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Abstract

Accurate available bandwidth measurement is important for network protocols and 

distributed programs design, traffic optimization, capacity planning, and service 

verification. Research on measuring available bandwidth falls into two basic 

classes: the network traffic modeling algorithms and the self-induced algorithms. 

The self-induced algorithms are based on packet dispersion techniques. The 

currently available bandwidth measurement algorithms face the problems of 

distortion of measurement on multi-hop paths, system resource limitations, probe 

traffic intrusiveness and measurement accuracy. We have developed a new rate- 

based self-induced algorithm — PoissonProb. The intervals between probe packets 

of this algorithm are in Poisson distribution format and the algorithm infers the 

available bandwidth according to the average of probe packets rate. The algorithm 

has been implemented as the PoissonProb Available Bandwidth (PAB) 

measurement tool. The PAB tool can be operated in either sender-based or 

receiver-based mode. We have been able to test for the available bandwidth at Gbps 

networks on NS2. We have also tested it, in the range from several Mbps to 

400Mbps, on common desktops on a grid test-bed. Another feature of this 

algorithm is that it can be operated under both Windows and UNIX environments. 

We have compared the PAB tool with C-Probe, PathChirp and IGI, the three 

algorithms, which are normally used today. The three algorithms can work only on 

UNIX environment. Our tests show that, even in the Windows environment, we are 

able to obtain the same or even better accuracy and efficiency as the other three 

algorithms. Lastly, we have done extensive testing on an ISP’s network and 

compared the results with the data from the ISP.

Keywords: available bandwidth, bandwidth measurement, bottleneck bandwidth, 

packet train, Poisson distribution, PoissonProb
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1. Introduction

1.1 Bandwidth Metrics

Bandwidth is defined most generally as the amount of data the network can transfer per 

unit time. Five common metrics are summarized here:

• Bandwidth Capacity: The maximum amount of data per time unit that a hop or 

path can carry when there is no competing traffic.

• Utilization: The aggregate capacity currently being consumed on a hop or path.

• Available Bandwidth: The maximum amount of data per time unit that a hop or 

path can provide given the current utilization.

• Achievable Bandwidth (also referred as throughput): The maximum amount of 

data per time unit that a hop or path can offer to an application, given the current 

utilization, the protocol and operating system used, and the end-host performance 

capability and load.

• Bulk-transfer Capacity (BTC): [17] “The intuitive definition o f BTC is the 

expected long term average data rate (bits per second) o f a single ideal TCP 

implementation over the path in question,\

Bandwidth measurement algorithms can be classified into several categories, depending 

on the specific metric of interest. For the end-to-end measurement, from the concepts 

described above, one can easily infer that if  a path consists of several links, the link with 

the minimum transmission rate determines the capacity of the path while the link with the 

minimum unused capacity limits the available bandwidth. For the case of a multi-hop 

path, using end-to-end measurements, the capacity-limited link is called the bottleneck 

link and the available bandwidth-limited link is called the tight link.

1.2 Stationary Nature of Available Bandwidth

The available bandwidth measurement usually means measuring available bandwidth 

over a certain period of time. Assume the capacity of the tight link is Ct. The average 

utilization of the link during the measurement time A can be expressed as

1
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u ( t , t + A ) =
A

J u ( t ) d ( t ) (1)

where p(t) is the utilization of a link at time t. p (t) is expressed as a fraction. Its value is 1 

for full utilization and its value is 0, when there is no traffic on the link.

Then the available bandwidth Ca in time interval [A t+ A ] can be expressed as

Actually, as a straightforward relationship with the bandwidth utilization, some of 

algorithms measure the network utilization first, and then get the available bandwidth by 

subtracting utilization from the capacity of the tight link.

The available bandwidth may change at a very fast rate due to the burstiness of some of 

the network traffic. Under such conditions, researchers have studied the issue of 

predicting future available bandwidth by using the past measurements of available 

bandwidth. Research done through large scale experiments on Internet infrastructure, in 

[6] [27] has shown the stationary nature of available bandwidth. Their conclusion is that 

“there is no simple relationship between the mathematics and operational constancy o f 

throughput” and “when indicating throughput, remembering observations from a number 

o f  minutes in the past is fine, but remembering fo r  more than an hour can mislead the 

estimator” [27]. The same conclusion was proven by network traffic modeling research. 

He and Hou [6] experimentally proved that the available bandwidth could be predicted 

ahead for 5 times the measurement time interval. So, it is meaningful to predicate the 

available bandwidth through the available bandwidth measurement algorithms; the key 

issue here is the time scale. The above observations are so important that most modem 

available bandwidth measurement algorithms were designed based on them.

1.3 Available Bandwidth Measurement Algorithms

Ca(t , t  + A) = C t ( l - u ( t , t  + A)) (2)

2
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The research on measuring available bandwidth falls into two basic classes: the 

development from the network traffic modeling research, and research on self-induced 

algorithms. Self-induced algorithms can be further divided into rate-based algorithm and 

gap-based algorithm [15]. The idea of rate-based algorithm is that, if the rate of the probe 

packets pair or train sent from the sender is larger than the available bandwidth, the 

stream will produce a short-term overload at the tight link. Then at the receiver side, an 

increasing trend of one-way-delay of probing packets should be observed. The goal of the 

rate-based algorithm is to find the curve where there is available bandwidth along the 

path. Gap-based algorithm shown in as figure 1-1, are quite different.

Probe Packets Tight Link Cross-traffic Packets

Output Gap

Figure 1-1 Gap-based Measurement

Gap-based algorithms are usually facilitated by the packet pair or packet train properties, 

by which the change of intervals of probing packets is observed (Output Gap -  Initial 

Gap) as shown by above graph. The interval between probing packet 1 and 2 is changed 

by the tight link. The algorithm assumes the intervals between probe packets are affected 

only by cross-traffic on tight link, and the bottleneck link is the tight link. Then, they can 

infer the available bandwidth. The original self-induced algorithm can be traced back to 

the Cprobe [20], which is a gap-based algorithm, designed for prioritizing dynamic 

servers’ selection. Gap-based algorithms such as IGI [18], and spruce [10] adopt

3
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different strategies, such as adjusting the probe packets rate and applied the statistical 

techniques to improve accuracy. The rate-based algorithm is focused on finding the 

transmission rate of probe packets while the probe packets just saturate the tight link, 

attempting to minimize the number of probe packets and filtering out the downstream’s 

cross-traffic effect. Such algorithm includes SLoPS [4], PTR [18], pathChirp [24] and 

TOPP [3],

1.4 Some Clarification of Bandwidth Metrics

1.4.1 Which Layer is the Metrics related to?

Before the measurement tools can be applied in various applications, it is important to 

specify which network layer the metric is concerned with, when measuring bandwidth. 

For instance, the actual bandwidth that the higher layer sees may be very different from 

what the lower layer sees. The bandwidth capacity reflects physical bit rate capacity at 

layer-1. But if one uses the upper layers for measurement of capacity, the measured value 

of capacity decreases, since the framing and the protocol overheads for upper layers have 

to be taken into account. The algorithms discussed here are software-based. Thus, the 

network layer is considered for bandwidth capacity and available bandwidth, while the 

transport layer information is considered for achievable bandwidth and BTC.

1.4.2 Available Bandwidth vs. Achievable Bandwidth

By definition, available bandwidth is a physical-layer parameter. At any point of time, 

available bandwidth is the bandwidth the links can offer at current cross-traffic situation. 

On the other hand, the achievable bandwidth is an application-layer metric. It considers a 

number of factors such as network protocol, host speed, network path, and TCP buffer 

space, whereas available bandwidth only considers the network path. When one 

application wants to send data from one host to another through the network. The 

achievable bandwidth may be limited by every component along the path from the source 

host to the destination host, including all hardware and software. In fact, achievable 

bandwidth is often a measurement of the capacity of the end host, rather than being a

4
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measurement of the capability of the network. Hence the achievable bandwidth may or 

may not correlate with the available bandwidth.

1.4.3 BTC vs. Available Bandwidth

One fundamental difference between the available bandwidth and BTC relates to the 

cross traffic on the network. The available bandwidth is the amount of usable bandwidth 

without affecting the current cross-traffic. BTC, on the other hand, is measured by 

sending out data as fast as possible, thus grabbing as much of bandwidth as possible. 

Thus measurement of BTC definitely influences other traffic. Experiments have shown 

that the traffic generated for a BTC measurement may grab 20%-30% more bandwidth 

than that for an available bandwidth measurement. Secondly, BTC is a metric to present 

long-term TCP traffic bandwidth, whereas, the available bandwidth reflects the instantly 

usable bandwidth. Reflected into the measurement tools, the measurement tools for BTC 

usually take longer time and are more intrusive than those for available bandwidth. 

Another subtle difference between BTC, achievable bandwidth and available bandwidth, 

is that the BTC and achievable bandwidth also rely on the reaction of the other traffic to 

the resource competition. When the transmission rate of the sender reaches the available 

bandwidth and beyond, the other traffic will be affected and may react accordingly to 

accommodate the new traffic by lowering its rates or it may not react at all. Thus, the 

protocol dependent bandwidth is hard to predict from probing unless the probe behaviour 

is exactly like that of the application.

1.5 Where Is Available Bandwidth Measurement Used?

Available Bandwidth information is so critical to various network applications that it has 

attracted much of the recent research. The applications can be summarized as following.

• Information for network protocols and application development. Developers need 

to know the available bandwidth to judge the efficiency of their protocols and 

applications.

• Dynamic server selection and adapting content. Network clients could 

dynamically choose the server with highest available bandwidth. Meanwhile, a

5
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server could scale the size and quality of its content (e.g. pictures, sound and 

video) depending on the available bandwidth of the path to the client.

• Network management, like end-to-end admission control, congestion control, 

TCP windows control, and network-aware cache or replica placement policy.

• Bandwidth-A ware Routing. Information about the bandwidth of links also allows 

building efficient overlay networks.

•  Benchmarking equipment and service level agreement verification.

1.6 The Need for Available Bandwidth Measurement Algorithms

Routers or switches along the path sometimes can offer the link capacity information via 

SNMP query or the tools, like MRTG or HP Openview can be used to monitor the 

utilization of links. This approach usually can get more accurate information than other 

methods. However, in general, it is not possible to get access to this information because 

network switches and routers may be in different administrative domains. For example, 

an end-user is unlikely to be able to access SNMP information in a commercial ISP’s 

network. Also, most router software has been optimized for routing speed. Hence, the 

routers usually ignore the queries or other activities that influence their speed. Another 

drawback of this approach is insufficient level of measurement resolution. For example, 

the MRTG reports packet statistics every 5 minutes. This is not adequate for some 

applications that need the instant available bandwidth information to make decisions.

1.7 Organization of the Thesis Document

The rest of this thesis is organized as follows. The literature review of the current 

available bandwidth measurement algorithms and a general discussion of bandwidth 

measurement methods are presented in chapter 2. Chapter 3 is an analysis of difficulties 

faced when the available bandwidth measurement algorithms are used. The distortion of 

measurement on the multi-hops path, the system resource limitations, the probe traffic 

intrusiveness and the measurement accuracy and other such factors, which affect the 

accuracy of measurement, are discussed. The effect of these factors on the design 

process of PoissonProb algorithm is also described in this chapter. Chapter 4 gives a

6
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detailed description of the algorithm. The results of our experiments for testing the 

algorithm are shown in chapter 5. The conclusions of this study constitute the last 

chapter.

7
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2. Background and Related Work
2.1 Passive vs. Active Measurement

The bandwidth measurement algorithms can be separated into two categories. One is 

algorithms, which use active measurements. The others use passive measurement. An 

active measurement algorithm sends packets along the path, for which the bandwidth is to 

be measured. A passive measurement algorithm monitors the passing packets without 

interfering. The active measurement algorithms can be further separated into sender- 

based or receiver-based algorithms. These will be discussed in the next sub section. 

Active measurement may be intrusive to the other traffics on the network. Some active 

measurement algorithms send a large number of packets into the network to collect 

sufficient number of samples to filter out the effect of cross-traffic, random network 

behavior or the effect of the measuring host. Though many efforts have been made to use 

passive measurement, passive measurement algorithms are often less reliable than the 

active one. Claffy et al. [12] showed that from passive measurements, it might be 

impossible to extract any useful data at all in some cases. Due to the real time and 

accuracy requirements of most of the applications, available bandwidth algorithms are 

usually operated in the active mode.

2.2 Receiver-based vs. Sender-based Measurement

Receiver-based algorithms (also referred to as end-to-end ones) usually use the one-way 

UDP/TCP datagrams/streams to probe the bandwidth information. On the other hand, the 

sender-based algorithms (also referred to as echo-based ones) force the receiver to reply 

to the ICMP query, UDP echo or TCP-RST packets by TCP-FIN. The choice of sender- 

based or receiver-based algorithms affects ease of deployment and accuracy of 

measurement. Obviously, the sender-based algorithms are easier to deploy than receiver- 

based algorithms. It is impossible to deploy the receiver-based algorithms without 

destination domains’ cooperation. Unfortunately, accuracy suffers when measuring with 

sender-based algorithms. First, the effect of cross traffic on measurement of delay of the 

probe packets may be more for a round-trip traversal of a path than it would be on the 

delay of a one-way transversal of the path. Secondly, the response packets may go back

8
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through a different path. Moreover, the most important point is that sender-based 

algorithms assume that “the sender can precisely match acknowledgements to packets, 

the receiver acknowledges each packet immediately and consistently, the 

acknowledgements are all o f the same size, and the acknowledgements experience no 

queuing in the reverse path” [13]. However, many network environments cannot meet 

these strict conditions. For example, every other TCP packet may be acknowledged at the 

receiver side. ICMP and UDP echo packets are either rate-limited or filtered out at some 

routers. Different TCP/IP implementations may respond in different ways to these probe 

packets. Finally, the probe packets of the sender-based algorithms may trigger the alarm 

of an intrusion detection system or may be blocked by firewall, and thus making the 

measurement impossible. There is really a trade-off between the easy-of-deployment and 

accuracy. All the current available bandwidth algorithms are receiver-based except the 

Cprobe which is a sender-based algorithm. PoissonProb can be operated in either 

receiver-based or sender-based mode. PoissonProb sends out UDP packets and waits for 

echoes from the destination when it is impossible to deploy the software at the receiver 

side, no strict network security policy is present, and the accuracy requirement is low.

2.3 Related Works

2.3.1 Model -based Algorithms

As mentioned in section 1.3, one class of the available bandwidth measurement 

algorithms has been developed on the basis of the network traffic modeling research. The 

foundation of the Delphi algorithm [25] is based on the Multifractal Wavelet Model 

(MWM). The core idea of the MWM is that the cross-traffic stream is a superposition of 

many data flows that share common link resources with the probe connections. The 

statistical analysis showed such superposition has the characteristics of self-similarity, 

burstiness, long-range dependence (LRD) and even multifractal behaviour (non- 

Gaussianity) [23]. This multifractal behaviour makes it possible to present aggregated 

cross-traffic as a binary tree structure. In this structure, the p multiplier split parent 

aggregate into two child aggregates at the next scale which increases or decreases p flow 

of traffic. The MWM also provides means to estimate the queuing behaviour of a

9
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synthetic trace through the Multiscale Queuing Formula (MSQ). Then Delphi uses the 

derivative of the MSQ to obtain a probability density function for queue size.

Following this model, the Delphi algorithm sends out a chirp of probe packets. The initial 

interval between the packets is partitioned according to the exponential spacing and the 

interval is adjusted with the estimate of the previous result. Then the gap change of the 

two probing packets at the receiver can provide an estimate of the amount of traffic at a 

link. Delphi assumes that the path can be well modeled by a single queue (single-hop 

model), However, this assumption is not applicable when the tight and bottleneck links 

are different. It also looks upon all the queuing delays in the path as delay at the tight link. 

This assumption, in some situations, leads to wrong estimation of the cross-traffic. 

Actually, the implementation of Delphi is similar to that of gap-based algorithms. But the 

two have different theoretical foundations.

2.3.2 Gap-based Algorithms

2.3.2.1 Cprobe and pipechar

Cprobe [20] is the first algorithm, which claimed to measure the available bandwidth 

through gap-based approach. By sending out a short packet train back-to-back and 

measuring the time interval of the first and the last ICMP echo packets, the available 

bandwidth can be calculated. The underlying assumption is that the dispersion of a packet 

train is inversely proportional to the available bandwidth. This idea is the same as the one 

used by pipechar [8], which was implemented in Network Characterization Service 

(NCS). The only difference is that the pipechar can also be operated in the passive mode 

through utilizing the deployment of the NCS infrastructure. Though these algorithms are 

straightforward, researches have shown that some assumptions in the approach are of 

doubtful validity. Dovrolis et al. [5] proved that the dispersion of long packet trains, sent 

out back-to-back, is not actually inversely proportional to the available bandwidth. Other 

research [3] has shown that the “hidden bottleneck problem” may also be a detriment to 

the accuracy of measurements.

10
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2.3.2.2 IGI

Hu et al. [18] set up a single-hop gap model and then proposed two available bandwidth 

measurement algorithms based on this model: the gap-based algorithm Initial Gap 

Increasing (IGI) and the rate-based algorithm Packet Transmission Rate (PTR). The core 

task of IGI/PTR algorithm is to find the “turning poin t’ at the point of probe packets 

transmission rate. The output interval of the whole packet train at destination is the same 

as the initial interval. Researchers claimed, “at this point, the probing packets interleaves 

nicely with the competing traffic and the average rate o f the packet train equals the 

available bandwidth on the bottleneck link.” Hu et al. also summarized the gap-base 

algorithms as the following formula:

M

— ,J±y   ----- (3) (Reference [18] page 882 equation 4, 5)

+5> r +S#r;=i ;=i i=i

M
In formula (3), (g(+ - g B) is the amount of competing traffic that arrives at

<=i
M  K  N

bottleneck link during the probing period. Ideally + ^ g ,= + X ^ '7 *s t*ie tota^
i=i /=i i=i

probing time.

The other contribution of this research is that they noticed the packet pairs could not 

measure the available bandwidth when continuous probe packets fall in a “disjoint 

queuing region” (DQR).

2.3.2.3 SPRUCE

Spruce [10] is a lightweight available bandwidth measurement tool designed by Strauss et 

al. The tool uses UDP packet pair as the probing packets. The packet size is fixed to 1500

11
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bytes and the changes of gaps between the packet pairs are collected to calculate the 

available bandwidth. The formula is the same as that of IGI algorithm, which is described 

in section 23.2.2 equation 3, except that just one gap of packet pair is calculated. Spruce 

takes the average of a large number of samples of probe packet pairs. All the parameters 

in Spruce are fixed. The initial gap of packet pair is set to the bottleneck capacity along 

the path as the tool assumes the bottleneck link is the tight link. The characteristics of 

Spruce is that it sends two packets (one packet pair) back-to-back and sets the inter pack 

pair gaps as the Poisson distribution at a very low rate, as the researchers claimed, “A 

sequence o f measurements according to a Poisson sampling process sees the average 

cross-traffic rate”.

2.3.3 Rate-based Algorithms

2.3.3.1 SLoPS

Dovrolis et al [16] devised a Self-Loading Period Streams (SLoPS) algorithm to measure 

the end-to-end available bandwidth. The implementation tool is Pathload. The Pathload 

sends out a fleet of probe packet streams at the rates from low to high. So it measures the 

‘‘''fleet duration” instead of “stream duration” to address the volatile characteristics of 

short-term cross-traffic. The sender’s sending rate is self-adaptive with the delay treads 

observed at the receiver. Finally this rate converges to the range of Rmax and Rmin 

(Pathload reports the range of the estimated available bandwidth) through a binary tree 

search algorithm. Pathload uses “Pairwise Comparison Test” (PCT) and “Pairwise 

Difference Test” (PDT) to decide whether the measurements fall into the available 

bandwidth range. The limitation of SLoPS is that it can succeed in estimating a range that 

includes the actual available bandwidth when there is only one tight link along the path; 

but it underestimates the available bandwidth when there are multiple links, as the 

congestion links exist along the path. This is also the common limitation of the present 

algorithms. The other drawbacks of SLoPS are slow-convergence and intrusiveness to the 

current traffic.

2.3.3.2 TOPP

12
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TOPP [3] and SLoPS are based on the same principle that the queuing delays of 

successive periodic probing packets increase when the probing rate is higher than the 

available bandwidth along the path. But TOPP has a different analysis model to the 

samples at the receiver side. The contribution of the TOPP algorithm is that it adopts a 

mathematical model that can catch the effect of different congestion links on the probe 

packets, if  the congestion links are in “Smallest Surplus First (SSF)”order, i.e. if the 

congestion links capacities are in order, they can be detected when raising the probe load.

TOPP uses packet trains with different transmission rates and estimates available 

bandwidth from the time average spacing of the packet pairs in the packet train at the 

receiver. The transmission rate increases from Omin to Omax with the increment 8. With the 

increase of the probe train’s transmission rate, the links with lower available bandwidth 

become congested. If the router adopts FCFS policy, the probe traffic is proportional 

sharing the bandwidth with the cross traffic. The partitioned probe traffic will share the 

bandwidth with the cross traffic again in the following congested link. Refer to equation

(Reference [3] page 416 equation 2)

Equation (4) shows that when probe traffic arrives at link j ,  if sustained bandwidth Sj is 

higher than probe traffic bandwidth Oj.i, the probe traffic keeps original bandwidth. 

Otherwise, probe traffic shares the bandwidth with cross traffic at they'th link nij

(4).

oj = oj-\ if o j- i < sj or oj = — !— lj if oj- 1 > sj (4)
mj + oj- i

o
lj for o > sj

m.j +  o
(5)

o
lj

rnj + o for Oj > Sj + P (6)j+ p omj + P + lj
mj + o
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(Reference [3] page 416 equation 3)

Equation (5) and (6) show the proportional sharing of bandwidth between cross-traffic 

and probe-traffic at the congested link j  (5) and the following congested link j  + p  (6).

o I - m .  1 .. s. 1 0
j  = ( \ -----j - )  + -o  = ( \ - - ) + - o  = a  + (h  (7)

(Reference [3] page 416 equation 5)

When probe packets arrive at the destination, TOPP calculates the effect of the cross

traffic on the packet pair /  and linearizes the congested link bandwidth o with / b y  

equation (7). On plotting the function as continued curves, the curves represent the 

segment regression function of equation (7). Vertices correspond to the available 

bandwidth of the congested links.

2.3.3.3 PTR

The PTR algorithm [18] is focused on finding the “turning point”. It calculates available 

bandwidth according to equation (8):

-g—̂ + -----(8) (Reference [18] page 882 equation 4)

i=1 (=1 (=1

Here, the gap values G+ = {gi\ i= G={gf\=l...K}, and G'={gf\I=l...Nj denote

the gaps that are increased, unchanged, and decreased respectively.

2.3.3.4 pathChirp
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Another rate-based algorithm is pathChirp [24]. PathChirp is more efficient, in that, it 

sends less number of probe packets. The probe packets are exponentially spaced by space 

factor y as shown in figure 2-1.

probe jackets

f 2 N-4 A'-J N.2 N J  N

j u LaJ ] ______ d___[i ii n
Tf-t TV TV I t  T timc

Figure 2-1 Exponentially Spaced Probe Packets (reference [24] page 2, figure 1)

Then to measure the range of available bandwidth [Gl, G2], it just needs log2G2- log2Gl 

packets to cover the bandwidth range. The method needs the lowest number of probe 

packets because it uses the correlation of the interval between these packets. For example, 

to cover the bandwidth from 1-100 Mbps, the pathChirp algorithm just needs 13 packets 

if the space factor y=1.4. At the receiver side, a typical trace of probe packets affected by 

the burst of cross-traffic is observed and analyzed. The typical trace is usually presented 

as in figure 2-2.

queuing delay
o
o
0
o

O  o

-e—e-

excursions
"■ j packet
—J  sending

time

Figure 2-2 pathChirp Probe Packets Trace (reference [24] page 3, figure 2)

The trace of the probe packets received at the receiver side provides abundant 

information about the network cross-traffic. By carefully discriminating the different 

queue situation the probe packets meet, pathChirp makes an estimate of per-packet

15
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available bandwidth Ek of the k th packet estimated at time interval of continuous k  and 

k+1 probe packets B [th tk+J. It then takes the weighted average of all estimates 

corresponding to each chirp with N  probe packets to obtain estimated per-chirp available 

bandwidth B [tu tN+i]■ Here, the weighted average of Ek means that not all the packets 

take their individual estimates as valid. The probe packet’s queuing delays falling uphill 

of the excursion range (refer to figure 2-2) are processed as valid samples because these 

packets are believed to have experienced cross-traffic interference. Other invalid 

samples’ estimates are represented by Ei which is the last start of excursion. For the time 

interval of measurement T  (default is 3 seconds), pathChirp algorithm takes the average 

of per-chirp estimates to get the time interval T  s available bandwidth.

16
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3. Measurement Challenges

3.1 Rate-based Algorithms and Gap-based Algorithms

Gap-based algorithms are usually facilitated by the packet pair/train properties. The gaps 

between probing packets are observed. The advantage of this kind of algorithms is that 

they are very sensitive to the burstiness of cross-traffic because of fine-grained 

interaction between the probing packets and cross-traffic packets. The algorithms are 

based on a single hop model where the bottleneck link and tight link is the same one. In 

other words, the whole path can be modeled as one queue. The formula can be 

summarized as equation (3). Though such algorithms are based on a single-hop model, 

some papers have described the measurement results as very accurate. The reasons can be 

analyzed as follows:

• Tight link in most situations is the bottleneck link.

• Tight link is usually located at the edge of the network.

Rate-based algorithms try to find a “turning point ’ where the rate of the probing packet is 

around the available bandwidth. The advantage of this type of algorithms is that they 

adapt widely to most of network situations. They have better resistance to the cross-

traffic effect and they can always report reasonable results. In comparison with the rate- 

based algorithms, the gap-based algorithms may deviate largely from the correct value 

because of errors in estimating either the bottleneck capacity or the cross-traffic rate. The 

shortcoming of rate-based algorithm is that the overhead to converge to the turning point 

is too high. The rate-based algorithms formula can be summarized as equation (8).

PoissonProb is a rate-based algorithm. The sending rate of probe packets is adjusted 

according to the accumulated gaps between probe packets at the destination. The gaps 

between the probe packets are separated in Poisson distribution. The mean inter-packets 

interval X is increased step-by-step till it reaches the stop point when the probe packets 

are interweaved with cross-traffic perfectly. Then the algorithm calculates the utilization
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according to equation (8). The bottleneck capacity is inferred through the simple version 

of histogram approach of bandwidth capacity measurement algorithm that is used to 

reduce the overhead of convergence to the turning point. The detailed description of the 

algorithm is presented section 4.

3.2 Packet Pair vs. Packet Train

Characterizing available bandwidth is more difficult since it is a dynamic property of the 

network and it depends on many factors. Available bandwidth measurement algorithms 

try to take a snapshot of the cross-traffic effect. Because of the dynamic nature of the 

available bandwidth, it must be averaged over a time interval; therefore, active 

measurement techniques often use packet trains instead of packet pairs as the packet pair 

cannot catch the bursty type of traffic. Spruce uses only packet pair gaps to infer the 

utilization. Though the Cprobe, pipechar, and TOPP use packet trains as the probe type 

they simply take the total interval of the packet train or packet pair intervals to infer the 

available bandwidth, ignoring the correlation of the effect of the bursty cross-traffic on 

packet trains. This yields less accurate results than the tools, like Pathload, IGI/PRT and 

pathchirp, which take the delay correlation of each probe packet into consideration. The 

other shortcoming of the packet pair technique is that when applied in the TCP stream to 

measure available bandwidth, it may fail to saturate the pipe, thus underestimating the 

available bandwidth.

The next question is what should be an adequate length of the packet train. Intuitively, a 

shorter packet train provides less accurate information. This has been proven in [18] as 

well as [24] which claimed “The shorter chirps will exhibit more erratic signatures and 

give less accurate estimates.” To get a snapshot of the cross-traffic, a longer packet train 

is certainly preferred. However, a longer packet train may result in a higher network 

overload, lost packets, or a congested network.

To better understand the packet train properties, we set up a single hop test bed based on 

NS2. Please refer the figure 3-1 Single Hop Test Bed. C l, C2, C3, C4 and C5 are agents
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to send out CBR type traffics to the sinks SI, S2, $3, S4 and S5 respectively. The 

capacity of links C [1-5] A, S [1-5] B and AB is 100Mbps and the agents start in 

sequence at the rate 20Mbps except C4 and C5 at 10Mbps. Ps and Pr are PoissonProb 

client and server. Then we reduce the transmission rate of agents gradually to 10Mbps at 

the end. In this experiment, we set the length of packet train from 10 to 60 packets. The 

probe packet size is 1000 bytes. The result is shown in Table 3-1.

Cl SI

C2

C3

C4

Tight /Bottleneck Link
C5

Pr Ps

Figure 3-1 Single Hop Test Bed

Table 3-1 Different PoissonProb Train Lengths and Available Bandwidth Values

60 50 40 30 20 10
20Mbps 30.89 24.25 25.82 26.61 25.33 25.00
30Mbps 34.91 36.84 36.79 37.18 28.79 42.21
40Mbps 44.70 43.59 50.00 45.31 34.87 26.00
50Mbps 50.29 50.79 54.75 51.48 51.35 64.29
60Mbps 66.29 56.30 60.22 55.63 53.14 69.30
70Mbps 72.65 71.68 68.19 61.59 57.61 70.41
80Mbps 78.90 83.06 82.97 65.56 64.74 76.68
90Mbps 88.08 90.57 90.25 72.49 72.29 81.96
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The first row in the table is the PoissonProb train length that is changed from 10 to 60 

packets. Each column is the measurement result and the most left-most column is the real 

available bandwidth in Mbps. We define the relative error as:

\MeasurementAB-Re alAB\
8 = Re alAB

Then, the relative error of each length of PoissonProb can be shown as in the figure 3-2: 

Figure 3-2 Error Rate for Different PoissonProb Train Lengths

PoissonProb Length Effect

20Mb 30Mb 40Mb 50Mb 60Mb 70Mb 80Mb 
Available Bandwidth

160 
150

□ 40
□ 30 
120 
110

From the chart, we can conclude as following:

• The shorter length probe packet trains do show less accuracy than the trains with 

longer length. (With the exception of length = 60 packets at AB= 20Mbps).

• The short train (length = 1 0  packets) cannot be used, as it cannot snapshot cross

traffic.

• Commonly, a train length more than 20 packets can give a reasonable result. In 

PoissonProb NS2 implementation, the train length is 20 packets and in its 

implementation on the test-bed and on the Internet, the train length is 60 packets 

to catch complex Internet traffic.
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The next concern is the size of probe packet. The packets with smaller size are more 

sensitive to the cross-traffic than the packets with bigger size. On the other hand, the 

packets with bigger size are more intrusive to the network, i.e. they occupy more 

bandwidth resource. The other drawback of small packets is that it is difficult to measure 

the small time interval between two probe packets because of system resource limitations. 

All the published available bandwidth measurement algorithms choose the probe packet 

size higher than 500 bytes (Internet traffic analysis [11] showed the average packet’ size 

is around 500-750 and the trend is becoming larger because of the increasing popularity 

of multimedia traffic).

Again, based on the same single-hop test bed, we tested our PoissonProb algorithm in 

different packet size. The first row in Table 3-3 showed the packet size from 200 bytes to 

1500 bytes. The left-most column is the real bandwidth.

Table 3-2 Different PoissonProb Packet Size and Available Bandwidth Values

1500 1200 1000 800 500 200
20Mbps 31.37 31.03 25.82 31.45 32.77 39.39
30Mbps 36.22 36.06 36.79 33.85 35.22 52.70
40Mbps 45.35 45.38 50.00 46.43 48.78 56.52
50Mbps 52.94 55.68 54.76 54.36 55.31 60.94
60Mbps 61.24 61.17 60.22 59.32 66.10 66.10
70Mbps 67.88 67.81 68.19 72.22 117.74 72.22
80Mbps 81.82 80.97 82.98 81.68 82.98 88.64
90Mbps 90.70 90.35 90.26 89.32 90.70 88.63
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Figure 3-3 Error Rate for Different PoissonProb Packet Sizes

PoissonProb Packet Size Effect
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From the figure 3-3, we can conclude as follows:

• The small packet size (size = 200,500 bytes) is sensitive to the cross-traffic and 

reports more available bandwidth because of queuing behind the big packets. The 

intervals between the probe packets are decreased.

• Commonly, a packet size bigger than 500 bytes is enough for probing.

• PoissonProb NS2 implementation uses 800 bytes as the probe packets size and the 

implementation on the test-bed and the Internet uses 1000 bytes to address the 

high speed network time resolution issue.

3.3 Convergence Time

Cprobe, IGI/PTR, Spruce and TOPP algorithms use the bottleneck capacity information 

to infer the available bandwidth. Furthermore, the IGI/PTR algorithm uses this value to 

decide its init_gap and gap_step separately. There is no doubt this method is very useful 

to optimize the convergence time. The bottleneck capacity measurement is efficient, i.e. 

the result of the measurement is accurate and the convergence time is short. Because of 

the advanced structure design of probe packets, PathChirp has a short convergence time 

without knowing the network property in advance, as discussed in section 2.3.3.4. The
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Pathload has the longest convergence time among these algorithms due to its 

convergence algorithm. Pathload monitors changes in the one-way delay of the probing 

packets in order to determine the relationship between probing speed and available 

bandwidth. This can be difficult if probing packets experience different levels of 

congestion. This can slow down the convergence process and can result in a high value of 

probing time. In contrast, the convergence of IGI/PTR is determined directly by the 

single packet train dispersion at the source and destination. PoissonProb takes advantage 

of IGI/PTR approach and infers the bottleneck bandwidth through histogram analysis. 

Then it decides the initial probing rate based on the bottleneck bandwidth.

3.4 Intrusion Consideration

Active measurements are all intrusive as they place additional load on the network, 

delaying other flows. Though many efforts have been made to use passive measurements, 

passive measurements are inefficient in most situations. To design measurement 

algorithms with minimal additional load to the network have become the challenge. 

However, to judge an algorithm’s intrusiveness is difficult because it hasn’t been 

standardized. Some researchers proposed average probing traffic rate as the standard. 

Others evaluated the intrusiveness by comparing this rate with the available bandwidth in 

the path. The following comparison is based on the analysis of the algorithms, without 

formulary calculation or measurements. Through analysis of these algorithms, the 

PathChirp algorithm clearly shows its advantage over other algorithms. At the same time, 

Cprobe and pipechar may be the most intrusive algorithms, because they send out their 

probe packets back-to-back (as fast as possible), and can easily induce overload on the 

network. Based on the self-induced algorithm characteristics, the rate-based available 

bandwidth measurement tools are more intrusive than the gap-based tools because of the 

coverage overhead.

3.5 Tight Links
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The critical issue that influences the accuracy of available bandwidth measurement 

occurs when there are several tight links (or congested link) existing along the path or the 

tight link is not the bottleneck link. The algorithms, like PoissonProb, Cprobe, pipechar, 

IGI/PTR, pathChirp and Pathload were designed based on the assumption that the tight 

link is the bottleneck link. All these algorithms assume a single-hop model. If the first 

assumption fails to be satisfied, it may result in reporting wrong answer for Cprobe and 

IGI like algorithms because they report the available bandwidth by directly involving the 

bottleneck link capacity. If there are several congested links along the path, all algorithms 

may suffer inaccuracy, which depends on the smallest tight link location. It is easy to 

prove that both the upstream and the downstream of tight links will reshape the probe 

packet’s interval and the competing traffic on the ending up tight link has dominating 

impact on the probe packet’s interval. If the smallest tight link is at the end of path, then 

the probe packets can take the cross-traffic snapshot of that link and get the right result; 

otherwise, the result deviates from the correct value. Out of these algorithms, only TOPP 

algorithm addressed a limited solution of this issue. The solution is valid only when the 

congested links are compliant with Smallest Surplus First order. Fortunately, 

investigations on today’s Internet shows that most congested links are usually located at 

the edge link [11] [14]. This discovery alleviates most of algorithms’ problems. However, 

this issue may still be a future research topic. PoissonProb separates the probe packets in 

Poisson distribution and probes the tight link at the base rate of that tight link. It doesn’t 

accumulate the several tight links effect to the sink. It shows better resistance to the 

interference of cross-traffics before the tight link as well as after tight link. We’ll prove 

this theoretically in chapter 4 and compare the PoissonProb, IGI/PTR and pathChirp on a 

multi-hop testbed.

3.6 System Resources

Recently, the bandwidth measurement tools have been facing another significant 

challenge as the network speed has been increasing. As shown at [7], (page 8, paragraph 

5):
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“In the past 10 years, network speed has increased by a factor o f 100, CPU 

clock speed has increase by more than a factor o f 30; memory clock speed 

has increased by almost a factor o f 20. Memory bandwidth, however, has 

increased by only a factor o f 10, and PCI I/O bus bandwidth has increased by 

only a factor o f 8. ”

It apparently shows the discord of increasing speed between the network and the end host 

system. Sometimes, the end host is the real bottleneck along the path and network 

bandwidth measurement falls, when estimate at the end host. Most of the available 

bandwidth measurement algorithms require the end hosts to send the probe packets at a 

speed faster than the possible available bandwidth. For some high-speed networks (>= 

lGbps), end-hosts may fail to meet this condition. (We used a desktop with 1837MHz 

CPU and 133 PCI bus. The fastest rate the machine can send is about 550 Mbps) Thus, 

when designing and implementing the bandwidth measurement tools, the system resource 

issues have to be taken into consideration. The system resources that may affect 

bandwidth measurement are summarized in the following subsections.

3.6.1 Resolution of System Timer

There are two system functions, which are commonly used to get system time in the 

Windows system: GetSystemTime and GetTickCount. GetSystemTime returns current time 

in millisecond, GetTickCount is used to get the elapsed time, and is limited by system 

timer resolution. The system timer runs at approximately 10 ms in Windows. For the 

higher resolution, Windows supports hardware devices and network protocols. The 

highest resolution is the 100-nanosecond interval (10A-7 second) '. The UNIX system 

offers a better time resolution at l[xs through a system call (gettimeofday). Even at this 

resolution, it is impossible to measure any incoming packet over 3 Gbps due to the 

additional overhead of system calls. For example, the biggest packet size is L = 1500 

bytes for most networks. If two probe packets go through the OC-48 (2488.32Mbps) link, 

the interval between the two probe packets is about 4.8]is when they reach destination. 

However, most of the time resolution of workstations falls in range of 1-10 |j,s. Thus, it is 

futile to try to accurately measure packet delays on OC-48 or higher bandwidth links.
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An experiment was performed on Linux RedHat 9 (P4 PC) boxes and the Solaris 9 

system (Sun Microsystems V880 systems) to find timer resolution through the Milliken 

Oil Drop Experiment to time an operation that takes some tiny amount of time, and does 

it several times. If that operation is close to the resolution, some timings will be zero 

while others will show up as taking a small amount of time, which is an integer multiple 

of the clock resolution. When the resolution was approached, Solaris reported 0-1 

microseconds and Linux reported 1 microsecond constantly. Linux will not return the 

same gettimeofday values twice in succession. Since it provably takes less than 1 

microsecond to make a system call on a modem machine, Linux must be waiting within 

the gettimeofday procedure long enough to make certain that the time has changed. This 

may be screwing up any available bandwidth measurements made with gettimeofday. 

However, we can believe the time resolution in UNIX system is 1 microsecond through 

the system call. Due to the poor time resolution offered by the Windows system (10ms) 

through system call, several APIs (non-Microsoft software) have been developed to give 

high-resolution time stamp in windows, the resolution is as that in UNIX -  in 

microseconds. For example, the IBM High Resolution Time Stamp Facility (IBMTS) is a 

library of functions that can be used to measure activities of less than one millisecond's 

duration using highly accurate timestamps. The API returns two values 2:

■ Seconds since the midnight 1/1/70 CUT epoch
■ microseconds

IBMTS uses the multimedia timer routines QueryPerformanceCounter and 

QueryPerformanceFrequency at Windows system. The QueryPerformanceCounter 

function can be used to express the frequency, in counts per second. The value of the 

count is processor dependent. On some processors, for example, the count might be the 

cycle rate of the processor clock. The QueryPerformanceFrequency function retrieves the 

current value of the high-resolution performance counter. By calling this function at the

1. http://msdn.microsoft.com/librarv/default.asp7urU/librarv/en- 

us/svsinfb/base/time.asp

2. http://www.alphaworks.ibm.com/tech/ibmts
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beginning and end of a section of code, an application essentially uses the counter as a 

high-resolution timer. We tested most of desktops with 700-1837MHz CPUs and IBM i 

series servers; all the QueryPerformanceFrequency return 3579545 ticks per second. So, 

the time resolution is even better than a microsecond. When we repeat calling this API, 

the systems returned at the 2-5 microseconds later. PoissonProb is facilitated by the 

IBMTS to get the time resolution comparable to those algorithms which run on Unix 

machines.

3.6.2 Context Switch

Context switch is another system resource issue. If the measurement period spans a 

context switch, then the measurement will include this time. Generally, a process gets 

10ms execution time between context switches. So the context switch is likely to occur 

and introduce significant errors in the measurement of a long packet train or delay 

(>10ms). Some researchers noticed this problem. In [24], the pathChirp tool hard coded a 

threshold value; if  the interval of two packets is less than this threshold, the sample is 

ignored. PoissonProb took a similar approach. It finds deviant measurements and filters 

them out before the available bandwidth analysis. Some measurement algorithms 

improve the measurement process priority, but this approach is platform dependent and is 

not an appropriate solution.

3.6.3 System Call

The time to perform system calls influences two aspects of measurement tools: both the 

outgoing packet spacing and get system time for the incoming packets. In [7], Jin et al. 

showed “the system internal timer resolution is often at 1 nanosecond in modern UNIX 

systems. However, the time to perform a system call limits the user timer resolution to 

1.9jus on most systems with x86-based CPU running Linux1'. The reason is that the system 

has to access the clock time counter (CTC) via the low-speed I/O bus.

3.6.4 Interruption Delay
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The core reason of interruption delay is that the efficiency of the CPU decreases as the 

number of interruption requests becomes higher. The experiments [7] show that the CPU 

efficiency might decrease by 40% through response to the interruption request. 

Interruption delay (or interruption coalescence) is a common technique implemented in 

high-speed network interface cards (NIC) that helps to reduce the CPU load. Currently, 

almost all the NICs with bandwidth more than lGbps have this function; it’s also very 

common for the IBM NIC drivers as well as drivers in the Linux world. The NIC driver 

in Linux is an adjustable kernel parameter even with NICs working at 100Mbps. The 

advantage of this approach is that the CPU doesn’t need to respond to every arrived 

packet interruption request. The arriving packets are saved at the buffer and processed by 

the CPU as a batch. However, this may influence the available bandwidth measurement 

algorithm design. For the available bandwidth measurement algorithms, one solution is to 

tune/cancel interruption coalescence through driver software like Intel 82540EM Gigabit 

network controllers or giving timestamps at the NIC when measurement is proceeding. 

Apparently, this approach is not practicable in most situations in the real world. Some 

modem bandwidth measurement algorithms have functions to detect the interruption 

coalescence and then adjust their probe packets accordingly. Certainly, applying the 

packet train to detect the interruption coalescence is a better choice than packet pair.

The PoissonProb algorithm determines whether the sink with interruption coalescence is 

set or not by observing the timestamps from returning packets at the first probe round. At 

the first round, PoissonProb sends out the probe packets back-to-back to the sink. The 

purpose is to infer the bottleneck bandwidth along the path and interruption coalescence. 

If approximately same timestamps (within 5 (is) are found for continuous probe packets, 

then it determines that the other end NIC is working with interruption coalescence and 

the number of packets with the same timestamps may be causing one interruption. 

However, not all interrupt coalescence is implemented with hard coded number of 

packets, which may cause the interruption. The possible implementations which 

determine how to generate the interrupt request also include the maximum number of 

interrupts per second, the delay between the arrivals of the first packet after the last 

interrupt or the delay between the last arrival of a packet and the generation of a new
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interrupt. To cope with the variety of implementations of interruption coalescence, 

PoissonProb sends several packets trains back-to-back to the other end and then 

determines the coalescence number from the average. PoissonProb also has one sanity 

check process to trace the gap changes of arriving probe packets to distinguish the 

context switch and interruption coalescence. The typical signature of context switch and 

interruption coalescence is as follows:

In the PoissonProb implementation, the length of probe packets train is 60. This is 

enough for samples spanning one context switch and several interruption coalescence of 

preferred measuring links with bandwidth less than 400Mbps. PoissonProb also can 

automatically adjust the train length to guarantee that there are at least 10 valid samples 

in one probe attempt, if  the interruption coalescence number is larger than 6. After each 

round of measurement, the sanity check process will filter out the context switch, 

interruption moderation and the random network behaviour effects.

Figure 3-4 Context Switch and Interrupt Coalescence (reference [19] page 5, figure 

2)
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3.6.5 System I/O Bandwidth
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System I/O and the memory bandwidth are real bottlenecks of an end host system [7]. 

The speed of either PCI bus or ISA bus is increasingly slower than that of the other parts 

of the end host system. Though some techniques have improved speed of memory 

bandwidth in a faster track, it is a trivial improvement for the processes, as they have to 

access memory through the system bus. Some solutions have been proposed and 

implemented, as zero-copy or symmetric multiple processors (SMP) which partially 

improve performance. For most of the modem measurement tools, the ability of available 

bandwidth measurement algorithms is limited by the end system and they end up 

measuring the capacity of the end host system instead of measuring the capacity of the 

network.
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4. PoissonProb Details

PossionProb is a rate-based algorithm. The current version was implemented in JAVA 

(PoissonProb UNIX version is only supported by JAVA 1.5 and above). It operates at 

either the client-server mode (receiver-based) or the standalone mode (sender-based). We 

describe each of modes separately.

4.1 The Client-server Mode Algorithm

Under the client-server mode, PoissonProb opens two connections for the available 

bandwidth measurement between the server and the client. One connection is the TCP 

session which is used for transferring the control information and the other is the UDP 

connection, which is used for the probe packets transmission. As we mentioned before, 

we are using the IBMTS under Windows environment and the JAVA system call 

System.nanoTime() under UNIX environment to get the timestamps for packets at user 

space. This makes it possible to run the program without the need for administrative 

privilege. When the measurement starts, PoissonProb client sends the measurement 

request to the server through the TCP connection. Once the server receives the request, it 

checks for the available resource —UDP ports. The server maintains a client connection 

table for the running client because of the stateless property of UDP connections. If the 

UDP port is still available, the server informs the client to start measurement at the 

available UDP port. In the first round, PoissonProb client sends out the probe packets 

back-to-back to the server. The goals are to find out the interruption coalescence at the 

receiver and the bottleneck information along the path. The server timestamps each 

arrived packet and sends back the timestamps information to the client. We are using a 

histogram method to estimate the bottleneck capacity along the path. This is similar to the 

idea in the early version of pathrate [5]. Then the PoissonProb separates the first round 

Poisson distribution packets in the mean inter-packets interval A of the 1/3 of the 

bottleneck separation gap. The accurate bottleneck measurement is not so critical for the 

PoissonProb as for those gap-based algorithms, such as IGI. PoissonProb only uses the 

bottleneck bandwidth to decrease the convergence time. The other goal of the first round
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probe is to find out interrupt coalescence information at the server. The method was 

already discussed in section 3.6.4. At least 10 valid samples for each measurement round 

are retained so that the results are reliable. In the following measurement, the 

PoissonProb client sends the Poisson distributed packet train in which each packet has a 

separate timestamp to the server. The packets interval is determined by the mean inter

packets interval A, and the logarithm (base e) of the math random number between 0 tol. 

The server gives each arrived probe packet a timestamp accordingly. Then the total 

source gaps and destination gaps are accumulated. The clock skew doesn’t influence 

accuracy of PoissonProb algorithm, since only the intervals between the contiguous probe 

packets are taken into consideration. If the gaps are the same ((source gap -  destination 

gap)/ destination gap <= 0.15), the server informs the client to stop the measurement and 

send the timestamps back to the client. Otherwise, the server prompts the client to 

increase or decrease the value of X through the TCP connection. If the total destination 

gap is increased compared with the total source gap, then the X will be increased by 1/5. 

On the other hand, it is decreased by 1/5 accordingly if the destination gap is decreased or 

unchanged. The PoissonProb algorithm gives out the results very fast, usually within 1-10 

seconds. The convergence tie depends on the propagation delay, transmission delay and 

the queuing situation along the path.

There are three mechanisms in PoissonProb to cope with normally unexpected situations 

of the measured network, which may arise because of the complexity and variety of 

Internet. One is the maximum number of rounds. Once the maximum of rounds is 

reached, the server will delete the client connection registration from the table and inform 

the client about the failure of measurement. Such a case may arise when there are 

overloaded links along the path and/or the bottleneck capacity estimation deviates too 

much from the correct value. The client has to re-estimate the bottleneck again, by 

restarting the process of measurement. The second mechanism is used to take care of 

packets losses. The packet loss is observed at the server side through the socket time out 

threshold. If the packet loss is more than 2/3 of the total probe packets, the server will 

inform the client to stop measurement, as there may be one link that is so heavily 

overloaded that the incoming packets are dropped. To continue the measurement may
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make the situation worse. The client may start measurement later. There is the other 

possibility that the packets are dropped at the end host because of the small receiver 

buffer or system resources limitation. The small receiver buffer size is a very rare 

situation as most of modem operating systems offer enough space for the network 

operation. The system resources limitation has been discussed in section 3.6. Under this 

situation, the algorithm starts measuring the end host network transmission capacity 

instead of the link available bandwidth. The third mechanism is that of the regular table 

check. The server maintains a client connection table. The connection, which is inactive 

for 5 minutes, is deleted, and the occupied resources (UDP ports, TCP connection and 

measurements states) are released.

4.2 The Pseudo-Code for the C/S Mode Algorithm

{
// Initialization 

train_length = TrainLength; 

packet_size = PacketSize; 

round =0;

sendMeasurementRequest (); 

i f  (ValideQ && Server_UDP_port) {

sendPackets (0,0); //round 0; probe packet interval 0; 

receiveProblnforO;

bottleneck_capcity = calculateBottleneckCapctiyO; 

initial_gap = bottleneck_capacity/packet_size/3; 

while ((round < MAX_ROUND) &&phaseValideO

(!(source_gap -  destination_gap)/destination gap <= 0. W  { 

sendPackets (round++, initial_gap); 

i f  ( total_destination_gap> total_source_gap) 

initial_gap += initialgap*l/5; 

else initial_gap -= initial_gap*l/5;

}
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sendPackets (round, initial_gap) {

fo r  ( int i=0; i<train_length; i++) {

sendPacket(index, timestampQ, Server_UDP_Port);

/* delay logarithm (base e) o f the math random number between 0 

tol* initial_gap */ 

delay (initial_gap);}

}

}

4.3 The Standalone Mode Algorithm

The PoissonProb sender-based or standalone mode is much simpler compared with the 

client-server mode. The only requirement of the other end host is to open the UDP echo 

(port 7) facility. As the sending host maintains all the states of the measurement, the load 

on the other end is reduced to the minimum. However, as we discussed in section 2.2, the 

sender-based algorithm may have a lower accuracy than the client-server algorithm. The 

PoissonProb standalone mode may be used in a situation where the software deployment 

at other end is difficult. During the measurement, the PoissonProb bounce the probing 

packets to the target host UDP port 7 in the hope that the target may echo the packets 

back. We assume the probing packets are echoed back through the same route and 

without being interfered by the cross-traffic. We may apply the statistical algorithm to 

filter out the cross-traffic and random network effects. The measurement procedure is the 

same as for the client-server mode. In the first round, the initial or the sending host sends 

out back-to-back packets to detect the bottleneck information and in the following round, 

the probe packets distributed in Poisson are bounced out. The measurement host (which 

is the sending host, in this case) observes the total initial gaps and the total gaps of the 

coming back packets. On reaching the turning point, the measurement stops. PoissonProb 

standalone mode requires more measurement samples than the client-server.mode.
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4.4 The Pseudo-Code for the Standalone Mode Algorithm

// Initialization 

train_length = TrainLength; 

packet_size -  PacketSize; 

round =0;

sendPackets (0,0); / /  round 0; probe packet interval 0; 

receiveProbPacketsQ;

bottleneck_capcity -  calculateBottleneckCapctiyQ; 

initial_gap = bottleneck_capacity/packet_size/3; 

while ((round < MAXJR.OUND) &&phaseValidQ &&

(!(source_gap -  destination_gap)/destination gap <= 0. 15)) { 

sendPackets (round++, initial_gap); 

i f  ( total_destination_gap> total_source_gap) 

initial_gap += initialgap*l/5; 

else initial_gap -= initial_gap*l/5;

}

sendPackets (round, initial_gap) {

for ( int i=0; i<train_length; i++) {

sendPacket(index, timestampQ, 7);

/* delay logarithm (base e) o f the math random number between 0 

tol * initial_gap */ 

delay (initial_gap);}

}

The following chapter gives the experimental result of the PoissonProb at the network 

simulator and the network testbed.
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5. Experiments
5.1 NS2 TestBed Description

First, we compared the PoissonProb with the IGI/PTR and the pathChirp on the NS2 (ns- 

2.26). The reason is that the experiments are repeatable and we may control the network 

traffic flow so that various network conditions can be simulated. Furthermore, the 

accurate timestamps for packets at each queue would give us the insights into the 

interactions between the probing packets and the cross-traffics. The goals of the 

experiments can be summarized as follows:

• Comparing the accuracy of the measurement algorithms, under the extreme 

network conditions, such as the strict pre-bottleneck and post-bottleneck at the 

network edge.

• Comparing the algorithms’ convergence time for a multi-hop network.

• Comparing the sensitivity to the network traffic change, when the cross-traffic 

varies at different links along the path.

Figure 5-1. Multi-hop Network Topology on NS2

The testbed can be described as follows:

This is a four-hop network. The probing packets are sent from Ps to the Pd. Cross-traffics 

are created from Cs to Cd. As most of the links are in duplex mode nowadays, 

considering the one-direction measurements does not detract from the generality of the 

conclusions. All the links’ capacity where the packets enter the network is 100Mbps. The
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links R1-R2 and R3-R4 bandwidth capacity is 20Mbps. Meanwhile, link R2-R3 capacity 

is 10Mbps. Then the link R2-R3 is the bottleneck link along the path. In the test scenario 

one, cross-traffic from Cs2 to Cd2 keeps 3 Mbps passing through link R2-R3. When there 

is no other traffic, link R2-R3 is both the bottleneck link and the tight link. We increase 

the cross-traffic from Csl to Cdl from 0 to 19Mbps to observe the pre-bottleneck effect, 

and obviously, after the rate increased to 17Mbps, the link R1R2 becomes the tight link. 

In test scenario two, there is no cross traffic crossing link R1R2, and the traffic from Cs3 

to Cd3 is increased from 0 to 19Mbps to observe the post-bottleneck effect. As in the pre

bottleneck case after the rate increased to 17Mbps, R2R3 becomes the tight kink.

5.2 Results of Experiments using NS2

The implementation of pathChirp (pathChirp_ns_2.26) was downloaded from the 

researchers’ website (http://www.spin.rice.edu/Softwai-e/pathChirp/). IGI implementation 

was coded according to the paper’s description and validated through original paper’s 

testbed. During the test, the parameters are set by its default. The cross-traffic at NS2 

testbed was set as CBR traffic and the packet size was set to 800 bytes. However, when 

the original parameters setting (lowrate_, highrate_ and avgrate_) were kept, we 

observed ridiculous results from pathChirp. After adjusted the parameters according to 

the links capacity, the results are reasonable. The same results were observed at the 

measurement on the test-bed. This may cause pathChirp failing to measure a wide range 

of bandwidth where we don’t know the network properties in advance. The pre

bottleneck measurement results are shown in table 5-1 and the figure 5-2.

Table 5-1. Pre-Bottleneck Measurement on NS2

CrossTraffic
(Mbps)

PathChirp
(Mbps)

IGI
(Mbps)

PoissonProb
(Mbps)

Standard
(Mbps)

0 7.5332 7.5758 7.2152 7.0000
1 7.5332 6.9018 7.2152 7.0000
2 7.3816 6.9018 7.2152 7.0000
3 7.3816 6.9018 7.2152 7.0000
4 7.3816 6.9018 7.2152 7.0000
5 7.4119 7.0093 7.2785 7,0000
6 6.6647 6.9018 7.0678 7.0000
7 6.1086 6.9018 7.3077 7.0000
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8 7.0597 7.0093 7.0370 7.0000
9 6.7905 7.0093 7.0370 7.0000
10 7.0692 6.8389 7.3077 7.0000
11 6.0338 7.5758 7.3077 7.0000
12 6.6315 7.0093 7.2152 7.0000
13 5.8740 6.8182 7.0370 7.0000
14 4.6498 6.9207 6.8771 6.0000
15 5.3180 6.7164 5.0593 5.0000
16 3.7097 7.0355 5.0974 4.0000
17 2.0736 5.8313 4.8148 3.0000
18 2.9860 6.2654 4.0882 2.0000
19 0.8958 6.0497 3.0045 1.0000

Figure 5-2 Comparison of Pre-Bottleneck Measurements on NS2
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We found that under most of the situation, IGI and PoissonProb may give the results 

within 5 seconds. In our experiments, pathChirp usually converged to the stable states 

within 16 seconds. We have shown the first stable result from pathChirp result set for 

comparison in the Table 5-1 and the Figure 5-2. From the above graph, we may see that 

the results from PoissonProb are closer to the standard line than other algorithms, except 

when the available bandwidth below 2Mbps. Apparently, IGI failed to reflect the
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bandwidth change under current network conditions. Many reasons may contribute to the 

IGI results. As we discussed in the early section, the measurements exhibited more 

deviation around the standard curve under the pre-bottleneck conditions. The cross traffic 

on the ending up tight link has the dominating impact on the probe packet’s intervals. IGI 

focuses on the every packet’s interval changes at the receiver side. The bottleneck link 

behind the tight link distorts the snapshot of cross-traffic effect on probe packets at the 

tight link so that it displayed more deviations than other two algorithms that took the 

accumulated gaps between the probe packets as the reference. Researchers in [15] got the 

same conclusion and provided their analysis as well.

Table 5-2. Post-Bottleneck Measurement on NS2

CrossTraffic
(Mbps)

PathChirp
(Mbps)

IGI
(Mbps)

PoissonProb
(Mbps)

Standard
(Mbps)

0 7.5332 7.5758 7.2152 7.0000
1 7.5332 7.5758 7.1123 7.0000
2 7.3816 6.9046 7.1123 7.0000
3 7.5332 7.4469 7.2851 7.0000
4 6.6729 6.5721 7.1123 7.0000
5 7.3816 6.5127 7.1123 7.0000
6 7.3816 8.1579 7.4952 7.0000
7 6.0742 7.2039 7.0051 7.0000
8 6.6729 8.0727 7.1123 7.0000
9 6.4346 6.2238 6.7401 7.0000
10 7.0626 6.1123 7.1417 7.0000
11 5.2968 5.7380 6.9617 7.0000
12 6.1532 6.4480 7.2152 7.0000
13 5.2448 6.7829 7.1342 7.0000
14 4.8961 6.0063 6.3333 6.0000
15 5.2249 5.9196 6.5906 5.0000
16 3.6922 5.7915 4.1317 4.0000
17 2.0736 5.1546 3.9455 3.0000
18 2.0736 5.1546 3.8000 2.0000
19 1.0750 4.3176 3.7669 1.0000
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Figure 5-3 Post-Bottleneck Measurements on NS2 Comparing

Post-bottleneck Measurement
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As we expected, all three algorithms presented the better performance at the post

bottleneck situation as shown in table 5-2 and figure 5-3. The cross-traffic on the link R3- 

R4 dominated the intervals between the probe packets. The snapshots are what the 

algorithms want to keep to the sink. Though the PoissonProb measurement results are 

very close to the standard line at the first several rounds. It deviated when the available 

bandwidth decreased below the 3 Mbps. We’ll address this issue in our future works.

5.3 Description of the Network Testbed

In this experiment, we set up a testbed to compare the above three algorithms. The goals 

of the experiment are the same: comparing the accuracy of the measurement results at 

pre-bottleneck and post-bottleneck conditions. When the bottleneck link is not the tight 

link, we observe the performance of the algorithms to the change and their convergence 

time. The network topology is the same as that applied in NS2. The testbed is comprised 

of the four Linux machines that work as the routers. The probing packets are sent from Ps 

to the Pd. Cross-traffics are generated from Cs to Cd as before. Figure 5-4 is the network 

topology graph.
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Figure 5-4. Multi-hop Network Topology

To verify the links’ capacity, we use the well-known bandwidth measurement algorithm 

pathrate-2.3 (http://www.cc.gatech.edU/fac/Constantinos.Dovrolis/l to measure the 

capacity of each link. Table 5-3 is the links’ capacity in Mbps.

Table5-3. Link Capacity Verification

Node Inbound
(Mbps)

Outbound
(Mbps)

Ps-R1 97-98 97-98
Cs1 - R1 98-98 97-105*
R1 -R2 98-98 97-98

Cd1 - R2 97-98 98-98
R2- R3 86-87 98-98

Cs2 - R3 97-98 97-105*
R3-R4 98-98 98-98

Cd2 - R4 98-98 97-105*
Pd - R4 98-98 97-105*

From above table, we may see that the capacity of all the links is approximately 97- 

98Mbps (we only consider the direction Ps->Pd only, for reasons stated in section 5.2). In 

test scenario one, the link between R2 and R3 has a cross-traffic of 30 Mbps from Cdl to 

Cs2. When there is no other traffic, link R2-R3 is both the bottleneck link and tight link. 

We increase the traffic from Csl to Cdl from 0 to 90Mbps to observe the pre-bottleneck 

effect. Obviously, after the rate of cross-traffic becomes higher than 30Mbps, the link Rl- 

R2 becomes the tight link. In test scenario two, there is no cross-traffic crossing link Rl- 

R2, and the cross-traffic from Cs2 to Cd2 is increased from 0 to 90Mbps to observe the 

post-bottleneck effect. Again, when the rate of cross-traffic increases above 30Mbps, the 

R2-R3 link becomes the tight kink.
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To simulate the Internet traffic, we use Poisson traffic generator and the packet size is 

chosen as lOOOBytes. Table 5-4 shows the verification of the traffic generator. We 

verified the generator at three time scales, 10 seconds, 60 seconds and 3600 seconds 

respectively according to the requirement of our measurement algorithm.

Table 5-4 Result of Experiments for Verification of the Poisson Cross-traffic

Generator
Average Traffic 

(Mbps)
Time Scale 
(10 secs)

Time Scales 
(60 secs)

Time Scales 
(3600 secs)

10 10.059786 10.060956 10.063651
20 20.032575 20.031342 20.026537
30 30.060581 30.066570 30.002312
40 39.967955 39.972571 39.082841
50 49.758193 49.779028 49.763211
60 59.304507 59.269797 59.268689
70 68.937374 68.964083 68.907604
80 78.234092 78.258344 78.214785
90 87.356155 87.313973 87.316224

5.4 Results from the Experiments on the Test Bed

The version of pathChirp is 2.4.1 which was downloaded from the researchers’ website 

(http://www.spin.rice.edu/Software/nathChirpA. IGI/PTR source code was downloaded 

from the researchers’ website (http://gs274.sp.cs.cmu.edu/www/igiA. The tables below 

present the pre-bottleneck measurements results. We adjusted the pathChirp parameters 

to adapt to the links’ bandwidth properties since these were known to us for the test-bed. 

In this experiment, we gave each algorithm one minute to measure the available 

bandwidth that the networks are keeping for one minute accordingly, and then took the 

average of the measurement results as the final result.
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Table 5-5IGI Pre-bottleneck Measurements

MAX MIN AVER CT EBW
82.07 62.86 70.51 0.00 67-68
75.88 61.95 70.53 10.00 67-68
72.32 59.27 66.05 20.00 67-68
73.70 49.82 63.22 30.00 67-68
68.41 48.66 58.96 40.00 57-58
61.31 53.16 56.75 50.00 48-49
59.55 41.66 51.30 60.00 38-39
59.27 40.57 50.68 70.00 29-30
62.98 17.93 36.64 80.00 19-20
36.43 17.93 27.01 90.00 10-11

Table 5-6 PoissonProb Pre-bottleneck Measurements

MAX MIN AVER CT EBW
88.37 59.19 72.82 0.00 67-68
80.58 62.55 70.28 10.00 67-68
81.98 53.39 70.37 20.00 67-68
80.38 58.55 68.87 30.00 67-68
66.87 49.20 57.57 40.00 57-58
63.23 35.82 47.93 50.00 48-49
53.62 17.90 39.32 60.00 38-39
42.10 17.09 25.94 70.00 29-30
34.42 15.57 19.48 80.00 19-20
17.53 8.23 12.65 90.00 10-11

Table 5-7 PathChirp Pre-bottleneck Measurements

MAX MIN AVER CT EBW
76.97 58.36 67.49 0.00 67-68
72.47 55.01 66.34 10.00 67-68
78.53 63.89 70.11 20.00 67-68
77.39 62.53 69.61 30.00 67-68
70.01 55.71 63.82 40.00 57-58
66.78 46.79 55.48 50.00 48-49
49.73 42.27 45.29 60.00 38-39
44.79 25.02 33.73 70.00 29-30
21.00 16.54 18.85 80.00 19-20
20.71 12.38 16.23 90.00 10-11
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Figure 5-5 Pre-Bottleneck Measurements Comparing

Pre-bottleneck Measurements
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Table 5-5 -  5-6 are measurement results of three algorithms. The MAX and MIN 

columns showed the maximum and minimum measurement results algorithms reported. 

We took the average (AVER) measurement results compared with the estimated 

available bandwidth (EBW). The figure 5-5 is the graph shown the pre-bottleneck 

comparing and the figure 5-6 shown the error rate of the three algorithms. Here, the error 

rate 8  is defined as
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\MeasurementAB-Re alAB\ 
8  = R ealAB

From the figure 5-6, we may get the same conclusion as that got from the NS2 

experiment. However, as all the three algorithms applied the statistical techniques to 

filter out the probe deviations in their implementation. They showed better performance 

than that on NS2 testbed.

Table 5-8 IGI Post-Bottleneck Measurements

MAX MIN AVER CT EBW
57.09 43.74 48.14 10.00 67-68
69.14 44.30 49.80 20.00 67-68
48.05 41.57 45.19 30.00 67-68
69.93 56.74 61.94 40.00 57-58
63.44 45.94 56.77 50.00 48-49
42.28 31.22 38.01 60.00 38-39
47.00 26.71 38.34 70.00 29-30
39.57 18.83 26.76 80.00 19-20
30.98 16.00 22.55 90.00 10-11

Table 5-9 PoissonProb Post-Bottleneck Measurements

MAX MIN AVER CT EBW
78.75 57.79 71.34 10.00 67-68
79.71 64.74 72.60 20.00 67-68
77.90 52.40 67.79 30.00 67-68
70.94 44.88 57.41 40.00 57-58
55.31 39.62 48.67 50.00 48-49
50.54 19.99 34.24 60.00 38-39
38.56 15.99 22.44 70.00 29-30
31.16 17.54 20.16 80.00 19-20
15.98 7.03 11.76 90.00 10-11

Table 5-10 PathChirp Post-Bottleneck Measurements

MAX MIN AVER CT EBW
94.18 69.34 79.83 10.00 67-68
83.84 76.19 80.71 20.00 67-68
89.42 59.10 71.31 30.00 67-68
71.04 56.31 64.40 40.00 57-58
53.40 45.43 49.01 50.00 48-49
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55.85 42.52 46.29 60.00 38-39
40.00 28.92 38.62 70.00 29-30
21.97 14.44 16.21 80.00 19-20
18.73 9.62 15.48 90.00 10-11

Figure 5-7 Post-Bottleneck Measurements Comparing

Post-bottleneck Measurements
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Figure 5-8 Post-Bottleneck Measurements Error Rate
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Table 5-7 -  5-8 are measurement results of three algorithms under the post-bottleneck 

conditions. Compared figure 5-8 with figure 5-6, again, we got the lower error rate of all 

three algorithms under post-bottleneck conditions than that got under the pre-bottleneck 

conditions. When the cross-traffic under 30Mbps on the ending up tight link, the
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bottleneck link is also the tight link. However, the final tight link distorted the intervals 

between the probe packets. Then the algorithms produced higher error rate than those 

produced at last several rounds.

5.5 Measurement Results Between Gateways

Figure 5-9 ISP Network Topology
switch

switch Upper layer ISP Backbone

Test Machine
gw gw

Test Machine

To further evaluate three algorithms, we deployed programs behind two firewalls within 

a small ISP network whose gateways are connected through the upper layer ISP 

backbones. Figure 5-9 is the network topology we used for measurement. As one of the 

firewall is configured with TC rules (Traffic Shaping/Control) that limit the ceiling rate 

of egress port to 15Mbps, this link, between the firewall (fw) and the gateway (gw) is 

apparently both bottleneck link and the tight link. The other links are only limited by the 

gateway capacity, which is 100Mbps. The ISP authorities permitted us to run the 

programs for three days (Wednesday, Thursday and Friday) from 0:00AM to 17:00PM. 

Each program was scheduled to run one minute during the 5 minutes intervals. We took 

the average output of measurement and compared it with the SNMP results (layer 2 link 

utilization) that were read from the network card every 5 minutes by using the 

monitoring server. The results are shown as figure 5-10 to 5-12. We also compared the 

error rate which defined as before, for the three algorithms, as shown in figure 5-13. 

PoissonProb showed the superior performance (average error rate: PoissonProb 0.17; IGI: 

0.26; pathChirp: 0.20).
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Figure 5-10 Measurement Result Between Gateways (Wed)
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Figure 5-13 Measurement Error Rate between Gateways
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5.6 Tests of the Sender-based Algorithm on NS2

PoissonProb can also be operated in the standalone mode (sender-based mode), which 

decreases the load at the other end. Here, we compare the PoissonProb with Cprobe 

which is the well-known sender-based available bandwidth measurement algorithm. 

Both the sender-based algorithms were tested on the NS2 testbed under the same 

conditions that were used for measurements of the receiver-based algorithms. The 

following are the measurement results.

Table 5-11 Sender-based Pre-Bottleneck Measurement

CrossTraffic
(Mbps)

PoissonProb
(Mbps)

Cprob
(Mbps)

Standard
(Mbps)

0 7.2152 7.3567 7.0000
1 7.2152 6.7355 7.0000
2 7.2152 6.7355 7.0000
3 7.2152 6.7355 7.0000
4 7.2152 6.7355 7.0000
5 7.2785 6.8236 7.0000
6 7.0678 6.7355 7.0000
7 7.5523 6.7355 7.0000
8 7.5248 6.7355 7.0000
9 7.4643 6.8236 7.0000
10 7.3077 6.6576 7.0000
11 7.3077 7.3567 7.0000
12 7.2152 6.8236 7.0000

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13 7.0370 6.6703 7.0000
14 6.8771 6.7532 6.0000
15 5.0593 6.5708 5.0000
16 5.0974 6.8427 4.0000
17 4.8148 5.7282 3.0000
18 3.9649 6.1428 2.0000
19 4.4048 5.9403 1.0000

Figure 5-14 Sender-based Pre-Bottleneck Measurement Result

Pre-bottleneck Measurement
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Table 5-12 Sender-based Post-Bottleneck Measurement

CrossTraffic PoissonProb Cprob Standard
(Mbps) (Mbps) (Mbps) (Mbps)
0.0000 7.2152 7.3567 7.0000
1.0000 7.1123 7.3567 7.0000
2.0000 7.1123 6.7385 7.0000
3.0000 7.2851 7.0858 7.0000
4.0000 7.1123 6.4485 7.0000
5.0000 7.1123 6.3976 7.0000
6.0000 7.4952 6.6170 7.0000
7.0000 7.0051 6.2664 7.0000
8.0000 7.1123 6.0099 7.0000
9.0000 7.0185 6.4311 7.0000
10.0000 7.1417 6.3555 7.0000
11.0000 7.4737 5.9704 7.0000
12.0000 7.2152 6.5366 7.0000
13.0000 7.1342 6.8443 7.0000
14.0000 6.6334 6.0655 6.0000
15.0000 6.7692 6.0147 5.0000

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16.0000 4.9524 5.8961 4.0000
17.0000 4.6847 5.0166 3.0000
18.0000 3.8000 4.9533 2.0000
19.0000 2.9420 4.1992 1.0000

Figure 5-15 Sender-based Post-Bottleneck Measurement Result

Post-bottleneck Measurement

♦— PoissonProb (Mbps) 
* -  Cprob (Mbps) 

Standard (Mbps)

PoissonProb algorithm uses the UDP echo while the Cprobe uses the Ping echo packets. 

Cprobe is the gap-based algorithm, which depends on Bprobe to infer the bottleneck 

capacity first, and then the available bandwidth is calculated through bottleneck capacity 

minus the utilization of the bottleneck link. PoissonProb is a rate-based algorithm which 

compares the accumulated source and destination gaps. Then it infers the available 

bandwidth through the average probe packets rate when they are bounced back. Another 

difference between the two is that Cprobe send out the probe packets back-to-back, in 

other words, as fast as possible. This can easily congest the measured network while the 

PoissonProb algorithm sends out the probe packets in Poisson distribution and the rate 

measurement is started at the one third of the bottleneck capacity. From the Figure 5-14 

and 5-15, PoissonProb apparently showed better performance than that of Cprobe.
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6 Conclusion and Future Work
To design an algorithm, which measures the network characteristics accurately, is a 

challenging work, with the Internet growing exponentially in both complexity and scale. 

However, it is the critical requirement for many network engineering aspects, such as the 

network protocols and distributed programs design, traffic optimization, capacity 

planning, and service verification. The currently available bandwidth measurement 

algorithms face the problems of distortion of measurement on multi-hop paths. Especially 

when the path consists of more than ten hops the accuracy of measurement deceases 

sharply. System resource limitations on high-speed networks can lead the algorithms to 

measure the end host capacity instead of a link’s available bandwidth. Probe traffic 

intrusiveness and the measurement accuracy are other issue of concern. We have 

developed a new rate-based algorithm — PoissonProb. The intervals between probe 

packets of this algorithm are in Poisson distribution format and the algorithm infers the 

available bandwidth according to the measured change of intervals. The algorithm has 

been implemented as the PoissonProb Available Bandwidth (PAB) measurement tool. 

The PAB tool can be operated in either sender-based or receiver-based mode. We have 

been able to test for the available bandwidth at Gbps networks in NS2 and in the range 

from several Mbps to 400Mbps on a test-bed consisting of common desktops. The 

measurement of available bandwidth on the test bed is limited by the end host bottleneck. 

Another feature of this algorithm is that it can be operated under both Windows and 

UNIX environments.

We have compared the PAB tool with C-Probe, PathChirp and IGI, the three algorithms, 

which are normally used today. However, the three algorithms can work only on UNIX 

environment. We present the measurement results of the three algorithms on NS2, lab 

testbed and an ISP network. Even with Windows environment, we are able to obtain the 

same or even better accuracy and efficiency as for other three algorithms in the Linux 

environment.

It is hard to thoroughly evaluate the algorithms through the network simulator and the 

small-scale network where the links’ variety and the cross-traffic complexity may not
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appear. The production tests on the backbone networks and the edge networks with 

multiple links may gain us an insight into the available bandwidth properties so that 

further tuning of PoissonProb may become possible.
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Appendix

A.l Poisson Processes and Poisson Traffic

Poisson processes have been historically used for modeling the packet arrivals and 

packets queuing time for a system. The formula for the Poisson probability mass 

function is:

-X  i x
_ e A

x{ forx =0,1,2 ...

X is the shape parameter which indicates the average number of packets arrival in a given 

time interval. This is also referred to as the intensity rate. There are two key

characteristics of the Poisson distribution to describe the packet arrivals: the inter-arrival 

times are exponentially distributed and independent. For modeling a network, the

Inhomogeneous Poisson Process is usually used to describe the packets arrival. The

difference is that a Poisson process has a constant intensity X whereas the

inhomogeneous Poisson process can be generalized as with the intensity that varies with 

time X(t). Figure A-l shows an example of the inhomogeneous Poisson process. (Note. 

X(t) is a deterministic function of time.)

Figure A-l Inhomogeneous Poisson Process

Then, the probability of an arrival in a short interval of time (t, t + dt) is now 

X(t)dt + o(dt).
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This model was widely applied in network engineering till the early-90’s. The important 

studies [21] [26] at that time had shown that the LAN and WAN traffics deviate 

considerably from the Poisson process, as the exponential distribution underestimates the 

burstiness of traffic. The packet inter-arrivals had a marginal distribution that had a 

heavy longer tail than the exponential. Paxson and Sally in [21] concluded: “wide-area 

traffic is much burstier than Poisson models predict, over many time scales.” and “in 

some cases commonly-used Poisson models seriously underestimate the burstiness o f 

TCP traffic over a wide range o f time scales (time scales o f 0.1 seconds and larger) .” 

They showed that LAN and WAN packet arrival processes appear better modeled using 

self-similar processes and long-range dependence. This resulted in many other studies in 

this area and has greatly influenced the network modeling, protocols, algorithms, and 

network design for a decade.

Beginning in 2000, studies showed that the Internet had grown rapidly in diversity and 

disparity [1] and the nature of traffic had changed significantly. The speed of links has 

increased by several orders of magnitude and each link had greater connectivity. A new 

statistical phenomenon of Internet traffic has appeared to dominate packet arrival 

modeling. That is network multiplexing. A recent study has shown that the network 

traffic can again be modeled by the Poisson distribution. The reason is that the large 

number of simultaneous active connections cause a dramatic change in the statistical 

properties of packet traffic on an Internet link [9]. The long-range dependence is 

weakened with the standard deviation of the counts relative to the mean getting small; it 

is especially apparent for the backbone links with contemporary loads of thousands of 

connections. The other is that the high-speed link has the capacity to drain the packets so 

fast that “ the increasing connection load can bring the traffic to Poisson and 

independence before substantial upstream queuing occurs; the onset o f queuing does not 

resurrect the long-range dependence ” [9]. The final result is that the bursty single 

network traffic cannot change the high degree of multiplexing links (connections), even 

though they are still busty as a single individual connection. This has been theoretically 

and empirically proven through packet analysis on the over provisioned links. Apparently, 

the packet arrival shows characteristics of Poisson distribution again. For a heavily
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loaded link, the packets arrive back-to-back, and then the distribution of the arrival 

depends on the packet size from the point of view of the transmitter. The packet size 

appears to be independent through the large-scale packets dataset analysis [22]. Certainly, 

for the edge links with limited connection load, the traffic is still showing the burstiness, 

self-similarity and long-range dependence characteristics. But on links with high speeds, 

towards the core of the internet, and carrying traffic made up of a large numbers of 

connections, the traffic is close to Poisson and independence.

The next important factor of network traffic modeling and measurement is the time scale. 

As we discussed in the earlier sections, we found distinct differences of network 

statistical properties when we observe the Internet traces at different time scales. There is 

no doubt the Internet traffic appears self-similar and long-range dependent at the large 

time scale. This can be explained in a simple example. No matter whether it is an ISP 

backbone link or the campus trunk, it could draw the regular load curves through the 

SNMP enquiry. These curves display similarity in the monthly, weekly or daily periods 

that can easily predict the average load of a dedicated link in the above time scales even 

in an hourly time scale. But for most applications, they may want the bandwidth 

information at the time scale of millisecond to minute level. At this time scale, the traffic 

is usually non-stationary and may show absolutely different properties compared with 

average properties of long-term time scales. Karagiannis et al [22] have shown “packet 

arrivals appear Poisson at sub-second time scales; Internet traffic is nonstationary at 

multi-second time scales; Internet traffic exhibits long-range dependence (LRD) at large 

time-scales”. The above studies and findings are very important for the network 

measurement algorithms design that any algorithm has to take into considerations no 

matter what kind of network model it is based on. Meanwhile, we should not attempt to 

normalize available bandwidth measurements relative to the long-term average value. 

The measurement, prediction and normalization periods should fall into the same time 

scale. For the PoissonProb algorithm, it is best used to estimate the available bandwidth 

on high load links within seconds level time scales.

A.2 Using Poisson Processes to Model Internet Traffic
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As discussed in chapter 3, the current available bandwidth measurement algorithms are 

facing some critical problems. Based on the single hop model, most algorithms are 

inaccurate when the algorithms are applied on the multi-link path. Most of them also have 

difficulties to quickly reflect the change of the available bandwidth along the path. We 

were inspired by the above findings and research results. The goal of the PoissonProb 

algorithm is to infer accurately the available bandwidth information based on a single 

Poisson distribution hop model in a faster way.

The algorithm design uses the following three properties of the Poisson process and 

queuing theory.

• Superposition and random split property: If a stream of Internet packets, called 

stream 1 arrive at the servers in the Poisson distribution with intensity rate A/ and 

if stream 2 of probing packets arrives in the Poisson distribution with intensity 

rate A2, and they are in the same probability space, then on merging the two 

Poisson streams, the resultant stream has a Poisson distribution with an intensity 

rate A/+A2. If a Poisson process with intensity A is randomly split into two 

subprocesses with probabilities p i  and p2, where pl+p2 =1, then the resulting 

processes are independent Poisson processes with intensities p i  A and p2A. This 

can also be generalized to a split into more than two subprocesses.

• PASTA (Poisson Arrivals See Time Averages) property. PASTA property is one 

of the central properties of queuing theory and the basis of our PoissonProb 

algorithm. Suppose packets arrive at the queue in Poisson process with intensity 

A. These arrivals induce state transitions of the queue. If the queue length 

increases or the queue drains the packets immediately, then there are two 

different probabilities: The probability of the each state Ej as seen by an outside 

random observer, PI is the probability that the queue is in the state Ej at a random 

instant. The probability of the state seen by an arriving probe packet P2 is the 

probability that the queue is in the state Ej just before a randomly chosen arrival. 

Here, the PI = P2
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• Consider the case of multiple servers in series and parallel queuing property. 

Assume the packets travel a complex network in which the path can be 

generalized, i.e. the series interconnection of single server queues may be 

generalized to a series interconnection of m phases, where the z'th phase consists 

of n parallel channels. Assume that there are additional Poisson arrivals to each 

phase from outside of the network, and that there are feedbacks from various 

phases within the system as shown in Fig A-2. Then an interconnected 

feedback/feed-forward network with Poisson arrivals at various phases behaves 

like a cascade connection of independent queues with input rate X; with 

transmission rate p.; at the z'th phase.

Figure A-2 Multiple Servers in Series and Parallel Queuing

o

A. 2.1 Proofs of the Three Basic Properties

Most of the proofs are based on well-known probability theorems [2].

A.2.1.1 superposition property

The probability that an arrival occurs from process 1 in the interval dt is Aj* dt . In 

Poisson process, this value is independent of the arrivals outside the interval. Similarly, 

the arrival probability from process 2 is Ai» dt. Using superposition the probability of an 

arrival in the interval dt is (Ai + A2 )  »dt independent of arrivals outside the interval. The 

two streams, when combined together, yield a Poisson process with intensity (A; + A2).
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A.2.1.2 Random Split Property

Using a direct intuition method of proof, the first step is the proof of random selection. If 

a random selection is made from a Poisson process with intensity X such that each arrival 

is selected with probability p, independently of the others, the resulting process is a 

Poisson process with intensity pX. The probability that an arrival occurs from the original 

process in the interval dt is X• dt independent of the arrivals outside the interval. After the 

random selection the probability for an arrival in the interval dt is p»X» dt which is 

independent of the arrivals outside the interval. Then process of the selected arrivals is a 

Poisson process with intensity pX. As both of the subprocesses resulting from the split 

represent a random selection of the original process, they are thus Poisson process with 

intensities piX. So it remains to prove the independence of the processes. Let

• Ni (Ii) == number of arrivals from subprocess 1 in the interval ft

• N2 (I2) = number of arrivals from subprocess 2 in the interval 12

Denote I  = /, n  I 2

= N 1(I) + N l(I1 n l i )  N 2(I2) = N 2(I) + N 2(I2 n 7 i )

Arrivals in non-overlapping intervals I x n  12 and I 2 n  I\ are certainly independent.

There may be dependence only between Ni (I) and N2 (I). But these represent the random 

split of the total number of arrivals from the original process, with Poisson distribution 

(X\I\), into two sets: The sizes of these sets were shown to be independent in considering 

the properties of the Poisson distribution.

The PoissonProb algorism is facilitated by the above properties. To measure the available 

bandwidth, PoissonProb sends Poisson distributed packets, in the expectation that if  the 

probe packets and any session of cross-traffic enter or exit the path at any rate, the 

original traffic properties may not be influenced.

A.2.1.3 PASTA Property
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To put it simply, the Poisson distributed packets can see the average cross-traffic along 

the path if the cross-traffic is also the Poisson distribution. To prove P1=P2, the method 

is as follows. The arrival histories before the instant of consideration, irrespective 

whether we are considering a random instant or an arrival instant, are stochastically the 

same: a sequence of arrivals with exponentially distributed interarrival times. This 

follows from the memoryless property of the exponential distribution. The remaining 

time to the next arrival has the same exponential distribution irrespective of the time that 

has already elapsed since the previous arrival, since the stochastic characterization of the 

arrival process before the instant of consideration is the same, irrespective of how the 

instant has been chosen. The state distributions of the system induced by the past arrivals 

processes at the instant of consideration must be the same in both the cases.

We can illustrate this further by the hitchhiker’s paradox. The paradox is as follows:

• Cars are passing a point in a road according to the Poisson distribution.

• The mean interval between the cars is 10 minutes.

• A hitchhiker arrives at the roadside point at a random instant of time.

• What is the mean waiting time ^ until the next car?

The interarrival times in a Poisson process are exponentially distributed. From the 

memoryless property of the exponential distribution, it follows that the residual time to 

the next arrival has the same Exp (X) distribution and the expected time is thus

w = 10 min

This conclusion appears paradoxical and most people may expect the w = 5 min. However, 

the paradox lies in that the hitchhiker’s probability to arrive during a long interarrival 

interval is greater than during a short interval. Given the interarrival interval, within that 

interval the arrival instant of the hitchhiker is uniformly distributed and the expected 

waiting time is one half of the total duration of the interval. The point is that in the 

selection by the random instant the long intervals are more frequently represented than 

the short ones (with a weight proportional to the length of the interval).
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Consider a long period of time t. The waiting time to the next car arrival W (x) as the 

function of the arrival instant of the hitchhiker x can be represented by the sawtooth curve. 

The mean waiting time is the average value of the curve that is the sum of the triangles of 

the sawtooth. X t is the interarrival time.

For exponential distribution X 2 = ( X ) 2 + V[X] = 2(X)2 , here, V[X] = ( X ) 2 thus 

W = X .

As discussed in the earlier sections, both rate-based and gap-based algorithms are trying 

to snapshoot the cross-traffic at the tight link. PoissonProb algorithm is a rate-based 

algorithm; it sends probe packets in Poisson distribution and tries to saturate the available 

room at the tight link. The difference between the PoissonProb and the other rate-based 

algorithms is that most of the rate-based algorithm simply apply the packet train, packet 

pair or exponential distributed probe packets to detect the available bandwidth. These 

may not interweave with the Poisson-type cross-traffic as well as the Poisson distributed 

packets. So they may underestimate or overestimate the cross-traffic at the tight link. For 

the gap-based algorithms, which depend on the interval changes between the probe 

packets to infer the cross-traffic, failing to accurately estimate the cross-traffic may 

induce a large deviation of measurement.

To explain the third property is difficult, as the precise proof should start from M/M/1 

queue and Markovian Queues. Skipping the basic queuing theory, we start the proof from 

multiple servers in series and parallel directly. R.R.P. Jackson [2] has generalized the

W = \ t w w J - ± \ x ,  

As t —» °° the number of the sawtooth triangles n tends to t / x  , then
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series interconnection of single server queues to a series interconnection of m phases, 

where the zth phase consists of r, parallel channels, all with exponential service-rate jiu 

The input to the first phase is an unlimited Poisson input with parameter X, and queuing is 

allowed before each phase. With n, units in the zth phase, the probability that an item 

finishes service in At is given by flni At + o (At), where p™ = nip, (n, < n ) or p nj = ppi (n, 

>= r;). In steady state, after substituting the steady state equations, it become,
m

(X + ̂ f i i)p(n1,n2,...,nm) = Y , V n i P ( n i ,n 2 >---’ n i +hnM +Ap(n, -1  ,n2,...,nm)
;=1

nt > 0

Here, p(nun2,...,pm) represents the probability that there are ni items in the first phase,

ti2 items in the second phase, and so on. R.R. P. Jackson [2] has shown that the unique 

solution is give by the product form

p{nxn2,..., nm) = p x (nx )p2 (n2 )...Pi («,. )...pm (nm)

where

,  ̂ W m, )”1
P i  ( n i )  = - - - - - - - - - - - - - P u o  n i <  r i ° r

n r

r rip n>
P i ( . n i ) = ~ !— 7 - P i ,  o n i > = r i

n '-

Here

  1___________

Pl-° ~ g / f t , r  t ( u ^ f  
„=0 n\ r ,! ( l-p ,)

and p i = X l r jp i

The above equation represents an M/M/r, queue with n; items, and from the product 

equation, it follows that in steady state a series-parallel network will behave like a 

cascade of independent M/M/r,- queues, provided all servers in each parallel 

configuration have identical service rates.
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Jackson has generalized this result by permitting additional Poisson arrivals to each 

phase from outside the system, and feedbacks from various phases within the system. 

Thus, a unit arrives at a phase with different probabilities. The services distributions are 

exponential, with the z'th phase consisting of q parallel channels with identical service 

rate p.i. Poisson arrivals from outside the system occur at the z'th phase with rate y , and 

after finishing service at z'th phase, an item either leaves for theyth phase with probability 

qij, where it is served in the order of their arrival along with Poisson arrivals from outside, 

or it leaves the system with probability
m

41. o
7=1

Let A,, represent the average arrival rate at the /th phase. Then satisfies
m

i -  l,2,...,m
a:=i

Consider a network of m phases with zth phase consisting of r, parallel servers, all with 

identical service rate //,. The network allows feedback and feed forward from phase i to j  

with probability q^, in addition to Poisson arrivals from outside to each phase at rate jf. 

Then the probability that there are ni items in phase z, i= 1,2,...,m is given by

m
p{nxn2,...,nm) = Y [ p i (ni )

;= 1
m m

Also, the ^  zy. 0 A,. = 1 -  ^  yi and the total output from the system equals the total input
z=i i=i

into the system.

Thus, any complex network with external Poisson feeds behave like cascade connections 

of M/M/ri queues in steady state. Based on this property, PoissonProb algorithm can 

generalize the network as the single queue model and then the pre-bottleneck and post

bottleneck tight link problem which was discussed in the earlier section can be solved 

theoretically. The PoissonProb algorithm observes the probe packets gaps change at the 

receiver side. If the probe packets total destination gap falls within a small range around 

the total original gap, then PoissonProb algorithm believes the current rate of probe
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packets has saturated the available room at the tight link and they interfered with the 

cross-traffic at the tight link. Actually, the experimental results have shown that the 

PoissonProb algorithm has better performance as compared to other algorithm in the 

presence of the pre-bottleneck and post-bottleneck cross-traffic effects.
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