs, respectively.

A delta sigma modulator block is used in a digital to analog conversion scheme for
the proposed architecture. That means that inputs to this block are digital coming
form 12-bit registers used to store neural network synaptic weights. The modulator
outputs a pulse stream which is a 1-bit serial signal with a bit rate much higher than
the data rate of the system. In the proposed digital to analog converter, the pulse

stream is generated using digital feedback and has the high and low digital values (1
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Figure 3.1: delta sigma modulator for a 12-bit system

and 0). The average duty cycle of this pulse stream is proportional to the value of
the binary input. This average value is obtained by passing the pulse stream through
a low-pass filter. The output of the delta sigma modulator is also known as a Pulse

Proportion Modulated (PPM) signal.

Figure 3.1 shows the schematic representation of the delta sigma modulator for
a 12-bit resolution system. Two binary adders perform the ”Delta” and ”Sigma”
operation in this implementation. The first adder (Delta Adder) subtracts the digital
input (which in our architecture comes from the weight registers) from the modu-
lator’s output. The second adder (Sigma Adder) adds its previous value stored in
Sigma Register with the output of the first adder. The adder blocks are ripple carry
adders and the register is implemented using D flip flops.

As part of the mixed-signal design flow, this implementation was first described in
Verilog for system level simulation. The schematic description using library cells was
extracted from the Verilog codes using Synopsys toolsets and imported in Cadence.

After verification, library cells were replaced with fully custom-designed blocks. Fig-

35



3. CIRCUIT DESIGNS AND SIMULATION RESULTS

Viv) V(v) V(v)
17517 N o N = B o A [ Atmaa e aNalaRalaNalalaiaulalzlalalalels 175 aal el name iz an Famen Nuns Naman Rams
L5 15 15
1.25 125 125
1.0 1.0 1.0
75. 75. 75.
5 5. 5
25. 25. 25.
0 0 0
0 100 Tﬁl%o( o 300 400 0 100 200Time (us)soo 400 0 100 zooTime (us)soo 400

Figure 3.2: Post-layout transient simulation result of the delta sigma modulator

ure 3.2 shows the transient analysis results after running post-layout simulations.
The simulations are done in non-ideal conditions and all the inputs are applied to
the circuits after passing through buffer and capacitor stages. The plots in Figure
3.2 show the output pulse stream for the digital input values of 800grx, 2AAxEx
and Cbdpypyx, from left to right. As shown in the graphs, digital synaptic data are
encoded in the time domain of each pulse stream. Averaging these signals in time

domain outputs a voltage value equivalent to the corresponding digital weight value.

3.1.2 Multiplier

The very first analog multipliers were designed to be used in mixers and amplitude
modulators for multiplying two analog operands with a suitable multiplication con-
stant with a desired dimension. Analog multipliers can be classified as single-quadrant
(where both operands are unipolar), two-quadrant (where one of the operands is
unipolar and the other one is bipolar) and four-quadrant (where both operands are

bipolar).

An analog multiplier is basically a non-linear block that receives two signals, such
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Figure 3.3: Schematic diagram of the analog multiplier employed in the proposed

MDAC module

as u1(t) and uy(t), as inputs and generates polynomial functions with different orders,

such as u(t), u2(t), ui(t)ui(t) at its output.

In the proposed architecture, multiplication is performed in mixed-signal domain
implemented using a CMOS Gilbert multiplier, shown in Figure 3.3. This config-
uration is the CMOS version of the bipolar wide-range multiplier designed by G.
Gilbert [70,71].

Figure 3.3 shows the schematic of the analog multiplier used in this architecture.

In general, the multiplication result is as following:

Iout = Iol — Iog = K[L’y (31)

where x and y are the two operands involved in the multiplication operation, the bit

stream and the analog input.
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For a linear multiplication, K should be constant and can be adjusted by changing
the size of transistors M1 and M2 used in differential configuration. Larger width
to length ratio for transistors M1 and M2 increases the gain of the differential pair

which leads to a larger K.

Transistors M19, M?20, M21, M22 and M23 are used to bias the differential pair.
I, is inverted using a current mirror including M15, M 16, M17 and M18 in order
to be subtracted from [, and yield I, = I,; — I,2. Table 3.1 shows the width to

length ratio of the transistors used in the analog multiplier circuit.

The first input is bipolar and comes from the delta sigma modulator which has
coded the synaptic weight into a duty cycle of a high bit rate delta sigma pulse
stream. The second input is unipolar with an analog value which is the inputs to the
network. A two-quadrant multiplier for the proposed network architecture is used.
The multiplier receives the pulse stream coming from the modulator and changes its

level depending on the analog input it is receiving as its second input.

I(uA)

input=1.8
25 input = 1.6
input = 1.4v
20 input = 1.2v
input=1v
1 5 mput = 800mv
e ——— ]
input = 600mv
10 [
nput = 400mv
input =200mv
5
input = 0v
VA 'V ST 'Y A e N VAT N Y

0 0.5 Time (us) 1.0 15

Figure 3.4: Transient analysis results of the linear analog multiplier circuit
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Table 3.1: Transistor sizes for the multiplier circuit

M1 | 0.55 || M7 | 5| M13 | 5 || M19 | 1.25
M2 | 0.55 || M8 | 5| M14 | 5 || M20 | 1.25
M3 | 1.5 || M9 | 5| M15 |5 || M21 | 2
M4 | 1.5 || M10 | 5| M16 | 5 || M21 | 1.25
M5 | 1.5 || M11 | 5 || M17 | 5 || M23 | 1.25
M6 | 1.5 || M12 | 5 || M18 | 5

Figure 3.4 shows the transient analysis results of the analog multiplier block after
running post-layout simulations. A sample square wave with the maximum amplitude
of Vdd and frequency of 2M H z is applied as one of the inputs. The second input is
set as a parameter which changes between 0 to 1.8V with a 200mV step size between
each value. The simulations are carried out using Cadence parametric analysis tool.
As it can be seen in Figure 3.4, the multiplication operation is performed almost lin-
early for the selected range of inputs since the the difference between output currents
for different input values is almost constant. This is because K in Equation 3.1 is

kept constant.

Cadence DC analysis is carried out to better show how linearly the output changes
in our desired range of input, 0 to 1.8V. The DC simulation results are shown in Fig-
ure 3.5. The input voltage changes between 0 to 1.8V on the horizontal axis and the

output current changes between 12.5uA to 26 A on the vertical axis.

Monte Carlo Analysis (MCA) is run to show the effect of process variations and
transistor mismatches on the circuits. MCA gives a better understanding on circuits

behavior than Corner Analysis (CA) as CA does not include the effect of transistor
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mismatches.

Figure 3.6 shows the MCA results for the analog multiplier circuit after 200 runs
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Figure 3.5: DC analysis results of the linear analog multiplier circuit
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Figure 3.6: Monte Carlo analysis results for the multiplier circuit
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Figure 3.7: Transient analysis results of the MDAC module for three different input

and weight values

of transient analysis. As an example, an arbitrary square wave with the maximum
amplitude of Vdd and frequency of 2M Hz is applied as one of the inputs and the
other input is set at 1V. Figure 3.6 shows that, the output current keeps its square
shape under non-ideal conditions, such as mismatches and process variations, and is
only subjected to a slight change in its amplitude. In addition to that, the operation
region of the transistors does not change in spite of the changes in their threshold

voltage.

3.1.3 MDAC Simulation Results

Figure 3.7 shows the transient analysis results for the MDAC after connecting the
delta sigma DAC in Figure 3.1 and the analog multiplier in Figure 3.3. Three sim-
ulation results are shown that each represents the multiplication result between dif-
ferent input values (1.6V, 900mV and 200mV’) synaptic weight values ((0F4)ggx,

(3E8)yex and (F39)grx). The synaptic weights are presented in hexadecimal num-
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Figure 3.8: Monte Carlo analysis results for the MDAC

ber system while the inputs are analog voltage values. As it can be seen, amplitude
of the output current is reduced from left to right as the analog input value decreases.
However, the pulse stream in the plot on the left has the smallest duty cycle since its
corresponding synaptic weight has the smallest value. Consequently, the average of
the pulse streams over time increases from left to right. The frequency of the output
pulse stream only depends on the synaptic weight values and is not affected by the

multiplication operation.

Figure 3.8 shows the transient MCA result for the MDAC block, with the DAC
and multiplier connected to each other. The simulations are run 100 times for both
mismatch and process variations. The digital input at the DAC is set to (AAB)yrx
and the analog input is 1V. This figure shows that the delta sigma modulator out-
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Figure 3.9: Non-linear resistive type neuron

put changes reasonably under transistor mismatches and process variations since the
pulse streams have the same duty cycles. That means the high resolution weight
values encoded in time domain of the delta sigma pulse streams remain unchanged

for worst case conditions.

3.2 Neuron

Neurons in the proposed neural network are resistive type and distributed in the net-
work to increase signal to noise ratio of the network [72,73]. The neuron transfer
function self-adjusts, preventing the saturation of neurons when inputs increase. The
neuron uses the basic non-linearity in V-I characteristics of the MOS transistors to

approximate the sigmoid-like function.

All delta sigma digital to analog converters include a low-pass filter at the final
stage to average the bitstream and to relate it to a voltage level. This in turn requires

large resistor and capacitor values for a typical RC implementation. To overcome this
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Table 3.2: Transistor sizes for the neuron circuit

M1 | 75 || M4 |20
M2 | 1.25 | M5 | 1
M3 | 4 M6 | 8

limitation, in this architecture the neuron circuit acts also as a low-pass filter. There-
fore, the existing resources in the network are used for the filter design and there is

non need for additional circuitries.

Because of the neuron’s relatively high resistance, required capacitance for the
low-pass filter reduces significantly. Additionally, using a capacitor in the neuron’s
circuit is essential since the network is multiplexed and different sets of data are trans-
mitted through one data path. This capacitor stores the output value of a layer and
keep them stored until all the outputs are synchronized and ready to be processed.
The schematic of the neuron cell is shown in Figure 3.9 and the transistors width to

length ratios are given in Table 3.2.

Figure 3.10 shows the simulation result for the neuron transfer function. The neu-
ron’s bias point is set by adjusting size of M5 and M6, choosing smaller transistors
will bias the circuit at a higher voltage. We can also define the shape of the transfer
function by changing the length of M1, M2, M3 and M4. Smaller length for these

transistors makes the transfer function more linear.

Figure 3.11 shows the MCA transient results for the neuron circuit after 100 runs
of simulations. This figure illustrates how neuron output voltage is affected by a

change in its input current in time domain and how this response changes by mis-
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match and process variations. Figure 3.12 shows the MCA results for the neuron
circuit acting as a low-pass filter in frequency domain. As it can be seen, there is a
variation for maximum amplitude when process and mismatch variations are taken

into consideration. However, the cut-off frequency remains almost constant.

3.2.1 Low-Pass Filter Considerations

In order to see how the neuron works as a low-pass filter, we need to calculate the
impedance seen from the capacitor C. For this purpose transistors are replaced with
their small signal model and the capacitor C' is replaced with test voltage source Vi
with test current of Ir. Equation 3.2 is the KCL rule for node Vg which is the node
where sources of M1 and M2 meet. Equation 3.3 is the KCL rule for the test voltage

node V.

DC Response
=1

12.5

0.0 25 5 75 10 125 L5 175 2.0
de (V)

Figure 3.10: Neuron transfer function
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Figure 3.11: Monte Carlo transient analysis result for neuron output

V. Ve — Vi
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1 Vi
Vo =(——F)Upr — — 3.3
o= G =) (33

By combining equations 3.2 and 3.3 we have:

1 VT 1 1 VT
—(—)Ur = )+ gmi—gm2+ —) + — =0 3.4
(gm2+é)(T ) g —gm2 4 ) 4 (3.4)
Tor( ) (o + g1 — gma + 1)
R = ety T2’ Arg (3.5)
T G ) G T gm —gma ) 144 :

Equation 3.5 defines the impedance seen from capacitor C', which linearly depends

on the output resistance of transistor M2. Using this equation proper value of C' can
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Figure 3.12: Monte Carlo ac analysis result for neuron output

be obtained for the desired time constant RC.

As discussed in details in Chapter 2, number of bits of resolution defines the max-
imum allowable ripple at the low-pass filter output. This ripple voltages along with
the operating frequency decide the time constant of the filter, RC. It should be also
noted that the maximum allowable frequency of the pulse streams are limited by the
low-pass filter cut-off frequency, ﬁ. Consequently, the maximum value of RC' de-

pends of the frequency in which the network is implemented.

Figure 3.13 shows the MCA result of the low-pass filter output after 500 simulation
runs. As it can be seen, the average of the output is 289.3mV with a the standard

deviation of only 34.6mV which is quite low compared with its output range.
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Figure 3.13: Monte Carlo analysis result for the LPF output

3.3 Summary

The fundamental building blocks in the proposed architecture were discussed in gen-
eral in Chapter 2. In this chapter, each of these building blocks were discussed in
more details providing their circuit designs and simulation results. Different type
of simulations were carried out in order to test the circuits with any type of input
variations, such as DC, AC, transient and Monte Carlo. All the circuits are designed,

simulated and laid out in TSMC CMOS 180nm Technology.
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Chapter 4

Solving XOR Problem

XOR logic function and parity problem is among the most difficult problems for neu-
ral networks to solve because the input patterns are not linearly separable. A network
with at least one hidden layer and non-linear activation function is capable of solving
such problems. In this chapter, we are going to employ the proposed architecture for
a high resolution feed-forward neural network to solve XOR problem. In order to do
so, the architecture presented in Chapter 2 is expanded by cascading two layers in
the proposed configuration. As it was mentioned before, using high-resolution Mul-
tiplying Digital to Analog Converter (MDAC) blocks make the network design more
modular. Hence, this architecture can be easily adjusted for any network size and

structure.
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4.1 Network Configuration

The neural network configuration employing the proposed architecture has two inputs,
a hidden layer and one output. The learning process and weight calculations are

performed in Matlab as follows:

010B 010B
W= LW=[0D56 IFFF |

001B 001B EX

where IW and LW represent Input Weights and Layer Weights, respectively.

The training function is backpropagation which updates the synaptic weights ac-
cording to Levenberg-Marquardt optimization. Network’s bias values are initialed at
zZero.

Figure 4.1 shows the block diagram representation of a 2 — 2 — 1 neural network
implementation to solve the XOR problem using the proposed architecture in Chapter
2. As it can be seen in this figure, there are three neurons in this network, denoted
as f1, fo and f3. The number of MDAC modules in each layer is equal to the number
of inputs in that layer. Hence, the hidden layer has two MDACs since there are two
inputs to the network. The output layer has two inputs coming from the hidden layer

in the network and therefor, it also has two MDACs as well.

The output of each MDAC block is a pulse stream current signal that enters a
summation node. M1-M4 are the memory elements that provide the required synap-
tic data for each multiplication operation which takes place in MDAC modules. The
enable signals marked as EFN1 and EN2 are generated in the multiplexer and control

the synaptic weights flow in the data buses as well as triggering current switches.

Figure 4.2 shows the simulation results of the 2 — 2 — 1 network trained to solve

the XOR problem implemented in TSMC CMOS 180nm technology. The transient
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Figure 4.2: Transient analysis result of the 2 — 2 — 1 network implemented using the

proposed architecture

simulation is performed under non-ideal conditions. The input and clock signals are
passed through buffer stages so that the rise and fall time are taken into considera-
tion. Additionally, all the parasitic capacitances are included in simulation results.

Table 4.1 summarizes the network features.
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Technology TSMC CMOS 180nm
Power Supply 1.8v
Clock Frequency 100M H =z
Weight Resolution 12 bits
Multiplexing Delay for Full Resolution 81.9us
Time Constant 3.62ps
Settling Time 18.1us
Cut-off Frequency 176 M H =
Total Power Consumption 0.538mW
Active Die Area 28503.16um?
Synapse Cell (MDAC) Area 6454.22um?
Total Transistor Count 5662
Synapse (MDAC) Transistor Count 1408

Table 4.1: Network general features

4.2 Comparisons

The proposed neural network is implemented in mixed-signal domain using high res-
olution multiplying digital to analog converter blocks. The 12-bit synaptic weights
are stored in registers and the inputs are analog. However, the architecture can be

adjusted for higher resolutions with a cost of speed and area.

In the presented neural network architecture, all the arithmetic operations, such

as addition, multiplication, and nonlinear transfer function realization, are performed
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in analog domain which makes in more area-efficient compared with networks imple-
mented in digital using large look-up-tables [32-34]. Considering the fact that all
synaptic weights have 12 bits of resolution, performing parallel multiplication and

addition in that resolution consumes a considerable portion of chip area.

Neural networks implemented in analog are generally susceptible to noise and pro-
cess variations comparing to digital networks. In the proposed network, delta sigma
modulation method has been employed in order to convert digital data to analog with
high accuracy and perform high resolution synaptic calculations. Additionally, the
quantization noise in the network is moved to higher frequency bands due to oversam-
pling modulation employed in this network. Moreover, the overall signal to noise ratio
of the network is improved due to distributing neuron’s non-linear transfer functions
in the network. In addition to these, the proposed architecture benefits from other

advantages of distributed networks such as scalability and extra robustness [72,73].

Comparing with neural networks implemented using PWM techniques [74, 75],
the propsed architecture benefits from simpler and smaller filter design due to high
frequency of delta sigma pulse stream. In addition, choosing delta sigma modulation
specially for digital to analog data conversion makes the design process simpler, more
modular and robust. This is because in a digital to analog converter, delta sigma
modulator is implemented in digital; however, PWM design requires accurate OTA
and sample-and-hold design. It is worth to mention again that, unlike PWM modu-
lation, delta sigma modulation is capable of shifting quantization noise to a a higher

band of frequency.

One of the advantages of the proposed architecture over analog neural networks

is the reconfigurability [11,76]. The MDAC blocks along with the mutual design of
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neuron and the low-pass filter make this architecture more modular and easier to be
adapted for different network sizes and configurations. Furthermore, the high resolu-
tion synaptic weights used in this architecture makes it an appropriate choice for larger
network sizes. However, neural networks designed based on common CMOS MDACs

can not be used for high resolution calculations required in larger networks [35,36].

In terms of weight storage, saving synaptic data on capacitors or multiple-valued
memories [9] suffer from inaccuracy due to the leakage currents in capacitors and
therefore, require extra refreshing circuitries which require larger chip area. These

information can be stored on registers more reliably.

The proposed architecture consumes more area due to its high resolution nature,
specially when compared to fully analog implemented networks, or other low reso-
lution mixed-signal networks [9,35,36]. However, due to different techniques used,
such as multiplexing and employing analog components for arithmetic calculations,
the proposed neural network architecture consumes less area than digital networks,

considering 12 bits of resolution.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, a mixed-signal feed-forward neural network architecture using high res-
olution Multiplying Digital to Analog Converter (MDAC) blocks is presented. The
network inputs are in analog domain and synaptic weights have 12 bits of resolution
stored in registers. All the arithmetic operations, such as addition, multiplication and
neuron nonlinear activation function realization, are performed using analog compo-
nents to save area and power along with maintaining high operation speed. The
proposed network is trained off-line and the synaptic weights are downloaded to the

chip after being calculated off the chip.

Each MDAC block employs a digitally implemented Delta Sigma Modulator in
order to convert digital synaptic values to high bit rate pulse streams. Therefore, all

the synaptic values are encoded in time domain rather than a voltage level which is
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more accurate and reliable. Using this method of data conversion, all the synaptic
operations are performed in pulse stream domain in order to maintain high resolution
calculations for the network. Additionally, number of interconnections and overhead

area is considerably lower in pulse stream domain comparing with digital.

In order to finalize the digital to analog data conversion, a new method of low-
pass filtering is proposed which exploits neuron blocks existing in the network. This
method requires less chip area comparing to conventional RC filters. Moreover, apply-
ing a time-multiplexing scheme becomes feasible using this type of low-pass filtering
method. A time-multiplexed neural networks uses the same data path for different
synaptic values in order to decrease the chip size and compensate for the extra over-

head area caused by the registers storing high resolution synaptic weights.

A 2 —2—1 network is designed using the proposed architecture to solve the XOR
problem. All the circuits are designed and laid out in a full custom fashion in TSMC
CMOS 180nm Technology. The network is tested under non-ideal conditions and for

different mismatches and process variations.

5.2 Future Works

The proposed neural network architecture can be used in applications where high res-
olution synaptic weights are required for the network, particularly in larger network
sizes. This thesis is the first step in a high-resolution neural network in which the
synaptic weights are calculated and updated off the chip. Using a hardware-friendly
learning rule, such as MRIII, required blocks for training the network on the chip
can be designed and added to this work as a second step. Taking advantage of pulse

stream calculations can provide the accuracy that a high resolution neural network
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requires for its weight calculation and update.
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Appendix A

Layout Diagrams

LB
SR,

Figure A.1: Layout design of the analog multiplier

59



A. LAYOUT DIAGRAMS

Figure A.2: Layout design of the 14-bit full adder
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Figure A.3: Layout design of the 14-bit register
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A. LAYOUT DIAGRAMS
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Figure A.5: Layout design of the neuron
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Appendix B

Low Pass Filter

In this appendix, details on how the discrete-time transfer function are given of a
typical low-pass filter is calculated. The transfer function of a low-pass filter with

time constant RC' iin Laplace domain is described as:

‘/out(s) 1
= B-l
Vin(s) 14 RC's (B-1)
By converting the Laplace domain to z-domain we have:
V;)ut(z)
= B.2
Vil2) 11 (Z1)RC (B:2)
‘/out(z) z+1
= B.3
Vin(2)  z+1+(2—1)RC (B3)
After a multiplication through, we have:
Vour(2) (1 4+ RC) z 4+ Vo (2)(1 = RC) = Vip(2)z + Vip(2) (B.4)
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By rearranging the above equation, we have:

AN

Vour(2) (1 4+ RC) 2 = Vin(2)z + Vin(2) = Vour(2)(1 — RC) (B.5)
1 1 1—-RC 1
_ : ; kil B.
Vou(2) = T (Vinl2) + Vin(2)27) = T Vour () (.6)
Hence, we have:
1 1 - RC
Vout(2) = 1+W(Vm(”) + Vin(n = 1)) — m‘/out(n -1) (B.7)
The block diagram of Equation B.7 is shown in Figure B.1, where A is — RC and
B is 1J_rgg‘
N -1
Z T
Vin(2) =-|— X — — Vout(2)

T

Figure B.1: Block diagram representation of discrete-time low pass filter
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Appendix C

Delta Sigma Modulation in Matlab

This section includes Matlab codes used from the Delta Sigma Toolbox available at
http://www.mathworks.com/matlabcentral /fileexchange/19. For further information

regarding the toolbox and delta sigma refer to [77].

function ntf = synthesizeNTF (order ,osr,opt,H_inf f0)
Y%mntf = synthesizeNTF (order=3,0sr=64,0pt=0,H_inf=1.5,f0=0)

%Synthesize a noise transfer function for a delta—sigma

modulator.

% order = order of the modulator

% 0ST = oversampling ratio

% opt = flag for optimized zeros

% 0 —> not optimized ,

% 1 —> optimized ,

% 2 —> optimized with at least one zero at
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band—center

%

3 — optimized zeros (Requires MATLAB6 and

Optimization Toolbox)

%0
%
%
%

[z] —> zero locations in complex form
H_inf = maximum NTF gain

f0 = center frequency (1—>fs)

%ntf is a zpk object containing the zeros and poles of

the NTF. See zpk.m

%
%0
%0

See also

clans () 7Closed—loop analysis of noise—shaper.” An

alternative

% method for selecting NTFs based on the l1—norm
of the

% impulse response of the NTF

%

% synthesizeChebyshevNTF () Select a type—2 highpass

Chebyshev NTF'.

% This function does a better job than synthesizeNTF
if osr

% or H_inf is low.

% This is actually a wrapper function which calls either the

% appropriate version of synthesizeNTF based on the availability
% of the ’'fmincon’ function from the Optimization Toolbox

% Handle the input arguments

parameters = {’order’ ’osr’ ’opt’ ’H_inf’ 'f0’};
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defaults = { 3 64 0 1.5 0 };
for arg_i=1:length (defaults)
parameter = char (parameters(arg_i))
if arg_i>nargin|( eval ([ isnumeric(’ parameter’)’]) &

eval ([ "any (isnan (’parameter ') ) |isempty (' parameter ') ’]))

eval ([ parameter '=defaults{arg_i};’])
end
end
it f0 > 0.5
fprintf (1, Error. fO must be less than 0.5.\n’);
return ;
end

if f0 "= 0 & f0 < 0.25/osr
warning ('(%s) Creating a lowpass ntf.’, mfilename );
f0 = 0;

end

if f0 "= 0 & rem(order,2) "= 0
fprintf (1, Error. order must be even for a bandpass
modulator.\n’);
return ;

end

if length(opt)>1 & length (opt) =order
fprintf (1, The opt vector must be of length %d(=order).\n’

Y

order);
return ;
end
if exist (’fmincon’,’ file )
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ntf = synthesizeNTF1 (order ,osr ,opt,H_inf, f0);
else
ntf = synthesizeNTFO (order ,osr ,opt,H_inf, f0);

end

function [v,xn,xmax,y| = simulateDSM(u,arg2, 6 nlev,hx0)
%[v,xn,xmax,y] = simulateDSM (u,ABCD, nlev=2,x0=0)

% or

%[v,xn,xmax,y] = simulateDSM (u,ntf , nlev=2,x0=0)

%

%Compute the output of a general delta—sigma modulator with
input u,

%a structure described by ABCD, an initial state x0 (default
zero) and

%a quantizer with a number of levels specified by nlev.
%Multiple quantizers are implied by making nlev an array,
%and multiple inputs are implied by the number of rows in u.
%

%Alternatively ;, the modulator may be described by an NTF.
%The NTF is zpk object. (The STF is assumed to be 1.)

%The structure that is simulated is the block—diagional
structure used by

%zp2ss .m.

fprintf (1, Warning: You are running the non—mex version of
simulateDSM.\n");
fprintf (1, Please compile the mex version with

"mex simulateDSM.c”\n’);
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if nargin<2
fprintf (1, Error. simulateDSM needs at least two
arguments.\n’);
return

end

% Handle the input arguments
parameters = {’u’,’arg2’,’nlev’ 'x0’"};
defaults = [ NaN NaN 2 NaN |;
for i=1l:length(defaults)
parameter = char(parameters(i));
if i>nargin|( eval ([’ isnumeri

c
eval ([ "any (isnan (’parameter ’))|isempty (' parameter ') ’]))

)
(’parameter ') ’]) &
)
eval ([ parameter '=defaults(i);’])

end
end
nu = size(u,1l);
nq = length(nlev);
if isobject(arg2) & strecmp(class(arg2),’zpk’)

ntf.k = arg2 .k;

ntf.zeros = arg2.z{:};

ntf.poles = arg2.p{:};

form = 2;

order = length (ntf.zeros);

elseif isstruct (arg2)

if any(strcmp (fieldnames(arg2),’zeros’))
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ntf.zeros = arg2.zeros;
else
error ('No zeros field in the NTF.’)
end
if any(strcmp (fieldnames(arg2),’ poles’))
ntf.poles = arg2.poles;
else
error ('No poles field in the NTF.’)
end
form = 2;
order = length (ntf.zeros);
elseif isnumeric(arg2)
if size(arg2,2) > 2 & size (arg2,2)==nutsize (arg2,1) %
ABCD dimesions OK
form = 1;
ABCD = arg2;
order = size (ABCD,1)—nq;
else
fprintf (1, The ABCD argument does not have proper dimensions.
if size(arg2,2) = 2 % Probably old (ver. 2) ntf fc
fprintf (1, You appear to be using the old—style form of N
specification.\n Automatic converstion to the new form wi
done for this release only.\n’);
ntf.zeros = arg2(:,1);
ntf.poles = arg2(:,2);
form = 2;

order = length (ntf.zeros);
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else
error (' Exiting simulateDSM. ")
end
end
else
error ('The second argument is neither an ABCD matrix nor
an NTF.\n’);
end

if isnan (x0)

x0 = zeros (order ,1);
end
if form==
ABCD(1:order, 1:order);
B = ABCD(1:order, order+1:order4+nu+nq);
ABCD(order+1:order4+nq, 1:order);
Dl= ABCD(order+1:order4+nq, order+1l:order+nu);
else

[A,B2,C,D2] = zp2ss(ntf.poles,ntf.zeros,—1);

% A realization of 1/H

% Transform the realization so that C = [1 0 0 ...]
Sinv = orth ([C" eye(order)])/norm(C); S = inv(Sinv);

C = CxSinv;
if C(1)<0

S = -S;

Sinv = —Sinv;
end
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A = S*AxSinv; B2 = SxB2; C = [1 zeros(1l,order —1)];

% C=CxSinv ;

D2 = 0;

% 1111 Assume stf=1
Bl — —B2:

DI = 1:

B = [Bl B2];

end

N = length (u);

v = zeros (nq,N);

y zeros (nq,N);

if nargout > 1 % Need to store the state information
xn = zeros (order ,N);

end

if nargout > 2 % Need to keep track of the state maxima

xmax = abs(x0);

end

for i=1:N
y(:,i) = Cxx0 + Dlxu(:,i);
v(:,1) = ds_quantize(y(:,1),nlev);
x0 =A % x0 +B «* [u(:,i);v(:,1)];

if nargout > 1 % Save the next state
xn(:,1) = x0;
end
if nargout > 2 % Keep track of the state maxima
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xmax = max(abs(x0),xmax);
end
end

return

function v = ds_quantize(y,n)
%v = ds_quantize (y,n)
%Quantize y to

% an odd integer in [-n+1, n—1], if n is even, or
% an even integer in [—-n, n], if n is odd.
%

%This definition gives the same step height for both mid—rise

%and mid—tread quantizers .

if rem(n,2)==0 % mid—rise quantizer
v = 2xfloor (0.5%y)+1;

else % mid—tread quantizer
v = 2xfloor (0.5%(y+1));

end

% Limit the output

for gi=1:length (n) % Loop for multiple quantizers
L =n(qi)-—1;
i =v(qi,:)>L;
if any (i)
v(qi,i) = L;
end
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i =v(qi,;)<-L;
if any (i)

v(qi,i) = —L;
end

end

(0]



Appendix D

Proposed Delta Sigma Modulator

Described in Verilog

In this section the Verilog code describing proposed delta sigma modulator imple-

mented using CMOS 180nm library cells is presented.

module DelSigDAC ( DACout, DACin, clk, reset, VDD, VSS );
input [3:0] DACin;
input clk, reset;
input VDD;
input VSS;
supplyl VDD;
supply0 VSS;
output DACout;
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wire n6, n7, n8, n9, nl0, nll, nl2, nl3, nl4, nl5, nl6;
wire nl7, nl8, nl9, n20;

wire [4:0] SigmaLatch;

wire [5:0] DeltaAdder;

wire [5:0] SigmaAdder;

assign DeltaAdder [3] = DACin[3];
assign DeltaAdder [2] = DACin[2];
assign DeltaAdder [1] = DACin[1];
assign DeltaAdder [0] = DACin[0];

DFFSX1 \SigmaLatch_reg[3] ( .D(SigmaAdder[3]), .CK(clk),
.SN(n20), .QN(n6), .VDD(VDD), .VSS(VSS));
DFFRHQX1 \SigmaLatch_reg [0] ( .D(SigmaAdder[0]), .CK(clk),
.RN(n20), .Q(SigmaLatch[0]), .VDD(VDD), .VSS(VSS) );
DFFRHQX1 \SigmaLatch_reg[1] ( .D(SigmaAdder[1]), .CK(clk),
.RN(n20), .Q(SigmaLatch[1]), .VDD(VDD), .VSS(VSS) );
DFFRHQX1 \SigmaLatch_reg[2] ( .D(SigmaAdder[2]),
RN(n20), .Q(SigmaLatch[2]), .VDD(VDD), .VSS(VSS) );
DFFRHQX1 \SigmaLatch_reg[4] ( .D(SigmaAdder[4]),
RN(n20), .Q(SigmaLatch[4]), .VDD(VDD), .VSS(VSS) );
DFFRHQX1 \SigmaLatch_reg[5] ( .D(SigmaAdder[5]),
RN(n20), .Q(DeltaAdder[4]), .VDD(VDD), .VSS(VSS) ):
DFFRHQX1 DACout_reg ( .D(DeltaAdder[4]), .CK(clk)
.Q(DACout), .VDD(VDD), .VSS(VSS) );
INVX1 U6 ( .A(reset), .Y(n20), .VDD(VDD), .VSS(VSS) );
OAI2IXL U7 ( .A0(n7), .Al(n8), .B0O(n9), .Y(SigmaAdder[5]),
.VDD(VDD) , .VSS(VSS) );
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OAI2BB1X1 U8 ( .AON(n8), .AIN(n7), .BO(SigmaLatch[4]),
.Y(n9), .VDD(VDD), .VSS(VSS) );

INVX1 U9 ( .A(DeltaAdder[4]), .Y(n8), .VDD(VDD), .VSS(VSS) );

XOR2X1 U10 ( .A(nl0), .B(n7), .Y(SigmaAdder[4]), .VDD(VDD),

.VSS(VSS) ):

AOI21X1 U1l ( .A0(nll), .Al(DeltaAdder[3]), .B0(nl2), .Y(n7),

.VDD(VDD) , .VSS(VSS) );

AOI2BB1X1 Ul12 ( .AON(DeltaAdder[3]), .AIN(nll), .BO(n6),
.Y(nl12), .VDD(VDD), .VSS(VSS) );

XNOR2X1 U13 ( .A(DeltaAdder[4]), .B(SigmaLatch[4]), .Y(nl0),
.VDD(VDD), .VSS(VSS) );

XNOR2X1 U14 ( .A(nll), .B(nl3), .Y(SigmaAdder[3]), .VDD(VDD),
.VSS(VSS) );

XOR2X1 U15 ( .A(n6), .B(DeltaAdder[3]), .Y(nl3), .VDD(VDD),
.VSS(VSS) ):

OAI2BBIX1 U16 ( .AON(nl4), .AIN(DeltaAdder[2]), .B0(nl5),
.Y(nll), .VDD(VDD), .VSS(VSS) );

OAI21XL U17 ( .AO(DeltaAdder[2]), .Al(nl4), .BO(SigmalLatch[2]),
.Y(nl5), .VDD(VDD), .VSS(VSS) );

XNOR2X1 U18 ( .A(nl6), .B(nl4), .Y(SigmaAdder[2]), .VDD(VDD),
.VSS(VSS) );

OAI2BB1X1 U19 ( .AON(nl17), .AIN(DeltaAdder[1]), .BO(nl8),
.Y(nl4), .VDD(VDD), .VSS(VSS) );

OAI21XL U20 ( .A0(nl7), .Al(DeltaAdder[1]), .BO(SigmaLatch[1]),
.Y(nl18), .VDD(VDD), .VSS(VSS) );

XNOR2X1 U21 ( .A(DeltaAdder[2]), .B(SigmaLatch[2]), .Y(nl6),
.VDD(VDD) , .VSS(VSS) );
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XOR2X1 U22 ( .A(nl7), .B(nl9), .Y(SigmaAdder[1l]), .VDD(VDD),

.VSS(VSS) );
XOR2X1 U23 ( .A(SigmalLatch[1]), .B(DeltaAdder[1]), .Y(nl9),

.VDD(VDD), .VSS(VSS) );
AND2X1 U24 ( .A(SigmalLatch[0]), .B(DeltaAdder[0]), .Y(nl7),

(

(

(
.VDD(VDD) , .VSS(VSS) );
XOR2X1 U25 ( .A(SigmaLatch[0]), .B(DeltaAdder[0]),
Y (SigmaAdder [0])

VDD(VDD) , . VSS(

endmodule

Y

VSS) );
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