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ABSTRACT

Vertebrate brain development is a multi-step process involving a tight regulation 

of gene expression. Homeobox genes of the paired-like family have been shown to play 

prominent roles in directing forebrain regionalization and patterning. The aristaless- 

related homeobox gene (Arx) has been shown to regulate proliferation in the mouse 

forebrain and mutations in human ARX  lead to a spectrum of cognitive disorders. To 

identify the role that Arx plays during amphibian development we characterized the 

spatial and temporal expression of a Xenopus Arx homolog, xArx2. xArx2 is present as a 

maternal transcript and its initial expression detectable by whole-mount in situ 

hybridization occurs briefly during late blastula in the dorsal region of the embryo. xArx2 

is detected throughout neurulation in the anterior neural plate and is found within the 

presumptive forebrain territory and in the somites during tailbud stages. Early tadpoles 

show expression of xArx2 within the floor plate of the anterior spinal cord, in the ventral 

and lateral telencephalon, and in the lateral diencephalon. To further understand the 

functional role that xArx2 may play during Xenopus embryogenesis, we established the 

consequences of xArx2 misexpression both phenotypically and on various marker genes. 

Ectopic xArx2 expression expands the forebrain territory and impairs eye development. 

Inhibiting xArx2 translation by means of antisense morpholino oligonucleotides (MO) 

results in embryos with shrunken forebrains and impaired craniofacial structures. Both 

gain- and loss-of-function mutants display extensions of pigmented retinal epithilium 

towards the midline, microcephaly, and fused telencephali or underdeveloped forebrains. 

The forebrain markers VSF-7 and xArx were up-regulated in xyfrx2-injected embryos and 

reduced in Xv4rx2-MO-injected embryos. Additionally, the expression domains of
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posterior brain markers, xGbx2a and xKrox20, were shifted caudally in embryos 

misexpressing xArx2. The expression domains of several other general brain/eye markers 

were affected following xArx2 misexpression. Our findings suggest a role for xArx2 in 

forebrain patterning in Xenopus.
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CHAPTER 1 

GENERAL INTRODUCTION 

Chapter Summary

In vertebrates, the progressive differentiation of the mature brain from the anterior 

neural plate is extremely complex. Overall morphology is attributable to regional 

patterning along both the dorsal-ventral and the anterior-posterior axes, and is regulated 

by transcription factors and signaling molecules. Once the major segments of fore-, mid-, 

and hindbrain are established, the brain subdivides further giving rise to discrete 

functional units, or neuromeres, along the neuroaxis. A paired-like homeobox 

transcription factor, Arx, has been reported to express in the anterior brain and possibly to 

play a role in neural proliferation.

INTRODUCTION

Understanding the complexity of brain regionalization and patterning represents a 

major focus for scientists in the field of developmental neurobiology. The premise of 

much of this research involves first identifying the individual molecular components 

involved in this process and then determining their complex interactions. The initial step 

in forming a central nervous system (CNS) in vertebrates is the demarcation of the neural 

plate, a thickened area of ectoderm along the dorsal midline of the gastrula stage embryo. 

At the end o f  gastrulation the lateral boundaries o f  the neural plate, the neural folds, begin 

to merge inward. They enclose a progressively deepening groove, until they fuse apically 

to form the neural tube. The neural tube, which is then covered by ectoderm, is 

composed of dorsal, ventral and two lateral laminae, commonly referred to as the roof.
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Chapter One General Introduction

floor and lateral plates, respectively (reviewed by Colas and Schoenwolf, 2001). Migrant 

neural crest cells emerge from the dorsal boundary between the surface ectoderm and the 

neural tube. Cranial neural crest goes on to contribute to the formation of much facial 

bone, musculature, tongue, and throat (Mayor and Aybar, 2001; Helms and Schneider, 

2003). The anterior end of the neural tube balloons markedly, producing a series of 

swellings that form the anlagen of forebrain, midbrain and hindbrain regions, while the 

narrow, posterior part of the tube forms the spinal cord. Continued subdivision of this 

neuroaxis produces small segment-like bulges called neuromeres. Within each region a 

large diversity of neuronal cell types differentiate at stereotypical intervals to generated 

segments with distinct identities in terms of morphology, molecular markers, and cellular 

properties (Lumsden and Krumlauf, 1996; Rubenstein et a l, 1998). It has become 

apparent that the CNS of all vertebrate species share many features in common and 

diverge only slightly from a common plan of organization. Transcriptional cues and 

regional signals must be tightly regulated to establish the proper patterning of the 

anteroposterior (AP) and dorsoventral (DV) axes throughout the developing CNS, 

however, the entire spectrum of the players involved and how they exert their function 

has yet to be fully elucidated.

The South African clawed frog, Xenopus laevis, provides a favourable model 

system for the study of vertebrate development. Unlike mammalian embryos, amphibian 

embryos are comparatively large, they develop externally, and they are available in large 

numbers throughout the full year. Although it takes about a year and a half for a fertilized 

egg to become a sexually mature adult, its initial development occurs rapidly, so that the 

embryonic stages of cleavage, gastrulation, and initiation of the nervous system take less
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Chapter One General Introduction

than 24 hours. The swimming embryo hatches from its jelly coat on the third day post­

fertilization and becomes a feeding tadpole within one week. A major benefit provided 

by Xenopus embryos for the analysis of development is the opportunity that they afford 

investigators to conduct in vivo gain- and loss-of function studies by way of 

micro injecting molecules into the eggs or cells of the early embryo. Advantageously, the 

tadpole is relatively transparent with a few pigment cells, allowing decent visualization of 

its internal organs. Thus, many phenotypic outcomes resulting from these studies can be 

observed in intact tadpoles. Although not exploited in our studies, this model also allows 

for surgical procedures, such as transplants, explants and recombinants, to be conducted 

with relative ease. Furthermore, there are well characterized fate maps of the anterior 

neural plate (Eagleson and Harris, 1990; Rubenstein et a l, 1998) and the anterior neural 

ridge (Eagleson et a l, 1995) for this organism.

Much of our current knowledge of the events leading to neurulation is based on 

studies in Xenopus. Briefly, the process of neural induction converts part of the 

embryonic ectodermal cells into neural precursors through the inhibition of signals that 

would otherwise induce an epidermal fate. In Xenopus, inductive events commence prior 

to gastrulation when signals from the Nieuwkoop Center specify the above mesoderm to 

form an organizing center (Spemann’s Organizer) and to produce signals which cause the 

ectoderm to take on a neural fate (for reviews see Harland, 2000; Wilson and Edlund, 

2001; Bainter et a l, 2001).
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Chapter One General Introduction

REGIONALIZATION OF THE NEUROAXIS

Once the neural plate is established, it rolls up and forms the neural tube 

(reviewed by Colas and Schoenwolf, 2001). Patterning of the neural tube along the DV 

axis is dependent upon the relative amounts of dorsalizing factors of the Bone 

Morphogenic Protein (BMP) family from the non-neural ectoderm (Barth et a l, 1999; 

Lee and Jessel, 1999) and ventralizing factors of the sonic hedgehog (SHH) family, which 

are produced by the notochord and the floor plate (Echelard, 1993; reviewed by Marti and 

Bovolenta, 2002). Patterning along the AP axis, however, is currently under intense 

scrutiny. In Xenopus, spatiotemporal expression analysis of genes in the presumptive 

neuroectoderm implies that neural patterning along the AP axis has already begun at the 

early gastrula stage (reviewed by Gamse and Sive, 2000). One of the earliest brain 

patterning genes known to be expressed is Otx2, a homeobox gene which is detected at 

early to mid gastrula stages and specifies the anterior part of the future brain: a region that 

gives rise to the forebrain and midbrain (Blitz and Cho, 1995; Pannese et a l, 1995). In 

Xenopus, micro inj ection of synthetic xOtx2 RNA results in an abnormal reduction in the 

size of tail and trunk structures, and in the appearance of a second cement gland, a 

transient structure of the embryonic head (Blitz and Cho, 1995; Pannese et a l, 1995). 

Mouse Otx2' ' mutants die early in embryogenesis and lack the rostral neuroectoderm 

fated to become forebrain, midbrain and rostral hindbrain (Acampora et a l, 1995). At 

early neurula stages another homeobox gene, xGbx2, appears to specify the region 

posterior to the xOtx2 domain (von Bubnoff et al., 1996) and this orientation has also 

been shown to occur in chick and mouse (Broccoli et a l, 1999; Millet et a l, 1999). Thus, 

the future brain region seems to be divided into the anterior and posterior portions at these
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Chapter One General Introduction

early stages. Over the past decade many new players have been identified both upstream 

and downstream of organizer activity during vertebrate neural plate formation.

Regionalization of the neural tube within the CNS is the basis for the structure of 

the mature brain. The brain is comprised of three major divisions: the prosencephalon 

(forebrain) which delineates rostrocaudally into the tel- and diencephalon; the 

mesencephalon (midbrain); and the rhombencephalnon (hindbrain), which comprises the 

met- and myelencephalon (rostral to caudal, respectively).

Anterior (Rostral)

Anterior (Rostral)

P rosencephalon
(ForebraIn)

M esencephalon
(MIdbraIn)

Rhom bencephalon
(Hindbrain)

Telencephalon

Diencephalon

M esencephalon

M etencephalon

Myelencephalon

Posterior (Caudal)
Posterior (Caudal)

Figure 1. Schematic representation of the different segments 
within the developing neural tube (dorsal v iew ).

In mammals, the telencephalon forms the cerebral hemispheres while the diencephalon 

forms the thalamic and hypothalamic regions. A model of early regionalization which 

has gained much support is the two-signal or activation/transformation model of 

Nieuwkoop and colleagues (reviewed in Foley and Stem, 2001). They hypothesized that 

development of the full range of neural subdivisions arises via a two-step process. 

Activating signals from early-involuting mesoderm are thought to induce a default state of
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Chapter One General Introduction

anterior neural differentiation, which is then modified to a more posterior character in a 

graded fashion by transforming signals from later-involuting mesoderm. The molecular 

identity of the transforming gradient remains elusive, however a number of candidate 

posteriorizing signals have been proposed, notably fibroblast growth factors (FGFs), 

retinoic acid and members of the Wnt family (Foley and Stem, 2001 and references 

therein). In mammals, antagonists of posteriorizing factors may reside in the anterior 

visceral endoderm, which acts to protect the prospective forebrain cells from caudalizing 

signals (Kimura et al., 2000). Anterior fates including the telencephalon are missing in 

embryos carrying mutations in several genes which are expressed in the anterior visceral 

endoderm (Acampora et a l, 1995; Shawlot and Behringer, 1995).

While primary neural induction and fundamental AP or DV patteming of the early 

neural tube are due to the activity of the “primary organizer” (Spemann and Mangold, 

1924), emerging data reveals that the regionalization of neuroepithelial areas are brought 

one step further through morphogenetic controlling processes that arise from “secondary 

organizers” located in specific regions along the developing neural primordium. An 

organizer is thought to establish gradually within a tissue by a series of steps: first a field 

is specified and then boundaries are defined (Meinhardt, 1983). Once a boundary 

differentiates two fields, co-operative cell-cell interactions can eventually produce 

signaling molecules that activate specific differentiation programs in adjacent cells. 

Secondary organizers located at: the isthmus, which is found at the midbrain-hindbrain 

boundary (MHB); at the anterior neural ridge (ANR), which is located at the boundary 

between the non-neural ectoderm and the prospective forebrain; and at the zona limitans 

intrathalamica (ZLI) have all been reported (reviewed by Echevarria et al., 2003).
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Chapter One

Secondary Organizers

General Introduction

Bf1

O tx2 Di

Wnt-1

T e l
Fgf8

En VT
Shh

Gbx2a

ZLI

Figure 2. Schematic representation o f the location o f regionalization centers and 
neighbouring gene expression patterns within the vertebrate brain. Dorsal view (A) o f the 
early neural tube and lateral view (B) o f the forebrain are shown. Abbrevieations: ANR; 
anterior neural ridge; IsO: isthmus organizer; ZLI: zona limitans intrathalamica; P: 
prosencephalon; M: mesencephalon, R: rhombencephalon; Tel: telencephalon; Di: 
diencephalon; DT: dorsal thalamus; VT: ventral thalamus. Adapted from Echevarria et al., 
2003; Wurst and Bally-Cuif, 2001.

The best understood secondary organizer is located at the constriction between the 

midbrain and hindbrain, called the isthmus, which controls anterior hindbrain and 

midbrain regionalization. Activity at the isthmus organizer (IsO) has been found in all 

vertebrate species studied, and was first studied in the avian embryo. Isthmic tissue grafts 

transform chick caudal forebrain into an ectopic midbrain with rostrocaudal polarity 

similar to the endogenous counterpart (reviewed by Echevarria et al., 2003 ). This switch 

of fate is reflected by induced ectopic expression of the homeobox gene engrailed {En), 

which is specific to the isthmus, in the host neural tube around the graft (Martinez et al., 

1995). Complete removal of the isthmus coincides with the loss of the entire

7
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Chapter One General Introduction

mesencephalon and metencephalon: the isthmic territory is both necessary and sufficient 

for the development of the mes-metencephalic domain.

A complex spatio-temporal pattern of gene expression including Otx2, Gbx2, 

Pax2, En, Wnt-1, and FgfS, has been reported to occur in the IsO (reviewed by Wurst and 

Bally-Cuif, 2001). All of these genes are first expressed in the prospective MHB region 

at late gastrula to neurula stages in Xenopus, suggesting that these genes act in concert to 

mediate positioning of the isthmus. Briefly, the interface between the caudal Otx2 and 

the rostral Gbx2 expression domains is thought to position the IsO, and these genes have 

been shown to inhibit each other (Martinez-Barbera et a l, 2001; Katahira et a l, 2000; 

Millet et a l, 1999). This is a fundamental event for the stabilization of the autoregulative 

loop of En-1, Wnt-1, and Pax2 expression (reviewed by Martinez, 2001). Mutant mice or 

zebrafish lacking either of these genes do not develop the isthmo-cerebellar complex and 

Gbx2 null mutants lack a cerebellum and exhibit caudal expansion of the midbrain.

Another local signaling centre resides in the anterior neural ridge, which lies at the 

junction between the most rostral part of the neural plate and the non-neural ectoderm. 

This region is necessary for the maintenance of forebrain identity (Shimamura and 

Rubenstein, 1997). Brain factor-1 (BF-1) encodes a winged-helix transcription factor 

required for regionalization and growth of the telencephalic and optic vesicles. Mice 

mutant for BF-1 have small telencephalons and lack expression of a basal telencephalic 

marker, Dlx2 (Xuan et a l, 1995). Excision of the anterior neural ridge has been shown to 

eliminate expression of BF-1 in neural plate explants (Shimamura and Rubenstein, 1997). 

Moreover, transplantation of the anterior neural ridge cells from zebrafish into more 

caudal regions of the neural plate induces the expression of Nkx2.1 and Emx, genes
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Chapter One General Introduction

typically expressed in the telencephalon (Houart et a l, 1998). One proposed role of the 

anterior neural ridge is to regulate the subdivision of the anterior neural plate into 

telencephalic, optic, and diencephalic domains (Wilson and Rubenstein, 2000).

An important mediator of anterior neural ridge and isthmic organizing properties 

is the signaling molecule fibroblast growth factor 8 (FGF8), which exerts its function in a 

concentration dependent manner (Eagleson and Dempewolf, 2002; Lee et a l, 1997). 

Fgf8 is expressed in early anterior neural ridge cells and has been shown to be crucial for 

the specification of the anterior areas of the forebrain: FGF8-soaked beads can rescue 

BF-1 expression subsequent to elimination of the anterior neural ridge (Shimamura and 

Rubenstein, 1997). Fibroblast growth factors secreted from the isthmus are required to 

direct the ordered growth and regionalization of the midbrain and anterior hindbrain. 

Studies in chick have shown that insertion of Fgf8-soaked beads into the prospective 

diencephalon results in ectopic isthmic markers in the host (reviewed by Wurst and Bally- 

Cuif, 2001).

Evidence for the existence of another organizing center which resides in the zona 

limitans intrathalamica, a structure that separates the dorsal and ventral thalami, has 

begun to emerge (Larsen et a l, 2001; reviewed by Echevarria et a l, 2003). Several 

secreted factors express in the dorsal region of the zona limitans intrathalamica, 

specifically Shh, whose expression is flanked by Wnt-1 caudally and FgfB rostrally, and 

which are thought to control proliferation, regionalization and polarity within the 

diencephalic segments of the forebrain (Echevarria et a l, 2003).
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Chapter One General Introduction

Complexity of the Vertebrate Forebrain

The forebrain itself comprises one of the most intricate structures of the vertebrate 

brain and consists of anatomically and functionally distinct domains patterned along their 

anterior-posterior and dorsal-ventral axes (reviewed by Rubenstein et a l, 1998). The 

hippocampus, thalamus, hypothalamus, olfactory bulbs, and eyes are some of the 

structures that are derived from or within the forebrain. For example, optic vesicles are 

among the earliest morphological features of the forebrain to appear. The vesicles bulge 

laterally from the neural tube at the presumptive diencephalon and remain connected to 

the diencephalon territory by optic stalks. When the vesicles make contact with the 

overlying ectoderm, the ectoderm is induced to thicken to form lens placodes. This in 

turn induces invagination of the optic vesicles to form a double-walled optic cup. These 

layers differentiate and the outer layer forms pigmented retina while cells of the irmer 

layer proliferate into the neuronal types that constitute the neural retina. The optic stalk 

becomes the optic nerve.

Since complex structures derive from the prosencephalon, it is of great interest to 

understand how this regionalization and patterning is regulated. For the past decade 

Rubenstein and colleagues have been developing the prosomeric model for the vertebrate 

forebrain in order to lend a framework for comparative research and to help to categorize 

topologically numerous molecular expression patterns (Rubenstein et al., 1994; Puelles 

and Rubenstein., 2003). They suggest that like rhombomeres in the hindbrain, the 

forebrain consists of segments termed prosomeres. The prosomeric model divides the 

forebrain into the defined segments (prosomeres) and DV wedges in all vertebrates 

(schematically shown in Figure 3). Under this paradigm, the diencephalon is first
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Chapter One General Introduction

subdivided into three prosomeres, P1-P3 in a caudal to rostral manner: PI corresponds 

with the area that comprises the presumptive pretectum, P2 contains the presumptive 

dorsal thalamus, and P3 is associated with the presumptive ventral thalamus (Puelles and 

Rubenstein, 2003). The rest of the forebrain, or the secondary prosencephalon, is divided 

into the hypothalamus and the telencephalon, which itself is divided into pallial (dorsal) 

and subpallial (ventral) compartments (Bachy et a l, 2002).

pi

PT

Tel
Pa VT

Spa

HT

Figure 3. Schematic representations o f  main divisions within the 
vertebrate forebrain shown from a lateral view. Abbreviations: 
R: rhomencephalon; M: mesencephalon; Di: diencephalons; Tel: 
secondary telencephalon; P: prosomere; PT: pretectum; DT: 
dorsal thalamus; VT: ventral thalamus; HT: hypothalamus; Pa: 
pallium; Spa: Subpallium. Adapted from Bachy et a l,  2002.

The telecephalic regions appear to be maintained through cross-regulatory interactions 

among transcription factors. While the Hox genes have been shown to predominate in 

establishing the hindbrain, it is becoming evident that other homeobox genes play 

important roles in the establishment of more anterior regions of the CNS.
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Chapter One General Introduction

HOMEOBOX GENES

Presently, many of the genes found to play prominent roles in vertebrate neural 

development have been found to be transcriptional regulators belonging to the super class 

of genes known as homeobox genes. These genes encode a well-conserved 60 amino 

acid domain known as the homeodomain. It specifies a helix-tum-helix-motif which is 

involved in DNA binding. Target specificity of homeodomain proteins strongly depends 

on the amino acid composition of the homeodomain, in particular on the identity of the 

residue on position 50, and the presence of other DNA binding domains within the 

protein (Gehring et a l, 1994).

Homeobox genes were first identified in Drosophila and were found to exert key 

developmental functions throughout the Metazoa (Martinez and Amemiya, 2002). They 

have been shown to specify segmental identity and positional information along the 

antero-posterior axis by regulating expression patterns of target genes in a temporal, 

spatial, and tissue-specific manner. There are over twenty major classes of homeobox- 

containing genes arrayed in clusters or dispersed separately throughout the genome 

(Gehring et a l, 1994). Among all families of homeobox-containing genes, particular 

attention has been given to the class of clustered homeotic (HOM/Hox) genes. In 

Drosophila there are two linked homeotic gene complexes, the Antennapedia and the 

Bithorax complex. The chromosome region containing both complexes is often referred 

to as the homeotic complex (HOM-C). HOM-C genes display spatio-temporal 

colinearity, meaning that they are arranged in the same general order on the chromosome 

as their order and timing of appearance along the anteroposterior body axis, (Krumlauf,

1992). In mammals and chicks, the Hox genes are organized in four chromosomal
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complexes, termed Hox A, B, C, D, and the genes in each of these complexes not only 

show striking molecular homology to the homeotic genes in Drosophila, but also spatio- 

temporal colinearity (Duboule and Morata, 1994). A feature of some homeotic genes is 

that gain-of and loss-of function mutations result in homeotic transformations, whereby 

one structure is transformed into the likeliness of another. A classical example of this 

phenomenon is the mutation in the Drosophila gene Antennapedia which leads the eells 

of the antermal imaginal discs to form leg structures that protrude from the head in the 

place of antennae (Kaufman et al., 1990). In vertebrates, both misexpressions and null 

mutations of Hox genes have produced structural deletions and homeotic transformations 

similar to those previously seen in flies (Gehring, 1993).

Although Hox genes are not expressed anterior to the hindbrain, many members of 

nonclustered homoebox genes express in these areas. A growing number of genes 

belonging to the paired-like homeobox gene family display restricted expression patterns 

in anterior regions of the developing neural tube suggesting a role for this family in 

patteming anterior structures of the CNS.

Paired-lilLc Genes

The paired genes represent a large group of homeodomain proteins which contain 

a paired type homeodomain first described in the Drosophila gene paired. Dimerization 

and cooperative DNA binding modulates target specificity of these genes (Wilson et al.,

1993). Three subclasses of paired genes have been defined according to the residue at 

position 50 of the homeodomain (reviewed by Galliot et a l, 1999). Pax genes encode a 

homeodomain with a serine residue at position 50 as well as a second DNA binding- 

domain, the paired domain. The other two groups, which lack the paired domain, are
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categorized as either K50 or Q50 paired-like genes, and contain a lysine or a glutamine 

residue at position 50 within their respective homeodomains. Phylogenetic analysis of 

the paired homeodomains has revealed 18 distinct gene families: 3 Pax-type {Pax-311, 

Pax-6, Pax-4), 3 K50 paired-like {Otx, Ptx, Gooscoid), and 12 Q50 paired-like 

{aristaless, Ceh-10, Rx, Unc-4, Cartl, Otp, Arix, Prx, Ogl2, Anf, Mix, Siamois) (Galliot 

et a l, 1999). A myriad of genes from several of these classes are emerging as regulators 

of critical events during anterior development, and regulate elaboration of the developing 

forebrain.

Amto/e^s-related Genes

Recently, aristaless-XQXaXQdt. homeobox genes have been shown to act as important 

regulators during critical events in vertebrate embryogenesis. Members of this gene 

family contain paired-like homeodomains with high homology to aristaless. Aristaless 

was originally discovered in Drosophila where embryonic expression is important for the 

ontogeny of specific head segments and specifies the distal tip of imaginal discs (Schneitz 

et al., 1993; Campbell and Tomlinson, 1998). A structural feature shared by all 

aristaless-related genes is a conserved 17 amino acid-sequence located near the C- 

terminus, termed the aristaless, OAR (Otx, Arx, Rx), FACE or C-peptide domain. The 

C-peptide domain is likely to have a similar molecular function in all aristaless-XQ\aXe,d 

proteins, but this function is poorly understood. Several studies have shown that it is 

involved in modulating the DNA binding and transcriptional activities of the protein in 

which it is contained (Amendt et a l, 1999; Brower et a l, 2003). An activation domain 

function in the Otp protein was proposed originally (Simeone et al., 1994), however more 

recent in vitro and in vivo studies have suggested that the C-peptide domain acts as a
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molecular switch to attenuate transcriptional activation (Amendt et al., 1999; Norris and 

Kern, 2001; Brower et a l, 2003). In the aristaless-xQXsiQd protein Pitx2 the C-peptide 

domain modulates transcriptional activity by inter- and intramolecular interactions. 

Binding of the transcription factor Pitl to the C-peptide domain facilitates Pitx2 DNA 

binding and transcriptional activation, presumably by unmasking an activation domain in 

a region N-terminal from the homeodomain (Amendt et a l, 1999).

Vertebrate Aristaless-XQlditQA. genes can be divided into three groups based on 

similarities in gene structure as well as expression patterns and functional data. Group-1- 

aristaless-re^dLtQdi genes, which include Alx3/4, CartI, and Prxl/2/3, are linked to 

functions in the development of the craniofacial and appendicular skeleton and are 

expressed in neural crest-derived mesenchyme (Beverdam and Meijlink, 2001). Prxl and 

Prx2 are required for correct skeletogenesis of the skull, face, limbs and vertebral column 

by controlling cell proliferation (Ten Berge et a l, 2001). Other members of this group 

have been shown to regulate apoptosis. Cartl mutants have an anterior neural tube 

closure defect that appears to result from increased cell death in the mesenchyme 

surrounding the forebrain vesicles (Zhao et a l, 1996), and aberrant apoptosis in an 

outgrowing frontonasal process is the reputed cause of severe nasal clefting observed in 

Alx3/4 double mutant mice (Beverdam et a l, 2001).

Group-II-arAto/e5'5'-related genes, including D rgll, Arx, ChxlO, Otp and Rx, are 

expressed predominantly in the central and/or peripheral nervous system and have been 

reported to play crucial roles in the specification of these organs. D rgll is required for 

the formation of spatio-temporally appropriate projections from nociceptive sensory 

neurons to their central targets in the dorsal horn of the spinal cord (Chen, 2001). Rx is
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expressed in the anterior neural plate, in regions which gives rise to the eye and forebrain 

(Casarosa et a l, 1997; Mathers et a l, 1997). Loss-of-function Rx mutations result in 

severe early eye phenotypes in addition to defects in forebrain development (Mathers et 

a l, 1997; Andreazzoli et al., 1999).

Group-IlI-arAto/e^'^'-related genes include the Pitx family whose members each 

encode K50 paired-like homeodomains. Pitxl was first identified for its role in activating 

pro-opiomelanocortin gene transcription in anterior pituitary corticotrophes (Lamonerie et 

a l, 1996) and has since been reported to play be involved in anterior patterning as well as 

hindlimb specification (Lanctot et a l, 1997; Szeto et a l, 1999; Chang et a l, 2001). Pitx2 

plays a role in regulating both craniofacial development and left-right asymmetry (Lui et 

al., 2001) and Pitx2 plays a prevalent role in lens development (Rieger et a l, 2001; 

KhosrowShahian, unpublished).

ARX

The Q50 paired-like homeobox gene Arx (arAto/cM-related homeobox gene) is a 

recent addition to the group-lI-arAto/e^'^'-related genes. It was first isolated in mouse and 

zebrafish in an attempt to characterize homeobox genes expressed within the vertebrate 

CNS (Miura et a l, 1997). Arx shows striking similarity to the Drosophila aristaless gene 

and contains two conserved domains, the homeodomain and the C-peptide domain. In 

zebrafish J rx  first expresses at 10 h in the presumptive diencephalon and later restricts to 

band-like domains that border the telencephalon-diencephalon boundary. Arx is also 

detected in the ventral thalamus and hypothalamus (Miura et a l, 1997). Mouse Arx is 

initially detected at E9 in the dorsal telencephalon, anterior diencephalon and in the 

isthmus. Strong expression ensues in the dorsal telencephalon, particularly in the
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ganglionic eminence and the ventral thalamus (Miura et a l, 1997). Arx is also expressed 

in the somites and the floor plate in both mice and zebrafish. Based on the expression 

patterns in these organisms it was predicted that Arx may be required for neuronal 

differentiation in the ganglionic eminence and ventral thalamus and may play a role in 

differentiation of the dorsal telencephalon. Arx deficient mice die shortly after birth and 

have smaller brains with thin embryonic cortexes caused by decreased proliferation of 

neuroepithelial cells (Kitamura et a l, 2002). Loss of Arx also results in defective 

intemeural migration.

The human Arx gene {ARX) was identified through an in silico search for 

candidate CNS developmental genes within a defined region of the X chromosome 

(Bienvenu et a l,  2002; Ohira et al., 2002). ARX  consists of five exons and has been 

mapped to the distal part of the short arm on the X chromosome, at Xp22.13 (Stromme et 

a l,  2002). Murine Arx has been mapped to a syntenic region of the X chromosome 

indicating that ARX  and Arx are orthologues (Ohira et a l, 2002). Northern blot analysis 

shows that ARX  expressses higher in human fetal brain than in adult brain (Ohira et al.,

2002). Strong expression in adult heart, skeletal muscle, liver and pancreas were reported 

(Ohira et a l, 2002; Bienvenu et a l, 2002). In situ hybridization analysis of human fetal 

brain sections revealed that ARX  is expressed predominantly in the germinal matrix of the 

ganglionic eminence, and ventricular zone of the telencephalon. Weaker signals were 

detected in the cortical plate, caudate nucleus, putamen, globus pallidus, substantia nigra, 

cigulate, and hippocampus (Ohira et a l, 2002).

ARX  has been identified as the causative locus for Partington syndrome, X-linked 

West syndrome, and other syndromic and non-specific forms of Mental Retardation
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associated with epilepsy and dystonia (Stromme et a l, 2002; Bienvenue et a l, 2002; 

Scheffer et a l, 2002; Hirose and Mitsudome, 2003). Clinical data from over 50 mentally 

retarded patients, alone or in conjunction with other abnormalities, revealed a co­

segregation of various mutations in the ARX  gene with affected individuals (reviewed by 

Stromme et a l, 2002). Arx mutant patients with the aforementioned diseases were not 

reported to display brain abnormalities in diagnostic images, however, ARX  mutations 

have been found in patients with brain cysts (Stromme et a l, 2003) and with X-linked 

lissencephaly with abnormal genitalia (XLAG) (Kitamura et a l, 2002; Uyanik et al.,

2003). XLAG is a brain malformation resulting from abnormal neuronal migration and is 

characterized by the absence of normal convolutions in the cerebral cortex, resulting in a 

smooth brain, and in some cases an abnormally small head (microcephaly) (Bormeau et 

a l, 2002). Recently, ARX  mutations were found in patients with hydranencephaly, a rare 

condition in which the brain’s cerebral hemispheres are absent and replaced by sacs filled 

with cerebrospinal fluid (Kato et al., 2004). ARX  is also associated with Proud syndrome, 

which is a form of mental retardation with agenesis of the corpus callosum (Kato et al.,

2004). Thus, it appears that the pleiotropic effeets of ARX  are associated with functional 

disorders with and without cerebral malformations. A variety of distinct mutations in 

ARX  have been reported including conservative and nonconservative missense mutations 

within and outside of the homeodomain, in frame insertions and duplications in GC rich 

regions resulting in an expansion of polyalanine tracts, and premature termination 

mutations. The frequency of mutation types between syndromes involving cerebral 

abnormalities and those in which the brain appeared normal in diagnostic images were 

compared revealing that premature truncation mutations were more prevalent in
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malformation syndromes while polyalanine expansions were more common in patients 

with normal brain morphology (Kato et a l, 2004). Although extensive examination of 

genotype-phenotype correlations have been conducted, less analyses have been performed 

to functionally characterize Arx in vivo. Since ARX  appears to play an important role in 

human cognitive function, studies using model vertebrates are essential to understand the 

role that this protein plays during neural development.

DESCRIPTION OF THE PROJECT

The main objective of this thesis was to gain further insight into forebrain 

development and the role that Arx may be playing in this process. The model organism 

Xenopus laevis allows us to examine the spatial and temporal expression profiles of Arx 

during early embryogenesis. To characterize the functional role of xArx, in vivo gain- and 

loss-of-function studies were conducted by means of microinjecting synthetic RNAs or 

antisense morpholino oligonucleotides directly into early cleavage stage Xenopus 

embryos. Since human ARX  mutations are associated with a range of neurological and 

cerebral malformation disorders, and since Arx homologues express predominantly in the 

developing rostral brain, we decided to focus our attention on the neural aspects resulting 

from xArx misregulation, although several other malformations also arise. Finally, to get 

a better understanding of the morphological effects induced by xArx misexpression, we 

analyzed markers of specific brain territories for positional identities. These studies also 

provided insight into the putative targets of endogenous xArx.
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CHAPTER 2

xArx2 Expresses in an Evolutionarily Conserved Pattern 

Chapter Summary

Xenopus laevis xArx2 encodes a conceptual protein of 528 amino acids belonging 

to the Q50 paired-like subclass of homeodomain proteins. xArx2 shows high homology 

to other reported Arx sequences from mouse, zebrafish, humans, and another Xenopus 

Arx, xArx, at the amino acid level. There is complete identity within the homeodomain, 

and the C-peptide domain among all Arx sequences.

XArx2 is first detected by RT-PCR as a maternal transcript and continues to 

express throughout gastrulation. It is substantially up-regulated at early neurula and 

expression continues to increase to early tadpole stage. The earliest expression of xArx2 

detectable by whole-mount in situ hybridization is at blastula stage, where it is faintly 

expressed on the dorsal side of the embryo. Expression is not detected again until early 

neurula stages in the anterior neural plate, in the region which gives rise to the 

prosencephalon. Throughout tailbud stages expression of xArx2 is restricted to the 

presumptive forebrain territory and resides in the telencephalon and diencephalon at 

tadpole stages. XArx2 is also transcribed in the somites and floor plate. In two particulars 

the expression domain differs since described family member, xArx, does not express 

either in blastomeres or in somites.
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INTRODUCTION

The elaborate morphology of the vertebrate brain arises from an intricate

regionalization process, which specifies unique domains within the neural plate, 

linked to tightly regulated proliferation and differentiation processes of the neural tissue 

therein. An approach to understanding the complex molecular mechanisms involved in 

patterning the vertebrate brain involves studying the expression patterns of various 

transcription factors throughout early embryogenesis. In an effort to identify novel 

transcription factors in the developing mouse brain, the aristaless-r&lated homeobox gene, 

Arx, was isolated and subsequently cloned in zebrafish (Miura et a l, 1997). Arx 

expresses in the forebrain and floor plate of the developing central nervous system in each 

of these vertebrates as well as in the somites. Arx also expresses in the presumptive 

cortex of fetal mice. Subsequent analysis on human tissues demonstrate that ARX  is also 

expressed in neuronal precursor cells in the human brain, with stronger levels of 

expression in fetal brain compared to adult brain (Ohira et al, 2002). This is consistent 

with the effects of ARX  mutations on human brain and cognitive anomalies (Stromme et 

a l, 2002; Kato et a l, 2004).

We sought to characterize the spatiotemporal expression of Arx in Xenopus. 

Throughout the course of our studies another Xenopus Arx homologue, xArx, was 

identified and shown to express in the forebrain (El-Hodiri, 2003). We have 

demonstrated that our Arx homologue, xArx2, is structurally conserved among vertebrates 

and also expresses in the developing amphibian forebrain. Except for the detection of 

xArx2 in dorsal blastomeres and in the somites, the two xArx transcripts display an 

othemise identical expression profile.
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MATERIALS AND METHODS 

Sequence Analysis

ClustalW was used to generate an amino acid sequence alignment of Xenopus 

Arx2 with known homologues from other organisms (human, mouse, and zebrafish) and 

with the previously published ^rx sequence (El-Hodiri, 2003).

Embryo Preparation

Xenopus eggs were obtained by injecting adult females with 500U of human 

chorionic gonadotropin (Chorulon; Intervet) into the dorsal lymph sac. Embryos were 

fertilized, dejellied in 2% cysteine solution (pH 8.0), and cultured as previously described 

(Drysdale and Elinson, 1991). Developmental staging was according to Nieuwkoop and 

Faber (1967).

RT-PCR

Embryos were reared in 0.1 X MBS at 12°C, 17°C, or room temperature until all 

of the desired developmental stages had been achieved. Poly (A)"̂  RNA purifications 

from ten pooled embryos of each developmental stage were performed in parallel using 

oligo dT-polystyrene beads (Sigma DMN-10). mRNA equivalent to one embryo was 

utilized for first strand cDNA synthesis in the presence of RNasin (Promega) using 

reverse transcriptase according to the manufacturer’s instructions (Omniscript, Qiagen). 

A reaction using RNA obtained from a stage 21 embryo was used in the absence of 

reverse transcriptase to serve as a control for contamination during subsequent 

amplification. One fifth of the reactions were employed as templates for amplifications. 

Primers were designed to specifically amplify xArx2 rather than the previously published 

sequence (El-Hodiri, 2003). PCR conditions were determined empirically to establish
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the linear range of amplification for xArx2 and reactions were conducted using a thermo­

stable Taq polymerase in 10 mM Tris (pH 9.0), 50mM KCL, 0.1% Triton X-100, 3 mM 

MgC12, 0.2 mM dNTPs, 0.1 mM [^^P]dCTP, and luM of each primer (xArx2 -  5’- 

CCGCACTGGACTCTGCT-3’ and 5’-ACACTTCTTTGCCGGTGC-3’; Efl-a -  5’- 

CAGATTGGTGCTGGATATG-3’ and 5’-ACTGCCTTGATGACTCCTA-3’). All 

amplifications were preceded by a 4 minute denaturation step at 94°C, then immediately 

cycled 29 times at 94°C for 45 seconds, 57°C for 1 minute, and 72°C for 45 seconds. One 

tenth of each reaction was electrophoresed on 4% polyacrylamide in 0.5 x TBE and 

visualized by autoradiography.

Whole-Mount in situ hybridization

Whole-moimt in situ hybridization was performed according to Harland (Harland, 

1991). Embryos at various stages were fixed in MEMPFA overnight at 4°C and stored in 

100% methanol at -20°C. Digoxygenin (DIG)-UTP (Roche) labeled sense and antisense 

riboprobes for xArx2 were generated from full length linearized templates using T3 and 

T7 RNA polymerase, respectively. An antisense riboprobe for xArx was generated 

similarly using T3 RNA polymerase and linearized template (kindly provided by El- 

Hodiri). Hybridization was detected using an alkaline phosphatase-coupled anti-DIG 

antibody (Roche, dilution 1:2000). Alkaline phosphatase staining was developed with 

NBT/BCIP (Roche). Embryos were placed in a clearing solution (2:1 benzyl 

benzoate:benzyl alcohol) to view internal structures.
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Sections

Embryological sections were prepared by embedding the in situ hybridization 

stained embryos in 5% agarose. Vertical sections were made 30 pm thick with a 

vibratome (Leica VTIOOOS).

RESULTS 

xArx2 Shows High Sequence Homology to Arx in Other Vertebrates

The sequence of xArx2 encodes a conceptual open reading frame encoding a 

protein of 528 amino acids (Fig. 1). It contains a Glutamine at position 50 of its 

homeodomain. The sequence also encodes an octapeptide domain and a nuclear 

localization sequence near the N-terminus, and a C-peptide (aristaless) domain at the C- 

terminus. Alignment of the predicted Arx amino acid sequences among vertebrates 

revealed a high degree of homology between Arx2 and homologues from human, mouse, 

and zebrafish (Fig. 1). It was found that xArx2 and xArx (GenBank accession numbers 

AY519474 and A Y l30460, respectively) share 90% similarity at both the nucleotide and 

the amino acid levels. Both Xenopus Arx homologues share 67% identity with the mouse 

and zebrafish proteins (GenBank accession numbers 035085 and 042115, respectively). 

However, xArx2 was found to be marginally more similar at the amino acid level to 

human Arx (GenBank accession number NP 6206) than was xArx (68% versus 66%). 

All vertebrate Arx sequences analyzed were identical in the octapeptide domain, the 

nuclear localization sequence, the homeodomain, and the C-peptide domain.
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Figure 1. Amino acid sequence alignments of Arx homologues. The deduced amino acid 
sequences from Xenopus Arx2 (xArx2) and Xenopus Arx (xArx)(GenBank accession 
numbers AYS 19474 and A Y l30460, respectively) were compared to the Arx amino acid 
sequences from human (hARX), mouse (mArx), and zebrafish (zArx) (GenBank 
accession numbers NP 6206; 035085; and 042115, respectively). Identities are shown 
as asterisks, while dashes represent gaps introduced to maximize sequence alignments. 
The octapeptide domain, nuclear localization sequence (NTS), homeodomain, and 
aristaless domain are identical in all species, and their homeodomains contain a 
characteristic Glutamine at position 50. There are 47 amino acid differences between 
xArx2 and xArx, indicated in red.
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ii 'EEEEEEEEEES KQHNSSNPNRGHL DQQi ,Pi iFQvQ— Q i ' PGCGTD-AELSPKEELM 260

k  k  k  k  k  k  k

_______Homeodomoain__________
LHPEDAEGKDGEDSVCLSAGSDSEEGLLKRKQRRYRTTFTSYQLEELERAFQtCTHYPDVF 356 
LH PE DAEGKDGE DSVCLSAGSDSEEGLLKRKQRRYRTTPTSYQUEELERAFQKTHYPDVF 358 
LH-NDGDVKDGEDSVCLSAGSDSEEGMLKRKQRRYRTTPTSYQLEELERAFOKTHYPDVP 24 3 
LHSSDADGKDGE SVCLSAGSDSEEGMLKRKQRRYRTTFTSYQLEELERAPQKTHYPDVF 321 
LHSSDADGKDGEESVCLSAGSDSEEGMLKRKQRRYRTTFTSYQLEELERAFQKTHYPDVF 320
k k  k  k k k k  k k k k k k k k k k k k k  k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

hARX
mArx
zArx
xArx2
xArx

TREELAMRLDLTEARVQVWFQHRRAKWRKREKAGAQTHPPGLPFPGPLSATHPLSPYLDA 415 
TREELAMRIDLTEARVQVWPQNSSAKHRKREKAGAQTHPPGLPFPGPLSATHPLSPYLDA 418 
TREELAMHIDtTEAKVQVWPQHKSAKMKKREKAGVQAHPTGLPFPGPLAAAHPLSHYLEG 303 
TREELAMRLDLTEAKVQVWFQNRRAKMRKREKAGAQTH i GLPFPGPLSAGHPLGPYLDA 381 
TREEIAMKUDLTEARVQVWFQNERAKilRKKEKAGAQTH i . GLPFPGPLSAGHPLGPYLDA 380
k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k  k k k k k k k k k k  k k k k k k

hARX
mArx
zArx
xArx2
xArx

SPFPPH-HPALDSAWTAAAAAAAAAFPSLP-PPPGSASLPPSGAPLGLSTFLGAAVFRHP 47 4 
SPFPPH-HPALDSAWTAAAAAAAAAFPSLP-PPPGSASLPPSGAPLGLSTFLGAAVFRHP 47 6 
GPFPPHPHPALESAWT-AAAAAAAAFPGLA-PPPNSSALPP-ATPLGLGTFLGTAMFRHP 360 
SPFPPH-HPALDSAWTAAAAAAAAAFPSLP' PPPGSAALPPGGSPLGLSTFLGAAVFRHP 440 
SPFPPH-HPALDSAWTAAAAAAAAAFPSLP"PPPGSAALPPGGSPLGLSTFLGAAVFRHP 439

k k k k k k k k k  k k k k  k k k k k k k k k k  k k k k k k k k k k k k  k k k k  k k k k k

hARX
mArx
z A r x
xArx2
xArx

hARX
mArx
zArx
xArx2
xArx

AFISPAFGRLFSTMAPLTSASTAAALLRQPTPAVEGAVA-SGALADP------- ATAAADRRA 529
AFISPAFGRLFSTMAPLTSASTAAALLRQPTPAVEGAVA-SGALADP------- ATAAADRRA 531
A F IG P T F G R L F S S M G P L T S A S T A A A L L R Q T A P P V E S P V Q P S A A L P E P P S S S S S T A A D R R A  4 2 0
AFISPAFGRLFSTMCiPLTSASTAAALLRQPNPAVESAVQ- 'SGLSDP--------- TAAADRRA 4 95
AFISPAFGRLFSTMAPLTSASTAAALLRQPNPAVESAVQ-'.SGLSDP---------'TAAADRRA 4 94
* * * ■  *  * * * * * *  *  * * * * * * * * * * * * * *  *  * *  *  *  *  * * * * * *

Aristaless
SSIAALRUOKEHAAQLTQLNILPGTSTGKEVC 562 
SSIAALRLKAKEHAAQLTQLNILPGTSTGKEVC 564 
SSIAAUILKAKEHSAQLTQLNILPSGTAGKEVC 453 
SSIAAURUKAKEHAAQLTQLNIIPGN'iTGKEVC 528 
SSIAALRLKAKEHAAQLTQLNIIPGNiiTGKEVC 527
k k k k k k k k k k k k k  k k k k k k k k  k k k k k k
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Chapter Two xArx2 Expresses in the Developing Forebrain

Spatial and Temporal Expression of xArx2

The temporal expression profile of xArx2 during early Xenopus development was 

analyzed by RT-PCR (Fig. 2). xArx2 was detectable in unfertilized embryos (stage 0) 

and remained present at moderate levels up until the end of gastrulation. Just following 

the onset of neurulation, the expression level at stage 14 was markedly increased. The 

expression of xArx2 continued to increase throughout neurulation into tailbud stages, at 

which time regionalization within the neural tube is occurring to produce the specific 

segments of the mature brain. Efl-a  is a constitutively expressed housekeeping gene and 

was used as a loading and reaction control. It was amplified in relatively equal amounts 

in all of the developmental stages assayed.

The spatiotemporal expression of xArx2 in Xenopus was analyzed by whole- 

mount in situ hybridization (Fig. 3). The transcript is initially visualized at blastula stage 

(Fig. 3A) on the prospective dorsal side of the embryo and was not again deteetable until 

stage 14 (Fig. 3B), where it is observed as a pair of bands straddling the anterior neural 

plate and persists throughout neurulation (Fig 3C). This site later develops into portions 

of the prospective telencephalon and diencephalon (Eagleson and Harris, 1990). During 

early tailbud stages (Fig. 3D, E) xArx2 is detected in the prosencephalon, or presumptive 

forehrain area, and in the somites. At late tailbud stages (Fig. 3F) xArx2 is transcribed in 

the procencephalon and expresses strongly in the telencephalon and diencephalon (Fig. 

3G), as well as in the floor plate (Fig. 3H) at early tadpole stages. There was no staining 

observed with the sense probe at any of the stages.
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Figure 2. Temporal expression of xArx2 analyzed by RT-PCR. xArx2 is detectable as a 
maternal transcript and expresses throughout gastrulation. Significant up-regulation is 
observed at early neurula and expression continues to increase throughout tailbud stages. 
Elongation factor 1-alpha (Efl-a) is shown as a control.
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Figure 3. Spatial expression of xArx2 analyzed by whole-mount in situ hybridization. At 
blastula stage (A) xArx2 is observed in dorsal blastomeres. Anterior views are shown for 
neurula stage embryos (B,C); tailbud stage embryos are seen laterally from the right side 
with a slight anterior perspective (D,E), and from an anterior view (F); (G) anterior view 
for a stage 36 tadpole; (H) lateral view from the right side of a stage 36 tadpole in 
clearing solution (2:1 benzyl benzoate:benzyl alcohol); (I) right lateral view of a stage 26 
embryo probed for xArx expression. Abbreviations: anp, anterior neural plate; pf, 
presumptive forebrain; s, somites; fp, floor plate, di, diencephalon; tel, telencephalon.

Figure 4. Histological examination of xArx2 expression. Transverse sections of a stage 
36 tadpole, subjected to whole-mount in situ hybridization using a xArx2 antisense 
riboprobe, were made 30pm thick. xArx2 expresses in the lateral and ventral 
telencephalon (A) and in the lateral diencephalon (B).

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r

St. 14

I
St. 22

St. 36 St. 26 v.l/:v

4A B

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two xArx2 Expresses in the Developing Forebrain

In order to assess the variations in expression between xArx2 and xArx, in situ 

hybridization was repeated in parallel for both xArx riboprobes. Expressions are identical 

in the anterior region at many developmental stages, however, expression of xArx was not 

observed at blastula stage nor was it detected in the somites (compare Figs. 31 with 3E).

Analysis of sectioned tadpoles subjected to in situ hybridization reveals that in 

anterior sections xArx2 expresses in the ventral and lateral telencephalon (Fig. 4A). At 

the level of the eyes, xArx2 is restricted to the lateral diencephalon (Fig. 4B).

DISCUSSION

xArx2 contains two highly conserved domains, a paired-like Q50 homeodomain 

and an aristaless domain, both of which show complete homology to previously described 

human, mouse, and zebrafish Arx sequences (Stromme et ah, 2002; Miura et al., 1997). 

Recently, saoX\\QX Xenopus Arx has been cloned (El-Hodiri et a l, 2003) which is observed 

to contain several differences to the Xenopus Arx2 characterized in this study. Sequence 

comparison between the two revealed that they are 10% dissimilar with regard to their 

amino acid content in regions scattered throughout the protein. It is likely that xArx2 and 

xArx represent alternate Arx family members that have diverged slightly since the 

ancestral Xenopus laevis genome underwent duplication to become pseudotetraploid. At 

the amino acid level the two Xenopus Arx homologues show the same degree of 

similarity to the zebrafish and mouse homologues, 67% in either case. Interestingly, 

xArx2 shows a slightly higher degree of similarity to human ARX than does xArx (68 

versus 66 percent). This may indicate that the function of xArx2 more closely resembles 

that of the human homologue.
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Chapter Two xArx2 Expresses in the Developing Forebrain

Complete homology is observed between each species within the octapeptide 

domain, the nuclear localization domain, the homeodomain, and the C-peptide domain. 

The fact that these domains remain identical from frogs to humans, suggests that they are 

essential to proper protein function. More specifically, the highly conserved 

homeodomain, which is required for DNA binding specificity, suggests that Arx proteins 

bind to highly conserved regulatory sequences within their target genes. 

xArx2 Expression Suggests it May Perform a Role in Forebrain Development

xArx2 was first detectable at low levels as a maternal transcript by RT-PCR. Its 

expression remained moderate throughout gastrulation. Just proceeding the onset of 

neurulation, the expression of xArx2 dramatically increased and continued to do so up 

until early tadpole stages. Similarly, xArx2 expression analyzed by in situ hybridization 

revealed an initial period of expression in blastula stage embryos. Although it was 

detected throughout gastrulation by RT-PCR, no staining was observed by in situ 

hybridization at these stages. Expression did, however, reappear in in situ wholemounts 

at stage 14 where it strongly expressed bilaterally along the mediolaterial anterior neural 

plate. This coincides with the timing of the dramatic increase in expression observed by 

RT-PCR as well as the stage in which the neural plate is formed and commences to 

establish the neural tube (Nieuwkoop and Faber, 1967). Expression increased in the 

anterior neural plate and its derivatives throughout neurulation and tailbud stages and 

occupied the floor plate and the procencephalon, specifically the ventral and lateral 

telencephalon and lateral dieneephalon, during early tadpole stages. These data are 

consistent with RT-PCR data. The lack of detection during gastrulation by in situ 

hybridization may reflect the differential sensitivity of these two methods of analysis.
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Chapter Two xArx2 Expresses in the Developing Forebrain

Our findings augment those of El-Hodiri et al. (2003) as the anterior expression 

domains of both xArx transcripts were identical in several stages analyzed; however, we 

observed that xArx2 is also strongly expressed in the somites during tailbud stages. 

Somites give rise to cells that form vertebrae and other tissues including skeletal muscle 

and the dermal layers of skin. Interestingly, has been reported to express strongly in 

human skeletal muscle (Ohira et a l, 2002). This may indicate that xArx2 performs a 

critical function during somitogenesis, such as maintaining segmentation of somites, 

however, disorders of this nature have not yet been reported to associate with mutations 

mARX.

Consistent with the expression patterns we observed, it has been shown that Arx 

expresses in similar structures and at similar times throughout development in other 

vertebrates. In mouse Arx first expresses at E9 in the dorsal telencephalon, anterior 

diencephalon, the isthmus, and the floor plate. Expression remains persistent in the dorsal 

telencephalon (presumptive cerebral cortex), ganglionic eminence and ventral thalamus. 

Expression in the somites was also detected (Miura et al., 1997). Zebrafish Arx was 

initially detected at 10 h in the region of the presumptive diencephalon, and is temporarily 

expressed in the caudal telencephalon at 12 h. By 40 h the expression of zArx is restricted 

to telencephalic and diencephalic bands, along the telencephalon/diencephalon boundary, 

and the hypothalamus. Zebrafish Arx expression in the floor plate and the somites was 

also observed (Miura et al., 1997). Human ARX\ms been reported to express in neuronal 

precursors in the germinal matrix of the ganglionic eminence and in the ventricular zone 

of the telencephalon in fetal tissue (Ohira et al., 2002).
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Chapter Two xArx2 Expresses in the Developing Forebrain

Since xArx2 expresses in the anterior neural plate during neurulation, and its 

expression remains confined in derivatives of this territory, it is likely that it plays a 

crucial and evolutionarily conserved role in the establishment of the forebrain in Xenopus. 

Moreover, the timing of its expression, detectable by both RT-PCR and in situ 

hybridization, suggests that xArxl may possibly be playing this role very early in 

development, indeed well before neural territories have been specified.

The restricted pattern of expression within the presumptive forebrain and 

prosencephalon of Xenopus has been reported for a variety of other forebrain transcription 

factors, such as Otx, Dlx, Pax, and BF-1 genes (Simeone et al., 1994; Price et al., 1991; 

Chalepakis et al., 1993; Xuan et al., 1995). These genes have been shown to contain 

specific expression boundaries within the telencephalic neuroepithelium and are believed 

to establish positional identity leading to patterning of the CNS. From the expression 

profile we observed for xArx2 we surmise that it plays an integral role in the development 

of the Xenopus forebrain possibly as early as in the establishment of the neural plate. 

Additionally, its restricted expression presents xArx2 as a useful marker for forebrain 

development in Xenopus.
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CHAPTER 3

xArx2 Plays a Role in Forebrain Development Dnr'mg Xenopus Embryogenesis 

Chapter Summary

Here we report the effects caused by gain- and loss-of-function of the Xenopus 

Arx homologue, xArx2. Overexpression studies reveal that ectopic xArx2 expression 

leads to several anterior defects including enlarged forebrain, reduced eye, microcephaly, 

and extension of the pigmented retina. Translational knockdown of xArx2, using 

antisense morpholino (MO) oligonucleotides targeted to complement the 5’UTR of 

xArx2, results in embryos with a reduced forebrain territory, as well as microcephaly and 

retarded craniofacial development. The specificity of the xArx2-M0 was confirmed by in 

vitro translation experiments, which showed that translation from the related xArx locus 

was likely unaffected by the MO used in our studies. We also report here the effects of 

xArx2 misexpression on various brain and eye marker genes. With the exception of its 

effects on the forebrain markers XBF-1 and xArx, ectopic xArx2 expression results in a 

reduced expression level in all other markers analyzed. Inhibiting xArx2 causes a similar 

reduction in all markers with the exception of xOtx2 and xRxl, which increases in xArx2- 

MO-injected embryos.

INTRODUCTION

Inductive interactions are fundamental to the formation of all brain structures and 

several recent studies provide evidence for the involvement of signaling molecules of the 

Bmp and Wnt gene families in patterning the dorsal forebrain (Furuta et al., 1997; Golden
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Chapter Three xArx2 Affects Forebrain Development

et a l, 1999; Lee et al., 2000). Signaling molecules play a paramount role in the 

establishment and maintenance of cell identities within the CNS, amongst which 

numerous transcription factors also play a pivotal role (Gomez-Skarmeta, 1999; Theil et 

a l, 1999; Lake and Kao, 2003; Bach et a l, 2003). Transcription factors can regulate 

aspects of cell migration, proliferation, and differentiation (Caric et a l, 1997; Hardcastle, 

Z., and Papalopulu, 2000; Talamillo et a l, 2002). For example, loss of function of the 

homeobox transcription factor Pax6 in mice affects both radial and tangential migration 

of neuronal precursors (Talamillo et a l, 2002).

Although the ARX  sequence has been extensively examined in analysis of mutant 

pedigrees (Bienvenue et a l, 2002; Scheffer et a l, 2002; Stromme et a l, 2002; Kato et a l,

2004), functional studies still remain limited. Since vertebrate Arx genes are similar in 

sequence and expression, analysis of loss-of-function mutants provides useful information 

about the potential roles that this protein plays during early development. Arx knockout 

mice have been shown to manifest defects in neuroblast proliferation as well as selective 

abnormalities in gamma-aminobutyric acid-ergic intemeuron migration (Kitamura et a l , 

2002). Mutant mice had smaller brains and died shortly after birth. Xenopus laevis has 

been exploited extensively as an organism for the study of embryonic development, and 

offers several advantages. Gain and loss-of-function studies can be conducted through 

micro injection of synthetic capped mRNA or antisense morpholino oligonucleotides, 

respectively, directly into the embryos.

It has been shown that Arx expresses in the developing rostral forebrain in 

Xenopus (El-Hodiri et a l, 2003; Wolanski et a l, unpublished), however, to date no 

functional studies have been conducted with Arx in this organism. In order to understand

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three xArx2 Affects Forebrain Development

the putative role of Arx in embryonie brain development, it is of particular relevance to 

define its functional contribution to the different tissues where it is expressed. We sought 

to characterize the effects of misexpression of Arx2 in Xenopus through the injection of 

synthetic capped xArx2 mRNA or xArx2-antisense morpholino oligonucleotides (xArx2- 

MO) into embryos at the two-cell stage. We show that ectopic Arx2 expression results in 

an expansion of the forebrain region and that loss-of-function results in a reduction of this 

domain. Several other anterior phenotypes resulted from xArx2 misexpression, such as 

craniofacial under development, and brain and eye abnormalities. We further show that 

loss of function phenotypes are attributed to the specific translational knockdown of 

xArx2, as the morpholino oligonucleotides used had no effect on xArx translation in vitro. 

Finally, we used a panel of seven genes {XBF-1, xGbx2a, xKrox20, xArx, xOtx2, xRxl, 

xPax2, and, xPax6), representative of a broad range of markers for positional identity in 

the developing brain and eye fields, to assess the role of xArx2. Examination of marker 

gene transcription following the ectopic expression of xArx2 reveals that forebrain 

markers are up-regulated while markers of more caudal regions of the brain are 

posteriorized and reduced. Specifically, ectopic xArx2 expression expanded XBF-1 

domains and elevated the levels of xArx in the forebrain, while the mid- and hindbrain 

markers xGhx2a, and xKrox20, respectively, were expressed in more posterior territories 

than normal and their expression levels were reduced or diminished. Furthermore, xOtx2, 

xRxl, and xPax2, whose functions involve regulating events in both brain and eye 

development, were reduced in embryos ectopically expressing xArx2. Conversely, 

morpholino studies showed that reduced xArx2 levels coincided with a reduction in XBF-
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1 and xArx and an increase in xOtx2 and xRxl expression levels, however, the levels of 

xGbxla, xKrox20, and xPax2 were reduced.

MATERIALS AND METHODS 

Embryo Preparation

Xenopus eggs were obtained by injecting adult females with 500U of human 

chorionic gonadotropin (Chorulon; Intervet) into the dorsal lymph sac. Embryos were 

fertilized, dejellied in 2% cysteine solution (pH 8.0), and cultured as previously described 

(Drysdale and Elinson, 1991) in O.IX Modified Barfs Saline (MBS). Once embryos had 

reached the two-cell stage they were transferred to 1.5% Ficoll-400 (Sigma) in 0.3 x MBS 

for injections.

Micro injection

An xArx2 expression construct was derived using Vent polymerase (New England 

Biolabs) and primers (forward 5’-GAAGGCCTGCAGCCCAGCATTGA-3’; reverse 5’- 

GCTCTAGACTGCATAAAAGTTACACTC-3’) which bracketed the open reading 

frame and possessed restriction sites for StuI and Xbal, respectively, to facilitate 

insertion into pCS2-. Synthetic capped mRNA of xArx2 and Green Fluorescent Protein 

(GFP) was made from linearized template using mMessage Machine (Ambion) driven by 

SP6 and T3 promoters, respectively. Capped mRNAs were resuspended in nuclease free 

water and coinjected into the animal pole of embryos at the 2-cell stage with a 

Drummond nanoinjector. Concentrations of the xArx2 capped mRNA ranged from 100 

pg to 800 pg. 400 pg of GFP capped mRNA was used for coinjections and 800pg for 

control injections. Injection volumes never exceeded 4.6 nl. Injected embryos were

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three xArx2 Affects Forebrain Development

cultured in 1.5% Ficoll-400 in 0.3 x MBS at 12°C overnight. The solution was 

subsequently changed to 0.1 x MBS and embryos were reared at 17°C until they reached 

early tailbud stage. At this stage embryos were separated on the basis of side of injection, 

which was determined by GFP fluorescence under UV light, and grown up at room 

temperature until they reached stage 46, at which point phenotypic analysis was 

performed. The uninjected side served as a contralateral control.

Loss-of-function assays were conducted similarly using fluoresceinated xArx2 

antisense morpholino oligonucleotides (Gene Tools) designed according to parameters 

recommended by the company and selected to specifically target the 5’UTR of xArx2 (5’- 

TGCTGGGCTGCAGGACTGTGTCGGT-3’). Concentrations of 6, 9, and 18 ng were 

injected into one balstomere at the two-cell stage. Fluoresceinated control morpholino 

oligonucleotides which represented a random sequence (5’- 

CCTCCTACCTCATTACAATTTATA-3’) were injected at a concentration of 20 ng. 

Histology

Embryological sections, stained with Hoechst or hematoxylin and eosin (H&E) 

were prepared in order to better visualize the overall brain morphology involved with the 

gain-of and loss-of function oixArx2. Stage 46 tadpoles, that had been injected with 400 

pg of xArx2 mRNA or 18 ng of xArx2-M0, and which showed slight forebrain defects, 

were fixed in MEMPFA for two hours at room temperature. For Hoechst staining, fixed 

tadpoles were subsequently dehydrated to 100% methanol gradually, removed to Hoechst 

33258 (5 pg/ml) for one hour, gradually rehydrated to water, then embedded in 5% 

agarose. Tadpoles were then sectioned vertically, 30 pm thick on a vibratome (Leica VT 

lOOOS) and visualized under filtered UV light.
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For H&E Staining, injected tadpoles were sectioned prior to staining. Fixed 

tadpoles were dehydrated through an ethanol-xylene series, embedded in paraplast, and 

20 pm horizontal sections were cut using a microtome (Spencer 820). Sections were 

deparaffinized, stained with H&E, and visualized by light microscopy.

In vitro protein synthesis

To test the specificity of the xArx2-M0 used in these studies, an in vitro 

translation approach was utilized. A construct containing a xArx2 morpholino-equivalent 

site was created into the pCS2-Myc vector. The oligonucleotides (5’- 

GATCCACCGAGACAGTCCTGCAGCCCAGCA-3’ and 5’-

CGTGCTGGGCTGCAGGACTGTGTCGGAG-3’), which contained restriction sites for 

BamHI and Clal, respectively , and which complemented the xArx2 morpholino 

oligonucleotide used in our loss-of-function studies, were used to create the site. One 

microgram of each oligonucleotide was first annealed, by gradually heating them to 90°C 

then allowing them to cool slowly back to 37°C. Phosphate groups were added to the 

ends of the armealed oligonucleotides using T4 polynucleotide kinase (Promega) and they 

were then ligated into the BamHI and Clal sites of pCS2-myc. A second construct, 

containing a xArx morpholino-equivalent site was created in the BamHI and Clal sites of 

pCS2-myc in a similar manner using the oligonucleotides (5’- 

GATCTTGAGACAGTCCGGAGCTCAGCATTG-3’ and 5’-

CGCAATGCTGAGCTCCGGACTGTCTCAA-3’). Subsequently, xArx2 was subcloned 

into these constructs. It was amplified using Vent polymerase (New England Biolabs), 

and the primers (forward 5’-GAAGGCCTATGAGCGGCCACTACCAA-3’ and reverse 

5’-GCTCTAGACTGCATAAAAGTTACACTC-3’), which contained restriction sites for
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Stul and Xbal, respectively, to facilitate directional insertion into each of the vectors, as 

well as into the unmodified pCS2-myc vector. Synthetic capped RNA was made from 

linear templates using mMessage Machine (Ambion) driven by a SP6 promoter for the 

following X/4rx2-containing constructs: pCS2-myc, pCS2-myc with the xArx2-MO- 

equivalent site, and pCS2-myc with the x^lrx-MO-equivalent site. In vitro protein 

translations, using were performed according to the manufacturer’s protocol (Retie 

Lysate, Ambion), in the presence and absence of 18ng of x^rx2-M0 using 1 pg of each 

mRNA template. Additionally, 20 ng of control morpholino was added to one of the 

reactions, and 1 ug of GFP mRNA was utilized as an internal control in each reaction in 

order to equate levels of protein syntheses. Protein products were run out on a 10% 

polyacrylamide gel, and visualized by autoradiography.

Whole-mount in situ hybridization

To examine the putative effects of xArx2 misexpression on various brain and eye 

marker genes, embryos, injected with either synthetic capped xArx2 (600 pg) and GFP 

(400 pg) mRNA or xArx2 morpholino oligonucleotides (18 ng), were subject to whole 

mount in situ hybridization, performed according to Harland (Harland, 1991). 

Digoxygenin (DIG)-UTP (Roche) antisense riboprobes were generated from linearized 

templates for each of the marker genes. Hybridization was detected using an alkaline 

phosphatase-coupled anti-DlG antibody (Roche, dilution 1:2000). Alkaline phosphatase 

staining was developed with NBT/BCIP (Roche) or BM Purple (Roche). The side of 

injection was predetermined prior to fixation, on the basis of fluorescence of the injected 

side under UV light, and the uninjected side was used as a contralateral control. All of 

the constructs used, with the exception of xGbx2a, were obtained as gifts: XBF-1 (N.
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Papalopulu), xKrox20 (D. Wilkinson), xArx (H. El-Hodiri), xOtx2 (I. Blitz), xRxl (G. 

Barsacchi), xPax2 (N. Heller), and xPax6 (W. Harris). XGbx2a was amplified from a 

whole embryo eDNA library using primers (forward 5’- 

CGGAATTCAGGCTTCATTTGACTCTCAG-3’ and reverse 5’-

AAGGCCTGAACATTTCAAGGTCTTGC-3’) which contained and Aha/restriction 

sites, respectively, to facilitate directional insertion into pCS2-.

RESULTS 

Misexpression of xArx2 Results in Anterior Defects

In order to gain insight into the endogenous function of xArx2 we performed gain- 

and loss-of-function studies by microinjecting either synthetic capped xArx2 plus GFP 

mRNA or antisense x^rx2-Morpholino oligonucleotides (MO) into one hlastomere at the 

two-cell stage. Since embryos were injected at the two-cell stage, the contralateral side 

served as a control. Misexpression of xArx2 resulted in several distinct and reproducible 

anterior abnormalities, specifically in the forebrain and developing eye (Fig. 1).

The majority of morphological effects of xArx2 overexpression appeared to be 

dose-dependent until the RNA injected reached 400 pg (summarized in Table 1). Beyond 

this dose (at 600 and 800 pg) survival rate to swimming tadpole stage dramatically 

declined, and head structures were severely impaired and barely recognizable. Anterior 

expansion of the telencephalic region was commonly observed (Fig. lA). Another 

frequent phenotype observed in injected embryos was microcephaly, characterized by a 

reduced head circumference (Fig. IB) and an underdeveloped or mispositioned forebrain 

(Fig. 1C arrowhead). Other forehrain abnormalities, collectively referred to as “fused
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brain”, occured in which the anterior most region of the forebrain appeared completely 

fused or where the telencephalon failed to form two distinct lobes, giving a flattened 

overall appearance at the rostral end. These phenotypes were often associated with a 

reduction in the brain, head and/or a complete fusion of the two eye fields resulting in 

cyclopia. Furthermore, a low percent (1%) of tadpoles had brain outgrowths at high 

doses, characterized by ectopic tissue which extended from the forebrain (Fig. II 

arrowhead). Embryos injected with GFP displayed no anterior abnormalities.

Several classes of phenotypes associated with the developing eyes also resulted 

from ectopic xArx2 expression. Tadpoles were observed with reduced (Fig. ID) and 

absent (Fig. IE, arrowhead) eye structures. Additionally, extension of retinal pigmented 

epithelium (RPE) towards the midline (Fig. IF) and pigmentation along the optic nerve 

(Fig. IG) occurred. The severity of the effects increased, and phenotypes often 

compoimded at doses of 400 pg and higher. The most severe phenotypes were gross 

perturbations of the anterior head and brain with more medially located, or oftentimes 

ventrally fused, retinas (Fig. IH).

Inhibition of xArx2 Translation Affects the Developing Forebrain

We analyzed the effect of loss-of-function of xArx2 by means of antisense 

morpholino oligonucleotide-mediated translational knockdown (summarized in Table 2). 

This commonly resulted in a reduction of the telencephalon, both mediolatarally and 

caudally (Fig. IJ), as well as asymmetrical, or underdeveloped head structures on the 

injected side of the embryo (Fig. IK). Microcephaly was also observed (Fig. IE). 

Embryos injected with the control morpholino oligonucleotides displayed a slight 

reduction (2% of embryos) in the eye, but otherwise developed normally.
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Table 1. Percentage of phenotypes observed in embryos injected with xArx2 or GFP 
capped mRNA.

Phenotypes 80 pg
Dose of xArx2 mRNA iniected 

200 pg 400 pg 600 pg 800 pg
Control 

GFP (800pg)

Normal 76% 70% 67% 54% 56% 100%

Enlarged forebrain 5% 8% 10.5% 27% 22.5% 0%

Microcephaly 8% 11% 12% 5% 7.5% 0%

Reduced eye 1.5% 5% 8% 7% 4% 0%

Absent eye 0% 1% 1% 1% 2% 0%

Pigmented optic nerve 5% 4% 2% 0% 0% 0%

RPE 7% 3% 5% 3.5% 6% 0%

Fused eyes 0% 0% 1% 3.5% 0% 0%

Fused brain 4% 7% 6% 8.5% 2% 0%

TOTAL NUMBER 115 119 95 82 53 189

Note: These data summarize the results of ectopic xArx2 expression in stage 46 tadpoles 
shown in Figure 1. Various doses of synthetic xArx2 mRNA was co-injected with GFP 
mRNA (400 pg) into one blasomere at the 2-cell stage. The percentage of tadpoles 
arising with the indicated phenotypes, described in the text, and the total number of 
embryos assayed for each dose is indicated. RPE refers to extensions of pigmented 
retinal epithelium. As deformities sometimes compound, column percentages will not 
sum to 100.
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Table 2. Percentage of phenotypes observed in embryos injected with x/lrx2-morpholino 
oligonucleotides (MO) or control morpholino oligonucleotides (CMC).

Phenotypes
Dose of xArx2-M0 iniected 

6 ng 9 ng 18 ng CMO(20 ng)

Normal 79% 73% 50% 98%

Reduced forebrain 6% 8% 16% 0%

Microcephaly 3% 3% 8% 0%

Underdeveloped head 7.5Vo 5% 8% 0%

Reduced eye 4.5% 6% 16% 2%

Absent eye 0% 0% 0% 0%

RPE 1.5% 1.5% 3% 0%

Fused eyes 0% 0% 1.5% 0%

Fused brain 6% 9% 12% 0%

TOTAL NUMBER 66 64 72 84

Note: These data summarize the results of inhibition of Arx2 expression in stage 46 
tadpoles shown in Figure 1. Various doses of fluorescein-tagged X/frx2-morpholino 
antisense oligonucleotides (xArx2-M0) were injected into one blasomere at the 2-cell 
stage. Control morpholino oligonucleotides (CMO-20 ng) were injected similarly and 
served as an injection control. The percentage of tadpoles arising with the indicated 
phenotypes, described in the text, and the total number of embryos assayed for each dose 
is indicated. RPE refers to extensions of pigmented retinal epithelium. As deformities 
sometimes compound, column percentages will not sum to 100.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1. Misexpressing xArx2 causes anterior abnormalities. Dorsal view of stage 46 
tadpoles injected with xArx2 (A-I) or xArx2 antisense morpholino oligonucleotides (J-L) 
in one hlastomere at the two-cell stage. Over-expression of xArx2 yielded several brain 
and eye abnormalities: expansions of the forebrain (A arrowhead), microcephaly (B), 
mispositioned forebrains (C arrohead), reduced (D arrowhead) and absent (E arrowhead) 
eyes, extension of pigmented retinal epithelium towards the midline (F), pigmentation 
along the optic nerve (G), centrally located eyes that fuse laterally (H), and brain 
outgrowths (I). Inhibition of xArx2 results in a reduction of the forebrain (J arrowhead) 
and interferes with proper head development (K, L).
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Chapter Three xArx2 Affects Forebrain Development

Histological Examination of Tadpoles Reveals Forebrain Size Abnormalities

In order to better examine the forebrain region in tadpoles misexpressing xArx2, 

horizontal sections were made on selected embryos following Hoechst or preceding 

Hematoxylin and eosin (H&E) staining. At this level, a striking expansion of the 

forebrain territory on the side of the embryo injected with xArx2, as compared to the 

control, was observed (Fig. 2A, C). Conversely, the forebrain on the injected side of the 

embryo appeared substantially reduced inv4rx2-MO-injected embryos (Fig. 2B, D). 

x4rv2-Morpholino Specifically Blocks Translation in vitro

To confirm the specificity of the morpholino oligonucleotides used in our studies, 

we assayed levels of in vitro translated ^^S-labelled products using constructs which 

contained the open reading frame of xArx2 fused to morpholino-equivalent sites as 

templates (Fig. 3). Protein translation was inhibited in a construct which contained the 

ylrx2-M0-equivalent site when Arx2-MO was introduced. Moreover, translational levels 

were unaffected by Arx2-M0 in a construct which contained the other Arx-MO- 

equivalent site. The standard control morpholino oligonucleotides had no effect on xArx2 

translation and neither morpholino impaired translational levels of the GFP protein. 

Interfering With Proper xArx2 Function Results in Laterality Defects

Sonic hedgehog {Shh) has been shown to play a prominent role in establishing 

left-right body asymmetry in vertebrates (Levin et al, 1997; Meyers and Martin, 1999; 

Schilling et a l, 1999). Misexpressing xArx2 induced anterior deformities, such as 

cyclopia, reminiscent of those observed with a disruption of Shh signalling (reviewed by 

Roessler and Muenke, 2001). This directed us to investigate its putative role in features 

of left-right asymmetry. We examined the developed heart and gut in stage 46 tadpoles.
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Figure 2. Histological examination reveals that xArx2 affects forebrain size. Horizontal 
brain sections of stage 46 tadpoles injected with xArx2 RNA or x.drx2-Morpholino 
oligonucleotides in one hlastomere at the two-cell stage. (A,B) Tadpoles were stained 
with Hoechst, embedded in agarose, and sectioned 30 pm thick. (C,D) Tadpoles were 
paraffin embedded, sectioned 20 pm thick, and stained with hematoxylin and eosin. 
Forebrain expansion (A,C) and reduction (B,D) is observed (arrowheads) with over­
expression and inhibition, respectively.
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Figure 3. Antisense morpholino oligonucleotides inhibit xArx2 translation in vitro. The 
specificity of xArx2 antisense morpholino oligonucleotides (xArx2-M0) was examined in 
vitro (Retie Lysate, Ambion) employing 1 ug of synthetic capped mRNA (Ambion) 
created using linearized templates (constructs indicated above) with and without 
morpholino-equivalent sites contained within a portion of the xArx2 5’UTR or xArx 
5’UTR. Radiolabelled products were electrophoresed on SDS-PAGE gels and visualized 
using autoradiography. Translation is inhibited by xArx2-MO (18ng) in the presence of 
the xArx2 5’UTR but not the xArx 5’UTR nor in the absence of either 5’UTR. 20 ng of 
control morpholino oligonucleotides (CMO) did not affect translation. GFP was 
cotranslated with the X/4rx2-containing constructs to serve as an internal reaction control.
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Chapter Three xArx2 Affects Forebrain Development

These structures both undergo asymmetric looping during normal development. In the 

normal frog heart the ventricle is situated on the left side, with the outflow tract looping 

to the right, and the gut coils counterclockwise. We observed a low (1-6%) frequency of 

reversed looping in both of these organs among x^rx2-injected and X/4rx2-MO-injected 

embryos, but not in GFP-injected control embryos. Heart and gut reversals could arise in 

tandem or separately. Since laterality was not the focus of this project, further studies of 

gut and heart development were not pursued.

xArx2 Misexpression Alters the Expression of Genes Expressed in the Brain and Eye

In order to gain a better appreciation of the effects of misexpression of xArx2 on 

the developing Xenopus brain, we decided to examine the effects on marker genes of the 

brain and eye territories. We employed whole mount in situ hybridization, using eight 

different markers as probes, on embryos injected into one hlastomere with either xArx2 

capped mRNA (400 pg) or x^rx2-M0 (18 ng) at the two-cell stage. We examined the 

effects on both early, early to mid-neurula stage, and late, late tailbud stage, embryos. 

The uninjected side of the embryo was used as a contralateral control to the effects of 

microinjection and represented the endogenous expression of each marker in a normal 

embiyo. Ectopic and inhibited xArx2 expression resulted in several differences in 

expression of the various marker genes.

We first examined the overall brain morphology using markers of the fore-, mid-, 

and hindbrain (Fig. 4). XBF-1 marks the telencephalic territory of Xenopus embryos 

(Papalopulu and Kintner, 1996). As a result of ectopic xArx2 expression, the XBF-1 

domain of both early and late embryos (Fig. 4A, A’, respectively) slightly expanded 

laterally. Although not much change was observed in early embryos injected with xArx2-
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MO (Fig. 4B), a reduction was apparent in the late tailbud stage (Fig. 4B’). XGhx2a has 

an anterior expression border in the region of the midbrain-hindbrain boundary (von 

Bubnoff et a l, 1996). Ectopic xArx2 reduced the early expression of xGbx2a (Fig. 4C) 

and posteriorized its later expression (Fig. 4C’). This posteriorization of the xGhx2a 

expression domain was also observed in xylrx2-MO-injected embryos (Fig. 4D, D’), and 

late embryos also showed a reduction in the expression level of xGbx2a. Analysis of the 

hindbrain marker xKrox20 (Bradley et a l, 1993; Seitanidou et a l, 1997), revealed that 

ectopic xArx2 expression posteriorized its expression in early-stage embryos (Fig. 4E), 

while in late-stage embryos, the xKrox20 expression domains in the hindbrain were 

significantly reduced (Fig. 4E’). This reduction in expression was also observed in early 

embryos following translational inhibition of xArx2 (Fig. 4F), but expression levels 

appeared to normalize by tailbud stages (Fig. 4F’).

We were also interested in the effects that misregulation of xArx2 had on the 

homologous transcript xArx (El-Hodiri et a l , 2003), as it represents an alternate forebrain 

marker, and analysis could provide insight into the different roles of the two genes. We 

noticed that ectopic xArx2 up-regulated the level of xArx expression both early and late 

(Fig. 4G, G’) and conversely, its inhibition down-regulated xArx expression early (Fig. 

4H) and late (Fig. 4H’).

Since we also observed that the misexpression of xArx2 had an effect on eye 

formation, we examined its effects on genes that play a role in patterning of both the eye 

and the brain (Fig. 5). Analysis of xOtx2, a head specific gene (Pannese et a l, 1995), 

showed that ectopic xArx2 expression caused reduced expression in early stage embryos 

(Fig. 5A). Later ylrx2 diminished xOtx2 expression in the eye, while the expression in the
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Figure 4. The effect of misexpression of xArx2 on fore- {XBF-1 and xArx), mid- 
(xGbx2a), and hindbrain {xKrox20) markers analyzed by in situ hybridization. The un­
injected side of the embryos was used as a contralateral control in the comparison of the 
gene expression changes (arrowheads) induced by xArx2 mRNA or xArx2 antisense 
morpholino oligonucleotides {xArx2-M0). The expression patterns of these genes in 
xArx2-injected (400 pg) embryos at both early (A, C, E, G) and late (A’, C’, E’, O’) 
developmental stages are compared with embryos injected with xArx2-M0 (18 ng) both 
early (B, D, F, H) and late (B’, D’, F’, H’). Anterior (A, A ’, B, B, C, D’, E, G, G’, H, H’) 
and dorsal (C’, D’, E’, F, F’) views are shown. Black arrowheads indicate enhanced or 
expanded expression, white arrowheads denote reduced or diminished expression, and 
open arrowhead signify a shift in the expression domain.
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Chapter Three xArx2 Affects Forebrain Development

brain was reduced at the posterior boundary and expanded laterally (Fig. 5A’). Inhibition 

of xArx2 translation resulted in an expansion of the xOtx2 expression domain early (Fig. 

5B) and up-regulated xOtx2 levels late in the eye (Fig. 5B’). Similar effects were 

observed with xRxl. Ectopic xArx2 expression resulted in a reduction in the early and 

late expression levels of xRxl (Fig. 5C, C’), while xArx2-M0 induced the opposite 

effects, as the xRxl expression levels were marginally up-regulated both in early and late 

stage embryos (Fig. 5D, D’). Pax2 marks the presumptive midbrain-hindbrain region 

(Rowitch and McMahon, 1995) and is an important regulator of optic stalk 

morphogenesis (Torres et a l, 1996). In both xArx2- and x^rx2-M0-injected embryos, 

slight reductions in xPax2 expression levels were observed in this domain (Fig. 5E, E’, F, 

F’), however there was no effect on xPax2 expression in its other domains (Fig. 5E’). 

Preliminary findings using the forebrain/eye marker Pax6 (Hirsch and Harris, 1997) 

revealed that a small percentage of X/4rx2-injected embryos showed a slight expansion of 

xPax6 in late neurula stage embryos contrasted to a slight reduction in its expression level 

in embiyos injected with xArx2-MO at similar stages. Neither injection caused any 

significant change in xPax6 expression in tailbud stage embryos, although a few embryos 

injected with xArx2-MO showed a slight reduction in xPax6 in the eye field (Fig. 5 H’).

Overall, gain-of-function of xArx2 led to an increase in the forebrain markers, 

xArx and XBF-I, a decrease and/or posteriorization in the mid-hind and hindbrain 

markers, xGbx2a and xKrox20, respectively, and a reduction in xOtx2, xRxI, and xPax2, 

which are involved in general brain and eye development. Loss-of-x/lrx2 function led to 

a decrease in the fore- mid-hind and hindbrain markers, as well as in xPax2, while 

elevated levels of expression of the brain/eye markers, xOtx2 and xRxl were observed.
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Figure 5. The effect of misexpression of xArx2 on the brain/eye markers xOtx2, xRxl, 
xPax2, and xPax6 analyzed by in situ hybridization. The un-injected side of the embryos 
was used as a contralateral control in the comparison of the gene expression changes 
(arrowheads) induced by xArx2 mRNA or xArx2 antisense morpholino oligonucleotides 
(xArx2-M0). The expression patters of these genes in xArx2-injected (400 pg) embryos 
both at early (A, C, E, G) and late (A’, C’, E’, G’) developmental stages are shown from 
an anterior perspective. Anterior views of embryos injected with xArx2-M0 (18 ng) at 
the early (B, D, F, H) and late (B’, D’, F’, H’) stages are displayed. Black arrowheads 
indicate increased or expanded expression while white arrowheads denote reduced or 
diminished expression.
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DISCUSSION

This study describes an investigation on in vivo misexpression of the homeobox 

gene, xArx2, in Xenopus. xArx has been shown to express in the developing rostral 

forebrain (El-Hodiri et al, 2003; Chapter 2 of the present study). The major findings here 

are that xArx2 overexpression results in an expansion of the forebrain territory as well as 

a disruption of normal eye development. Knocking down xArx2 translation by means of 

x.Trx2-antisense morpholino oligonucleotides (MO) results in: a reduction of the

forebrain, impaired head development on the side of injection, and anomalous 

development of the eyes. Additionally, both gain- and loss-of-function of x^rx2 perturbs 

anterior development, such that the rostral brain does not fully form and reductions in the 

head circumference often arise. Presumably, over expression of xArx2 yields 

circumstances in which both Arx and Arx2 target genes are precociously affected. By 

contrast, the morpholino-induced knockdown presumably affects only those genes 

normally targeted by Arx2, as its specificity was demonstrated in vitro. This may explain 

why the phenotypes observed in x^rx2-M0-injected embryos were less severe than those 

resulting when xArx2 was ectopically expressed. In addition, the two xArx genes most 

likely possess some overlapping functions and endogenous xArx can partially compensate 

for the loss of Arx2.

The phenotypic effects appear to be, for the most part, dose dependent as 

frequencies increased with increasing amounts of xArx2 mRNA or xArx2-M0, however, 

some variability was observed. For instance, at high doses of xArx2 the frequency of 

microcephaly and “fused brain” is less than that observed at lower doses (7.5% and 1.5% 

at 800 pg compared to 12% and 6%, respectively, at 400 pg). This is probably a result of
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the high mortality rate of higher dosed tadpoles, where phenotypes compounded, and 

embryos with severe defects did not survive long enough to be analyzed. Thus, the 

recorded frequencies at higher doses may not be a true reflection of the actual percentage 

of embryos with such defects. The occurrence of pigmentation along the optic nerve, 

which reflected ectopic pigmented retinal tissue, did not appear to correlate with injected 

doses. However, since elevated amounts of xArx2 resulted in an increasing frequency and 

severity of other eye abnormalities, such as medial extensions of pigmented retinal 

epithelium (RPE) toward the midline and fused eyes, the optic nerve was 

indistinguishable or even absent in these tadpoles. Finally, some variability in the 

phenotypes observed following the injection xArx2 synthetic mRNA may be attributed to 

the varied distribution and stability of transcript within the embryo. As GFP-injected 

embryos developed normally, the possibility of RNA toxicity can be ruled out. 

Misexpression of xArx2 Results in Cephalic Anomalies

A striking phenotype that appears to be specific to the misexpression of xArx2 is 

its effect on forebrain size, where an expansion of this territory is elicited among embryos 

in which xArx2 was ectopically expressed, and conversely, reduced in tadpoles in which 

xArx2 translation was impaired. Any substantial change in brain size requires a change in 

the number of neurons and their supporting elements in the brain. Defects in expansion 

of precursor cell populations can arise as a result of abnormal cell death, premature 

differentiation and exit from the cell cycle, or reduced mitogenesis. Thus, ectopic xArx2 

expression may regulate the forebrain cell population either by increasing proliferation of 

neuroectoderm, or by reducing apoptosis in these cells. Although our analyses did not 

address such possibilities, simple experiments to resolve these theories can be performed.
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Analysis of potential differences in patterns of apoptotic cells, marked by TUNEL 

staining, in wild-type and mutant embryos would reveal if xArx2 is acting through an 

apoptotis pathway. Additionally, the rate of mitotic activity can be compared in vivo 

using BrdU labeling onxJrx2-injected, xArx2-M0-injected, and control embryos.

Similar forebrain phenotypes have been reported with misexpression of other 

transcription factors which express in the anterior brain. Mice carrying a null mutation in 

the GU3 gene show disruption in dorsal telencephalon development (Theil et a l, 1999), 

which correlates with a loss of Emxl and Emx2 expression. Emx genes express in the 

telencephalon of mouse, chick, turtle and frog embryos during development (Fernandez et 

a l, 1998). Emx2 is required for normal growth and maturation of the hippocampus (Tole 

et al., 2000) and Emx2 homozygous null mutant mice have a reduced hippocampus and 

neocortex. It is possible that Arx may interact in a cascade with Gli3 and Emx2 to 

regulate dorsal telencephalon development. Since xArx2 perturbation occasionally 

induced laterality defects, and since GU3 plays a role in left-right asymmetry, the 

relationship between xArx2 and GU3 is worth pursuing in future studies.

As some of the cells of the neuroepithelium differentiate into neurons and glial 

cells, others will remain in a proliferative state to establish the pool of neural progenitors. 

The vertebrate forebrain is notably expanded in size compared to its more posterior 

counterparts. This is thought to result as a consequence of delayed neurogenesis in the 

anterior portion of the neural plate to allow for prolonged proliferation (Papalopulu and 

Kintner, 1996). Several genes which regulate such events, such as Xanf-1 (Zaraisky et 

al., 1995), XBF-1 (Papalopulu and Kintner, 1996), and xRxl (Casarosa et a l, 1997), have 

been isolated in Xenopus and their misregulations give rise to similar forebrain
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malformations as observed in this study (Ermakova et a l, 1999; Bourguignon et a l, 

1998; Andreazzoli et a l, 2003). Xanf-1 expression is restricted to the anterior neural 

ectoderm as early as the midgastrula stage (Zaraisky et al., 1995) and controls not only 

early patterning of the forebrain primordium, but also the initial steps of neural 

commitment of embryonic ectoderm (Ermakova et a l,  1999). Ectopic Xanf-1 can expand 

the neural plate at the expense of non-neural ectoderm, which later manifests in brain 

outgrowths in tadpoles, and suppresses terminal differentiation of primary neurons 

(Ermakova et a l, 1999). The expression domain of XBF-1 lies in the most anterior 

border of the neural plate during late gastrula and restricts to the neuroepithelial cells of 

the telencephalon during tadpole stages in Xenopus and ectopic XBF-1 expression has 

been shown to expand the neuroectoderm (Bourguignon et a l, 1998; Hardcastle and 

Papalopulu, 2000). XBF-1 controls formation of the telencephalic primordium through 

mechanisms affecting both proliferation and differentiation (Papalopulu and Kintner, 

1996; Bourguignon et a l, 1998; Hardcastle and Papalopulu, 2000; Hanashima et a l,

2002). XBF-1 prevents anterior neural plate cells from undergoing early neuronal 

differentiation in a dose-dependendent manner (Bourguignon et al 1998). At high doses 

of XBF-1, neuronal differentiation is suppressed, as analyzed by N-tuhulin, a marker of 

differentiated neurons. Lower doses of XBF-1 result in induced neuronal differentiation 

in competent ectoderm. Concentration-dependent proliferation of XBF-1 has also been 

shown where a low dose inhibits ectodermal proliferation while high doses of XBF-1 

promote proliferation of neuroctodermal cells through the inhibition of the cell cycle 

inhibitor (Hardcastle and Papalopulu, 2000). Mouse embryos lacking BF-1 die at
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bilth with hypoplasia of the cerebral hemispheres due to premature neuronal 

differentiation and lack of proliferation within the forebrain (Xuan et ah, 1995).

A candidate gene for the regulation of XBF-1, whose expression domain covers 

the entire proliferative region of the anterior neural plate is, xRxl (Andreazzoli et a l,

2003). Ectopic xRxl expression expands the expression domain of XBF-1 into the 

lateroanterior border of the neural plate and inhibits N-tuhulin expression (Andreazzoli et 

a l, 1999; Andreazzoli et a l, 2003). Furthermore, xRxl was also shown to control 

proliferation through (Andreazzoli et a l, 2003). Since ectopic expression of

xArx2 results in disproportionately large forebrains, it is possible that xArx2 acts in 

parallel or hierarchical pathways with these genes to control the timing of neurogenesis 

and/or the status of proliferation.

Interestingly, P-catenin, which lies downstream of the Wnt signaling pathway and 

plays a role in establishing the initial DV axis prior to gastrulation, has also been 

implicated in the regulation of cerebral cortical size by controlling the generation of 

neural precursor cells. Mice expressing high levels of a stabilized P-catenin transgene in 

neural precursors develop enlarged brains with expanded precursor populations (Chenn 

and Walsh, 2002; Chenn and Walsh, 2003). Possibly, xArx2 acts through the Wnt 

signaling pathway to maintain the level of neural precursors in the forebrain. 

xArx2 May be Required for Proper Eye Development

Ectopic xArx2 expression was also observed to disrupt eye development. Gain- 

and loss-of-function of xArx2 causes reduced or missing eyes. It is not likely that xArx2 

is involved in eye patterning directly as it is not expressed in the eye fields throughout 

their development. However, it may indirectly influence the proper patterning of the eye
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field through its effect during diencephalon development. Vertebrate eye formation is a 

complex process which involves early specification of the prospective eye territory, 

inductive events, patterning along the coordinate body axes, and regional specification 

(reviewed by Lupo et a l, 2000). The prospective eyes develop from optic vesicles, which 

invaginate to form optic cups from the diencephalic walls. Thus, improper patterning of 

the diencephalic territory at this region would disrupt proper eye development. As xArx2 

normally expresses in the diencephalon, its misregulation of may result in altered 

patterning of this forebrain region. XArx2 may induce a caudal-to-rostral transformation 

whereby the telencephalon is expanded at the expense of the diencephalon. This 

rostralization may alter the expression of genes involved in eye development and could 

account for some of the observed eye defects attributable as a secondary effect of xArx2 

misexpression. Similar to the eye morphological effects of misexpression of xArx2, 

mutation of Pax2 results in ectopic extension of the pigmented retina into the optic nerve 

and abnormal differentiation of the optic nerve (Torres et a l, 1996). This raises the 

possibility that altered expression of xArx2 may directly or indirectly cause misregulation 

of Pax2.

Holoprosencephaly-like Features Result From Severe Misregulation of xArx2

Holoprosencephaly is one of the most common anomalies of the developing 

forebrain in humans, and is caused by the failure of the prosencephalon to sufficiently 

divide into the double lobes of the cerebral hemispheres (Roessler and Muenke, 2001). 

The result is a single-lobed brain structure and severe skull and facial defects. Clinical 

manifestations of Holoprosencephaly are variable and extend from closely spaced eyes to 

a failure of separation of the eye field and forebrain that is associated with cyclopia. 

Sonic Hedgehog (Shh) signaling is thought to play a causative role in this disorder
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through the mediation by different Gli proteins (Nanni et al., 1999; Roessler et a l, 2003). 

Loss of function of Shh activity causes cyclopia in mice, humans and zebrafish (reviewed 

in Roessler and Muenke, 2001). Holoprosencephaly-like features were observed in both 

our gain-of and loss-of function mutants. The anterior brains of these tadpoles, which 

were categorized phenotypically as “fused-brain” mutants, lacked distinct telencephalic 

lobes. This was often associated with more midline-displaced or even fused eyes. These 

data may suggest that xArx2 impinges upon SHH signaling, either directly or by 

disrupting other genes involved in the pathway.

Laterality Defects May be Associated With Abrogated Arx2 Function

In addition to anterior-posterior and dorsal-ventral body axes, vertebrates develop 

left-right asymmetries. A vast amount of research has been put into understanding the 

molecular mechanishms regulating body asymmetry. Asymmetrically expressing 

signaling molecules, including Shh, nodal, and lefty, as well as the class-ill aristaless- 

related gene Pitx2 have been implicated as key regulators of sidedness in Xenopus 

(reviewed by Bisgrove et al., 2003). We found that some of the embryos misexpressing 

xArx2 displayed reversals in proper heart and gut looping. Although misexpression does 

not always result in reversal or randomization (looping with equal probability to either the 

left or to the right), the fact that these anomalies were absent from control embryos 

suggests that misexpression of xArx2 interrupts the signals necessary for establishing 

laterality. This may not be a direct effect of xArx2 but rather a secondary effect. 

However, it is interesting to note that other Aristaless-related genes, namely Pitx2 and 

Pitx3, have been reported to influence left-right asymmetry of internal organs (Ryan et 

a l, 1998; Campione et a l, 1999; KhosrowShahian et al., unpublished). This may imply
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that the asymmetry irregularities observed in our mutant embryos are non-specific effects, 

whereby similarities in the homeodomain amino acid sequence result in a mimicking of 

the effects reported in related genes when xArx2 is ectopically expressed. However, since 

we also observed these defects in x^rx2-M0-injected embryos, this explanation is 

unlikely, and xArx2 may be playing a role in regulating genes involved in establishing 

laterality.

We found that xArx2 restricts its embryonic expression to the developing 

forebrain. Subtle anatomical differences exist between the left and right hemispheres of 

the brain and components of the Nodal pathway are expressed on the left side of the 

zebrafish diencephalon briefly during embryogenesis (reviewed by Halpern et al, 2003). 

Laterality within the cortex has been implicated in certain aspects of cognitive 

dysfunction (Herbert et al., 2002). The asymmetries in the heart and gut that we observed 

in mutant adpoles misexpressing indicates that xArx2 may normally be involved in 

establishing laterality within the brain by impinging upon a network of genes that enjoy 

conserved utility in directing laterality elsewhere.

Brain Regionalization is Perturbed in Embryos Misexpressing xArx2

We used a panel of eight genes {XBF-1, xGbx2a, xKrox20, xArx, xOtx2, xRxl, 

xPax2, and, xPax6), representative of a broad range of markers of positional identity in 

the developing brain and eye fields, in order to obtain a more thorough assessment of the 

suggested role of xArx2.

Misexpression of xArx2 Alters fore-, mid- and hindbrain markers 

To further examine the effects of misexpression of xArx2 on the forebrain, we 

looked at two forebrain markers, XBF-1 and the xArx2 homologous gene, xArx. XArx2
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misexpression had a similar effect on both of these markers. Ectopic xArx2 expression 

increased the level of xArx expression and expanded the XBF-1 expression domains, 

while inhibiton of xArx2 translation via xArx2-M0 reduced the level of expression of 

both XBF-1 and xArx. The expansion of the XBF-1 domain in xArx2-injected embryos 

may result from xArx2 acting to up-regulate XBF-1, thereby promoting proliferation. 

Altematively, the observed expansion of the XBF-1 domain could be a secondary result of 

an increase in the progenitor cell population where it normally expresses, thus implying 

that xArx2 plays a role specifying proliferation status and cell fate.

The effect that misexpression of xArx2 had upon xArx may indicate that xArx2 

normally impinges upon xArx to activate transcription of target genes or that the xArx 

genes autoregulate and xArx2 is mimicking an Arx effect ectopically. This observation 

could have also resulted from a X/4rx2-induced expansion in the cell population normally 

expressing xArx.

The effect of xArx2 misexpression on posterior regions of the brain was analyzed 

using the markers xGbx2a and xKrox20, which endogenously express in the mid­

hindbrain and hindbrain, respectively. We found that these markers were both 

posteriorized and reduced or diminished in x^rx2-injected embryos. Since the expression 

domains do not overlap with that of xArx2, direct regulation of xGbx2a and xKrox20 by 

xArx2 is unlikely. Thus, a change of the expression pattems following a deformation of 

brain patterning is a simpler and more plausible explanation for the coherent shifts in the 

expression pattems of these genes. Since temporal and spatial attributes of brain 

specification are linked but poorly understood, it is unclear whether mid/hindbrain 

differentiation is orthographically posteriorized or delayed and inhibited temporally. As
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embryos were observed to have an expanded forebrain later in development, it is possible 

that more posterior regions of the brain may be physically displaced caudally as a result 

of over-proliferation of cells in more anterior regions. Furthermore, the fact that similar 

effects on these markers were observed following inhibition of xArx2 suggests that 

proper specification of the anterior region of the brain by xArx2 may be required to 

maintain positional identities of more posterior domains. Thus, the lack of a fully 

differentiated forebrain may to lead to delayed or retarded differentiation of mid- and 

hindbrain tissues.

xArx2 Misexpression Causes Irregularities in General Brain/Eye Markers

Ectopic xArx2 expression had the effect of reducing the levels of expression of 

genes which play a role in eye development. XOtx2 is a homeobox gene involved in 

patterning the body axis and in specifying anterior regions and their spatial relationship 

with trunk structures (Pannese et a l, 1995). It transcription encompasses the fore- and 

midbrain regions, as well as the eye (Blitz and Cho, 1995). Mice deficient in Otx2 lack 

eyes and Otx2''' mice lack forebrain and midbrain (Acampora et al., 1995; Matsuo et a l, 

1995). It has also been suggested that Otx2 potentiates the functional interaction among 

eye field transcription factors (Zuber et al, 2003). XRxl is a paired-like homeobox gene 

required for normal eye and brain development, and mice lacking functional Rx do not 

develop eyes (Mathers et al, 1997). XPaxl marks the midbrain-hindbrain territory 

(Rowitch and McMahon, 1995) and xPax6 marks the forebrain and the eyes (Hirsch and 

Harris, 1997).

Both early and late expressions of xOtx2, xRxl, and xPax2 were decreased in 

x/lrx2-injected embryos. Conversely, expression levels of xOtx2 and xRxl were
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increased in Xy4rx2-MO-injected embryos, while the level of xPax2 was again reduced. 

Our preliminary analysis on the resultant xPax6 expression revealed a slight increase in 

its early expression domain in Xv4rx2-injected embryos and a slight reduction in the early 

xPax6 expression in X/4rx2-MO-injected embryos. Interpreting these results in light of 

the observed morphological effects of xArx2 misexpresssion is challenging, however, we 

speculate that xArx2 acts indirectly to initiate a regulatory cascade that affects remote 

brain/eye marker genes.

It appears that many factors must be taken into account in attempting to 

understand the overall effect that xArx2 has on markers of the brain and eye. For 

example, a mutual inhibtion between XGbx2 and Otx2 has been shown to determine the 

placement of the midbrain-hindbrain boundary and to thereby establish Pax2 expression 

levels (Tour et a l, 2002a; Tour et a l, 2002b). Thus, if x^rx2 has a direct or indirect 

effect on one of these genes, it will in turn alter the expression of the others. Therefore, 

we suggest that the overall effects on the eye and brain marker genes caused by the 

misexpression of xArx2 is due to mispatteming, or even respecification, of the anterior 

brain regions, resulting in a cascade of morphological and genetic misregulation. 

Altematively, since xArx2 misexpression affected the levels of genes found in the isthmic 

organizer, it may be effecting partitioning at the isthmus.

Arx Function May be Conserved Among Vertebrates

Mutations in human ARX  generate a wide range of phenotypes including X-linked 

infantile spasms, Partington syndrome, characterized by mental retardation, ataxia, and 

dystonia, and various forms of mental retardation (Stromme et a l , 2002; Kitamura et a l , 

2002). The first functional studies of Arx were conducted using mouse knockouts, which

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three xArx2 Affects Forebrain Development

resulted in developmental abnormalities of the brain and testis similar to with human 

XLAG (Kitamura et a l, 2002). Due to these effects, it is thought that Arx regulates genes 

involved in the differentiation of structures required for cognitive development by 

promoting neuronal proliferation, and may also play a role in neuronal migration (Ohira 

et a l, 2002; Bienvenu et a l, 2002). We conclude that xArx2 plays a crucial role in 

regulating forebrain patterning. Whether it does so by regulating mechanisms pertaining 

to cell differentiation, neuronal migration, or cellular proliferation still remains to be 

elucidated.
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CHAPTER 4 

Directions for Future Study

Our goal was to establish the spatial and temporal expression pattern of a second 

Xenopus Arx, xArx2, during embryogenesis and to determine the consequences of its 

misexpression both phyenotypically and on various marker genes. These studies left us 

with the following findings which we have summarized in greater detail within chapters 

two and three:

1. xArx2 encodes a conserved aristaless-relaied homeobox transcription factor.

2. xArx2 is transcribed throughout embryogenesis with peak levels occuring at 
the onset of neurulation.

3. Spatial expression of xArx2 is restricted to the developing forebrain, floor 
plate, and somites.

4. Ectopic xArx2 expression leads to anterior defects including an expanded 
forebrain territory while inhibition of xArx2 translation results in a reduction 
in this domain.

5. Misexpression of xArx2 results in posterior shifts in more caudal brain 
markers and up-regulates forebrain markers.

FUTURE PROSPECTS

Although the findings of the present study implicate xArx2 as a regulator of 

forebrain development in Xenopus, several key experiments remain to be conducted in 

order to determine the precise function(s) of this gene during Xenopus development. The 

focus of this thesis was to characterize xArx2 in Xenopus, however another Arx 

homologue has been reported in this organism (El-Hodiri, 2003). While our studies 

focused on the role of xArx2, we did not tease out the differences between the two xArx 

genes beyond their spatial expression pattems and the effects of ‘knockdown’ of one of
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them. Comparisons of loss-of-fimction mutants generated using MO targeted specifically 

against the 5’UTR of xArx with those induced by xJrx2-M 0  may provide insight into the 

functional differences between the two xArx genes. Furthermore, as loss of Arx function 

results in mice that die shortly after birth (Kitamura et a l, 2002), utilizing both xJrx-MOs 

will determine the necessity of^rx  m Xenopus. In addition, to test the specirficities of the 

morpholino oligonucleotides, in vivo rescue experiments should be performed, by co- 

injecting combinations of x^rx-MOs with Arx synthetic mRNAs to determine if xArx 

function can be restored.

A principle finding of our studies is that misregulation of xArx2 affects the size of 

the forebrain, where ectopic xArx2 expression expands this region, both laterally and 

anteriorly, and inhibition of xArx2 translation causes a reduction in the anterior brain. 

These findings suggest that xArx2 may be playing a role in neuroepithelial proliferation, 

suppression of neuronal differentiation, or both. As these possible functions of xArx2 

remain to be addressed, BrdU pulse labeling and TUNEL staining, as discussed in chapter 

three, would elucidate the involvement of xArx2 in cell proliferation and rule out the 

possibility that the observed increase in forebrain size was due to reduced apoptosis. As 

it is known that, in normal development, neuronal differentiation in anterior neural plate 

is delayed in comparison with the posterior neural plate (Papalopulu and Kintner, 1996), 

and since xArx2 expresses early in the anterior domain of the neural plate, one of its 

putative functions may be to suppress neuronal differentiation during neurulation. To 

address this, wild type embryos and embryos misexpressing xArx2 can be stained for the 

presence of N-tubulin, a marker of differentiated neurons, and compared.
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There are also several neurologically unrelated functions that Arx may regulate 

that were out of the realm of the present study but that should still be addressed. As we, 

and others (Miuria, et a l, 1997), detected Arx in the somites, and since ARX hsis been 

reported to express strongly in human skeletal muscle (Ohira et a l , 2002), its role during 

somitogenesis and myogenesis needs to be addressed. Furthermore, there is evidence that 

Arx may play a role in endocrine cell specification in the pancreas. Subsequent to the 

initial expression studies on Arx in mice Collombat et al (2003) reported a previously 

unnoticed expression of Arx in the mouse pancreas at the onset of pancreatic bud 

evagination which later becomes restricted to the islets of Langerhans. Loss-of-function 

mutant mice die 2 days after birth with severe hypoglycemia and an absence in a  cells 

(Collombat et a l, 2003). The authors propose that a mutual inhibition of Arx and Pax4 

during endocrine development is required to generate normal islets of Langerhans. 

During embryogenesis, the pancreas arises from dorsal and ventral evaginations of the 

foregut that will subsequently fuse into a single organ. Interestingly, pancreatic 

expression of ARX  has also been reported in humans, as detected by Northern blot 

analysis (Bienvenue et a l, 2002). Although we did not detect any xArx2 expression in 

the developing pancreas, our in situ hybridization analysis was limited to below stage 36 

of embryogenesis. Future studies should examine the expression of xArx2 at stages 36 

and beyond to determine if it is at all expressed in the pancreas in Xenopus. Additionally, 

histological examination from in situ hybridizations of xArx2 during early embryogenesis 

of the pancreatic anlagen may reveal some level of expression therein. Should these 

studies prove promising, characterization of xArx2 during pancreatic development is 

another avenue of xArx2 function that will need to be explored.
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As Arx is a transcription factor, it presumably acts by regulating the expression of 

target genes. Moreover, many homeobox transcription factors exert their specificity 

through dimerization, which suggest that an interaction between Arx and other proteins is 

required for proper transcriptional regulation. Both of these factors still need to be 

addressed in order to completely understand the role of Arx in forebrain patterning. It is 

currently unclear where in a molecular cascade xArx2 lies with respect to other genes 

involved in forebrain specification. RNA subtractions or microarray analysis of RNA 

from embryos injected with xArx2 capped mRNA or xArx2-M0 compared to RNA from 

control embryos could reveal potential downstream targets of xArx2. Candidate genes 

identified in these screen, which appear to be up-regulated from embryos overexpressing 

xArx2, can be subsequently analyzed using the Xenopus animal cap assay to determine if 

the effect is direct. Also, in situ hybridization can be performed using the candidate 

genes as probes following the misregulation of xArx2 for any gene which appeared up- or 

down-regulated on the array. Finally, to screen for potential interacting proteins of xArx2 

the yeast two-hybrid assay can be employed. Results from these and the aforementioned 

studies will provide insight into the pathogenesis of the disorders associated with 

mutations in ARX.
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