
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

LOMARC: Look ahead matchmaking for multi-resource LOMARC: Look ahead matchmaking for multi-resource

coscheduling. coscheduling.

Lei Lan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Lan, Lei, "LOMARC: Look ahead matchmaking for multi-resource coscheduling." (2004). Electronic Theses
and Dissertations. 2641.
https://scholar.uwindsor.ca/etd/2641

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2641?utm_source=scholar.uwindsor.ca%2Fetd%2F2641&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

LOMARC - Look Ahead Matchmaking for Multi-

Resource Coscheduling

By

Lan, Lei

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2004

©2004 Lan, Lei

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1̂ 1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationals
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-92497-1
Our file Notre reference
ISBN: 0-612-92497-1

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Hyper-Threading (HT) provides a new possibility for job coscheduling without

context switch and without the cost for coordinating processes of one parallel job.

However, HT achieves high processor throughput at the expense of reducing the

performance of the individual process. Since the hardware resources are actually

shared between two coscheduled jobs, the resource contention will harm the

performance of each job. Most scheduling approaches only focus on the CPU without

considering the impact on other resources.

In this thesis we present LOMARC, a space-time sharing approach that takes multiple

resources, including CPU, I/O, memory and network, into consideration for job

coscheduling on HT processors. To improve resource utilization and reduce job

response times, LOMARC matches two jobs with complementary resource

requirements to coschedule. Our approach partially reorders the waiting job queue by

lookahead to increase the possibility of finding a good match. LOMARC also

generalizes for standard CPUs, using an adjusted matching scheme and only focusing

on hiding I/O latency. In addition, LOMARC incorporates standard scheduling

approaches such as priority ordering, aging and backfilling. In our simulation

experiment, we use a realistic workload model to provide the convincing results. Our

experimental results demonstrate that LOMARC delivers better performance than the

standard space sharing approach and the other two job coscheduling approaches for

HT processors. The performance gain is mainly due to an increased possibility of

coscheduling two complementary jobs by looking ahead on the waiting queue.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother, Shwdan Zhang

my father, Zujie Lan

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my

supervisor, Dr. Angela Sodan. The work could not be achieved without her extensive

guidance and constant encouragement. Also I would like to thank all the committee

members, Dr. James GauM, Dr. Scott Goodwin, Dr. Peter Tsin, for their valuable time

and comments, and I must specialiy thank Dr. Gauld for Ms additional help in

polishing up the English writing of this thesis.

My special thanks go to my parents and my sister. Their love and care have always

been with me during these years. Their trust and encouragement pulled me through

hard times.

I would like to thank Xuemin Huang for his help in providing the basic simulator for

this thesis work and sharing Ms valuable experiences.

Last, but not least, I would like to thank all of my friends for all the help and support

during the completion of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstractiii

Dedication..iv

Acknowledgements......... v

List of Tables.. viii
List of Figures ..ix

1. Introduction... 1

2. Background issues .. 5

2.1. Review of scheduling strategies in parallel systems...... 5

2.3.1. Space sharing 5

2.3.2. Time sharing.... 9

2.3.3. Combination of space and time sharing.. 11

2.2. Common goals and metrics 12

2.3. WorMoad and job characteristics... 14

3. Resource impacts on job scheduling... 16

3.1. Memory impact on scheduling... 16

3.2. I/O impact on scheduling 17

3.3. Communication/network impact on scheduling... 19

4. Hyper-Threading............................ 21

5. LOMARC...................... ...23

5.1. Goals and solutions.. 23

5.2. LOMARC scheduling algorithm.. 25

5.2.1. Algorithm abstract... 26

5.2.2. Matching scheme... 30

5.2.3. Utilization and response time impact.. 32

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.4. Overhead Analysis ... 37

6. Simulation and experiments.. 39

6.1. Slowdown estimation.. 39

6.2. WorMoad modeling..41

6.2.1. Job size modeling.. 41

6.2.2. Job runtime modeling.. 43

6.2.3. Job arrival time modeling... 46

6.2.4. Job resource consumption characteristics modeling....................... 49

6.3. Experiments and result analysis... 50

6.3.1. Overview of the experiments.. 50

6.3.2. Performance metrics applied.. 51

6.3.3. WorMoad impact................... 52

6.3.4. Comparison of different approaches... 57

6.3.5. Performances for different job classes.. 61

6.3.6. Summary 63

7. Conclusion and fiiture work............. 64

7.1. Conclusion........ 64

7.2. Future work. 65

Reference.. 66

Vita Auctoris. 70

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 5.1. Time complexity analysis .. 37

Table 6.1. Parameters for job size m odeling ...42

Table 6.2. Parameters for job runtime and total job work modeling 45

Table 6.3. Parameters for job arrival time modeling.... 48

Table 6.4. Summary information of the workload model........... 49

Table 6.5. Workload information.. 52

Table 6.6. Average queue lengths and average numbers of Jobs suitable for

coscheduling.... 59

Yin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1. Backfilling 6

Figure 3.1. Paired gang scheduling... 18

Figure 3.2. Network utilization... 19

Figure 3.3. Buffered coscheduling.. 20

Figured.!. ThearcMtectureofHTprocessors..21

Figure 5.1. LOMARC abstract algorithm...27

Figure 5.2. Pseudo code for scheduling jobs...................................... 29

Figure 5.3. An example of job coscheduling 33

Figure 5.4. Response time impacts........................... 34

Figure 5.5. Pseudo code for calculating response impact 36

Figure 6.1. CDF of two-phase-uniform distribution...42

Figure 6.2. Algorithm for modeling the size of a job......... 43

Figure 6.3. Logarithmic runtime distributions and the derived model.............................. 44

Figure 6.4. Examples of gamma distributions.... 45

Figure 6.5. Number of job arrivals in a daily cycle. 47

Figure 6.6. Modeled time slot weights in a daily cycle 48

Figure 6.7. Experimental results under Workload 1 53

Figure 6.8. Workload impact on response time and relative bounded response time....... 55

Figure 6.9. Workload impact on utilization and effective utilization 56

Figure 6.10. Response time comparison... 57

Figure 6.11. Relative bounded response time comparison..,... 58

Figure 6.12. Comparison of utilization and Effective utilization.... 60

Figure 6.13. Comparison among different job classes.............. 62

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

Job scheduling for parallel systems has been the subject of many research activities

for decades. A scheduler for a parallel system decides not only when a process should

ran, but also where the process should run. The scheduling strategy of a parallel

system is essentia! for how well the system can provide the service to the users,

because it decides the resource allocation to applications and the efficiency of

resource utilization. There are varieties of scheduling strategies for parallel

applications in parallel systems proposed and implemented. The divergence is due to

different assumptions for the cost metrics model, machine model and application

model. It is believed that there is no single best solution for all different situations

[Feitelson97C].

The common goals of scheduling in a parallel system can be seen according to two

views: the user perspective and the system perspective. For the user perspective, how

soon a submitted job can finish is important. For the system perspective, how

efficient the system resources are utilized is important. Although improved system

utilization may lead to improved response time, there is a trade-off between these two

goals. To evaluate how well a scheduler achieves these goals, some formalized

metrics are developed, the details of which are discussed in Chapter 2.

Space sharing and time sharing are two basic types of scheduling approaches. In

space sharing, processors are partitioned into disjoint subsets, and each subset is

dedicated to one job. Time sharing means multiple processes are allocated to one

processor, and each processor switches among the processes assigned to it using time

slices. In pure time sharing, the schedule of processes on one processor is

independent from other processors. There are pros and cons for both space sharing

and time sharing. Space sharing allows exclusive resource allocation, and therefore,

gives the best execution time for each job and has little system overhead on the

context switch. The main problems of space sharing are the fragmentation and

reduced response time caused by inefficient packing schemes. Extensive research has

been done to optimize space sharing strategies [Feitelson97A]. Time sharing provides

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more flexible resource sharing and better responsiveness to users. However, standard

time sharing is not always suitable for parallel jobs. Usually, parallel jobs require that

the process working set of one job is scheduled at the same time on different

processors, which cannot be guaranteed in time sharing in that the scheduling on each

processor is independent of the others. Strategies using combination of space and

time sharing, i.e. space-time sharing, are developed to address the problems in pure

space and time sharing, and are reported for better response time and utilization

[Feitelson97A], Chapter 2 discusses these different strategies in more detail.

Before the following discussion, we need to clarify the meaning of “coscheduling”.

Generally, the term of “coscheduling” in the literature can refer to two different

concepts. One is the coscheduling of processes belonging to one parallel job, which

means to schedule the processes on different processors at the same time to facilitate

the communication or synchronization among them, e.g. in [Ousterhout82]. The other

one is the coscheduling of different jobs, which means to schedule different jobs at

the same time to share certain hardware resources, e.g. in [Snavely02]. To eliminate

the confusion, in the context of this thesis, we use “coscheduling” for the first case

and “job coscheduling” for the other case. Note that our approach focuses on job

coscheduling.

The idea of coscheduling is first introduced in [Ousterhout82]. Parallel jobs consist of

multiple processes that execute on different processors and coordinate with each other

by communication or synchronization. It is important to keep the coordinated process

working set running simultaneously to make a parallel job progress. There are two

situations when a process is ivaiting for a message from another process that is not

scheduled at the same time. First, if the process simply uses busy waiting without

relinquishing the CPU, the CPU time is wasted by doing nothing. The other situation

is that the process will be suspended and the CPU switches to another process. In this

case, context switch cost is increased and process thrashing [Ousterhout82] can

happen. In both situations, systan performance will be degraded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To guarantee the good performance of a parallel job, the processes that interact with

each other should be scheduled to ran at the same time. Coscheduling is developed to

improve the performance of parallel applications in a time-shared system. Gang

scheduling [Feitelson92], dynamic coscheduling [Sobalvarro97] and implicit

coscheduling [Dusseau96] are three important strategies designed to achieve

coscheduling. More details about coscheduling are presented in Chapter 2.

In a parailei system, usually there will be a mix of different applications with

different resource requirements. To improve the overall system performance, a

scheduler needs to consider the contention on resources other than CPUs as well.

Most current scheduling research focuses on the CPU only. While some work

considers the memory impact on scheduling, and some others consider I/O and

network impacts, there are few scheduling strategies that take multiple resources into

consideration.

Hyper-Threading (HT), developed by Intel, is a form of simultaneous multi-threading

technology (SMT) where two processes of software applications can ran

simultaneously on one processor. However, HT achieves high processor throughput at

the expense of reducing the performance of the individual process [Dorai02]. Since

the hardware resources are actually shared between two processes, the resource

contention will harm the performance of each process. When choosing two jobs to

coschedule on HT processors, we need to consider all resource requirements of those

two jobs.

Our approach, LOMARC, aims to take ail resource requirements of applications into

consideration for job coscheduling to felly exploit the benefit provided by the HT

technology. To improve utilization and reduce response times, we match two jobs

with complementary resource requirements to coschediile. The argument for this idea

is as follows. First, two jobs with complementary resource requirements will have

less resource contention; hence, the performance of coscheduled jobs will not be

degraded. Second, coscheduling jobs with complementary resource requirements will

achieve better overall resource utilization. When choosing a match for one job, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also consider the ntilization gain and response time impact to other jobs resulting

from the matching, and choose the best one according to a combined ntilization gain

and response time impact value. LOMARC can also be generalized for standard

CPUs by using an adjusted matching scheme.

The rest of this report is organized as follows. Backgroimd issues are discussed in

Chapter 2. Chapter 3 focuses on the discussion of resource impacts on job scheduling.

Chapter 4 introduces the Hyper-Threading technology, which is one major motivation

for our work. Chapter 5 describes the LOMARC algorithm in detail. We present the

simulation details and experiment results in Chapter 6. Finally, the conclusion for this

thesis is presented in Chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Background Issues

In this chapter, we will review the existing scheduling schemes, and classify

scheduling technologies into three categories, namely space sharing, time sharing and

a combination of both. After tliis, we will briefly discuss some basic issues that have

impacts on scheduling design, including metrics models and workload characteristics.

2.1. Review of scheduling strategies in parallel systems

There are three main classes of scheduling approaches according to how the resources

are shared. In a parallel system, the sharing is in two dimensions: space, i.e.

processors; and time. Space sharing and time sharing are two basic classes of

approaches. The combination of space and time sharing is another class of scheduling

strategies that aim to address the problems in pure space and time sharing.

2.3.1. Space sharing

In space sharing, processors are partitioned and each subset of processors is allocated

solely to one job. This approach mainly deals with how to pack the jobs to fit into

available processors to achieve better resource utilization. In the basic space sharing

approach, the number of processors allocated to a job is fixed, and each process runs

on the allocated processor until completion.

The simplest space sharing strategy is First Come First Serve (FCFS). In this

approach, jobs are allocated to their required number of processors when available in

the job submission order. The main problem for this approach is the fragmentation,

which means a set of processors are left idle for some period of time. One job

blocking the queue of jobs, because an insufficient number of processors are available

for it, will prevent ail later jobs to be scheduled. Hence, this situation also increases

the Job waiting time and response time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To address the problem of both system utilization and job response time, intensive

research has been done to optimize the space sharing strategy' [Feitelson97A].

Backfilling [Feite!son98B] [ZhangOO] is one important approach among these efforts.

Backfilling is a strategy developed to address the fi"a^eBtation problem in space

sharing by allowing some small jobs from the back of the queue to move ahead to fill

the empty space. Figure 2.1 [Zhang02] illustrates how backfilling can reduce

fragmentation. The job numbers in the figure correspond to job positions in the

waiting queue. In Figure 2.1(a), the empty space between Ti and T2 is called

fragmentation, and in Figure 2.1(b), Job 5 is backfilled to utilize the empty space.

There are basically two types of backfilling. The first one is conservative backfilling

[FeiteIson98B], in which a job can be chosen to backfill only if it will not delay any

job in front of it in the queue. Another one is called EASY backfilling [Lifka95]; this

approach relaxes the constraint for choosing backfill jobs and allows a job to backfill

as long as it does not delay the first job in the queue. Both backfilling approaches

have been proven to improve system utilization and reduce response time

significantly relative to FCFS. The main limitation of backfilling is that it depends on

the knowledge of job runtime, which is usually obtained from user estimation and is

not accurate.

space

'(a)

space

time
1

time

Figure 2.1. Backfilling, (from [ZIiangi2|)

To illustrate the details of the EASY Backfilling algorithm, we can use Figure 2.1

again. At Ti, the event of Job 1 termination happens, and Job 3, 4 and 5 are already in

the waiting job queue with Job 3 as the first job in the queue. The size of Job 3 is

larger than the available free space at Ti, so it cannot be scheduled at this moment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We then need to find another job in the waiting queue to do the backfilling. First, we

compute the possible start time of Job 3, which is T2 , when Job 2 will terminate and

free space is large enough for Job 3. Second, we look through the waiting queue to

find the first Job that has size no larger than the current free space and runtime no

longer than T2- Ti, which means the job will terminate before Job 3 starts, and hence

won’t delay Job 3. In the example in Figure 2.1, Job 5 satisfies both of these

conditions, so it is chosen for backfilling

Since backfilling improves utilization and response times significantly compared to

FCFS, more sophisticated strategies are proposed based on standard backfilling.

Slack-based backfilling [Talby99] supports job priority, and is more aggressive when

reordering the waiting job queue for backfilling. It allows a job to backfill if it does

not delay any other job longer than its slack time. Results show that this approach can

have a better job waiting time, and is responsive to different priority requirements.

Another approach based on backfilling is presented in [ShmueliOS]. In this approach,

instead of considering one job at a time, it uses a certain lookahead window, and

examines all jobs within the window for possible combinations of jobs for

backfilling. The algorithm is implemented using dynamic programming.

In addition to backfilling, there are also many other strategies aimed to optimize the

basic space sharing approach [Feitelson97A]. Most of these efforts try to reorder the

job queue to improve system utilization and average response time. Research results

show that sorting Job queue using shortest-job-first [PerkovicOO] can reduce mean

response time, but has the problem of starvation when short jobs dominate the

workload. Sorting job queue with job size also helps to improve utilization and

response time. Research results [PerkovicOO] suggest sorting job queue with LPFS

(Least-Processor-First-Served) can improve the performance significantly. One

advantage of sorting the queue according to job size is that it does not need the

information for job runtime, thereby making the scheduling more realistic.

In spite of all the above mentioned efforts in optimizing standard space sharing

approaches, the system utilization and response times for these types of approaches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are still not optimal. More sopMsticated strategies are required to improve the system

performance. Adaptive and dynamic partitioning are two types of schemes motivated

by this goal. Note that both adaptive and dynamic partitioning depend on the

application types; more precisely, they are only relevant for moldabie and malleable

jobs.

Adaptive partitioning [Feitelson97A] is one type of approaches that can take

advantage of moldabie jobs to maximize the system utilization. In this kind of

approach, the scheduler can decide the number of processors allocated to one job

according to the current workload and available resources. There are two important

choices that adaptive partitioning needs to make; first is when to do the adaptation,

and second is how to adapt. There are trade-offs between maximizing system

utilization and reducing overall response times when making different choices for

adaptation. Dynamic partitioning [Feitelson97A] can be done by taking advantage of

malleable jobs, which can change the process number during the runtime, thus

improving system utilization and efficiency.

Another way to do the dynamic partitioning is through preemption and migration

[Feitelson97A]. By Ml preemption, the scheduler can preempt all processes of one

job, and give processors to other jobs with higher priority. Preemption needs

additional support from the system to save the execution status of preempted jobs and

to resume the job later. When a preempted job resumes, it can run on the same

processors as before or run on a different set of processors, i.e. migration. Preemption

can improve system utilization in that it allows CPU idle spaces to be filled with less

constraint. For example, if the size of a CPU idle space is sufficient for a Job to fill in,

but the runtime of the job is longer than the idle time, the hole can still be filled by the

job, and preemption can be applied to this job when the first job in the queue starts to

ran. Migration is usually used to repack the jobs to achieve better system utilization.

Both preemption and migration can be expensive, because it takes time to save the

execution status or to transfer execution context from one node to another (in

distributed memory systems).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In snmmaiy, basic space sharing is motivated by the desire to minimize opaating

system overhead such as context switch costs [Feiteison97A], but the overall system

utilization and mean job response time are far from optimal. Backfilling is one

important approach for optimizing space sharing and can achieve significant

improvement in response time and utilization comparing to FCFS. Dynamic

partitioning aims to solve the problems in basic space sharing approaches. However,

it causes cost increasing in the resource reallocation.

2.3.2 Time sharing

Time sharing is a general approach for parallel systems with independent processing

units or nodes, such as a cluster system. In this approach, processes are scheduled

independently once allocated to processors. With the use of standard time sharing, the

scheduling on each node or processing unit is the same as on a uni-processor, i.e.

processor switches among processes using time slicing. The main problems for this

strategy are resource contention caused by sharing and the coordination for processes

belonging to one parallel job.

There are some advantages of time sharing compared to space sharing approaches. At

first, it gives better mean response time, especially for short interactive jobs because

large long jobs will not block short jobs as in space sharing. Second, it has better

resource utilization because there is no fragmentation problem. Third, it is easily

available because a standard time sharing operating system can be installed on

independent processing units.

The main problem of time sharing is that each processing unit is scheduled

independently. As we discussed in the introduction, parallel jobs usually have

coordinated processes that need to ran at the same time to guarantee the progress of

the whole job. Independent scheduling on each processor in standard time sharing

cannot provide the coscheduling required by parallel applications.

Dynamic [SobalvaiTo98] and implicit coscheduling [Dusseau98] approaches are

developed to address problems of standard time sharing in coscheduling. The main

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

idea is using communication events to guide the coscheduling decision and trying to

schedule the communicating processes at the same time. This kind of approach only

coschedules the processes when they need to communicate or synchronize with each

other. The main difference between these two techniques is that dynamic

coscheduling makes the scheduling decision based on the message arrivals, white

implicit scheduling decides whether a process needs to continue to be scheduled

according to the feedback of its communication or synchronization event.

The main advantages of this kind of coscheduling over gang scheduling are as

follows. First, it does not need a central controller for the multi-context switch, so it

makes the scheduling scalable and more flexible. Second, it makes the scheduling

decision dynamically and can, therefore, adapt to the characteristics of different

workload and communication patterns. Third, without using a fixed time slice for

every process in a job, it can increase the utilization of the system by latency hiding,

and support interactive and I/O intensive applications well.

However, the performance of dynamic and implicit coscheduling cannot compete

with gang scheduling for applications with fine-grained communications. Strict

coscheduling is desirable for this kind of application, so gang scheduling or space

sharing are better solutions.

Another problem of time sharing is the resource contention. When using time sharing,

several processes usually are loaded into memory at the same time, and multiple

communication contexts need to be saved concurrently. These facts make the

resource contention happen when the total resource requirement of jobs, such as

memory requirement, is more than the available system resource. We will discuss

resource requirement impacts and strategies considering these impacts in Chapter 3.

In summary, although there are many advantages of time sharing approaches,

standard time sharing is not suitable for most parallel jobs due to the coscheduling

issue. Dynamic coscheduling and implicit coscheduling can address this coscheduling

problem under time sharing.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.33. Combination of space and time sharing

Some scheduling strategies combine space sharing and time sharing. This kind of

approach can achieve better resource utilization while maintaining the coordination of

parallel processes. Gang scheduling is a typical example in this category. In the rest

of this section, we will focus our discussion on gang scheduling and approaches

developed based on gang scheduling.

Feitelson [Feitelson97A] presented a formal definition of gang scheduling, which

includes three features. First, coordinated threads or processes are grouped into gangs.

Second, all threads or processes in each gang execute at the same time on different

processors, and the relation of threads or processes with processors is a one-to-one

mapping. Third, all the threads or processes in a gang context switch simultaneously,

using time slicing. The most important feature of gang scheduling is that it allows

both space sharing and time sharing.

Extensive research has been done on gang scheduling, including different

implementations and measurements of the performance in different systems. Among

this research, Feitelson and Rudolph [Feitelson92] implemented gang scheduling on

the Makbiian multiprocessor system based on the matrix algorithm presented in

[Ousterhout82], and comprehensively examined performance implications of gang

scheduling. They pointed out that gang scheduling with busy waiting will especially

benefit fine-grained applications. Research results from [Feitelson97B] [Crovella91]

both suggest that gang scheduling can achieve better overall system performance

compared to pure space sharing scheduling or independent time-sharing scheduling.

Even though many efforts have been made to improve gang scheduling, there are still

some disadvantages. First, gang scheduling does not achieve the best utilization of

system resources due to the fixed time slice for both CPU and I/O bound jobs

[Lee97]. Second, and again due to the fixed time slice, gang scheduling does not

provide good response time for short interactive jobs.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To address the problems in traditional gang scheduling some more relaxed gang

sclieduling approaches are proposed. Loose gang scheduling [Zliou98] and concurrent

gang sclieduling [Fabricio99] both use two-level scheduling to achieve flexible

coscheduling according to job characteristics. The main idea is gang scheduling is

implemented at a global level, while at a local level, the local scheduler can have its

own freedom in choosing another process to ran when a gang scheduled process is

blocked on I/O. These strategies can increase the utilization of CPU time and achieve

latency hiding. The simulation results in [Fabricio99] show that concurrent gang

scheduling has better performance than pure gang scheduling considering both system

utilization and throughput.

Most recently, a new approach named Flexible CoScheduling (FCS) is presented in

[FrachtenbergOB], with the aim of improving resource utilization despite load

imbalance. FCS monitors the communication granularity of each job and classifies

jobs according to the monitoring results. For different classes of jobs, FCS makes

different scheduling decisions. The principle is: for jobs with fine-grained

communication, gang scheduling is applied, and for coarse-grained applications, their

time slots are shared with other jobs to achieve latency hiding.

hi summary, the combination of space and time sharing can achieve better

performance than pure space or time sharing approaches.

2 2 . Common goals and metrics

It is obvious that a scheduling strategy should try to use system resources efficiently

and satisfy the requirements of different jobs and users. On the one hand, a scheduler

needs to satisfy the users who usually want their jobs to be scheduled as soon as

possible or to meet certain deadlines. Also the fairness among different users and jobs

is an important factor that needs to be considered by a scheduler to satisfy the users as

a whole. On the other hand, to maximize system utilization, the scheduler also needs

to reduce resource idle time, e.g. CPU idle time, and system overhead, e.g. context

switch overhead. To evaluate how well a scheduler achieves the goals, some

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formalized metrics are developed. Makespan, response time, relative response time,

bounded response time and utilization efficiency are some important and well

accepted metrics for evaluating scheduling strategies. The definitions of these metrics

are as follows [Feite!son98A].

Makespan; the time for ail jobs in the measured workload to terminate.

Response time: the time elapsed between the submission and the end of the job

execution.

Relative response time: response time divided by actual running time.

Relative bounded response time: response time divided by actual running time or a

lower bound runtime, whichever is larger. This metric is developed to adjust the

relative response time for extremely short jobs.

"S' ,p.t-
Utilization Efficiency: E =

where pi and ti are the number of allocated processors and execution time (in a

dedicated setting), respectively, for the ith job, T is the termination time for the whole

workload and P is the number of all available processors. The meaning of this metric

is the ratio between effective processing time for the workload and the whole

available processing time.

How to choose good metrics for evaluating and comparing different scheduling

approaches is still an open problem, because it depends on the real workload, system

environment, and user requirements [FeiteIson98A]. For different kinds of jobs, it

usually is different with regards to which metrics are important. For example, for

short, interactive jobs, the response time is normally most important for the users, and

for some long batch jobs, maximizing the system utilization will help for the overall

performance [Feitelson98A]. Some metrics will depend on real workload

characteristics in a system; for example, utilization and makespan are directly related

to job arrival rate [Feite!son98A], where a high job arrival rate means a heavier load.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3. Workload and job characteristics

WorMoad and job characteristics are important factors that impact the scheduling

design. Usually, jobs in a parallel system can be classified into short, medium and

long according to their runtimes, and small, medium and large according to their

sizes, i.e. required numbers of processors. WorMoad reflects how different kinds of

jobs are mixed, and usually it describes the percentage of different jobs in the whole

load.

In [SubMok96], the authors measured worMoads in a 512 node IBM SP2 at Cornell

Theory Center, a 96 node Intel Paragon at ETH Zurich, and a 512 node Cray T3D at

Pittsburgh Supercomputing Center respectively. They found some common

characteristics for these supercomputers. First, machine usage is dominated by

medium size jobs. Second, a large amount of jobs use power-of-2 number of nodes

for execution. Third, short jobs constitute a majority of the whole worMoad. This

information is suggestive to scheduler design for these kinds of supercomputers.

Other than runtime and size of a job, there are some other characteristics of jobs that

can impact the design of scheduling strategies. One important factor is the flexibility

of jobs in their size configuration. There are basically four types of jobs according to

their flexibility [Feitelson97C].

Rigid jobs: these jobs have fixed job size and cannot be changed by the scheduler.

Moldabie jobs: the sizes of these jobs can be decided by the scheduler when jobs first

start to run and cannot be changed during the execution.

Evolving jobs: the sizes of these jobs will be different in their different execution

phases, and are decided by the jobs themselves rather than the scheduler.

Malleable jobs: the sizes of these jobs may change during the job’s execution

according to the decision of the scheduler.

More sophisticated schedulers can take advantage of moldabie and malleable jobs to

fully utilize the system resource. For example, adaptive partitioning uses moldabie

jobs to increase system utilization, white dynamic partitioning uses malleable jobs.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Besides the CPU requirement of jobs, their requirements in memory, I/O and network

bandwidth also play an important role in impacting the scheduling performance.

Especially in a time sharing enwonment, where different jobs share all resources,

resource contentions can have a significant impact on both system and application

performance. We will discuss these in detail in Chapter 3.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Resource Impacts on Job Scheduling

The scheduling strategies discussed in Chapter 2 only consider the CPU requirement

of processors. In a shared system, usually there will be a mix of different jobs with

different resource requironents. For example, some jobs are computation intensive,

some are data intensive and require a large amount of memory space, some are I/O

intensive and some consume excessive networking resources due to intensive

communication. To improve the overall system performance, a scheduler needs to

consider the contention on resources other than CPUs as well The rest of the chapter

will discuss the scheduling strategies considering different aspects of resource

contentions.

3.1. Memory Impact on Scheduling

Basically, memory can impact the performance of parallel processing in two respects:

the first is the memory access locality [Chandra94] and the second is the available

physical memory size of the nodes on which a parallel process is running [Peris94j.

In [Peris94], the authors developed a model to examine the performance trade-off

between the optimal allocation, which reduces the processor allocation to a parallel

job in a heavy worMoad, and the memory contention resulting from the allocation

decision. Analysis results [Peris94] suggest that memory requirements should be

considered in making processor allocation decisions. When the memory requirement

of a process is too large to fit in the physical memory space of the node, there will be

a large overhead for demand paging. In [Burger96], the author gave an evaluation for

the demand paging trade-offs in parallel processing. The test results show that

demand paging degrades performance of parallel applications. This is because when a

process of a parallel job encounters a page fault, it will delay other coordinated

processes as well, due to the synchronization requirement. If we simply switch the

processors to another parallel job whenever a page fault happens, there will be very

high overhead for context switching. As a result, Burger [Burger96] suggested that

page faults should be avoided in parallel processing.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Realizing the memory impact for the performance of parallel application, some

scheduling strategies are developed with the comideration of memory requirements

of applications. In [Setia99], the authors used simulations to test the memory impact

for the performance of gang scheduling and found out that a long-term scheduler

strateg>' with memory consideration will benefit the performance of gang scheduling.

Instead of using FCFS (First Come First Serve) queue, the simulation suggests using

Smallest Memory First (SMF) as the long term scheduling strategy to reduce the

mean response time for reasons similar to the Shortest Job First scheduling.

Another gang scheduling approach with memory concern is presented in [BatatOO]. In

order to take the memory requirements of the job into consideration, schedulers need

to have the knowledge of such requirements. This can be achieved by estimating the

memory requirements based on the memory usage from previous runs of a job, or

using static information in the execution file of a job, if it runs at the first time. When

allocating the nodes to the job, the scheduler only schedules it if there is enough

memory space,

3 2 . I/O Impact on Scheduling

I/O requirement of an application is another important aspect that a scheduler needs

to consider for achieving better system performance. Research results [Smimi98] on

characterizing the I/O behavior of parallel applications show that I/O requirements of

a parallel job can have a significant impact on perfomance. System performance is

related not only to how the processors are allocated to jobs, but also depends on the

configuration of the I/O system, such as the available disk capacity and how the data

is distributed on the disks [Rosti98]. When jobs need to compete for FO, the

performance of a job may decrease because the waiting time for VO requests being

served will increase. Therefore, the job execution time will increase as wxll. To

improve the overall system performance, a scheduler should try to overlap VO

processing and computation.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In [Lee97], the authors examined FO impact for gang scheduling, and showed that

the performance of FO demanding jobs suffers under traditional gang scheduling. The

reason for this is that gang scheduling sets fixed time slots for every job, so an FO

bound job will waste a lot of CPU time when it is blocked for FO before its time slot

finishes. On the other hand, if the time slot for an FO bound job finishes Just before

the FO request is made, the FO resource will remain idle for a whole time slot. To

improve the utilization of both I/O resource and CPU, a more flexible coscheduler is

needed. Such a flexible coscheduler should choose some less coscheduling

demanding process to fill the CPU fragments due to the FO intensive job blocking in

its time slot. Also, FO intensive jobs should have higher priority so they can preempt

computation intensive jobs for better FO resource utilization.

Paired gang scheduling [WisemanOS] is a strategy for solving the problem of

traditional gang scheduling presented in [Lee97]. Figure 3.1. [WisemanOS] shows

how paired gang scheduling differs from the traditional gang scheduling. In paired

gang scheduling, the central scheduler selects one FO bound job and one CPU bound

job and packs them together into one time slot. On each node, processors switch

between these two processes according to the decision of the local scheduler, which

gives higher priority to the FO bound process.

© Oustarhiout
matrk

. selectsgang
schedyter

prooss8|f I ^

@000
1 I 1

H 0 0 □

O
 ̂seled

Ousierhout
m at'k

pair gang
scheduler

two
proĉ 'sas.”/ l \ X
@000

switeh 0 0 0 0
H 0 H [E

Traditional gang scheduling (left) and paired gang scheduling (right)

NS - node scheduler; P = processor.

Figure 3.1. Paired gang scheduling. (From [WisemanQS])

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3. Commuiiicatioii /network Impact on Scheduling

For message-passing parallel jobs, another factor that will affect the performance is

the contention of the network and the overhead of comniunication. Thus, a scheduler

should also take this factor into consideration to achieve both good resource

utilization and system performance. There is one good example [Petrini99] for the

general behavior of a parallel job consuming network bandwidth, as shown in Figure

3.2 [Petrini99]. This also shows why a scheduler considering the network utilization

is desired. It is readily apparent that by overlapping network request, i.e.

communication, with computation, we can achieve good utilization for both CPU and

network. However, how to implement this strategy while maintaining process

coordination in one parallel job can be challenging.

Network utifizs^on

a)
1C0S0 4S00G ^ 0 3 S0300 7 Q ^

Tjm®
W S O 2DG00 40000 5(%100 SOCSO FC1330

Tsme

Figure 3.2. Network atffizatton. (From [Petrini99])

Buffered coscheduling [Petrinl99][Petrini00] uses communicatioii buffering and

strobing to achieve communication and computation overlap while maintaining the

coscheduling of coordinated processes. Communication buffering is intended to

buffer the messages for each process and make the communication in the next time

slice; thereby, reducing the overhead of system calls by generating a set of system

calls for communication at one time instead of making individual system calls several

times. Figure 3.3. [PetriniOO] shows how the computation and communication is

scheduled using buffered coscheduling.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cisnj|iaalkin

Ci»inEiikatiai

KksfiiK̂
TlM l

Communication accumulated in the time-slice up to to is downloaded into the network
between tj and t2 (after the heartbeat). «5= len^h of a time-slice=t2-to.

Figure 33. Buffered cosciednling. (From [PetrMiOD

As mentioned above, one overhead caused by communication is system calls. To

alleviate this overhead, user-level communication schemes are proposed. However,

using user-level communication will create another problem for gang scheduling in

that for every context switch the status of the network interface needs to be saved and

restored [Hori98]. In [Hori98], the authors analyzed the impact of this overhead on

gang scheduling and implemented a low overhead network preemption strategy.

In summary, where I/O and communication are concerned, trying to overlap FO or

communication with computation is always desirable in order to achieve better

response time and system resource utilization.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Hyper-threading

Hyper-Threading (HT) technology, developed by Intel, is a foun of simultaneous

multi-tlireading technology (SMT) m%ere multipie threads of software applications

can be run simultaneously on one processor. This is achieved by duplicating the

arcMtectura! state on each processor, and giving each logical processor its own sets of

registers, while sharing one set of processor execution resources between them

[Nakajima02], Figure 4.1 [Nakajima02] shows the architecture of each HT processor

package, i.e. physical processor.

Arc'll
State

Arch
State

Arc'h
State

Arch
Slate

tlxeciitifMi
Eesoiifces

Eseciiiiofl
Eesoarces

'Processor Package

Figure 4,1. The arcMtectare of HT processors, (from {NakajimaOI])

HT can improve resource utilization by having two processes running on one physical

CPU; hence, it improves the system throughput. However, HT achieves high

processor throughput at the expense of performance of a single process. Since the

hardware resources are actually shared between two processes, the resource

contention will harm the performance of each process. So the real benefit we can get

from HT will depend on the resource-consuming characteristics of processes and how

two processes running on the same physical CPU compete for hardware resources

such as cache and execution units.

Previous research [Magro02] [Leng02] shows that the performance of HT varies

across different application types. It is found that scientific applications usually get

less benefit from HT compared to business applications. This is because usually,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scientific applications more often compete for the same computation resources such

as floating-point execution units. In [Leng02], it is suggested that the performance

degradation can be up to 50% for cache fitendiy jobs (which have more cache

locality) on HT processors due to cache conflict. Also for communication intensive

jobs, HT will not provide any gain and will actually decrease the performance.

To enhance the performance of HT, a sophisticated micro-arcMtecture scheduler is

needed [Nakajima02]. Symbiotic scheduling [Tullsen00][Snave!y02] is developed to

support SMT processors and is aimed at enhancing job performance on SMT while

improving the processing resource utilization. It monitors the execution resource

conflict from different job coscheduling, and coschedules the jobs that have the least

resource contention. MASA presented in [Nakajima02] has the same goal as

symbiotic scheduling while using a different approach which does not consider the

job coscheduling in one physical CPU. When it detects resource contention, MASA

tries to balance the loads among different physical CPUs. It is worth noting that

MASA is not targeted for uni-processor systems.

HT, by its nature, provides a new possibility for job coscheduling without a context

switch and cost for the coordination among processes of one job. However, as

discussed above, two jobs coscheduled on HT should be chosen carefully. Not just

any random two jobs coscheduled can benefit from HT. In addition to the execution

resources shared in CPU, other resources like memory, I/O and network are also

shared between two coscheduled Jobs. A scheduler should take all resource

requirements of a job into consideration for job coscheduling decisions, and this

motivates our LOMARC approach.

2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. LOMARC - Lookahead Matchmaking for Multi-Resource

Cosciednling

LOMARC is a space-time sharing approach that exploits HT (Hjper-Threading)

technology to coschedule two jobs to reduce response time and maximize resource

utilization. On a HT processor, two jobs can be coscheduled without context switch

overhead. Also, since both jobs are actually running at the same time, there is no cost

for coscheduling the process working set of each job. When making job pairs to be

coscheduled, LOMARC takes multiple resource requirements, including CPU,

memory, I/O and network, of a job into consideration.

LOMARC can also be generalized for applications on normal CPUs, i.e. without HT,

by changing the matching scheme. When tw''o jobs are coscheduled on a CPU without

HT, the processor is actually switched between these two jobs using time slices

according to the policy of the local scheduler. In LOMARC, we assume that the local

scheduler for each node is a standard time sharing scheduler as in Unix/Linux.

5.1. Goals and Solutions

The design of LOMARC aims to achieve the following goals:

■ Considering multiple resources

As we discussed in Chapter 3, resource contentions can have a significant

impact on the performance of the whole system and individual jobs. To

maximize the advantage of HT, two coscheduled jobs should have little

interference with each other, which means little resource contention between

two coscheduled jobs. Usually, parallel jobs can be classified into three

different types according to their resource requirement characteristics, namely

CPU intensive, FO intensive and communication intensive. In addition, the

memory requirement of a job also has a notable impact on how well it can be

coscheduled with other jobs. Our approach will make a scheduling decision

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to different resource consuming characteristics of different

applications.

® Exploiting coscheduling on HT and supporting time-sharing on standard CPUs

HT technology provides the possibility of coscheduling two jobs without

context switch and the cost for coordinating processes in one job. However, as

discussed in Chapter 4, not just any random two jobs coscheduled together can

get benefit firom this new technology due to fact that the contentions may be

encountered on other resources such as memory and I/O. The goal of exploiting

HT is actually how to coschedule two jobs to maximize the benefit from it.

LOMARC can also be generalized to support job coscheduling using time

sharing in standard CPUs. There is no latency hiding in pure space sharing

unless the application itself handles this issue, because each processor is

dedicated to one process. The goal of LOMARC for standard CPUs is to

coschedule two jobs on the same subset of processors to achieve latency hiding

while not harming the performance of each job.

■ Increasing utilization while improving response time

Reducing response time and increasing utilization are two major goals for a job

scheduler, but sometimes there are trade-offs between these two goals in that

maximized utilization does not always lead to minimized response time for each

job. LOMARC aims to achieve both goals when it makes scheduling decisions.

More precisely, LOMARC estimates the impact on average response time of

waiting jobs when attempting to coschedule two jobs that can increase system

utilization, and will choose the schedule that can have the best benefit

considering both response time and utilization.

To achieve the above goals, we can provide the following solutions:

■ Matching two applications that complement each other in all resource

requirements to coschedule for improved utilization.

■ Estimating both response time impact and utilization gain while reordering the

waiting queue for matching jobs to coschedule.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Providing a dear matching scheme based on application characteristics in

resource requirement and a cost model to estimate slowdowns from job

coscheduling.

■ Exploiting other standard Job scheduling techniques such as priority, aging

system and backfilling.

■ Classifying applications in different resource consuming types such as CPU

intensive, FO intensive and commimication intensive.

5.2. LOMARC Scheduling Algorithm

LOMARC uses a priori knowledge about application characteristics, including

runtime, size and resource consuming type, to guide the scheduling decision. Usually

such types of information can be obtained in two ways. The first approach is that the

user collects related measurement data via several execution experiments and submits

it together with the application. Another approach is to use compile time analysis to

generate such information and then provide it to the scheduler as an a priori input. In

LOMARC, we assume such information is provided by applications. Specifically, we

assume the following information is given by applications:

■ Resource Type - CPU intensive, I/O intensive or communication intensive

“ Runtime - estimated execution time

® CPU Time - the ratio of CPU time to whole execution time

■ FO Time - the ratio of I/O time to whole execution time

■ Communication Time - the ratio of communication time to whole execution

time

« Memory Usage - the ratio of memory requirement per process to total

available physical memory in one node.

■ Cache Locality - the degree of cache locality, i.e. high, medium or low.

Cache locality means that one process accesses the same set of data regularly

when it does computation. If the cache locality of one application is high,

keeping more data in cache will increase its performance significantly. In HT,

two processors share the cache in one physical CPU, so tm̂ o coscheduled jobs

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compete for cache. If two coschediiled jobs both have M^i cache locality,

their performaBce will be degraded notably due to less cache space they can

actually get.

■ Size - number of processors needed

It is important to note that although LOMARC requires all this infomation and

assumes correct estimations, it can tolerate the inaccuracy of such infoTmation. For

example, CPU time, I/O time, communication time and memory usage estimation

accuracy is not critical to LOMARC, as long as the Resource Type information is

provided correctly. Also, for Runtime, since we do not provide reservation for any

job, the accuracy of estimation only matters for backfilling, and the maximum

slowdown factor used in our backfilling implementation can tolerate certain

inaccuracies of the estimation. For the applications that ran much longer than their

estimated runtime, we can still kill the applications and add them at the end of the

waiting queue. This policy gives penalty to the users that report shorter estimated

runtime, and hence forces them to supply more accurate execution time estimation.

This is a standard policy in most schedulers for dealing with the wrong estimation of

job runtime.

Before fiirther explanation of the LOMARC algorithm, it is necessary to clarify our

definition of the term slowdown. We use the following formula to define slowdown in

our approach.

SLa ~ Ta.b/Ta

Slowdown of job A, SLa, is actually the ratio of the execution time of job A when it is

coscheduled with job B, i.e. Ta,b, to the execution time of job A, i.e. Ta, when it runs

on its own.

5.2.1, Algorithm Abstract

LOMARC is an online scheduler that is driven by new job submission and job

termination events. For every such event, LOMARC re-computes the schedule and

updates machine node status. Figure 5.1. illustrates the abstract steps of LOMARC

algorithm.

2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f/Stepl: sum up to the current event, the utilization and effective utilization.
f/StepI: update waiting queue according to aging priority policy

update_priority();
//Step3: fo r Job termination event, update corresponding processor status

loop for the mimber of processors assigned to this departure job
{ reduce job_nombers allocated to iMs processor;

if fjob_numbers=0)
add corresponding processor ID into the empty_processor_iist: }

//Step4: schedule new jobs from the Job waiting queue according to queuing order
// until reach a Job that cannot be scheduled

schedule_first_jobO
//StepS: reduce fragmentation by EASY badfrUing remaining jobs from the waiting job
queue,

easy_backfilling();
//Step6: update Job execution time.

execution_time__diaQgeO;

Figure 5.1. LOMARC abstract algorithm

Details of these six steps are explained as follows.

■ Step 1; sum up the utilization and effective utilization before the current

event.

We calculate the utilization and effective utilization according to the current

node status information, such as whether a node is occupied or not, which job

is running on it and how many jobs are assigned to it.

■ Step 2: update waiting queue according to aging priority policy.

The waiting job queue is maintained by priority. First, we classify jobs into

three categories according to their runtime estimation, namely short jobs,

medium jobs and long jobs. Second, we assign a priority to a job based on its

runtime classification, and ^ve short jobs the highest priority and long jobs

the lowest priority, i.e. initially, short jobs are assigied a priority of 2,

medium Jobs, assigned a priority of 1 and long jobs assigned a priority of 0.

Jobs with the same priority are queued in their submission order. To give

shorter jobs higher priority, we can expect better overall response time

[PerkovicOO].

hi order to avoid potential starvation for medium and long jobs, we include an

aging policy into our algorithm. Aging means that after a job has waited for a

certain amount of time, Tage, in the waiting queue, its priority will be

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promoted to a higher level. Choosing Tage is critical for how well an aging

scheme works, and there is a trade-off between fairness and average response

time [Talhy99].

In our implementation of aging, we use average waiting time as Tage- When a

job has been waiting in the waiting queue longer than this Tage, its priority will

be boosted to one higher level, i.e. priority increased by five. After another

Tage, if the job is still waiting, its priority will be promoted again. So for a long

job, it will take twice of the average waiting time for it to have the same

priority as a short job.

Step 3: for job termination events: update corresponding processor status

The status of a processor contains two kinds of information. One is the IDs of

jobs assigned to it, and the other is how many jobs are assigned to it. In

LOMARC, the maximum number of jobs coscheduled is two, which means

the highest number of jobs assigned to a processor is two. When a job

terminates, we first reduce the number of jobs on ail processors assigned to it;

then we check if any processor has zero number of jobs; and then we add

those processors to the empty processor list. This implementation makes it

possible to coschedule two jobs having different runtimes and sizes. The job

with longer runtime in a job pair can still be coscheduled with another job

later.

Step 4: schedule new jobs from the job waiting queue according to queuing

order until a job is reached that cannot be scheduled

This step is the main part of the algorithm, and the pseudo code is presented in

Figure 5.2. In this step, we use different strategies for short jobs and medium

or long jobs.

We take the first job from the waiting queue and try to assign available

processors to it. If the job is a short job, only pure space sharing is applied, i.e.

we need to check only whether there are enough free processors for it. There

are two reasons that we do not consider matching for short jobs. First, usually

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for short jobs, we expect it to finish as soon as possible, so allocating resource

to it exclusively is a better choice. Second, due to the short execution time, v/e

do not expect much resource utilization benefit from the job coscheduling.

while (! waiting_queue.is_empty ()) { // loop over the waiting queue as long as
the

CTuxent Job = waitittg_qBeue.first; // first job can be scheduled
while (currentjob.size <= freenodes.size) { // enoTigh free nodes for job
if (ciHTentJob.is_medium_or_loagJob 0) // tjy fuid a match for the job among
match = find_mateh (cmrentjob); // remaining Jobs in waiting queue

allocate_nodes (correntjob); // allocate nodes to the current job.
if (match != null)
coailocate_nodes (currentjob, match); // coallocate match on same nodes

current Job = waitiag_queue. first;
}
if (currentJob.i3_medium_or_longJob) { // currentjob won’t fit on free nodes

match = find_match_among_ruiaiing (currentjob) // find best match among running jobs
if (match != null)

coallocate_aodes (match, cmrentjob); // allocate currentjob on same nodes

else // currentjob does not match any job
break; // current job camot be scheduled now

}
else //short jobs, currentjob cannot be

scheduled
break;

}
Figure 5.2. Pseudo code for scheduling Jobs

If the job is a medium or long job, there will be two cases for allocating it to

available processors. The first case is that there are enough free processors for

it. In this case, we search the waiting queue to find the best match job for this

first Job, and co-allocate the match job and the first job. The other case is that

there is not enough free space for the first job. In this case, we search the

working job queue and try to match the first job to one current running job,

and allocate the first job to the set of processors on which the match job is

running.

If the first job can be scheduled, then we remove this job from the waiting

queue (the previous second job becomes the first job in current waiting queue)

and add it to the job working-queue. We then loop over the above procedures

until we cannot schedule the current first job of the waiting queue.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finding a match is tie core of the LOMARC algoiittim. The issues addressed

by LOMARC include which two jobs can be coscheduled and how to choose

the best one among potential matching candidates. We will discuss these two

issues in more detail in the following sections.

■ Step 5. reduce fragmentation by EASY backfilling remaining jobs firom the

waiting job queue.

We choose the EASY backfilling, as introduced in Chapter 2, because it has a

better time complexity than the conservative backfilling. If a job is suitable for

backfilling, we also try to find a match job from the jobs behind this

backfilling job in the waiting queue.

■ Step 6: update job execution times

After allocating processors to new jobs, we update the execution times of

scheduled jobs. The actual execution time of a job depends on whether it is

coscheduled with any other job and with which job it is coscheduled. For

calculating execution time, we examine the slowdown resulting from job

coscheduling. We use these actual execution times for determining job

termination events.

5.2.2, Matching Scheme

How to choose two jobs to coschedule is essential for exploiting the benefits provided

by HT CPUs and achieving latency hiding in standard CPUs. LOMARC considers all

job resource requirements, including CPU, memory, FO and network, when it

matches two jobs to coschedule. There are ttiree steps in making a matching decision.

■ Step 1. Checking memory usages of two jobs.

LOMARC uses memory usages of two jobs as a constraint when it decides

whether two jobs are matchable, i.e. can be coscheduled. We only coschedule

two jobs if the sum of their memory consumption is no more than the total

available physical memory. This means that the data of two coscheduled jobs

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be loaded in the main memory at the same time and hence can prevent

paging, which will seriously degrade the performance of parallel jobs as

discussed in Chapter 3.

Step 2. If two jobs can meet the memory constraint in LOMARC, we further

consider their resource types.

With the idea of coscheduling two jobs that complement each other in

resource consumption to reduce resource contention, it is intuitive to

coschedule two jobs with different resource consumption types, for example,

to coschedule a CPU intensive job and an I/O intensive job.

In HT CPUs, coscheduling two CPU intensive jobs can still be beneficial as

reported in [Magro02]. In LOMARC, we consider that two CPU intensive

jobs are matchable, but we also consider the possibility of cache conflict in the

slowdown calculation. The final decision of whether to coschedule two jobs

together will still depend on the resulting slowdown.

For a standard CPU, we only coschedule CPU intensive jobs with I/O

intensive jobs. Unlike in HT CPUs, job coscheduling on standard CPUs is

based on time sharing, which means each processor switches between two

processes independently of other processors. Although coscheduling CPU

intensive and communication intensive jobs can also achieve latency hiding,

communication intensive jobs require process coscheduling within their own

process working sets and hence, cannot tolerate the frequent independent

context switch on each processor.

In the standard CPU environment, LOMARC does not control the local

scheduling between two coscheduled jobs. We assume that the local scheduler

is a time-sharing scheduler that gives higher priority to I/O bound process.

This strategy is actually used by most time-sharing operating systems such as

Unix, Linux and Windows NT. By having higher priority, an I/O bound

process can preempt a CPU bound process when it is ready to run, that is, its

I/O request has been served. Since the I/O bound process will block for I/O

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

again soon, it will reiinquisli the CPU to the CPU bound process. Hence, when

the I/'O bound process is doing I/O, the CPU bound process can do

computation. So this can achieve I/O latency hiding, and keeps both CPU and

I/O devices busy to increase resource utilization.

To summarize, regarding job resource types, LOMARC coschedules:

® CPU and CPU, CPU and FO, CPU and communication intensive jobs

on HT CPUs,

• CPU and I/O intensive jobs on standard CPUs.

■ Step 3. If two jobs match in resource type, we further calculate the slowdown

from job coscheduling.

We check whether the slowdown from coscheduling two jobs is less or equal

to a certain maximum slowdown limit —MAX_SLOWDOWN. Only two jobs

with a coscheduling slowdown no more than this limit will be coscheduled.

The detailed slowdown estimation will be discussed in Chapter 6, because it is

independent from the algorithm, yet relevant to our comparison experiments.

5.2.3. Utilization and Response Time Impact

In LOMARC, before scheduling a medium or long job, we search the waiting job

queue to find the best match job for it to coschedule. For each job in the waiting

queue, we first check whether it can be matched to the current job to be scheduled

under the LOMARC matching scheme; if the answer is yes, this job becomes a match

candidate for the current job to be scheduled. When choosing the best match among

all match candidates, we have two questions for each match candidate: 1. How much

utilization gain can we get from matching this candidate to the currentjob? 2. What is

the response time impact on the other waiting jobs?

To answer the first question, LOMARC calculates the utilization gain for each job

pair based on their sizes and the slowdown factors from job coscheduling. Figure 5.3

can help to visualize our utilization gain calculation. In this figure, Job J1 and J2 are

coscheduled, while J1 has a larger size and J2 has a longer runtime. The areas circled

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by dashed lines are occupied by processes from one job, i.e. either J1 or 12, while the

other areas are allocated to both J1 and J2.

Space

T1

1
Time

PO FI P2 P3 P4 F5

r-
! r 1---------•

J1 n Ji Jl • Jl i ; Jl s
12 n

“ i

J2
‘ 1

J2 J2 j J2 i J2

Figare 5.3. An example »f job coscheduling

When calculating the utilization gain, we only consider the space-time area before Tl,

when J1 will terminate, because after Tl, it is possible to have another job

coscheduled with J2 for the rest of its execution time. We use the following formula

to calculate the utilization gain from coscheduling jobs J1 and J2.

Ugai„=(min(Sji, Sj2)* (2/SLjm2-1) - jSji-Sjal =^(l-l/SLjij2))/max(S ,i, Sn)

In this formula, Sji and Sj2 refer to the sizes of J1 and J2, respectively. SLji,j2 is the

slowdown factor of coscheduling jobs J1 and J2. When a job is running on its own,

the utilization of processors allocated to it is 1 (or 100%). The utilization efficiency of

the processor that has two Jobs running on it is calculated as 2/ SLjiji- With the

slowdown factor being larger, the utilization efficiency is decreased. For example, in

an ideal case, if the slowdown factor from coscheduling two jobs is 1, which means

their runtime will not increase from job coscheduling, the effective utilization of a

processor allocated to both of these two jobs would be 2, which means the same as

two processors. As we can see, when the slowdown factor is less than 2, the effective

utilization will be greater than 1, which means a utilization gain from job

coscheduling. (2/ SLji,j2 -1) represents this increase in utilization. min(Sji, Sj2)*

(2 /SLji,j2-l) is the total utilization increase for the processors allocated to both of the

two jobs, e.g. for processors PO to P3 in Figure 5.3. For the processes of J1 running

on processors P4 and PS in figure 5.3, the same slowdown factor applies, because

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they will have the same runtime as the other processes of Jl. There is actually a

decrease in utilization for P4 and P5, because only one process is running on each of

them, and the runtime of the process is longer than it would be by miming on its own.

|Sji-Sj2 | *(1-1/SLjij2) calculates this utilization decrease. The total gain is the

utilization increase minus the utilization decrease. Finally, we divide this total gain by

the size of the larger job, and this gives an average utilization gain for each processor

allocated to this coscheduled job pair. This calculation implies that we will have

better utilization gain from coscheduling two jobs if the two jobs have less difference

in sizes and lower slowdown factors.

The second question for choosing a match is how the pairing will impact the response

time of other jobs in the waiting queue. Figure 5.4 shows response time impacts for

all jobs in the waiting queue. There will be two different impacts respectively for the

jobs before the matching job in the queue and the jobs behind the job in the queue.

“ Jobs in front of the matching job: push-down jobs

Delays are caused for these jobs due to the slowdown from job coscheduling

and the runtime of the matching job, if it is longer than the current job to be

scheduled. For them, we calculate an estimate of the impact by the sum of all

relative delays.

match
candidat

push
down

Figure 5.4. Response time impacts

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Jobs behind the matching job: pull-up jobs

Response time improvements are expected for these jobs, because the Joint

runtime of two jobs that are matchabie under the LOMARC matching scheme

is assumed to be shorter than the sum of runtimes of the two jobs. For these

jobs, we calculate an estimate of the impact by the sum of all relative

improvements.

In addition, we also predict the impact on ftiture arrival jobs within this job pairing

runtime period. To predict the future job arrivals, we use the parameters in the

workload modeling to calculate the average number of arrival jobs in this time

duration and the average job work size, which is the product of job runtime and job

size. When calculating the response time for fotore arrival Jobs, different from the

jobs that are already in the waiting queue, we only consider their own execution

times, because future arrival jobs have not been waiting for other jobs at the time of

calculation. The response time improvement is also expected for future arrival jobs

with the same reason as for the pull up jobs.

When calculating relative response delay or improvement, we do not make any

specific fiiture schedule plans for waiting jobs. We base our heuristic calculation on

job runtime and size, with the idea that in a perfect packing situation, only job

runtime and size will have an impact on the response time, i.e. we sum up the product

of job runtime and size, then divide it by the total number of nodes and use this value

as the estimate of response time. This calculation is reasonable because the exact

packing of ail Jobs will change dynamically when there are new jobs submitted with

different priorities. After calculating the total average delays and total average

improvement, we use the improvement value minus the delay value for the final

response impact value. If this value is positive, it means that we have an overall

response time improvement by matching this Job. If the value is negative, the overall

impact on response is a delay. Figure 5.5 shows the pseudo code of response time

impact calculation.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// calculates overall average relative response-time impact, is increase/decrease relative to
normal //response time
calciilate_response_time 0 {

//sum up estimated relative delay for push-down jobs
for (all push_do'ws_jobs (jobn)) {

response_time += jobmnsntime * Jobn.size / n_nodes;
response_increase += delay / response_time;
1

response_increase/=miinber_of_pusli_down_jobs;
// sum up estimated improvement for pull-up jobs
for (all_pull_up_jobs0obn)) {

responsejtime += jobn.rantiiae * jobmsize / n_nodss;
response_decrease t= improvement / respOEse_time;
1

//estimate response time impact on fiiture arrival jobs within the current runtime
duration
for (future_arrival_jobs(}obn)){

response_time = JobQ.nmtime * jobmsize / n_nodes;
respoiise_decrease+= improvement / response_time;

}
response_decrease/=(number_of_pu!I_up_jobs + number_of_fiiture_aiTivaLjobs);
total_response_impact= response_decrease - response_increase;

Figure 5.5. Pseudo code for calcuiating response impact.

In the calculation, the delay is the runtime increase from job coscheduling plus the

rantime difference between two jobs if the match job has longer rantime than the

current job to be scheduled. The improvement is the difference between the runtime

of the match job and the delay.

Having the knowledge of utilization gain and response time impact, we use a weight

value to combine these two factors to calculate the overall benefit shown as the

following formula.

benefit = (1 -WEIGHT)*response_impact + WEIGHT*utilization_gain

According to our calculation, the values of response_impact and utilization__gam will

fall into a similar range, wMch is (-1,1), and this makes it possible to combine these

two values together using a weight value. The value of WEIGHT can be varied in the

range of [0,1]. As shown in the above formula, when WEIGHT is 1, only utilization

gain counts for the benefit. With the WEIGHT value of 0, we focus on the response

time impact from the matching. Changing WEIGHT value can tune the algorithm for

the trade-off between different goals, i.e. best response time vs. maximum utilization.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, we choose the job with the highest benefit value as the match for the current

job.

5.2.4. Overhead Analysis

To evaluate the overhead of the LOMARC approach, we will analyze the time

complexity of the LOMARC algorithm and space needed by the algorithm.

The problem size of our approach includes two values: n as the total number of jobs

and k as the machine size, i.e. the total number of processors, where ri»k. The

LOMARC algorithm consists of six steps as described in Section 5.2.1. Table 5.1

shows the time complexity of each step in the worst case.

Steps Time Complexity

Step 1 0(k)

Step 2 0(nlgn)

Step 3 0(k)

Step 4 0(n^}

Step 5 0(n)

Step 6 0{n)

Table 5.1. Time complexity analysis.

The explanation of the time complexity for each step is as follows.

■ In stepl, we calculate utilization and effective utilization according to the

status of each processor. So it takes 0(k) time to compute the total utilization

for k processors.

■ In step 2, for each job in the waiting queue, it takes constant time to update the

priority and 0(lgn) time to insert the Job in the proper position in the waiting

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queue according to its updated priority. So this gives an overall 0(n!gn) time

for updating the priority waiting queue.

■ In step 3, it takes constant time to update the status for each processor, and

hence gives an overall 0(k) time to update the statuses of all processors.

® In step 4, for each job it takes 0(n) time to traverse the waiting queue to find

the best match and 0(k) time to allocate processors to the job. So this gives an

0{n^+kn) time for allocating jobs from the waiting queue in the worst case.

Since ri»k, we claim the time complexity of this step is O(n^).

■ In step 5, we use EASY backfilling which takes 0(n) time to traverse the

waiting queue to find the jobs that can be used for backfilling.

■ In step 6, we re-compute the execution time of each job in the working queue,

and this gives 0(«) time complexity for this step.

The overall time complexity of the LOMARC algorithm is the sum of the time

complexities of these six steps, and it gives us a result as 0(n^).

The space used by LOMARC is 0(n+k). In LOMARC, we maintain one working job

queue and one waiting job queue, the total length of which are n in the worst case. An

array of node status and one empty node list are used to keep node information and

process allocation respectively.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Simulation and Experiment

We implement LOMARC using event-based simulation, as the scheduler is driven by

job arrival and termination events. In our simulation, we model a system with 128

single-CPU nodes with 512MB memory per node.

6.1. Slowdown Estimation

To evaluate the performance of our approach, we model the slowdown factor for two

coscheduied jobs. For the comparison test purposes, we simulate slowdown for all

possible job coscheduling situations, i.e. including the cases in which LOMARC will

not coschedule two jobs together.

In slowdown calculations, we first check whether two jobs have memory contention.

If memory contention exists, i.e. (fmemA >1? we use the following formula to

calculate the memory slowdown resulting from coscheduling job A and job B,

{(fmemj + fmem,B) ~ 1) * 2
where fmem is the fraction of the memory size needed for each job. i(fmem,A + fmemj) ~

1) is the portion of job data sets that cannot fit into physical memory. The factor of 2

represents the slowdown from demand paging according to the experimental results

presented in [Burger96], and this value is optimal.

If two coscheduled jobs do not satisfy the requirement of Step 2 in the LOMARC

matching scheme, i.e. their resource consuming types are not complementary, we

assume a slowdown of 2, which is optimum for this case. Otherwise, we use the

following calculations which consider cache conflict possibilities on HT processors.

■ If two jobs have cache conflict:

SLab= l+ {3-rfm m (fcpuj, fcpu,s) + (2-1)*otjk{^o,a I w.b) + (2-1) *mm(fcomm.A.

fcomm,B)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ If two jobs have no cache conflict:

SlA g= l+ {lA ~V fm in(fcpv,A , fcpu.B)+Q--Y'fmin(fio,A, *mm(fcomm,A.

fcomm,B)

For the two jobs coscheduled on standard CPUs, we use following formula to

calculate the slowdown.

SlA g= l+{2-l)^m m ffcpn,A, fcpu,s) + {2-lYm in(fio ,A , fo .B) + (2-1) *min(fcomm.A>

fcomm,B)

In the above calculations, SLab is the slowdown from coscheduling job A and B,

while fcpu, fio and fcomm-, are the fraction of CPU, I/O and communication times

respectively for each job. We assume the worst case in our calculation, i.e. two jobs

perform computing, FO and commimication at the same time. As reported in

[Leng2002], the slowdown from coscheduling two jobs on HT processors can be up

to 3 due to cache conflict. So we use factor of 3 as the slowdown impact from CPU

sharing when there is cache conflict between two jobs. If there is no cache conflict

between two jobs, the slowdown from computation is much less. Based on

experimental results reported in [Magro2002], we assume the slowdown from CPU

sharing is 1.4 on HT processors, when there is no cache conflict. For FO and

communication sharing, we assume a slowdown factor of 2 for sequential execution.

For job coscheduling on standard CPUs, we use a slowdown factor of 2 to represent

the sequential execution in each execution components. We use the slowdown factor

of each execution component minus 1 in the calculation to represent the execution

time increase from the slowdown. Finally, we calculate the overall slowdown by

summing up all the execution increases and adding them to 1, which presents the

original runtime.

At last, we add the memory slowdown, if applicable, to the above slowdown factor to

get the final slowdown from coscheduling.

Note that a slowdown of 2 corresponds to time-sharing on a standard CPU and that

any slowdown larger than 2 means a decrease in utilization efficiency. In LOMARC,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we set a slowdown limit MAX.„SLOWDOWN for the final coscheduling decision,

and the maximum value of this limit can be 2.

6.2. Workload Modeling

To evaluate a scheduling strategy design, a realistic workload model is important for

providing convincing experimental results. In our simulation we use a workload

model presented in [LublinOl] to model job sizes, job runtimes and job arrival times.

This model is based on the analysis of workload logs from three different locations:

the 416-node Intel Paragon machine installed at San-Diego Supercomputer

Center(SDSC), the 1024-node connection Machine CM-5 in Los-Alamos National

Lab (LANL) and the 100-node IBM SP2 machine in the Swedish Royal Institute of

Technology in Stockholm (KTH). The model is created to represent the common

characteristics of these real workloads. For other characteristics of a job such as

resource consuming types, we model them based on our assumption, because there is

no statistic model available regarding this kind of information for real workloads.

6.2.1. Job size modeling

For job size modeling, we only consider rigid jobs, the sizes of which do not change

during their execution, because our approach does not consider job size adaptation.

The model classifies jobs into three categories according to their size: serial jobs with

the size of one; power-of-two jobs where the sizes are numbers that are the power of

two; and the rest. This classification reflects the notable fraction of serial jobs and

power-of-two jobs in real workloads.

The model applies a logarithmic transformation to the data, because job sizes span a

large range. A two-phase-uniform distribution is used to generate the logarithmic

sizes, which are the logarithms of job sizes, with the base of two. Two-phase-

distribution is a generalization of the unifomi distribution, and it consists of two

uniform distributions in two different ranges. The parameter I (low) and m (medium)

define the first range, while m (medium) and h (high) define the second range. The

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parameter p (proportion) defines the probability of a number failing into the first

range. Figure 6.1 shows the cumulative distribution function (CDF) of a tw^o-phase-

uniform distribution.

Y

1

P

0 m
X

Figure 6.1. CDF of two-phase-nniform distribution.

Figure 6.2 [LublinOl] shows the algorithm for modeling the size of a job. To decide

the size of a job, first we use pi to decide whether it is a seriai job or not. For a serial

job, the size is one. If it is a parallel job, we use the two-phase-distribution to choose

the logarithm size. After having a logarithmic size, we use p2 to decide whether it is a

power-of-two job. For a power-of-two job, we round the logarithm size to an integer.

At last, we use this logarithm size to compute the job size.

Table 6.1 shows the parameters used in the modeling. Where pi is the probability of

serial jobs, and p 2 is the probability of power-of-two jobs within parallel jobs. The

other four parameters are used in the two-phase-uniform distribution to decide the

size of parallel jobs.

Pi P2 I m h P

0.24 0.75 0.8 4.5 1 0.86

Table 6.1. Parameters for job size modeling.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

ize = 2toffsize
raund size

Figure 6.2. Algoritfem for modeling the size o f a Job. (froni|Luljlin§l|)

In the model, I is 0.8, and this gives the minimum size of a parallel job as 2. The

maximum size of a job is 128, calculated as 2 to the power of 7, which is the h value

in the model. It is important to note that the maximum size of a job is the same as the

machine size. The mean value of job sizes, including serial jobs, is calculated as the

following formula.

M ean^piV +(l-pi)^(p^(2^+2"‘)/2 +{hp)*(2'”+2^)/2}

Using the values of parameter in the model, this formula gives a mean job size of 56.

6.2.2. Job runtime modeling

In job runtime modeling, the model uses a hyper-gamma distribution to generate the

natural logarithm of runtimes. The reason for choosing a hyper-gamma distribution is

that it can represent the bimodal curve of real distributions. Figure 6.3. [LublinOl]

shows the logarithmic runtime distribution extracted from real workloads of three

different sites, and the average model. SDSC95 and SDSC96 represent the workloads

from SDSC in 1995 and 1996, respectively. Figure 6.3(a) shows the CDF of the

workloads, and Figure 6.3(b) shows the probability density function (PDF) model

derived from the CDF of these workloads.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

log fw ifc is Edf log runtim e pdf

0.8

0.6

I
0.4

0.2

0.25

0.16

0.1

(a) (b)

Figure 6.3. LogErithimc runtime distributions and the derived model (From[LuMin011)

The mathematical definition of a gamma distribution is as follows [LublinOl].

1

r(aW

where x ,a ,f i> 0 and

a and fi are the parameters of the distribution, where a is the shape parameter and fi is

the scale parameter. The mean value of the distribution is the product of these two

parameters: m- a*fi, and the variance is a*jf. Figure 6.4 [LublinOl] shows some

examples of gamma PDF distributions. We can see how the two parameters influence

the distribution from this figure.

4 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

alpha = 1 alpha '= 4 alpha = 7

0.8

OJ

0.4

0.2

0

0.25 0.2

— beta = 1
- beta = 4
• - beta = 7

0.2

0.15

■11
1 !i

■--- beta = 1
- beta = 4

beta = 7
0.15

beta = 1
. 11 - beta = 4
ji - - beta = 7

1i j i \ 1

■]! 0.1
j i
1 1

0.05

0

o.os

0

i \/J ri ^ .

10 20

(a)

30 20 40

(b)

60 50

(c)

100

Figure 6.4. Examples of gamma distributions (From [LublinOl])

The Hyper-gamma distribution is composed of two gamma distributions with a

parameter p as the proportion of the distribution falling into the first gamma

distribution. Besides job runtimes, the model also uses a hyper-gamma distribution to

mode! the total work of a job, which is the product of job size and runtime. We use

the parameters of job total work modeling for the prediction of future arrival jobs.

The parameters used in the model arc shown in Table 6.2 [LublinOl].

a, A «2 A P

Runtime 4.20 0.94 312.0 0.03 0.685

Total work 10.74 0.55 37.96 0.37 0.577

Table 6.2. Parameters for job runtime and total Job work modeling.]Lnblim§l]

There is a correlation between the size of a job and its runtime, and that is a larger Job

usually tends to have a longer rantime. To represent this correlation, the model uses

job sizes to calculate thep value with the following formula.

p=a*s + b

Where s is the job size, a= -0.0054 and b= 0.78. It is worth to note that a is a negative

number, which means with the job size increasing, the probability of using the first

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gamma distribution, which has a smaller mean value than the second gamma

distribution, will be decreased. For modeling the runtime of a job, we first use its size

to compute the p value, and then use this value together with the other four

parameters as the input of the hyper-gamma distribution. The final rantime is e to the

power of the number generated from the distribution.

For the whole workload, the mean logarithmic rantime is calculated as follows.

mean = + (1 -

This gives a mean runtime of 3690 seconds. Using the hyper-gamma distribution of

runtime modeling with the given parameters, the probability of a random number

being larger than 12 converges to zero, so in our implementation of runtime

modeling, we set the maximum value of logarithmic runtime as 12, and this gives the

maximum runtime of 45 hours. From Figure 6.3, we can see this also represents the

real distribution in a workload.

We classify jobs according to their runtime based on the following definition.

■ Short job: with the runtime in the range of [1 sec, Imin].

■ Medium job: with the runtime in the range of (Imin, Ihr].

■ Long job: with the runtime in the range of (Ihr, 45hr],

According to our classification, the model generates around 30% long jobs, 28%

medium jobs and the rest are short jobs. This classification is for the purpose of

assigning different priorities to jobs. For jobs that have runtimes shorter than 1

minute, it is important to assign the highest priority to them and hence to reduce the

overall response time. In addition, for job coscheduling, we do not consider the jobs

that have runtime less than 1 minute, because it will not provide meaningM benefit to

coschedule these jobs due to their short execution time.

6.23. Job arrival time modeling

The workload model that we use can represent both the overall distribution of inter-

arrival times and the daily cycle of different densities of job arrivals across hours of a

day. During one day, Job arrival densities are different in different hours. Usually

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more jobs arrive during daytime than nighttime. Figure 6.5 [LublinOl] shows one

example of job arrival numbers in a daily cycle.

BOO

1 600

I 400

200

10 15
heurs

20-

Figure 6.5. Number of job arrivals in a daily cycle (from [LublinOl])

To incorporate the characteristics of both overall inter-arrival time and the job arrival

daily cycle, the mode! first uses one gamma distribution to represent the job inter-

arrival time in peak hours, which is between SAM to 7PM. Based on this distribution,

the inter-arrival times are then adjusted according to different weights in different

time slots. To calculate the weights in different time slots, the model uses another

gamma distribution that represents the daily cycle. At first, we split one day into 48

half-hour time slots. For each slot t, the probability of job arrival then can be

computed as:

w(t) = F (m .5) - FfriO.S;

where F is the CDF of the gamma distribution model, and F(t) represents the

probability of a number falling into the range of [0, t]. F(t+Q.5) - F(t-Q.5) calculates

the probability of a number falling into the range of [t-0.5, t+0.5]. It is important to

note that t is in the range of [10, 57]. As we can see from Figure 6.5, the minimum

arrival number appears around SAM, so the ten time slots before SAM are shifted by

adding 48 to match the gamma distribution model. The weight for each time slot is

then calculated as w(t)/wavg, where Wavg is the average of all 48 w(t) values. Figure 6.6

shows the weights curve generated by the model. The time slots that have higher

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w ei^ t values can be seen as having longer virtual time, so the probability of a job

arrival falling into these slots is higher.

-weight j

1.6

0.8 -

0.6 -

0.4 ~

0 ■

0 4 8 12 16 20 24 28 32 36 40 44

Figure 6.6. Modeled time slot weights in a daily cycle

The parameters of the gamma distributions used for peak hour job inter-arrival time

and the daily cycle modeling are shown in Table 6.3 [LublinOl], By using these two

gamma distributions, we can model job arrival times that represent both the overall

inter-arrival time distribution and the different job arrival numbers in a daily cycle.

a fi

Peak hour 10.23 0.49

Daily Cycle 8.17 3.96

Table 6,3. Parameters for job arrival time modeling. [LublinOl]

Given a and P values, we calculate the mean job arrival time as 150 seconds. Having

all the information about job size, runtime and inter-arrival time, we can use the

following formula to calculate the expected workload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Load ~ (r*n)/(P*a)

where r is the mean runtime, n refers to mean job size, P is the total number of

processors and a is the mean job arrival time. A higher Load value means a heavier

workload. For the model using given parameters, we have a Load value around 10.6.

Table 6.4. shows the summar}'' inforroation of job size, runtime and inter-arrival times

for the workload model

Job size

(number of processors)

Job runtime

(seconds)

Job inter-arrival time

(seconds)

Mean value 56 3690 150

Table 6.4. Sanunary information of the workload model.

6.2.4. Job resource consumption characteristics modeling

Job characteristics in resource consumption are important to our approach. To the

best of our knowledge, currently there is no statistic model available for representing

the job resource consuming characteristics in real workloads, such as what is the

fraction range of I/O intensive jobs or communication intensive jobs in a real

workload. In our simulation, we model this kind of information based on our own

assumptions.

Considering job resource consuming types, we classify Jobs into three classes: CPU

intensive jobs; I/O intensive jobs; and communication intensive jobs. We model 40%

CPU intensive jobs, 30% I/O intensive jobs, and 30% communication intensive jobs

of the whole workload, and the arrival sequence of different classes of jobs is

randomly generated using a uniform distribution. For each class of jobs, we model

their fractions of CPU, I/O and communication times, fcpu, fo, and fcomm respectively,
as follows:

■ CPU intensive jobs:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fcpu in the range of [0.5, 0.8), in the range of [0.1, 0.4), with fcpu+fm in the

range of [0.6,0.9). This leaves fcomm in the range of [0.1, 0.4).

■ I/O intensive jobs:

fio in the range of [0.5, QM),fcpu in the range of [0.1, 0.4), with_^o+/cp„ in the

range of [0.6, 0.9). This lernesfcomm in the range of [0.1, 0.4).

■ Comnnmication intensive jobs:

fcomm in the range of [0.5, O.^.fpu in the range of [0.1, 0.4), \vith fcomm+fcpu in

the range of [0.6, 0.9). This leaves j/o in the range of [0.1, 0.4).

Within each range, we use a uniform distribution to randomly generate the specific

numbers for job characteristics.

For the memory consumption modeling, we randomly generate numbers in the range

of [0.05, 1), which represent the ratio of job memory requirement per process to the

available physical memory space per node, which is 512MB in our system model. We

model 70% of the jobs with memory consumption in the range of [0.05, 0.5], 25% of

the jobs with memory consumption in the range of (0.5, 0.8] and 5% of jobs with

memory consumption in the range of (0.8,1). Within each range, we use a uniform

distribution to generate the random numbers. This model should reasonably represent

the memory consumption characteristics in real workloads, because it roughly

matches the result from previous studies of job memory consumption as in

[ChiangOl].

63. Experimeiits and Result Analysis

6.3.1. Overview of the experiments

In our experiments, we used the workload model described in the previous section as

input and tested the workload with 5000 jobs. In order to show how a workload can

have an impact on the performance, we also adjusted the parameters for job inter-

aixival time to generate heavier workloads. We tested the workload with four

different job arrival rates.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To prove better performance of our approach in both response time and utilization

efficiency, we compared our approach with the following three approaches.

■ PSS: Pure Space Sharing with backfilling and priority aging.

■ AC: Always Coscheduling two medium or long jobs on HT processors

without considering their resource consuming types.

■ AM: Adjacent Match, coscheduling two adjacent medium or long jobs if they

are matchable under our matching scheme.

For our approach, we tested LOMARC for both HT processors and standard CPUs,

i.e. without HT. To see how finding the best match helps to improve the overall

performance, we also tested the following variations for the LOMARC with HT

processors.

■ Varying WEIGHT value. We tested LOMARC with WEIGHT value

1 (considering utilization only), 0 (considering response time only) and

0.5(combining utilization and response time).

■ A simplified version that only looks-ahead to find the first match for

coscheduling, without looking for the best match with the consideration of

utilization gain or response time impact on other jobs.

In addition to the overall performance of the entire workload, we also tested

individual performance of each job runtime class and job type to see how our

approach has different impacts on different job categories.

6.3.2. Peiformamee metrics applied

We applied the following metrics in our experiments to evaluate the performance of

our approach and compare it with other approaches.

■ Average response time: the average value of response times for all jobs.

® Average bounded relative response time: the average value of bounded

relative response time for all jobs. We choose this metrics rather than relative

response time to eliminate the extreme impact from very short jobs, and we

set the lower bound of runtime as 60 seconds.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Utilization: the ratio of total nodes occupied time to the product of makespan

and number of nodes, i.e. total available processing time.

■ Utilization efficiency: defined in Chapter 2. It is worth noting that in a pure

space sharing approach, this value will be the same as utilization and will not

be larger than 1. In an approach with job coscheduling on HT CPU or using

time sharing, utilization efficiency can be larger than 1, and this value

compared to utilization can show the benefit we get from job coscheduling.

6 3 3 . Workload impact

To examine how a workload can have an impact on scheduling approaches, we tested

four sets of workloads with different job arrival rates. The parameters for job inter-

arrival time modeling and the Load values of generated workloads are listed in Table

6.5. Note that we only changed the a value for varying job inter-arrival times. The

Load values are calculated as described in Section 6.2.3. Workload 1 is the same as

the model described in Section 6.2.

Workload 1 Workload 2 Workload 3 Workload 4

a 10.23 9.83 8.83 8.03

Load 10.6 13 21 32

Table 6.5. Workload information.

Figure 6.7 shows the results of LOMARC in comparison to other scheduling

approaches involved in our experiment under Workload 1. L-0 stands for LOMARC

with the WEIGHT value as 0. L-FM stands for the LOMARC variant that only finds

the first match to coschedule. AM, PSS and AC are the other scheduling approaches

as explained in the previous section. Figure 6.7(a) shows the average response times

(in hours), (b) shows the average relative bounded response time and (c) shows

utilization and effective utilization.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Response time

0 T-o"' L-N pss" AC
R̂esponse time 6.04 6.8 7.64 8.22 8.48 16.S3

Relative Response time

200 -

180 -i

ISO -

0 J L-0 i-m AM L-N AC
taReiailvs Response i time

64.1S 65.33 88.45 103.64 106.07; 182.3
i

(a) (b)

Utilization and Effective Utilization

I

u.o -
L-0 L-FM AM L-N PSS AC

B Utilization 0.78 0.81 0.82 0.86 0.84 0.9

■ Effective Utilization 0.93 0.91 0.87 0.87 0.84 0.93

{£)

Figure 6.7. Experimental results under Workload 1.

From these results, we observe that our approach, L-0, has an improvement of 29%

compared to standard space sharing and over 65% compared to AC in response time.

For relative bounded response time, L-0 shows an improvement of 40% compared to

PSS, and 65% improvement over AC. The result shows that utilization for our

approach is under 80%, so we can see that under Workload 1, the system is

underloaded. We observe that L-0, which has the best response time performance, has

the lowest utilization. The explanation of this is that under the same workload, if jobs

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

finish more quickly, there will be more processors left idle, i.e. have no jobs running

on it. L-0 shows the most significant effective utilization improvement compared to

its utilization value, and this means that L-0 got the best benefit from coscheduling.

Observing that the system is underloaded to a certain degree with Workload 1, and

our approach shows around 30% improvement in response time compared to the

standard space sharing, we mode! Workload 2 with a Load value increased by 30%

compared to Workload 1. In addition, we mode! Workload 3 and Workload 4 with

Load values twice and three times respectively as the Load value of Workload 1.

Figure 6.8 and Figure 6.9 show how the increased Load can have an impact on the

performance of ail scheduling approaches involved in our experiment. Figure 6.8(a)

presents the response time results and (b) shows relative bounded response time

results. Figure 6.9(a) shows the comparison of utilization among all approaches, and

Figure 6.9(b) shows the effective utilization results. We can see that with workload

becoming heavier, our approaches, L-0, L-FM and L-N, show more obvious

improvement over other approaches in response time, relative bounded response time

and effective utilization. The reason for this is intuitively clear. The meaning for

designing more sophisticated schedulers is to schedule jobs more efficiently under

even a heavier workload, because if workload is very light, for an extreme example,

all schedulers will behave same as the basic FCFS (First Come First Serve) scheduler.

With the Load value being increased, the improvement in response time of L-0

increases from 29% to 36%, and the improvement in relative bounded response time

of L-0 incre^es from 40% to 46% compared to PSS. Under all workloads, all

approaches have similar utilization values, because utilization, due to its definition, is

mainly decided by workload, packing scheme (backfilling) and job size

characteristics, which are the same for all approaches. We can see that the utilization

values for Workload 3 and Workload 4 do not show much difference, and this

suggests that the system is saturated under Workload 3.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£
3O

8

8

50

40

30 ■

20 -

10

i l l

Workload 1 Workload 2 Workload 3 Workload 4
—s— L"0 6.04 9.42 16.41 24.28

..L-FM 6.8 10.91 20.7 29.29
-« -A M 7.64 12.03 23.81 32.04
— L-N 8.22 13.49 22.88 31.61

8.48 13.97 25.59 34.54
™-™AC 16.93 24.85 32.64 45.25

(a)

m
E

700

600

500

400

300

200

100

Workload 1 Workload 2 Workload 3 Workload 4
64.1 109.1L-0 151.3 267.42
65.33 127.38 -.59 302.31

138.071.45AM 206.86
213.4

371.18
148.27L-N 347.45

106.07 183.87PSS 265.36 447.89
182.3AC 363.98 420.24 610.14

m

Figure 6.8. Workload impact on response time and relative bounded response time.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7^

0.6 ^

Jiliilllllillllilllll

Workload 1 Workioad 2 ' ^ Wwkload 3 Workload 4

—B— L-0 0.78 0.86 0.89 0.9

l-fm 0.81 0.86 0.91 0.92
^ - A M 0.82 0.88 0.91 0.92

0.85 0.89 0.9 0.92

—I— PSS 0.84 0.9 0.93 0.94

_ ^ A C 0.9 0.91 0.93 0.94

(a)

1.3

0

1
3
m
5

m

1.2-

1.1 -

1 -

0.9 ̂

0.8 -

0.7 -
Workload 1 Workload 2 Workload 3

L-0 0.93 1.04 1.16 1.2
f.,..,. l-fm 0.91 1.01 1.12 1.14

0.87 0.92 0.97 0.97
--•-L -N 0.87 0.92 0.94 0.97
—i— PSS 0.84 0.9 0.93 0.94
~ ^ A C 0.93 0.96 0.99 0.984

(b)

Figure 6.9. WorMoad impact on utilization and effective Htilization.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.4. Comparison of different approaches

We compared several variants of LOMARC with PSS, AC and AM under all four

workloads. In addition to L-0, L-FM and L-N, we also tested L-1, LOMARC with the

WEIGHT value as 1, and L-0.5, LOMARC with the WEIGHT value as 0.5. Figure

6.10 shows the response time comparison under the four workloads.

Response time

I Workload 1 Workload 2 Workload 3 Workload 4
■ L-1 6.3 9.6 17.16 24.3
■ L-0 6.04 9.42 16.41 24.28
□ L-0.5 5.7 9.25 17.64 23.86
□ L-FM 6.8 10.91 20.7 29.29
■ AM 7.64 12.03 23.81 32.04
■ L-N 8.22 13.49 22.88 31.61
■ PSS 8.48 13.97 25.59 34.54
□ AC 16.93 24.85 32.64 i 45.25

Figur® 6.10. Response time comparison

We observe that for all workloads, L-0 shows the best response time, while AC shows

the worst performance in response time. This demonstrates the importance of taking

job resource consuming types into consideration for coscheduling. In AC, any two

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

medium or long jobs can be coscheduled on HT processors, so the possibil% of that

two coscheduled jobs interfering with each other is high, and hence the performance

is degraded seriously. The result shows that AC even performs worse than PSS, and

this Justifies that if job coscheduling on HT CPUs is not applied properly, system

performance could be degraded seriousiy [Leng02]. AM is an approach that only

coschedules two adjacent jobs if they are matchable under LOMARC matching

scheme. The performance of AM is in between of LOMARC approaches and PSS;

this is because only considering two adjacent jobs without looking ahead on the

waiting queue, there will be less opportunity for Job coscheduling.

Relative bounded response time

700

600 ^

5CM j • -

400

300 -

200 Jllll l i l

100

■I
Workload 1 Workload 2 Workload 3 Workload 4

■ L-1 68.2 120.91 140.96 301.29
■ L-0 64,18 ^ 109.1 151.3 267.42

□ L-0.5 50.25 116.36 157.51 296.44

□ L-FM 65.33 127.38 185.59 302.36
■ AM 88.45 138.07 206.86 371.18
■ L-N 103.64 148.27 213.4 347.45
■ PSS 106.07 183.87 265.36 447.89
□ AC 182.3 363.98 420.24 610.14 1

Figure 6.11. Relative bounded response time comparison

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L-N shows arouad 15% improvement compared to PSS under saturated workloads.

This suggests that by using time sharing to coschedule two jobs on standard CPUs,

the perfomaace can. be improved due to I/O latency hiding. L-FM outperforms all

other approaches except other LOMARC variants. This shows finding a match for

every medium or long job is important for improving performance. However, without

considering the utilization gain and response time impact on other jobs, L-FM has

worse response time than other LOMARC variants. From Figure 6.11, we can see L-

FM also has worse perfomaance in relative bounded response time than other

LOMARC variants. This implies that finding the best match plays a role in improving

the overall performance.

Average
Queue
Length

Medium
or Long
Job

SizeB
<SizeA

Memory
Fit

Matchable Slowdown
<MAX

Workload 1 46 29 16 12 5 5

WorMoad 2 67 36 20 14 6 5

Workload 3 111 51 22 14 6 5

Workload 4 209 56 25 16 7 6

Table 6.6. Average qneue lengths and average numbers of Jobs suitable for coscheduling

Figure 6.10 and Figure 6.11 show that there are no obvious differences among L-1, L-

0 and L-0.5, while L-0 has a sli^tly better performance than the other two. The

explanations for this result are as follows. First, even though utilization and response

time are two different goals and there is a trade-off between them, these two goals do

not contradict with each other, and the fact is that in most cases, improved utilization

can lead to better response time. Second, in the utilization calculation, we also

considered the slowdown factor of two coscheduled jobs. This means if one match

candidate has better utilization gain from job coscheduling, it also has lower

slowdown from job coscheduling, and this leads to less delay to other jobs, i.e. better

response impact on other jobs. Third, to further analyse this result, we need to know

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

what happens when searching for the best match. Table 6.6 shows the average queue

lengths and the number of jobs left in each step for finding the match. It is important

to note that the average queue length is the average of the whole waiting queue not

the search length. For finding the match of a Job, we only search the jobs behind it in

the queue. After meeting all the constraints for coscheduling, the number of jobs left

as the candidates to choose from is small. Even in the heaviest workload, the average

number of candidates is only 5. With this small number of match candidates, the

possibility of choosing the same one under different optimization goals will be high.

This also explains why when using different WEIGHT value, there is little difference

in performance result.

Figure 6.12 shows the comparison of utilization (the left set of data) and effective

utilization (the right set of data) for all approaches under the four workloads. For

utilization, all approaches have similar values under certain workloads for the reason

we discussed in the previous section. For effective utilization, our approaches show

improvement especially under heavier workloads. In addition, with our approaches,

the effective utilization increases more compared to utilization under the same

workload. This means that our approaches have more efficient usage of the machine.

Utilization and Effective Utilization

V V

■ Workload 1
■ Workload 2
□ Workload 3
□ Workload 4 i

Figure 6,12. Comparison of utilization and Effective utilization

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.5. Performaiiee for different job classes

To show how different approaches have impacts on different job rantime classes and

resource consuming types, we tested the individual performance for each job class.

Figure 6.13 shows the performance comparison among long, medium, short, CPU

intensive, I/O intensive and communication intensive (COMM) jobs respectively.

Figure 6.13(a) shows the response time comparison and Figure 6.13(b) shows relative

bounded response time comparison. The scheduling approaches involved in the

comparison are L-0, L-N, AM, PSS and AC, and the workload tested is Workload 3.

CPU, I/O and communication intensive jobs are either medium or long jobs.

From the result, we observe that in general, long jobs and medium jobs have better

relative bounded response time compared to short jobs. This is the common feature of

schedulers with no preemption, because when all the nodes are occupied by large

jobs, a short job tends to wait much longer than its runtime. The result shows that our

approach, L-0 has worse response time and relative bounded response time for short

jobs than PSS. The reason for this is that our approach favors medium and long jobs

by moving them ahead for job coscheduling.

For different job resource consuming types, we can see in our approach, CPU

intensive jobs get the most benefit. This is because under the LOMARC matching

scheme, CPU intensive jobs have more opportunity to coschedule with other jobs.

This result implies that coscheduling two matchable jobs is the main reason for

performance improvement in our approach.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Response time

120 -

100 ^

80 -
60 ̂
40 -
20 - I I0

Long Medium Short CP .
......... 1 — - ■ :

i/o COMM I
■ L-0 59,86 1.9 1.98 10.1 33.73 38.11
■ L-N 80.48 2.48 2.01 48.55 39.61 44.89
□AM 80.4 2.12 1.67 48.93 40.69 42.6

□ PSS 84.06 2.13 1.72 51.72 42.17 44.05
■ AC 103.19 3.32 2.69 65.43 48.99 55.35

(a)

Relative bounded response time

2“

Long Medium Short CPU I/O COMM

■ L-0 19.08 43.95 I 118.8 9.43 31.85 33.13
■ L-N 26.95 55.48 120.56 39.44 42.91 37.94
□ AM 27.81 44.37 99.81 30.23 36.69 41.01
O PSS 29.47 50.16 102.94 42.05 36.8 37
■ AC 34.63 69.65 161.15 51.04 42.9 57.97

m

FIgare 6.13. Comparison among different job classes.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63,6. Summary

The above experiment results provided sound evidence that the LOMARC algorithm

can deliver better performance compared to PSS, AC and AM for almost all metrics

measured such as average response time, average relative bounded response time and

effective utilization. With heavier workload, our approach can show more

improvement over the other approaches in overall performance. As regards to

utilization, our approach has similar results with other approaches. This is due to the

fact that utilization mostly depends on workload, packing scheme and job size

characteristics, which are common for all approaches involved in our experiment.

L-N shows less improvement compared to other LOMARC variances. The reason for

this is that in normal CPU environment, LOMARC only coschedules CPU and I/O

intensive jobs, and this reduces the chance for job coscheduling. In addition,

coscheduling two jobs on standard CPUs tends to have a higher slowdown factor,

compared to jobs coscheduled on HT processors, according to our slowdown

estimation model.

Among L-0, L-1 and L-0.5, there is no signiicant difference in the results, while L-0

shows slightly better performance. In addition, we tested a simplified LOMARC

variant L-FM, which only finds the first match without considering utilization and

response time impacts. The results show L-FM performs constantly worse than the

other three variances. This suggests that considering utilization and response time for

choosing a match does play a role in improving overall performance.

For different job runtime classes, our approach favors medium and long jobs more

compared to standard space sharing with priority and backfilling. The reason for this

is the LOMARC gives medium and long jobs more opportunity to move ahead for

coscheduling. Among different job resource consuming types, CPU intensive jobs get

most benefit because they have more chances of coscheduling with other jobs.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Conclusion and Future Work

7.1. CoMcliisioii

Most scheduling approaches only focus on the CPU without considering the impact

on other resources. The goals of our approach, LOMARC, are to take all application

resource requirements, such as for CPU, I/O, memoiy and network, into

consideration, and exploit space-time sharing provided by the HT technology. To

improve utilization and reduce response times, LOMARC matches two jobs with

complementary resource requirements for coscheduling. LOMARC partially reorders

the waiting job queue by lookahead to increase the possibility of finding a good

match. When choosing a match for one job, we estimate the utilization gain and

response time impact on other jobs resulting from the matching, and choose the best

match according to the combined utilization gain and response time impact value.

LOMARC generalizes for standard CPUs, using an adjusted matching scheme and

only focusing on hiding I/O latency. In addition, LOMARC incorporates standard

scheduling approaches such as priority ordering, aging and backfilling.

The experimental results show that our approach can deliver better overall

performance compared to standard space sharing with priority and backfilling. We

also compared our approach with two other approaches for HT processors; one

coschedules any two Jobs on HT processors without considering job resource

consuming types, and the other only coschedules two adjacent jobs if they are

complementary regarding their resource types. The results show that LOMARC

outperforms these approaches, and can show more improvement under heavier

workloads. The performance gain is mainly due to increased possibility of

coscheduling two complementary jobs by looking ahead on the waiting queue.

Varying the WEIGHT value in choosing the best match does not affect the overall

performance obviously. This is different than our expectation. However, a simplified

LORMAC variant that only finds the first match shows worse performance. This

suggests that considering both response time and utilization impact from

coscheduling plays a role in performance improvement.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2. Future Work

The foture work of this thesis can involve the following three aspects.

First, our cmrent slowdown modeling is based on some previous research results,

which are not comprehensive to cover all possible coscheduling cases. It would, be

meaningfiil to do more experiment in a real HT processor environment with different

job resource types, and test the slowdown factor for different coscheduling

possibilities.

Second, as we have seen in our experiment, our current heuristic for choosing the best

match using different WEIGHT values does not show obvious difference. It would be

interesting to try other simplified strategies in choosing the best match. One possible

solution is to only consider the first three match candidates according to the

slowdown factors and their sizes and runtimes comparing with the current job to be

scheduled.

Third, the current workload modeling in resource consumption characteristics is

simple. In future research, it would be important to examine job resource

consumption characteristics in real workloads and extract a statistical model to

represent the real workload.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[BatatOO] A. Batat and D. G. Feiteison, “Gang scheduling with memory
considerations”, Proceedings of 14th International Parallel & Distributed
Processing Symposium (IPDPS'2000), May 2000, pp. 109-114.

[Burger96] D. Burger, R. Hyder, B. Miller and D. Wood. “Paging Tradeoffs in
Distributed Shared-Memory Multiprocessors”. In Journal of Supercomputing, vol.
10, 1996. 594, 596

[Chandra94] R. Chandra, S. Devine, and B. Verghese. “Scheduling and page
migration for multiprocessor computer servers”. In 6* International Conference
on Architectural Support for Programming Languages and Operating Systems,
Oct. 1994

[ChiangOl] S.-H. CMang and M.K. Vernon. “Characteristics of a Large Shared
Memory Production WorMoad”. Proc. JSSPP, 2001.

[Dorai02] G. K. Dorai and D. Yeung, “Transparent Thread: Resource Sharing in SMT
Processors for High Single-Thread performance”. In proceedings of the 11*
Annual International Conference on Parallel Architectures and Compilation
Techniques, Charlottesville, VA, Septemper 2002.

[Dusseau96] C. Dusseau, R. H. Arpaci, and D. E. Culler. “Effective Distributed
Scheduling of Parallel WorHoads”. In Proceedings of the 1996 ACM Sigmetrics
Internationa! Conference on Measurement and Modeling of Computer Systems,
Philadelphia, PA, May 1996.

[Dusseau98] C. Dusseau, D. Culler, and A. M. Mainwaring. “Scheduling with
Implicit information in Distributed Systems”. In Proceedings of the 1998 ACM
Sigmetrics International Conference on Measurement and Modeling of Computer
Systems, Madison, WI, June 1998.

[Fabricio99] Fabricio Alves Barbosa da Silva and Isaac D. Scherson, “Concurrent
Gang: Towards a Flexible and Scalable Gang Scheduler”, 11th Symposium on
Computer Architecture and High Performance Computing, Natal, Brazil,
September 1999.

[Feitelson92] D. G. Feiteison and L. Rudolph. “Gang Scheduling Performance
Benefits for Fine-Grained Synchronization”. Journal of Parallel and Distributed
Computing, 16(4):306-18, December 1992.

[Feitelson97A] D.G. Feiteison. “A Survey of Scheduling in Multiprogrammed
Parallel Systems”. Research report rc 19790 (87657), IBM T.J. Watson Research
Center, Yorktown Heights, Second Revision, February 1997

[Feitelson97B] D. G. Feiteison and Morris A. Jette. “Improved Utilization and
Responsiveness with Gang Scheduling”. In Dror G. Feiteison and Larry Rudolph,
editors, Job Schedul- ing Strategies for Parallel Processing, volume 1291 of
Lecture Notes in Computer Science, pages 238-261. Springer-Veriag, 1997.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Feiteison97C] D. G. Feitelsoiis L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P.
Wong. “Theory and Practice in Parallel Job Scheduling”. In D. Feitelson and L.
Rudolph, editors, 3rd Workshop on Job Scheduling Strategies for Parallel
Processing, volume 1291 of LNCS, pages 1--34. Springer-Verlag, 1997.

[Feitelson98A] D. G. Feitelson and Larry Rudolph. “Metrics and Benchmarking for
Parallel Job Scheduling”. In Job Scheduling Strategies for Parallel Processing,
Dror Feitelson and Larry' Rudolph (Eds.), pp. 1-24, Springer-Verlag, Lecture
Notes in Computer Science vol. 1459,1998.

[Feitelson98B] D. G. Feitelson and A. M.Weil. “Utilization and predictability in
scheduling the IBM SP2 with backfilling”. In 12th International Parallel
Processing Symposium, pages 542--546, April 1998.

[FrachtenbergOB] Frachtenberg E., Feitelson D. G., Fetrini F. and Fernandez J.,
“Flexible CoScheduIing: mitigating load imbalance and improving utilization of
heterogeneous resources”, 17th Intl. Parallel & Distributed Processing Symp., Apr
2003.

[Hori98] AtsusM Hori, Hiroshi Tezuka, Yutaka Ishikawa, NoriYuki Soda, Hiroki
Konaka, and Muneori Maeda. “Overhead Analysis of Preemptive Gang
Scheduling”. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, volume 1459 of Lecture Notes in Computer
Science, pages 217—230. Springer-Verlag, 1998.

[Lee97] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph. “Implications of
I/O for Gang Scheduled Workloads”. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes
in Computer Science. Springer-Verlag, 1997.

[Leng02] Tau Leng, Rizwan Ali, Jenwei Hsieh, Victor Mashayekhi, and Reza
Rooholamini. “An Empirical Study of Hyper-Threading in High Performance
Computing Clusters”. Linux HPC Revolution, 2002.

[Lifka95] D. Lifka. “The ANL/IBM SP Scheduling System”. Proc. Job Scheduling
Strategies for Parallel Processing (JSSPP), Lecture Notes in Computer Science,
Springer Verlag, Vol. 949, 1995.

[LublinOl] U. Lublin and D. G. Feitelson, The Workload on Parallel Supercomputers;
Modeling the Characteristics of Rigid Jobs. Technical Report 2001-12, School of
Computer Science and Engineering, The Hebrew University of Jerusalem, Oct
2001.

[Magro02] Wiliam Magro, Paul Peterson, and Sanjiv Shah. “Hyper-Threading
Technology: Impact on Compute-Intensive Workloads”. Intel Technology Journal
Ql, Vol. 6, No. 1, 2002.

[Nakajima02] Jun Nakajima and Venkatesh Pallipadi. “Enhancements for Hyper-
Threading Technology in the Operating System - Seeking the Optimal
Scheduling”. Proc. USENIX 2“** Workshop on Industrial Experiences with
Systems Software, Boston/MA, USA, Dec. 2002.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Ousterhout82] Ousterhoat, J. “Scheduling techniques for concurrent systems”.
Proceedings of the 3rd International Conference on Distributed Computing
Systems. Oct. 1982, pp. 22—30.

[Peris94] Vinod G, J. Peris, Mark S. Squillante, and Vijay K. Naik. “Analysis of the
impact of memor}? in distributed paraliel processing systems”. In Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 5-18,1994.

[PerkovicOO] Dejan Perkovic and Peter J. Keleher. “Randomization, Speculation, and
Adaptation in Batch Schedulers”. Proc. Supercomputing (SC2000), Dallas/TX,
Nov. 2000.

[Fetrini99] Fabrizio Fetrini, Federico Bassetti, and Alex Gerbessiotis. “A New
Approach to Parallel Program Development and Scheduling of Paraliel Jobs on
Distributed Systems”. In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'99), volume I, pages 546-552,
Las Vegas, NV, M y 1999.

[PetriniOO] F. Fetrini and W. Feng. “Time-Sharing Parallel Jobs in the Presence of
Multiple Resource Requirements”. In Proc. of IPDPS 2000 Workshop on Job
Scheduling Strategies for Parallel Processing, Cancun, Mexico, May 2000.
Springer.

[Rosti98] Rosti E., Serazzi G., Smimi E., Squillante M.S., “The Impact of I/O on
Program Behavior and Parallel Scheduling”, in Proc. Of the Joint ACM
SIGMETRICS’98 Conference on the Measurement and Modeling of Computer
Systems and Ferformance’98, pp 57-65,1998.

[Setia99] S. Setia, M. S. Squillante and V.K. Naik. “The Impact of Job Memory
Requirements on Gang-Scheduling Performance”. In Performance Evaluation
Review, 1999.

[ShmueliOB] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to optimize
the performance of parallel job scheduling”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.),
pp. 228-251, Springer-Verlag, 2003. Lecture Notes in Computer Science Vol.
2862.

[Smimi98] E. Smimi and D. Reed. “Lessons from Characterizing the Input/Output
Behavior of Parallel Scientific Applications”. Performance Evaluation: An
Memationa! Journal, 33(1):27—44, June 1998.

[Snavely02] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic Jobscheduling
with Priorities for a Simultaneous Multithreading Processor’, in Proceedings of
the International Conference on Measurement and Modeling of Computer
Systems, June 2002.

[Sobalvarro98] P.G.Sobalvarro, S.Fakin, W.E.Weihl and A.A.Chien. "Dynamic
coscheduling on workstation clusters". In Job Scheduling Strategies for Parallel
Processing, pp.231-256, Springer-Verlag, 1998.

6 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Sobalvajxo97] Patrick Sobalvarro. “Demand-based Coscheduling of Parallel Jobs on
Muitipro^ammed Multiprocessors”. Job Scheduling Strategies for Parallel
Processings 1997.

[SodanHuaiig04] Angela C. Sodan and Xuemin Huang. “Adaptive Time/Space
Sharing with SCOJO”. Accepted for HFCS, Manitoba, 2004.

[SubMok96] Jaspal SubMok, Thomas Gross, TakasM Suzuoka. “Impact of job mix on
optimizations for space sharing schedulers”. In Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM) November 1996

[Talby99] Taiby D and Feitelson D G. “Supporting Priorities and Improving
Utilization of the IBM SP2 Scheduler Using Slack-Based Backfilling”. Proc.
IFPS, 1999.

[TullsenOO] D. M. Tullsen and A. Snavely. “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor”. In 9 th International Conference on
Architectural Support for Programming Languages and Operating Systems,
November 2000.

[WisemanOS] Y. Wiseman and D. G. Feitelson, “Paired Gang Scheduling”. IEEE
Trans. Parallel & Distributed Systems, 2003.

[Zhang02] Y. Zhang, “Scheduling and Resource Management for Next Generation
Clusters”. Ph.D. thesis dissertation, Department of Computer Science and
Engineering The Pennsylvania State University, August 2002.

[Zhou98] B. Zhou, R. Brent, D. Walsh, and K. Suzaki. “Job scheduling strategies for
networks of workstations”. In Job Scheduling Strategies for Parallel Processing,
volume 1459 of LNCS, pages 143-- 157, Berlin, 1998. Springer

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Lei Lan

Beijing, China

1972

The Ninth High School, Beijing, China

1987-1990

Northeastern University, Shenyang, China
1990-1994 B.En.

University of Windsor, Windsor, Ontario, Canada

2001-2004 M.Sc.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	LOMARC: Look ahead matchmaking for multi-resource coscheduling.
	Recommended Citation

	ProQuest Dissertations

