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ABSTRACT

Excited levels of ?oGe and proton holes in 69a

have been investigated by means of the (BHe, d) reaction at

an incident beam energy of 22,5 MeV., Angular distributions

were measured and are compared with the prediction of the

Distorted-Wave-Born-Approximation theory in order to obtain

the spectroscopic strengths of each level,

The number of proton holes in 6?Ga were obtained

from the sum rule of the Spectroscopic'strengths. The

vacancy probability U&e and the center-of-gravity energy

Ej for the 2p3/2, 1f5/2 and 2p1/2 subshells are

2

Single-particle state Uj Ej(MeV) t
204/, | -0, 342 0.926
15/ 0.957 3.008
2D, 7 1.058 3.566 .

These are compared with the pairing model calculations,

ii . ’
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CHAPTER I

THEORY
1-1 Introduction , S

The 696a (3He. 2) "%Ge reaction was treated as a
direct reaction process which involves only a few internal .
degrees of freedom of the systeml). The incident nucleus is
regarded as éonsisting of two nuclei heid together inla bﬁund
state by their mutual interaction. The target nucleus is
alloweﬁ to interact directly with one of these two subunits
and absorb it in order to form the residual nucleus in its
ground state or in an excited -state,

The elastic scattering between two nuclei can be
., described by an optical potential well. 1In a direct
reaction process, we add fo this opticai potential an
additional interaction which causes éhe transition from the
initiel to thg.final state. We treated this additional
interéction as a perturbation and this can lead  to the
Distorted-Wave - Born-Approximation (DWBA) expressionhfor
the transition amplitude which is given by the matrix

¢lement of the direct interaction with respéct to "the

initial and final state wave functions. The relative

ol
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motion of the nuclei before and after the process is
described by distorted waves fitting the elastic scattering

cross-section in the two channels,
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1-2 Distorted-Wave-Born-Approximation for a (3He, d) Reactj.o.x;),1

~

1-2-a) Introduction
Consider the A(h, d) B reaction, where h stands for

‘the 3He (helion) nucleus, This reaction can bé represented

4

L 0-0—0-0

channel « ' ~——3 channel B

‘in the following scheme

The total.Hamilfonian of the system éan be written

as

Lad

pe o
1]

Hy + Hy + Ty + Vi, =H +V,
. ‘ (1-2-1)
+ H, + T

Hg + Hy + Typ +

v

-
n

aB = g B

Where H, (Hy) is the free particle Hamiltonian of the channel
«(p), consistihg of the Hamiltonians H, (H,) and H,(Hg) for
the internal motion of the respective nuclei and of the
.Haﬁiltbn%gn_@hﬁ_ggdB) for the relative motion of the centers
.of mass. of h(d) and A(B), Ve(Vy) is the interaction poteﬁ%ial.

In the channel <, the Hamilténian H reduces to H,
since the pair‘h, A are well separated from each other,

Therefore we can define a complete set of eigenfunctions in

Y

b
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- \zPie channel which ﬁ%ve‘the-form
.

L

Such that ¢

n o

Wy = Ep'¥n o | (1-2-3)

Wy = E\W, -

Where \Y , and \}, are the internal wave functions of h and A
with the energy eigenvalues E, and E, respectively. The \Pog
are assumed to be normalized to unity end to be e}genfunctiogs
(of the magnitqde.and zacomponent of the total angular momenta
(jh. mh) and (J,, MA) respectively. Y s the waee function
of the relative motion of the pair, It is written as a plane

wave,

1-2-b) Leading to the Distorted-Waves

We must now generate the distorted waves from the
. F

Schrodinger equation

\ |
[ﬁ-— V. + U(p) + V(LS + VCwl(g)} X{k,r) = EXAk,r) .
2p L

(1-2-4)

L.

n\ -
/ﬂ@\h(g) is the cent; optical-model potential, vCoul(-I-')
( is the Coulomb potentia¥® and VS(£)£'§ is the sﬁ&n-orbit coupl-

"/

o

S~
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“with

N
irmg potential - for the LJ wave. The criterion for the choice
of U{r) is thag it reproduces well the inelastic scatterlng
reaction A(h,h')A,

If we write the Schrodinger equation (1- 2 b)

t

.-

(E - H) X, (k,p) = u.(e) Y, (kox)  (1-2-5)

U, (r) = O(x) + Vs_(:;;)Lé + Voour{Z) (1-2-6)
the corresponding homogeneous differential equatiopfis

(E - H) b (ko) =0 4 L (12-7)

- where & (k,r) is the plane wave wave function defined in the

equation (1-2-2), It also satis}ies the equation

(E - H) §.(x',z) = (E - E') § (k"r) (1-2-8)

- the orthogonality cohdi}ipn.

S4>:u_g-.;;) b, (k,r) dr = (23 §(k'-K) (1-2-9)
and the closure relation
gc#:(lg._z;') ¢, (k,r) dk = (2m)° 8(;’-35 " (1-2-10)

-

If we multiply both sides of the equation (1-28)
by the operator (E-H,,_)"1 we get

(B-H)"H(E-Hg) (k' yx) = (B-E')(B-HO™! §, (k'0p)

. | | (1-2-11)
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~ W
Rearranging the terms, we have
(B-H )Y tb“(_lg"._r_‘) = sy Pu(k’p) . (1-2-12)

Thus the “gk',r) are elgenfunctlons of the operator (E-H.L)'1
with the corresponding elgenvalues (E-E') 1; where E")O.and

E #£ E'., For E = E', the operator (E—H,,_)'1 is notjdpfined. .

If we operate the same way on the equation (1-2-5), -

we obtain

Yir) = (E-H 3ie)7 10 (0) Xi(k,p) " (1-2-13)

-

We have removed the divergence by inserting a small quantity
€, and we take the 1lim after calculﬁting (1-2-13). We have
two solutions dependiﬁéﬁ;g the way we remove the dlvergence

by +ie or - i€, The plus (minus) superseript on X denotes
the outgoing- (ingeing-) wave: ; _ R

The equation (1%2-13) is a particular solution of

the differential equation (1-2-5), the total solution is then

3

xEr) = & (k) ¢ (E-Rerie) Tud) XEik) .
| ' ' (122-14)
We have thaf (E-H‘tie);i is the free particle Green's operator,
| . We want to solve the Schrodinger equation (1-2-5) in
terms of the tog:; Green's 0perator2)._ We multiply the T
equation (1-2-14) by (E-H;tie) and by adding and suhtracting

>

3

o

!
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o

Yotkn)/= dulker) + (E-’ﬁﬁim) Uualz) Rulkor) |
(1-2-15)
-t &k . (1-2-16)

the total Hamiltonian of the Schrddinger equation

"L .
and SL7 is the Mg¥ler wave operator .
A ‘ '
Q=1+ - U lr) .  (1-2-18)
0 (E-H, +ie) : cT
So we see that our distorted waves ’ki(g.g) are generated
from the plane waves ¢k(§.£).fhrough,the Mpller wave operator
”~ . B
+
K-
x 1-2-c) Effect of the Interacti®n Potential on the
rd e, - j

Distdrted-W&ves : . (,
.If-we now includeﬁthe.pgrturbation potential Vg
which causes the transition from the channel &« to the channel

p. The total Hamiltonian is given by

A, ) ) ' .
H=He+ V, - U, . (1-2-19)



We must now solve the Schrodinger equation qffihe
system

Hy = . | ' _ (1-2-20)

. We uase again the Green's operator method. .The

solution of (1-2-20) will have the form
* = * * | - .
'"P,L(ls-!) =87 k) _ (1-2-21)

when we put the incident wave as being a distorted wave
o ?
calculated from the equation (1-2-16),
Comparing {1-2-21) with (1-2-16) we immediately

write

t 1 . .
=1+ = V . (1-2-22)
Slo (E-Heie) . .

[}

1-2-d) Transition Matrix Elements
We shall now follow the method discussed by K, Kikuchi

and M, KawaiB) in order to derive the Eggnsition matrix

elements.
Let us define the energy operators
e=E-H+ i€ , . (1-2-232)
and
A~ A
e/ =E-H, +ie . (1-2-23b)

From the equations (1-2-1 and 17), we have



e=%, - (Y -U) =65~ (Vp - Up) . (1-2-24)

The};;ergy operator ﬁﬁ is defined the same way as €, in (1-2h23b)

/ - ’
-by substituting g for«. We can write the equations (1-2-18

and 22) as
4 - /
SUE=1+ —}é— Ue » . (1-2-25)
ol
and
4
Q=1+, . (1-2-26)

We use the Gell-Mann-Goldberger identity which holds

for two arbitrary operators a and b

1 1 ' 1 \
a"‘b a 1 + b 'a-E ] ]
e aem

which can be proved by multiplying both sides by a from the

left'and by (a-b) from the right for the first identity and
by multiplying both sides by a from the right and by (a-b)

from the left for the second equation.

A plyihg'this identity to the equation (1-2-24),

we get . L )
=1 + — e (Vv -u,)} —=— ,

e, -1--= [1 + L -y J% , . (1-2-28)
_ e . e ey '
—
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From the equation (1-2-26) we have

ek 1 1
Sew= 1t (- U + = e

‘substituting the value of -%— in the last term on the right-

hand side, we get

=14 2y, -UK)'J + [1 + _1..(v*- Ux)] L v
\ e e ey
=[1 + -1—(1.;,_‘-11*)][1 + L .«.]
L € . €L
and from the equation (1-2-25), we get
N A ‘ . '
LR O O 5 e

If we multiply both sides of thls eeuation from the left by
" the energy operata{»e, we get

o U, = (e +.<v,¢-u,¢)) Qr

Substltuting the expression fore given by the equation (1-2-24),

we get

A

[ep - “’ﬂ»' Up].SL = e Sl

We then multiply from the left by eb and rearranging the
expressionjone gets '

[ 8

Q= 'E';— 5. EL+ + ’é;_(vb _'_Up-) SL‘:L . . (1-2-30)
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Since Vg Sk, .'vu,,_g'z,ft = (Vp = U,

+
then Bt = U ST+ (- Ul

Substituting the xpressiorlfoz'il: given in the equatio; '
(1-2L30) in the fiirst term of the right-hand side, we obtain

) .
pSL = Uﬁ[_ e‘t‘Q_, + §;—(Vﬁ - UP)SL:J + (Vp - UP)Q_,‘L

¢ 7 .
= Uy e L 4|1+ “l“"vb - U
-, eP o - P“ ' -
. : - 3t ‘
"':Uﬂ ALQ*‘Q‘ + |1 +-..1_'-..U (Vﬁ 'Ulﬁ)'g')‘:tL ’
P \. P )
' = U 1 Agz:i‘ (V U).Sl.
R AR R RS

o (1-2-31)
where * and + indicate the complex and hermitian conjugate

respectively and

.A_. 1 »* ‘ .
’SLP = |1+ = Up] . - (1-2-32)
ep

By comparing with the equations (1-2-18 and 16),

we may write Lo

ﬁﬁa} ¢p . ) (1-2-33)

Where 7C; can be considered as a solution of a Schrédinger

equafion similar to the one given im {1-2-5) but with the



potential U; instead, This type of function has been discussed -

by L. I. Schiffu). It is the time reversed‘gigenstate of 7Q: R

but it does not represent a physically possible behavior of

the system since the Hamiltonian is not time.reversal invariant,
| The transition matrix element for the reaction from

channel & to channel g is given by (See‘Appendix-A and Ref.4 p,313)

~ | -
Tea = (PalVal BL> (1-2-34)

 Substituing the expression foriyz given by the equation
(1-2-21), one obtains -

Tg, = <¢F|V”‘ﬂ.: Xe)> .o (1-2-35)

From the equation (1-2-31), it is clear that

A A_-f
T = ( ¢5\Up§i' eu | N <¢p|.S_Lp\(Vp - Ui Xly .
" ' (1-2-36)

The first term on the right vanishes since we have 3, #e,
and that 3.( ‘)(_I = i'e')cl which goes to zero when we take lim,

€= 0
Then from the equations (1-2-33 and 21)

T; = <x; \Vﬁ - UH%: y - | (1-2-37)

The distorted-waves-Born approximation consists of
+ + \ ) :
taking Y} ~%. in the equation (1-2-21). Then the DWBA

expression for the transition matrix element is given by’



(% 3

RS
>

-0 N
Tgﬁ.= <3£b\Vﬁ - UP\)\L+ . (1-2-33);?

Let us consider schematically the A(BHe;d)B

reactian).
R ‘

Channel  o¢ - Channel 8

[N

It is convenient to transform the equation (1-2-38)
to the coordinate system (r,, gﬁ.g )3 where'g standg for
an aggregate of the internal coordinates orthogonal to r, and
Igs The pogition;vector diagram is shown in fig 13’6).

From fig 1 we have
gh = (gdlgpl Epd) » (1-2-39a)

Sx = (8 po T 2

(§ g0 % oo mpar € 4) » (1-2-390)

and

€p" (5055 = (L0 % 4% o 5o (1-2-39)
5



o
=

bt ¥

where'gi_r@presents the internal coordinates of particle i,
We can express Tpd and ;PAJEn terms of r, and Irs .
¥We shall write p, d, h, A and B as the mass of the corresponding

particles; Prom the vector-position diagram, we have that  °

K

P d
=T ot T Za (1-2-80a)

and

(1-2-40b)
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.\ . . '
Combining these two equations together, one gets

h p ‘B P

ERER S Ty S R (1-2-41)
Since

Tpa = Fph * Lha 3

pr}_)hzd;—‘hd ’

and _ ;~. E : i .ﬁ>
| .
therefore N
N h
Tpa = Ipn [1* | =T %pn ¢ (1-2-k2)

We aléo have

Substituting (1-2-42) into (1-2-43),.one gets

- - _a .
I.PA = _?.L +* 5 '-r-:p_d‘ ’ : (1-2-44)
Then from (1-2-41) ) ~
h P B p

. p . : 1
TR - T I«” W fpaT K BT TK ZIpa -
Rearranging this equation we obtain
= hB , A
Zpa ~ —prmr[rp_ " F !-a_] - (1-2-45)

Substituting (1-2-45) in (1-2-41) and rearranging the terms

LY



»
Tor = PUET AT Lp - & Eu - (1-2-46)

From the equations (1-2-39b,c) we have that

'g = ‘ﬁd-ﬁ p'g A j (1-2-47)

and the Jacobian of the transformation from the natural

variables ?‘i’d and Toa to r. and £, is simply 3,4,5,6,7)
(£ .y T ,) 3
_ 3 —pd' ~pA _ hB (1-2.48)
-3'(1‘,1') Sy p(Bed) ., -<-
~M .._p y

The distorting potentials are not diagonal wif\
respect to the channels, Therefore X: and 'x,i. are given as
- ) N . ) (

a linear.combination of the channel wave functions (Appendix B)
Xt = .. 1-2-49)
o ma.{. o m"’_ \Hz.m."- P _ '

and , -’

Xp %é; maq}pm'p- - : | (1-2-50)

where m“L and m'p represent the different values of the z-
component of the spin of the 3He and d,the dl)m.'s are the
inter-nal wave functions for the m'-th state of the nuclei
and the @ 's are the corresponding distorted wave functions

of the relative motion,

A ’ “
)
"y
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., The transition matrix element (1-2-38) then becomes

DW - . | |

x\gg'; m.q(g,))‘&, Ep-f . {(1-2-51)

i

1-2-e) Form Factor
From the_equatioﬁhflcz-Sl), the form factor Fpo
is given by ' - N

‘ ’ ) | > -,... .
F’?"‘zj,\PJB”B Epar § p'gA)kPJde ffd) v ;o
XWJAMA (gA)\PJth(EPd' g 4’ g p) d.gAdgddg: v s

(1-2-52)

o

B - UdB . Si?ce the nucleus'B is

formed from the target A by stripping a prg}ﬁﬁ from 3He._

V=V- =V
Where B Uﬁ = Y3

we may write
- £ p vt
Vap = vpd+vdA , : )

g0 that ' - U

i
-
+
—
-

dB) *
It is Gsually argued that the term Vpd dominatese'g).
There is considerable cancellation between ﬁdﬂ and UdB but

this can nhever be comﬂlete for finite nuclei, VdA is considered

J L g
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as a true, and therefore real interaction, whereas UdB is an

optical model potential with an important imaginary term.
Thug U, can only reproduce the elastic scattering while VaA

- ' -
also excites the cbre A, Even if de'wag represented by an
optical potential UdA;'the cancellation would still not be
complete since the potential refer to slightly different nuclei,
The only argument in favor of our agsumption is that it gives
éétisfying resultss).

o Then ‘the form factor (1-2-52) is written

<
T 2
17 O

P *
T = S\\J*JBMB(EP-A' g p’ g A)L\J‘Idmd( gd)vpd(spd'g d'gp)

X\V JAM‘A(‘gA) \‘J Jth(Ipd'g d'-g p)d‘ghd%ddgp.’
(1-2-53) "

It is assumed that Vpd is central, that is, scalar

... in the sepafation I?d , 80 that 4, p are in an s state of

relative motion within n?}. 1t is also assumed that the s
projectile h and the outgoing particle d can be represented
by B8 wave funcfioﬁs. Then Ea = 84 and the z-component
My =my , also dn = By and the z-component M = m,..

' The form factor can be expanded into terms which
correspond to the transfer to the nucleus of a definite
angular momentum J = dg = J, which is composed of a spin

part s =8, - 8, and of an orbital part d=j-s. The
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respective z-componenrts are }1 = My - My 9 = m, -vmy and
m=My =My +my -m. . |
,/ The function of the residual ‘nucleus may be expanded

in terms of the eigenstates of the target

Y appeon § 0 § 0 - WZ,‘MX Vop g Gao e 8,

f; ’ \ * (1'2'5"")

where \PJ. ' is the wave function of the nucleus A in the
AT A .

. . . ' - .
state A an_d& j}* pA' "; p) is the wave function of the perton

in the orbit ({, 3) around A which is in the state Av,

. ‘ ’
We can further decompose &A

jF’ as

= Z.d Moy (SLPA)cb PA)‘PS,, 5

Jf‘ Isn

»
? F A .(1"2"'55)
Where 'J"Zij) is a spectroscopic amplitude aside from a
factor ni which arises from antisymmetry consg‘.dergtiéns if
there are n- equivalent nucleons in the orbitlo). The ususal

lspeetroscopic factor is then just (see seetion 1-4) i

s(23) = n(JA (25112 ‘ (1-2-56)
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¢/

L

] i, K

d‘)fj . 1s the''radial ;‘unction for the shell model orbit (lj)
s and W sp 15 the nucleon spin function,’ The sum ‘over £ and s
is superfluous since s=% and L=j:l,-&~"according to the parity

change, Then the form factor is given bj :

| "
Fﬁi S JFJMMA.\VJA-MA'(g“) lz 5 "'J) g ('Sl

’ e

A . LN
I (rpnwso(gp) sy Cap gy

x\\)s;m;( ?d)“vpd(%d' § d'_ g p) \VJAMA('.EA)

x\\)shmh(zp'd' ?d'-ﬁg p)dgk dgdjd§p

Performing the summation over JA'MA" , integrating overg A
and rearranging the terms, we get !

‘ A m Yy m
Pay = LBJ'& 1" Y (ﬂpk)&,) (ph) cf vk \
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w

The inteéral in (1-2-57) gives us a scalar function
' Vg My,
8 By Bp

D(rpd) times a Clebsh-Gordan éoefficient7)‘ ¢

We have that

Cp mg My (_)s + 84 - 8y Cmd v My
8 8y Sy - 8y 8 8y '

and since s = 8, - 84 » we can write

-

I =LA m A* m v f
F& _le;J 1 g (LJ) YL (SLPA)¢1'3 .(rpA) cLs 3
M, . M m, m ‘
AMTB VT Ty
C . c . -2-
* JA J JB 8 B4 Sy, D(rpd) (1-2-58)
. As pointed out before, it is usual to take the wave

function of the ingident particle as being a s wave., In this

interrial wave function of 3He can be separated into a

w shmh(zpd' g a’ g p) = ‘§h(rpd)q) shmh( gd' g p) .

- 7 (1-2-59)
S PR
pg to be a central potential, the integral in (1-2-57)

" becomes .

PR N ) |
S'dgd Sdgp 1 ;v( 7gp)q)sdmd( Ed) ,vzg('rpd)éh(rpd)

Taking V¥

5 j %\'Pshqlh(gd’ gp)'
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>
Integrating over g p(énd gd we get

y m
dh h )
B 8B4 By V (rpd)? (rpd (1-2-60)

-

C
8y, : _
where Vpd is the value of V in the spin state s,. By
comparing (1-2-66) with (1;2-58) the scalar function D becomes

' ) = VR O (r,)  (1-2-6
r . Dlrpy) = Voalrpa) n{Tpa) - 1-2-61)

" ‘ We must notice that since therﬂ are two protons in
3He. the cross section will be two times that of the equnxion
. which deBcribes the transfer of one particular proton. AN y
It is convenient to define a function Hsz}TpA' rp;}._,//

such as _ g \
‘ A A* '
Hlsj(rpA' rpd) = 3 (Lj) ‘b L3 (rpA) D(rpd)' (1-2-62)
Hlsj(rpA' rpd) refers to the system (rpA. rpd)' We must

transform it to the-system (r . gp). To do this, we define

a function

3
28, + 1
h Ym'
GLaj,m(—ur ’ E’) =J [ o + 1] L (g‘pk)ﬂlsj(rpl' I‘Pdl)ﬂ'

(1-2-613)

where J is the Jacoblan of the trangformation defined in the

equation (1-2-48),
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R .
If we substitute (1-2-63) in the equation for the

Torm factor (1-2-58) and using the following relation between
the Clebsch-Gordan coefficient

i .
My vy m, _ 2sh +1 (_)Ed'md cmh-md V.,
By B 8By - 28 + 1 8, By 8

- -

we obtain an expression identical to the one gliven by Satchler7y

-1 -t 8asMg
Fpa = 970 2 17 Gy ol £p) (-)
Isj
’CMA Mp-Ma M ™ "Ma ™nMa
JA; . JB 8 54 8
mme-m, M.-M .
h~Ta "BTUA
FCL 8 j . . (1‘2"6“)

An expansion similar to' equation (1-2-64) can be
made for the isospin exchange, except there is no analogue
to the orbital transfer L, Each G is then a sum of terms

weighted by {

HTA my "TB m, My My
C=Cqo "¢t 1

A B d h

We have td =0,

Clebsch-Cordan coefficlient

0 m, -4

COt 3 t0§=‘5t§6-mt§'
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The weight'f;ctor C is then given by9)
c C MTA -i -MTB . C Ml -é .‘M"& , L]
- TA 4 TB TA 4 Ty

where M‘f TA,=:§(N-Z) of the target nucleus A,

It\is often helpfulﬂfggfwrﬁigﬂgisé as the product

&

L

of two'factors

‘l‘li:q.ﬂj.nm(&' EP) B Alsj gtaj,m(&' EP) ) (1-2-65) |

Where Alsj is a spectroscopic factor and }1.83 a form factor.

From the equations (1-2-63) and (1-2-62) we have that

*
25h + 1

' . .
AIBj S'I.Bj,m(h' I_‘_p) = JC [T_B +1} "271 gA(LJ)¢LAa (I‘PA‘)

- .
T )

[
. B
- - 4

Bh ’ *
Vo (re) bpirpy) 1 (Ron) . (1-2-66)

*

Note that we have included in this expresgion the weight factor
v 2n where the factor 2 comes from the fact that there are
two protons in 3He and n from the fact that there are n .
equivalent nucleens in the orbit (£3). J is the Jacobian and
C is the isospin Clebsh-Gordan coefficient, .

Let us recall the expression of the transition matrix

element given in the equation (1-2-51) and include all the

modifications used in computing the form factor,

"



ot 0%, o S"’P{’ R LT

| ]
mpmy

+ - .
K-émcm (E“v E() . (1e2-67)
h™'h a0
" If we substitute in the expression we have calculated for the

form factor equation (1-2-64), make use of (1-2-65) and

rearrange the terms, we obtain

M, M_-M, M fmm m

i, A B~"A Mp h"q
12:3 (25+41)% Ay s C iy ﬁsj (35. Ko)

_(1-2-68)

. Where

- Lmm m ' m' -m m'-m'+m!
(25+41)} ~ieﬁsj ha kg ka) = 2 C d 7T ah

5 J
mmhd
' ] . -m! ¥
. cmh -my mh-ma () B4~Mg
Sh Bd 8

- . '
lSdE ‘Sd£b§mamd(5p' Eﬁ) 918j,m'(£P' E,()

x@*m{‘ m (ko L) (1-2-69)

The distorted waves have the form’) (Appendix B)

]
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t
n Motmy
JGL
M +m_-m'
Yoy MRE. 9
* *! ol 1 4

' Ma* Mb'ma+m3

. (1-2-71)

dne is refarred to Appendix B for the definition of

all the terms in the equations (1-2-70 and 71).
Since the form factor Flsj m in the equatioh
*

(1-2-66) tranaforms like Yf. » its expansion into a double

and JLrp takes the formli)

series in spherical harmonics of SLr
‘ -,

-

=. 8] M m-M* .
flsj.m LEPIHLL(%' r,) Ytherp. ¥ ) YL?. (erx.. ‘Prd_) .

Iyl i
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M m«Mm -
x C . (1-2-72)
Ly L A .

Substituting the equations (1-2-70, 71, 72) in (1-2-69) and

rearranging the terms, one gets
¥

L . L
(2,1+1)iI 1‘ B?mm(kp,k)- 'Z.‘ (- )d duri ;

m mﬁ d
JpLpMp
L L M
{iL*M
] ] ' ]
mh -ma mﬁ-ma m' mh-md m-md+ma
xC C 1
B, B4 s B J
. M; -md M‘-md c M’-md+ma -ma Mﬁ“md
Lp 84 Jp LP ad J'
‘e Mm*'-Mnm' c Md m, Nk+mh
L, L, L L s, I,

’ M +m -m} my M +m, M; Mg :
Y. (B , Y '
»C N sh I L.L( k, Lfk_‘_ Lp(ekp \Pkp)

"“i:'t"FT’_ S ".a."".tg"!d" &L JP(kﬂ' ) Pu. L, (rg. @L J, .

o
~
m* -Me C Mgem at
» Sd?‘ks Binerider‘t YLZ (eri'\P&) YL‘_ (eri'k?r*)

.
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, My+m'em
x1af, {ein®_ 48 Y™ (g , ¢ )y? d9g Y,
S " { rp O M1y Org Yo Lp Prp Trs
) (1-2-73)
From the orthogonality relation of the spherical harmoniés.

we have that

M M
Sd ‘\oi fmei d9i YL: (Oi. ‘Pi) YLj (B,, Wi) = dLJLIé‘MJMI

Then only the terms L - Lﬁ and L, = L, will contribute

in the summation., We also have

» - ]
m* - M = Ma + m, - My
and
M= MB- my + ma '
»
which imply that
m- M, = Mﬁ . (1-2-7L)
Then one gets
[ 3
YM' _ qund . )m-Mi Yntfm
L h LP - = Lp .

Then the equation (1-2-73) reduces to

» k) = 4T Z_l 11;‘-1.’
o

t nlom m
(25+1)} 1 (38';'% d (k,

a.

T x
»

f

o
Fl:" ‘l“ ::E.

'
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M, +mM-M m! -m' m'-m’ m'* m!'-m' m-m'4m'
X( ) d d o Cah Bd hB d c ,. h d d h
. h %4 . 8 J
M M, - -m'+m -m* "M _-m
X C LB Bd -bJ d c F L sd IJ d
B d - P d P
‘e M'-md+mé Md+mh h m' c M¢ T, I‘I{‘-rmh
Lp . La j, L.‘ Bh J!L .
M +m_-m m! M +m M* M“-m
h "h h o h o
x C Yy “@© ., ) Y ©e, ,Y% )
L. 8, g Ly ALV Lp kg
ﬂsj ‘ ( )
xI . ) 1-2-75
L'Jp LGLJ“_ :
Ls} "
Where 1 L ﬁL J is the integral
p 2o RSN d d @ (X )
= T r r r r
LaJ’L“Ji K, 8 o .Lg g B LﬂJﬁ g’ B
8] .

By interchanging the terms in the Clebsh-Gordan

coefficients the appropriate way and using their orthogonality

relation, they contract to a Wigner 9-j symbol yielding?'lz'Ij’iu)
ﬁsj (kp.k ) = 4w Z_, (2J,+1) (28+1)3(28+1)% ¢ =% "B

LP J’



A,

30

"
- ’

M --m+md m+mh-md Ma+mh ' M«. mh M‘u+mh M“-m md M¢-m+md
x C C C
JP j Joc Ld 8y J“_ LP 84 Jp
j~ £ 8 M -m M am
" « !
Mo ba o Yy @ ) g Ckg P R
¢sj ( )
X I . 1'2-?7
LpJ’ L_,_Ja. _ .

If we chose k  as our z-axis and k xk p 28 our

y-axis as shown in fig, 2:

s X
k
=B
/
/ > >
y K
Fig. 2.

this¢h\?ice of axes permits us to put

ekd = kPk‘(. = kPk =0 -

and e.kp= e .

Thereforelu)



‘ Y . ' 11
SN

»
e g (25
andis) ' ] -
M -m -m ., m m* )
SECICER

2Lp+1 (Lp-m)t LR
s = (LpwaTt PLﬁ (cos8) for m)0

(1-2-79)

Ls} ' .
The integral IL’JpL¢41 described by the equation

(1-2-76) is taken over the two variables r% and rg . It is
common to reduce it to an integration over‘only one variable
by applying a zero-range approximation (ZR). The ZR approxi-
mation considers that the emitted particle is produced where
the incident particle disappears. It essentially consists of

making the outgoing deuteron and the centre of mass of 3He (h)

coincide -as shown in fig.3: ' - ' -
Ly
. p, 4, h ¢ - A
r B
Ly
Fig. 3.
A
then Ly = —g— L, » 2 (1—2-80)\£

Substituting the equations (T-Z-?B,’;%\and 80) into (1-2-77)

<~

~
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where

Isj ZR
1
LpdpL,Ju

8] , :
’"FELPL’((I‘L) QL‘J* (k¢,r¢) . , (1-2-82) .

1-2-1) Differential Cross-Section

. i
The differential cross-section for unpolarized :

i
| | |
the initial states and summed over the final states is given by5'6'?)h

(See Appendix A)
AT . _fu Me k

Ka 1 .
o nEErT e e 2 Im .

(1-2-873)

projectile and an unpolarized target nuclgus,averaged over

Frod the equation (1-2-68), we have




: : Immm., 2
2 2
2. \m2= T, (2341) | Agesl 'ﬁgsj h d\

M, m M g
h
Mﬁ Ma Mﬁ‘md /
Isj m
[ 4 .o .
. . . “-‘h%.
My Mp-My My, My MM, Mgt

. *Cy g--C3. Je
‘ A o9 B AT B

Transforming the Clebsh-Gordan coefficients

- " . &
. M, Mp-M, M, _ [ 2J5+1 ] 3 (_)JA-MA . My Mg Mg-M,

Ty hi Jp ‘“ 2]+1 o Ja JIp J v
I / o then summing over MA and‘MB and using their orthogonality °
relation: : . . ) f

1 )
D 2 712 = (205 *1) zi’ \Alsj‘ l B P 'I :
Mg my . mh~ d

. : L s '
(1-2-84)

Then

Mg K “ (20541) Lom m,) 2
dw =~ (thz) 2 ka. t23£+1)(2sh+1) JZ' \tsgﬁsa \
- m

1 h

Vs N i

d

e =3

(1;2-85)

2R

In the ZR‘approximation.-B is given by the.

equation (1-2-81), Usually in'this‘approximatipn; the scalar
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function D(rpd) given by (1-2-61) is assumed to be of short

range and'may be replaced by a delta function:
8y, gé 8
D(rpd) = Vpd (rpd) h(rpd) - D°.| (_I_'pd) . | (1-2-86)
From the equation (1-2-45),
Iy =24 A =1
| (Ipd) = (Eﬁ' S rJJ ’ (1-2-87)

then the Jacobian J defined in (1-2-48) cancels out from the
transition amplitude. The effect of this approximation is to
congider V d (r d), which is the potential binding

P
the proton to the deuteron to form the 3He nucleus in the

state B+ 88 being of short range. -

’ The wave function § (r ) was previously defined
as the wave-fungtion of the helion nucleus, It then satlﬁfies
the Schrodinger equation

2 s '
2.

‘v (1-2-88)

’ -

_ The po‘benj;j.@a/used to generate the §h is usually an optical-
model potentlal with spin-orbit coupllng chosen to describe'
the scattering of prétons on deuterons, To estimate the =

magnitude of D0 sy One may takeé)

D, = gdrpdl A h (r pd) @ (r . (1-2-89)
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If we now apply the ZR approximation to the form
factor fiaj,m In the equation (1-2:65). we get'

i
LSRN

ZR A A
Fiasmtzg 20 = 8txp- B 20| frap,nle + -5 or e,

. . | ,
= F.Ls;](r,t) Y} (er‘.. “Prd.) 5(£P- —%—- ;A) . (1-2-90)

Comparing the equations (1-2-66, 86 and 90) and noting that
Ink = Lo when Ipg = 0, we can set Fﬂsj = élj' which is
the radial shell model wave function for the proton in the

orbit (ﬂj) around the target nucleus A, The coefficient Alsj

then becomes

. . 2, +1 | % 1 ’ .
Aggs = C [-—2%-1—] zn Q*(zn Dy (1-2-91)
with (1-2-56)
25, +1 | % 3 |
Aej = c[ g_ﬂ {2 s(&§) o, , (1-2-92)

where C is the 1sospin Clebsch-Gorden coefficient defined

earlier. _
Substituting (1-2-92) into the expression of the

L.
crogs-section (1-2-85), one obpainé

M Jag o204
“(2x82)?2 SuRCrocCo

dw

. (2s, 41} ' | ~fmm.om_ 2ZR
‘ 2 h : 2 > . d'h

s § ' . (1-2293)
’ = -

3
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For a particular transfer (ﬂaj) of a proton, the differential

crosa-section becomesn 3

2J+1 2 2
—a“- %TLTTC%TT‘

L m_ ZR 2 |
Boy @™ @)% . (e
d / ‘

!

c2s(d;)

2541 T ou!©)
2 T 2)H '

~

(1-2-95)

whereG'Dw(e) is the cross-section calculated by the DW
. l .
program code DWUCK for a given form factor FE% p(rl).

From the equations (1-2-81, 82, 94 and 95), we have that
O'Dw( ©) has the form

)

' k 2
T (0) - L Lak B p2 & (25+1) 20 -
o VoD L ka0 (2841) ! KKp)

(Lp-m)t
.(_g_) ;E:J J (2Jp+1)(25+1)(2[+1)(2L +1)(2L +1)J

p (L +mJ1
™h™Mq , B
L J L JF '
mg-m  mim-m, my o m m gmomg myem
%xC A c
Jp J Jd, LA 8y, Jd LP S4 J',
£ = _
x{J) L s dr rzé (x A ) §8) (r,)
X “o Fp “"a TLgJp p' B fLpLy "4
Jr) LP Bd . )

'XJ.
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2 L)
’*@ (k , ) . (1-2-96)
L*{* of 8

The constant N is taken to be6) 4,42 for the (3He. d) reaction,
The spectroscopic strength of a given level of the

residual nucleus B, for a given set £ of the transffarred

proton is défined as10s 2k)
—-;;:—:-I-— c®s(ly)y . (1-2-97)
Thus from (1L2-95). the spectroscopic stirength of a given
level is ‘ \\\ - |
23,41 (21+1) 2 . %‘i

B 23(¢ 3
e C3S(€3) = —fifr- 3oy Gow (6) -

(1-2-98)
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1-3 Non-Local Calculations and Finite-Range Effects

L4

The zero-range.approximation (ZR} in a JHe stripping
" procens correséonds to the assumption that the transition
ampltitude, equation (1-2-51), which is proportional to the
matrix element of the deuteron-proton potential taken between -
the distorted waves in the incident and exit chanﬁels.‘receivés
contributions only from the region where the coordinates of
the deuteron and *he proton coincide,

The - transition amplitude involves the combination

(1-2-61)
8
Diryg) = Voh (rog) ®plrpe) ISEERY

and the ZR approximation amounts to assuming (1-2-86)

\

Dryy) ¥ Dy Sryy) - S 3

~

Where the constant Do was given in the equation (1-2-89) as

Since it is generally believed that the optical

potential is non-localig). we must include a finite range

correction in our previous calculations. The lotAl energy

approximation15) (LEA) constitutesa imation to

the finite range correctionu, The

=

istorted waves will be

\\\.
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/
taken to be spin lndependent in order to simplify the formaliam,

Then the equation (1-2-75) becomes with (1-2-72, 66 and 61) °

o, .
(25+1)% ﬁ’;g‘(!sp.ls.“) - -,&ﬁ})p— Sdst gaz, &, (kpry)

o

Y ‘ +
chyron) Dlrg) BTk ix ). (1-3-4)

We recall from (1-2-44) that

SR B e

and by using the same technique ag for deriving (1-2-44), we

have

T
A

EB = —g_\SPA + Edp " ‘ (1-3-6)

Setting A/B ~ 1,

Ly= Ln* Lyp - (1-3-7)

the essential step in the LEA is to do a Taylor series

‘ i
expansion of the distorted wave functions ép and é: :

one then obtainsls' 20)



Lo

+
Rtk rp + e map) 7 Lk ary)) ¢, Ve

TN W E I r, )2 Gtk p) 4 0

(1-3-Bv)
These axpana'ions can be written symbolically as |
éﬁ ey £p) = oxplegy T ¢ ) Z’ép(k L)
= ey, - (Redop)) G (kpury) (1-3-9a)
@BE*.E*) = exp(—%— _z;_dp ) § (k orp .
= exp{i —g— (r op)’ @ (k »r, (1-3-9b)

Where the subscripts on the operators (E;) and (E}) op

serve as reminders that they operate on @ (k .r A) and
é? (k,,r JIL) respectively.
Substituting the equations (1-3-9a and b) into

(1-3-4), we get

3t . (w2 | -
(23+1)} 4 @ 3y ) S G0 gdgi gd_r;_P JE

Pt



L1

x exp(1 Lap * (—{:—-(F‘L)op + (EP op) @ (k ,r ) ¢:3(rpA)

!& +(Ed.£d) .

ol

2
45)° -1
e J gdr.\ gdr,p D(rlp) exp(1 rlp.Rop)

§" (kpr,) ¢>,J<r W Eleor) (1-3-10)

Where J is the Jacobian of the transformation from the

coordinate system (r EparLd ) to (3’.5“) glven by the

dp
equation (1-2-48), We note that the Jacobian cancels out
of the transition matrix element. The operator R'op is

dafined by
d foy | - U + v - e

The integration 15, carried out over Edp' We notice that the

operator Rop is independent of -Edp » thus

2
(2j+1)5 it 'BLB?(E}'H) —%‘{D— J-1 ydgpk DF(K#)

Ba

@' (ko5 RIE YIS @d()s_‘.;w) . _(1-3;‘12)
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Whero

F
P (Rop) = g droq E(rpd) exp(i £y KOP) . (1-3-13)

{/ Clearly DF is the operator corresponding to the PFourler
transform of D, It's effects on the distorted waves &;.
and é" and on the bound state wave function (b:. have
| oo J

been estimated by several aptorag' 15 20'21),

. We will give here essentially the results obtained
19) F A*
by Perey and Saxon . The operator D° modulates 1] with

a form factor

(Uh(r) - Ud(r) - Up(r) - Be)

E

MR

Ar) =1 -

(1-3-14)

Here Ui(r) is the optical-model potential for the particle i,
M is an atomic mass unit, Be is the binding energy of the
pfoton in the residual nucleus and R is a range as defined

by Bassel?2),
P

4
D' also modulates each distorted wave éwith a

form factor

- 2 '
N, (r) = (1 - %@i— v (en¥ (1-3-15)

where L. is the reduced mass in theﬁchannel considered,
pi_is the non-locality range and Ui is the equivalent local

potential,
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1-4 Spectroscopic Strengths and Expectation Values for the

Number of Proton Hole's

We shall now give a summary of the theoretical
analysis of the reduced widths by Macfarlane and Frenchlo’zu).
We will restrict ourselves to the jj representation and

—generaliza without demonstration to the jjT repreaeﬁtation.a

The nuclear shell model is bhaced on two fundamentnl
antumptions, The first one is the existence of single-particle
orbits characterized by a rgdial quantum number n and an
orbital quantum number [ . The second is the existence of a
strong spin-orbit interaction which depressgs each j=.l+ 4
level relative to the corresponding j=[f- 4 level, with
i- 4 + 8. These two basic postulates are summarized in writing

the nuclear shell model Hamiltonian in the following form

pu o
n
>

. V(ri) + 1%341 Hij + a iz:;l £i . 8y o (1-4-1)
where V(r;) is the central shell model potential. This
potential may conveniently be chosen to possess harmonic
oscillator radial dependence; since in that case, the eigen-
functions are well known, Hij is an effective two-body
interaction operator and the last term in (1-4-1) is the one-

body spin-orbit potential. These last two terms are usually

adjusted so that the shell model Hamiltonian gives a good



iy

approximation of the experimental properties of the considered
nucleus, 1In a shell model calculation, it ls necessary in
practice to restrict tfme number of states which enter the
calculation and include only the states of a few of the lowest
configurations, regarding the A nucleons of the nucleus as
fi1ling the single-particle atategﬂpf V(r) in ascending order
and in accordance with ?auli's_exéluaion principle,

Let us consider n equivalent nucleons, i.e. nucleons
in the same subshell, We wish to consfruct completely anti-

symmetric states in the jj representation

X|F = | J
. (1-be2)

with P ={ nfj] , ﬁ = {Jl , where “1?3 the principal
quantum number of & nucleon, 1 the orbital angular momentum
of a nucleon, j =.& + 8 the total angular momentum of a
nucleon, 8 being the spin of the nucleon, J is the total
angular momentum of the nucleus, ‘The quantum numbers {nlj}
are absorbed for convenience into a'single quantum number £

and J into f An additional quantum number x-has been added

to represent all the non-angular momentum quantum numbers.
. .
If we suppose that the antisymmetric wave function

b



bs

£

of n-1 equivalent nucleons is known, and is given by

¥ ¥

The functions

p(n)

ey (1-L-4)

are antisymmetric in the. particles W?mber 1 to n-1, but not
wrotally antisymmetric in the particles number 1 to n, ¢ The’
antisymmetric function (1-4-2) belongs to a restricted

subspace of the linear vector space géﬂﬁned by the function
(1-4-4). Therefore >

=2, (Pt explem™tiye)
Ye¥

£ (n)

(1-4-5}
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The expansion coefficlents (F 1 xp | P17 -1 ' Y¥) are the
fractional parantage coefficients (c.f.p.), The orthonomality
of the functions describad in (1-4-5) with different values

of the additlonal quantum number x yleld the following eum-rule

; B ex Bl P™ 0y e BP0 pqy= b i),
T .
 (1-4-6)

' A shell in the nucleus is characterized by the quantﬁm
numbers f of its constituent nucleons, The states available
for each nucleon in a giveﬁ shell are qefined by the different
z-projections mo of . Since there aré (2f+1) available
states for each nucleon characterized by the quantum numbers
P. states of P can be constructed by distributing the n
equivalent nucleons considered am&ng N = (2f+1) availabe
states. Let us call a given choice of n states out of N

possible states—a distribution of‘Pn; A distribution determines

.one and only'one antisymmetric'statg of n particles, This

antisymmetric state is a unique linear combination of the ni
distinct product functions obtained by permuting the order of
the nucleons associated with the occupied states, Thus evéry

distribution of PM can be labelled, in the m o representation,

by a distribution index A and posesses a specified value of

the total projection quantum number B = I,m .
The number of distributions of n particles among N

tates gives the binomial coefficient



. - .

IN .
(n) -~ : (1-4-?_) ‘

s

. of allowed antisymmetrio states of P0.

A closed shell will be one ‘which contains =2FP+1
nucleons, Then according to (1-4-7), there is only one gistri-
bution P and therefore only one antisymmetric s‘tate. This
closed shell state is unique withln a sign and has all angular
momentum quantum numbers O, We will denote it by @(S ).

The N-n states left unoccupied in any distrlbutlon
A of {’n determine a complementary distribution AS of PN'
Thus, to every antlsymmetrlc gtate QB(n) of Pn corre5ponds

one and only one complementary antisymmetric state §h ('\l-n)

of 'RN'n. The one to one correspondence comes from the fact

that ¢

(*I:) i (N!fn) o | (1-4-8)

!

]

Here B is the z-projectlon of the quantum number p The Pn '
states refer to partlcle states where;s. the PN"™ states to
hole states,.

Therallowed antisymmetric .sta't'es of P span a linear
vector spac‘eL £ Q_will be the corresponding space of 'P_N'n.

_ . . -
The closed shell function %(S ) can be expressed as a linear

superposition of products .

- QIEI;(n) &;2: (N-n) , | \ (1-4;9)

- war



I ' . L8
. ) o

-~ of V,ectorsnof" x ad Q. spaces.. .Only the products in which

)\cl: A°  can occur in tﬁ;‘s expansiorf,-in order to satisfy
__Pauli‘'s 9xc1usi'on priln_ciple‘. If this was flots.the case, we (g.;

would have the po&esibility of two particles in the same state, &
(\aking directly the result of the expansion from Macfarlané

—r . . F
and French!® )[: we have T , | '

qf‘éz’ %( )aé Z (-)B = ,EJ F’(n) 'Btw n) .

' - (1-4-10
N R )
Where [)\:.Bsz} stands for the fet of all distributions A
such as =B -and Bm—ﬁ ' ‘th-e largest value of B, Note
that the s)tkg_ye { }\caB =-B} is'implicit since ')\c
%

represgents the complementary distribution of the distribution
A+ The equation (1-4 )jo) presents the closed shell wave
function @(S ) as an ‘y-l ariant product of two vectors,

one from the space f and the other from the space Q The

product is invariant :m the sense that 'since the closed shell

| . . .
wave function is unique., it mist £etain the same
Qa : '

form under a change of basi.s_-"r in f and 62: We thus perforq, -

*

a unitary change of basis in &£

s
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Since the matrix of transfoﬂmation is unitary, E’

\

1.

{)\,B)\:B}cxpll )\lx F’ S(xx') 8(pf) - (1-4.12)

Similarly in Gl

~.
B
XC'P' : >‘C§>C(N -n).
(1-4-13)
2
L

The invariance of the product implies

xvpr XC.P’.:I%

=, B
{%IB)FB } xp:)\ F’ )(n) % (N-n) ,
{)\":sz:-sl

&i{n)’ §_;2(n-n) ;

....... -

which is verlfled if and only if in the matrix representation

i
‘ CT c. = I [ ] - ’

or CcY = (CT)-l = C* , since_céis‘unitary.

9

J

A
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‘Inverting (1-4-12) and (1-4-13) ahd substituting it inte-

(1-4-10), we obtain

-~ ‘ ' .
" (s) =(;')'* z P ;E -f Capi “Z'p'-a’ -
. ' x'p’ '

»

X ,F,-B

x.p.B X .p,-B.

In a coupled representation



summation over B = -F. -P+1. .
’ < o . '

Yise) - (mbé "ZF: (2p+1)*

Reducing the quantum numbers xp and xcp into &« = xp and

o = X pi, we obtain the Racah hole-particle correspondence

Since

q‘C - (_)TH’I 'C ’

and making use of the equation (1-4-5), (1-U4-14) may be
e .

written
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where

U(af 0€31 €'%K) = [(2‘e.'+1)(24+1)]“' (-)"‘*“6{

the symbol in braces is 2 Wigner 6~}
- {p{.?et} 1_-3){0‘.-0“_ 13) :{q_
€ o) " ePe..'l - €€

14)

then the 6-] symbol reduces to

¢

coefficient.

ef-

2 et laeieen]) Tt dEe)

Since
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W PO €1 E') = Ol €) (1--17)
' gubstituting (1-4-16,17) into (1-4-15),
®
@(s*) (M) Z.. (zm)‘-* AV | PN e Y

£ n+1 )

x{=) P+ ¢ - o +n+l

D (s%) = 111)-& %’ (2¢+1)2

(1-4-18) '

and if we decompose (1-4-18) as in equation (1-4-5),

bise) - 51)-é )3 (2¢+1)? .(f““bl.e \ £ a()ae
ex

(1-4-19)

Comparing the equations (1-4-18 and 19) we obiain

AT S it W 7Q[, - (% f-¢
(P, € \?nn a()£




s

3

We have that each state of P" in the f space is
characterized by a set of quantum numbers o = (x‘p) and the
complemantary state of PN'n in the Gl space has the quantum
numbers oLC = (xcﬁ ). We can now use the extra quantum number
x introduced in (1-4-2) to require that it be defined such
that .‘(xcﬁ ) will also label a state -PN'n in the ¢f space,’
Then all the allowed states of the f shell will fall into two

cyﬁsses according to whether

/ 4 R
Qd,(_n) '
&L R
or (n}) = - qiérﬂ .

The evaluation of the spectroscopjc factor S consists

&
=
13

in calculating the overlap integral between the initial and
final nucleus. It describes the probability of the nucleus B
in its final state of containing the target nucleus A in its
ground state and the transferred nucleon in a specified single
particle state, This is essentially what has been written }n
the equations (1-2-54, 55 and 56). The spectroscopic factor
is definedlo) by

scﬂj)=n§ |dcen|z . | (1-b-21)

4

s,
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Where '3 (£3) 1e the nuclear overlap integral

Lip)

S(Qj) = <OB | s(p> . (1-ba22)

JB and JA are the total angular momentum of the residual{and
target nucleus respectively, ,ﬂ(p), s(p) and j(p) are the
orbital angular momentum, spin and total angular momentum of

the transferred proton, We obviously have

itp) = Lp) + g(pk. P

and dp = dy * i(p) .

n is the number of antisymmetrically coupled nucleons in the
final nucleus equivalent to thekkggtiferred nucleon, Note
that in the case-we include isospin ormaliém, n will become
the number of protoné in the residual nucleus,

Since closed shells constitute ;nert groups
nucleons whose total angular momentum are zero, and tgefore

have no influence on the reduced width, the spectroscopic

i factor {1-4-21) reducé!’tolo)

S(P) = n (P e | P va Y (1-4-23)

which is precisely the reduced w;gjt/for'the transition
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"*'—_’ A

“ ol

where [i]* indicates the vector coupling to a resultant
angular momentum « , Let us rewrite .(1-4-23), considering

(1-4-24), as

N
e

-

S(n,ox, — n-1.o(o) =n (& vec | -Pn'l lo(o)z .

(1-4-25)

The hole-particle eorrespondence described in_the

equation (1-4-14), leads us to expect a simple connection
between the relative reduced width for the transition (1-4-24)

~and for the complementary transition

I

3 — -
. . ], .

%o

Similarly to {1-4-25)}, we have

S(N-n+1.aLg —> N-n, &%) = (N-n+1) (PN-nH L oy \

AN L " (1-4-27)
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“Taking the rg%io (§;4-25)-+‘(1-4-27) and 'making use of
(1-4-40), one gets

n n-1 2
S(n,ot = n-l,oto) . n (P I“iP |d°)
S(N-n+1.dg — N-n,of) (N-n+1) <PN'n'1|dg IPN:nuof )5-
n ~ (N-n+1) (20 +1)
T (N-n+l) n (20+1)
Then
S(N-n+1,0 = Non, o) = —22—:‘(%1— S(n, = n-1,%) .
(1-4-28)
The condition that the wave fuﬂction eé%*ﬁk .
t expressed in the equation (1-4-5), be normalized “to unity, yield
H 1 2
oLZO | bty =1 e : (1-4-29)

Then summing over cxo in the equation (1-4-25), be normalized
to unity, yields

Y, S(n &= n-1, &)
Xo .

Z; n {fMha| P>,

T

=N . (1-’*-—30)

The same way carrying out the summation_over & in the equation

(1-4-27),

Y, S(hn+1 e — Neny o8) = (Nemel) L (1-b-31)
ol

= TN

-
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4

)

Therefore if we sum over X in (1-4.28) we yleld the expression

§ (_gﬁ‘k:_h_) S(n, A= n-1, &) = (N-n+1) . (1-4-32).

We note that the right-hand side of this equatior gives an
expectation value of the number of proton holes in the {
shell of the target nucleus A. ' .

We now geﬁeralize frgm the jj to the jjT representation by

simply giving the expected result. One is referred to the

articles of Macfarlane and Prenchlo'zu)

for justification of
the result, .

The expregsion is similar to (1-4.32), we only
include the isospin coupling Clebsch-Gordan coefficient

"derived precedingly in the section (1-2},

: 27, +1 '
Z (—23%:1—) c?s( L) = <-proton holes>‘Qj . (1-4-33)

The summation extends over all levels of the residual nucleus
we wish to consider and include only one value of‘,zand j
(if we make use of spin-orbit coupling in our DW calculations),

From the equation (1-2-98) one immediately has

46,5
S 5 :
2i+1 2 dw _
}:J_(.EJW)_ ETTSN) d_w?e—)— = {proton holes) 15

(1-4-34)




CHAPTER IX
ENERGY LEVELS AND PROTON HOLES

2-1 Energy Levels of 70Ge and Experimental Cross-Sections

The data fof the 69Ga (3He d ) 7%e reaction were A
taken using a 22,5 MeV helion beam from the McMaster University
FN Tandem Van de Graaff The reactjon product deuterons were:
analysed with a magnetic spectrograph and detected with ‘
photographic emulsions at, several angles between 8 and 55
degrees., The spectrum at each angle was obtained from counting
the number of tracks on the plate as a funftion of the plate
position. The scanning of the nuclear emulsions wag done at
intervals of 0,25 mm at the Instytut Badan Jadhowych. ‘

The results were afterwarﬁs.supplied as‘datafto the
peak fitting program SPECTRA VII “written by Vdn Egily and
ﬁprfher modifigd by " R. O;Néil. This pfogram fits gaussiang
- with exponential tails on the experimental data, Knowing the
energy of the incident beam, the‘Q-value.of the reaction which
was 3.027 MeV and the calibration of the spectrograph, SPECTRA P
VII extracts, with relativistic kinematics, the excitation

70Ge nucleus corresponding to each peak, - It

energy of the
also integrates the surface under each fitted peak which allows

us to calculate directly the experimental cross-sections

a4, s . )
*“é%i‘ in the centre of mass system,

39 &
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60
-, . N
" Cy \_,‘\ Yy . .
1\ The shape of the fitting curve is given by
(x-x_)? & 1n2 ? (x-x,-GG) 1n2

.y = H | exp - — L—1+ S exp - _
. G 4,I//m_i‘

(x-x, ) 4 1n2 _ " .
11 - exp - . (2-1-1)f”\

Where H is the height of the peak, th fiist term is a ,“: L

gaussian centered at x, and of FWHM given by G. The second

term is an exponential tail which has a decay rate such that-
it fells to half of its height in a distance A, Thé expénen-
+ial tail is multiplied by, a reversed gaussien so that ther&ﬂ&
is no contribution from ;he exponential at x . In the figurﬁs
4, 5‘and 6, one can nogice the effects of the different para--
meters appearing in %he equation (2-1-1).

The fitting pafameters for a whole spectrum are
‘usually obtained from a best least squares. fit on the gfound
state peak. One has to approximate values of the paraﬁeters
H, Xqo G, A, S and GG. The program SPECTRA VII’then searcﬁes j
for better parameters in order to éinimize the square of the -
deviation from the experimental vaiues.‘ Thisjeperafion must
be repeated quite often before-obtaining satisfylng results
since many combinations of the parameters may yleld local
minimas in the square dev1ation‘funct10n, An example of such .

a fit on a ground state peak is shown in figure 7.

t
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Fig. 7.
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Fit on the ground state peak at 10°ﬁlab). The +
indicate the data points and "Whe continuous 1line
"is the fitting curve.
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A typical spectrum obtained at 10 degrees
(1aboratory systeh) is displayed gn a linear scale in figure
8a) and on a semi-logarithmic scale in figure 8b), The number
over each peaks correépond with the peak numbers in table 1.

The excit;;ion energy of the 7oGe nucleus for each
peak hag been averaged out over all the measured angles, The
result{s are summarized in table 1, where‘we compare our
results with thevones obtained by G. Brown et a1.25) and P, F,
Hinrichsen et.éljz) through the ?OGe (p,p") 70Ge reaction,

Sﬁch a reaction excites most of the levels. We have identified
most of the levels repdrt;d by G. Brown and P, F, Hinrichsen
and the agreement is generaly satisfactory. Several new levels
were observed but these were weakly excited, |

-{::‘M”As stated previously, SPECTRAVVII integrates the
surface under the fitted peaks. To extpact the experimgnial

cross-sections from these quantities, we must do a solid angle

correction, Let us consider the figure 9.

-

To spectrograph

Incident beam

b
v

h
r

To Faraday cup

To monitor

Fig. 9. v

-
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ENERGY LEVELS OF ’OGe

Pregsent work

Energy(MeV)

0.000
1.041
1.217
1.709 .

2.159
2.185"
2,309
2,455
2,539
2,565
2.811
2,892
2,950

- 2,973%
3.015"%
3.054
3. 066"
3,086
3,102%
3.187

3, 214"Y
3, 246
3,272%

3- 318

TABLE 1

(p,p*)?

Energy{MeV)

0,000
1.039
1.215
1.707

2,156
2.160

2.310
" 2,bs5k
2.538
2,565
2,809
2.890
2,948

3. 049
3,062

3.109
3,182
3.195

-3, 242

" 3,296

3.316
3.336

(Ptp')b)

Energy(MeV)

0,000
1,041
1,218
1.711
2.155

2,450
2.537
2,562
2,807
2, 887"
2,945

3.053

3.107
3.182
3.194

3.242

N 3,297

3.315
3-33“ &
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ENERGY LEVELS OF ’°Ge (con't)

Present work - (p.p')a) '(p.p')b)
Peak Energy(MeV) Ehergy(MeV) " Energy(MeV)

25 3. 342 3. 345
. 3.351 .
26 3.365" >
| 3. 419 3.149
27 3,430 3,428 - 429
. 3.432
28 3. 456 3,456 3,458
29 3. 466%
, o 3. 483 ,
30 3, 488 3,489 - 3,488
N 3.517% :
32 3. 563" 3563 7 3.563
33 3.573% 3.570 |
© 3,581 3. 584
34 3.592" 3.593
35 - 3,638 3,633 3.632
fzj 3.660%. ¢ 3,667
i 3,672 3,678 3.673
38 . 3.694 3. 691 3,685
39 3.716 3,710 ©3.712
oy 3.745 3,740 3.740
“ 3.777 3.777
) -*3,783 3.783
: ' 3.850
' 3.857 3.855
42 3.866 3.871 . 3,866
43 3.898 3.891 3:89
\i o 3.904 3.902
B 2011 . !
L A 3.928 &// 3.929

. : R 3,959
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ENERGY LEVELS OF 7OGe (con't)

(PQ_P' )b)
Energy(MeV)

3.975

4,002.
4,038
4,058 °
4,068
4,097

4,119
4,131
b, 146

4.160
4,176
L,196
v219
L, 227 "
4,242

L. 261
4,282

L4, 330 \

!

P, F. Hinrichsen et al,”Nucl, Phys, 3123.(1968) 250

es weakly exited
. N\
€

4

Present work (PnP')a)
> Peak Energy(MeV) Eﬁergy(MeV)
b5 3.975 3.976
3,990
L6 k,008 4,003
47 - L, ol2 L,037
4,054
u8 4,071 4,062
b9 - 4.097 4,097
d Lk, 107
50 4,116 4,119
' - 4,132
51 b, 147 4,144
. ' 4,153
R 4,166
52 4,173 '
53 4,194 -
54 - 4,228
55 k,253 ‘
. |
56 4,293 -
a)
b) G, Brown et al, Nucl, Phys..)K01 (1967) 163
“.w . indic

’\'ﬁ
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Since our problem is (P independent, the differéntial
cross-section is simply the ratio of the number of scattered
particles in the direction © over the number of incident -~
partiélés N, per unit of.solid angle, The differential °

~ cross-sectlon for elastic scattering at 45 degrees into the.

‘

monitor is given by I <
Nee.

— M * - -
ij = -ﬁgjrzﬁt r (2-1-2)

.- *

o

where NM is ,the number of counts in the monitor and ‘fLM is

the so%gd angle subtended by the monitor, In the same way we

~—

.‘ (2-1-3)

have

Psi _ _ > Meak s
' NO-SLspectr.
. . _ 3 o
where Npeak i1s the number of counts under the peak Pitted.by

' SPECTRA VII and' &

spectr. 18 the solid angle subtended by the

spectrograph —

" The relatlon between thg differential cross-secilon

in the 1aboratory system and the centre of mass ‘system is

.given pyg)
' s 2%e0s0 ., ) \
+%C + cog B '
Cyop = — <. B, Co g v (2-1-4)
\,|1 *¥cosbp |
where
3 . i
. < - _mass of the helion nucleus

mass of tns’tan§f%._ : .

-
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Since this ratio is small, we put in our calculation

& ® 0y . Then from the equations (2-1-2 and 3),
lab C.M.

"we have

dGﬂs ] '-Q'M Npeak g

. (2-1-5)
dw ﬁzspectr. NM M

The differential cross-gection for elastic scattering
of the helion jons into the monitor is calculated by the DW
program DWUCK (éee section 2-2), The solid angle of the
monitor was 0,8804 x 10" sr and for the spectrograph

! .
1.950 x 10"3 sr, The table 2 gives the experimental cross-

. L9
gsections in the centre of mass system for each peak found at

the different ﬁeasured angles,




o 2 'S ‘11 g4 uw« // *201¢
s 'S ‘2n - ‘02 ;9 ‘9g0¢"
| CtY 46T t691 1ot U662 . 2Lt (T CH2Z1 iz "990k
‘64T "HO1 "HOC ‘hm  c6ns €15 Lzt to6s tiew '0LS 'SLE RsST ChSOE
TN € 2 - . T vooorg "5 10€
| : ‘€1 ‘ol ‘gt ‘ol ‘9 1 *€.L62
iy 09 ‘qoz ‘09z ‘0SE C2in CLEE CELS gy TR ewn  Tmes €49 Twe9 10562
-*21 91 . €L €6 el toc igh. ‘911 ‘94 ‘€8 ‘48T -'Giz CLEE 29 - '2682
ont *21 *6€ *18 ‘89 ‘06  '26 ‘Il ‘4h1 C16 ‘cl ‘64 *9f ‘12 J11i8e
91 ‘€z ‘26 ‘w6 "T01 CLIT U6 ‘161 '€1T 61T ‘g0l ‘tol ‘ool (04 IJUmomm
‘11 rzz ‘€9 ‘Sg  #ET (€€ tCoT iz CSES ‘261 ?S91  ‘Slz - imz Ceze t6Ese
\..mm 1 "88 ‘go1 Syl ‘LBT  “eBd ‘062 922 ‘S8l '891 '951 1S 1 ‘501 *Gahe
L 3 cz¢ Sw "S§ iy k€ ros o o 86 Tomi ‘641 191 R60EZ
TS SR A T B - 62 - NJWwﬂN
gy ‘o ‘2z ‘9ge  "L9E . T06E ‘oly  'gOC ‘g ‘085 €48 TSI TUSerl t651e
‘gl 1T ‘96 9€T 14 361 Lol wmﬁm T11 €ST t582 STy t6SC *nSS 4 t6041
-gf ‘L6 'glz  ‘mE2  (§62 ‘loE cemd €€ 691 i€z 669 6811 866 *LG01  fLiet
e 961 ‘@Sz 4€C ‘€eC TIIZ cenw 9Tz C20€ (165 (SIS 106 entl 1ot
14 0L ‘9gz  ‘Zly, ‘819 Egn ‘70 ‘w49 ‘982 °GgE G54 69l ‘Hil1 "9481 nmwwwm

9795 o616 L0°TE 46782 6792 ST ltaz ez 9781 5191 oS el L0F L8
‘W'D XDHEANT
| ss/al 7 (B) a

2 TTEVL .

!



L T ) .owfm *2€C '9BZ  "HOZ Q9EE '0BC "12€ | '225  '2S9 €64 "hgg  "h69t

N *z1 ‘o2z ‘61 e 'S4 69 "L 92 ~ '2L9E

"0t ‘1T ez . ~ g, "9¢ *099€

“HE ‘€61 ‘9tz ‘0z€ 952 ‘9€1 ‘g9z 481 ‘€2L 'en9 ikl ‘648 ‘628 *gE 9t

'S : 'S 6 L6 61 CEl Tr2Gpt

A S A 21 ‘€2 gt ‘22 ‘g2 "LLSE

. N2 S 4 "9€ T 6 ., t€95€

E IR € _ '€y ‘102 ‘451 "L16E

0l Sz '9f  ‘tn ‘6 .mwz 4§ '6C 9 *hi.l . 'ig ‘681 ‘262 ‘88t

_ L ‘0T 41 e el ) 1€ "2€1 994t

L1 €2 . t9z. q2 1z 'qE 'BE . ‘o€ . oSt

"8 ‘G AT %Tz 'Slz tinE toni '8z €91 002 HLE ‘€2S ¢ 49 ‘069 toEHE

©'g . 41l ' . ‘0z '8 v2z 21 Ll 09 "$9€E

"S€ ‘on  *T€z  8lz  'SEE  'x82 *0€€  ‘olz ‘€6z 255 g€l *d96 986 "ZhEE

o ‘€z ‘ee ‘oz |, 92 "Lz .t tUSs t9n "l ‘gl1€L

A B2 21 ‘6 ‘gz ‘o001 . ‘61 ‘02 R 1/ ‘901  ‘zlzt

‘29 . €01 ‘E€SH ‘065 ‘0TS ‘OTL w4y 418 ‘2€S 489 ‘9LTT €T ‘Loz 650z 92t

"9¢ ‘9L ‘S ‘gt '¢8 BT HRLY VANNLS 1 ) SRR 3 €18

GT 'z T CLEE '82H *Ggh ‘L2L  t<degn "€9n LSy /.mmm *#€21  ‘9tyT T2151 ‘L8 TE

L9°95 SIS 07T 46'82 6792 67M2 L'ZZ 5702 58T 59T STl on2l E'0l oE°g >me

. _ ‘WO ADYANZ
R B

panuTiuod) Z IT4VL




= — — . ,__ . -

., Ygz  gll €T ‘2Ll t0ST €S 4T "SHT 6L tzee  C€EE Cwew t6LE T rEbew

o w1 gz 'og ‘8L ‘T9 Sy '€ €L + ‘06 tzol ‘041, E6T. €Ll CEsem

. L *L¥ ‘62 *6z ‘9z '0€ CCEE 6L I S ‘€z ‘g2 "gzen

'S 'wT €€ thz LT ‘€1 91 ted v T otuE RS . th6In

‘01 ‘zz eI j9sT Ll eov *4g ‘€91 401 ‘S0l ‘162 'ELET  Sew 164 "€liy

‘1T ‘44 ‘6w 'gh  'es - ‘0S5 19 ‘L ‘€ ‘2 ‘ge iy

28 ‘02 #1 ‘€1 # 2z, . ‘9114

‘6z w2z ‘2zl ‘65T zzz CEST  *9€  t4ST CIST "4zl ‘61z g€ temh T9EE TL6ON

€T . cz€ L *4nT ‘TR 412, 'SHT 001 88T 6ST. "SST ‘EqE roBn 50§ ‘GGG 1404

| N1 6@ ../ﬁ , B )¢ 1 . "2non

‘€1 11 gf ‘0§ 0§ ‘94 E€h - *69 09  ‘9n " LS LS ‘€L °SS *8004

'GT 'S ‘94 L8 4L C9m  tO0Il 19 ‘4w 29 €l €L "G L6

L6 *191 ‘8oz ‘652 912 'Sg2 ‘022 ‘#9¢ '994 ‘609 ‘€85 ‘916t

L o'zl 'L6E  "16% ‘€L TEOE ‘169 9ih ‘H29 EqTT ‘1621 0251 ‘6H9T  '868E

'8 A SR 19 "1 'SS ‘qd 65 "Im v '8¢ e "998¢t

‘0f  "9€ - "6E n.Nm. L 66, 65 ‘oH. 29 '19 en. 'he '€gLE

. 'zz ‘gz '6£ ‘oL 6z 9t 'gs ‘61 - In L9 L '9S *GHiL

€L ‘B ‘#1 '8 ‘1€ ‘62 ‘62 ‘85  "t9 22 2 ‘914E
\oo.mm SU16 0'TC _6'82 6792 6'ME- 4722 5702 [S'8T $79T S i ST . Er0l €'8 1ox

, - W'D ADHANE
4 asgad TO(BE) -

(penuTauU0d) 2 ATAVI



2

4

>

2-2° Opti

-~ -

-

cal-Model Parameters

\

-

The optical model potentlal parameters from which

L

1

/
the dlstorted waves in tﬁﬁflncomlng and'butgoing channels are

calculated, afe determlned from thexapprOprlate elastlc scatter-
. . {{ng ana1y51526 127,28) -
i

s a sum of the'followinggpotentialsw

1 -\Qeﬁfral potential

real part

imaginary-part

-

—_—

L3

- Vs f(r’fos'as)

[

2 - Spin-orbit potential

L]

real part

imaginary part

Precedlng works

"charge distribution and calculated th&\Coulomb potentlal from_

it,

ng the parameters in the table 3, was to lower the DW cross-

TN

-

L . T

.

3 - Coulomb potential

sections by less than 2 %.

]

£

2 v
() —
TP
(_#ﬁc ) ,igi 51

- W fl.(r.roffsal) + AW

8,,.23,26 27,28)

q . ‘
dr. F(r’ros’as)

B

friooyhag)

[y

Ly

-

i
(£4]

e
1%}

» .
—_ (r,r a.)
D dr f ' oI}pI

The general form of the potential. used
. A

have ‘used a unlform

The effect of the more fealistic Fermi charge "distribution,

LY
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. _The function fr(r.ro,a) is the usual Saxon form

-

. factor v

r-rDJ’Ll/3

a ' !

- flrir,,a) = |1+ exp
where A is fhe‘mass number, The imaginary part is coﬁﬁosed
- of a volume part WS and a surface part WD, with'the factor
. 4aI being introduced so that the surface form factor;ual (?%:F)
. has unity for its maximum value. -
The different potential parameters used are présented
in table 3. | )
- /)/“‘ q&s pointed‘;tt g; P, E: Hogsonjo).‘the inclusion 6f
a spin;orbit potential mostly affects the cross-section in the

backward diregtion ( @350 ). Since our data are concentrated

at £ 3 ions, it was not nec%séary to include such a .
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2-3 Distorted Wave Analysis, Spéctroscopic‘Strengths

.and Proton Holes in 69Ga @

By comparing.the angular distribution of each level
with the predictions of the DWBArtheofy. wenweré able to
determine thg transferred orbital angular'ﬁomentum and the
spectroscopic strength -of several excited 1évehb‘of ?OGe.

The range of the spin of the final state in the
residual nucleus may be obtained from the vector sum of the

initial spin of the target,and the transferred angular

. . ot

IJA ) j| £Ig- LIyt o (2-3-1)

momentum § = i + 8

The 69Ga nucleus has 31 protonsf;%d 38 neutrons.

In the single-particle shell model, the neutrons can be

-

considered as part of the core and thus contribute in the
reaction only by their total effect.. In this model, all the
proton }erls are filled up to‘the 2p3/2 subshell which has
a Tole in it. - ' | |

o - o

From the figure 1b, we can expedt to populate the

: i t
2p3/2, 1f5/2 and 2p3/§i_subshells, correspondlng‘ o a

trénsférred proton with orbital angular momentum ,l =1, 3

and 1 respectively. N

"""’fﬂ-ym The DWBA calculatidns were made using the ‘computer

"
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Fig. 10, Proton levels of Ga in the single-particle model.

. IR

;/62? to -2,027 MeV at intervals

-

code TDWUCK forfqivalues of

of 1 MeV, correéponding to excited levels of 70Ge from 0 teo:

. . »
5 Me¥, The relative shapes and magnitudes of the predlcted
cross-sections are shown in figure 11 for various ,[-values,
the potential parémetors of tahle 7 znd o G-value of 2,027
VeV, ' . '
T _ . . :
The cd%puted angular distributions fi;&ing the

experimental data are shown .in the figures 122) and 12b}. .

Since the ,roundigkate spin and parity of 6’GaL and 'CGe are
M ‘

.3/27 "and iﬁ respectively, the akpy possible /[- and j-

o ¢ . DN ’ - N

LA



81

el
__’__—-‘
o
)}
~.
LQ
<
b4
2
[
o
3
- ‘ l l . L . .
1 : . - ‘ | ] - i
0 1 "“10 20 30 40 N 50 - 60 o 70
. ' - _7-/‘?"
4 L\'\'-, . - GC .M. (dEg) Tl - )

© Figs T1. A compézifjn of some of the shapes and magnitudes

- predictedtby the DW code DWUCK.'

i
*



-“ )
. L
values contributing to the *formation vf the ground stas® of

?OGe are ,£= 1 and j = 3/2; which was observed on the
) .y 4 - ‘ . ‘
curve No,” 1 of figure t12a), 2
\ .
“"Several energy levels corresponding to _1 = 1 and
3 — ~ !

1= 3 transfers werg,idéntified. By combining the DWBA

prédicti-ons' forﬁqf: 1 and [A- 3 :transférs, w? were able to
iq§ntify mixed levels. Such a gé?ture is showh in figure
13. T

The relation béiween the'ﬁredicted'and experimenta1~
cross-ce?tlons is given by tho Qquatlon (1 2-95), For energy
levels jgﬁkespondlng to 1ntermedlate analues, the SWBA cr;ss-

sections were extracted dlrectly by 1pterpolat10n on a linear

plot. The sﬁectroscopic strengths of each level can be

calculated from the equations (1-2-97 and_§8)

! [ - . dG’lS.‘
2Jg+1 c25(f1) - _2ix 2 dw
o - o~ j r

y

where ‘the right-hand side of this equatlon is the spectroscopic
strength as define® in ction 1-4, B : - N
The total :transition strength associated With‘a .
given 'single- particle state is then the sum of the‘strpngths
of all the levels which have been fgentlfled as resultlng
from the transfer of a pro%on in this stateé (£j), The sum of

thg spectroscoplc strengths for a given set ‘23, may -be

‘compared with.the limit obtained frem the sum rule (1-4-34),

NG L b
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— The'calculations

1 86
407 ; _ o
2 dw - <proton hlés} .
T R p— () %

)/”“‘ (2-3-2)

e .
are summarized in table 4 and 5,

—

Fad
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TABLE & h
Spectrogcopic Strengths )
' T
£, (V) ) P o
(1) 0. 000 1(3/2) 0,537
(2) 1,041 1(3/2) 0.246
(3) 1.217 ¢ 1(3/2) 0,226
(&) 1,709 1(3/2) 0,096
(5) 2,159 1(3/2) 0.229
(6) 2,309 . 1(3/2) 0.033 )
(1) 2,455 3(5/2) 0.785
' 1(1/2) 0,025
2.539 4 3(5/2) 0,305
(2) 2.811 © 3(5/2) 0,284
. 2.892 1(1/2) - 0,061
1(1/2) 0.068
22950 + 3(5/2) 1.185
(3) 3,054 3(5/2) 2,408
(7) 3.187 1(1/2) 0,266
3,214 07 -
- (8) 3.246 1(1/2) 0,350
(&) 3.318 3(5/2) 0,162
£9) 3. 342 1(1/2) 0.175
J(roy 8 3,430 1(1/2) 0.139.
- 3.488 1(1/2). 0.021
3.573 3(5/2), 0.091
(11) 3.638 1(1/2) '0.176
(12) - 3.694 1(1/2) 0.131
o 3,745 27
(5) 3.866 © 31s5/2) 0,166,
(13) .3.898 . 1(1/2) 0, 2L9
(14 3,916 1(1/2) 0.101
X b 008 1(1/2) 0.013
+ 3(5/2)

o N

- 0.357
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TABLE 4 (continued)
- Spectrbscopic Strengths
i 27,41
E, (M), | L) —ﬂ%ﬁ— ¢2s
(15) 4,071 . 1(1/2} 0,086
k. 097 1(1/2) 0.073
U, 147 47 -
(16) 4.173 1(1/2) 0.074
4.253 1(1/2) 0.075
b, 293 1(1/2) 0.073.
L - | -.
the j-value assumed in the calculatjons are given |
in parenthesis, ) N
P
’ \
N
' é
4

1Y)



TABLE 5

Proton Hnles

e

Single Particle

——

thai Transition T
g Expected Total

State Strength
» 6 '. . ' g
2p3/2 - 1 3 7 ‘ i 1
1€, /e 5,743 . 6
5/2 ey 9
" L,%Py /2 2.116 RS
'\\Y o #
t
\ | ‘
9
L
N
e )
¢
. Fay
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2-4 Discussion and Conclusion

-

The results of the investigation of the §9Ga nucleus
are présenyed in the figure 14, Since the DW calculations are
iﬁsensitive to spin-orbit 6oupling at forward aﬁgles, we are
unable to distinguish between " j = 3/2 and j= 1/2 trahsfefs.
except that we ‘expect the 1attertolJe at higher energies than
the J = /2 transfers,

| From the flgure 14, we can see that the £,— 1(3/2")
transfers are characterized by a strong transition to the
ground state which carries about 40 % of the total strength
of all the transitiong to the 2p3/2 state, ‘Trangfers to the
1£¢/, subshell are cﬁarapterized by two strdng transitions
neighbouring in energy. They carry about 60 % of the total
strength of all the transition to this state,

_ ‘The vacancy probabilityzg) U? of each subshell
were oé;ained from the relation

- Esun ey

‘ kY

where the S(ﬂj)‘éfe now defined as the spectroscopic strength,
s™aX(p5) is the maximum possible strength of the subshell (lfT?
obfaineq from the single-pafticle'shell model and ‘E;S(ﬂj) is
the total experiméntal strength of this éubshell.

et The centre-of-gravity energy of each subshell was
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‘ A= 1(3/27, 1/27)
L - '
) —o—i F——0——
0-6‘ - . . _
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C 23B{1 ]czs 04 -
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- 013 -
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'(\\ | Al ”
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Fig. 14, . The distribution of the spectroscopic strengths to —
_the levels populated by £=1 and f= 3 transfers.
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deduced from the felation.
S(L3)E, s _
i E : = Z - J N ) (2-4.2)
. T S(L)) ' ' :

S
where S(fj) is the spectroscopic strength corresPO;ding to
the energy level Ej' ‘Ehese are shown in the figure 14,

The vacancy proﬁabii@ty and the centre-of-gravity
engrgies for the 2p3/2. 1f5/2 and 2pl/2 subshells are listedh
in the table 6 where the&,are compared with the pairing model
calculations, The 'comparaison is repeated in figure 15;

The overall error in our experimental results can
be estimated to be of the order,of 20 %, N
. For the vacancy probability, the discrepancy betweén

our results and the pairing model calculations—s of about \\\\\\

S

4o % for the 2P /5 subshell
) 13 % for the 1£5/, subshell

10 % for the 2p1_/2 subshell ,

. The pairing model calgul not predict the

:right magnitude.amd~prder of the separation between these

P+

subshells, '_ . ‘
Similar disagreement betwe;nweﬁperimental data and

the pairing ﬁodel calculations have been previoﬁsly noted- by

Dr. Hab&b?l) in the investigation of "ga nucleus, which has

the same number of protons as 696a. with a (3He. d) reaction.

T



TABLE 6

Vacancy (sz) and quasi-particle energy (Ej)

a

93

. Uj2 . Ej(M;V) sz ' E, (MeV)

P4/, 0.342 0.926 0,585 B 1.517
a1y, 0.957 ‘3.l-008 o832 1.784
20, /7 1.058 ss66  0.9%  2.728

4
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. APPENDIX A

We shall now discuss briefly- the scattering theory
in order to derive a general expression for the transition

matrix element and for the differentiél cross-gsection.

Let us consider a particle of maés f;incident on a

scatterlng region that can be represented by a potential ¥(r).
‘We thus have an incident plane wave <b(k:. r) that evk%zgf “\
N

into \IJ“ (k,'r) as the system enters the scattering region,
f ) ‘\)

’

b — i
\ J

!
' S

S Scattering
region ) .

The 9P+ must sdtisfy the S¢hrodinger eqﬁation

K.
[T"‘};- VZ 4 () ‘P; = ER : 2 (a-1)

‘#nd the plane wave 4) is solution of the homogeneous‘

—
‘equation, The solutlon of (A—l) is glven by

?+ (_1'_5. ’ _I_'_) = iS G+ (_I_',v E') cb (l{_ ' E.').dz' PR (A-é‘)
where-G+(g. r') is the total Green's functiom which satisfies
, e

4 [E -H(z)] ;:C_;"(z- r') = 8r-r') . L -3

95 N



L.

where the Hamiltonian H is given by _'
| a | | \

S .‘
N S N (A-lt)

Hz) = - =

£ F
and/.L -1s the reduced mass in the channel o,
; Outmde the range of the poten'tial V(r). (P+

evolves into a stationnary linear combination of ¢P's.

Thus we can write q_J; as _
+ + ' o
P - Zp' (¢p. @o,,) % : o (A-5)

Then the pro.bability amplitude of the transition from the
‘state oL to the state ﬁ is given by the sc¢attering matrix

elemeﬁt'
= + ) . -
S = (&0 B . ‘ - we
éubstituting‘(A-z) into (A-6)

S.B"L SS ¢$(k&.r)G(r,r)¢b(k.r)dr dr * .
| (A-N

If we write the total Green's_ _funEtion in terms of
the free particle Green's function G
(r,r*) = G (r,z') +.T'S G} (r,zj) v(r) ¢ (") dr,
N (A-8)
Substituting into-(A-7)- b

b
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SP-’“'" i gs Cbp (k B’ g)G:(g.z')‘iZ((lc_d'- _r;")dz' dr

+ SSS dr, dr' dr ¢; (Eb‘- r) c;(;_.;i) vig,).

xG*(r, ‘_g') <b;(1c_*. ') . o (.A-9)
We note that since

ek ) = -1 65 (xtum) byl 1) ar

taking the complex conjugate of this equation and with the

following property of the free particle Green's function -

Gy (r,x') = 6 (' )

¢; (kpr') = 1 H); (kpo £) 6 (nz') @z . (A-10)

Therefore with (A-2 and 10), the scattering matrix element

given in (A<9) becomes ' A

Spa = S ¢; (Ep'r-') ¢,L(.}S.d{£') dr?

-Tg(bp(k ,rl)V(r)% (k .r)dr ’

rd

which can be rewwritten as

BISIXy = (Blec - %—Sdzl by gz (e Prte o)

. | , (A-11)
. \ '
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In a direct reaction process, dpﬁ* ¢ Thus -
the probabillty amplitude of a transition from the state &
to the state ﬁ is given by the second term on the right-haﬂd -

side of the equation LA-11). We then define the transitlon

matrix'eleMentAas

'T,e;;'s | <‘¢p\'y\ Q:) . - _ i (A-IZ)" .

M
From the deflnitlon of the transition matrix element,

the cross-section for the reaction w111 be proportlonal to the
square of the transition amplitude, LT

If we define ((E) dE to be the number of final
states within.the energy 1nterya1 dE, the transition rate k'

is given by Fermi's golden rule

: 2 2 '
A - (25A+fly(28h+1) 'flv €(7) \TBA \ ’ {(A-13)
, - .

-whpre we have averaged out on the/initial states of our
system; -JA and sh‘ being the spin of the target and incident

helion nucleus respectively. Since the flux of particles in

. k h ,
the incident beam is given by v = + the relationship
- . . d-
between the transition rate A and the cross-section O is
kéﬁ .
A= vos= g . - - - {A-14)

We are interested in the differentlal cross—section.'

therefore for the outg01ng particles in a sol1d-angle dw
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dS! d)\ - .
aw- T %k ' aw ’ ) ) -
* . : <.
from (A-lﬁ) |
: 211_}" . |
aq 1 L. .2 d
dw —(_ZJAHmBhﬂ) 1‘[2}{ \Tﬁ‘d l/ - ?(E) .
, . 7
AN / .
| O ae1s)

Normalizing our wave functions in a box of velume

» | _
40 P 48 kg 1 | Y o2 ’
dw " (:ﬂ‘ﬁz_)z k, (27,+1)(2s +1) V%‘ v \?17\ .

(A-16)
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. APPENDIX B

In order to calculate the distorted waves, we must_

solve the Schrodinger equation (1-2-4) ‘f‘

[T;};& Vz + U(E) + VS(E) L'_S_ + coul(r) &(k r) = E&(k r)

(B 1) -

Where U(r) ie.the central optibal-ﬁoéel potential, vCoul(E)
the Coulomb potential and vo(r) the value of the spin-orbit
coupling for the traneferfed prdton in an 1LJ orbit around A.
The target A is & to be a zero spln nucleus in order to
avoid the p0881bi:§§g of spln-spln interactions, There is
no evidence that such 1nteractlons are requlred to fit data3 17 9)
and ‘we, will not include them in the optzcal -model calculationg.
};is the reﬁéced mass in the channel.

In the absence of the nuclear field, the Schrodinger

equation becomes
-3

.

(9% + %% - 2‘9—};—1 é'c(li,g) =0 ,. K (B-2) |
. .-
Where .
. ‘9 #21 Z2 F 4
= " .‘.
EN )
Z1 + 22 is the number of profone of. the reduced particle in
‘ *
the channel, and ‘ - .
v 7 -
. - - ‘ . . .
k2 = %f;?@- . ' SR ,\(Bp)

» 100
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. : 8 . S
- If we do a-partial.-wave expansion oi‘aéc ‘
ulr) | I
L
@ Z_. — PL_(c_ose) . (B-4)
The radial wave function must aatisfy
d2 2 _ L(L+1) _ 27k ) u‘L(r)‘= .
dr v or? T ’
(B-5) ~

16)

This equation has two independent solutions'°’/, The regular
solution which Qﬁ:iSheS'at r=0 has the  asymptotic form

s . L . ; -
Fr(r) = lsm(kr -7 - Min (2kr) +0°;) -, B (B-6)
. e . o '
"and the irregular solution with the asymptd%ic form.

' LT - »
G (r) ¥ cos(kr - = - Min (2kr) + 0- ) C (_B_-?)"

Where

0. = arg F(L +1 +1M) , Y (B-ﬁ-)"

. - . . . "?
is the Coulomb phase shift, . S -
. The total whve function will be a linear combination

of FL(r) and GL(r)i?). We may define on outgoing wave
+ hiO-L ) ' . - ’ o . . .
uy (r) = e (Gy(r) + 1 Fr(r)), _ . (B-92)

L]

-

and an ingoing wave
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Y
' i . . | '
WL (r) =% P (op (r) - 1 Ff (r}) . . (B-9b)

The radial wave function in the outside region can always

be written aql?)

L] z ! ‘ st
u(r) = & u(r) +boui(r) . . ~ (B-10) "
Thﬁj/}n*the\region outside the Coulbmb fieid,
a IJS T LT
. -i(kre— : i(kr-——
;V uL(r) Y ae .2 +be, 2 . . (B-11)

This equation was obtained from (B- 6,749 and 10).

In this region, the wave'-function. 13 & plane wave e:"-lE r,
If we expand the plane wgve 1n}q pgrtlal waves, y
. . w i .- ) T ' .
~ eI 5 5L (o1 41) jpikr) Pr(cos®) , (B-12)
L=0 . : . .-

where jL(kr) is the spherical Bessel function which has the

-

asymptotic form _ 1
_ n .

LT :
Jp,(kr) kg sinlkr 3 —5— ) , | 1~
N, ' I o ©ow
= =7 (exp i tki'- _E-) - exp -‘1 (kr - ——)) .
) _ (B-13)
Then
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ke OZO, S o L
L P (2L+1)(exp « i(kr - —=)
L/._exr{'i (k!‘ o L-;\-)) PL(COSG) K . | (B-14)

N ,
Only the outgoing wave which is proportional to
eikr

is changed by the Coulomb interaction. Hence, the actual
wave function in the incident channe has an asymptotic

behavior differing from (B-14) inethe coefficient of eikr
only. Th?refore we may write .the wave function & c for kry 1

_ o
3 Cg () _ . LT
¢, T—J’gfo i (2L41)(exp - 1 (kr - —-)
: ' W . '
= Cpexp i (kr - ——)) P; (cos9) (B-15)

~

Comparing (3-11) with (B-4 and 15), one gets

1 L (L+1) ' ' \
a = Sk i ‘ (2L+1) , (B-1§a)
b=-C a , o s | _(B-16b)

-
- .

. 9
. Let us define éLJ such as

T

R JCRS R et A |

‘_iO"L
17 HL(}‘,I')) e . (B-17)

_ Then the equation (B-4) becomes. -,
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W R
L
aéc - T Eé%f‘i (2L#1) aéLJ(k.rﬂk?L(cosEB) .
KA 00 M |
.
- Tkr 12 0 1 Qm(k r) Y, (.QJ ) ¥, (.Q-') (B-18)

In the equation (B-i?), XLLJ are the reflectton coefficieﬁfs.
111J ; \P Gi. They are computed.by in%egrafing_numerically
(B-2) and matching the functlon and its derivates to (B-17)

at large r. The HL are deflned ae7)

-

L =6+ iFp "// ' : (B-19)

which corresponds to the outg01ng Coulomb wave function.

H

The equation (B-tB) which is for the Coulomb region
only, must also include an internal structure wave functlon._
As discussed earlier, we take it to be only the projectile.

spin function. Then in the channel oL, (B-18) becomes

& __UT L¢ R
&c& - z‘ _(HL () "“-L‘LJ“_ HL'L(k&l?&))

o Ta 1=0
Cie M o \? : up ) \P ?% )

\__—f\-

(B-~29)

q,h is the spin wave funct%gn of the helion nucleus, It can
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- be divided into

o ’ " R . I . )
‘ L\"_h(%h) =zm;-h | ams.h\lf%h . (}21)

where' m are .the dlffefent,z-componenta‘of the spin 8y, of

Sh

!

R Ht:“( mg

are the normalized elgeeﬁnncthns of S, and a

Yo

h

. Bh-
the corresponding amplitudes,

At large values of r, jﬁ(g,g) becomes equal to
@c(g,g) defined by (B-20), We note that Y%(.Qar)q)(g) is

a simultaneous eigenfunction of the operators Lz. Lz' §2. Sz

: ‘ : : M
but not of L-S. Thus we introduce a functionls)q}J%S YSLr)

2 2

which is a simultaneous eigenfunction of L°, §2, J” and L-S

My Mom My M ' S :
q}JLs =‘L;; o s® 0 Y (VS . (B-22)
8 " .

-

If we calculate. the matrix element

(L3 MJ1 fL-slL g MJZ) = 512 —’é— (J{J+1) - L(L+1)

2
- 5(S5+1)) . ) (B-23)

T

Then for the d ent values of J, J = 1+8 , we will have
a particular Bolutidn of the Schrodinger equation (B-1),

So that the total solution &(5,;) will be a linear combina-

/s . .

$

tion of uncijifsd particular eolutions of (B-1), This may
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be written in a more general form as matrix elements in the

space~spin gpace for the outgoing-wave a55’7)

"‘\a | & * ko) | m> §? (k.r) -

o, - i
N c M m M+m c M+m me mB M+mB
kr ;=9 L S g L S J

L)

M+m -m!

L O N (- B U 50, ¥ .

| //,/ (B~24)

This equation is obtained by combining (B-9a, 17, 18, 20, 21
and 22),

The' ingoing wave is related to the outgoing wave by time

reversal invariance2 7), so that

b m -m' 4+
-n k! = \- 8 B‘ ’ ('ka ) . (B-Z )
&msimt5 (—‘5) (-) L-m k,r -25
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