
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

PoissonProb: A new rate-based available bandwidth PoissonProb: A new rate-based available bandwidth

measurement algorithm. measurement algorithm.

Lu Xin
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Xin, Lu, "PoissonProb: A new rate-based available bandwidth measurement algorithm." (2005). Electronic
Theses and Dissertations. 3110.
https://scholar.uwindsor.ca/etd/3110

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3110?utm_source=scholar.uwindsor.ca%2Fetd%2F3110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

PoissonProb: A New Rate-based Available Bandwidth

Measurement Algorithm

By

Lu Xin

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2005

© 2005 Lu Xin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09731-0
Our file Notre reference
ISBN: 0-494-09731-0

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I o ^ ^

Abstract

Accurate available bandwidth measurement is important for network protocols and

distributed programs design, traffic optimization, capacity planning, and service

verification. Research on measuring available bandwidth falls into two basic

classes: the network traffic modeling algorithms and the self-induced algorithms.

The self-induced algorithms are based on packet dispersion techniques. The

currently available bandwidth measurement algorithms face the problems of

distortion of measurement on multi-hop paths, system resource limitations, probe

traffic intrusiveness and measurement accuracy. We have developed a new rate-

based self-induced algorithm — PoissonProb. The intervals between probe packets

of this algorithm are in Poisson distribution format and the algorithm infers the

available bandwidth according to the average of probe packets rate. The algorithm

has been implemented as the PoissonProb Available Bandwidth (PAB)

measurement tool. The PAB tool can be operated in either sender-based or

receiver-based mode. We have been able to test for the available bandwidth at Gbps

networks on NS2. We have also tested it, in the range from several Mbps to

400Mbps, on common desktops on a grid test-bed. Another feature of this

algorithm is that it can be operated under both Windows and UNIX environments.

We have compared the PAB tool with C-Probe, PathChirp and IGI, the three

algorithms, which are normally used today. The three algorithms can work only on

UNIX environment. Our tests show that, even in the Windows environment, we are

able to obtain the same or even better accuracy and efficiency as the other three

algorithms. Lastly, we have done extensive testing on an ISP’s network and

compared the results with the data from the ISP.

Keywords: available bandwidth, bandwidth measurement, bottleneck bandwidth,

packet train, Poisson distribution, PoissonProb

III

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to give special thanks to Dr. A. K. Aggarwal. His excellent teaching as well

as the guidance is the basis of this research work. He is the best advisor I have met in the

network field.

I would also like to thank and acknowledge Dr. Kemal Tepe, Dr. Arunita Jaekel and Dr.

Jianguo Lu for their valuable comments.

Finally, I would like to thank my wife, Haiyan. Without her support and encouragement,

this thesis would not have been finished.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract .. I ll

Acknowledgements ... IV

List of Tables... VIII

List of Figures ... IX

1. Introduction

1.1 Bandwidth Metrics ...1

1.2 Stationary Nature of Available Bandwidth ..1

1.3 Available Bandwidth Measurement Algorithms ...2

1.4 Some Clarification of Bandwidth Metrics ... 4

1.4.1 Which Layer is the Metrics related to? .. 4

1.4.2 Available Bandwidth vs. Achievable Bandwidth..4

1.4.3 BTC vs. Available Bandwidth ...5

1.5 Where Is Available Bandwidth Measurement Used? 5

1.6 The Need for Available Bandwidth Measurement Algorithms 6

1.7 Organization of the Thesis Documents ..6

2. Background and Related Work

2.1 Passive vs. Active Measurement .. 8

2.2 Receiver-based vs. Sender-based Measurement ... 8

2.3 Related Works ... 9

2.3.1 Model -based Algorithms...9

2.3.2 Gap-based Algorithms ... 10

2.3.2.1 Cprobe and pipechar ... 10

2.3.2.2 IG I...11

2.3.2.3 SPRUCE .. 11

2.3.3 Rate-based Algorithms ... 12

2.3.3.1 SloPS ...12

2.3.3.2TOPP 12

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3.3 PTR ...14

2.3.3.4 PathChirp..14

3. Measurement Challenges

3.1 Rate-based Algorithms and Gap-based Algorithms.. 17

3.2 Packet Pair vs. Packet T rain ..18

3.3 Convergence Time ..22

3.4 Intrusion Consideration ..23

3.5 Tight Link ...23

3.6 System Resources .. 24

3.6.1 Resolution of System T im e..25

3.6.2 Context Switch ..27

3.6.3 System Call ...27

3.6.4 Interruption Delay .. 27

3.6.5 System I/O Bandwidth ..30

4. PoissonProb Details

4.1 The Client-server Mode Algorithm ... 31

4.2 The Pseudo-Code for the C/S Mode Algorithm .. 33

4.3 The Standalone Mode Algorithm ... 34

4.4 The Pseudo-Code for the Standalone Mode Algorithm35

5. Experiments

5.1 NS2 Testbed Description ..36

5.2 Results of Experiments using NS2 ... 37

5.3 Description of the Network Testbed ...40

5.4 Results from the Experiments on the Test Bed ..42

5.5 Measurement Results Between Gateways .. 47

5.6 Tests of the Sender-based Algorithm on NS2 ..49

6. Conclusion and Future Work ..53

Reference ... 55

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix .. 58

A. 1 Poisson Processes and Poisson Traffic ..58

A.2 Using Poisson Processes to Model Internet Traffic60

VITA AUCTORIS ..69

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
Table 3-1 Different PoissonProb Train Lengths and Available Bandwidth Values19

Table 3-2 Different PoissonProb Packet Size and Available Bandwidth Values21

Table 5-1 Pre-Bottleneck Measurements Comparing on NS237

Table 5-2 Post-Bottleneck Measurements Comparing on NS239

Table 5-3 Link Capacity Verification .. 41

Table 5-4 Result of Experiments for Verification of the Poisson Cross-traffic Generator

.. 42

Table 5-5 IGI Pre-bottleneck Measurements 43

Table 5-6 PoissonProb Pre-bottleneck Measurements ... 43

Table 5-7 PathChirp Pre-bottleneck Measurements ..43

Table 5-8 IGI Post-Bottleneck Measurements ..45

Table 5-9 PoissonProb Post-bottleneck Measurements ... 45

Table 5-10 PathChirp Post-bottleneck Measurements ... 45

Table 5-11 Sender-based Pre-Bottleneck Measurement ... 49

Table 5-12 Sender-based Post-Bottleneck Measurement .. 50

VIII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1-1 Gap-based Measurement ..3

Figure 2-1 Exponentially Spaced Probe Packets ..15

Figure 2-2 pathChirp Probe Packets Trace .. 15

Figure 3 -1 Single Hop Test Bed ...19

Figure 3-2 Error Rate for Different PoissonProb Train Lengths 20

Figure 3-3 Error Rate for Different PoissonProb Packet Sizes 22

Figure 3-4 Context Switch and Interruption Coalescence ...29

Figure 5-1 Multi-hop Network Topology on NS2 ... 36

Figure 5-2 Pre-Bottleneck Measurements Comparing on NS238

Figure 5-3 Post-Bottleneck Measurements Comparing on NS2 40

Figure 5-4 Multi-hop Network Topology ..41

Figure 5-5 Pre-Bottleneck Measurements Comparing I ...44

Figure 5-6 Pre-Bottleneck Measurements Error Rate I ...44

Figure 5-7 Post-Bottleneck Measurements Comparing II ...46

Figure 5-8 Post-Bottleneck Measurements Error Rate II ...46

Figure 5-9 ISP Topology ... 47

Figure 5-10 Measurement Result Between Gateways (Wed)...48

Figure 5-11 Measurement Result Between Gateways (Thur)...48

Figure 5-12 Measurement Result Between Gateways (Fri) ...49

Figure 5-13 Measurement Error Rate between Gateways ...49

Figure 5-14 Sender-based Pre-Bottleneck Measurement Result50

Figure 5-15 Sender-based Post-Bottleneck Measurement Result51

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

1.1 Bandwidth Metrics

Bandwidth is defined most generally as the amount of data the network can transfer per

unit time. Five common metrics are summarized here:

• Bandwidth Capacity: The maximum amount of data per time unit that a hop or

path can carry when there is no competing traffic.

• Utilization: The aggregate capacity currently being consumed on a hop or path.

• Available Bandwidth: The maximum amount of data per time unit that a hop or

path can provide given the current utilization.

• Achievable Bandwidth (also referred as throughput): The maximum amount of

data per time unit that a hop or path can offer to an application, given the current

utilization, the protocol and operating system used, and the end-host performance

capability and load.

• Bulk-transfer Capacity (BTC): [17] “The intuitive definition o f BTC is the

expected long term average data rate (bits per second) o f a single ideal TCP

implementation over the path in question,\

Bandwidth measurement algorithms can be classified into several categories, depending

on the specific metric of interest. For the end-to-end measurement, from the concepts

described above, one can easily infer that if a path consists of several links, the link with

the minimum transmission rate determines the capacity of the path while the link with the

minimum unused capacity limits the available bandwidth. For the case of a multi-hop

path, using end-to-end measurements, the capacity-limited link is called the bottleneck

link and the available bandwidth-limited link is called the tight link.

1.2 Stationary Nature of Available Bandwidth

The available bandwidth measurement usually means measuring available bandwidth

over a certain period of time. Assume the capacity of the tight link is Ct. The average

utilization of the link during the measurement time A can be expressed as

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u (t , t + A) =
A

J u (t) d (t) (1)

where p(t) is the utilization of a link at time t. p (t) is expressed as a fraction. Its value is 1

for full utilization and its value is 0, when there is no traffic on the link.

Then the available bandwidth Ca in time interval [A t+ A] can be expressed as

Actually, as a straightforward relationship with the bandwidth utilization, some of

algorithms measure the network utilization first, and then get the available bandwidth by

subtracting utilization from the capacity of the tight link.

The available bandwidth may change at a very fast rate due to the burstiness of some of

the network traffic. Under such conditions, researchers have studied the issue of

predicting future available bandwidth by using the past measurements of available

bandwidth. Research done through large scale experiments on Internet infrastructure, in

[6] [27] has shown the stationary nature of available bandwidth. Their conclusion is that

“there is no simple relationship between the mathematics and operational constancy o f

throughput” and “when indicating throughput, remembering observations from a number

o f minutes in the past is fine, but remembering fo r more than an hour can mislead the

estimator” [27]. The same conclusion was proven by network traffic modeling research.

He and Hou [6] experimentally proved that the available bandwidth could be predicted

ahead for 5 times the measurement time interval. So, it is meaningful to predicate the

available bandwidth through the available bandwidth measurement algorithms; the key

issue here is the time scale. The above observations are so important that most modem

available bandwidth measurement algorithms were designed based on them.

1.3 Available Bandwidth Measurement Algorithms

Ca(t , t + A) = C t (l - u (t , t + A)) (2)

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The research on measuring available bandwidth falls into two basic classes: the

development from the network traffic modeling research, and research on self-induced

algorithms. Self-induced algorithms can be further divided into rate-based algorithm and

gap-based algorithm [15]. The idea of rate-based algorithm is that, if the rate of the probe

packets pair or train sent from the sender is larger than the available bandwidth, the

stream will produce a short-term overload at the tight link. Then at the receiver side, an

increasing trend of one-way-delay of probing packets should be observed. The goal of the

rate-based algorithm is to find the curve where there is available bandwidth along the

path. Gap-based algorithm shown in as figure 1-1, are quite different.

Probe Packets Tight Link Cross-traffic Packets

Output Gap

Figure 1-1 Gap-based Measurement

Gap-based algorithms are usually facilitated by the packet pair or packet train properties,

by which the change of intervals of probing packets is observed (Output Gap - Initial

Gap) as shown by above graph. The interval between probing packet 1 and 2 is changed

by the tight link. The algorithm assumes the intervals between probe packets are affected

only by cross-traffic on tight link, and the bottleneck link is the tight link. Then, they can

infer the available bandwidth. The original self-induced algorithm can be traced back to

the Cprobe [20], which is a gap-based algorithm, designed for prioritizing dynamic

servers’ selection. Gap-based algorithms such as IGI [18], and spruce [10] adopt

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different strategies, such as adjusting the probe packets rate and applied the statistical

techniques to improve accuracy. The rate-based algorithm is focused on finding the

transmission rate of probe packets while the probe packets just saturate the tight link,

attempting to minimize the number of probe packets and filtering out the downstream’s

cross-traffic effect. Such algorithm includes SLoPS [4], PTR [18], pathChirp [24] and

TOPP [3],

1.4 Some Clarification of Bandwidth Metrics

1.4.1 Which Layer is the Metrics related to?

Before the measurement tools can be applied in various applications, it is important to

specify which network layer the metric is concerned with, when measuring bandwidth.

For instance, the actual bandwidth that the higher layer sees may be very different from

what the lower layer sees. The bandwidth capacity reflects physical bit rate capacity at

layer-1. But if one uses the upper layers for measurement of capacity, the measured value

of capacity decreases, since the framing and the protocol overheads for upper layers have

to be taken into account. The algorithms discussed here are software-based. Thus, the

network layer is considered for bandwidth capacity and available bandwidth, while the

transport layer information is considered for achievable bandwidth and BTC.

1.4.2 Available Bandwidth vs. Achievable Bandwidth

By definition, available bandwidth is a physical-layer parameter. At any point of time,

available bandwidth is the bandwidth the links can offer at current cross-traffic situation.

On the other hand, the achievable bandwidth is an application-layer metric. It considers a

number of factors such as network protocol, host speed, network path, and TCP buffer

space, whereas available bandwidth only considers the network path. When one

application wants to send data from one host to another through the network. The

achievable bandwidth may be limited by every component along the path from the source

host to the destination host, including all hardware and software. In fact, achievable

bandwidth is often a measurement of the capacity of the end host, rather than being a

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measurement of the capability of the network. Hence the achievable bandwidth may or

may not correlate with the available bandwidth.

1.4.3 BTC vs. Available Bandwidth

One fundamental difference between the available bandwidth and BTC relates to the

cross traffic on the network. The available bandwidth is the amount of usable bandwidth

without affecting the current cross-traffic. BTC, on the other hand, is measured by

sending out data as fast as possible, thus grabbing as much of bandwidth as possible.

Thus measurement of BTC definitely influences other traffic. Experiments have shown

that the traffic generated for a BTC measurement may grab 20%-30% more bandwidth

than that for an available bandwidth measurement. Secondly, BTC is a metric to present

long-term TCP traffic bandwidth, whereas, the available bandwidth reflects the instantly

usable bandwidth. Reflected into the measurement tools, the measurement tools for BTC

usually take longer time and are more intrusive than those for available bandwidth.

Another subtle difference between BTC, achievable bandwidth and available bandwidth,

is that the BTC and achievable bandwidth also rely on the reaction of the other traffic to

the resource competition. When the transmission rate of the sender reaches the available

bandwidth and beyond, the other traffic will be affected and may react accordingly to

accommodate the new traffic by lowering its rates or it may not react at all. Thus, the

protocol dependent bandwidth is hard to predict from probing unless the probe behaviour

is exactly like that of the application.

1.5 Where Is Available Bandwidth Measurement Used?

Available Bandwidth information is so critical to various network applications that it has

attracted much of the recent research. The applications can be summarized as following.

• Information for network protocols and application development. Developers need

to know the available bandwidth to judge the efficiency of their protocols and

applications.

• Dynamic server selection and adapting content. Network clients could

dynamically choose the server with highest available bandwidth. Meanwhile, a

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

server could scale the size and quality of its content (e.g. pictures, sound and

video) depending on the available bandwidth of the path to the client.

• Network management, like end-to-end admission control, congestion control,

TCP windows control, and network-aware cache or replica placement policy.

• Bandwidth-A ware Routing. Information about the bandwidth of links also allows

building efficient overlay networks.

• Benchmarking equipment and service level agreement verification.

1.6 The Need for Available Bandwidth Measurement Algorithms

Routers or switches along the path sometimes can offer the link capacity information via

SNMP query or the tools, like MRTG or HP Openview can be used to monitor the

utilization of links. This approach usually can get more accurate information than other

methods. However, in general, it is not possible to get access to this information because

network switches and routers may be in different administrative domains. For example,

an end-user is unlikely to be able to access SNMP information in a commercial ISP’s

network. Also, most router software has been optimized for routing speed. Hence, the

routers usually ignore the queries or other activities that influence their speed. Another

drawback of this approach is insufficient level of measurement resolution. For example,

the MRTG reports packet statistics every 5 minutes. This is not adequate for some

applications that need the instant available bandwidth information to make decisions.

1.7 Organization of the Thesis Document

The rest of this thesis is organized as follows. The literature review of the current

available bandwidth measurement algorithms and a general discussion of bandwidth

measurement methods are presented in chapter 2. Chapter 3 is an analysis of difficulties

faced when the available bandwidth measurement algorithms are used. The distortion of

measurement on the multi-hops path, the system resource limitations, the probe traffic

intrusiveness and the measurement accuracy and other such factors, which affect the

accuracy of measurement, are discussed. The effect of these factors on the design

process of PoissonProb algorithm is also described in this chapter. Chapter 4 gives a

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detailed description of the algorithm. The results of our experiments for testing the

algorithm are shown in chapter 5. The conclusions of this study constitute the last

chapter.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Background and Related Work
2.1 Passive vs. Active Measurement

The bandwidth measurement algorithms can be separated into two categories. One is

algorithms, which use active measurements. The others use passive measurement. An

active measurement algorithm sends packets along the path, for which the bandwidth is to

be measured. A passive measurement algorithm monitors the passing packets without

interfering. The active measurement algorithms can be further separated into sender-

based or receiver-based algorithms. These will be discussed in the next sub section.

Active measurement may be intrusive to the other traffics on the network. Some active

measurement algorithms send a large number of packets into the network to collect

sufficient number of samples to filter out the effect of cross-traffic, random network

behavior or the effect of the measuring host. Though many efforts have been made to use

passive measurement, passive measurement algorithms are often less reliable than the

active one. Claffy et al. [12] showed that from passive measurements, it might be

impossible to extract any useful data at all in some cases. Due to the real time and

accuracy requirements of most of the applications, available bandwidth algorithms are

usually operated in the active mode.

2.2 Receiver-based vs. Sender-based Measurement

Receiver-based algorithms (also referred to as end-to-end ones) usually use the one-way

UDP/TCP datagrams/streams to probe the bandwidth information. On the other hand, the

sender-based algorithms (also referred to as echo-based ones) force the receiver to reply

to the ICMP query, UDP echo or TCP-RST packets by TCP-FIN. The choice of sender-

based or receiver-based algorithms affects ease of deployment and accuracy of

measurement. Obviously, the sender-based algorithms are easier to deploy than receiver-

based algorithms. It is impossible to deploy the receiver-based algorithms without

destination domains’ cooperation. Unfortunately, accuracy suffers when measuring with

sender-based algorithms. First, the effect of cross traffic on measurement of delay of the

probe packets may be more for a round-trip traversal of a path than it would be on the

delay of a one-way transversal of the path. Secondly, the response packets may go back

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through a different path. Moreover, the most important point is that sender-based

algorithms assume that “the sender can precisely match acknowledgements to packets,

the receiver acknowledges each packet immediately and consistently, the

acknowledgements are all o f the same size, and the acknowledgements experience no

queuing in the reverse path” [13]. However, many network environments cannot meet

these strict conditions. For example, every other TCP packet may be acknowledged at the

receiver side. ICMP and UDP echo packets are either rate-limited or filtered out at some

routers. Different TCP/IP implementations may respond in different ways to these probe

packets. Finally, the probe packets of the sender-based algorithms may trigger the alarm

of an intrusion detection system or may be blocked by firewall, and thus making the

measurement impossible. There is really a trade-off between the easy-of-deployment and

accuracy. All the current available bandwidth algorithms are receiver-based except the

Cprobe which is a sender-based algorithm. PoissonProb can be operated in either

receiver-based or sender-based mode. PoissonProb sends out UDP packets and waits for

echoes from the destination when it is impossible to deploy the software at the receiver

side, no strict network security policy is present, and the accuracy requirement is low.

2.3 Related Works

2.3.1 Model -based Algorithms

As mentioned in section 1.3, one class of the available bandwidth measurement

algorithms has been developed on the basis of the network traffic modeling research. The

foundation of the Delphi algorithm [25] is based on the Multifractal Wavelet Model

(MWM). The core idea of the MWM is that the cross-traffic stream is a superposition of

many data flows that share common link resources with the probe connections. The

statistical analysis showed such superposition has the characteristics of self-similarity,

burstiness, long-range dependence (LRD) and even multifractal behaviour (non-

Gaussianity) [23]. This multifractal behaviour makes it possible to present aggregated

cross-traffic as a binary tree structure. In this structure, the p multiplier split parent

aggregate into two child aggregates at the next scale which increases or decreases p flow

of traffic. The MWM also provides means to estimate the queuing behaviour of a

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

synthetic trace through the Multiscale Queuing Formula (MSQ). Then Delphi uses the

derivative of the MSQ to obtain a probability density function for queue size.

Following this model, the Delphi algorithm sends out a chirp of probe packets. The initial

interval between the packets is partitioned according to the exponential spacing and the

interval is adjusted with the estimate of the previous result. Then the gap change of the

two probing packets at the receiver can provide an estimate of the amount of traffic at a

link. Delphi assumes that the path can be well modeled by a single queue (single-hop

model), However, this assumption is not applicable when the tight and bottleneck links

are different. It also looks upon all the queuing delays in the path as delay at the tight link.

This assumption, in some situations, leads to wrong estimation of the cross-traffic.

Actually, the implementation of Delphi is similar to that of gap-based algorithms. But the

two have different theoretical foundations.

2.3.2 Gap-based Algorithms

2.3.2.1 Cprobe and pipechar

Cprobe [20] is the first algorithm, which claimed to measure the available bandwidth

through gap-based approach. By sending out a short packet train back-to-back and

measuring the time interval of the first and the last ICMP echo packets, the available

bandwidth can be calculated. The underlying assumption is that the dispersion of a packet

train is inversely proportional to the available bandwidth. This idea is the same as the one

used by pipechar [8], which was implemented in Network Characterization Service

(NCS). The only difference is that the pipechar can also be operated in the passive mode

through utilizing the deployment of the NCS infrastructure. Though these algorithms are

straightforward, researches have shown that some assumptions in the approach are of

doubtful validity. Dovrolis et al. [5] proved that the dispersion of long packet trains, sent

out back-to-back, is not actually inversely proportional to the available bandwidth. Other

research [3] has shown that the “hidden bottleneck problem” may also be a detriment to

the accuracy of measurements.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2.2 IGI

Hu et al. [18] set up a single-hop gap model and then proposed two available bandwidth

measurement algorithms based on this model: the gap-based algorithm Initial Gap

Increasing (IGI) and the rate-based algorithm Packet Transmission Rate (PTR). The core

task of IGI/PTR algorithm is to find the “turning poin t’ at the point of probe packets

transmission rate. The output interval of the whole packet train at destination is the same

as the initial interval. Researchers claimed, “at this point, the probing packets interleaves

nicely with the competing traffic and the average rate o f the packet train equals the

available bandwidth on the bottleneck link.” Hu et al. also summarized the gap-base

algorithms as the following formula:

M

— ,J±y ----- (3) (Reference [18] page 882 equation 4, 5)

+5> r +S#r;=i ;=i i=i

M
In formula (3), (g(+ - g B) is the amount of competing traffic that arrives at

<=i
M K N

bottleneck link during the probing period. Ideally + ^ g ,= + X ^ '7 *s t*ie tota^
i=i /=i i=i

probing time.

The other contribution of this research is that they noticed the packet pairs could not

measure the available bandwidth when continuous probe packets fall in a “disjoint

queuing region” (DQR).

2.3.2.3 SPRUCE

Spruce [10] is a lightweight available bandwidth measurement tool designed by Strauss et

al. The tool uses UDP packet pair as the probing packets. The packet size is fixed to 1500

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bytes and the changes of gaps between the packet pairs are collected to calculate the

available bandwidth. The formula is the same as that of IGI algorithm, which is described

in section 23.2.2 equation 3, except that just one gap of packet pair is calculated. Spruce

takes the average of a large number of samples of probe packet pairs. All the parameters

in Spruce are fixed. The initial gap of packet pair is set to the bottleneck capacity along

the path as the tool assumes the bottleneck link is the tight link. The characteristics of

Spruce is that it sends two packets (one packet pair) back-to-back and sets the inter pack

pair gaps as the Poisson distribution at a very low rate, as the researchers claimed, “A

sequence o f measurements according to a Poisson sampling process sees the average

cross-traffic rate”.

2.3.3 Rate-based Algorithms

2.3.3.1 SLoPS

Dovrolis et al [16] devised a Self-Loading Period Streams (SLoPS) algorithm to measure

the end-to-end available bandwidth. The implementation tool is Pathload. The Pathload

sends out a fleet of probe packet streams at the rates from low to high. So it measures the

‘‘''fleet duration” instead of “stream duration” to address the volatile characteristics of

short-term cross-traffic. The sender’s sending rate is self-adaptive with the delay treads

observed at the receiver. Finally this rate converges to the range of Rmax and Rmin

(Pathload reports the range of the estimated available bandwidth) through a binary tree

search algorithm. Pathload uses “Pairwise Comparison Test” (PCT) and “Pairwise

Difference Test” (PDT) to decide whether the measurements fall into the available

bandwidth range. The limitation of SLoPS is that it can succeed in estimating a range that

includes the actual available bandwidth when there is only one tight link along the path;

but it underestimates the available bandwidth when there are multiple links, as the

congestion links exist along the path. This is also the common limitation of the present

algorithms. The other drawbacks of SLoPS are slow-convergence and intrusiveness to the

current traffic.

2.3.3.2 TOPP

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TOPP [3] and SLoPS are based on the same principle that the queuing delays of

successive periodic probing packets increase when the probing rate is higher than the

available bandwidth along the path. But TOPP has a different analysis model to the

samples at the receiver side. The contribution of the TOPP algorithm is that it adopts a

mathematical model that can catch the effect of different congestion links on the probe

packets, if the congestion links are in “Smallest Surplus First (SSF)”order, i.e. if the

congestion links capacities are in order, they can be detected when raising the probe load.

TOPP uses packet trains with different transmission rates and estimates available

bandwidth from the time average spacing of the packet pairs in the packet train at the

receiver. The transmission rate increases from Omin to Omax with the increment 8. With the

increase of the probe train’s transmission rate, the links with lower available bandwidth

become congested. If the router adopts FCFS policy, the probe traffic is proportional

sharing the bandwidth with the cross traffic. The partitioned probe traffic will share the

bandwidth with the cross traffic again in the following congested link. Refer to equation

(Reference [3] page 416 equation 2)

Equation (4) shows that when probe traffic arrives at link j , if sustained bandwidth Sj is

higher than probe traffic bandwidth Oj.i, the probe traffic keeps original bandwidth.

Otherwise, probe traffic shares the bandwidth with cross traffic at they'th link nij

(4).

oj = oj-\ if o j- i < sj or oj = — !— lj if oj- 1 > sj (4)
mj + oj- i

o
lj for o > sj

m.j + o
(5)

o
lj

rnj + o for Oj > Sj + P (6)j+ p omj + P + lj
mj + o

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Reference [3] page 416 equation 3)

Equation (5) and (6) show the proportional sharing of bandwidth between cross-traffic

and probe-traffic at the congested link j (5) and the following congested link j + p (6).

o I - m . 1 .. s. 1 0
j = (\ -----j -) + -o = (\ - -) + - o = a + (h (7)

(Reference [3] page 416 equation 5)

When probe packets arrive at the destination, TOPP calculates the effect of the cross

traffic on the packet pair / and linearizes the congested link bandwidth o with / b y

equation (7). On plotting the function as continued curves, the curves represent the

segment regression function of equation (7). Vertices correspond to the available

bandwidth of the congested links.

2.3.3.3 PTR

The PTR algorithm [18] is focused on finding the “turning point”. It calculates available

bandwidth according to equation (8):

-g—̂ + -----(8) (Reference [18] page 882 equation 4)

i=1 (=1 (=1

Here, the gap values G+ = {gi\ i= G={gf\=l...K}, and G'={gf\I=l...Nj denote

the gaps that are increased, unchanged, and decreased respectively.

2.3.3.4 pathChirp

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another rate-based algorithm is pathChirp [24]. PathChirp is more efficient, in that, it

sends less number of probe packets. The probe packets are exponentially spaced by space

factor y as shown in figure 2-1.

probe jackets

f 2 N-4 A'-J N.2 N J N

j u LaJ] ______ d___[i ii n
Tf-t TV TV I t T timc

Figure 2-1 Exponentially Spaced Probe Packets (reference [24] page 2, figure 1)

Then to measure the range of available bandwidth [Gl, G2], it just needs log2G2- log2Gl

packets to cover the bandwidth range. The method needs the lowest number of probe

packets because it uses the correlation of the interval between these packets. For example,

to cover the bandwidth from 1-100 Mbps, the pathChirp algorithm just needs 13 packets

if the space factor y=1.4. At the receiver side, a typical trace of probe packets affected by

the burst of cross-traffic is observed and analyzed. The typical trace is usually presented

as in figure 2-2.

queuing delay
o
o
0
o

O o

-e—e-

excursions
"■ j packet
—J sending

time

Figure 2-2 pathChirp Probe Packets Trace (reference [24] page 3, figure 2)

The trace of the probe packets received at the receiver side provides abundant

information about the network cross-traffic. By carefully discriminating the different

queue situation the probe packets meet, pathChirp makes an estimate of per-packet

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

available bandwidth Ek of the k th packet estimated at time interval of continuous k and

k+1 probe packets B [th tk+J. It then takes the weighted average of all estimates

corresponding to each chirp with N probe packets to obtain estimated per-chirp available

bandwidth B [tu tN+i]■ Here, the weighted average of Ek means that not all the packets

take their individual estimates as valid. The probe packet’s queuing delays falling uphill

of the excursion range (refer to figure 2-2) are processed as valid samples because these

packets are believed to have experienced cross-traffic interference. Other invalid

samples’ estimates are represented by Ei which is the last start of excursion. For the time

interval of measurement T (default is 3 seconds), pathChirp algorithm takes the average

of per-chirp estimates to get the time interval T s available bandwidth.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Measurement Challenges

3.1 Rate-based Algorithms and Gap-based Algorithms

Gap-based algorithms are usually facilitated by the packet pair/train properties. The gaps

between probing packets are observed. The advantage of this kind of algorithms is that

they are very sensitive to the burstiness of cross-traffic because of fine-grained

interaction between the probing packets and cross-traffic packets. The algorithms are

based on a single hop model where the bottleneck link and tight link is the same one. In

other words, the whole path can be modeled as one queue. The formula can be

summarized as equation (3). Though such algorithms are based on a single-hop model,

some papers have described the measurement results as very accurate. The reasons can be

analyzed as follows:

• Tight link in most situations is the bottleneck link.

• Tight link is usually located at the edge of the network.

Rate-based algorithms try to find a “turning point ’ where the rate of the probing packet is

around the available bandwidth. The advantage of this type of algorithms is that they

adapt widely to most of network situations. They have better resistance to the cross-

traffic effect and they can always report reasonable results. In comparison with the rate-

based algorithms, the gap-based algorithms may deviate largely from the correct value

because of errors in estimating either the bottleneck capacity or the cross-traffic rate. The

shortcoming of rate-based algorithm is that the overhead to converge to the turning point

is too high. The rate-based algorithms formula can be summarized as equation (8).

PoissonProb is a rate-based algorithm. The sending rate of probe packets is adjusted

according to the accumulated gaps between probe packets at the destination. The gaps

between the probe packets are separated in Poisson distribution. The mean inter-packets

interval X is increased step-by-step till it reaches the stop point when the probe packets

are interweaved with cross-traffic perfectly. Then the algorithm calculates the utilization

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to equation (8). The bottleneck capacity is inferred through the simple version

of histogram approach of bandwidth capacity measurement algorithm that is used to

reduce the overhead of convergence to the turning point. The detailed description of the

algorithm is presented section 4.

3.2 Packet Pair vs. Packet Train

Characterizing available bandwidth is more difficult since it is a dynamic property of the

network and it depends on many factors. Available bandwidth measurement algorithms

try to take a snapshot of the cross-traffic effect. Because of the dynamic nature of the

available bandwidth, it must be averaged over a time interval; therefore, active

measurement techniques often use packet trains instead of packet pairs as the packet pair

cannot catch the bursty type of traffic. Spruce uses only packet pair gaps to infer the

utilization. Though the Cprobe, pipechar, and TOPP use packet trains as the probe type

they simply take the total interval of the packet train or packet pair intervals to infer the

available bandwidth, ignoring the correlation of the effect of the bursty cross-traffic on

packet trains. This yields less accurate results than the tools, like Pathload, IGI/PRT and

pathchirp, which take the delay correlation of each probe packet into consideration. The

other shortcoming of the packet pair technique is that when applied in the TCP stream to

measure available bandwidth, it may fail to saturate the pipe, thus underestimating the

available bandwidth.

The next question is what should be an adequate length of the packet train. Intuitively, a

shorter packet train provides less accurate information. This has been proven in [18] as

well as [24] which claimed “The shorter chirps will exhibit more erratic signatures and

give less accurate estimates.” To get a snapshot of the cross-traffic, a longer packet train

is certainly preferred. However, a longer packet train may result in a higher network

overload, lost packets, or a congested network.

To better understand the packet train properties, we set up a single hop test bed based on

NS2. Please refer the figure 3-1 Single Hop Test Bed. C l, C2, C3, C4 and C5 are agents

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to send out CBR type traffics to the sinks SI, S2, $3, S4 and S5 respectively. The

capacity of links C [1-5] A, S [1-5] B and AB is 100Mbps and the agents start in

sequence at the rate 20Mbps except C4 and C5 at 10Mbps. Ps and Pr are PoissonProb

client and server. Then we reduce the transmission rate of agents gradually to 10Mbps at

the end. In this experiment, we set the length of packet train from 10 to 60 packets. The

probe packet size is 1000 bytes. The result is shown in Table 3-1.

Cl SI

C2

C3

C4

Tight /Bottleneck Link
C5

Pr Ps

Figure 3-1 Single Hop Test Bed

Table 3-1 Different PoissonProb Train Lengths and Available Bandwidth Values

60 50 40 30 20 10
20Mbps 30.89 24.25 25.82 26.61 25.33 25.00
30Mbps 34.91 36.84 36.79 37.18 28.79 42.21
40Mbps 44.70 43.59 50.00 45.31 34.87 26.00
50Mbps 50.29 50.79 54.75 51.48 51.35 64.29
60Mbps 66.29 56.30 60.22 55.63 53.14 69.30
70Mbps 72.65 71.68 68.19 61.59 57.61 70.41
80Mbps 78.90 83.06 82.97 65.56 64.74 76.68
90Mbps 88.08 90.57 90.25 72.49 72.29 81.96

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first row in the table is the PoissonProb train length that is changed from 10 to 60

packets. Each column is the measurement result and the most left-most column is the real

available bandwidth in Mbps. We define the relative error as:

\MeasurementAB-Re alAB\
8 = Re alAB

Then, the relative error of each length of PoissonProb can be shown as in the figure 3-2:

Figure 3-2 Error Rate for Different PoissonProb Train Lengths

PoissonProb Length Effect

20Mb 30Mb 40Mb 50Mb 60Mb 70Mb 80Mb
Available Bandwidth

160
150

□ 40
□ 30
120
110

From the chart, we can conclude as following:

• The shorter length probe packet trains do show less accuracy than the trains with

longer length. (With the exception of length = 60 packets at AB= 20Mbps).

• The short train (length = 1 0 packets) cannot be used, as it cannot snapshot cross

traffic.

• Commonly, a train length more than 20 packets can give a reasonable result. In

PoissonProb NS2 implementation, the train length is 20 packets and in its

implementation on the test-bed and on the Internet, the train length is 60 packets

to catch complex Internet traffic.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next concern is the size of probe packet. The packets with smaller size are more

sensitive to the cross-traffic than the packets with bigger size. On the other hand, the

packets with bigger size are more intrusive to the network, i.e. they occupy more

bandwidth resource. The other drawback of small packets is that it is difficult to measure

the small time interval between two probe packets because of system resource limitations.

All the published available bandwidth measurement algorithms choose the probe packet

size higher than 500 bytes (Internet traffic analysis [11] showed the average packet’ size

is around 500-750 and the trend is becoming larger because of the increasing popularity

of multimedia traffic).

Again, based on the same single-hop test bed, we tested our PoissonProb algorithm in

different packet size. The first row in Table 3-3 showed the packet size from 200 bytes to

1500 bytes. The left-most column is the real bandwidth.

Table 3-2 Different PoissonProb Packet Size and Available Bandwidth Values

1500 1200 1000 800 500 200
20Mbps 31.37 31.03 25.82 31.45 32.77 39.39
30Mbps 36.22 36.06 36.79 33.85 35.22 52.70
40Mbps 45.35 45.38 50.00 46.43 48.78 56.52
50Mbps 52.94 55.68 54.76 54.36 55.31 60.94
60Mbps 61.24 61.17 60.22 59.32 66.10 66.10
70Mbps 67.88 67.81 68.19 72.22 117.74 72.22
80Mbps 81.82 80.97 82.98 81.68 82.98 88.64
90Mbps 90.70 90.35 90.26 89.32 90.70 88.63

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-3 Error Rate for Different PoissonProb Packet Sizes

PoissonProb Packet Size Effect

o
1.20
1.00 | ■ 1500

■ 1200
□ 1000
□ 800
■ 500

ui 0.80
| 0.60
« 0.40
a 0.20

0.00

(0

20 30 40 50 60 70 80 90 ■ 200
Available Bandwidth

From the figure 3-3, we can conclude as follows:

• The small packet size (size = 200,500 bytes) is sensitive to the cross-traffic and

reports more available bandwidth because of queuing behind the big packets. The

intervals between the probe packets are decreased.

• Commonly, a packet size bigger than 500 bytes is enough for probing.

• PoissonProb NS2 implementation uses 800 bytes as the probe packets size and the

implementation on the test-bed and the Internet uses 1000 bytes to address the

high speed network time resolution issue.

3.3 Convergence Time

Cprobe, IGI/PTR, Spruce and TOPP algorithms use the bottleneck capacity information

to infer the available bandwidth. Furthermore, the IGI/PTR algorithm uses this value to

decide its init_gap and gap_step separately. There is no doubt this method is very useful

to optimize the convergence time. The bottleneck capacity measurement is efficient, i.e.

the result of the measurement is accurate and the convergence time is short. Because of

the advanced structure design of probe packets, PathChirp has a short convergence time

without knowing the network property in advance, as discussed in section 2.3.3.4. The

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pathload has the longest convergence time among these algorithms due to its

convergence algorithm. Pathload monitors changes in the one-way delay of the probing

packets in order to determine the relationship between probing speed and available

bandwidth. This can be difficult if probing packets experience different levels of

congestion. This can slow down the convergence process and can result in a high value of

probing time. In contrast, the convergence of IGI/PTR is determined directly by the

single packet train dispersion at the source and destination. PoissonProb takes advantage

of IGI/PTR approach and infers the bottleneck bandwidth through histogram analysis.

Then it decides the initial probing rate based on the bottleneck bandwidth.

3.4 Intrusion Consideration

Active measurements are all intrusive as they place additional load on the network,

delaying other flows. Though many efforts have been made to use passive measurements,

passive measurements are inefficient in most situations. To design measurement

algorithms with minimal additional load to the network have become the challenge.

However, to judge an algorithm’s intrusiveness is difficult because it hasn’t been

standardized. Some researchers proposed average probing traffic rate as the standard.

Others evaluated the intrusiveness by comparing this rate with the available bandwidth in

the path. The following comparison is based on the analysis of the algorithms, without

formulary calculation or measurements. Through analysis of these algorithms, the

PathChirp algorithm clearly shows its advantage over other algorithms. At the same time,

Cprobe and pipechar may be the most intrusive algorithms, because they send out their

probe packets back-to-back (as fast as possible), and can easily induce overload on the

network. Based on the self-induced algorithm characteristics, the rate-based available

bandwidth measurement tools are more intrusive than the gap-based tools because of the

coverage overhead.

3.5 Tight Links

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The critical issue that influences the accuracy of available bandwidth measurement

occurs when there are several tight links (or congested link) existing along the path or the

tight link is not the bottleneck link. The algorithms, like PoissonProb, Cprobe, pipechar,

IGI/PTR, pathChirp and Pathload were designed based on the assumption that the tight

link is the bottleneck link. All these algorithms assume a single-hop model. If the first

assumption fails to be satisfied, it may result in reporting wrong answer for Cprobe and

IGI like algorithms because they report the available bandwidth by directly involving the

bottleneck link capacity. If there are several congested links along the path, all algorithms

may suffer inaccuracy, which depends on the smallest tight link location. It is easy to

prove that both the upstream and the downstream of tight links will reshape the probe

packet’s interval and the competing traffic on the ending up tight link has dominating

impact on the probe packet’s interval. If the smallest tight link is at the end of path, then

the probe packets can take the cross-traffic snapshot of that link and get the right result;

otherwise, the result deviates from the correct value. Out of these algorithms, only TOPP

algorithm addressed a limited solution of this issue. The solution is valid only when the

congested links are compliant with Smallest Surplus First order. Fortunately,

investigations on today’s Internet shows that most congested links are usually located at

the edge link [11] [14]. This discovery alleviates most of algorithms’ problems. However,

this issue may still be a future research topic. PoissonProb separates the probe packets in

Poisson distribution and probes the tight link at the base rate of that tight link. It doesn’t

accumulate the several tight links effect to the sink. It shows better resistance to the

interference of cross-traffics before the tight link as well as after tight link. We’ll prove

this theoretically in chapter 4 and compare the PoissonProb, IGI/PTR and pathChirp on a

multi-hop testbed.

3.6 System Resources

Recently, the bandwidth measurement tools have been facing another significant

challenge as the network speed has been increasing. As shown at [7], (page 8, paragraph

5):

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“In the past 10 years, network speed has increased by a factor o f 100, CPU

clock speed has increase by more than a factor o f 30; memory clock speed

has increased by almost a factor o f 20. Memory bandwidth, however, has

increased by only a factor o f 10, and PCI I/O bus bandwidth has increased by

only a factor o f 8. ”

It apparently shows the discord of increasing speed between the network and the end host

system. Sometimes, the end host is the real bottleneck along the path and network

bandwidth measurement falls, when estimate at the end host. Most of the available

bandwidth measurement algorithms require the end hosts to send the probe packets at a

speed faster than the possible available bandwidth. For some high-speed networks (>=

lGbps), end-hosts may fail to meet this condition. (We used a desktop with 1837MHz

CPU and 133 PCI bus. The fastest rate the machine can send is about 550 Mbps) Thus,

when designing and implementing the bandwidth measurement tools, the system resource

issues have to be taken into consideration. The system resources that may affect

bandwidth measurement are summarized in the following subsections.

3.6.1 Resolution of System Timer

There are two system functions, which are commonly used to get system time in the

Windows system: GetSystemTime and GetTickCount. GetSystemTime returns current time

in millisecond, GetTickCount is used to get the elapsed time, and is limited by system

timer resolution. The system timer runs at approximately 10 ms in Windows. For the

higher resolution, Windows supports hardware devices and network protocols. The

highest resolution is the 100-nanosecond interval (10A-7 second) '. The UNIX system

offers a better time resolution at l[xs through a system call (gettimeofday). Even at this

resolution, it is impossible to measure any incoming packet over 3 Gbps due to the

additional overhead of system calls. For example, the biggest packet size is L = 1500

bytes for most networks. If two probe packets go through the OC-48 (2488.32Mbps) link,

the interval between the two probe packets is about 4.8]is when they reach destination.

However, most of the time resolution of workstations falls in range of 1-10 |j,s. Thus, it is

futile to try to accurately measure packet delays on OC-48 or higher bandwidth links.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An experiment was performed on Linux RedHat 9 (P4 PC) boxes and the Solaris 9

system (Sun Microsystems V880 systems) to find timer resolution through the Milliken

Oil Drop Experiment to time an operation that takes some tiny amount of time, and does

it several times. If that operation is close to the resolution, some timings will be zero

while others will show up as taking a small amount of time, which is an integer multiple

of the clock resolution. When the resolution was approached, Solaris reported 0-1

microseconds and Linux reported 1 microsecond constantly. Linux will not return the

same gettimeofday values twice in succession. Since it provably takes less than 1

microsecond to make a system call on a modem machine, Linux must be waiting within

the gettimeofday procedure long enough to make certain that the time has changed. This

may be screwing up any available bandwidth measurements made with gettimeofday.

However, we can believe the time resolution in UNIX system is 1 microsecond through

the system call. Due to the poor time resolution offered by the Windows system (10ms)

through system call, several APIs (non-Microsoft software) have been developed to give

high-resolution time stamp in windows, the resolution is as that in UNIX - in

microseconds. For example, the IBM High Resolution Time Stamp Facility (IBMTS) is a

library of functions that can be used to measure activities of less than one millisecond's

duration using highly accurate timestamps. The API returns two values 2:

■ Seconds since the midnight 1/1/70 CUT epoch
■ microseconds

IBMTS uses the multimedia timer routines QueryPerformanceCounter and

QueryPerformanceFrequency at Windows system. The QueryPerformanceCounter

function can be used to express the frequency, in counts per second. The value of the

count is processor dependent. On some processors, for example, the count might be the

cycle rate of the processor clock. The QueryPerformanceFrequency function retrieves the

current value of the high-resolution performance counter. By calling this function at the

1. http://msdn.microsoft.com/librarv/default.asp7urU/librarv/en-

us/svsinfb/base/time.asp

2. http://www.alphaworks.ibm.com/tech/ibmts

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://msdn.microsoft.com/librarv/default.asp7urU/librarv/en-
http://www.alphaworks.ibm.com/tech/ibmts

beginning and end of a section of code, an application essentially uses the counter as a

high-resolution timer. We tested most of desktops with 700-1837MHz CPUs and IBM i

series servers; all the QueryPerformanceFrequency return 3579545 ticks per second. So,

the time resolution is even better than a microsecond. When we repeat calling this API,

the systems returned at the 2-5 microseconds later. PoissonProb is facilitated by the

IBMTS to get the time resolution comparable to those algorithms which run on Unix

machines.

3.6.2 Context Switch

Context switch is another system resource issue. If the measurement period spans a

context switch, then the measurement will include this time. Generally, a process gets

10ms execution time between context switches. So the context switch is likely to occur

and introduce significant errors in the measurement of a long packet train or delay

(>10ms). Some researchers noticed this problem. In [24], the pathChirp tool hard coded a

threshold value; if the interval of two packets is less than this threshold, the sample is

ignored. PoissonProb took a similar approach. It finds deviant measurements and filters

them out before the available bandwidth analysis. Some measurement algorithms

improve the measurement process priority, but this approach is platform dependent and is

not an appropriate solution.

3.6.3 System Call

The time to perform system calls influences two aspects of measurement tools: both the

outgoing packet spacing and get system time for the incoming packets. In [7], Jin et al.

showed “the system internal timer resolution is often at 1 nanosecond in modern UNIX

systems. However, the time to perform a system call limits the user timer resolution to

1.9jus on most systems with x86-based CPU running Linux1'. The reason is that the system

has to access the clock time counter (CTC) via the low-speed I/O bus.

3.6.4 Interruption Delay

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The core reason of interruption delay is that the efficiency of the CPU decreases as the

number of interruption requests becomes higher. The experiments [7] show that the CPU

efficiency might decrease by 40% through response to the interruption request.

Interruption delay (or interruption coalescence) is a common technique implemented in

high-speed network interface cards (NIC) that helps to reduce the CPU load. Currently,

almost all the NICs with bandwidth more than lGbps have this function; it’s also very

common for the IBM NIC drivers as well as drivers in the Linux world. The NIC driver

in Linux is an adjustable kernel parameter even with NICs working at 100Mbps. The

advantage of this approach is that the CPU doesn’t need to respond to every arrived

packet interruption request. The arriving packets are saved at the buffer and processed by

the CPU as a batch. However, this may influence the available bandwidth measurement

algorithm design. For the available bandwidth measurement algorithms, one solution is to

tune/cancel interruption coalescence through driver software like Intel 82540EM Gigabit

network controllers or giving timestamps at the NIC when measurement is proceeding.

Apparently, this approach is not practicable in most situations in the real world. Some

modem bandwidth measurement algorithms have functions to detect the interruption

coalescence and then adjust their probe packets accordingly. Certainly, applying the

packet train to detect the interruption coalescence is a better choice than packet pair.

The PoissonProb algorithm determines whether the sink with interruption coalescence is

set or not by observing the timestamps from returning packets at the first probe round. At

the first round, PoissonProb sends out the probe packets back-to-back to the sink. The

purpose is to infer the bottleneck bandwidth along the path and interruption coalescence.

If approximately same timestamps (within 5 (is) are found for continuous probe packets,

then it determines that the other end NIC is working with interruption coalescence and

the number of packets with the same timestamps may be causing one interruption.

However, not all interrupt coalescence is implemented with hard coded number of

packets, which may cause the interruption. The possible implementations which

determine how to generate the interrupt request also include the maximum number of

interrupts per second, the delay between the arrivals of the first packet after the last

interrupt or the delay between the last arrival of a packet and the generation of a new

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interrupt. To cope with the variety of implementations of interruption coalescence,

PoissonProb sends several packets trains back-to-back to the other end and then

determines the coalescence number from the average. PoissonProb also has one sanity

check process to trace the gap changes of arriving probe packets to distinguish the

context switch and interruption coalescence. The typical signature of context switch and

interruption coalescence is as follows:

In the PoissonProb implementation, the length of probe packets train is 60. This is

enough for samples spanning one context switch and several interruption coalescence of

preferred measuring links with bandwidth less than 400Mbps. PoissonProb also can

automatically adjust the train length to guarantee that there are at least 10 valid samples

in one probe attempt, if the interruption coalescence number is larger than 6. After each

round of measurement, the sanity check process will filter out the context switch,

interruption moderation and the random network behaviour effects.

Figure 3-4 Context Switch and Interrupt Coalescence (reference [19] page 5, figure

2)

1200

—— With interrupt coaiesance
— With context switch at the receiver1000

400

200

too
Packet td

3.6.5 System I/O Bandwidth

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System I/O and the memory bandwidth are real bottlenecks of an end host system [7].

The speed of either PCI bus or ISA bus is increasingly slower than that of the other parts

of the end host system. Though some techniques have improved speed of memory

bandwidth in a faster track, it is a trivial improvement for the processes, as they have to

access memory through the system bus. Some solutions have been proposed and

implemented, as zero-copy or symmetric multiple processors (SMP) which partially

improve performance. For most of the modem measurement tools, the ability of available

bandwidth measurement algorithms is limited by the end system and they end up

measuring the capacity of the end host system instead of measuring the capacity of the

network.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. PoissonProb Details

PossionProb is a rate-based algorithm. The current version was implemented in JAVA

(PoissonProb UNIX version is only supported by JAVA 1.5 and above). It operates at

either the client-server mode (receiver-based) or the standalone mode (sender-based). We

describe each of modes separately.

4.1 The Client-server Mode Algorithm

Under the client-server mode, PoissonProb opens two connections for the available

bandwidth measurement between the server and the client. One connection is the TCP

session which is used for transferring the control information and the other is the UDP

connection, which is used for the probe packets transmission. As we mentioned before,

we are using the IBMTS under Windows environment and the JAVA system call

System.nanoTime() under UNIX environment to get the timestamps for packets at user

space. This makes it possible to run the program without the need for administrative

privilege. When the measurement starts, PoissonProb client sends the measurement

request to the server through the TCP connection. Once the server receives the request, it

checks for the available resource —UDP ports. The server maintains a client connection

table for the running client because of the stateless property of UDP connections. If the

UDP port is still available, the server informs the client to start measurement at the

available UDP port. In the first round, PoissonProb client sends out the probe packets

back-to-back to the server. The goals are to find out the interruption coalescence at the

receiver and the bottleneck information along the path. The server timestamps each

arrived packet and sends back the timestamps information to the client. We are using a

histogram method to estimate the bottleneck capacity along the path. This is similar to the

idea in the early version of pathrate [5]. Then the PoissonProb separates the first round

Poisson distribution packets in the mean inter-packets interval A of the 1/3 of the

bottleneck separation gap. The accurate bottleneck measurement is not so critical for the

PoissonProb as for those gap-based algorithms, such as IGI. PoissonProb only uses the

bottleneck bandwidth to decrease the convergence time. The other goal of the first round

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

probe is to find out interrupt coalescence information at the server. The method was

already discussed in section 3.6.4. At least 10 valid samples for each measurement round

are retained so that the results are reliable. In the following measurement, the

PoissonProb client sends the Poisson distributed packet train in which each packet has a

separate timestamp to the server. The packets interval is determined by the mean inter

packets interval A, and the logarithm (base e) of the math random number between 0 tol.

The server gives each arrived probe packet a timestamp accordingly. Then the total

source gaps and destination gaps are accumulated. The clock skew doesn’t influence

accuracy of PoissonProb algorithm, since only the intervals between the contiguous probe

packets are taken into consideration. If the gaps are the same ((source gap - destination

gap)/ destination gap <= 0.15), the server informs the client to stop the measurement and

send the timestamps back to the client. Otherwise, the server prompts the client to

increase or decrease the value of X through the TCP connection. If the total destination

gap is increased compared with the total source gap, then the X will be increased by 1/5.

On the other hand, it is decreased by 1/5 accordingly if the destination gap is decreased or

unchanged. The PoissonProb algorithm gives out the results very fast, usually within 1-10

seconds. The convergence tie depends on the propagation delay, transmission delay and

the queuing situation along the path.

There are three mechanisms in PoissonProb to cope with normally unexpected situations

of the measured network, which may arise because of the complexity and variety of

Internet. One is the maximum number of rounds. Once the maximum of rounds is

reached, the server will delete the client connection registration from the table and inform

the client about the failure of measurement. Such a case may arise when there are

overloaded links along the path and/or the bottleneck capacity estimation deviates too

much from the correct value. The client has to re-estimate the bottleneck again, by

restarting the process of measurement. The second mechanism is used to take care of

packets losses. The packet loss is observed at the server side through the socket time out

threshold. If the packet loss is more than 2/3 of the total probe packets, the server will

inform the client to stop measurement, as there may be one link that is so heavily

overloaded that the incoming packets are dropped. To continue the measurement may

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make the situation worse. The client may start measurement later. There is the other

possibility that the packets are dropped at the end host because of the small receiver

buffer or system resources limitation. The small receiver buffer size is a very rare

situation as most of modem operating systems offer enough space for the network

operation. The system resources limitation has been discussed in section 3.6. Under this

situation, the algorithm starts measuring the end host network transmission capacity

instead of the link available bandwidth. The third mechanism is that of the regular table

check. The server maintains a client connection table. The connection, which is inactive

for 5 minutes, is deleted, and the occupied resources (UDP ports, TCP connection and

measurements states) are released.

4.2 The Pseudo-Code for the C/S Mode Algorithm

{
// Initialization

train_length = TrainLength;

packet_size = PacketSize;

round =0;

sendMeasurementRequest ();

i f (ValideQ && Server_UDP_port) {

sendPackets (0,0); //round 0; probe packet interval 0;

receiveProblnforO;

bottleneck_capcity = calculateBottleneckCapctiyO;

initial_gap = bottleneck_capacity/packet_size/3;

while ((round < MAX_ROUND) &&phaseValideO

(!(source_gap - destination_gap)/destination gap <= 0. W {

sendPackets (round++, initial_gap);

i f (total_destination_gap> total_source_gap)

initial_gap += initialgap*l/5;

else initial_gap -= initial_gap*l/5;

}

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sendPackets (round, initial_gap) {

fo r (int i=0; i<train_length; i++) {

sendPacket(index, timestampQ, Server_UDP_Port);

/* delay logarithm (base e) o f the math random number between 0

tol* initial_gap */

delay (initial_gap);}

}

}

4.3 The Standalone Mode Algorithm

The PoissonProb sender-based or standalone mode is much simpler compared with the

client-server mode. The only requirement of the other end host is to open the UDP echo

(port 7) facility. As the sending host maintains all the states of the measurement, the load

on the other end is reduced to the minimum. However, as we discussed in section 2.2, the

sender-based algorithm may have a lower accuracy than the client-server algorithm. The

PoissonProb standalone mode may be used in a situation where the software deployment

at other end is difficult. During the measurement, the PoissonProb bounce the probing

packets to the target host UDP port 7 in the hope that the target may echo the packets

back. We assume the probing packets are echoed back through the same route and

without being interfered by the cross-traffic. We may apply the statistical algorithm to

filter out the cross-traffic and random network effects. The measurement procedure is the

same as for the client-server mode. In the first round, the initial or the sending host sends

out back-to-back packets to detect the bottleneck information and in the following round,

the probe packets distributed in Poisson are bounced out. The measurement host (which

is the sending host, in this case) observes the total initial gaps and the total gaps of the

coming back packets. On reaching the turning point, the measurement stops. PoissonProb

standalone mode requires more measurement samples than the client-server.mode.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 The Pseudo-Code for the Standalone Mode Algorithm

// Initialization

train_length = TrainLength;

packet_size - PacketSize;

round =0;

sendPackets (0,0); / / round 0; probe packet interval 0;

receiveProbPacketsQ;

bottleneck_capcity - calculateBottleneckCapctiyQ;

initial_gap = bottleneck_capacity/packet_size/3;

while ((round < MAXJR.OUND) &&phaseValidQ &&

(!(source_gap - destination_gap)/destination gap <= 0. 15)) {

sendPackets (round++, initial_gap);

i f (total_destination_gap> total_source_gap)

initial_gap += initialgap*l/5;

else initial_gap -= initial_gap*l/5;

}

sendPackets (round, initial_gap) {

for (int i=0; i<train_length; i++) {

sendPacket(index, timestampQ, 7);

/* delay logarithm (base e) o f the math random number between 0

tol * initial_gap */

delay (initial_gap);}

}

The following chapter gives the experimental result of the PoissonProb at the network

simulator and the network testbed.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments
5.1 NS2 TestBed Description

First, we compared the PoissonProb with the IGI/PTR and the pathChirp on the NS2 (ns-

2.26). The reason is that the experiments are repeatable and we may control the network

traffic flow so that various network conditions can be simulated. Furthermore, the

accurate timestamps for packets at each queue would give us the insights into the

interactions between the probing packets and the cross-traffics. The goals of the

experiments can be summarized as follows:

• Comparing the accuracy of the measurement algorithms, under the extreme

network conditions, such as the strict pre-bottleneck and post-bottleneck at the

network edge.

• Comparing the algorithms’ convergence time for a multi-hop network.

• Comparing the sensitivity to the network traffic change, when the cross-traffic

varies at different links along the path.

Figure 5-1. Multi-hop Network Topology on NS2

The testbed can be described as follows:

This is a four-hop network. The probing packets are sent from Ps to the Pd. Cross-traffics

are created from Cs to Cd. As most of the links are in duplex mode nowadays,

considering the one-direction measurements does not detract from the generality of the

conclusions. All the links’ capacity where the packets enter the network is 100Mbps. The

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

links R1-R2 and R3-R4 bandwidth capacity is 20Mbps. Meanwhile, link R2-R3 capacity

is 10Mbps. Then the link R2-R3 is the bottleneck link along the path. In the test scenario

one, cross-traffic from Cs2 to Cd2 keeps 3 Mbps passing through link R2-R3. When there

is no other traffic, link R2-R3 is both the bottleneck link and the tight link. We increase

the cross-traffic from Csl to Cdl from 0 to 19Mbps to observe the pre-bottleneck effect,

and obviously, after the rate increased to 17Mbps, the link R1R2 becomes the tight link.

In test scenario two, there is no cross traffic crossing link R1R2, and the traffic from Cs3

to Cd3 is increased from 0 to 19Mbps to observe the post-bottleneck effect. As in the pre

bottleneck case after the rate increased to 17Mbps, R2R3 becomes the tight kink.

5.2 Results of Experiments using NS2

The implementation of pathChirp (pathChirp_ns_2.26) was downloaded from the

researchers’ website (http://www.spin.rice.edu/Softwai-e/pathChirp/). IGI implementation

was coded according to the paper’s description and validated through original paper’s

testbed. During the test, the parameters are set by its default. The cross-traffic at NS2

testbed was set as CBR traffic and the packet size was set to 800 bytes. However, when

the original parameters setting (lowrate_, highrate_ and avgrate_) were kept, we

observed ridiculous results from pathChirp. After adjusted the parameters according to

the links capacity, the results are reasonable. The same results were observed at the

measurement on the test-bed. This may cause pathChirp failing to measure a wide range

of bandwidth where we don’t know the network properties in advance. The pre

bottleneck measurement results are shown in table 5-1 and the figure 5-2.

Table 5-1. Pre-Bottleneck Measurement on NS2

CrossTraffic
(Mbps)

PathChirp
(Mbps)

IGI
(Mbps)

PoissonProb
(Mbps)

Standard
(Mbps)

0 7.5332 7.5758 7.2152 7.0000
1 7.5332 6.9018 7.2152 7.0000
2 7.3816 6.9018 7.2152 7.0000
3 7.3816 6.9018 7.2152 7.0000
4 7.3816 6.9018 7.2152 7.0000
5 7.4119 7.0093 7.2785 7,0000
6 6.6647 6.9018 7.0678 7.0000
7 6.1086 6.9018 7.3077 7.0000

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.spin.rice.edu/Softwai-e/pathChirp/

8 7.0597 7.0093 7.0370 7.0000
9 6.7905 7.0093 7.0370 7.0000
10 7.0692 6.8389 7.3077 7.0000
11 6.0338 7.5758 7.3077 7.0000
12 6.6315 7.0093 7.2152 7.0000
13 5.8740 6.8182 7.0370 7.0000
14 4.6498 6.9207 6.8771 6.0000
15 5.3180 6.7164 5.0593 5.0000
16 3.7097 7.0355 5.0974 4.0000
17 2.0736 5.8313 4.8148 3.0000
18 2.9860 6.2654 4.0882 2.0000
19 0.8958 6.0497 3.0045 1.0000

Figure 5-2 Comparison of Pre-Bottleneck Measurements on NS2

Pre-Bottleneck Measurement

£ 10.0000
2
1 8.0000

(5 6.0000
m
® 4.0000
n
= 2.0000
<0
< 0.0000

0 2 4 6 8 10 12 14 16 18

Cross-traffic

■
JUs-jq,

PathChirp

IGI

P o isso n P ro b

x Standard

We found that under most of the situation, IGI and PoissonProb may give the results

within 5 seconds. In our experiments, pathChirp usually converged to the stable states

within 16 seconds. We have shown the first stable result from pathChirp result set for

comparison in the Table 5-1 and the Figure 5-2. From the above graph, we may see that

the results from PoissonProb are closer to the standard line than other algorithms, except

when the available bandwidth below 2Mbps. Apparently, IGI failed to reflect the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bandwidth change under current network conditions. Many reasons may contribute to the

IGI results. As we discussed in the early section, the measurements exhibited more

deviation around the standard curve under the pre-bottleneck conditions. The cross traffic

on the ending up tight link has the dominating impact on the probe packet’s intervals. IGI

focuses on the every packet’s interval changes at the receiver side. The bottleneck link

behind the tight link distorts the snapshot of cross-traffic effect on probe packets at the

tight link so that it displayed more deviations than other two algorithms that took the

accumulated gaps between the probe packets as the reference. Researchers in [15] got the

same conclusion and provided their analysis as well.

Table 5-2. Post-Bottleneck Measurement on NS2

CrossTraffic
(Mbps)

PathChirp
(Mbps)

IGI
(Mbps)

PoissonProb
(Mbps)

Standard
(Mbps)

0 7.5332 7.5758 7.2152 7.0000
1 7.5332 7.5758 7.1123 7.0000
2 7.3816 6.9046 7.1123 7.0000
3 7.5332 7.4469 7.2851 7.0000
4 6.6729 6.5721 7.1123 7.0000
5 7.3816 6.5127 7.1123 7.0000
6 7.3816 8.1579 7.4952 7.0000
7 6.0742 7.2039 7.0051 7.0000
8 6.6729 8.0727 7.1123 7.0000
9 6.4346 6.2238 6.7401 7.0000
10 7.0626 6.1123 7.1417 7.0000
11 5.2968 5.7380 6.9617 7.0000
12 6.1532 6.4480 7.2152 7.0000
13 5.2448 6.7829 7.1342 7.0000
14 4.8961 6.0063 6.3333 6.0000
15 5.2249 5.9196 6.5906 5.0000
16 3.6922 5.7915 4.1317 4.0000
17 2.0736 5.1546 3.9455 3.0000
18 2.0736 5.1546 3.8000 2.0000
19 1.0750 4.3176 3.7669 1.0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-3 Post-Bottleneck Measurements on NS2 Comparing

Post-bottleneck Measurement

9.0000
£ 8.0000
■g 7.0000

0 2 4 6 8 10 12 14 16 18

Cross-traffic

PathChirp
■O 6.0000
<5 5.0000 * — IGI

P o isso n P ro b

- Standard

m 4.0000
■g 3.0000
« 2.0000
« 1 -0000
5 0.0000

As we expected, all three algorithms presented the better performance at the post

bottleneck situation as shown in table 5-2 and figure 5-3. The cross-traffic on the link R3-

R4 dominated the intervals between the probe packets. The snapshots are what the

algorithms want to keep to the sink. Though the PoissonProb measurement results are

very close to the standard line at the first several rounds. It deviated when the available

bandwidth decreased below the 3 Mbps. We’ll address this issue in our future works.

5.3 Description of the Network Testbed

In this experiment, we set up a testbed to compare the above three algorithms. The goals

of the experiment are the same: comparing the accuracy of the measurement results at

pre-bottleneck and post-bottleneck conditions. When the bottleneck link is not the tight

link, we observe the performance of the algorithms to the change and their convergence

time. The network topology is the same as that applied in NS2. The testbed is comprised

of the four Linux machines that work as the routers. The probing packets are sent from Ps

to the Pd. Cross-traffics are generated from Cs to Cd as before. Figure 5-4 is the network

topology graph.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-4. Multi-hop Network Topology

To verify the links’ capacity, we use the well-known bandwidth measurement algorithm

pathrate-2.3 (http://www.cc.gatech.edU/fac/Constantinos.Dovrolis/l to measure the

capacity of each link. Table 5-3 is the links’ capacity in Mbps.

Table5-3. Link Capacity Verification

Node Inbound
(Mbps)

Outbound
(Mbps)

Ps-R1 97-98 97-98
Cs1 - R1 98-98 97-105*
R1 -R2 98-98 97-98

Cd1 - R2 97-98 98-98
R2- R3 86-87 98-98

Cs2 - R3 97-98 97-105*
R3-R4 98-98 98-98

Cd2 - R4 98-98 97-105*
Pd - R4 98-98 97-105*

From above table, we may see that the capacity of all the links is approximately 97-

98Mbps (we only consider the direction Ps->Pd only, for reasons stated in section 5.2). In

test scenario one, the link between R2 and R3 has a cross-traffic of 30 Mbps from Cdl to

Cs2. When there is no other traffic, link R2-R3 is both the bottleneck link and tight link.

We increase the traffic from Csl to Cdl from 0 to 90Mbps to observe the pre-bottleneck

effect. Obviously, after the rate of cross-traffic becomes higher than 30Mbps, the link Rl-

R2 becomes the tight link. In test scenario two, there is no cross-traffic crossing link Rl-

R2, and the cross-traffic from Cs2 to Cd2 is increased from 0 to 90Mbps to observe the

post-bottleneck effect. Again, when the rate of cross-traffic increases above 30Mbps, the

R2-R3 link becomes the tight kink.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cc.gatech.edU/fac/Constantinos.Dovrolis/l

To simulate the Internet traffic, we use Poisson traffic generator and the packet size is

chosen as lOOOBytes. Table 5-4 shows the verification of the traffic generator. We

verified the generator at three time scales, 10 seconds, 60 seconds and 3600 seconds

respectively according to the requirement of our measurement algorithm.

Table 5-4 Result of Experiments for Verification of the Poisson Cross-traffic

Generator
Average Traffic

(Mbps)
Time Scale
(10 secs)

Time Scales
(60 secs)

Time Scales
(3600 secs)

10 10.059786 10.060956 10.063651
20 20.032575 20.031342 20.026537
30 30.060581 30.066570 30.002312
40 39.967955 39.972571 39.082841
50 49.758193 49.779028 49.763211
60 59.304507 59.269797 59.268689
70 68.937374 68.964083 68.907604
80 78.234092 78.258344 78.214785
90 87.356155 87.313973 87.316224

5.4 Results from the Experiments on the Test Bed

The version of pathChirp is 2.4.1 which was downloaded from the researchers’ website

(http://www.spin.rice.edu/Software/nathChirpA. IGI/PTR source code was downloaded

from the researchers’ website (http://gs274.sp.cs.cmu.edu/www/igiA. The tables below

present the pre-bottleneck measurements results. We adjusted the pathChirp parameters

to adapt to the links’ bandwidth properties since these were known to us for the test-bed.

In this experiment, we gave each algorithm one minute to measure the available

bandwidth that the networks are keeping for one minute accordingly, and then took the

average of the measurement results as the final result.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.spin.rice.edu/Software/nathChirpA
http://gs274.sp.cs.cmu.edu/www/igiA

Table 5-5IGI Pre-bottleneck Measurements

MAX MIN AVER CT EBW
82.07 62.86 70.51 0.00 67-68
75.88 61.95 70.53 10.00 67-68
72.32 59.27 66.05 20.00 67-68
73.70 49.82 63.22 30.00 67-68
68.41 48.66 58.96 40.00 57-58
61.31 53.16 56.75 50.00 48-49
59.55 41.66 51.30 60.00 38-39
59.27 40.57 50.68 70.00 29-30
62.98 17.93 36.64 80.00 19-20
36.43 17.93 27.01 90.00 10-11

Table 5-6 PoissonProb Pre-bottleneck Measurements

MAX MIN AVER CT EBW
88.37 59.19 72.82 0.00 67-68
80.58 62.55 70.28 10.00 67-68
81.98 53.39 70.37 20.00 67-68
80.38 58.55 68.87 30.00 67-68
66.87 49.20 57.57 40.00 57-58
63.23 35.82 47.93 50.00 48-49
53.62 17.90 39.32 60.00 38-39
42.10 17.09 25.94 70.00 29-30
34.42 15.57 19.48 80.00 19-20
17.53 8.23 12.65 90.00 10-11

Table 5-7 PathChirp Pre-bottleneck Measurements

MAX MIN AVER CT EBW
76.97 58.36 67.49 0.00 67-68
72.47 55.01 66.34 10.00 67-68
78.53 63.89 70.11 20.00 67-68
77.39 62.53 69.61 30.00 67-68
70.01 55.71 63.82 40.00 57-58
66.78 46.79 55.48 50.00 48-49
49.73 42.27 45.29 60.00 38-39
44.79 25.02 33.73 70.00 29-30
21.00 16.54 18.85 80.00 19-20
20.71 12.38 16.23 90.00 10-11

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-5 Pre-Bottleneck Measurements Comparing

Pre-bottleneck Measurements
80.00

60.00

m £ 40.00
« S
w w 20.00

0.00
0 10 20 30 40 50 60 70 80 90

Cross Traffic (Mbps)

IGI
PoissonProb
PathChirp
EBW

Figure 5-6 Pre-Bottleneck Measurements Error Rate

• 2 1 S 151
l. 1 i
O i
£ 0-5 1

0 -P

Pre-bottleneck Error Rate

n.ELn H n JCL la
■ IGI
■ PoissonProbe
□ pathChirp

0 10 20 30 40 50 60 70 80 90

Cross-Traffic (Mbps)

Table 5-5 - 5-6 are measurement results of three algorithms. The MAX and MIN

columns showed the maximum and minimum measurement results algorithms reported.

We took the average (AVER) measurement results compared with the estimated

available bandwidth (EBW). The figure 5-5 is the graph shown the pre-bottleneck

comparing and the figure 5-6 shown the error rate of the three algorithms. Here, the error

rate 8 is defined as

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\MeasurementAB-Re alAB\
8 = R ealAB

From the figure 5-6, we may get the same conclusion as that got from the NS2

experiment. However, as all the three algorithms applied the statistical techniques to

filter out the probe deviations in their implementation. They showed better performance

than that on NS2 testbed.

Table 5-8 IGI Post-Bottleneck Measurements

MAX MIN AVER CT EBW
57.09 43.74 48.14 10.00 67-68
69.14 44.30 49.80 20.00 67-68
48.05 41.57 45.19 30.00 67-68
69.93 56.74 61.94 40.00 57-58
63.44 45.94 56.77 50.00 48-49
42.28 31.22 38.01 60.00 38-39
47.00 26.71 38.34 70.00 29-30
39.57 18.83 26.76 80.00 19-20
30.98 16.00 22.55 90.00 10-11

Table 5-9 PoissonProb Post-Bottleneck Measurements

MAX MIN AVER CT EBW
78.75 57.79 71.34 10.00 67-68
79.71 64.74 72.60 20.00 67-68
77.90 52.40 67.79 30.00 67-68
70.94 44.88 57.41 40.00 57-58
55.31 39.62 48.67 50.00 48-49
50.54 19.99 34.24 60.00 38-39
38.56 15.99 22.44 70.00 29-30
31.16 17.54 20.16 80.00 19-20
15.98 7.03 11.76 90.00 10-11

Table 5-10 PathChirp Post-Bottleneck Measurements

MAX MIN AVER CT EBW
94.18 69.34 79.83 10.00 67-68
83.84 76.19 80.71 20.00 67-68
89.42 59.10 71.31 30.00 67-68
71.04 56.31 64.40 40.00 57-58
53.40 45.43 49.01 50.00 48-49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55.85 42.52 46.29 60.00 38-39
40.00 28.92 38.62 70.00 29-30
21.97 14.44 16.21 80.00 19-20
18.73 9.62 15.48 90.00 10-11

Figure 5-7 Post-Bottleneck Measurements Comparing

Post-bottleneck Measurements

£ 100.00■a
1 80.00
« £ 60.00
m -Q
® S 40.0012 w
i 20.00(0
< 0.00

M M
•"T4*1 ”",,i....... ^f ■■

10 20 30 40 50 60 70 80 90
CrossTraffic (Mbps)

IGI
PoissonProb
PathChirp

. EBW

Figure 5-8 Post-Bottleneck Measurements Error Rate

Post-bottleneck Error Rate

■ IGI
■ PoissonProbe
□ pathChirp

10 20 30 40 50 60 70 80 90

Cross-traffic (Mbps)

Table 5-7 - 5-8 are measurement results of three algorithms under the post-bottleneck

conditions. Compared figure 5-8 with figure 5-6, again, we got the lower error rate of all

three algorithms under post-bottleneck conditions than that got under the pre-bottleneck

conditions. When the cross-traffic under 30Mbps on the ending up tight link, the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bottleneck link is also the tight link. However, the final tight link distorted the intervals

between the probe packets. Then the algorithms produced higher error rate than those

produced at last several rounds.

5.5 Measurement Results Between Gateways

Figure 5-9 ISP Network Topology
switch

switch Upper layer ISP Backbone

Test Machine
gw gw

Test Machine

To further evaluate three algorithms, we deployed programs behind two firewalls within

a small ISP network whose gateways are connected through the upper layer ISP

backbones. Figure 5-9 is the network topology we used for measurement. As one of the

firewall is configured with TC rules (Traffic Shaping/Control) that limit the ceiling rate

of egress port to 15Mbps, this link, between the firewall (fw) and the gateway (gw) is

apparently both bottleneck link and the tight link. The other links are only limited by the

gateway capacity, which is 100Mbps. The ISP authorities permitted us to run the

programs for three days (Wednesday, Thursday and Friday) from 0:00AM to 17:00PM.

Each program was scheduled to run one minute during the 5 minutes intervals. We took

the average output of measurement and compared it with the SNMP results (layer 2 link

utilization) that were read from the network card every 5 minutes by using the

monitoring server. The results are shown as figure 5-10 to 5-12. We also compared the

error rate which defined as before, for the three algorithms, as shown in figure 5-13.

PoissonProb showed the superior performance (average error rate: PoissonProb 0.17; IGI:

0.26; pathChirp: 0.20).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-10 Measurement Result Between Gateways (Wed)

Wed

25.00

20.00

2 15.00Qm
i 10.00

■ S v T 'S f

o o o o o o o o o o o o o o o<r ? T ^ l\ 2 ' ? ; ir ! <r ! ' r : (N C O T t L n 9 ! T 9 1
o ^ w n ' t i i i N c d o i o ^ N ' j u i f f l

Time

■PoissonProb(R)

-IGI

PathChirp

Std.

Figure 5-11 Measurement Result Between Gateways (Thur)

Thur

25.00

20.00

2 15.00

i 10.00

I!"1 Tf iiî iiifrî 'inW 'i!'r''i'i"r,ir,>r''T!ir'Tpimrrr'f ------

Poisson Prob(R)

IGI

PathChirp

Std.

i n o i o o i n o i o o w o i oO T - T - c x j o j c o c o T f - ' t L n L n
^ w n ^ i n i i N c d i j i d ^

Time

LO O lOo 17 r-_
TT 1 0 CD

Figure 5-12 Measurement Result Between Gateways (Fri)

Fri

2 15.00 &

25.00

20.00

10.00

ronrmivmnII I T r i T i T f I o f

CM 00

O O O O O a o 7; w
Tt ill) s o 6 i CM

Time

■PoissonProb(R)

•IGI

PathChirp

h ■ Std.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-13 Measurement Error Rate between Gateways

Measurement Error Rate

0.3
■ PoissonProb

■ IGI
□ PathChirp

0.2

Wed Thur
Date

5.6 Tests of the Sender-based Algorithm on NS2

PoissonProb can also be operated in the standalone mode (sender-based mode), which

decreases the load at the other end. Here, we compare the PoissonProb with Cprobe

which is the well-known sender-based available bandwidth measurement algorithm.

Both the sender-based algorithms were tested on the NS2 testbed under the same

conditions that were used for measurements of the receiver-based algorithms. The

following are the measurement results.

Table 5-11 Sender-based Pre-Bottleneck Measurement

CrossTraffic
(Mbps)

PoissonProb
(Mbps)

Cprob
(Mbps)

Standard
(Mbps)

0 7.2152 7.3567 7.0000
1 7.2152 6.7355 7.0000
2 7.2152 6.7355 7.0000
3 7.2152 6.7355 7.0000
4 7.2152 6.7355 7.0000
5 7.2785 6.8236 7.0000
6 7.0678 6.7355 7.0000
7 7.5523 6.7355 7.0000
8 7.5248 6.7355 7.0000
9 7.4643 6.8236 7.0000
10 7.3077 6.6576 7.0000
11 7.3077 7.3567 7.0000
12 7.2152 6.8236 7.0000

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 7.0370 6.6703 7.0000
14 6.8771 6.7532 6.0000
15 5.0593 6.5708 5.0000
16 5.0974 6.8427 4.0000
17 4.8148 5.7282 3.0000
18 3.9649 6.1428 2.0000
19 4.4048 5.9403 1.0000

Figure 5-14 Sender-based Pre-Bottleneck Measurement Result

Pre-bottleneck Measurement

| 8.0000
| 5 6.0000
jjj | 4.0000 -
8 2.0000

0.0000
■i— Is- o CO CO O)T— 1— T— T-

cross-traffic

— PoissonProb (Mbps)
Cprob (Mbps)
Standard (IVbps)

Table 5-12 Sender-based Post-Bottleneck Measurement

CrossTraffic PoissonProb Cprob Standard
(Mbps) (Mbps) (Mbps) (Mbps)
0.0000 7.2152 7.3567 7.0000
1.0000 7.1123 7.3567 7.0000
2.0000 7.1123 6.7385 7.0000
3.0000 7.2851 7.0858 7.0000
4.0000 7.1123 6.4485 7.0000
5.0000 7.1123 6.3976 7.0000
6.0000 7.4952 6.6170 7.0000
7.0000 7.0051 6.2664 7.0000
8.0000 7.1123 6.0099 7.0000
9.0000 7.0185 6.4311 7.0000
10.0000 7.1417 6.3555 7.0000
11.0000 7.4737 5.9704 7.0000
12.0000 7.2152 6.5366 7.0000
13.0000 7.1342 6.8443 7.0000
14.0000 6.6334 6.0655 6.0000
15.0000 6.7692 6.0147 5.0000

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16.0000 4.9524 5.8961 4.0000
17.0000 4.6847 5.0166 3.0000
18.0000 3.8000 4.9533 2.0000
19.0000 2.9420 4.1992 1.0000

Figure 5-15 Sender-based Post-Bottleneck Measurement Result

Post-bottleneck Measurement

♦— PoissonProb (Mbps)
* - Cprob (Mbps)

Standard (Mbps)

PoissonProb algorithm uses the UDP echo while the Cprobe uses the Ping echo packets.

Cprobe is the gap-based algorithm, which depends on Bprobe to infer the bottleneck

capacity first, and then the available bandwidth is calculated through bottleneck capacity

minus the utilization of the bottleneck link. PoissonProb is a rate-based algorithm which

compares the accumulated source and destination gaps. Then it infers the available

bandwidth through the average probe packets rate when they are bounced back. Another

difference between the two is that Cprobe send out the probe packets back-to-back, in

other words, as fast as possible. This can easily congest the measured network while the

PoissonProb algorithm sends out the probe packets in Poisson distribution and the rate

measurement is started at the one third of the bottleneck capacity. From the Figure 5-14

and 5-15, PoissonProb apparently showed better performance than that of Cprobe.

51

8.0000

£ 4.0000
2.0000
0.0000

Cross-traffic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Conclusion and Future Work
To design an algorithm, which measures the network characteristics accurately, is a

challenging work, with the Internet growing exponentially in both complexity and scale.

However, it is the critical requirement for many network engineering aspects, such as the

network protocols and distributed programs design, traffic optimization, capacity

planning, and service verification. The currently available bandwidth measurement

algorithms face the problems of distortion of measurement on multi-hop paths. Especially

when the path consists of more than ten hops the accuracy of measurement deceases

sharply. System resource limitations on high-speed networks can lead the algorithms to

measure the end host capacity instead of a link’s available bandwidth. Probe traffic

intrusiveness and the measurement accuracy are other issue of concern. We have

developed a new rate-based algorithm — PoissonProb. The intervals between probe

packets of this algorithm are in Poisson distribution format and the algorithm infers the

available bandwidth according to the measured change of intervals. The algorithm has

been implemented as the PoissonProb Available Bandwidth (PAB) measurement tool.

The PAB tool can be operated in either sender-based or receiver-based mode. We have

been able to test for the available bandwidth at Gbps networks in NS2 and in the range

from several Mbps to 400Mbps on a test-bed consisting of common desktops. The

measurement of available bandwidth on the test bed is limited by the end host bottleneck.

Another feature of this algorithm is that it can be operated under both Windows and

UNIX environments.

We have compared the PAB tool with C-Probe, PathChirp and IGI, the three algorithms,

which are normally used today. However, the three algorithms can work only on UNIX

environment. We present the measurement results of the three algorithms on NS2, lab

testbed and an ISP network. Even with Windows environment, we are able to obtain the

same or even better accuracy and efficiency as for other three algorithms in the Linux

environment.

It is hard to thoroughly evaluate the algorithms through the network simulator and the

small-scale network where the links’ variety and the cross-traffic complexity may not

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

appear. The production tests on the backbone networks and the edge networks with

multiple links may gain us an insight into the available bandwidth properties so that

further tuning of PoissonProb may become possible.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reference:
[1] Andre Broido, Young Hyun and K. C. claffy, “Their share: diversity and

disparity in IP traffic", to appear at the PAM conference in 2004.

[2] Athanasios Papoulis and S. Unnikrishna Pillai, “Probability, random variables,
and stochastic processes''’ McGraw-Hill, 2002.

[3] Bob Melander, Mats Bjorkman and Per Gunningberg, “A New End-to-End
Probing and Analysis Method for Estimating Bandwidth Bottlenecks", in IEEE
Global Internet Symposium, 2000.

[4] Constantinos Dovrolis and Manish Jain, “End-to-End Available Bandwidth:
Measurement Methodology, Dynamics, and Relation with TCP Throughput",
IEEE/ACM Transactions in Networking, Aug. 2003.

[5] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore, “Packet
Dispersion Techniques and Capacity Estimation", IEEE/ACM Transactions in
Networking - Revised: March 2004.

[6] Guanghui He and Jennifer C. Hou, “On Exploiting Long Range Dependence o f
Network Traffic in Measuring Cross Traffic on an End-to-end Basis", INFOCOM
2003. Twenty-Second Annual Joint Conferences of the IEEE Computer and
Communications Societies. IEEE, Volume: 3, 30 March - 3 April 2003, Pages:
1858- 1868.

[7] Guojun Jin and Brian L. Tierney, “System Capability Effects on Algorithms for
Network Bandwidth Measurement", Proceedings of the Internet Measurement
Conference Oct. 27-29,2003, Miami, Florida, LBNL-48556.

[8] Guojun Jin, George Yang, Brian R. Crowley, and Deborah A. Agarwal, “Network
Characterization Service", in Proceedings of 10th IEEE Symposium on High
Performance Distribute Computing, August 2001.

[9] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sim, "Internet Traffic Tends Toward
Poisson and Independent as the Load Increases," in Nonlinear Estimation and
Classification, New York: Springer, 2002, pp. 83-109.

[10] Jacob Strauss, Dina Katabi and Frans Kaashoek, “A Measurement Study o f
Available Bandwidth Estimation Tools", Internet Measurement Workshop
Proceedings of The Conference on Internet Measurement Conference, Miami
Beach, FL, USA, Oct., 2003

[11] K.C. Claffy and S. McCreary, “Trends in Wide Area IP Traffic Patterns",
technical report, CAIDA, Feb. 2000.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] K.C. Claffy and S. McCreary, “Internet Measurement and Analysis: Passive and
Active Measurement", American Statistical Association, 1999.

[13] Kevin Lai, “Measuring the Bandwidth o f Packet Switched Networks”, Ph.D. thesis,
Department of Computer Science, Stanford University, October 2002.

[14] Konstantina Papagiannaki, N. Taft, Z. Zhang, C. Diot, “Long-Term Forecasting o f
Internet Backbone Traffic: Observations and Initial Models”, in IEEE INFOCOM,
San Francisco, U.S.A., April 2003.

[15] Manish Jain and Constantinos Dovrolis, “Ten Fallacies and Pitfalls in End-to-End
Available Bandwidth Estimation”, In the Proceedings of the ACM Internet
Measurements Conference (IMC), Sicily Italy, October 2004.

[16] Manish Jain and Constantinos Dovrolis, “Pathload: A Measurement Tool for End-
to-end Available Bandwidth”, in Proceedings of the 3rd Passive and Active
Measurements Workshop, Mar. 2002.

[17] Matthew Mathis and Mark Allman, “A Framework for Defining Empirical Bulk
Transfer Capacity Metrics”, RFC 3148, Jul. 2001.

[18] Ningning Hu and Peter Steenkiste, “Evaluation and Characterization o f Available
Bandwidth Probing Techniques”, IEEE Journal on Selected Areas in
Communications, 2003.

[19] Ravi Prasad, Manish Jain and Constantinos Dovrolis, “Effects o f Interrupt
Coalescence on Network Measurements”, Passive and Active Measurements
(PAM) conference, April 2004.

[20] Robert L. Carter and Mark E. Crovella, “Dynamic Server Selection Using
Bandwidth Probing in Wide-area Networks”, Technical Report BU-CS-96-006,
Boston University, 1996.

[21] Sally Floyd and Vem Paxson, “Wide-Area Traffic: The Failure o f Poisson
Modeling”, IEEE/ACM Transactions on Networking, Vol. 3, No. 3, pp. 226-244,
June 1995.

[22] Thomas Karagiannis, Mart Molle and Michalis Faloutsos, “A Nonstationary
Poisson View o f Internet Traffic”, Presented at the Infocom in 2004.

[23] Vinay J. Ribeiro, Rudolf H. Riedi, Matthew Crouse and Richard G. Baraniuk,
"Multiscale Queuing Analysis o f Long-Range-Dependent Network Traffic”,
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, Volume: 2, 26-30 March 2000, Pages: 1026 -
1035.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[24] Vinay J. Ribeiro, Rudolf H. Riedi, Richard Baraniuk, Jiri Navratil, and Les
Cottrell, “pathChirp: Efficient Available Bandwidth Estimation for Network
Paths’’, in Proceedings of Passive and Active Measurements workshop, Apr. 2003.

[25] Vinay J. Riberio, Mark Coates, Rudolf H. Riedi, Shriram Sarvotham, Brent
Hendricks, and Richard Baraniuk, “Multifractal Cross-Traffic Estimation”, in
Proceedings ITC Specialist Seminar on IP Traffic Measurement, Modeling, and
Management, Sep. 2000.

[26] W. Leland, M. Taqqu, W.Willinger, and D.Wilson, “On the Self-Similar Nature o f
Ethernet Traffic,” IEEE/ACM Transactions on Networking, vol. 2, pp. 1-15, 1994.

[27] Yin Zhang, Nick Duffiled, Vem Paxson, and Scott Shenker, “On the Constancy o f
Internet Path Properties”, in Proceedings of ACM SIGCOMM Internet
Measurement Workshop, page 197-211, Nov. 2001.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix

A.l Poisson Processes and Poisson Traffic

Poisson processes have been historically used for modeling the packet arrivals and

packets queuing time for a system. The formula for the Poisson probability mass

function is:

-X i x
_ e A

x{ forx =0,1,2 ...

X is the shape parameter which indicates the average number of packets arrival in a given

time interval. This is also referred to as the intensity rate. There are two key

characteristics of the Poisson distribution to describe the packet arrivals: the inter-arrival

times are exponentially distributed and independent. For modeling a network, the

Inhomogeneous Poisson Process is usually used to describe the packets arrival. The

difference is that a Poisson process has a constant intensity X whereas the

inhomogeneous Poisson process can be generalized as with the intensity that varies with

time X(t). Figure A-l shows an example of the inhomogeneous Poisson process. (Note.

X(t) is a deterministic function of time.)

Figure A-l Inhomogeneous Poisson Process

Then, the probability of an arrival in a short interval of time (t, t + dt) is now

X(t)dt + o(dt).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This model was widely applied in network engineering till the early-90’s. The important

studies [21] [26] at that time had shown that the LAN and WAN traffics deviate

considerably from the Poisson process, as the exponential distribution underestimates the

burstiness of traffic. The packet inter-arrivals had a marginal distribution that had a

heavy longer tail than the exponential. Paxson and Sally in [21] concluded: “wide-area

traffic is much burstier than Poisson models predict, over many time scales.” and “in

some cases commonly-used Poisson models seriously underestimate the burstiness o f

TCP traffic over a wide range o f time scales (time scales o f 0.1 seconds and larger) .”

They showed that LAN and WAN packet arrival processes appear better modeled using

self-similar processes and long-range dependence. This resulted in many other studies in

this area and has greatly influenced the network modeling, protocols, algorithms, and

network design for a decade.

Beginning in 2000, studies showed that the Internet had grown rapidly in diversity and

disparity [1] and the nature of traffic had changed significantly. The speed of links has

increased by several orders of magnitude and each link had greater connectivity. A new

statistical phenomenon of Internet traffic has appeared to dominate packet arrival

modeling. That is network multiplexing. A recent study has shown that the network

traffic can again be modeled by the Poisson distribution. The reason is that the large

number of simultaneous active connections cause a dramatic change in the statistical

properties of packet traffic on an Internet link [9]. The long-range dependence is

weakened with the standard deviation of the counts relative to the mean getting small; it

is especially apparent for the backbone links with contemporary loads of thousands of

connections. The other is that the high-speed link has the capacity to drain the packets so

fast that “ the increasing connection load can bring the traffic to Poisson and

independence before substantial upstream queuing occurs; the onset o f queuing does not

resurrect the long-range dependence ” [9]. The final result is that the bursty single

network traffic cannot change the high degree of multiplexing links (connections), even

though they are still busty as a single individual connection. This has been theoretically

and empirically proven through packet analysis on the over provisioned links. Apparently,

the packet arrival shows characteristics of Poisson distribution again. For a heavily

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loaded link, the packets arrive back-to-back, and then the distribution of the arrival

depends on the packet size from the point of view of the transmitter. The packet size

appears to be independent through the large-scale packets dataset analysis [22]. Certainly,

for the edge links with limited connection load, the traffic is still showing the burstiness,

self-similarity and long-range dependence characteristics. But on links with high speeds,

towards the core of the internet, and carrying traffic made up of a large numbers of

connections, the traffic is close to Poisson and independence.

The next important factor of network traffic modeling and measurement is the time scale.

As we discussed in the earlier sections, we found distinct differences of network

statistical properties when we observe the Internet traces at different time scales. There is

no doubt the Internet traffic appears self-similar and long-range dependent at the large

time scale. This can be explained in a simple example. No matter whether it is an ISP

backbone link or the campus trunk, it could draw the regular load curves through the

SNMP enquiry. These curves display similarity in the monthly, weekly or daily periods

that can easily predict the average load of a dedicated link in the above time scales even

in an hourly time scale. But for most applications, they may want the bandwidth

information at the time scale of millisecond to minute level. At this time scale, the traffic

is usually non-stationary and may show absolutely different properties compared with

average properties of long-term time scales. Karagiannis et al [22] have shown “packet

arrivals appear Poisson at sub-second time scales; Internet traffic is nonstationary at

multi-second time scales; Internet traffic exhibits long-range dependence (LRD) at large

time-scales”. The above studies and findings are very important for the network

measurement algorithms design that any algorithm has to take into considerations no

matter what kind of network model it is based on. Meanwhile, we should not attempt to

normalize available bandwidth measurements relative to the long-term average value.

The measurement, prediction and normalization periods should fall into the same time

scale. For the PoissonProb algorithm, it is best used to estimate the available bandwidth

on high load links within seconds level time scales.

A.2 Using Poisson Processes to Model Internet Traffic

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As discussed in chapter 3, the current available bandwidth measurement algorithms are

facing some critical problems. Based on the single hop model, most algorithms are

inaccurate when the algorithms are applied on the multi-link path. Most of them also have

difficulties to quickly reflect the change of the available bandwidth along the path. We

were inspired by the above findings and research results. The goal of the PoissonProb

algorithm is to infer accurately the available bandwidth information based on a single

Poisson distribution hop model in a faster way.

The algorithm design uses the following three properties of the Poisson process and

queuing theory.

• Superposition and random split property: If a stream of Internet packets, called

stream 1 arrive at the servers in the Poisson distribution with intensity rate A/ and

if stream 2 of probing packets arrives in the Poisson distribution with intensity

rate A2, and they are in the same probability space, then on merging the two

Poisson streams, the resultant stream has a Poisson distribution with an intensity

rate A/+A2. If a Poisson process with intensity A is randomly split into two

subprocesses with probabilities p i and p2, where pl+p2 =1, then the resulting

processes are independent Poisson processes with intensities p i A and p2A. This

can also be generalized to a split into more than two subprocesses.

• PASTA (Poisson Arrivals See Time Averages) property. PASTA property is one

of the central properties of queuing theory and the basis of our PoissonProb

algorithm. Suppose packets arrive at the queue in Poisson process with intensity

A. These arrivals induce state transitions of the queue. If the queue length

increases or the queue drains the packets immediately, then there are two

different probabilities: The probability of the each state Ej as seen by an outside

random observer, PI is the probability that the queue is in the state Ej at a random

instant. The probability of the state seen by an arriving probe packet P2 is the

probability that the queue is in the state Ej just before a randomly chosen arrival.

Here, the PI = P2

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Consider the case of multiple servers in series and parallel queuing property.

Assume the packets travel a complex network in which the path can be

generalized, i.e. the series interconnection of single server queues may be

generalized to a series interconnection of m phases, where the z'th phase consists

of n parallel channels. Assume that there are additional Poisson arrivals to each

phase from outside of the network, and that there are feedbacks from various

phases within the system as shown in Fig A-2. Then an interconnected

feedback/feed-forward network with Poisson arrivals at various phases behaves

like a cascade connection of independent queues with input rate X; with

transmission rate p.; at the z'th phase.

Figure A-2 Multiple Servers in Series and Parallel Queuing

o

A. 2.1 Proofs of the Three Basic Properties

Most of the proofs are based on well-known probability theorems [2].

A.2.1.1 superposition property

The probability that an arrival occurs from process 1 in the interval dt is Aj* dt . In

Poisson process, this value is independent of the arrivals outside the interval. Similarly,

the arrival probability from process 2 is Ai» dt. Using superposition the probability of an

arrival in the interval dt is (Ai + A2) »dt independent of arrivals outside the interval. The

two streams, when combined together, yield a Poisson process with intensity (A; + A2).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2.1.2 Random Split Property

Using a direct intuition method of proof, the first step is the proof of random selection. If

a random selection is made from a Poisson process with intensity X such that each arrival

is selected with probability p, independently of the others, the resulting process is a

Poisson process with intensity pX. The probability that an arrival occurs from the original

process in the interval dt is X• dt independent of the arrivals outside the interval. After the

random selection the probability for an arrival in the interval dt is p»X» dt which is

independent of the arrivals outside the interval. Then process of the selected arrivals is a

Poisson process with intensity pX. As both of the subprocesses resulting from the split

represent a random selection of the original process, they are thus Poisson process with

intensities piX. So it remains to prove the independence of the processes. Let

• Ni (Ii) == number of arrivals from subprocess 1 in the interval ft

• N2 (I2) = number of arrivals from subprocess 2 in the interval 12

Denote I = /, n I 2

= N 1(I) + N l(I1 n l i) N 2(I2) = N 2(I) + N 2(I2 n 7 i)

Arrivals in non-overlapping intervals I x n 12 and I 2 n I\ are certainly independent.

There may be dependence only between Ni (I) and N2 (I). But these represent the random

split of the total number of arrivals from the original process, with Poisson distribution

(X\I\), into two sets: The sizes of these sets were shown to be independent in considering

the properties of the Poisson distribution.

The PoissonProb algorism is facilitated by the above properties. To measure the available

bandwidth, PoissonProb sends Poisson distributed packets, in the expectation that if the

probe packets and any session of cross-traffic enter or exit the path at any rate, the

original traffic properties may not be influenced.

A.2.1.3 PASTA Property

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To put it simply, the Poisson distributed packets can see the average cross-traffic along

the path if the cross-traffic is also the Poisson distribution. To prove P1=P2, the method

is as follows. The arrival histories before the instant of consideration, irrespective

whether we are considering a random instant or an arrival instant, are stochastically the

same: a sequence of arrivals with exponentially distributed interarrival times. This

follows from the memoryless property of the exponential distribution. The remaining

time to the next arrival has the same exponential distribution irrespective of the time that

has already elapsed since the previous arrival, since the stochastic characterization of the

arrival process before the instant of consideration is the same, irrespective of how the

instant has been chosen. The state distributions of the system induced by the past arrivals

processes at the instant of consideration must be the same in both the cases.

We can illustrate this further by the hitchhiker’s paradox. The paradox is as follows:

• Cars are passing a point in a road according to the Poisson distribution.

• The mean interval between the cars is 10 minutes.

• A hitchhiker arrives at the roadside point at a random instant of time.

• What is the mean waiting time ^ until the next car?

The interarrival times in a Poisson process are exponentially distributed. From the

memoryless property of the exponential distribution, it follows that the residual time to

the next arrival has the same Exp (X) distribution and the expected time is thus

w = 10 min

This conclusion appears paradoxical and most people may expect the w = 5 min. However,

the paradox lies in that the hitchhiker’s probability to arrive during a long interarrival

interval is greater than during a short interval. Given the interarrival interval, within that

interval the arrival instant of the hitchhiker is uniformly distributed and the expected

waiting time is one half of the total duration of the interval. The point is that in the

selection by the random instant the long intervals are more frequently represented than

the short ones (with a weight proportional to the length of the interval).

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider a long period of time t. The waiting time to the next car arrival W (x) as the

function of the arrival instant of the hitchhiker x can be represented by the sawtooth curve.

The mean waiting time is the average value of the curve that is the sum of the triangles of

the sawtooth. X t is the interarrival time.

For exponential distribution X 2 = (X) 2 + V[X] = 2(X)2 , here, V[X] = (X) 2 thus

W = X .

As discussed in the earlier sections, both rate-based and gap-based algorithms are trying

to snapshoot the cross-traffic at the tight link. PoissonProb algorithm is a rate-based

algorithm; it sends probe packets in Poisson distribution and tries to saturate the available

room at the tight link. The difference between the PoissonProb and the other rate-based

algorithms is that most of the rate-based algorithm simply apply the packet train, packet

pair or exponential distributed probe packets to detect the available bandwidth. These

may not interweave with the Poisson-type cross-traffic as well as the Poisson distributed

packets. So they may underestimate or overestimate the cross-traffic at the tight link. For

the gap-based algorithms, which depend on the interval changes between the probe

packets to infer the cross-traffic, failing to accurately estimate the cross-traffic may

induce a large deviation of measurement.

To explain the third property is difficult, as the precise proof should start from M/M/1

queue and Markovian Queues. Skipping the basic queuing theory, we start the proof from

multiple servers in series and parallel directly. R.R.P. Jackson [2] has generalized the

W = \ t w w J - ± \ x ,

As t —» °° the number of the sawtooth triangles n tends to t / x , then

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

series interconnection of single server queues to a series interconnection of m phases,

where the zth phase consists of r, parallel channels, all with exponential service-rate jiu

The input to the first phase is an unlimited Poisson input with parameter X, and queuing is

allowed before each phase. With n, units in the zth phase, the probability that an item

finishes service in At is given by flni At + o (At), where p™ = nip, (n, < n) or p nj = ppi (n,

>= r;). In steady state, after substituting the steady state equations, it become,
m

(X + ̂ f i i)p(n1,n2,...,nm) = Y , V n i P (n i ,n 2 >---’ n i +hnM +Ap(n, -1 ,n2,...,nm)
;=1

nt > 0

Here, p(nun2,...,pm) represents the probability that there are ni items in the first phase,

ti2 items in the second phase, and so on. R.R. P. Jackson [2] has shown that the unique

solution is give by the product form

p{nxn2,..., nm) = p x (nx)p2 (n2)...Pi («,.)...pm (nm)

where

, ̂ W m,)”1
P i (n i) = - - - - - - - - - - - - - P u o n i < r i ° r

n r

r rip n>
P i (. n i) = ~ !— 7 - P i , o n i > = r i

n '-

Here

 1___________

Pl-° ~ g / f t , r t (u ^ f
„=0 n\ r ,! (l-p ,)

and p i = X l r jp i

The above equation represents an M/M/r, queue with n; items, and from the product

equation, it follows that in steady state a series-parallel network will behave like a

cascade of independent M/M/r,- queues, provided all servers in each parallel

configuration have identical service rates.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jackson has generalized this result by permitting additional Poisson arrivals to each

phase from outside the system, and feedbacks from various phases within the system.

Thus, a unit arrives at a phase with different probabilities. The services distributions are

exponential, with the z'th phase consisting of q parallel channels with identical service

rate p.i. Poisson arrivals from outside the system occur at the z'th phase with rate y , and

after finishing service at z'th phase, an item either leaves for theyth phase with probability

qij, where it is served in the order of their arrival along with Poisson arrivals from outside,

or it leaves the system with probability
m

41. o
7=1

Let A,, represent the average arrival rate at the /th phase. Then satisfies
m

i - l,2,...,m
a:=i

Consider a network of m phases with zth phase consisting of r, parallel servers, all with

identical service rate //,. The network allows feedback and feed forward from phase i to j

with probability q^, in addition to Poisson arrivals from outside to each phase at rate jf.

Then the probability that there are ni items in phase z, i= 1,2,...,m is given by

m
p{nxn2,...,nm) = Y [p i (ni)

;= 1
m m

Also, the ^ zy. 0 A,. = 1 - ^ yi and the total output from the system equals the total input
z=i i=i

into the system.

Thus, any complex network with external Poisson feeds behave like cascade connections

of M/M/ri queues in steady state. Based on this property, PoissonProb algorithm can

generalize the network as the single queue model and then the pre-bottleneck and post

bottleneck tight link problem which was discussed in the earlier section can be solved

theoretically. The PoissonProb algorithm observes the probe packets gaps change at the

receiver side. If the probe packets total destination gap falls within a small range around

the total original gap, then PoissonProb algorithm believes the current rate of probe

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packets has saturated the available room at the tight link and they interfered with the

cross-traffic at the tight link. Actually, the experimental results have shown that the

PoissonProb algorithm has better performance as compared to other algorithm in the

presence of the pre-bottleneck and post-bottleneck cross-traffic effects.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Name:

Place of Birth:

Year of Birth:

Education:

Lu Xin

China

1972

QingDao Ocean University
QingDao, ShanDong, China
1990- 1994 B. Sc.

University of Windsor
Windsor, Ontario, Canada
2002 - 2005 M.Sc.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	PoissonProb: A new rate-based available bandwidth measurement algorithm.
	Recommended Citation

	tmp.1618503054.pdf.aMsEx

