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ABSTRACT 

This study aimed to develop new wear-resistant materials with superhydrophobic 

surfaces and low friction by combining the high strength of nanocrystalline (NC) 

materials with the biological surface textures. This goal was accomplished in three stages. 

First, the tribological properties of electrodeposited NC Ni and NC Co were studied, 

and the role of the oxide-rich tribolayers in reducing the friction and wear rates was 

delineated. For the NC Ni, micromechanisms of wear in different testing environments 

were characterized, and the sliding-speed sensitivity of friction and wear rate was 

investigated. A modified Archard equation was proposed to predict the wear rates of NC 

Ni as a function of grain size and sliding speed. Additionally, it was found that the high-

temperature wear resistance of NC Ni could be improved by using SiC nanoparticles as 

reinforcements. 

In the second stage, NC Ni replicas of the surface textures of a lotus leaf and a snake 

skin were fabricated through replication and electrodeposition. The NC Ni snake skin 

replica displayed anisotropic frictional properties, due to the asymmetric shape of the 

protrusions at the scales’ ridges. The NC Ni lotus leaf replica featured a high density of 

microscale conical protuberances that prompted a 30% lower peak coefficient of friction 

(COF) compared to a smooth surface, due to a smaller real area of contact. 

In the third stage, the surface texture of the NC Ni lotus leaf replica was modified 

using a short-duration electrodeposition process that increased the radius of the 

protuberance tips, followed by a perfluoropolyether (PFPE) solution treatment that 

reduced the surface energy and resulted in a multi-level surface roughness consisting of a 

nanoscale surface texture superimposed on microscale protuberances. The produced 
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surfaces had a high water contact angle of 156°, similar to that of the natural lotus leaf, 

and had a 60% lower steady-state COF. 
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CHAPTER 1 

INTRODUCTION 

 

1. GENERAL OVERVIEW 

Nanocrystalline (NC) materials provide great potential for improving the performance 

and extending the capabilities of products in many industrial sectors, because of novel 

properties that mostly originate from a large volume fraction of grain boundaries [1-3]. It 

is known that dislocation nucleation and motion are both necessary for plastic 

deformation, but activation of dislocations in grains smaller than 100 nm can be difficult. 

As a result, the mechanical behaviour of NC materials is characterized primarily by high 

strength and hardness [4-7], and limited ductility [7,8]. 

The increase in strength and hardness that accompanies grain refinement is appealing 

from the tribological point of view, particularly when designing new materials and 

surfaces with improved friction and wear properties. There is a clear need for 

experimental work to characterize micromechanisms of wear in NC materials, and to 

rationalize microscopic processes leading to generation of wear debris or surface damage. 

In examining the wear behaviour of NC materials attention should be given to the role of 

testing atmosphere as the NC materials have a larger density of grain boundaries that can 

accelerate the surface oxidation process. Therefore, the role of surface oxidation during 

sliding wear and its effects on wear damage is of interest. Besides, the high density of 

grain boundaries can cause strong strain-rate sensitivity in NC materials, resulting in an 

unusual sensitivity to slight changes in sliding speed. Thus, the effect of sliding speed on 

the friction and wear mechanisms of NC materials must be studied to achieve a 
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comprehensive analysis. In addition, the large fraction of grain boundaries in NC 

materials may make these materials unstable at elevated temperatures, and therefore, it is 

important to also investigate the wear mechanisms of these materials at elevated 

temperatures. More details on the effects of surface oxidation, strain-rate sensitivity and 

thermal instability on the tribological performance of NC materials are presented in 

Section 2 of this chapter. 

On the other hand, it is known that biological organisms maintain their unique surface 

properties by employing mechanisms that cannot be explained using simple linear 

theories of friction and adhesion. The complex surfaces of these organisms are capable of 

controlling friction, adhesion and wettabilty through a combination of surface structure, 

surface chemistry, flexibility, and active interface control [9]. Hence, adapting these 

mechanisms for fabricating novel engineering surfaces with enhanced properties (such as 

superhydrophobicity and low friction) is a promising technological trend. The challenge, 

however, is how to combine the advantages of a hard, wear-resistant material with the 

exceptional hydrophobicity or frictional properties of a biological organism in a single 

surface designed to function in an engineering system. 

The current study proposes a method for producing a new group of wear-resistant 

materials with superhydrophobic surfaces and controlled frictional properties, by 

combining the high strength and hardness of NC materials with the surface texture of 

certain biological systems. The proposed method consists of two steps: 

i) replication of the biological surface texture on a cellulose acetate film to obtain a 

negative impression of the texture; and 
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ii) electrodeposition of the NC material on the acetate film to obtain a hard replica of 

the biological surface texture. 

The result is a self-sustaining NC film with a surface texture that simulates that of the 

selected biological system. 

Along these lines, this dissertation is organized in eight chapters. Chapter 1 is an 

introduction to the entire dissertation that starts with a general overview and an outline of 

the objectives and methodologies used in the following chapters. It then reviews the main 

methods for the production of NC materials and the microstructure’s role in mechanical 

and tribological behaviour of these materials. This chapter also presents examples of 

biological systems in which friction, adhesion and wettability are controlled through 

adaptation of specific surface textures. 

Chapter 2 characterizes friction and wear mechanisms of an NC Ni in comparison 

with an MC Ni, to understand the micromechanisms responsible for the NC Ni’s 

tribological behaviour. Coefficients of Friction (COF) and wear rates are measured in 

ambient air and argon environments using a pin-on-disc tribometer. The role of the oxide-

rich tribolayers in the friction and wear mechanism of this NC metal is delineated, and 

microscopic processes leading to generation of wear debris and surface damage in 

different testing environments are characterized in detail. 

The sliding-speed dependence of the COFs and the wear rates of the NC Ni and the 

MC Ni studied in Chapter 2 are characterized in Chapter 3. The sliding wear tests are 

performed in an argon environment under a constant normal load but at different sliding 

speeds. Additionally, the deformation behaviour of the NC Ni and the MC Ni surfaces are 

studied using a nanoindentation system. 
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Chapter 4 reports on the production of NC Ni composite coatings reinforced with 

micro and nanoparticles of SiC. The objective of this chapter is to investigate whether 

SiC particles as reinforcements could improve the high-temperature friction and wear 

properties of NC Ni. The COFs and wear rates of the NC Ni coatings reinforced with the 

SiC particles are measured at 298 and 493 K, using a high-temperature pin-on-disc 

tribometer. The cross-sectional microstructures of the worn surfaces are studied using 

focused ion beam (FIB) and transmission electron microscopy (TEM) techniques. 

Chapter 5 presents a study of the tribological behaviour of NC Co as a metal with a 

lattice structure that differs from that of the NC Ni. The friction and wear properties of an 

NC Co are studied in comparison with an MC Co using pin-on-disc tests in ambient air. 

Chapter 6 details the method developed in this research to produce NC Ni films with 

the surface textures similar to those of biological systems. The objective of this chapter is 

to produce hard replicas of certain biological surfaces to reduce or control the friction. 

For this purpose, two types of biological surface textures (i.e., a lotus leaf and a boa’s 

skin) are replicated on a cellulose acetate film, on which an NC Ni coating is 

electrodeposited to obtain self-sustaining replicas of the biotextures. The frictional 

properties of the NC Ni lotus leaf replicas are measured using a pin-on-disc tribometer. 

The COFs of the NC Ni snake skin replicas are measured using an instrumented 

microscratch tester with a Rockwell-type diamond indenter tip. 

Chapter 7 explains the fabrication of biotextured NC Ni films with superhydrophobic 

and low friction surfaces. NC Ni replicas of lotus leaf are produced using replication and 

electrodeposition methods described in Chapter 6. A short-duration, secondary 

electrodeposition process is used to modify the morphology of the protuberances, 
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followed by a perfluoropolyether (PFPE) solution treatment. Water contact angles and 

COFs of the textured films are measured and compared to those of smooth NC Ni 

surfaces. 

The final chapter of this dissertation, Chapter 8, is a summary of the preceding 

chapters and the main conclusions arising from this dissertation. 
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2. NANOCRYSTALLINE MATERIALS 

2.1. Production of Nanocrystalline Materials 

NC materials can be produced using a large number of methods that include 

electrodeposition, severe plastic deformation (SPD), crystallization of amorphous solids, 

consolidation of nanopowders, physical vapour deposition (PVD) and chemical vapour 

deposition (CVD). Among these methods, electrodeposition and SPD techniques are 

widely used in the production of dense NC metals. 

 

Electrodeposition 

Electrodeposition can be used to produce NC metals with a controlled grain size [10]. 

The processing parameters for this method include the electrolyte’s basic chemical 

composition, the addition of grain nucleators, stress relievers and grain-growth inhibitors, 

the PH value, the deposition temperature, the current density, and the type of current 

cycles [10,11]. 

Electrodeposition can be used with conventional or modified electroplating baths to 

produce large parts with sufficient thickness in hours. The specimens produced by this 

method are fully dense, and their textures can be controlled through the process 

parameters. It is a relatively inexpensive, room-temperature technology that can easily be 

developed for mass production [12]. 

The main disadvantage of this method, however, is the limited thickness of the 

products that results from deposit peeling prompted by accumulated stress [12]. 
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Severe Plastic Deformation 

Very large deformations can be obtained by using SPD methods at relatively low 

temperatures [13], which create complex stress states, straining patterns and dislocation 

configurations, in addition to high densities of the geometrically necessary dislocations 

that lead to grain refinement [8]. 

High pressure torsion (HPT), equal channel angular pressing (ECAP), and 

accumulative roll-bonding (ARB) are the best-known methods for providing large plastic 

deformations and nanostructure formations. Schematics of these techniques are presented 

in Figures 1a-c. For many metals, these methods can lead to grains as fine as 20 nm and 

dislocation densities as high as 5×1014 m-2 [14]. 

An NC surface layer can be produced without affecting bulk properties, by limiting 

the extent to which plastic deformation is applied to a material’s surface. The techniques 

employed to achieve this goal are generally referred to as surface nanocrystallization, and 

include ultrasonic shot peening (USSP) [15], surface mechanical attrition treatment 

(SMAT) [16,17], and friction thermomechanical processes (FTMP) [18]. 

Lu et al. [17] placed spherical steel balls with smooth surfaces and a diameter of 8 

mm into a reflecting chamber that was oscillated by a vibration generator. The system’s 

high frequency (20 kHz) means that the surface is impacted by a large number of flying 

balls over a short period of time (Figure 2a). The repeated, multidirectional impacts 

impose complex stress states at high strain rates onto the sample’s surface, and cause 

severe plastic deformations that induce grain refinement in the entire surface. According 

to their observations, the SMAT treatment provides an effective approach for forming a 

nanostructured layer on metallic surfaces. 
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Shinoda et al. [18] modified the surfaces of some Al alloy castings using an FTMP 

technique, in which a non-consumable rod is forced against the specimen’s surface while 

rotating (Figure 2b). The frictional force introduces stress into the surface, and the 

frictional heat makes it plasticise. As a result, the microstructure is refined due to 

dynamic recrystallization. According to their observations, the porosity in the modified 

layer was completely removed, the segregation of Cu and Si was considerably reduced, 

and the hardness of the surface layer increased due to grain refinement during the FTMP. 

 

2.2. Microstructure of Nanocrystalline Materials 

Microstructure of Nanocrystalline Metals Produced by Electrodeposition 

Finer microstructures and higher dislocation densities can be obtained through 

electrodeposition, compared to SPD techniques [19]. Depending on the application of the 

NC material, it is possible to modify the processing parameters to enhance the 

microstructural characteristics. For example, instead of adding grain refiners like 

saccharin, which usually results in a high concentration of sulphur in the deposits [20], it 

is possible to prevent grain growth by rotating the substrate at a high speed [21]. 

Electrodeposited NC metals and alloys are usually textured, and contain microstrain 

in their crystalline lattice [21]. The texture mainly depends on the composition of the 

material and the processing parameters, such as the type of current cycle [21]. In contrast, 

the microstrain is proportional to the deposit thickness [12]. These microstructural 

features can be measured using X-ray diffraction (XRD) technique [22]. 

The relationship between the crystalline structures of the electrodeposited NC 

material and the substrate is another factor that influences the microstructure and the 
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grain morphology [23]. For example, the slight mismatch between the lattice constants of 

Cu (substrate) and Ni (deposit) produces a characteristic lamellar structure that consists 

of micro-twins within the grains [23]. No micro-twins have been observed in 

electrodeposited Ni or Cu on a Ti substrate, because the lattice constants and crystal 

structure of the deposits and substrate are so different [23]. Figure 3 shows the 

microstructure of an electrodeposited NC Ni sample [19]. 

 

Microstructural Evolution in Severe Plastic Deformation Methods 

Lloyd et al. [24] investigated the structure of some heavily cold-worked Al alloys, 

and observed the evolution of a subgrain structure as they increased the strain in the 

studied alloys. According to their report, the subgrain size decreased sharply up to a 

strain of 1.0, and then more slowly over the subsequent strain range. Figure 4 shows the 

variation in the subgrain diameter with strain in different Al alloys. They also reported a 

misorientation in the range of 2-20 degrees across subgrains at the largest strains (2.5), 

but did not present a detailed analysis of the misorientation distribution with strain. 

Heilmann et al. [25] employed a block-on-ring test configuration to determine the 

orientation of subsurface cells generated by sliding in Cu. They observed large plastic 

strains and large rotation angles in subsurface cells after very short sliding distances. 

According to their report, after a sliding distance of 12 m (100 cycles) under a normal 

load of 66.6 N and at a sliding speed of 1 cm/s, a substructure of elongated cells 

containing crystallites as small as 3-30 nm formed in the region immediately under the 

surface, but the authors did not present a theory that explains the formation of these ultra-

fine crystalline particles. As the depth increased, cell sizes became larger, cell walls 
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became wider, misorientation between the adjacent cells decreased, and dislocation 

networks appeared within the cells. They also observed and measured the rotation of the 

cells (as a result of surface deformation) around an axis normal to the sliding direction 

and parallel to the interface. The cell rotation was maximum at the interface, and 

increased as the number of sliding cycles increased. Figure 5 shows the cell rotation as a 

function of the subsurface depth after 1 cycle, and then after 100 cycles of sliding [25]. 

It has been suggested that high strains introduce a lamellar or subgrain structure with 

boundaries of different misorientation angles [26]. Experiments have shown that 

deformation-induced, high-angle boundaries are common to a diverse set of materials and 

conditions [27]. A detailed description of the microstructural evolution during SPD of 

metals has been presented by Hughes et al. [27]. They employed convergent beam 

Kikuchi patterns to assess the orientations of individual crystallites, and found that the 

ratio of the deformation-induced, high-angle boundaries to the original grain boundaries 

was significantly large. 

Figure 6 provides a schematic drawing of grain subdivision in small and large strains 

[27]. According to this figure, increasing the strain prompts dislocation boundaries to 

evolve from a typical cell block structure into a lamellar structure that is oriented in the 

direction of material flow. Continued deformation leads different slip system 

combinations to operate within each original grain, resulting in dislocation accumulation 

processes. As a result, complex dislocation boundaries form, and grains subdivide into 

regions with different texture components [27]. Increasing the strain leads to the rotation 

of these small individual crystallites towards the preferred end textures [28]. Since the 

preferred end textures differ by very large misorientations, this process can lead to the 
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formation of high-angle boundaries. Therefore, grain subdivision followed by texture 

evolution can result in a large fraction of high-angle boundaries in a severely deformed 

metal, which produces a deformation-induced grain refinement [27]. 

Figure 7a shows a TEM micrograph of the dislocation microstructure developed 

during cold rolling in pure Ni. A well-developed structure of lamellar boundaries and cell 

blocks has formed after a 90% cold reduction [29]. Figure 7b shows a schematic drawing 

of a large-strain dislocation structure that features sheets of extended lamellar boundaries 

(LB) with incidental dislocation boundaries (IDB) bridging between them [29]. 

 

2.3. Properties of Nanocrystalline Materials Influencing Tribological Behaviour 

Strength, Ductility and Strain-Rate Sensitivity 

Since the early works of Hall [30] and Petch [31], experiments have shown that 

reducing the grain size of metals and ceramics increases their yield strength, according to 

the well-known Hall-Petch equation: 

5.0
0

−+= kdy σσ  (1) 

where σ0 is the lattice frictional stress, d is the grain size, and k is a constant for the grain 

boundaries’ contribution to the strength. 

Since the hardness (H) is related to the yield strength (σy) of the material, by [32]: 

yH σ3=  (2) 

a similar relationship can be expected between the hardness and grain size of 

polycrystalline materials. 

Farhat et al. [6] produced NC Al coatings with grain sizes in the range of 15-100 nm, 

using an RF magnetron sputtering technique. They observed that the relationship between 
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the hardness and the grain size of the NC Al obeyed the Hall-Petch equation, much like 

other polycrystalline materials. More specifically, the grain boundaries continued to 

contribute to the material’s strength, even down to grain sizes as small as 15 nm. Other 

studies [33-36] on the hardness of NC materials have shown an increase in hardness by a 

factor of 5-7 when the grain size decreased from the micrometer range to the nanometer 

range. However, the Hall-Petch relationship is only valid down to a critical grain size of 

about 14 nm [33,37]. Below this critical grain size, each grain cannot contain more than 

one dislocation, and therefore the dislocation pile up mechanism is not applicable [37]. 

Therefore, the mechanical properties of NC materials are mainly controlled by the grain-

boundary-induced deformation mechanisms rather than by the plasticity of the crystals 

due to dislocation movement [38,39]. It is also important to note that the strength of 

nanostructured materials is determined not only by crystallite size, but also by 

misorientation across the crystallite boundaries [40]. 

Since microstructural refinement leads to a great improvement in a material’s 

hardness, one can expect an improvement in the wear resistance as well, according to 

Archard’s law of wear [41]: 

H
PKW =  (3) 

where W is the volume of material worn per unit sliding distance (wear rate), P is the 

applied load, H is the hardness, and K is the wear coefficient. The literature has 

thoroughly documented that both the coefficient of friction (COF) and the wear rate are 

lower in specimens with higher surface hardness values [16,37,42], because as the 

surface hardness increases, the plastic deformation and microplowing are considerably 
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reduced so that the contacting solids can slide with a reduced amount of energy 

expenditure [16,42]. As a result, both the COF and the surface damage decrease. 

While, the COF peak and the severe wear rate at the initial stage of sliding are usually 

higher in softer materials, the steady-state COF and wear rate are less sensitive to the 

hardness of the original surface, because the formation of hard tribolayers increases the 

surface hardness at the later stages of sliding [43,44]. 

NC materials often exhibit low tensile ductility at room temperature, which limits 

their applications, but experiments have shown that NC materials with high tensile 

ductility can be produced using the SPD techniques [8,39]. For example, a 30% uniform 

elongation and 65% elongation to failure were observed when samples of pure Cu were 

subjected to a special thermo-mechanical treatment (Figure 8) [8]. This treatment resulted 

in a bimodal grain size distribution with microcrystalline (MC) grains embedded inside a 

matrix of NC grains. According to the Hall-Petch relationship, the NC matrix provides 

the high strength of the material [42,45]. Meanwhile, the MC grains induce strain 

hardening mechanisms [46,47] that lead to a high tensile ductility. 

Zhang et al. [39] measured the tensile ductility of NC Zn, and reported a relatively 

high tensile ductility compared to an MC Zn. According to their report, the high tensile 

ductility probably originated from the strain accumulating potential of the larger grains, 

and the grain boundary sliding mechanism of the smaller grains. They suggested several 

possibilities for enhancing tensile ductility, including increasing strain hardening and 

strain-rate sensitivity, activating other deformation mechanisms like twinning or stacking 

faults, and inducing grain boundary sliding to prevent the formation of pores along the 

grain boundaries and triple junctions. 
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Surface ductility is an important factor in determining the wear resistance of a 

material [48]. It is widely accepted that delamination wear is usually associated with 

subsurface crack propagation [49]. Alpas and Embury [50] reported that crack initiation 

and propagation along the shear bands was the main mechanism of delamination wear in 

ductile materials. This mechanism can play an important role in the wear behaviour of 

NC materials produced by the SPD methods, because shear bands form during the 

microstructural evolution in these materials [27]. 

Plastic deformation mechanisms in NC materials, include grain boundary sliding and 

dislocation emission at grain boundaries [22,51-53]. Since these mechanisms are time-

dependent, the deformation of NC materials becomes increasingly difficult at higher 

strain rates, leading to notable enhancements in yield strength [54-58]. An increase in the 

sliding speed is expected to cause an increase in the rate of the application of the shear 

strain to the contact surface. This suggests that a slight change in sliding speed may have 

a great influence on the tribological properties of NC materials. The role of sliding speed 

on the friction and wear behaviour of NC Ni is explored in Chapter 3. 

 

Surface Oxidation and Thermal Instability 

NC materials have a larger density of grain boundaries that act as preferential 

nucleation sites for oxides and provide preferential diffusion paths for oxygen [59]. As a 

result, NC materials are expected to possess higher rates of surface oxidation. Therefore, 

surface oxidation during sliding wear may play a substantial role in tribological 

behaviour of NC metals. The role of the testing environment and surface oxidation in the 
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friction and wear mechanisms of electrodeposited NC Ni and NC Co is discussed in 

Chapters 2 and 5. 

In spite of their higher oxidation rates, NC materials usually display a lower average 

corrosion rate, as they are less susceptible to localized intergranular corrosion and pitting, 

compared to their MC counterparts [59-63]. It has been suggested that [60] the large 

density of grain boundaries in NC materials reduces the distance between the anodic 

(grain boundary) and the cathodic (grain interior) sites, resulting in lower localized 

corrosion potentials, and hence, a more uniform corrosion and passivation of the surface. 

NC materials generally possess a low thermal stability [64,65]. This property 

originates from the large amount of energy stored in the microstructure of these materials, 

which becomes a driving force for recovery and recrystallization at elevated 

temperatures. This restricts the tribological applications of NC materials to low-

temperature environments, as well as low-to-medium sliding speed range where the 

surface temperature is below the temperature at which the material becomes thermally 

instable. The thermal stability of NC materials can be improved by annealing the material 

below its recrystallization temperature, solid solution strengthening, and precipitation 

strengthening [64,66]. Effect of thermal instability on the friction and wear behaviour of 

electrodeposited NC Ni is discussed in Chapter 4, where it is shown that the high-

temperature wear resistance of NC Ni could be improved through dispersion 

strengthening mechanism, using SiC nanoparticles as reinforcements. 
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3. TRIBOLOGICAL PROPERTIES OF BIOLOGICAL SYSTEMS RESULTING 

FROM SURFACE TEXTURE 

The properties mentioned in Section 2.3 have significant effects on the tribological 

behaviour of a smooth NC surface. In this section, the tribological properties of 

biological systems with much softer surfaces and the effects that various surface textures 

have on them are explored. These surface textures display similar effects if applied to 

hard NC systems, as discussed in Chapters 6 and 7. 

 

3.1. Low-Friction Surfaces 

Shark skin is a good example of biological surfaces that maintain a low friction with 

the surrounding environment. The surface texture of shark skin reduces the turbulence of 

water in the solid/fluid boundary, resulting in a reduction in the friction between the 

water and the shark’s body. Figure 9 shows the surface texture of a shark skin [67]. The 

skin consists of hard, tooth-like scales with spines that point backward. The surface of 

these small scales is covered with microscale grooves that lie parallel to the longitudinal 

body axis. This special structure allows water to flow along the shark’s body with 

minimum friction, and it reduces the adhesion of marine species to the skin [68]. 

Based on the structure of shark skin, industrial applications have been developed to 

decrease drag resistance in airplanes and boats. For example, applying a vinyl tape with 

tiny v-shaped grooves to the surface of airplane and boat hulls can alter the character of 

the air and water flow inside the boundary layer, resulting in a reduction in the friction 

[67]. 
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3.2. High-Friction Surfaces 

Increasing Friction by Utilizing van der Waals Forces 

The gripping foot of a gecko is probably the best biological example for utilizing van 

der Waals forces. Capable of climbing smooth vertical surfaces, the gecko has about 

5×105 keratinous hairs (setae) on each foot. Each seta has a length of 30-130 μm and 

features hundreds of pads at its end (Figure 10a) [69,70]. 

Autumn et al. [70] studied the adhesive force of a single gecko foot-hair, and 

concluded that hundreds of pads at the end of each seta interact on a molecular level with 

any surface. This creates a strong adhesion as a result of van der Waals forces. The gecko 

releases its foot by peeling off the hairs at a critical angle. 

Based on the gecko’s mechanism for increasing friction, Geim et al. [71] developed a 

microfabricated polyimide dry adhesive (Figure 10b). The surface of this material is 

covered by submicron, aligned posts that simulate the keratinous hairs on a gecko’s foot. 

 

Increasing Friction by Utilizing Mechanical Interlocking 

Many biological systems employ mechanical interlocking mechanism to increase 

adhesion and friction. This mechanism is found in various types of barbs and hooks [67]. 

The wing-locking devices in tenebrionid beetles are good examples of surfaces that 

use this mechanism to increase the friction (Figure 11a) [72]. Examples of possible 

interlocking mechanisms used by beetles are shown in Figure 11b [72]. 
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3.3. Surfaces with Anisotropic Frictional Properties 

In the evolutionary process, some moving organisms have been optimized to 

minimize friction at one end of the system while maximizing it at the other end [67]. 

Anisotropic interlocking is an important mechanism employed by some biological 

systems to control frictional forces in different directions. The pad of a cricket’s foot that 

attaches this insect to a variety of surfaces is a good example of natural surfaces that 

utilize the anisotropic interlocking mechanism. Scherge et al. [9] carried out a 

comprehensive study on the attachment pads of cricket. Figure 12a shows SEM 

micrographs of the surface and the cross-section of the pad [9]. The micrographs reveal 

that the angle between the pad surface and the direction of its hairs is less than 90º, 

making the friction between the pad and various surfaces anisotropic. This is better 

understood by considering Figure 12b, which shows the shape of the pad in static 

conditions, and during motion in proximal and distal directions [67]. It should be noted 

that the anisotropy in this system increases when normal load increases [9]. In addition, 

the flexibility of the pads enables them to adapt quickly to any surface profile [9]. Figure 

12c shows how a combination of flexibility and orientation forms a self-mating 

mechanical contact that creates an anisotropic interlocking mechanism. 

The nanoscale design of snake skin is another biological example that uses an 

anisotropic interlocking mechanism to adjust the friction in different directions [73]. In 

this example, ordered directional texture causes a frictional anisotropy that enhances 

forward motion while simultaneously serving as an effective halt to backward motion. As 

Figure 13 [73] shows, this frictional anisotropy in forward/backward motions is a result 

of the asymmetric shape of the fibre ends on snake skin. On the other hand, sharp micro-
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obstacles cannot prevent forward motion because of the high flexibility of the 

microfibrils [73]. 

The fabrication of an NC Ni replica of a snake skin is described in Chapter 6. This 

type of structure may have potential applications in engineering systems, where a range 

of different COF values in various directions in needed. 

 

3.4. Superhydrophobic Surfaces 

Superhydrophobicity is critical to the survival of many insects. Some insects, like 

butterfly [74] and cicada [75], use superhydrophobicity to keep their wings dry and clean. 

Other insects, like the water strider [76], have superhydrophobic legs that enable them to 

support themselves on the surface of the water. The hierarchical structure of a water 

strider’s leg, with its numerous oriented microsetae, is shown in Figure 14a. Each seta 

has a nanoscale grooved surface texture, as seen in Figure 14b. This multilevel surface 

texture allows the water strider to entrap a very high fraction of air at the leg/water 

interface. This interfacial air cushion prevents the legs from becoming wet, and helps the 

insect to overcome the gravity. 

Plant leaves provide the best-known examples of water-repellent surfaces in nature. 

The ability to remove water from its surface cleans the leaf, and minimizes the risk of 

infection to the plant [68]. One of the most-studied examples of this phenomenon is the 

lotus leaf. Similar to a water strider’s leg, the lotus leaf has a multilevel surface 

roughness. The surface of this leaf is composed of microscale protuberances as shown in 

Figure 15a. Each protuberance, in turn, is covered with a nanoscale, needle-like structure 

that is shown in Figure 15b. This structure entraps a high fraction of air beneath the water 
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droplets, creating a surface with a water contact angle greater than 150° [77]. A more 

detailed account of the wettability principles is presented in Chapter 7, where the 

fabrication of an NC Ni lotus leaf replica with a superhydrophobic surface and low COF 

is also described. 
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FIGURES 

 

  
(a) (b) 

 

 
(c) 

 

Figure 1. (a) Schematic illustration showing the principle of HPT process. (b) Schematic 

illustration showing the principle of ECAP process. (c) Schematic illustration showing 

the principle of ARB process. 
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(a) 

 

 
(b) 

 

Figure 2. (a) Schematic illustration of the SMAT process set-up and the repeated 

multidirectional plastic deformation in the sample’s surface layer [17]. (b) Schematic 

illustration of FTMP for surface modification [18]. 
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Figure 3. Microstructure of electrodeposited NC Ni sample [19]. 
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Figure 4. Variation in the subgrain diameter with strain in some Al alloys [24]. 
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Figure 5. Rotation of cells in Cu as a function of depth bellow the wear surface after 1 

cycle and 100 cycles of sliding [25]. 
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Figure 6. Schematic drawing of grain subdivision in small and large strains. DDW 

represents dense dislocation walls [27]. 
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(a) 

 

 
(b) 

 

Figure 7. (a) TEM micrograph of the dislocation microstructure developed during cold 

rolling in pure Ni. Viewing plane is ND/RD section. The rolling direction is marked RD 

[29]. (b) Schematic drawing of a large strain dislocation structure showing sheets of 

extended LBs with IDBs bridging between them. High-angle LBs are represented by 

thick lines. Intercept spacings of LBs (DGNB) and of cell boundaries (DIDB) are shown 

[29]. 
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Figure 8. Stress-strain curves for pure Cu. A: annealed; B: 95% room-temperature rolled; 

C: 93% liquid-nitrogen-temperature rolled; D: the same as C but heat treated in 180 ºC 

for 3 min; E: the same as C but heat treated in 200 ºC for 3 min [8]. 
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Figure 9. Grooved pattern of the shark skin surface [67]. 
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(a) 

 
(b) 

 

Figure 10. (a) Microstructure of the hairs in gecko’s foot [70]. (b) SEM micrograph of 

microfabricated polyimide dry adhesive by Geim et al. [71]. 



 35

  
(a) 

 

 
(b) 

 

Figure 11. (a) SEM microstructure of the surfaces of the wing-locking devices in 

tenebrionid beetles [72]. (b) Examples of possible interlocking mechanisms between 

surfaces covered by microtrichia in beetles [72]. 
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(b) (c) 

 

Figure 12. (a) SEM micrographs of the surface and the cross section of the pads of cricket 

[9]. (b) Shape of the pad in static conditions (top) and during the motion in proximal and 

distal directions [67]. (c) Formation of anisotropic mechanical interlocking as a result of 

flexibility and orientation [67]. 
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Figure 13. 3D topography of the skin of carpet python [73]. 
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(a) 

 
(b) 

 

Figure 14. (a) The hierarchical structure of a water strider’s leg with numerous oriented 

microsetae. (b) Each seta has a nanoscale grooved surface texture [76]. 
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(a) 

 
(b) 

 

Figure 15. (a) Microscale protuberances on the surface of a lotus leaf. (b) Each 

protuberance is covered with a nanoscale needle-like structure. 
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CHAPTER 2 

FRICTION AND WEAR MECHANISMS OF NANOCRYSTALLINE 

NICKEL IN AMBIENT AND INERT ATMOSPHERES 

 

1. INTRODUCTION 

Nanocrystalline (NC) metallic materials are normally characterized by high strength 

and hardness but limited ductility [1-4]. These properties are generally attributed to the 

large volume fraction of grain boundaries inhibiting the mobility of dislocations [5-7]. 

For example, when the grain size of Ni was reduced from 15 μm to 12 nm its hardness 

was reported to increase from 0.9 GPa to 6.9 GPa [8, 9]. The increase in strength and 

hardness that accompanies grain refinement is of interest from the tribological point of 

view, in particular for the design of new materials and surfaces with improved wear 

resistance. Farhat et al. [10] tested magnetron sputtered NC Al using a pin-on-disc 

tribometer. In ambient air, an 80% reduction in the wear rate and a 60% reduction in the 

peak coefficient of friction (COF) of the 15 nm grain size Al were measured compared to 

an Al with a grain size of 1 mm. In the grain size (d) range of 15-100 nm where Hall-

Petch type strengthening [11, 12] was observed, the wear rate (W) of the NC Al was 

found to be proportional to the applied load (P) consistent with the Archard’s law [13], 

and obeyed the following equation [10]: 

⎥
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On the other hand, for electrodeposited NC Ni subjected to abrasion tests it was 

reported that the breakdown in Hall-Petch hardening at d = 12 nm was accompanied by a 
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change in the wear mechanism [9]. Schuh et al. [9] also compared scratch resistance of 

Ni samples with grain sizes of 12 nm and 15 µm. No change in the COF was observed 

during the nanoscratch tests performed using a Berkovich type indenter, and a COF of 

0.25 was measured for both samples. Jeong et al. [14] investigated the abrasive wear 

resistance of electrodeposited NC Ni coatings in ambient air and found that a 44% 

increase in the wear resistance occurred for Ni with d = 13 nm compared to Ni with d = 

90 µm. On the contrary, Mishra et al. [15] reported COF values of 0.16 and 0.29 for 

electrodeposited NC Ni coatings with d = 8 nm and 10 nm, respectively, and a COF of 

0.62 for a microcrystalline (MC) Ni with d = 61 µm. 

There is clearly a need for further experimental work to characterize 

micromechanisms of wear in NC metallic materials, and to rationalize microscopic 

processes leading to generation of wear debris or surface damage. In examining the wear 

behaviour of NC materials attention should be given to the role of testing atmosphere as 

the wear rates depend on the environmental conditions to which a material is subjected. 

The NC materials have a larger density of grain boundaries that act as preferential 

nucleation sites for oxides [16]. Grain boundaries also provide high diffusion paths for 

oxygen, and thus, the role of surface oxidation during sliding wear and its effects on wear 

damage is of interest. In this work, the role of the testing environment in the initial and 

steady-state wear behaviour of an NC Ni was studied by performing sliding wear tests. 

Tests were performed in ambient air and argon atmospheres. The wear rates and COF 

values measured for the NC Ni were compared with those of an MC Ni sample tested 

under the same environmental conditions. Metallographic and profilometric studies were 
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performed to delineate the differences between the wear mechanisms in NC and MC Ni 

under different testing environments. 

 

2. EXPERIMENTAL PROCEDURES 

NC Ni (99.8% purity) in the form of 0.20 mm sheets produced by electrolytic 

deposition were obtained from Goodfellow Cambridge Ltd. (Huntingdon, England), 

England. Mechanical properties of NC Ni have been well studied [4, 17, 18]. Electrolytic 

deposition allows production of NC Ni samples with narrowly controlled grain size 

distribution [19], and with low defect density compared to other NC materials production 

techniques [20]. For comparison, Ni foils with 99.98% purity and a thickness of 0.25 mm 

were obtained from the same supplier and subjected to the wear tests. The grain size of 

this material, referred as MC Ni, was 20±5 µm. 

In order to determine their grain size, the Ni samples were examined by X-ray 

diffraction (XRD) using Cu Kα radiation. XRD patterns of the MC Ni and NC Ni are 

shown in Figures 1a-b. The MC Ni had a (200) preferential orientation, because this 

sample was produced by rolling and annealing. The (200) texture is more difficult to 

deform compared to a (111) texture, so this sample is expected to display a slightly better 

wear resistance compared to an MC Ni sample without a crystallographic texture. 

The XRD pattern of the MC Ni exhibits narrow diffraction peaks (Figure 1a), 

whereas the NC Ni shows pronounced line broadening effect (Figure 1b). The grain size 

of the NC Ni was determined by measuring the half-peak broadening of the (111) peaks, 

and using [21]: 

( ) cosθBB
λ0.9d 0.52

S
2
M −

=  (2) 
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where λ is the wavelength of the X-ray, θ is the peak angle, BM is the half-peak breadth of 

the (111) peak for a given material, and BS is the instrumental broadening. According to 

Equation 2 the grain size of the NC Ni was d = 13.6 nm. Figure 2 shows a bright field 

transmission electron microscopy (TEM) image of the NC Ni sample, from which the 

grain size was determined as 15±3 nm, in agreement with the XRD measurement. 

Vickers microhardness of the MC Ni was measured as 122±5 HV and that of the NC 

Ni as 519±11 HV using an indentation load of 100 gf. When the microhardness 

measurements were done at a lower load of 10 gf, these values were lower i.e., 117±4 HV 

and 382±12 HV, respectively. The smaller indentation load of 10 gf was used to 

determine the microhardnesses of the wear tracks formed on the contact surfaces of the 

samples during sliding wear. 

A pin-on-disc type tribometer was used for the wear tests under unlubricated sliding 

conditions in ambient air (with 35% relative humidity), and in a dry argon atmosphere 

(less than 0.2% relative humidity). For the tests in argon, the argon flow rate was about 

10-3 m3/s. The pin-on-disc tests were conducted under a constant normal load of 2 N and 

at a constant sliding speed of 0.1 m/s. An alumina, Al2O3, ball (H = 1,900±40 HV) of 

3.18 mm diameter fixed to the end of the pin was used as the counterface. Prior to friction 

and wear tests, contact surfaces of the Ni samples were polished using 6, 3 and finally 1 

µm diamond suspensions. 

After the wear tests, the morphologies and composition of the wear tracks were 

investigated by an optical microscope, an optical surface profilometer and a scanning 

electron microscope (SEM) equipped with an energy dispersive spectroscope (EDS). The 
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volumetric wear losses (V) were measured according to the procedure given in ASTM 

standard G99 [22] using the following equation: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= − 2212 w4r

4
w

2r
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where R and w are the radius and the width of the wear track, and r is the radius of the 

counterface ball (see Appendix A for the procedure used to measure the width of the 

wear track). The wear rates were computed from the slopes of volume loss vs. sliding 

cycle curves. 

 

3. RESULTS AND DISCUSSION 

3.1. Friction and Wear Rates under Ambient Atmospheric Conditions 

Variations in the COF with the sliding cycles for the MC Ni and NC Ni tested in 

ambient atmosphere are shown in Figures 3a,b, respectively. The general trend of both 

curves was similar: COF increased rapidly at the beginning of the tests reaching a peak 

(COFp), and then decreased to a lower steady-state value (COFss). The COFp was 

0.71±0.03 for the MC Ni and 0.58±0.06 for the NC Ni (18% lower than the COFp of the 

MC Ni). In the MC Ni, the COFp appeared after 20-25 cycles. In the NC Ni, however, it 

took 50-55 cycles to observe the peak. 

During the initial contact on the surface high contact stresses are expected to occur. 

The Hertzian stresses for the testing geometry can be estimated using [23]: 

3
22H CD

P0.918σ =  (4a) 

where P = 2 N is the applied normal load, D = 3.18 mm is the counterface ball diameter 

and C is the effective elastic modulus defined as: 
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Although a slight decrease in elastic modulus of Ni was reported at grain sizes smaller 

than 18 nm [24], the elastic moduli of MC Ni and NC Ni do not differ much [4]. Also, 

Poisson’s ratio is insensitive to changes in microstructure [4]. The effective elastic 

modulus (C) is calculated using Equation 4b and using E1 = 200 GPa and ν1 = 0.31 for 

both MC Ni and NC Ni, and E2 = 350 GPa and ν2 = 0.24 for Al2O3. Accordingly, the 

initial (elastic) contact pressure was σH = 1.56 GPa. This is about four times higher than 

the yield strength of the MC Ni estimated at σy = 0.40 GPa from the bulk hardness (H) as 

σy = H/3 [10]. Therefore, indentation by the counterface ball is expected to cause plastic 

deformation during the initial contact of the counterface to the surface of the MC Ni. The 

indentation-induced plastic deformation is the possible cause of the occurrence of the 

large COF peak in the MC Ni. For the NC Ni with an estimated σy = 1.70 GPa, the initial 

contact is not likely to induce plastic deformation at the same load (2 N). As will be 

shown by the metallographic evidence presented in Section 3.2 ploughing and scratching 

of the contact surface by the counterface was responsible for the initial wear of the NC 

Ni. Compared to the indentation plastic deformation induced on the surface of the MC Ni 

the damage caused by ploughing was less extensive. As a result, COFp was lower in the 

NC Ni compared to the MC Ni. 

About 100 sliding cycles were needed for the samples to reach steady-state COF 

values. The steady-state COF values of the MC Ni and NC Ni were similar, i.e., COFss = 

0.43±0.06 for the MC Ni, and COFss = 0.41±0.05 for the NC Ni. 
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Volumetric wear loss vs. sliding cycles curves for both samples tested under the 

ambient atmosphere are shown in Figure 4a. For the MC Ni, initially, the volume loss 

increased rapidly, but then the slope of the curve decreased and a steady-state condition 

was reached at longer cycles. In the NC Ni the initial high wear rate period was much less 

noticeable. 

It is important to note the low wear rates in the NC Ni both during the initial and 

steady-state stages of the sliding wear. While the MC Ni initially showed characteristics 

of severe wear, the wear rates of the NC Ni were low during the initial and the steady-

state stages of wear. A better comparison of wear rates can be made using the data shown 

in  Figure 4b where the instantaneous wear rates of the MC Ni and NC Ni are plotted. 

The instantaneous wear rates (W) were defined as: 

⎟
⎠
⎞

⎜
⎝
⎛=
ΔN
ΔV

πR2
1W  (5) 

where ΔV is volume loss within an interval of ΔN sliding cycles. The initial wear rates 

(at 4 sliding cycles) were Wi (MC) = 7.88×10-3 mm3/m and Wi (NC) = 0.16×10-3 mm3/m, 

and the steady-state wear rates were Wss (MC) = 0.13×10-3 mm3/m and Wss (NC) = 

0.03×10-3 mm3/m. Consequently, after 4 sliding cycles, the volume loss from the NC Ni 

surface was as low as 2 % of that of the MC Ni. In the steady-state stage the wear rate of 

the NC Ni was 20% of that of the MC Ni. 

 

3.2. Wear Tracks Developed during Initial and Steady-State Stages of Wear under 

Ambient Atmospheric Conditions 

According to the surface profilometry image in Figure 4c, after 8 sliding cycles, a 

relatively wide wear track with a width of w = 106 μm was formed on the MC Ni sample 
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as a result of indentation plastic deformation. Some plastically deformed material within 

the wear track were displaced sideways and formed the pile-ups on both sides of the wear 

tracks as shown in Figure 4c. Optical micrograph showing the wear track during the 

initial wear is given in Figure 5a. After 103 sliding cycles, the wear track became wider 

(w = 160 μm), and darker in appearance due to surface oxidation (Figure 5b). The wear 

track also appears rougher in the steady-state condition (Figure 4d). At the edge of the 

wear track fragmented material pieces (microchips) were formed, creating a morphology 

that was different than the track edge morphology characterized by material pile-up 

during the initial sliding process.  The change in morphology to microchip formation 

indicates transition to more brittle type of wear during the steady-state wear, which may 

be attributed to the reduction of the ductility of the material as a result of work hardening 

during sliding. The SEM micrograph illustrating the morphology of the microchip-type 

wear debris at a higher magnification is shown in Figure 5c, and the EDS spectra in 

Figure 5d indicates that the worn surface of the MC Ni became oxidized during steady-

state wear. 

Morphologies of the wear tracks formed on the NC Ni samples after testing them in 

air to 8 and 103 sliding cycles are shown in the optical surface profilometry images of 

Figures 4e,f. The width and depth of the wear tracks generated on the worn surfaces of 

the NC Ni were smaller than those of the wear tracks on the MC Ni (also see the optical 

micrographs in Figures 6a,b). After 8 sliding cycles, the width of the wear track, 

consisting of longitudinal surface scratches extending parallel to each other, was 28 μm. 

After 103 sliding cycles, the width of the wear track reached 91 μm, and its roughness 

was increased as well. The SEM micrograph and EDS spectra of the wear track on the 
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NC Ni after 103 sliding cycles (Figures 6c-e) indicate that a tribolayer containing Ni and 

O was formed on the worn surface of the sample. The tribolayer* covered the entire 

surface of the wear track except for a few small areas, where the tribolayer was spalled 

off (labelled as 2 in Figure 6c). These observations confirm that the initial plastic damage 

on the contact surface of the NC Ni was much smaller than that of the MC Ni consistent 

with lower volumetric wear and COFp values. Also, the steady-state surface oxidation in 

the NC Ni was more excessive, with the oxidized tribolayers covering the contact surface 

almost entirely. 

The microhardness of the worn surfaces of the MC Ni and NC Ni were measured 

using a Vickers hardness indenter at 10 gf. The results are shown in Figure 7. During the 

first 8 sliding cycles a 28% increase occurred in the surface hardness of the MC Ni (from 

117 HV to 150 HV), while during the last 800 sliding cycles the increase in the surface 

hardness was only 3% (from 170 HV to 175 HV). This indicates that initial plastic 

deformation was accompanied by the strain hardening of the deformed layers. In the NC 

Ni the worn surface hardness increased from 382 HV to 387 HV during the first 8 cycles 

reflecting the lower capacity of the NC Ni for strain hardening. A significant increase of 

29% in the surface layer hardness of the NC Ni occurred however after 103 sliding cycles 

(Figure 7). But this was due to the formation of an oxidized tribolayer on the worn 

surface. 

                                                 
* This is mainly an oxide layer rather than a mechanically mixed layer. A mechanically mixed 

tribolayer formed on the contact surfaces of the NC Ni reinforced with SiC microparticles as 

shown in Figures 7b,e in Chapter 4. 
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3.3. Friction and Wear Rates under an Argon Atmosphere 

Both the COF values and wear rates of the MC Ni and NC Ni measured under the 

argon atmosphere were higher compared to those measured in air. Similar to the tests in 

air, during the initial stage of sliding in argon, the NC Ni showed lower COFp
Ar

 and wear 

rates than the MC Ni. In the steady-state stage the wear behaviour showed a more 

complex trend as will be described later in this section. 

The variations in the COFs of the MC Ni and NC Ni tested in argon are shown in 

Figures 8a,b. The peak COF values of the MC Ni and NC Ni were observed at 20 cycles; 

COFp
Ar (MC) = 1.14 and COFp

Ar (NC) = 0.77, so that the COFp for the NC Ni was 32% 

lower. About 400 sliding cycles elapsed for the surfaces of the samples to reach the 

steady-state condition, which was 300 cycles longer compared to the ambient 

atmosphere. The steady-state COF of the MC Ni was COFss
Ar (MC) = 0.50±0.05, but a 

higher COF was observed in the NC Ni, i.e., COFss
Ar (NC) = 0.58±0.06. The higher COF 

values generated during the argon tests infer that the ‘protective’ tribolayers generated 

under the ambient testing conditions did not form during the tests in argon. 

Figure 9a compares the variations in volume loss with sliding cycles for the MC Ni 

and NC Ni tested in argon. The shapes of the volume loss curves were similar to those 

obtained in air (Figure 4a), but the volume losses were higher in argon for both samples. 

The initial wear rates of the MC Ni and NC Ni under this testing environment were Wi
Ar 

(MC) = 9.97×10-3 mm3/m and Wi
Ar (NC) = 0.22×10-3 mm3/m (Figure 9b). The steady-

state wear rates were Wss
Ar (MC) = 0.18×10-3 mm3/m and Wss

Ar (NC) = 0.07×10-3 

mm3/m. 

 



 50

3.4. Wear Tracks Developed during Initial and Steady-State Stages of Wear under 

Argon Atmosphere 

In examining the three dimensional optical surface profile of the MC Ni’s wear track 

(Figure 9c), a peculiar feature is noted: initial contact between alumina ball and the MC 

Ni surface has led to the formation of a “peak-and-valley” shape deformation pattern in 

the argon atmosphere, suggesting a stick-and-slip type sliding behaviour. The stick-and-

slip type sliding behaviour resulted in not only a large COFp value but also the initial part 

of the COF curve in Figure 8a was characterized by a large number of oscillations and 

exhibited a serrated friction pattern. The optical micrograph of the wear track of the MC 

Ni tested in argon for 8 sliding cycles is shown in Figure 10a, which is characterized by 

contractions between bulged out sections, where the contractions correspond to the peaks 

in Figure 9c. After sliding to 103 cycles, the width of the wear track became wider and 

the wear track geometry became more uniform and the wear track had straight edges 

parallel to each other (Figure 9d). At this stage of sliding, namely during the steady-state 

condition, the wear track had generally a shiny metallic appearance and was 

characterized by long scratch marks parallel to each other extending in the sliding 

direction (Figure 10b). The SEM micrograph of the wear track obtained after testing to 

103 cycles (Figure 10c) shows the longitudinal scratch marks and damage features that 

were consistent with the surface deformation, but no tribolayer could be observed. As the 

EDS spectra in Figure 10d depicted only elemental Ni, it is concluded that the oxygen 

content of the wear track was below the detection limit of EDS. 

After 8 sliding cycles the width of the wear track on the NC Ni was 32 μm (Figures 

9e and11a) and thus much smaller than that on the MC Ni. The wear track formed on the 
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NC Ni did not exhibit evidence for formation of a peak-and-valley morphology, i.e., no 

stick-and-slip type sliding occurred. After 103 sliding cycles, the width of the wear track 

was increased to 119 μm (Figures 9f and11b). A patchy tribolayer can be seen on the 

optical and SEM micrographs of the worn surface (Figures 11b,c). Although the tests 

have been maintained in argon atmosphere, the test chamber was not completely oxygen 

free. The tribolayer contained a small amount of oxygen (Figure 11d) but the oxygen 

peak is much smaller than that found in tribolayers formed in the ambient atmosphere 

(Figure 6d). The tribolayer was not continuous and exposed sections of the NC Ni can be 

seen in Figure 11c, whose elemental composition are given in Figure 11e. 

After the first 8 sliding cycles in argon, a 21% increase in the surface hardness of the 

MC Ni was measured (Figure 7). On the contrary, no noticeable increase occurred in the 

surface hardness of the NC Ni in the argon atmosphere even after 103 sliding cycles: the 

hardness of the tribolayer formed on the contact surfaces of the NC Ni was significantly 

lower than the hardness of the oxide-rich tribolayer generated in air. 

Surface oxidation has a pronounced effect in controlling the steady-state wear rates 

and COFs. The higher tendency of the NC Ni for oxidation during sliding wear [16] 

along with the continuous coverage of the wear tracks by oxide-rich tribolayers in air 

helped to maintain lower wear rates and COFs during ambient air wear tests. In the 

ambient atmosphere, oxidized debris particles became agglomerated and compacted on 

the top of the wear track, forming a wear protective tribolayer attached to the contact 

surfaces of the NC Ni. It has been proposed that a decrease in partial pressure of oxygen 

in the test environment may lead to an increase in the size of the wear debris particles but 

a decrease in their generation rate [25]. Consequently, under the low oxygen partial 
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pressure condition during the argon tests a discontinuous but thicker tribolayer can be 

expected to form compared to that formed in air. This is consistent with the rougher wear 

tracks generated on the worn surfaces of the NC Ni in argon (Ra = 105 nm) compared to 

those formed in air (Ra = 48 nm). 

 

4. SUMMARY AND CONCLUSIONS 

Friction and wear behaviour of an electrodeposited nanocrystalline (NC) Ni with a 

grain size of 15±3 nm and a hardness of 519±11 HV was studied by paying particular 

attention to role of the testing environment. An MC Ni with a grain size of 20±5 µm and 

a hardness of 122±5 HV was also subjected to the same sliding wear tests. It is instructive 

to summarize the COF values and the wear rates of the MC Ni and NC Ni tested in air 

and in argon in the form of a table for comparison (Table 1), and relate them to the 

surface profiles obtained during initial and steady-state stages of sliding wear. 

Accordingly, the main conclusions of this work are as follows: 

1. In an ambient atmosphere, during the initial stage of wear, the COF of both MC Ni 

and NC Ni reached a peak value (COFp) and then gradually decreased to a constant 

steady-state value (COFss). For the NC Ni COFp (0.58) was 18% lower than that of the 

MC Ni (0.71). The COFss values were comparable to each other, i.e., COFss (MC) = 0.43 

and COFss (NC) = 0.41. The initial wear rate of the NC Ni (Wi (NC) = 0.16×10-3 mm3/m) 

was almost two orders of magnitude smaller than that of the MC Ni (Wi (MC) = 7.88 

×10-3 mm3/m). The steady-state wear rate of the NC Ni (Wss (NC) = 0.03×10-3 mm3/m) 

was 77% lower than that of the MC Ni (Wss (MC) = 0.13×10-3 mm3/m). 
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2. In an argon atmosphere, the peak COF of the NC Ni was 32% lower than that of 

the MC Ni, i.e., COFp
Ar (MC) = 1.14 and COFp

Ar (NC) = 0.77. The steady-state COF 

values for the MC Ni and NC Ni samples were comparable, i.e., COFss
Ar (MC) = 0.50 

and COFss
Ar (NC) = 0.58. Both MC Ni and NC Ni showed higher wear rates in argon 

than in air, but again the initial wear rate of the NC Ni was much lower than that of the 

MC Ni, i.e., Wi
Ar (MC) = 9.97×10-3 mm3/m and Wi

Ar (NC) = 0.22×10-3 mm3/m. Also, the 

steady-state wear rate of the NC Ni was 61% lower than that of the MC Ni. 

3. High initial contact stresses caused plastic deformation of softer surfaces of the MC 

Ni as a result of the penetration of the spherical alumina counterface. This was not the 

case for the NC Ni, for which ploughing of the surface by the counterface was 

responsible for the initial damage. Consequently, the wear tracks of the NC Ni consisted 

of only a small number of shallow surface scratches. The ploughing appeared to have 

occurred as a result of plastic deformation but compared to the plastic deformation 

induced on the surface of the MC Ni, the damage was much less extensive. 

4. The initial mechanical damage mechanisms were the same for both testing 

environments, but testing in an argon atmosphere caused more extensive damage on both 

materials. A stick-and-slip type damage to the MC Ni surface tested in argon was the 

most significant damage observed. 

5. The strain hardening of the MC Ni surfaces and surface oxidation (in ambient 

atmosphere) were among the factors that led to lower steady-state wear rates and COFs 

compared to the initial wear rates and COFs. Oxidation was more prominent in the NC 

Ni. This material did not show noticeable strain hardening during sliding wear. During 
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the steady-state wear in air oxide-rich tribolayers (different morphologies) formed on 

both MC Ni and NC Ni surfaces.  

6. No tribolayer was observed on the contact surfaces of the MC Ni in argon resulting 

in higher steady-state wear rates for the MC Ni. In argon atmosphere, a tribolayer was 

formed on the contact surfaces of the NC Ni, but it was patchy and softer, and had lesser 

oxide content compared to the tribolayer formed in air. The steady-state wear rate of the 

NC Ni in the argon atmosphere was consequently lower than that of the MC Ni tested 

under the same conditions but higher than that of the NC Ni tested in air. 
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TABLE 

Table 1. Wear mechanisms of the MC Ni and NC Ni in the ambient and inert atmospheres. 

Initial Wear Steady-State Wear 
Sample 

Air Argon Air Argon 

    

COF= 0.71 
W= 7.88×10-3 mm3/m 

COF= 1.14 
W= 9.97×10-3 mm3/m 

COF= 0.43 
W= 0.13×10-3 mm3/m 

COF= 0.50 
W= 0.18×10-3 mm3/m 

MC Ni 
122 HV 

Large plastic deformation by indentation of counterface. 
Formation of oxidized surfaces. 
Ploughing of previously deformed 
wear track. 

No tribolayer formation. 
Ploughing of previously deformed 
wear track. 

    

COF= 0.58 
W= 0.16×10-3 mm3/m 

COF= 0.77 
W= 0.22×10-3 mm3/m 

COF= 0.41 
W= 0.03×10-3 mm3/m 

COF= 0.58 
W= 0.07×10-3 mm3/m 

NC Ni 
519 HV 

Small plastic deformation by ploughing. Formation of continuous 
surface scratches. 

Formation of oxidized tribolayers 
on most of the wear track prevents 
ploughing of the surface. 

Formation of discontinuous 
tribolayers with less oxygen 
reduces ploughing of the surface. 
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FIGURES 

 

 
 

Figure 1. The XRD patterns of: (a) the MC Ni, and (b) the NC Ni. 
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Figure 2. A bright field TEM image of the NC Ni. 
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Figure 3. Variations in the COFs of: (a) the MC Ni, and (b) the NC Ni, in air (35% RH). 
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Figure 4. (a) Variations in volume loss with sliding cycles for the MC Ni and the NC Ni 

in air (35% RH). (b) Variations in initial wear rate with sliding cycles under the same 

conditions. (c-f) Corresponding initial and steady-state surface damage profiles as 

marked in (a). 
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Figure 5. (a,b) Optical micrographs of the MC Ni wear tracks formed after 8 and 103 

sliding cycles in air (35% RH). (c) SEM micrograph of the track shown in (b). (d) EDS 

spectra of the area labelled 1 in (c). 
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Figure 6. (a,b) Optical micrographs of the NC Ni wear tracks formed after 8 and 103 

sliding cycles in air (35% RH). (c) SEM micrograph of the track shown in (b). (d) EDS 

spectra of the area labelled 1 in (c). (e) EDS spectra of the area labelled 2 in (c). 
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Figure 7. Microhardness values of the original and worn surfaces of the MC Ni and NC 

Ni after 8, 60, 200, and 103 sliding cycles in the air and argon atmospheres. All 

measurements were made under 10 gf normal load. In the case of the worn surfaces with 

discontinuous tribolayers, the indentation tests were performed on the tribolayers. 
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Figure 8. Variations in the COFs of: (a) the MC Ni, and (b) the NC Ni, in dry argon. 
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Figure 9. (a) Variations in volume loss with sliding cycles for the MC Ni and NC Ni in 

dry argon. (b) Variations in initial wear rate with sliding cycles under the same 

conditions. (c-f) Corresponding initial and steady-state surface damage profiles as 

marked in (a). 
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Figure 10. (a,b) Optical micrographs of the MC Ni wear tracks formed after 8 and 103 

sliding cycles in dry argon. (c) SEM micrograph of the track shown in (b). (d) EDS 

spectra of the area labelled 1 in (c). 
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Figure 11. (a,b) Optical micrographs of the NC Ni wear tracks formed after 8 and 103 

sliding cycles in dry argon. (c) SEM micrograph of the track shown in (b). (d) EDS 

spectra of the area labelled 1 in (c). (e) EDS spectra of the area labelled 2 in (c). 
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CHAPTER 3 

EFFECT OF SLIDING SPEED ON FRICTION AND WEAR 

BEHAVIOUR OF NANOCRYSTALLINE NICKEL TESTED IN AN 

ARGON ATMOSPHERE 

 

1. INTRODUCTION 

The increase in strength and hardness in nanocrystalline (NC) metals [1-4] due to the 

Hall-Petch strengthening [5, 6] may provide an opportunity for designing new materials 

and surfaces with improved wear resistance. Farhat et al. [7] tested magnetron sputtered 

NC Al using a pin-on-disc tribometer, and revealed that in the grain size (d) range of 15-

100 nm the wear rate (W) of the NC Al was proportional to the applied load (P), a finding 

that is consistent with the Archard law [8], and obeyed the following equation at a 

constant velocity [7]: 

⎥
⎦

⎤
⎢
⎣

⎡
+

+= −0.5
0

0 kdH
PKWW  (1) 

where K is the wear coefficient, H0 is the single crystal hardness and k is a constant 

representing “grain boundary strength”. 

The tribological behaviour of NC Ni films has also been studied. Among various 

techniques, electrolytic deposition produces NC Ni films with narrowly controlled grain 

size [9] and low defect density [10]. However, there are discrepancies in the data 

presented in the literature regarding the COF and wear rate of NC Ni, due to the 

differences in testing conditions used. Jeong et al. [11] measured the abrasive wear 

resistance of electrodeposited NC Ni coatings in ambient air using Taber wear testing, 
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and found a 44% increase in wear resistance for an NC Ni with d = 13 nm, compared to a 

microcrystalline (MC) Ni with d = 90 µm. Schuh et al. [12] employed a Berkovich-type 

indenter in ambient air to compare the scratch resistance of NC and MC Ni samples with 

grain sizes of 12 nm and 15 µm in ambient air, but no change was observed in the COF 

during the nanoscratch tests, with the same COF of 0.25 measured for both samples. In 

contrast, Mishra et al. [13] reported distinctly different COF values of 0.16 at d = 8 nm 

and 0.29 at d = 10 nm for electrodeposited NC Ni coatings using a fretting wear tester in 

ambient air. A COF of 0.62 was measured for an MC Ni with d = 61 µm. Wang et al. 

[14] reported that reducing grain size from 3 µm to 16 nm in electrodeposited Ni coatings 

led to a 75% reduction in wear rate and a 19% reduction in COF. A reciprocating pin-on-

disc tribometer operating in ambient air was used in their experiments. 

NC metals have a large density of grain boundaries that act as preferential nucleation 

sites for oxides [15], as well as providing high diffusion paths for oxygen. Thus, in 

studying tribological properties of NC metals, attention must be given to role of testing 

environment. Shafiei and Alpas [16] studied the role of the testing environment on the 

initial and steady-state wear behaviour of an NC Ni with d = 15 nm using pin-on-disc 

wear tests. In ambient atmosphere, the NC Ni showed a 25% lower peak COF, a 27% 

lower initial wear rate, a 29% lower steady-state COF and a 57% lower steady-state wear 

rate when compared to data obtained in an argon atmosphere. They observed that in 

ambient atmosphere, the formation of oxidized tribolayers on top of the steady-state wear 

track prevented the ploughing of the NC Ni’s surface by the counterface. The tribolayers 

formed in the argon atmosphere were discontinuous and had a much lower oxygen 

content, making them less protective than the ones formed in air. 
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The strain-rate sensitivity of NC Ni’s strength and ductility has been observed in both 

computational simulations and experimental investigations [17-21]. The strong strain-rate 

sensitivity of flow stress observed in NC Ni (and also in NC Cu [22-24]), suggests the 

possibility that NC metals are highly sensitive to slight changes in sliding speed, so, 

although hardness is considered to be the main factor in examining the tribological 

performance of NC metals compared to their MC counterparts [11-14, 25], the effect of 

sliding speed on their wear resistance must be studied to achieve a comprehensive 

analysis. This work explores effect of sliding speed on the friction and wear properties of 

electrodeposited NC Ni. 

In studying the effects that the mechanical properties of NC metals have on their 

tribological behaviour, oxidational wear mechanisms should be avoided as shown in our 

previous work [16]. Accordingly, in this work the sliding tests were performed in an 

argon environment in an effort to reduce the atmospheric effects, specifically to restrict 

surface oxidation. The micromechanisms of wear in NC Ni were characterized, and 

microscopic processes leading to the generation of wear debris and surface damage at 

different sliding speeds were studied. 

 

2. EXPERIMENTAL PROCEDURES 

2.1. Microstructure 

Samples were 0.20 mm thick sheets of electrodeposited NC Ni (99.8% purity) 

supplied by Goodfellow Cambridge Ltd. (Huntingdon, England). For comparison, Ni 

foils with 99.98% purity and a thickness of 0.25 mm were also obtained from the same 

supplier and subjected to the indentation and sliding tests. Prior to the tests, the surfaces 



 72

of both MC Ni and NC Ni samples were polished to a similar roughness using a 1 µm 

diamond suspension. During polishing, a pressure much lower than the Hertzian pressure 

applied during the sliding tests (i.e. σH = 1.56 GPa, as is shown in Section 4.1) was 

exerted to the samples’ surfaces to avoid polishing-induced effects on the mechanical and 

tribological properties of the samples. 

Figure 1 shows the X-ray diffraction (XRD) spectra of the MC Ni and NC Ni. The 

MC Ni had a (200) preferential orientation, while the NC Ni had a slightly stronger (111) 

texture. The XRD pattern of the MC Ni exhibited narrow diffraction peaks (Figure 1a), 

whereas the NC Ni displayed a pronounced line broadening effect (Figure 1b). The grain 

size of the NC Ni was determined by measuring the half-peak breadth of the (111) peaks. 

The instrumental broadening (BS) was estimated by measuring the half-peak breadth of 

the (111) peak of the MC Ni. Broadening due to microstructural refinement in the NC Ni 

(B) was calculated using [26]: 

2
S

2
M

2 BBB −=  (2a) 

where BM is the half-peak breadth measured in the (111) peak of the NC Ni. Then, the 

grain size of the NC Ni was determined using [27]: 

cosθ B
λ0.9d =  (2b) 

where λ is the wavelength of the X-ray used (Cu Kα radiation) and θ is the Bragg angle of 

the (111) peak. Using Equations 2a,b, the grain size of the NC Ni was calculated as 13.6 

nm. 

Figure 2 shows a bright field transmission electron microscopy (TEM) image of the 

NC Ni. Using the conventional linear intercept method on several TEM micrographs (at 

least 100 grains were used), the average grain size was measured as 15±3 nm, in 
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agreement with the grain size determined by the XRD line broadening technique. The 

grain size of the MC Ni was measured as 20±5 µm, also using the linear intercept 

method. 

 

2.2. Mechanical Property Measurements 

Using an indentation load of 1 N, the Vickers microhardness of the NC Ni was 

measured as 5.09±0.11 GPa (519±11 HV), while that of the MC Ni measured was 

1.20±0.05 GPa (122±5 HV) under the same load. 

A Hysitron nanoindentation system was employed to obtain indentation load-depth 

curves using a spherical indenter with a radius of 5 μm at a loading and unloading rate of 

0.1 mN/s. Each indentation test consisted of nine partial unloading steps to 40% of the 

highest applied load for each loading step in increments from 0 to 9 mN. At the end of 

this stepwise loading and partial unloading sequence, i.e. at the maximum load of 10 mN, 

the indenter was completely unloaded. 

In order to determine nanohardness values from the load-depth curves, the actual 

radius of the projected contact area, ac′, was calculated according to the procedure 

presented in Appendix B. Then, the nanohardness values were determined using: 

2
caπ

PH
′

=  (3) 

 

2.3. Friction and Wear Tests 

A pin-on-disc type tribometer with an environmental enclosure was used to conduct 

the wear tests under the unlubricated sliding conditions in a dry argon atmosphere (< 

0.2% relative humidity). During the tests, argon gas was injected into the test chamber at 
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a flow rate of 10-3 m3/s. The sliding wear tests were conducted for 8 cycles under a 

constant normal load of 2 N at three sliding speeds of 0.2×10-2, 0.8×10-2 and 3.0×10-2 

m/s. An alumina (Al2O3) ball with a hardness of 18.64±0.39 GPa and a diameter of 3.18 

mm was fixed at the end of the pin and used as the counterface material. 

The wear track morphologies were investigated by an optical interferometric surface 

profilometer and a scanning electron microscope (SEM) equipped with an energy 

dispersive spectroscopy (EDS) system. The volumetric wear loss, V, was measured 

according to the procedure given in the ASTM Standard G99 [28] using: 

⎥
⎦

⎤
⎢
⎣

⎡
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⎠
⎞

⎜
⎝
⎛−⎟

⎠
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⎜
⎝
⎛= 221-2 w4r

4
w

2r
wsinrR2V π  (4) 

where R and w are the radius and the average width of the wear track, and r is the radius 

of the counterface ball. The wear rate, W, was computed from the slope of the volume 

loss vs. sliding cycles curve: 

⎟
⎠
⎞

⎜
⎝
⎛=
ΔN
ΔV

πR2
1W  (5) 

where ΔV is volume loss within an interval of ΔN sliding cycles. 

An indentation load of 0.1 N was used to determine the Vickers microhardness of the 

contact surfaces of the samples after the sliding tests. 

 

3. RESULTS 

3.1. Mechanical Properties 

The nanoindentation tests were done on the MC Ni and NC Ni to gain insight into the 

differences between their surface deformation behaviour. Variations in indentation depth 

with applied load (up to 10 mN) for typical nanoindentations made on the surfaces of the 
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MC Ni and NC Ni are plotted in Figure 3a. Figure 3b shows the nanohardness values of 

both samples at different indentation loads calculated according to Equation 3 and using 

the data extracted from Figure 3a. For both MC Ni and NC Ni, nanohardness values 

measured were independent of the indentation load for all loads except for loads < 3 mN 

in the NC Ni. At 9 mN, the largest load at which partial unloading was conducted, the 

nanohardness values of the MC Ni and NC Ni were 1.26±0.08 and 3.36±0.10 GPa, 

respectively (data point 9 in Figure 3b). At 10 mN, the nanohardness values calculated 

after complete unloading (data point 10 in Figure 3b) were 1.31±0.08 GPa for the MC Ni 

and 5.12±0.15 GPa for the NC Ni. These values were comparable to the Vickers 

microhardness values of 1.20±0.05 GPa for the MC Ni and 5.09±0.11 GPa for the NC Ni 

using an indentation load of 1 N. Clearly, the hardness measured upon complete removal 

of the indentation load (data point 10 in Figure 3b) was higher than those measured at the 

last partial unloading step (data point 9 in Figure 3b) particularly in the case of the NC 

Ni, because the projected area of the indentation impression obtained upon complete 

removal of the load was smaller. 

According to Figure 3a, under the highest load of 10 mN, the maximum indentation 

depth of the NC Ni was hmax
nc = 96.5 nm, 56% smaller than that of the MC Ni (hmax

mc = 

220.0 nm). The maximum indentation depth, hmax, and the residual depth after the 

complete unloading of the indenter, hf, can be used in determining the elastic depth 

recovery ratio, δ, as: 

max

fmax

h
hh

δ
−

=  (6) 

According to Equation 6, the δ value measured for the NC Ni was 400% larger than 

that for the MC Ni, which was measured under the same loading conditions (i.e. δmc = 
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0.095 and δnc = 0.479). A large elastic depth recovery ratio infers that a large portion of 

the surface deformation that occurs during sliding wear can be recovered after complete 

unloading. 

 

3.2. Friction and Wear Behaviour 

Variations in Wear Rates and COFs with Sliding Speed 

Variations in wear rates with speed were determined for both MC Ni and NC Ni 

using Equations 4 and 5 and are plotted in Figure 4. The wear rates of the MC Ni were 

almost constant, and showed only a slight increase with the increase of the test speed (i.e. 

8.16×10-3, 8.47×10-3 and 8.78×10-3 mm3/m at the speeds of 0.2×10-2, 0.8×10-2 and 

3.0×10-2 m/s). In the case of the NC Ni, the wear rates were 3.44×10-3, 2.16×10-3 and 

0.47×10-3 mm3/m at the same sliding speeds. Thus, it follows that an increase in sliding 

speed from 0.2×10-2 to 3.0×10-2 m/s caused an 86% reduction in the wear rate of the NC 

Ni. 

COF was measured as a function of sliding cycles during the tests at the constant 

sliding speeds (Figure 5). Variations in the MC Ni’s COF during 8 sliding cycles at 

different speeds are given in Figure 5a. The trend of all the COF curves was similar, 

despite the experimental scattering. In the case of the NC Ni tested over the same speed 

range, a clear difference between the trends of the COF curves was observed (Figure 5b). 

The average COFs of the MC Ni and NC Ni are plotted as a function of sliding speed in 

Figure 6. For the MC Ni, the average COF was found to remain almost constant within 

the speed range of 0.2×10-2 to 3.0×10-2 m/s. Within this range, the lowest average COF 

was 0.57±0.05 and the highest value was 0.61±0.04. However, increasing the sliding 
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speed from 0.2×10-2 to 3.0×10-2 m/s caused a 31% increase in the average COF of the NC 

Ni, i.e. from 0.49±0.05 to 0.64±0.06. 

 

Changes in Contact Surface Morphologies 

After 8 sliding cycles, the MC Ni’s wear tracks displayed similar features, regardless 

of the testing speed used. The average width (109 μm) and the average maximum depth 

(0.45 μm) of the wear track were constant over the applied speed range. According to the 

3-D surface profiles shown in Figures 7a-c, wear tracks were characterized by plastic 

deformation induced by the indentation of the counterface. Also, pile-ups of deformed 

material were seen at the edges of the wear tracks, which was a result of material 

displacement during plastic deformation. No change was observed in the wear 

mechanism of the MC Ni over the investigated sliding speed range. This was not the case 

for the NC Ni. At the lowest sliding speed of 0.2×10-2 m/s, the wear track of the NC Ni 

displayed continuous surface scratches as a result of counterface ploughing action (Figure 

7d). The surface scratches on the NC Ni’s contact surfaces decreased in both number and 

depth as the sliding speed was increased (Figures 7e,f). Consequently, the average width 

of the wear track decreased from 80.7 to 41.6 μm and its average maximum depth 

decreased from 0.40 to 0.20 μm when the sliding speed was increased from 0.2×10-2 to 

3.0×10-2 m/s. Therefore, while the NC Ni’s wear track became smaller (consistent with 

the reduction in its wear rate), its COF increased as the sliding speed increased. 
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Changes in Chemical State and Hardness of Contact Surfaces  

The EDS analyses performed on the MC Ni’s wear tracks did not reveal any 

detectable amounts of oxygen at either of the sliding speeds used, indicating that the MC 

Ni’s surfaces remained practically unoxidized during the sliding tests. On the other hand, 

large quantities of debris particles were generated on the NC Ni’s contact surfaces at 

lower sliding speeds, prompting the formation of tribolayers on the wear tracks. These 

layers were, however, discontinuous, and did not entirely cover the surfaces of the wear 

tracks. Figure 8 shows an SEM micrograph of the wear track formed on the NC Ni’s 

surface at the lowest sliding speed of 0.2×10-2 m/s. No evidence of surface oxidation 

could be obtained from the EDS measurements made in the areas of this wear track that 

were not covered by the tribolayers. However, the tribolayers built up on the wear track 

contained small amounts of oxygen (maximum 3.3 at.% oxygen). It is known that NC Ni 

has a higher tendency for oxidation due to its higher density of grain boundaries 

compared to MC Ni [15]. Thus, the presence of small amounts of oxygen in the test 

chamber may have led to the formation of the partially-oxidized tribolayers on the NC 

Ni’s contact surfaces. Higher sliding speeds produced lesser coverage of wear tracks by 

the same type of tribolayers, because smaller amounts of debris particles were generated 

as a result of the lower wear rate. 

The results of the Vickers microhardness measurements made on the wear tracks 

using a load of 0.1 N are shown in Figure 9. These wear track hardness values represent 

the averages of ten measurements made on both the worn surfaces and the tribolayers 

formed on them. For the MC Ni, a 23% increase in hardness was measured after the 

sliding tests. This hardness increase was a result of the strain hardening of the MC Ni’s 
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surfaces during the sliding wear and was independent of the sliding speed. In the case of 

the NC Ni, the increase in the contact surface hardness was a function of the sliding 

speed. The contact surfaces of the NC Ni tested at 0.2×10-2 and 0.8×10-2 m/s revealed 

14% and 12% increases in hardness, respectively, compared to the hardness of the NC 

Ni’s original surface. The NC Ni samples tested at the highest sliding speed of 3.0 ×10-2 

m/s did not show any increase in hardness. As the yield strength of NC Ni is high, the 

contribution of surface strain hardening to the measured worn surface hardness of NC Ni 

should be smaller than that of the MC Ni. The increase in the hardness of the contact 

surfaces during the wear at the low speeds can be attributed to the tribolayer coverage of 

the worn surfaces. 

 

4. DISCUSSION 

The test results have shown that the wear rates of the NC Ni decrease as a result of 

increasing the test speed, while the MC Ni’s wear rates remain relatively insensitive to 

changes in sliding speed. In this section, the wear mechanisms in the NC Ni and MC Ni 

are discussed, and then the speed sensitivity of the NC Ni is considered. An analysis is 

presented based on the Archard equation to predict wear rates of Ni as a function of grain 

size and sliding speed. 

 

4.1. Wear Mechanisms of Nanocrystalline Nickel in Comparison with 

Microcrystalline Nickel 

The damage mechanisms in the NC Ni subjected to sliding wear differed from the 

ones observed for the MC Ni. In the case of the MC Ni, wear was initiated by the large 
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plastic deformation induced by the contact stresses. The initial Hertzian stress applied to 

the contact surface can be estimated using [29]: 

3
22H CD

P0.918σ =  (7a) 

where P = 2 N is the applied normal load, D = 3.18 mm is the counterface ball diameter 

and C is the effective elastic modulus defined as: 
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The elastic moduli and the Poisson’s ratios of micro- and nano-crystalline forms of Ni do 

not differ much [4]. The effective elastic modulus (C) is calculated using Equation 7b and 

using E1 = 200 GPa and ν1 = 0.31 for both MC Ni and NC Ni, and E2 = 350 GPa and 

ν2 = 0.24 for Al2O3. Accordingly, the initial contact pressure was σH = 1.56 GPa, 

approximately four times higher than the MC Ni’s yield strength estimated at σy = 0.40 

GPa  from its hardness (H) as σy = H/3 [7]. On the other hand, in the NC Ni with an 

estimated σy = 1.70 GPa, the initial contact is less likely to induce indentation plastic 

deformation under the same test load of 2 N.  This analysis is consistent with the 

experimentally observed wear track morphologies (Figure 7), which indicated that almost 

no plastic deformation damage occurred on the NC Ni’s surface whereas in the MC Ni, 

substantial plastic deformation of the contact surface and piling-up of material around the 

wear track (to accommodate displacement due to the sinking-in of the indenter) was 

observed. 

The results of the nanoindentation tests presented in Section 3.1 suggest that some of 

the total deformation induced by the sliding counterface might have been recovered upon 

the release of the stress applied by the counterface. The elastic recovery of the surface 
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deformation after the passage of the indenter would help to reduce the severity of the 

surface damage induced during the course of sliding. Hence, this could be an additional 

factor in reducing the wear damage in the case of the NC Ni due to its larger elastic 

recovery ratio. 

In summary, the lesser amount of wear damage observed in the NC Ni at any given 

speed could be attributed to two factors: i) the high yield strength of the NC Ni, which 

limits the extent of plastic deformation at the applied contact stress level and ii) the large 

elastic recovery ratio that restores a portion of the total deformation upon the passage of 

the counterface. 

 

4.2. A Phenomenological Analysis of Wear Rate - Sliding Speed Relationship 

In Figure 10a the wear rates of the MC Ni and NC Ni measured at three different 

speeds are plotted against their original microhardness values. The Archard-type 

equations that best fit the experimental data obtained in the studied range are presented in 

the legend of this figure. The tests performed at the speed of 0.8×10-2 m/s followed the 

Archard equation, but a relatively small increase or decrease in sliding speed in the NC 

regime caused significant deviations from Archard’s prediction. The Archard-type 

equations in Figure 10a have the following general form: 

α

⎥⎦
⎤

⎢⎣
⎡=
H
1KPW  (8) 

where K (wear coefficient) and α (wear exponent) should depend on sliding speed. 

Variations in K and α with sliding speed are plotted in Figures 10b, c. Accordingly, 

Equation 8 yields: 
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where H0 and k are Hall-Petch parameters as in Equation 1. For Ni, Equation 9 can be 

used to predict wear rates of NC Ni as a function of grain size and sliding speed using: 
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4.3. Micromechanisms Responsible for the Sliding-Speed Sensitivity in 

Nanocrystalline Nickel 

Wear mechanisms in NC Ni would be sensitive to changes in the surface deformation 

rate at different sliding speeds. An increase in the sliding speed during the wear test is 

expected to cause an increase in the rate of the application of the shear strain to the 

contact surface. It was shown that increasing the strain rate during the tensile and 

indentation tests leads to enhancements in yield strength of electrodeposited NC Ni [17-

21]. Plastic deformation mechanisms in nanocrystalline metals and alloys that consist of 

large volume fractions of grain boundaries include grain-boundary sliding and dislocation 

emission at grain boundaries [17-19, 30-33]. Since these mechanisms are time-dependent, 

the deformation of NC Ni becomes increasingly difficult at higher strain rates. Hence, 

during high speed sliding tests, plastic deformation would become more difficult, leading 

to less extensive surface damage compared to the tests carried out at lower speeds. This is 

consistent with the observation that the severity of NC Ni’s surface damage reduced at 

higher speed tests (Figures 7d-f). As a result, NC Ni’s wear rate decreased when this 

material was tested at higher speeds (Figure 4). The strong strain-rate sensitivity observed 

in NC Ni is absent in MC Ni [20], a fact that is consistent with the observation that the 
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MC Ni’s wear rate (Figure 4) and wear mechanism (Figures 7a-c) were independent of 

sliding speed.  On the other hand, the COF of the NC Ni increased with the sliding speed 

(Figure 5). At lower sliding speeds, the protective tribolayers that formed on the surfaces 

of the NC Ni were responsible for the lower COF values. Smaller tribolayer coverage at 

the higher speeds led to lower surface and higher COF values. The COF of MC Ni was 

practically independent of sliding speed over the same speed range as there was no 

change in the amount of tribolayers formed on the surface. 

 

5. CONCLUSIONS 

The friction and wear behaviour of a nanocrystalline (NC) Ni with a grain size of 

15±3 nm was investigated as a function of sliding speed in comparison with a 

microcrystalline (MC) Ni with a grain size of 20±5 µm using a pin-on-disc tribometer 

operated in an argon environment. The main conclusions arising from this study are as 

follows: 

1. Sliding wear of the MC Ni was characterized by indentation-induced plastic 

deformation inflicted by the counterface, and material pile-up at the edges of the wear 

tracks. In contrast, in the case of the NC Ni, the wear tracks were narrower and wear 

occurred by material removal as a result of surface scratching rather than indentation-

induced deformation. The lesser wear damage observed in the NC Ni compared to the 

MC Ni is attributed to the NC Ni’s higher hardness and greater deformation recovery 

ratio. 

2. The NC Ni’s wear rate was a strong function of the sliding speed. Increasing the 

test speed over the relatively small range of 0.2×10-2 to 3.0×10-2 m/s caused an 86% 
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reduction in the NC Ni’s wear rate from 3.44×10-3 to 0.47×10-3 mm3/m. A modified 

Archard equation was proposed to predict wear rates of Ni as a function of grain size and 

sliding speed. 

3. As the sliding speed increased in the case of the NC Ni, damaging the surface 

became increasingly difficult. This is attributed to the fact that the grain-boundary-

induced deformation mechanisms are more difficult to operate at higher strain rates. In 

contrast, the MC Ni’s wear rate remained virtually constant over the same speed range. 

4. The COF of the NC Ni showed an increase of 31% from 0.49 to 0.64 when the 

sliding speed increased from 0.2×10-2 to 3.0×10-2 m/s. At the lower sliding speeds, the 

protective tribolayers formed on the surfaces of the NC Ni were responsible for the lower 

COF values. The smallest amount of debris generated at the highest sliding speed was not 

sufficient to form protective tribolayers, leading to a high COF value. The COF of the 

MC Ni was practically independent of sliding speed over the same speed range. 
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FIGURES 

 

 
 

Figure 1. XRD patterns of: (a) the MC Ni, and (b) the NC Ni. 



 88

 
 

Figure 2. A bright field TEM image of the NC Ni. 
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Figure 3. (a) Load-depth curves of typical nanoindentations on the MC Ni and NC Ni 

samples. (b) Variations in nanohardness value with indentation contact depth under load 

for the MC Ni and NC Ni. The last point in each series of data represents the 

nanohardness value calculated after complete unloading. 



 90

0

0.005

0.01

0.015

0 0.01 0.02 0.03

v (m/s)

W
ea

r R
at

e 
(m

m
3 /m

)

mc Ni
nc Ni

 
 

Figure 4. Wear rate vs. sliding speed for the MC Ni and NC Ni after 8 sliding cycles in 

the argon atmosphere. 
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Figure 5. Variations in the COFs during 8 sliding cycles in the argon atmosphere at 

different speeds for: (a) the MC Ni, and (b) the NC Ni. 
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Figure 6. The average COFs of the MC Ni and NC Ni plotted as a function of sliding 

speed. 
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Figure 7. (a-c) 3-D surface profiles of the MC Ni’s wear tracks after 8 sliding cycles in 

the argon atmosphere at speeds of (a) 0.2×10-2 m/s, (b) 0.8×10-2 m/s, and (c) 3.0×10-2 

m/s. (d-f) 3-D surface profiles of the NC Ni’s wear tracks after 8 sliding cycles in the 

argon atmosphere at speeds of (d) 0.2×10-2 m/s, (e) 0.8×10-2 m/s, and (f) 3.0×10-2 m/s. 
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Figure 8. An SEM micrograph of the wear track formed on the NC Ni after 8 sliding 

cycles in the argon atmosphere at the lowest sliding speed (0.2×10-2 m/s). 
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Figure 9. Microhardness values obtained from the wear tracks formed on the surfaces of 

the MC Ni and NC Ni at different sliding speeds. The data points at the velocity of 0 

represent the microhardness values of the original surfaces prior to the wear tests. All 

measurements were made using a 0.1 N normal load. 
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Figure 10. (a) Variations in wear rates of Ni samples with original microhardness at 

different sliding speeds. The legend shows the Archard-type equations that best fit the 

experimental data. (b) Variations in K (in Equation 9) with sliding speed. (c) Variations 

in α (in Equation 9) with sliding speed. 
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CHAPTER 4 

HIGH-TEMPERATURE FRICTION AND WEAR MECHANISMS OF 

NANOCRYSTALLINE NICKEL COMPOSITE COATINGS 

 

1. INTRODUCTION 

Electrodeposition, among all the nanocrystalline (NC) metal fabrication techniques, 

provides fully dense NC structures with relatively narrow grain size distributions. 

Electrodeposited NC Ni displayed better mechanical [1-6] and tribological [7-10] 

properties at room temperature compared to microcrystalline (MC) Ni. However, NC Ni 

contains a large volume fraction of grain boundaries and triple junctions, which make it 

thermally unstable. Differential scanning calorimetry (DSC) studies [11,12] showed that 

three exothermic reactions would take place when annealing NC Ni deposits with a grain 

size of 10-20 nm: i) nucleation and abnormal grain growth in the 353-563 K range; ii) 

normal grain growth in the 563-643 K range; and iii) growth towards equilibrium in the 

643-773 K range. The first reaction leads to a bimodal grain structure, while the second 

reaction results in a uniform structure of larger grains with impurity segregation to grain 

boundaries [13]. The third reaction transforms NC Ni to MC Ni. 

The high-temperature tensile testing of as-deposited NC Ni samples [14,15] displayed 

a drastic drop in the films’ strength, as well as a significant increase in their elongation at 

about 573 K. Testing the as-deposited NC Ni samples at about 473 K revealed that their 

strength was lower and their elongation was higher compared to the room temperature 

values, even though no significant change in their grain size was detected at this 

temperature. In another study, the creep behaviour of NC Ni deposits was investigated, 
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and the creep rate was found to be very sensitive to temperature [16]. While no grain 

growth was detected at 373 K, the creep rate measured at this temperature was two orders 

of magnitude larger than that measured at room temperature under a similar stress of 700 

MPa. An increase in temperature from 273 K to 373 K could cause a transition in the 

creep mechanism from diffusion along grain boundaries and triple junctions to grain 

boundary sliding. High self-diffusivity and a large volume fraction of grain boundaries 

make NC Ni susceptible to creep at temperatures slightly higher than room temperature 

[1]. 

This study reports on the coefficients of friction (COF) and wear rates of 

electrodeposited NC Ni measured at room temperature and an elevated temperature (493 

K). In order to enhance the high temperature tribological properties, micro and 

nanoparticles of SiC were added to the NC Ni films. The effects of SiC particles on the 

room temperature and high temperature friction and wear behaviour of NC Ni were 

explored by employing optical interferometry, as well as cross-sectional focussed ion 

beam (FIB) and transmission electron microscopy (TEM) techniques. 

 

2. EXPERIMENTAL PROCEDURES 

A Watt’s bath was used to electrodeposit NC Ni films onto a Cu substrate (cathode) 

with a Pt anode, at a direct current density of 0.05 A/cm2 and an electrolyte pH of 4.5, as 

well as an electrolyte temperature of 45 °C. The deposition duration for all the coatings 

was 45 minutes. The electrolyte was composed of 300 g/l NiSO4, 45.0 g/l NiCl2, 45.0 g/l 

HBO3, 5.00 g/l saccharin and 0.25 g/l sodium lauryl sulfate. Under these conditions, NC 

Ni coatings with a grain size of 30±4 nm and a thickness of 63±6 µm were deposited. In 
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addition, two types of NC Ni matrix composite coatings were produced by adding 30 g/l 

SiC particles of either 5 µm (MP SiC) or 50 nm (NP SiC) in diameter to separate baths 

with the above-mentioned chemical composition. In order to reduce the agglomeration of 

nanoparticles, the electrolyte containing NP SiC was oscillated in an ultrasonic container 

for 10 minutes, prior to electrodeposition. Under these conditions, composite coatings 

containing 6.5±1.0 vol.% of SiC particles were obtained. 

Scanning electron microscopy (SEM) images of the NC Ni-MP SiC and NC Ni-NP 

SiC coatings’ surfaces appear in Figures 1a,b. Both coatings seem to have a uniform 

distribution of SiC particles in the NC Ni matrix. Nanoparticles tend to agglomerate 

inside the bath (due to their high surface energy), a characteristic that could potentially 

diminish the mechanical properties of the coating [17,18]. No agglomeration of the NP 

SiC could be detected in this work (see Figure 1b). 

The Vickers microhardness of the coatings was measured using an indentation load of 

100 gf. Incorporating SiC particles in NC Ni did not cause any significant increase in the 

hardness of this material (i.e., H(NC Ni) = 4.47±0.08 GPa, H(NC Ni-MP SiC) = 

4.80±0.14 GPa and H(NC Ni-NP SiC) = 4.60±0.10 GPa). The microhardness values of 

the coatings after they were heated to 493 K and kept at that temperature for 10 minutes, 

then cooled down to room temperature (i.e., the heating cycle used in the high-

temperature wear tests), were slightly higher than those of the as-deposited coatings (i.e., 

Hht(NC Ni) = 4.59±0.09 GPa, Hht(NC Ni-MP SiC) =  4.86±0.8 GPa and Hht(NC Ni-NP 

SiC) = 4.64±0.09 GPa). This small increase was attributed to relaxations at the non-

equilibrium grain boundaries during low-temperature annealing [13,19]. 
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A CSM high-temperature, pin-on-disc tribometer was used to conduct dry wear tests 

in air at 298 and 493 K. For the high temperature tests, samples were heated from room 

temperature to 493 K in about 50 minutes. The wear tests were carried out for 500 sliding 

cycles at a normal load and sliding speed of 1.0 N and 0.03 m/s, respectively. An 

alumina, Al2O3, ball (1,900±40 HV) of 3.18 mm diameter was fixed to the end of the pin 

and used as the counterface. The COF was recorded at a frequency of 10 s-1 during the 

sliding tests. After the wear tests, the contact surface morphologies were studied using a 

Wyko NT-1100 optical interferometer, and the width of each wear track was measured at 

four locations around the track. The volumetric wear losses (V) were measured according 

to the procedure given in ASTM standard G99 [20] using the following equation: 
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where R and w are the radius and the width of the wear track, and r is the radius of the 

counterface ball. The wear rates (W) were computed from the slopes of volume loss vs. 

sliding cycle curves: 
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where ΔV is the volume loss within an interval of ΔN sliding cycles. 

The cross-sectional microstructures of the contact surfaces were investigated using 

FIB and TEM. A Zeiss NVision 40 dual-beam SEM/FIB instrument was employed for 

the FIB analyses. First, a thin layer of carbon was deposited on the focal area of the 

contact surface, to protect surface features from beam damage. Next, a narrow trench was 

milled using a voltage of 30 kV and Ga-ion beam currents ranging from 13 nA to 700 pA 

to produce a smooth surface perpendicular to the contact surface. To minimize the beam 
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damage during observation, a lower ion beam current of 10 pA was used to observe the 

microstructural features of the milled surfaces. It should be noted that although FIB 

techniques provide new possibilities for studying the microstructures of different 

materials, the extent of the beam damage to the investigated microstructures must be 

considered when analyzing the FIB images. 

Cross-sectional TEM samples were prepared using the “lift-out” FIB technique 

shown in Figures 2a-f. Two narrow trenches were ion-milled on both sides of the focal 

area, protected by a carbon layer, so that a 1 µm thick plate was obtained (Figure 2a). A 

tungsten needle was then positioned near the plate (Figure 2b), and they were attached by 

a thin layer of carbon (Figure 2c). The plate was then lifted out (Figures 2d,e) and 

subsequently milled to a final thickness of about 100 nm, using a low ion beam current of 

10 pA (Figure 2f). The TEM investigations were performed using a JEOL 2010 F field 

emission electron microscope. 

 

3. RESULTS AND DISCUSSION 

3.1. Contact Surface Morphologies, Wear Rates and Coefficients of Friction 

The contact surface morphologies for all the samples tested at 298 and 493 K are 

shown in Figures 3a-f. At 298 K, the contact surface of the NC Ni-NP SiC coating 

exhibited only a few shallow scratches (Figures 3a,c), while notable surface damage and 

large scratches along the sliding direction were observed on the NC Ni-MP SiC coating 

(Figure 3b).  

At 493 K, severe wear damage was observed on the NC Ni film’s contact surface 

(Figure 3d). The damage was less in the case of the NC Ni-MP SiC coating (Figure 3e). 
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The lowest surface damage at 493 K, however, was observed on the contact surface of 

the NC Ni-NP SiC coating (Figure 3f). 

The wear rates of the NC Ni film and NC Ni composite coatings after sliding for 500 

cycles at 298 and 493 K are plotted in Figure 4. At 298 K, the wear rate of the NC Ni 

film was 6.17×10-6 mm3/m, while the wear rate of the NC Ni-MP SiC coating was almost 

two orders of magnitude larger (4.79×10-4 mm3/m). The wear rate of the NC Ni-NP SiC 

coating (1.31×10-5 mm3/m) was in the same range as that of the NC Ni film. 

At 493 K, the wear rate of the NC Ni film increased to 8.71×10-4 mm3/m, more than 

two orders of magnitude larger than the wear rate at 298 K. In contrast, the effect of 

temperature on the wear rates for the composite coatings was smaller (i.e., W(NC Ni-MP 

SiC) = 5.74×10-4 mm3/m and W(NC Ni-NP SiC) = 1.60×10-4 mm3/m). At 493 K, 

reinforcing NC Ni with MP SiC reduced its wear rate by 34%, and reinforcing NC Ni 

with NP SiC reduced the wear rate by 82%. 

Variations in the COF with the sliding cycles for the NC Ni and its composites at 298 

and 493 K are shown in Figures 5a-f. At 298 K, the COF curves of the NC Ni film and 

the NC Ni-NP SiC coating had lower and smoother (less fluctuation) trends compared to 

that of the NC Ni-MP SiC coating. This difference was more evident at the beginning of 

the sliding tests. At 493 K, the COF curves of the coatings had a similar beginning, and a 

sudden drop was noted in the trends of all three curves. However, in the case of the NC 

Ni-NP SiC coating, this drop occurred at lower sliding cycles (around 250 cycles) and 

was more pronounced. This sample had a lower and smoother COF curve thereafter. 

The average steady-state COFs (average of the COF values measured after sliding for 

400-500 cycles) of all the samples are plotted and compared in Figure 6. At 298 K, the 
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steady-state COFs of both the NC Ni (0.33±0.03) and NC Ni-NP SiC coatings 

(0.35±0.04) were notably lower than that of the NC Ni-MP SiC coating (0.47±0.09). At 

493 K, the steady-state COF of the NC Ni-NP SiC coating (0.42±0.02) was significantly 

lower than those of the NC Ni (0.55±0.05) and the NC Ni-MP SiC coating (0.60±0.08). 

 

3.2. Microstructural Evolution during Sliding Wear 

Cross-sectional FIB images of the coatings after the wear tests are presented in 

Figures 7a-f. At 298 K, a deformed layer with a thickness of 206±16 nm could be seen on 

top of the NC Ni’s worn surface in the section shown in Figure 7a. The NC Ni-NP SiC 

coating revealed the same type of microstructure, with a 288±23 nm thick deformed layer 

on top (Figure 7c). The deformed layer on the surface of the NC Ni-MP SiC coating, 

however, was thicker (639±38 nm), and a tribolayer had formed on top of the deformed 

layer (Figure 7b). Small fragments of NC Ni, as well as SiC particles were embedded 

inside this tribolayer, indicating that it formed as a result of the agglomeration and 

compaction of a relatively large amount of debris particles, generated by the abrasive 

effect of the large SiC particles that detached from the coating during the sliding wear 

test. This abrasive wear was the source of the NC Ni-MP SiC coating’s high wear rate 

(Figure 4). 

At 493 K, the deformed layer of the NC Ni film had a thickness of 1,236±74 nm 

(Figure 7d), 5 times thicker than it was at 298 K. This correlates with the sharp increase 

in the wear rate of the NC Ni coating when the wear test temperature was increased from 

298 K to 493 K (Figure 4), possibly caused by a transition in the deformation mechanism 

from grain boundary diffusion to grain boundary sliding [16]. The effect that temperature 
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had on the microstructures of the composite coatings was different. At 498 K, similar to 

the tests performed at room temperature, a tribolayer formed on top of the deformed layer 

in the NC Ni-MP SiC coating (Figure 7e). The cross-sectional FIB image of the NC Ni-

NP SiC coating worn at 493 K is seen in Figure 7f. Incorporating NP SiC in NC Ni could 

significantly reduce the microstructural damage (i.e., 46% reduction in the thickness of 

the deformed layer to 671±40 nm), leading to an 82% reduction in the wear rate 

compared to the unreinforced NC Ni at the same temperature (Figure 4). 

Bright-field and dark-field cross-sectional TEM images of the deformed layer in the 

NC Ni film and the NC Ni-NP SiC coating are shown in Figures 8a-d. The grains were 

elongated and moved towards the sliding direction in the subsurface region of the 

unreinforced NC Ni coating (Figures 8a,b), a phenomenon that was less pronounced in 

the case of the NC Ni-NP SiC coating (Figures 8c,d). A high resolution TEM image of 

the subsurface microstructure in the unreinforced NC Ni tested at 493 K is presented in 

Figure 9 that shows new recrystallized grains formed at the grain boundaries during the 

high temperature wear test. Also, grain boundary sliding is known to be the preferred 

deformation mechanism in this material at high temperatures [16]. The recrystallization 

of new grains, as well as the grain boundary sliding deformation mechanism could 

possibly be hindered by the nanoparticles in the NC Ni-NP SiC composite coating during 

the high temperature sliding wear tests, resulting in a significant reduction (i.e., 82% as 

seen in Figure 4) in this coating’s wear rate, compared to the unreinforced NC Ni film. 

More work on the nanoscale interactions between nanoparticles and NC Ni grains is 

needed to shed light on the details of the mechanisms involved in the deformation of this 

material at elevated temperatures. 
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4. CONCLUSIONS 

1. Increasing the sliding test temperature from 298 K to 493 K resulted in an increase 

in wear rate of more than two orders of magnitude (from 6.17×10-6 mm3/m to 8.71×10-4 

mm3/m) and a 67% increase in the COF of the NC Ni coating, possibly caused by a 

transition in the deformation mechanism from grain boundary diffusion to grain boundary 

sliding. 

2. Incorporating SiC particles in the NC Ni did not result in any significant increase in 

the hardness of this material. However, the SiC particles did play substantial roles in the 

tribological performances of the coatings. 

3. At 298 K, the NC Ni-MP SiC coating had a higher wear rate and COF compared to 

both the NC Ni film and the NC Ni-NP SiC coating, due to the abrasive wear caused by 

the large SiC particles that detached from the coating’s surface during the wear test. 

4. Reinforcing NC Ni with SiC particles improved its high-temperature wear 

resistance. It was suggested that the recrystallization of new grains, as well as the grain 

boundary sliding deformation mechanism could possibly be hindered by the nanoparticles 

in the NC Ni-NP SiC composite coating, resulting in 82% and 24% reductions in the 

coating’s high-temperature wear rate and COF, respectively. 
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FIGURES 

 

 
(a) 

 

 
(b) 

 
Figure 1. Secondary electron SEM surface images of (a) the NC Ni-MP SiC coating, and 

(b) the NC Ni-NP SiC coating. 
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(a) (d) 

 

    
(b) (e) 

 

    
(c) (f) 

 
Figure 2. The main steps in preparing TEM samples using the “lift-out” FIB technique. 

(a) Two narrow trenches were ion-milled on both sides of the area of interest, protected 

by a carbon layer, to obtain a 1 µm thick plate. (b) A tungsten needle was positioned near 

the plate. (c) A thin layer of carbon was deposited on the interface of the plate and the 

needle, to attach them. (d,e) The plate was then lifted out, and (f) milled to a final 

thickness of about 100 nm using a low ion beam current of 10 pA. 
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(a) (d) 

    
(b) (e) 

    
(c) (f) 

 
Figure 3. (a-c) Contact surface morphologies formed after sliding for 500 cycles at 298 K 

on: (a) the NC Ni film, (b) the NC Ni-MP SiC coating, and (c) the NC Ni-NP SiC 

coating. (d-f) The contact surface morphologies formed after sliding for 500 cycles at 493 

K on: (d) the NC Ni film, (e) the NC Ni-MP SiC coating, and (f) the NC Ni-NP SiC 

coating. 
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Figure 4. The wear rates of the unreinforced NC Ni and the NC Ni composite coatings 

measured after sliding for 500 cycles at 298 and 493 K. 
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Figure 5. (a-c) Variations in COFs at 298 K for: (a) the NC Ni film, (b) the NC Ni-MP 

SiC coating, and (c) the NC Ni-NP SiC coating. (d-f) Variations in COFs at 493 K for: 

(d) the NC Ni film, (e) the NC Ni-MP SiC coating, and (f) the NC Ni-NP SiC coating. 
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Figure 6. Average steady-state COFs for the NC Ni and NC Ni composite coatings after 

sliding for 500 cycles at 298 and 493 K. 
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(e) 

 

    
(f) 
 

Figure 7. (a-c) Cross-sectional FIB images of the wear tracks formed after sliding for 500 

cycles at 298 K on: (a) the NC Ni film, (b) the NC Ni-MP SiC coating, and (c) the NC 

Ni-NP SiC coating. (d-f) Cross-sectional FIB images of the wear tracks formed after 

sliding for 500 cycles at 493 K on: (d) the NC Ni film, (e) the NC Ni-MP SiC coating, 

and (f) the NC Ni-NP SiC coating. S.D.: sliding direction; D.L.: deformed layer; T.L.: 

tribolayer. 
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(c) 

 

 
(d) 

 
Figure 8. Bright-field and dark-field cross-sectional TEM images of the deformed layers 

formed after sliding for 500 cycles at 493 K on: (a,b) the unreinforced NC Ni coating, 

and (c,d) the NC Ni-NP SiC coating. 
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Figure 9. A high resolution TEM image of the subsurface microstructure in the 

unreinforced NC Ni tested at 493 K shows new grains recrystallized at grain boundaries 

during the high temperature wear test. 
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CHAPTER 5 

FRICTION AND WEAR BEHAVIOUR OF NANOCRYSTALLINE 

COBALT 

 

1. INTRODUCTION 

New tribological surfaces with improved wear resistance can be designed employing 

nanocrystalline (NC) materials that exhibit higher strength and hardness compared to 

their microcrystalline (MC) counterparts. Electrolytic deposition allows production of NC 

metals with narrowly controlled grain size distribution in the range of 10-100 nm [1], and 

with low defect density [2]. Mechanical properties [3-6] and tribological behaviour [7-9] 

of electrodeposited NC Ni have been studied. Shafiei and Alpas [9] showed that an NC 

Ni with a grain size of 15 nm had 18% lower peak COF, almost two orders of magnitude 

smaller initial wear rate and 77% smaller steady-state wear rate compared to Ni with 20 

µm grain size. There are a few reports on the mechanical properties of electrodeposited 

NC Co in the open literature [10, 11]. However, the tribological behaviour of NC Co has 

not received much attention. There is a need for further experimental work to characterize 

micromechanisms of wear in NC Co, and rationalize microscopic processes leading to 

surface damage. In this work, a pin-on-disc tribometer was employed to study friction 

and wear behaviour of NC Co in comparison to MC Co. 
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2. EXPERIMENTAL PROCEDURES 

Electrodeposited NC Co sheets with 99.9% purity and grain size of 20±5 nm and 

annealed Co foils with grain size of 16±3 µm and the same purity were polished to 1 µm 

using a diamond suspension. Using an indentation load of 100 gf, the Vickers 

microhardnesses of the MC Co and NC Co were measured as 299±8 HV and 503±13 HV, 

respectively. A CSM pin-on-disc tribometer was used to measure the variations of 

coefficient of friction (COF) with sliding cycles under unlubricated sliding conditions in 

ambient air with 35% relative humidity. The tests were conducted under a normal load of 

2 N at a sliding speed of 0.1 m/s. An Al2O3, ball (HV = 1,900±40) with 3.18 mm 

diameter was used as the counterface material. After the tests, the morphologies of the 

wear tracks were investigated by optical surface profilometry, optical microscopy, 

scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Volume 

losses were measured according to the procedure given in ASTM standard G99 [12]. 

Wear rates were calculated from the slopes of the volume loss vs. sliding cycles curves. 

 

3. RESULTS AND DISCUSSION 

3.1. Friction, Volume Loss and Wear Rate 

Variations of COF with sliding cycles for the MC Co and NC Co are shown in Figure 

1. The NC Co showed a COF peak of 0.57 at 300 cycles. A steady-state COF of 0.44 was 

observed in this sample after 600 cycles. In contrast, the COF of the MC Co increased 

without showing a peak, and after 500 cycles, a steady-state COF of 0.51 was reached. 

Although the initial COF of the NC Co was higher than that of the MC Co, its steady-

state COF was lower. 
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The variations in the volume losses of the MC Co and NC Co with the sliding cycles 

are shown in Figure 2a. The volume losses of the MC Co were lower than those of the 

NC Co at all the sliding cycles. Figure 2b presents the wear rates of the samples. For both 

MC and NC Co, wear rates decreased rapidly as the sliding wear progressed. Although 

the wear rate of the NC Co was initially higher than that of the MC Co, the steady-state 

wear of the NC Co was milder than that of the MC Co. This behaviour correlates with the 

higher initial COF and the lower steady-state COF of the NC Co (Figure 1). 

 

3.2. Wear Mechanisms 

The morphologies of the wear tracks formed on the surfaces of the MC Co and NC 

Co after 1000 sliding cycles are shown in Figure 3 (optical surface profiles) and Figure 4 

(optical micrographs). Worn surfaces of both MC and NC Co were characterized by 

continuous surface scratches. Although the hardness of the NC Co was higher than that of 

the MC Co, the surface damage to NC Co was more pronounced, i.e. the average width 

and depth of the NC Co’s wear track after 1000 sliding cycles were larger than those of 

the MC Co’s (Figures 3a,b). Large amounts of fine debris particles generated during the 

wear tests were seen scattered around the wear tracks (Figures 4a,b). Some debris 

particles were agglomerated and compacted by the counterface, and formed tribolayers 

on top of the contact surfaces of both MC and NC Co. However, the tribolayers covered 

larger areas on the NC Co’s wear track. 

Figure 5 shows the SEM micrographs and typical EDS spectra of the tribolayers 

formed on top of the wear tracks. In this study, EDS was used as a semi-quantitative 

method to compare oxygen content of the tribolayers. Also, EDS measurements were 
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performed in multiple locations along each wear track. The typical EDS spectra presented 

in Figure 5 show that the NC Co’s tribolayer contained higher amount of oxygen 

compared to the MC Co’s tribolayer. 

The larger tribolayer area coverage in the NC Co and the larger amount of oxygen 

detected in this tribolayer, compared to the MC Co’s tribolayer, are the results of the 

higher tendency of NC Co for oxidation. As nanocrystalline materials have a high density 

of grain boundaries which act as preferential nucleation sites for oxides [13] and the grain 

boundaries can provide faster diffusion paths for oxygen, they are susceptible to surface 

oxidation during sliding wear [9]. Higher rate of oxidational wear in NC Co resulted in 

higher initial surface damage in this material compared to the MC Co. Once the 

tribolayer was formed on top of the contact surfaces, the steady-state wear replaced the 

initial wear, reducing COF and wear rate in the NC Co (Figures 1 and 2b) as the oxide-

rich tribolayers are harder than the original surfaces [9]. 

 

4. CONCLUSIONS 

Although the hardness of the NC Co was higher than that of the MC Co, initial COF 

and wear rate were higher in this material due to the atmospheric effects. In order to 

observe the benefits of the high hardness afforded by NC structure, tests should be done 

in inert atmosphere. 
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FIGURES 

 

 

Figure 1. Variations of COF with sliding cycles in the MC Co and NC Co. 
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(a)  

(b)  

Figure 2. (a) Variation of volume loss with sliding cycles for the MC Co and NC Co. (b) 

Variations of wear rate with sliding cycles for the MC Co and NC Co. 
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(a)  

(b)  

Figure 3. Optical surface profiles of the wear tracks after 1000 sliding cycles on: (a) MC 

Co, and (b) NC Co. 
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Figure 4. Optical micrographs of the wear tracks after 1000 sliding cycles on: (a) MC Co, 

and (b) NC Co. 
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(a)  

(b)  

Figure 5. SEM micrographs and typical EDS spectra of the tribolayers formed on top of 

the wear tracks after 1000 sliding cycles for: (a) MC Co, and (b) NC Co. 



 130

CHAPTER 6 

FABRICATION OF BIOTEXTURED NANOCRYSTALLINE 

NICKEL FILMS FOR THE REDUCTION AND CONTROL OF 

FRICTION 

 

1. INTRODUCTION 

Many sectors of industry display a growing need for the development of new methods 

for controlling frictional forces at submicron and nanometre scales. Reducing and/or 

controlling friction between moving parts in traditional industries, like automotive 

manufacturing, helps conserve energy and lower environmental pollutions. On the other 

hand, when the surface-to-volume ratio is large and applied loads are extremely small, 

the application of conventional lubrication techniques is not always effective in 

controlling the friction [1,2]. For example, the frictional properties of the moving 

components of micro-electro-mechanical systems (MEMS) are dominantly controlled by 

their surface texture and surface chemistry [1]. In recent years, several techniques have 

been developed to reduce frictional forces by topographically structuring contact 

surfaces. For instance, soft lithography techniques have been used to reduce friction by 

decreasing the real area of contact [3-5], and laser texturing has been employed to create 

microgrooves and microdimples that act as lubricant reservoirs [6-8]. 

The natural world offers multiple examples of surfaces that are optimized to control 

friction through a combination of surface texture, orientation and flexibility [9]. Various 

kinds of barbs and hooks found in biological systems [9], the attachment pads of the 
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cricket [9], the gripping feet of the gecko [10,11], and the textured snake skin [12] 

suggest that nature has adapted the most effective ways of controlling friction. Hence, 

enhancing frictional properties by fabricating engineering surfaces that mimic biotextures 

will prove a promising technological trend in future. 

This chapter details the development of a simple replication technique that allows 

specific biotextures to be fabricated in the form of self-sustaining metallic films. For this 

purpose, two different biotextures, lotus leaf and boa’s skin, were replicated to create 

metallic surface features that reduce and control frictional forces. One important aspect of 

the method presented here is that the metallic replicas were made of nanocrystalline (NC) 

Ni with a high hardness, a property that improved load-carrying ability of the surfaces. 

 

2. EXPERIMENTAL PROCEDURES 

Figure 1 illustrates the main steps involved in the technique developed to fabricate 

hard NC Ni replicas of biotextures, e.g. surface textures of lotus leaf and boa’s skin. In 

the first step, the surface texture of the selected biological sample was replicated on a 

cellulose acetate film to obtain a negative impression of the texture (Figure 1a). In the 

next step, a thin layer of gold with a thickness of 90±30 nm was sputtered on the acetate 

film to provide a conductive surface (Figure 1b). The acetate film was then placed in an 

electrolytic cell to deposit an NC Ni layer on top of this film (Figure 1c). The 

electrodeposition parameters are listed in Table 1. The electrolyte was composed of 300 

g/l NiSO4, 45.0 g/l NiCl2, 45.0 g/l HBO3, 5.00 g/l saccharin and 0.25 g/l SNAP. Finally, 

the acetate film was dissolved in acetone to obtain a self-sustaining NC Ni film with a 

surface texture similar to the original biotexture (Figure 1d). 
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An NC Ni film was also deposited on a flat Cu foil using similar electrodeposition 

chemistry and parameters to compare frictional properties. The Cu substrate was 

dissolved in a solution containing 250 g/l CrO3 and 15.0 ml/l sulphuric acid to obtain a 

flat NC Ni film with a thickness of 77±4 μm and a roughness of 11±2 nm. 

The surface textures of the samples were studied using a scanning electron 

microscope (SEM), an optical interferometric surface profilometer and an optical digital 

microscope. A transmission electron microscope (TEM) was employed to study the 

microstructure of the NC Ni films. The grain size of the films was measured using the 

linear intercept method on several TEM micrographs. The Vickers microhardness of the 

NC Ni films was determined as the average of ten measurements using a load of 0.25 N. 

The coefficients of friction (COF) of the NC Ni replica of the lotus leaf and the flat 

NC Ni film were measured using a pin-on-disc tribometer operating under a load of 1.0 N 

at a sliding speed of 0.01 m/s. An alumina (Al2O3) ball with a diameter of 3.18 mm and a 

hardness of 18.64±0.39 GPa was fixed at the end of a pin and used as the counterface. 

To measure the COFs of the NC Ni replica of the boa’s skin, an instrumented 

microscratch tester with a Rockwell-type diamond indenter tip was used. The tests were 

conducted under a normal load of 0.5 N at a sliding speed of 4.0 μm/s. All the friction 

tests were conducted in ambient air with 35% relative humidity. 

 

3. RESULTS AND DISCUSSION 

3.1. Nanocrystalline Nickel Replica of the Lotus Leaf: Reducing the Friction 

The surface texture of the lotus leaf consists of microscopic protuberances covered by 

a needle-like nanostructure with a waxy surface composition. This multilevel surface 
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roughness is known as the source of the lotus leaf’s superhydrophobic property [13-15]. 

However, this property was not of interest in this study. Instead, interest fell on 

investigating whether the reduction in real area of contact produced as a result of surface 

protuberances might reduce the COF. Figure 2a shows an SEM micrograph of the surface 

texture of the as-received lotus leaf. A negative impression of the lotus leaf’s surface 

texture on the acetate film is seen in Figure 2b. Figure 2c displays an SEM micrograph of 

the positive replica of the lotus leaf’s texture produced by electrodepositing NC Ni on the 

gold-sputtered acetate film. High magnification details of this replica are seen in Figure 

2d. Also, an optical 3-D profile of the textured surface is presented in Figure 2e. The 

surface of the textured NC Ni consisted of conical protuberances with a base radius of 

5.0±1.0 μm and a tip radius of 2.5±0.5 μm. The protuberances were 10.0±2.0 μm in 

height and had a planar density of 4×10-3 μm-2. The contact angle of water droplets on the 

textured NC Ni surface was measured as 91˚, indicating that this replica did not have 

superhydrophobic properties similar to the lotus leaf. 

Figure 2f shows a bright-field TEM image of the NC Ni films. The average grain size 

of the films was measured as 30±4 nm, and their Vickers microhardness was determined 

as 4.42±0.14 GPa. 

Figure 3a displays the contact surface morphology of the NC Ni replica of the lotus 

leaf after 200 sliding cycles. During the friction tests, the counterface deformed and 

flattened the protuberance tips producing needle-like wear debris with a length of 

10.0±2.0 μm and a width of 0.65±0.05 μm (i.e., aspect ratio ≈ 15). The high 

magnification micrograph presented in Figure 3b shows that the shear strain applied to 

each protuberance extruded the material in the sliding direction, causing it to accumulate 



 134

at the back of the protuberance. The debris might have formed as a result of material 

detaching from the longitudinal wear grooves seen in Figure 3b. 

COF vs. sliding cycle curves for the textured and the flat NC Ni films are compared 

in Figure 4. Initially, the COF of the flat NC Ni surface was 0.30±0.02, but it increased 

rapidly and reached a peak of 0.54±0.05 at 60 sliding cycles. Then, it started to decrease 

gradually until it approached a value of 0.41±0.03 at 200 cycles. The COF curve of the 

textured NC Ni, however, started from a lower value of 0.20±0.02, and then increased to 

a peak value of only 0.38±0.02 (i.e., 30% lower than the peak COF of the flat film) at 70 

cycles. It decreased slightly after passing this maximum and reached 0.33±0.03 at 200 

cycles. The COFs of both samples increased initially due to the tendency of the real area 

of contact to increase [16]. This could be expressed as the initial conformation of the NC 

Ni’s surfaces to the ball’s contact surface [17]. Since the sliding tests were performed in 

air, formation of oxidized tribolayers on the contact surface of the flat NC Ni film 

reduced the COF of this sample after the peak [18], producing a pronounced peak COF. 

Figure 5 shows the tribolayers formed after 200 sliding cycles on the flat NC Ni surface. 

In the case of the textured NC Ni, however, oxidized tribolayers could not form on the 

contact surface because the wear debris could be transferred to the spaces between the 

contact points, i.e. protuberances (Figure 3a). As a result, this sample’s COF did not 

decrease significantly after the peak, resulting in a less pronounced peak COF. 

The most important observation arising from the examination of the COF curves is 

that the COF of the textured NC Ni surface remained significantly lower than that of the 

flat NC Ni throughout the friction test. Similar experimental observations have been 

reported for polymeric surfaces with similar surface textures [3,4]. Considering Tabor’s 
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analysis [16], the frictional force between a sliding counterface and a soft material 

consists of a shear component (S) and a ploughing component (P): 

f = S + P = τAreal + HA′ (1) 

where τ is the shear strength of the soft material, Areal is the real area of contact, H is 

the hardness of the soft material and A′ is the cross-sectional area of the counterface’s 

indentation onto the soft material. 

However, for a hard material under sufficiently low contact pressures, macroscopic 

indentation of the counterface onto the surface (i.e., indentation-induced deformation) is 

insignificant, and deformation occurs only at microscopic scale, i.e., it is limited to the 

asperity tips. Under these conditions, the cross-sectional area of the indentation (A′) can 

be considered equivalent to the total asperity contact area, i.e., the real area of contact 

(Areal). For the present configuration (an alumina ball sliding on a hard NC Ni surface) 

the wear mechanism precludes macroscopic indentation-induced deformation of the 

sample’s surface by the counterface, as previously shown by the authors [18]. Therefore, 

it can be assumed that A′ is of the same order as Areal. Thus, the frictional force can be 

approximated as: 

realAHf )( += τ  (2) 

Equation 2 implies that when the material properties remain constant, the frictional 

force only depends on the real area of contact. Consequently: 

real
flat

real
textured

flat

textured

A
A

f
f

=  (3) 

On the other hand, under a constant normal load, Amontons-Coulomb law gives: 
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μ
μ

=  (4) 
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where μtextured and μflat are the COFs of the textured and the flat surfaces, respectively. 

Comparing Equations 3 and 4 yields: 

real
flat

real
textured

flat

textured

A
A

=
μ

μ
 (5) 

Therefore, the lower COF of the textured NC Ni compared to the flat NC Ni’s COF 

correlates with its smaller real area of contact. 

 

3.2. Nanocrystalline Nickel Replica of the Boa’s Skin: Obtaining Anisotropic 

Frictional Properties 

Snake skin is known to have an asymmetric texture that results in anisotropic 

frictional properties, enhancing forward motion while restricting backward and lateral 

motions [12]. Figure 6a shows an optical 3-D profile of the surface of the red tail boa’s 

skin, and Figure 6b is an SEM micrograph of this skin. The texture consists of 

microscopic scales with an average size of 16±4 μm (in the head-to-tail direction) 

separated by asymmetric protrusions. An SEM micrograph of the negative impression of 

the skin’s texture on the acetate film is seen in Figure 6c, and an SEM micrograph of the 

positive NC Ni replica of this sample is displayed in Figure 6d. Figure 6e shows a typical 

optical 2-D profile of the textured NC Ni’s surface, in the direction corresponding to the 

tail to head direction, revealing that the replicated protrusions had an asymmetric shape 

similar to the original ones. 

The average COFs measured in different directions on the textured NC Ni film are 

presented in Figure 7. The average COF was the lowest in the head-to-tail direction (i.e., 

0.061±0.014). In the reverse direction, tail-to-head, the average COF was higher (i.e., 
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0.087±0.011). The highest average COF, however, was observed in the lateral direction 

where it was measured as 0.105±0.005. This directional variation of COF was consistent 

with the observation previously reported for a softer microcrystalline (MC) Cu replica of 

the same skin [19]. 

The observed frictional anisotropy is a result of the asymmetric shape of the 

protrusions at the scales’ ridges (Figure 6e). In the head-to-tail direction there was only 

small resistance to the motion of the diamond tip on the textured film, while the 

asymmetric protrusions acted as pointed obstacles against the tip sliding in the tail-to-

head direction, resulting in a higher COF in this direction. In the lateral direction, the 

linear density of protrusions was higher than that in the tail-to-head direction, and hence 

the tip had to overcome more obstacles. As a result, the highest COF corresponded to the 

lateral direction. This type of structure may have potential applications in systems such as 

clutches, where a range of different COF values can be obtained in various directions. 

 

4. SUMMARY AND CONCLUSIONS 

A double-stage replication technique was developed to produce biotextured 

nanocrystalline (NC) Ni films with a grain size of 30±4 nm and a hardness of 4.42±0.14 

GPa. Two biological surfaces with different morphologies, i.e. lotus leaf and boa’s skin, 

were replicated. The main conclusions arising from this study are as follows: 

1. The NC Ni replica of the lotus leaf showed a lower COF compared to a flat NC Ni 

film with the same microstructure and hardness. Overall, the lower COF values of the 

textured film correlated with its smaller real area of contact. Also, the textured film 

showed a less pronounced peak COF compared to the flat film as the transfer of the wear 
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debris to the spaces between the protuberances prohibited the formation of oxidized 

tribolayers that could reduce the frictional forces after the peak COF. 

2. The NC Ni replica of the boa’s skin displayed frictional anisotropy as a result of 

the asymmetric shape of the protrusions at the scales’ ridges. Thus, the method presented 

in this study provides a simple and effective way of controlling the friction between 

surfaces in contact. 
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TABLE 

 

Table 1. NC Ni electrodeposition parameters. 

 

Current Type DC 

Current Density 0.05 A/cm2 

Anode Type Platinum 

Electrolyte pH 4.5 

Electrolyte Temperature 45 °C 

Electrodepositing Duration 45 min. 
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FIGURES 

(a)  

(b)  

(c)  

(d)  
(d) 

 
Figure 1. The main steps of the technique developed to fabricate hard NC metallic 

replicas of biotextures. (a): The surface texture of the biological sample is first replicated 

on an acetate film to obtain a negative impression of the biotexture. (b): A thin layer of 

gold is sputtered on the textured acetate film to provide a conductive surface. (c): A 

metallic layer, e.g. NC Ni, is electrodeposited on the top of the acetate film. (d): The 

acetate film is dissolved in acetone to obtain a free-standing replica of the biotexture. 
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(a) (b) 

    
(c) (d) 

    
(e) (f) 

 
Figure 2. (a): An SEM microgragh of the surface texture of the lotus leaf. (b): An SEM 

micrograph of the negative impression of the leaf’s texture on acetate film. (c): An SEM 

micrograph of the NC Ni replica of the lotus leaf. (d): A high magnification SEM 

micrograph of the texture shown in (c). (e): An optical 3-D profile of the NC Ni replica’s 

surface. (f): A bright field TEM image of the NC Ni film. 
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(a) 

 

 
(b) 

 
Figure 3. (a): The contact surface morphology of the NC Ni replica of the lotus leaf after 

200 sliding cycles. The protuberance tips were flattened, and needle-like debris was 

scattered in the spaces between the protuberances. (b): A high magnification SEM 

micrograph of the texture shown in (a). 
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Figure 4. Variation of COF with sliding cycles measured on the NC Ni replica of the 

lotus leaf and the flat NC Ni film. 
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Figure 5. An optical micrograph of the worn surface of the flat NC Ni film after 200 

sliding cycles. Arrows show tribolayers. 
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(a) 

    
(b) (c) 

   
(d) (e) 

 
Figure 6. (a): An optical 3-D profile of the red tail boa’s skin surface. The head-to-tail 

direction (H-T) is marked with a solid arrow, while the lateral direction (L) is shown with 

a dotted arrow. (b): An SEM micrograph of the boa’s skin surface texture. (c): An SEM 

micrograph of the negative impression of the skin’s texture on an acetate film. (d): An 

SEM micrograph of the NC Ni replica of the boa’s skin. (e): A typical optical 2-D profile 

of the texture shown in (d). 
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Figure 7. Average COFs of the NC Ni replica of the boa’s skin measured in three 

different directions corresponding to the head-to-tail, tail-to-head and lateral directions. 
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CHAPTER 7 

NANOCRYSTALLINE NICKEL FILMS WITH LOTUS LEAF 

TEXTURE FOR SUPERHYDROPHOBIC AND LOW FRICTION 

SURFACES 

 

1. INTRODUCTION 

The successful advancement of micro-electro-mechanical systems (MEMS) with 

miniature moving parts, including micromotors, gears and transmissions, mechanical 

discriminators and optical microswitches, relies on the development of new wear-

resistant materials and surfaces with high hydrophobicity (water repellency) and low 

adhesion and friction [1-3]. Other possible applications for durable water repellent 

surfaces range from micro-fluidic devices [4] to bipolar plates in proton exchange 

membrane fuel cells (PEMFCs), because increasing hydrophobicity enhances the flow of 

both fluid and gas [5]. The objective of this work was to fabricate functional surfaces that 

simultaneously combined superhydrophobicity with high hardness and low coefficient of 

friction (COF). 

The roughness of a surface has a significant effect on its wettability. The actual 

contact angle (θ) between a rough surface and a liquid droplet can be determined using 

[6]: 

Tr θθ coscos =  (1) 

where r is the roughness ratio (the actual surface area divided by the apparent surface 

area) and θT is the thermodynamic contact angle defined by [7]: 
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lv

slsv
T γ

γγ
θ

−
=cos  (2) 

where γsv is the solid-vapour surface energy, γsl is the solid-liquid interfacial energy and 

γlv is the liquid-vapour surface energy. As roughness increases, air can become trapped 

underneath the liquid locally, resulting in the formation of a composite surface with a 

large contact angle [8], a phenomenon that is described using the following theoretical 

equation [9]: 

airTS ff −= θθ coscos  (3) 

where fS is the fractional contact area between the liquid and the surface, and fair is the 

fractional contact area between the liquid and the air underneath the droplet. On the other 

hand, increasing the roughness of a hard surface may also result in a reduction in friction 

by reducing the real area of contact with the counterface [10-13]. The relationship 

between COF and real area of contact can be expressed by the following equation [13]: 

real
smooth

real
textured

smooth

textured

A
A

=
μ
μ  (4) 

where texturedμ  and smoothμ  are the COFs of the textured and smooth surfaces, and real
texturedA  

and real
smoothA  are their corresponding real areas of contact. Therefore, by optimizing 

material properties and surface texture, it may be possible to design and fabricate 

superhydrophobic surfaces with low COFs. 

The natural world offers multiple examples of surfaces with optimized wettability and 

frictional properties through a combination of surface texture and chemistry [14]. Some 

examples are the superhydrophobic lotus leaf [15], the water strider’s leg [16], the 

cricket’s attaching foot [17], the gecko’s gripping foot [18,19], and the snake’s textured 
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skin [20], all of which suggest that nature offers effective ways of controlling wettability 

and friction. The surface texture of the lotus leaf consists of microscopic protuberances 

covered in nanoscale, needle-like features with a waxy surface composition. This 

multilevel surface roughness is known as the source of the lotus leaf’s 

superhydrophobicity [15,21,22]. A simple technique was developed previously by the 

authors [13] to produce nanocrystalline (NC) Ni films with a lotus leaf surface 

morphology. These films combined the microscale surface texture of the lotus leaf with 

the high hardness of the NC films, but the method failed to reproduce the nanoscale 

features. The method consisted of two steps: 

i) replication of the lotus leaf surface texture on a cellulose acetate film to obtain a 

negative impression of the texture; and 

ii) electrodeposition of NC Ni on the acetate film to obtain a hard replica of the leaf. 

In the present study, this method was further developed by applying a short-duration 

electrodeposition and a PFPE solution treatment to the NC Ni lotus leaf replicas. In this 

way, microscale lotus leaf replicas with a nanoscale surface texture and a low surface 

energy were produced. Consequently, new surfaces with low friction and very high 

hydrophobicity, similar to that of the natural leaf but on a much harder surface, were 

obtained. 

 

2. EXPERIMENTAL PROCEDURES 

2.1. Fabrication 

The main steps in the fabrication of NC Ni replicas from the lotus leaf are 

schematically illustrated in Figures 1a-e. In the first step (Figure 1a), the surface texture 
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of the lotus leaf was replicated on a cellulose acetate film to obtain a negative impression 

of the texture. In the next step (Figure 1b), a thin layer of Au (90±30 nm) was sputtered 

on the acetate film to provide a conductive surface. The Au-coated acetate film was then 

placed in an electrolytic cell for 45 minutes to deposit an NC Ni layer with a thickness of 

77±4 μm (Figure 1c). The chemistry of the electrodeposition bath and the process 

parameters used are given elsewhere [13]. The acetate film was then dissolved in acetone 

to obtain a self-sustaining NC Ni replica of lotus leaf surface consisting of conical 

protuberances. 

A short-duration secondary electrodeposition (SED) process was applied to modify 

the microscale surface texture. The bath composition and the parameters of the SED 

process were the same as those of the primary electrodeposition (PED) process, but with 

a much shorter duration (120 s and 300 s). Ni was then preferentially deposited on the 

tips of the protuberances due to the high local current densities there. Figure 1d illustrates 

the deposited Ni, which is in the shape of spherical cups with a smaller curvature than the 

initial tips of the protuberances. This morphology is termed as “Ni crown”. 

The surfaces were then dipped for 180 s in an ethoxysilane-terminated 

perfluoropolyether (PFPE) derived solution that consisted of 1 wt% Fluorolink® S10, 4 

wt% water, 1 wt% acetic acid and 94 wt% isopropyl alcohol. They were then cured at 

100°C for 30 minutes. The primary objective of this treatment was to reduce the surface 

energy (PFPE-derived coatings have very low surface energies [23]), but the low PH of 

the PFPE-derived solution could also result in the formation of a nanotextured surface by 

etching the “Ni crowns” (Figure 1e), which should further enhance the water repellency 

of the obtained surfaces. 
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For comparison, NC Ni films were also electrodeposited on Au-sputtered smooth 

acetate films (without lotus leaf texture) using the PED process. The acetate film was 

dissolved in acetone to obtain a smooth NC Ni film with a roughness of 11±2 nm and a 

thickness of 63±6 μm. Table 1 lists the specifications of all the fabricated films, and the 

designations used to identify them in the rest of the paper. 

 

2.2. Characterization 

The surface morphologies of the samples were studied using an FEI Quanta 200 FEG 

environmental scanning electron microscope (SEM) at a tilt angle of 40°. A JEOL 2010F 

transmission electron microscope (TEM) was employed to determine the average grain 

size of the NC Ni films by using the conventional linear intercept method on several 

TEM micrographs, and the Vickers microhardness of the NC Ni films was verified using 

a load of 0.25 N. 

The static contact angles between the films’ surfaces and 10 µL water droplets were 

measured using a Kruss DSA10L system. During these measurements, water was 

deposited on the surfaces at a rate of 0.33 µL/s. 

The COFs of the textured surfaces were measured using a CSM pin-on-disc 

tribometer operating under a load of 1.0 N at a sliding speed of 0.01 m/s. An alumina 

(Al2O3) ball with a diameter of 3.18 mm and a hardness of 18.64±0.39 GPa was fixed at 

the end of a pin and used as the counterface. The friction tests were conducted in ambient 

air with 35% relative humidity. 

To study the cross-sectional microstructures of the protuberances, focused ion beam 

(FIB) investigations were carried out using a Zeiss NVision 40 dual beam SEM/FIB 



 153

instrument. First, a thin layer of carbon was deposited on the area of interest to protect the 

surface features against beam damage during ion-milling. Then, a narrow trench was 

milled, using Ga-ion beam currents ranging from 13 nA to 700 pA at a voltage of 30 KV, 

to produce a smooth section perpendicular to the sample’s surface. To minimize beam 

damage during observation, a low ion beam current of 10 pA was used. The dual beam 

angle in the SEM/FIB system this study used was 54°, which implies that the FIB images 

were recorded at a tilt angle of 54°. 

 

3. RESULTS AND DISCUSSION 

3.1. Microstructures and Morphologies 

Figure 2a shows an SEM micrograph of the surface texture of lotus leaf, and Figure 

2b shows the needle-like nanotexture covering the surface of a protuberance. A negative 

impression of the lotus leaf’s surface texture on a cellulose acetate film (obtained by the 

replication method shown in Figure 1a) is seen in Figure 2c, and an enlarged view of a 

protuberance impression on this film is shown in Figure 2d. PED of NC Ni on this acetate 

film resulted in a hard replica of the leaf’s surface texture, which is shown in Figure 2e 

(S1 in Table 1). The planar density of the conical protuberances was 4×103 mm-2, and 

they had a height of 10.0±2.0 μm, a tip radius of 2.5±0.5 μm and a base radius of 5.0±1.0 

μm. Figure 2f provides an enlarged view of a protuberance on this sample, revealing that 

the replicated protuberances had the same height and overall shape as the protuberances 

in the original leaf, but that their surfaces were featureless (compare Figures 2b,f). 

A cross-sectional FIB image of a protuberance on the electrodeposited NC Ni lotus 

leaf replica is presented in Figure 3a. This micrograph shows the columnar grain growth 
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from the Au layer towards the centre of the protuberance, where an equiaxed grain 

structure is recognizable. A bright field TEM image with the corresponding selected area 

electron diffraction (SAED) pattern obtained from the top of the equiaxed grain region is 

presented in Figure 3b. The average grain size of the NC Ni measured was 30±4 nm. The 

Vickers microhardness of the films was determined to be 4.42±0.14 GPa using a load of 

0.25 N. 

Figures 4a,b show the backscattered electron (BSE) and secondary electron (SE) 

micrographs of the NC Ni lotus leaf replica after it had been treated with the PFPE 

solution (S2). This treatment covered the surface with a thin, non-uniform film of PFPE, 

which was blistered in some areas (dark spots on the white Au layer in the BSE image in 

Figure 4a). However, it was unable to etch the surface of this sample to form a nanoscale 

texture (see Figure 4c for a higher magnification SE micrograph of a protuberance), 

because the surface was covered with a continuous Au film. 

The BSE and SE micrographs of the lotus leaf’s surface features after the 120 s SED 

process (S3) are shown in Figures 5a,b. The SED process formed “Ni crowns” (features 

of darker colour in the BSE micrograph shown in Figure 5a). These “Ni crowns” were 

formed on almost all of the protuberances, increasing their height to 14.0±2.0 μm and 

their tip radius to 6.0±0.5 μm. Some Ni spheres were also deposited between the 

protuberances. Figure 5c shows a higher magnification SE micrograph of a protuberance 

on this sample. 

Figures 5d,e show the BSE and SE micrographs of the 120 s SED replica after it had 

been treated with the PFPE solution (S4). The surfaces between the protuberances are 

intact (not etched by the PFPE solution), because they were protected by the Au film. 
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This treatment has, however, created a nanoscale texture on the surfaces of the “Ni 

crowns” (see Figure 5f for a higher magnification SE micrograph of a protuberance). 

The BSE and SE micrographs of the lotus leaf replica’s surface features after the 300 

s SED process (S5) are shown in Figures 6a,b. The SED Ni appears as clustered spheres 

of darker colour in the BSE micrograph shown in Figure 6a. Similar to the shorter-time 

SED process, “Ni crowns” were formed on the protuberances, but a large number of 

clustered Ni spheres could also be seen in the areas between these features. Figure 6c 

shows a higher magnification SE micrograph of a protuberance on this sample. 

Figures 6d,e show the BSE and SE micrographs of the 300 s SED replica after it had 

been treated with the PFPE solution (S6). It is seen that this treatment has created a 

nanoscale texture on the surfaces of the clustered Ni spheres and the “Ni crowns” (see 

Figure 6f for a higher magnification SE micrograph of a protuberance). 

Cross-sectional FIB image of a protuberance on the lotus leaf replica after the 120 s 

SED process and the PFPE solution treatment (S4) is displayed in Figure 7, which reveals 

the microstructures of the protuberance and its “Ni crown”. Careful observation of this 

micrograph suggests that: i) the Ni grains are relatively larger inside the crown, which 

could be caused by the high current densities generated on the protuberances during the 

SED process; and ii) the surface of the “Ni crown” has been etched by the PFPE solution, 

creating a nanotextured surface. 

 

3.2. Contact Angles 

The water contact angles with the corresponding shapes of the water droplets on the 

NC Ni surfaces are presented in Figure 8a. The smooth NC Ni surface had a low contact 
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angle of θ(S7) = 64±2°, whereas the replication of lotus leaf surface texture provided an 

NC Ni surface that had a contact angle of θ(S1) = 91±2°. On the other hand, the PFPE 

treatment of the smooth surface lowered its surface energy, leading to an increase in its 

contact angle from θ(S7) = 64±2° to θ(S8) = 90±2°. When these two effects (surface 

texture and low surface energy) were combined in S2, a contact angle of θ(S2) = 120±3° 

was recorded, which was 33% higher than those obtained by applying each of these two 

effects alone. 

Depositing “Ni crowns” on the protuberances of the NC Ni lotus leaf replica did not 

lead to any significant increase in the contact angle. This is evident from comparing the 

contact angles of S1, S3 and S5 where θ(S1) = 91±2° and θ(S3) = θ(S5) = 94±2°. 

The NC Ni lotus leaf replica with the 120 s SED process, followed by the PFPE treatment, 

displayed the highest contact angle of θ(S4) = 156±3°. The SED process deposited 

microscale “Ni crowns” on the protuberances, and the PFPE solution treatment created a 

nanoscale surface texture with a low surface energy on those crowns. The combination of 

this multilevel surface roughness and low surface energy produced a synergy that resulted 

in a more than 140% increase in the NC Ni’s contact angle. The PFPE-treated 

protuberances with nanotextured Ni crowns (S4) could readily sustain water droplets 

without allowing contact with the entire surface, forming superhydrophobic surfaces 

similar to that of the lotus leaf (Figure 8b). 

It should be noted that increasing the SED process duration from 120 s to 300 s led to 

a small reduction in the contact angle, from θ(S4) = 156±3° to θ(S6) = 146±3°. This 

reduction could be justified using Equation 3, which suggests that an increase in the 

fractional contact area of the liquid with the surface (fS) would lead to a reduction in the 
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actual contact angle. After 120 s of SED, “Ni crowns” were formed on almost all of the 

protuberances. Continuing this process for a longer duration (i.e., 300 s in the case of S6) 

resulted in the deposition of clustered Ni spheres in the areas between the original 

protuberances. This increased the fS and reduced the size of the microscopic air pockets 

optimized by nature in the lotus leaf. 

 

3.3. Friction and Wear Properties 

The morphology and microstructure of the worn protuberances on the NC Ni lotus 

leaf replica (S1) after sliding for 500 cycles are shown in Figures 9a,b. The alumina 

counterface plastically deformed and extruded the material at the protuberance tips in the 

sliding direction. This led to the accumulation of deformed material around the 

protuberances (Figure 9a). The wear debris particles might have been generated by the 

micro-ploughing action of the couterface, evident from the longitudinal wear grooves on 

the contact surface of each protuberance in Figure 9a. The continuous transfer of these 

wear debris particles to the spaces between the protuberances prevented the formation of 

tribolayers on the contact surfaces of the textured samples. Such tribolayers could readily 

form on the contact surfaces of the smooth samples [24]. 

Figure 9a also shows a trench that was milled by FIB, parallel to the sliding direction, 

to investigate the evolution in a protuberance’s cross-sectional microstructure. As seen in 

Figure 9b, the grains on the contact surface were aligned towards the sliding direction. 

During each pass, the counterface extruded out the material that was deformed in the 

previous passes and accumulated it at the back of the protuberance, forming a curved arm 

of aligned grains after sliding for 500 cycles (Figure 9b). 
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COF versus sliding cycle curves for all of the NC Ni films are compared in Figures 

10a-h, and their steady-state COFs are presented in Figure 11. The initial COFs measured 

for the textured surfaces (Figures 10a-f) were lower than those for the smooth surfaces 

(Figures 10g,h), a result that could be correlated with the smaller real area of contact in 

the textured surfaces, as explained by Equation 4. The steady-state COFs of the textured 

and the smooth NC Ni surfaces prior to the PFPE treatment (S1, S3, S5 and S7), 

however, were similar, and had a value of about 0.40. Also, the effect of the PFPE 

treatment on both the textured and the smooth surfaces was to significantly reduce their 

steady-state COFs to about 0.16 for S2, S4 and S8 (60% reduction), and to 0.29 in the 

case of S6 (24% reduction). Hence, for samples with similar surface energies (e.g., S1, 

S3, S5 and S7), the steady-state COFs of the textured surfaces (S1, S3 and S5) were 

similar to that of the smooth surface (S7). 

After the initial high-COF period in the smooth NC Ni surfaces, the formation of 

tribolayers reduced the COFs of these surfaces, which resulted in a peak in their COF 

curves (Figures 10g,h). However, the initial COFs of the textured surfaces were lower 

(due to their smaller real area of contact), and no decline occurred in their steady-state 

COFs (because protective tribolayers could not form on their contact surfaces), resulting 

in the absence of COF peaks in the textured surfaces (Figures 10a-f). It is interesting to 

note that the NC Ni replicas with the 300 s SED process with or without the PFPE 

treatment (S5 and S6) almost displayed a peak in their COF curves (Figures 10e,f), due to 

the large number of clustered Ni spheres that existed between the original protuberances 

(Figures 6a,d). These extra surface features (compared to S3 and S4) increased the real 

area of contact with the counterface and prevented the transfer of the wear debris to the 
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areas between the original protuberances (encouraging the formation of tribolayers), both 

of which promoted the appearance of a small peak in the COF curve, though not as 

noticeable as in the case of the smooth surfaces (compare Figures 10e,f with Figures 

10g,h). Moreover, compared to the original protuberances and their crowns, the Ni 

spheres between the protuberances were not strongly bonded to the surface. 

Consequently, the sliding-induced stresses could easily separate them from the surface 

and transform them from functional surface features into destructive third bodies in 

sliding wear, which would increase the steady-state COFs (compare Figure 10f with 

Figures 10b,d,h). Hence, the longer SED process in S6 (compared to S4) had a negative 

impact on its COF, similar to hydrophobicity. 

The lowest COFs were exhibited by S2 and S4 (Figures 10b,d). It is important to note 

that the nanoscale surface texture of the protuberances, which played an important role in 

increasing the hydrophobicity in S4, was not useful in lowering the COF values of this 

sample further (compared to S2, which only had a microscale texture). The functionality 

of such nanoscale textures in nano-tribosystems, however, remains to be explored. 

 

4. CONCLUSIONS 

1. Lotus leaf surface-textured nanocrystalline (NC) Ni films, developed using 

replication of original biotexture, were modified by a selective electrodeposition and a 

PFPE solution treatment to produce surfaces with low coefficient of friction (COF = 

0.16) and high hydrophobicity (θ = 156°), similar to that of the natural lotus leaf but on a 

much harder surface (H = 4.42 GPa). 
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2. The superhydrophobicity of the NC Ni films was attributed to successful 

development of a multi-level surface roughness (where a nanoscale surface texture was 

superimposed on a microscale structure of protuberances) with a low surface energy. 

3. The microscale protuberances reduced the real area of contact and removed the 

wear debris particles from the contact surfaces simultaneously, eliminating the initial 

high COF peaks observed when smooth NC Ni films were tested. Additionally, the PFPE 

treatment of the smooth and textured surfaces resulted in a 60% reduction in the steady-

state COFs. 
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TABLE 

 

Table 1. Summary of the fabricated NC Ni samples with different surface features and 

their designations used to identify them. 

 
Sample Description Surface Features 

S1 NC Ni lotus leaf replica Protuberances 

S2 S1 treated with the PFPE solution PFPE-treated protuberances 

S3 NC Ni lotus leaf replica with the 
120 s SED Protuberances with Ni crowns 

S4 S3 treated with the PFPE solution PFPE-treated protuberances with nanotextured Ni 
crowns 

S5 NC Ni lotus leaf replica with the 
300 s SED Protuberances with Ni crowns; Ni spheres 

S6 S5 treated with the PFPE solution PFPE-treated protuberances with nanotextured Ni 
crowns; nanotextured Ni spheres 

S7 NC Ni deposited on a smooth 
replica surface Smooth surface 

S8 S7 treated with the PFPE solution PFPE-treated smooth surface 
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FIGURES 

 
 

Figure 1. Schematic illustration of the main steps of the method developed to fabricate 

NC Ni lotus leaf replicas. (a): The surface texture of the lotus leaf was replicated on a 

cellulose acetate film to obtain a negative impression. (b): A thin layer of Au was 

sputtered on the textured acetate film to provide a conductive surface. (c): A layer of NC 

Ni was electrodeposited on the acetate film. (d): The acetate film was dissolved in 

acetone to obtain a free-standing replica of the lotus leaf, and then a short-duration SED 

process was applied to deposit “Ni crowns” on the protuberances’ tips. (e): A PFPE 

solution treatment of the surface created a nanotextured layer on the “Ni crowns”. 
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Figure 2. (a): An SEM micrograph of the surface texture of a carbon-coated lotus leaf. 

(b): The needle-like nanotexture covering the surface of a protuberance on the lotus leaf. 

(c): A negative impression of the lotus leaf’s surface texture on a cellulose acetate film. 

(d): A higher magnification image of a protuberance’s impression on the acetate film 

shown in (c). (e): NC Ni replica of the acetate film obtained by the PED process. (f): A 

higher magnification image of a protuberance on the NC Ni replica shown in (e). 
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Figure 3. (a): A cross-sectional FIB image of a protuberance on the NC Ni lotus leaf 

replica (S1). (b): A bright field TEM image of the cross-section of the NC Ni deposits at 

the tip of a protuberance. The inset shows the corresponding SAD patterns. 
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Figure 4. (a): A BSE image of the NC Ni lotus leaf replica after PFPE solution treatment 

(S2). (b): SE image of the surface shown in (a). (c): A higher magnification SE image of 

a protuberance on the surface shown in (b). 
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Figure 5. (a): A BSE image of the NC Ni lotus leaf replica after 120 s of SED process 

(S3). (b): SE image of the surface shown in (a). (c): A higher magnification SE image of 

a protuberance on the surface shown in (b). (d): A BSE image of NC Ni lotus leaf replica 

after 120 s of SED process and the PFPE solution treatment (S4). (e): SE image of the 

surface shown in (d). (f): A higher magnification SE image of a protuberance on the 

surface shown in (e). 
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Figure 6. (a): A BSE image of the NC Ni lotus leaf replica after 300 s of SED process 

(S5). (b): SE image of the surface shown in (a). (c): A higher magnification SE image of 

a protuberance on the surface shown in (b). (d): A BSE image of NC Ni lotus leaf replica 

after 300 s of SED process and the PFPE solution treatment (S6). (e): SE image of the 

surface shown in (d). (f): A higher magnification SE image of a protuberance on the 

surface shown in (e). 
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Figure 7. A cross-sectional FIB image of a protuberance on the lotus leaf replica after 120 

s of SED process and the PFPE solution treatment (S4), which reveals the microstructures 

of the protuberance and its “Ni crown”. 
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Figure 8. (a) Comparison of the water contact angles and the shapes of the water droplets 

on the NC Ni surfaces. S1: NC Ni lotus leaf replica; S2: S1 after the PFPE solution 

treatment; S3: NC Ni lotus leaf replica after the 120 s SED process; S4: S3 after the 

PFPE solution treatment; S5: NC Ni lotus leaf replica after the 300 s SED process; S6: S5 

after the PFPE solution treatment; S7: NC Ni deposited on smooth replica surface; S8: S7 

after the PFPE solution treatment. (b): An optical image of a large water droplet on the 

surface of S4. 
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Figure 9. (a): An SE image of the wear track formed on the NC Ni lotus leaf replica (S1) 

after sliding for 500 cycles. A trench has been milled at the centre of this area to reveal a 

protuberance’s cross-section parallel to the sliding direction for microstructural analysis 

by FIB. (b): A cross-sectional FIB image of the worn protuberance shown in (a). 
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Figure 10. COF vs. sliding cycle curves of: (a): NC Ni lotus leaf replica (S1). (b): S1 after 

the PFPE solution treatment (S2). (c): NC Ni lotus leaf replica after 120 s of SED process 

(S3). (d): S3 after the PFPE solution treatment (S4). (e) NC Ni lotus leaf replica after 300 

s of SED process (S5). (f): S5 after the PFPE solution treatment (S6). (g): NC Ni 

deposited on smooth replica surface (S7). (h): S7 after the PFPE solution treatment (S8). 
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Figure 11. The average steady-state COFs of the NC Ni surfaces. S1: NC Ni lotus leaf 

replica; S2: S1 after the PFPE solution treatment; S3: NC Ni lotus leaf replica after the 

120 s SED process; S4: S3 after the PFPE solution treatment; S5: NC Ni lotus leaf replica 

after the 300 s SED process; S6: S5 after the PFPE solution treatment; S7: NC Ni 

deposited on smooth replica surface; S8: S7 after the PFPE solution treatment. 
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CHAPTER 8 

GENERAL DISCUSSIONS AND CONCLUSIONS 

 

The objective of this dissertation was to develop new wear-resistant materials with 

superhydrophobic surfaces and low friction by combining the high strength and hardness 

of nanocrystalline (NC) materials with the surface textures found in biological systems. 

This was accomplished through the following steps: 

i) Friction and wear properties of electrodeposited NC Ni and NC Co were 

investigated. For the NC Ni, microscopic processes leading to generation of wear 

debris and surface damage in different testing environments were characterized in 

detail. Surface deformation in the NC Ni was studied by performing 

nanoindentation tests. Additionally, effects of sliding speed and temperature on 

the friction and wear behaviour of the NC Ni were delineated in separate studies. 

ii) Using replication and electrodeposition techniques, self-sustaining NC Ni replicas 

of the surface textures of a lotus leaf and a snake skin were fabricated for the 

reduction and control of friction. 

iii) The surface texture of the NC Ni lotus leaf replicas was modified using a short-

duration electrodeposition process, followed by a perfluoropolyether (PFPE) 

solution treatment, to increase hydrophobicity and to lower the friction of this NC 

metal. 

The key conclusions arising from this dissertation are as follows: 

1. In studying tribological properties of NC metals, attention must be given to the 

effects of testing environment. The role of the surface oxidation on the initial and steady-
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state wear behaviour of NC Ni and NC Co was studied in this dissertation. In ambient 

atmosphere, the formation of continuous, oxidized tribolayers on top of the steady-state 

wear tracks prevented the ploughing of the NC Ni’s surface by the counterface, resulting 

in an 18% lower peak coefficient of friction (COF), two orders of magnitude lower initial 

wear rate and a 77% lower steady-state wear rate compared to a microcrystalline (MC) 

Ni. In contrast, higher rate of oxidational wear in NC Co resulted in higher initial surface 

damage in this material compared to an MC Co. Once tribolayers formed on top of the 

contact surfaces, they reduced the steady-state COF and wear rate in the NC Co. 

Therefore, it can be concluded that for an NC metal with a hardness slightly higher than 

that of its MC counterpart (e.g., NC Co) the higher rate of surface oxidation, particularly 

during the initial stage of sliding, can result in larger surface damage. The negative effect 

of surface oxidation can be offset by the outstanding potential of grain boundaries in 

increasing the hardness of face centred cubic (FCC) metals like in the case of the NC Ni. 

2. The grain-boundary-induced deformation mechanisms are more difficult to operate 

at higher strain rates, and thus in NC metals with a high density of grain boundaries, the 

surface damage and wear rate decrease significantly when the sliding speed increases. 

Based on this experimental observation, a modified Archard equation, in which the wear 

coefficient and the wear exponent were functions of sliding speed, was proposed to 

predict wear rates of NC Ni at various sliding speeds. 

3. Increasing the sliding test temperature from 298 K to 493 K resulted in an increase 

in wear rate of more than two orders of magnitude and a 67% increase in the COF of the 

NC Ni coating, which was attributed to the activation of grain boundary sliding 

mechanism at the elevated temperature. Although reinforcing NC Ni with SiC 
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nanoparticles (NP SiC) did not result in any significant change in the NC Ni’s hardness 

or wear rate at room temperature, it remarkably improved the NC Ni’s high-temperature 

wear resistance. It was suggested that the recrystallization of new grains, as well as the 

grain boundary sliding deformation mechanism observed during the high-temperature 

sliding tests could possibly be hindered by the nanoparticles in the NC Ni-NP SiC 

composite coating. 

4. Replicating the surface textures of biological samples, namely boa’s skin and lotus 

leaf, on the NC Ni produced hard, durable surfaces with controlled and reduced frictional 

properties. The NC Ni replica of boa’s skin displayed frictional anisotropy as a result of 

the asymmetric shape of the protrusions at the scales’ ridges. The microscale 

protuberances in the NC Ni lotus leaf replica reduced the real area of contact and 

removed the wear debris particles from the contact surfaces simultaneously, eliminating 

the initial high COF peaks observed when smooth NC Ni films with the same 

microstructure and hardness were tested. It was showed that the transfer of the wear 

debris to the spaces between the protuberances prohibited the formation of oxidized 

tribolayers on the contact surfaces of the textured surface. Additionally, the successful 

development of a multi-level surface roughness (where a nanoscale surface texture was 

superimposed on a microscale structure of protuberances) with a low surface energy by 

using a selective electrodeposition followed by a PFPE solution treatment resulted in a 

low COF (0.16) and a high hydrophobicity (156°) similar to the natural leaf but on a 

much harder surface (4.42 GPa). 
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SUGGESTIONS FOR FUTURE WORK 

1. The effects of surface oxidation, sliding speed and testing temperature on the 

tribological behaviour of other nanocrystalline (NC) materials including hexagonal close-

packed (HCP) metals need to be investigated. 

2. The microstructural instability of NC materials at high temperatures remains a 

significant disadvantage for these materials. It is suggested that the deformation and wear 

micromechanisms of NC materials at high temperatures be explored further to develop 

new strategies for strengthening these materials at elevated temperatures. More progress 

needs to be made on the reinforcement strategies by focussing on the nanoscale 

interactions between nanoparticles and NC grains. 

3. It is suggested that the replication method developed in this dissertation be used for 

fabricating replicas of other biological surface textures to modify surface properties of 

NC materials. Along this line, reproductions of shark skin for reducing the friction, wings 

of butterfly and cicada for increasing the hydrophobicity, and dragonfly’s eye for 

obtaining NC surfaces with antireflective properties are proposed. 

4. The biotextured NC films described in this dissertation were originally developed 

for the microscale applications like micro-electro-mechanical systems (MEMS). New 

techniques need to be developed for the mass production of large NC sheets with 

biological surface textures for various industrial applications. 
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APPENDICES 

 

APPENDIX A: MEASUREMENT OF THE WIDTH OF THE WEAR TRACK 

A Wyko NT-1100 optical interferometer was used to obtain 2-D profiles at four 

locations around a circular wear track. The width of the track was then measured at each 

location, as shown in Figure A1, and the average of these measurements was recorded as 

the width of the wear track. 

 

 

Figure A1. A typical 2-D profile of the wear track formed on NC Ni after 1000 sliding 

cycles in air. 
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APPENDIX B: CALCULATION OF ACTUAL RADIUS OF PROJECTED 

CONTACT AREA 

Equations B1-B4 were used to determine the actual radius of the projected contact 

area, ac′, for both MC Ni and NC Ni at different loads. First the indentation contact depth, 

hc, was determined using [B1]: 

( )ic 3hh25.0h +=  (B1) 

where h is the indentation depth immediately before partial unloading and hi is the 

indentation depth extrapolated to zero load along the linear fit of the upper one-third of 

the unloading curve [B2,B3]. Ignoring the effects of piling-up and sinking-in on the 

indentation geometry, the radius of the projected contact area can be calculated as [B4]: 

2
ccindc hhr2a −=  (B2) 

where rind is the indenter’s radius. After complete unloading, the indentation contact 

depth, hc, is replaced with the residual depth, hf. 

However, the piling-up and sinking-in of the material around the indentation point 

modify the real contact area. In order to account for this effect, a dimensionless parameter 

c2 has been defined as [B4]: 
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where hc′ is the actual contact depth, and ac′ is the actual radius of the projected contact 

area. Various equations have been used to relate c2 to the strain hardening exponent, n 

[B5]. Hill et al. [B6] derived an analytical relation between c2 and n using a nonlinear 

elastic constitutive model for the indented material: 
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Assuming n = 0 for both samples, Equation B4 gives c2 = 1.25. It should be noted that 

frictional effects on the amount of piling-up / sinking-in have been neglected in Equation 

B4. 
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