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ABSTRACT

TAUB NUMBERS

By
Mark G. Naber

Taub aumbers are studied as a set of tensorial conservation laws
derivable from curves of solutions to the vacuum Einstein equations. A
formulation for Taub numbers of all orders is provided as well asa
derivation of the Xanthopoulos theorem. Taub numbers are computed for
the Schwarzschild and Kerr solutions viewed as perturbations of
Minkowski spacetime and the Schwarzschild solution. They are found to
give a measure of the mass and angular momentum and are free of the
factor of 2 anomaly associated with the Komar numbers. Taub numbers
are also computed for the stationary perturbations of the Schwarzschild

solution.
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1 Introduction

There have been many attempts in general relativity to formulate expressions
for mass and angular momentum. A few that come to mind are the Einstein and
Landau-Lifshitz pseudo tensors and the Komar numbers. These attempts suffer
from two types of difficulties. Some are non-tensorial and only hold for special
coordinates, or if they are tensorial (Komar numbers) the normalizations for mass
and angular momentum are different. In either case the results are unsatisfactory.
Taub numbers provide a set of tensorial conservation laws, one for each Killing vec-
tor, and have no difference in normalizations for the mass and angular momentum
quantities.

Taub numbers are formed by constructing a divergence-free vector (Taub vec-
tor) from the Einstein equations (and their perturbations), contraction with a Killing
vector and then integrating the resulting vector over a Cauchy surface, either null or
spacelikel. Explicitly, consider a curve of solutions to the vacuum field equations
(this work will be exclusively restricted to exterior vacuum regions of spacetimes so

as to concentrate solely on gravitational effects).

an(}‘) = Gas + )\!llab + _g'ab o (l

The field equations for determining the coefficients of the series are found by equat-
ing powers of the curve parameter ( A) in the series expansion of the Einstein equa-
tions for ¢ . These equations are most clearly expressed using functional derivatives

of the Einstein tensor (see appendix 1.).

1 Taub 1961, Taub 1971, Arms and Anderson 1986 and Glass 1993.
1
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Gax(g) = O
(Dccab)'(?] = 0

(chau)'(’ll"ll) - (chab)'(’;) =

(D:Gab)-(?'?'?)+3(D§GM)-("‘";‘)+(D°Cab).(2)

elc.

(1.2)

(1.3)

0 . (1.8

0 (1.5)

In terms of the Ricci tensor and its functional derivatives these equations can be

written as,

1 m
Rap(g) - 59“9' Rim = 0.

(Dokab)°(’ll) - égabglm(Dqum)'(?)

(Dchb)'(?',}) * (DoRnb)'({})

(1.6)

0. (1.7)

- 392002k (A1)« (DR (B)] = 0. 18)

(D3R.)- (MR R)a3(D2R, ) (A1) (DyR ) (1)

_Quuzgm[(Dng).(fll.fll-f'l)+3(D§R‘m)-(fll.’2'!)+(D,R

etc.
where the first n-1 field equations have been used to simplify the

Notice that each equation is of the same form,

|
Agy - Egabglm"‘!m = 0.

2 g™ 4, = 0,

5 4, = O.

n? field equation.

(1.10)

(1.11)

(1.12)

The sequential set of Einstein field equations can then be simplified to form,



Rae(g) = 0, (1.13)
(D R (M) = 0. C1.14)

(DR (R1) + (D R (1) = 0. (1.15)

(D3R, ) (M1 R)+3(D2R,,) - (M R)+ (DR (B)=0. (1.16)

elc.

These are of course the same equations that would have been produced had we
begun by expanding the Ricci tensor, i.e. Ro,(§)=0. Interms of the series for the

metric and the connection (see Al1.21) these equations can be written as,

Ra(g) = 0. (1.17)

(DR (R) = o, (1.18)

(DyRa) (7)= Tiu(i"_[l)l{(h L ato)my nr“‘,{,,ll"m,a}nzz. (1.19)

The notation is explained in appendix 1. Since the right hand side of (1.19) will be

used frequently, we make use of the following definition.

a2l opt m 1
f.,a( R R ) L__"_{(f} T c[b):m]*'nl:'m“bl:lm]a} (1.20)
=] b '

r-1 n-=2 =t

Thus, (1.19) and (1.3) - (1.5) may be written as,

(DR (1) = Sa. (1.21)
h = ] tm
(Dgcnb)' ( n ) - ‘nsab - 'z_gabg ‘?!m . (1.22)

We wish to keep both sets of field equations because there exists a superpotential
for (1.22) when contracted with a Killing vector (for the background geometry).
However (1.21) is more nawral to use if we were solving, sequentially, for each coef-

ficient of a curve of solutions. D R ,, is 2 linear second order hyperbolic operator.



Thus, if we were attempting to generate a curve of vacuum solutions, each
coefficient of the series for the metric would be computed by inverting D R, for
the given source, ,nS ab-

Equations (1.2),(1.3) and (1.25). .:m’: divergence free (ine first two are trivial).

Taub vectors are then defined:

g = kG, . (1.23)

ty = K(DyGa)(7) n21. (1.2:4)

Here k® is a Killing vector associated with g, the background metric. Equation
(1.22) implies

t, = k*S,, - lJc,,g“"s,,,, n22. (1.25)

a

n n 2

Taub numbers are defined (without normalization) as

k) = [V=gteas,. (1.26)

where o is a Cauchy surface (nul! or spacelike) for the background spacetime ¢.

Thus there is one Taub number for each Killing vector present on the background
geometry. There is no applicable superpotential for (1.23)2. However if we replace
the Einstein tensor by the Ricci tensor (equivalent field quantities for vacuum
regions) we may then use the Komar superpotential to compute the zero order Taub
numbers. g is then fundamentally different from 'lr 'zc ...., hence we expect the

normalization for the zero-order Taub numbers to be different from the normaliza-

2 This will be discussed again in a later section.
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tion for the higher order Taub numbers. To use equation (1.24) to compute ¢
requires knowledge of /i, which means solving (1.21) unless a complete curve has
been given, while (1.25) requires knowledge of fll through h1 .

oo n-

The advantage of using (1.24) is that there is a superpotential for ¢ in terms
n

of Iﬂt, the disadvantage occurs for n 2 2 which requires inverting (1.8), unless we
have been given a complete series. Equation (1.24) has a superpotential because it
is a Jinear wave equation in one variable, Ir} , while (1.25) is a nonlinear equation
which depends upon several variables. Equation (1.25) has a superpotential as well,
however it is not ‘nice’, and will be discussed later.

It will later be shown that for asymptotically simple spacetimes the zero order
Taub numbers (the Komar quantities) give a measure of mass and angular momen-
tum, and that the higher order Taub numbers give a measure of the perturbing
mass, angular momentum and gravitational radiation, provided that the appropriate
Killing vector is present on the background spacetime g . Thus we may use Taub
numbers to study perturbations of spacetimes with Killing vectors and curves of
solution of the Einstein equations which pass through a spacetime which has a
Killing vector(s).

In the following section we shall briefly review linearization stability. It will be
shown that for closed cosmologies the Taub numbers can be used to exclude some
perturbations, h, which, while being solutions of D R ., = O, are pot actually tan-
gent to the solution manifold (called ‘spurious solutions’ in Glass 1993). Stability
will also be demonstrated for asymptotically simple spacetimes and discussed where
local implications are concerned.

In the third section we shall discuss the perturbation gauge invariance of the
Taub numbers and vectors. Gauge invariance shall be proven in all cases with the

oxception of gauge transformations on the set of fields { R h } for background

i R-1



geometries which have noncompact Cauchy surfaces. This remains an open ques-
tion. The Geroch-Xanthopoulos gauge condition will also be discussed. This condi-
. tion is used as a perturbation constraint to preserve 97,

| In section 4 the Komar and Glass superpotentials will be constructed as well as
an argument for the lack of a useful potential for the right hand side of (1.25).
These superpotentials shall then be applied to the Schwarzschild and Kerr solutions,
and again to these solutions when they are viewed as perturbations of Minkowski
and Schwarzschild. These results will be used to fix an interpretation and normal-
ization for the Taub numbers. To connect the Schwarzschild and Minkowski solu-
tions a derivatior of the Xanthopoulos theorem will also be provided. In this
dissertation the word ‘perturbation’ shall be used to mean a symmetric 2-tensor to
be added to the metric, not necessarily a solution of the linearized field equations,
as is the case when viewing Kerr as a ‘perturbation’ of Minkowski or Schwarzschild.

In section 5 we shall compute the Taub numbers for the stationary perturba-
tions of Schwarzschild as found by Regge and Wheeler (1957), Vishveshwara (1970)
and Zerilli (1970). The results here will confirm the mass and angular momentum
interpretations Jound in the previous section.

Section 6 is left for a discussion of some of the open questions raised and to
examine some future applications of the Taub numbers and the formalisms devel-
oped. In particular a solution generation technique and a superpotential for the
zero order Taub numbers will be discussed.

Appendices 1 and 2 contain all mathematical formalisms and notations. This
includes recursion relations for the geometrical quantities computed from curves of
solutions, functional derivatives and the Newman-Penrose (NP) formalism. appen-
dix 3 contains the Schwarzschild and Kerr solutions, the Minkowski metric and gives

the perturbation results of Vishveshwara and Zerilli.



2 Linearization Stability

The question of linearization stability is concerned with the existence of a
curve of solutions, in the space of solutions of the Einstein equations, which passes
through - particular point with a given tangent (a linearized solution). Dd solving
and linearizing commute? How reliable is the linear approximation®? It has been
shown that asymptotically simple solutions are linearization stable? and that space-
times which are closed and that can be foliated by compact Cauchy surfaces without
boundary are linearization stable provided they have no Killing vectorsS. If there
are symmetries then there are restrictions placed upc;n the perturbations (tangents).
It has also been shown that, locally, vacuum spacetimes are also linearization sta-
bleb. This may be important for astrophysical applications. We shail primarily be
concerned with asymmptotically simple spacetimes in this work, however we shall
give a brief treatment of closed spacetimes for completeness.

Let us denote the space of Lorentzian metrics on |7, a 4-tnanifold, as Lor.
g € Lor if g is a covariant symmetric two tensor of signature (1,-1,-1,-1). Let
Ein denote the set of solutions of the Einstein equations (vacuum). g € F£in if
g € Lor and R,,{g) = 0. Ein isthusasubsetof Lor . The set of points of
Lor which make up curves of solutions of the field equations forms a subset of Ein
which we shall denote as Cur . Denote by £inCC as the subset of Ein for which
the spacetimes have compact Cauchy surfaces without boundary.

Cur < Ein < lLlor (2.1)

EinCC < Ein < lLor (2.2)

3 Brill 1982.
4 Choquet-Bruhat, Fischer and Marsden 1976 and Choquet-Bruhat and York 1980.

5 Choquet-Bruhat and York 1980, O’Murchadha and York 1974, Fischer and Mars-
den 1973, Moncrief 1976 and Brill and Desser 1973.

6 Brill, Reula and Schmidt 1987,



Cur n EirCC # © (2.3)
If we linearize the field equations about apoint g ¢ Fin, and the solutions

of the linearized field equations, (D R..) - (h) = O, coincide with the tangent
space of Fin at g then the field equations are said to be linearization stable? at ¢

and g € Cur . We shall denote this subset of Cur as LS.

LS < Cur (2.4)
LS n EinCC # © (2.5)
If this is not the case then we say that the field equations are linearization unstable
at ¢g. We shall denote this subset of Fin as LU/ .
U n LS = @ (2.6)
The following theorem, due to Moncrief, will demonstrate that there is always
a peighborhood within which a Lorentzian metric plus a given symmetric two tensor
will remain Lorentzian.

Theorem (2.1)8: Let g € Lor andlet h be a symmetric covariant two tensor on

the 4-manifold 1°. Then for any point p € V' there exists a neighborhood
N, ¢ Vof pandaconstant a > O suchthat g + Ah € Lor on N,

forall A € (~a,a).

Proof: Let M, be a neighborhood of p; choose an orthonormal tetrad x¢,, such

that gasXfayXs) = Tiaysy», Where (a) signifies a tetrad index and
Ny = diag(l,~1,~1,-1) is the Minkowski metric. Let K, be a compact
region about p suchthat K, < M,. Given h let us define the following on

Mp.

7 Fischer, Marsden and Moncrief 1980.
8 Moncrief 1976.



- a b
Yeayuey = X (a)X sy as (2.7)

I = max SUD;Y(Q)(b)l {2.8)
({a).(b)) K,

I will be finite due to continuity of the tetrad and &, and *he compactness of K, .

Let N, be a neighborhood of p suchthat N, < K. Ifl > O let

@« = [/74:i#f = Oleta = 1. Wemay now show that

Gas(A) = Gas *+ Ahg € Lor on N, forallA e (-a,a). Consider the
vector fields of the form v° = v®x{, (i=1.2,3) on N,. Given the above

choice of a we have,

gao(A)uv® < 0 (2.9)
with equality for v = 0. Thus the three space spanned by x{;, is spacelike for
Gas(N) 0on N . Similarly we may show that x o, is timelike for gqs(A) on N .

Thus ga..(N) € Lor,and we may conclude that for any ge Ein and any sym-

metric two tensor h,g + Ah € Lor for sufficiently small A>0.

An h which is a solution of
(DR} (h) = O (2.10)
is said to be integrable? if on some compact set D < V there is a curve g(A) of
exact solutions

R.{g(A)) = O (2.11)

on D suchthat g(0) = g € Ein,and h = 20 mo- @ € LS ifall solu-

tions of (DyRq) (h) = O are integrable. Conversely if at g thereisa solution
0

9 Fischer, Marsden and Moncrief 1980.



of the linearized field equations which is not integrable then the field equations are
linearization unstable10 at g (ie.g € LU). Thatis to say, there are solutions of
the lmeanzed field equations which are not tangent to the solunon mamfold

Consider the foliowing two theorems due to Taubll,
Theorem (2.2): If g € FEin and h is any symmetric covariant two tensor. Then,
VUG DyGo) (h) = 0. (2.12)
Proof: For g € £Ein we have (trivially),
VHg)Ga(g) = 0. (2.13)
Consider the functional derivative, with respectto g, in the direction of h. Then,
(DgVE)(h)G o (g) + V(@)D 6a) (h) = 0. (2.14)
Since g € Ein the first term is zero. This leaves the desired result.
Theorem (2.3): If g € FEir and (D, Rys)-(R) = 0. Then,
Ve(D2G ) (R,R) = O, (2.15)
Proof: Consider the functional derivative, with respect to the metric, of the result of
the previous theorem in the direction of K.
(DgV) - (R)(D,Gop) (R) + V(g)(DG,,) (h,h) = 0 (2.16)
The first term is zero because A is a solution of the linearized field equations. This
leaves the desired result.

If k* is aKilling vector on g then we can construct two conserved quantities.

10 Fischer, Marsden and Moncrief 1980.
11 Taub 1961 and 1971.

10



!a
l

= k°(D,C ) (h). (2.17)

v, = 0. (2.18)
l
t, = k'(D2G..) (h.h), (2.19)
2
7%, = 0. (2.20)
2

where h need only be symmetric in the first, and 5 must be a solution of the line-

arized field equations in the second.

For a spacetime g ¢ F£inCC the integrals of f and g over compact space-

like hypersurfaces are hypersurface independent. We then have the following
results.

Theorem (2.4)12: let g € EinCC ,k beaKilling vector of g,h a symmetric

covariant two tensor and X a compact spacelike hypersurface, then the first Taub

number vanishes:

fk"(DgGab)-(h):"J—_gdax = 0, (2.21)
L

where =° is a unit forward pointing normal to the hypersurface.
Proof: Since the integral is hypersurface independent we have the following, for X,
and X, being disjoint compact spacelike hypersurfaces.

ffn:»:“\/-gd.ax = f{az"\/-gdax (2.22)
I Ep

Let us replace & by h* which equals & on ¥; and goes smoothly to zeroon Z,.

Then the right hand side of (2.14) is zero and we have the desired result.
We will now see that the second Taub number vanishes if the field equations

are linearization stable at ¢ .

12 Fischer, Marsden and Moncrief 1980.
11



Theorem (2.5)13: Let g € EinCC .k beaKilling vector with respect to g and 2
Q 1

any integrable solution of the linearized field equations, then the second Taub num-

ber vanishes when compdfed'over any compact spacelike hypersurface ¥,
Proof: Let g(A) be acurve of solutions in £:nCC which passes through g, with

tangent flt . Then,

Rnb(%) = 0. (2.23)
(D,6.0)- (1) = 0. (2.24)
(D26g) (R M) + (D,6.,)-(R) = o, (2.25)

2
wherefzz = %g(?\)il.o. Then,

fk“[(DiG“)-(’}"}) + (Dy64) (R)]2t"gd®x = 0.(2.26)
Z

The second integral vanishes by the previous theorem, this leaves the desired resuit.

The converse of this theorem is also true,

Theorem (2.6)14: If g € EinCC,h satisfies the linearized field equations and

has a zero second-order Taub number for all Killing vectors, then  h is integrable at
gg . Curves tangent to the above h's at %v generate all the solutions to R, (g(A))

near g.
[+]

13 Moncrief 1976, Fischer and Marsden 1979 and Fischer et. al. 1980.
14 Fischer, Marsden and Moncrief 1980, and Arms, Marsden and Moncrief 1982,

12



The proof of this theorem is somewhat involved since one must consider the
problem within the context of the initial value formulation of the Einstein equations
and show that there is a conical singularity on the solution manifold. This requires
the iiapunov-Schmidt procedure and an application of the Morse lemmal3,

This leaves the final theorem for spacetimes gg € FinCC.

Theorem (2.7)16: Let g € FinCC then g € LS ifand only if g has no
0

Killing vectors.

The proof of this theorem uses the same techniques as the previous proof and
will not be presented.

Asymptotically simple spacetimes with non-compact Cauchy surfaces have also
been studied with regard to linearization stability. A spacetime (A .g) is asymp-
totically simple!7 if there exists a spacetime (X{.g) and an imbedding ©: > M
which imbeds Af with a smooth boundary 2M in M such that,

(1) there is a smooth function  on M suchthaton ©(M) Q > 0 and

g = Q%g;

2y on oM, Q = Oand dQ # O;

(3) every null geodesic in M has two end points on M .

A spacetime is asymptotically flatl8 if it is asymptotically simpleand R., = O in

an open neighborhood of 2Af. We shall usually be considering spacetimes which

15 Fischer, Marsden and Moncrief 1980 and Arms, Marsden and Moncrief 1982.

16 Fischer and Marsden 1973, Moncrief 1975 and 1976 and Fischer, Marsden and
Moncrief 1980.

17 Page 222 Hawking and Ellis 1973.
18 Page 222 Hawking and Ellis 1973.

13



are weakly simple. That is, we relax condition (3) to allow for nuil orbits and black
holes. We shall denote the set of these spacetimes as  £in.iF Given the above cef-

initions we have the following result due to Choquet-Bruhat, Fischer and Marsden.
Theorem (2.8)19: Let ¢ € Find4F. Then,g € LS. ie.EindF c LS.

As in the previous cases, this proof is most easily produced using the initial
value techniques and will not be presented here. The implication of this theorem is
that all solutions of D, R ., =0 will be tangent to the solution manifold, and the
Taub numbers are then free to be non-zero.

Note that the above results on linearization stability are global results. The
question of linearization stability may also be cast in a local form. Consider the fol-

lowing theorem.

Theorem (2.9)20: Let g € Ein and Q be a region of spacetime which is com-

pact, has a smooth bourdary, globally hyperbolic and with g square integrable
together with its derivatives to order 6. Then for any A which is square integrable
together with its derivatives to order 6 and which is a solution of the linearized
equations and any open region ¢’ < Q there exists a curve of solutions on U
which passes through g with tangent 5.

Thus we may be able to use Taub numbers for a local characterization of solu-
tions and perturbations, provided the integral in the definition is suitably changed.

In this section we have seen that Taub numbers are useful for constructing a
constraint by which spurious linearized solutions may be rejected, for spacetimes
with compact Cauchy surfaces and Killing vectors. For spacetimes which are lineari-
zation stable all perturbations may be considered and curves of solution may be con-
structed. For this circumstance the resulting Taub numbers have a physical

significance which we shall discuss later.

19 Choquet-Bruhat, Fischer and Marsden 1979.
20 Brill, Reula and Schmidt 1987.
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3 Gauge Invariance

In this section we shall examine the gauge invariance of both the sequential set
of field equations (1.18) and (1.21) (or (1.22)) and the Taub numbers. For example:
if we use (1.24) to compute a Taub number what are the permissible gauge transfor-
mations of I;z? If we use (1.25) and we wish to gauge transform {1 (i<n-1) what
are the transformations induced on the higher order fields h,h,.., h ?

t=1 -2 n

Let F denote a diffeomorphism of the 4-manifold [°.
Fill » 1 (3.1)
Let 7" denote the pullback corresponding to £~ . Then the globalized version of
general covariance2! of the Einstein tensor can be written as,
GCa(F'g) = F'Gay(@). (3.2)
Let x be an arbitrary vectoron 1|°. Denote by F, the flow22 of x parameterized

by A suchthatat A = O, F, is the identity diffeomorphism.

. . = A"
F, = Fy + ZFI.“ (3.3)
T <« X

L is the Lie derivative. Consider the following theorem.
x

Theorem (3.1)23: Let x be any vector on | and h a symmetric 2-tensor. Then,
(Do6a) (£9) = LiGay(a)] (3.4)
and  (D36a) (P £9) + (D,6.)(£R) = LI(D,6a) (M), (35)

Proof: Consider the requirement of general covariance as imposed along the flow

of x.

21 Page 57 Wald 1984 and Fischer, Marsden and Moncrief 1980.

ngf:-;ischer, Marsden and Moncrief 1980 and page 196 Abraham, Marsden and Rati
1983.

23 Fischer, Marsden and Moncrief 1980.
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Can(Fi@) = FyG.u(g) (3.6)

Consider the derivative of this with respectto A
(D,Go)(Frg)-(FA(L£9)) = Fy(LCas(d)), (3.7)
at A=0. (Dy6as)(£9) = L(Gaulg)). (3.8)

This yields the first result. Now consider the functional derivative of (3.7) with

respect to the metric in the direction of /&, and the proof is complete.
(D36as) (R £9) + (D,6w) (LM) = LUD6u) (M1 (3.9)
D, passes through L since the Lie derivative is independent of the metric, Alter-

natively (3.4) and (3.5) can be derived by an application of the chain rule, since the
derivative with respect to the metric and the Lie derivative are both derivations and
the Einstein tensor is a function of the metric. The notion of flow will be useful
later when we need see how gauge transformations on one field affect higher order
fields.

By considering the special cases for h and A we can readily generate the fol-

lowing results. If x is a Killing vector and A is an arbitrary symmetric two-tensor
then,

(Dg6a) (£h) = LID,Ga)- (M1, (3.10)
E[Gab(g)] = 0, (3.11)
or, for g € Ein.(D R (L£R) = LI(D,R.): (R)]. (3.12)

The Lie derivative with respect to a symmetry passes through the functional deriv-
ative with respect to the metric, as we would expect. If / obeys the linearized field
equations and x is arbitrary then,

(D%Cap) (M L9) = ~(D,6.)-(£N), (3.13)

16



or. for g € Fin. (D2R.)-(R-£9) = (D R,)-(Lh). (3.14)
If x is a Killing vector and h obeys the linearized equations then,
(D,Gap) (LN) = 0. - ('3.15)
From (3.8) we may write out the gauge transformation. Let ge £in and & and x
be arbitrary then,
(D,Gq)(£9) = 0. (3.16)
S (Dy6ap) (M*L9) = (D,Ga)-(R). (3.17)

Thus we may add the symmetrized derivative of a vector to the field /& on the left

hand side of the field equation (1.21) or to the field /& on the right hand side of
(1.24)

A
(DgRa) (R*L9) = s, (3.18)

a

t, = K*(D,Gap) (R*LA) = k°(D,6o) (1) R21. (3.19)

Thus Taub numbers computed with (1.24) are gauge invariant. The easy gauge
question has been answered. We must now ask what happens to the fields
:‘lz. le . hl which comprise S when we make a gauge transformation on

n-

h., i € (1,....rn~1). This question arises when we wish to compute Taub num-

bers with (1.25) rather than (1.24). Formally what we wish to construct is a gauge
transformation for the set of fields ( ’1‘ serey nffl) . Following Arms and Anderson
1986 we may derive a formula which will produce the induced gauge transforma-
tions. To facilitate the derivation let us introduce some notation. Let g(A) bea
curve of solutions which may be written as a power series in A

g(\) = g + Zé-h (3.20)

a1 ! oa

17



Let j™(g(\)) denote the first m coefficients of the polynomial for g(A ¥4 . For

example let P and £ be two sets of the first r fields about g € Ein.

o]

(g.h.....h) o (3.21)

1 r

P

1]

P

]

(gg hooos 71) (3.22)

! r

Let g(A) and G(N) be curves of sniuiions representing 2 and P .

i"(g)

i)

P (3.23)

B (3.2:4)
As before let F, denote a 1-parameter family of diffeomorphisms. Let us also sup-
pose that this diffeomorphism will be the identity transformation on the first m

fields, m < r. Then23,

: = AT
Fy = ) ———1LF, 2.25
h ,;,(ms)*k! p ( )

where x is the vector which generates ~,. Then if we apply F, to the curve g

we have,
. e L] Kmk-n .
F = "L h. 3.26
3 k;;n(m!)*n!k! % n (3.26)

Following Arms and Anderson we may rearrange the sum. Leti = mk + n ; this
will then range from zero to infinity. Then for a given value of i, k will range from
zero to [i/m]. This leaves,

= tf [i/m) :
Flg = ZK[’Z x L* n ] (3.27)

S| & (mDY(i-mk) k! 5 t-mx

Let us suppose that P and P arerelated by F,.

24 This is similar to the language of Arms and Anderson but we do not enter a dis-
cussion of jets and bundles of jets.

25 Arms and Anderson 1986.
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P o= j(F\9) (3.28)

[t/m] i
= ) ' LY h (3.29)

=3
So (m O -mE) kYT e

-

The 25t equation yields the induced gauge transformations. For example suppose

we gauge transform h what are the induced transformations on f21 h that we
1 |

n-

need for evaluation of S?
n

ho- o+ Lg (3.30)
x
h - h + 2Lh + L%g (3.31)
2 2 L | x
n-1
(n-1)! R

h =» h =+ L . 3.3
n-1 n=1 tZ,(n-l-k)!k! x n-l-k ( 2)

In the literature gauge transformations of this form are denoted as,
r*(P) for P = j'(g(N\)) kSr. (3.33)
k is the number of the lowest order of the field for which the transfermation is not
an identity. If we consider the setof P = j"(g(A)) for all curves, the set of

applicable gauge transformations forms a group26. Any gauge transformation, T,

can be decomposed as,
= ro,roh o The (3.34)
That is, there will always be a set of vectors (x",....x 'y such that the above

decomposition is possible27. We now have the tools to prove the following theo-

rém.

26 Arms and Anderson 1986.
27 Arms and Anderson 1986.
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Theorem (3.2)28: Let g € FinCC with Killing vector v and let

P = (Q , ?‘1 ..... f}) be an r'" order solution of the field equations. Then the

Taub numbers of order k& < r + 1 are gauge invariant.

Proof: Let F, represent the gauge transformation and let g(A ) be a curve of
solutions such that, P = j (g(A)). Letus write the pauge transformation as,
ro= r,roloo . (3.35)

Let £ and £' be two nonintersecting Cauchy surfaces. Define,

£” = x" in a neighborhood of I, (3.36)
&" = 0 in a neighborhood of I°. (3.37)
Then,
I A A S (3.38)
and,
E(T(P)) = L(T(P)) on Z (3.39)
= E(P) on ¥’ (_3.40)
= E(F(P)'Z) = 'f(r(P).Z) (3.41)
= E(F(P)-E') (3.42)
= 'E(P.X') (3.43)
= 'E(P.Z) (3.44)

The proof would fail without g € £inCC since the manipulations going from

(3.41) to (3.42) and (3.43) to (3.44) would not be possible without compact Cauchy

surfaces. Thus, Taub numbers of ordernfor g € FEinCC are invariant with

28 Arms and Anderson 1986.
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respect to gauge transformations on  h (if using (1.24)) and with respect to gauge
transformations on (n’}l '}) (f u':sing (1.25)). At present there is no proof for
theorem 3.2 for g € £in and having noncompact Cauchy surfaces.

| For asymptotically flat spacetimes, ge Ein.AF , we want the perturbation to
preserve null infinity. We want the curve of solutions to stay in  £inAf . This
restriction is provided by the Geroch - Xanthopoulos (GX) theorem?29.

Theorem (3.3): Let ge EinAF and h beasolutionof (DyRz) (R)=0. If

fi=Q2h satisfies the following conditions at null infinity,

1) fgl, = O,

2 o a

(2) R0 - 0.
Q &

ORI
QZ

then asymptotic simplicity is preserved. The perturbations studied in this document
shall all obey the GX theorem.

Note that if we were generating a curve of solutions by inverting,

(DoRa) (B) = Sa (3.45)

for each coefficient /+ we would need only check that fl‘l. obeyed the GX theorem.

This is because S is comprised of products of !} ..., h and their derivatives,
n

n-1

hence h would fall off faster than all preceding fields. Thus asymptotic simplicity

would be preserved to all orders.

29 Geroch and Xanthopoulos 1978 and Glass 1993.
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4 Potentials and Interpretations
To develop a physical interpretation of the Taub numbers let us consider the
construction of the Komar integral30. Consider an asympiotically flat spacetime,
g € FinAF, which possesses a Killing vector & . Then,
ke = 0, kot = pglatl (+.1)
In this case we can construct a covariant conservation law.
i = k"% = 0 (+.2)
Je = k% = -Rek° (+.3)
Equation (4.3) is proportional to the zero-order Taub vectors (recall that for the
zero order Taub vector we use the Ricci tensor instead of the Einstein tensor).
Thus, properly normalized, the zero order Taub numbers are the same as the
Komar quantities. The normalization can be found as follows, let % " denote the

Komar superpotential (density)

U = 2y-gke. (4:4)

Then the zero-order Taub vector (density) is,

t® = --y° 4.5

0 290 °° ( )
t°. = 0. (+.6)
0

Now we integrate this over a domain D, a 4-dimensional region bounded by two

3-surfaces Z, and X, such that the two surfaces meet at the same sliceof S°. The
first surface is a null surface in the vacuum region which becomes spacelike in the

intertor (source) region. The second surface lies to the future of the first. It is

30 Komar 1959.
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spacelike in the source and vacuum regions and becomes null asymptotically. The
second surface intersects ° in the same cut as the first. This intersection forms a

two sphere. Thus we have the following,

ft‘fcd“x = 0, (4.7)
DO
= ft“dsa = f t%s, = 0. (4.8)
30 ° zl-zzo
1
= a = ___f abl , .
'z{‘t’ ds, 2 J y A, (4.9)
1

= --}‘;fioj“bdsa,, = Komar quantity = T (4.10)
Q
31,

The zero-order Taub numbers (Komar quantities) for the Schwarzschild and

Kerr solutions are well known3! (see appendix 3 for these solutions).

t(timelike Killing wvector) = 8nm, Schwarzschild (4.11)
o}
t(timelike Killing vector) = 8nm, Kerr (4.12)
0
t(rotational Killing vector) = -16nma, Kerr. (4.13)
1]

The constant ‘a’ is the rotation parameter of the Kerr solution. Note that there is a
factor of 2 difference between the normalization for the mass and angular momen-

um.
Sl—nt(timelike Killing vector) = Mass (4.14)
1]

___l;nr(rotational Killing vector) = Angular Momentum(+.15)
0

A similar superpotential for the higher order Taub numbers can be found pro-
vided we use (1.24).

31 Wald 1984 and Glass 1993.
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We need find an antisymmetric tensor such that,

Uy = t° = U%,, = 0 (+.18)

yet = yeb(hok), (+.19)

From the functional form of (4.17) we may ‘guess’ at a superpotential without too
much difficulty, or, we can be more systematic and write out all combinations of the
various contractions of the Killing vector, the perturbation field and their deriv-
atives. The search is thereby reduced to a problem in linear algebra. The possible

terms are given below,

kooptm (4.20)
k™h o0l (+.21)
k©® ntl (4.22)
kte®lp (4.23)
k® h%m, (4.24)
kmilp®l (4.25)

After computing the divergence of each term and comparing with (4.17) the super-

potential (Glass) is found to be32

Uab = k[lhb]m:m_k[ah:b]+gkﬂ:b+kmh§::b]+km:(Bhb]m. (4-26)

32 Glass 1993. A similar superpotential given in Arms and Anderson 1986, which,
however is incorrect.
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We can now compute Taub numbers of all orders provided we know the perturbing
field of the desired order.

Suppose we know the fields fla h and wish to compute T. Is it possible

n-1

to censtruct a potential for (1.25) ? Let’s consider the simplest case, T given :‘11 .
2

!
t, = k°Sa - =

2 2 2

k,,g“".‘zs,m (4.27)

- k(DR (o) - Zkag"™(DER- (R M) (428

In this case the superpotential must be quadratic in the field 111 If we repeat the

process used to find the superpotential for (4.16) and write out all possible contrac-
tions of the Killing vector, quadratic fields and their derivatives (a somewhat longer
calculation) we find that there is no simple potential of the form of (4.26). This is to
be expected since it is quadratic in Il't , and 121 is in principle determined by a Green
function.

To interpret the first order Taub numbers we shall consider the Schwarschild
solution as a perturbation of the Min-owski solution via the Xanthopoulos theo-
rem33. We shall also consider the Kerr solution as a perturbation of Minkowski.
These solutions are not related by the Xanthopoulos theorem since the Kerr
solution has twist and Minkowski does not (in this case the perturbation term does
not satisfy the linearized field equation). Solutions related by the Xanthopoulos

theorem must have the same shear and twist34.

33 Xanthopoulos 1978.
34 Xanthopoulos 1983.
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Let us now derive the Xanthopoulos theorem. Let ¢ € 1S so that we may

freely construct a curve of soluticns for any tangent which is a solution of the line-

arized field equations.
(DoRa) (1) = 0 (4.29)
Let us consider only those solutions which we can write as a double null vector.

hay = gl (+.30)

°t, = 0 (+.31)
Note: We are not claiming this is always possible. For purposes of this discussion

we shall assume that for the point g € LS chosen this is possible.
The following theorem will be useful.

Theorem (4.1)35; Let g € Ein andlet { beanull vectorsuchthat, h = (!
]

satisfies the linearized field equations, Then,

(D3R (R h) = 0 for n=1.2... (4.32)

k
Proof: We are given that this is true for n = 1. In fact this forces { to be geodesic

with respect to .36 A straightforward calculation shows that this is also true for n
= 2 and 3. Consider the ‘" term (see equation Al.36).

(D3R (B )= =R DY ROy (B 1)
ettt (1 1) our5r ()1
o (ot ()41 s

Let us apply the recursion relations from appendix 1.

35 Naber 1992.
36 Xanthopoulos 1978.
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(DaR ) (1 h)=n(n- 1)r}':rlﬁ;(pg-zgcw).(rlz,....rlz)

_n(n—l)flz’L‘{(D;-zrt‘d).(l:z..... ?){(Darim)'(?)—f}i:m}

g 1

LDty (e flz){(ogl"id)'(’,‘)—hi:d}} (4.34)

We are giventhat A = (! and that ( is null, and thus, we have lll‘f,flz"d = 0,
1

Since { is geodesic37 (i.e. the spin coetficient « is zero) the terms multiplying 111'1,‘
are proportional to [, or {*. Therefore after contraction with f‘zT the remaining
terms vanish. Thus the theorem is proved.

Let us now consider the set of field equations for the coefficients Ilz le -

given by equations (1.13) - (1.16). Let us assume we have been givena g € LS
and an 111 such that Ilz = ! for some vector ! which is null on g. Consider
equation (1.4).
(D2Ra) (L) + (D R.)-(R) = © (4.35)
The first term is zero by the previous theorem. This leaves,
(DoRap)-(B) = 0. (4.36)

Since this is a linear, homogeneous second order hyperbolic equation we are per-
fectly free to chose {} = O as the solution. Having done this let us move onto the

next field equation and repeat the previous steps. Once again we are left with,

(D Ra) (1) = o, (4.37)

37 Xanthopoulos 1978.
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and we are free to set 1;1 to zero as well. We may repeat this procedure ad infini-

tumand setall 2~ = O forn > 1. This results in the Xanthopoulos theorem.
. H . n

Theorem (4.2)38: Let (M.g.s) be an exact vacuum solution of Einstein's equa-

tions and let I, be a null vector field such that h,, = {,!, satisfies the linearized
field equations. Then g.,+ {.{, isan exact vacuum solution.

A similar theorem can be produced for the electrovac, scalar field and perfect
fluid spacetimes39.

As mentioned before the Schwarzschild and Minkowski solutions are related
by the Xanthopoulos theorem. This can be shown by two separate methods: either
by solving the linearized field equations and chosing the ‘double null’ solution which
when added to the Minkowski solution can be transformed into a familiar form of
the Schwarzschild solution; or we may follow Eddington40 and apply a coordinate
transformation to the time coordinate and split the solution into two pieces. This is
carried out below. Consider the Schwarzschild solution in the usual polar coordi-

nates.

ast = (T Jart - Jar-ricaotesinto)asty (438)

We then transform the time coordinate as follows,

r'z"‘) (4.39)

- ¢ - 2
t mln(zm

= dsz=dtz-drz—rz(dez+Sin2(9)d¢2)'g}’£(d“dr)2' (+.40)

Thus, the Schwarzschild metric can be written as,

38 Xanthopoulos 1978.

39 hﬁdastronikola and Xanthopoulos 1989, Mastronikola 1987 and Xanthopoulos
1986.

40 Eddington 1924 or chapter 7 of Adler, Bazin and Schiffer 1975.
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{ --l—-(l.l.0.0).
s r

o

(1.41)

(4.42)

The vector é is null with respect to g and 1 ; as well, a straight forward calcu-

lation shows that é é satisfies the linearized field equations at Minkowski. Min-

kowski and Schwarzschild are indeed Xanthopoulos-related.

The Minkowski metric represents flat spacetime and therefore has no energy

or angular momentum. Hence we expect that all ‘mass’ information is carried in the

perturbation [ . Let us consider the first order Taub number for this perturbation
55

of the Minkowski solution. Let us transform to a null polar coordinate system and

thereby use the tetrad and spin coefficients which are given in appendix 3;
, for coordinates (u.r,90.4).

2 1, = -1—_(1.2.0.0) = -—?—n
s Jr

\/‘; a
8m
= gub = r'ab - Tn'nnb

The timelike Killing vector is given by,

k® = n° + %1"=au.

There are three terms in the superpotential which are not manifestly zero.

Uﬂb = k [ahb]m:m + kmhm[a:b] + klﬂ:[ahb}m

knhbn;m = n_:.(nbzﬂ__nﬂlb)
r
(kmhm[a):b] = ';Ez(nblu_nnib)
km:[uhb]m =0

29

u=t-r

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)



5T - f-,—_g-b'“dsa,, (4.50)

= frzU""ll,n,,]sin(e)dqu; (4.51)

= 8mm (+.52)
The Kesr solution can also be put in the form of the Minkowski metric plus a
double null vector (in the literature this is called a G.K.S. metric, or transforma-

tion)}1. See appendix 3 for details.

Jav = Map 2m£a£,, (+.53)
Lo = Puly + Pra, + Pm, + Pm, (4.54)
Ll® = 0 5 PuPr = PP (+.85)

The functions Pu, Pr and P are given in appendix 3. The first order Taub numbers
for the Kerr solution written as a perturbation of Minkowski will still have meaning
since the perturbations for the first-order Taub number need only be symmetric to
satisfy the covariant conservation equation. f f is the sum of an infinite set of per-
turbations which obey the sequential set of field equations. We shall return to this
later when we attempt to fix an understanding of the higher order Taub numbers.
Essentially what we will show is that ‘ @' is a good curve parameter42. For this
perturbation and the timelike Killing vector the superpotential reduces to two

terms,

Uﬂb = k[nhb]m:m + (kmhm[a):b]- ("}-56)

41 Chapter 7 of Adler, Bazin and Schiffer 1975 and references therein.

42 By a good curve parameter we mean that the Taylor expansion of a solution with
respect to a parameter of the solution, say a or m, satisfies the sequential set of field
equatio% (1.21). For example m is a good curve parameter for Schwarzschild but
not for Kerr,
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Keeping only terms which are proportionai to (" n®' we have#3,

2
(k"R ") = -2ml“n”D[(Pu+%Pr) } (4.57)

2 2
Klent imoa 2mt"n“[D(Pu—%Pr) +§((Pu-%f’r) )] (4.98)

1:=—mfrz[—ZD(PuPrﬁg(PuZ-2PuPr+-‘l;Pr2)]sin(9)ded¢.(4.59)
1
T = 8nim. (4.60)
1

This is the same result that was obtained for Schwarzschild viewed as a perturbation
of Minkowski. The rotational Killing vector relevant to the Kerr solution, 2., is
given by

rSii(_e)(m" -

k® =

). (4.61)

\!2!

Or:ce again there are only two terms in the superpotential that are not zero.

Uab = (kmhm[a):b]+2km:[ahb]m' (4.62)
gmitepel —M(?—P}(Pu+%Pr}l[°n”. (4.63)
yai
(k™h,")®! = -z_m_j'é"__mp[r(P-F)(Pu+éPer‘° n®l. (4.64)
!

Integrating this result over the two-sphere cut of S° yields,

T = -8nma. (4.65)
1

As a further example we will write the Kerr solution as a perturbation of

Schwarzschild. Once again the perturbation is not a solution of the linearized equa-

43 In the following ‘D’ is the NP intrinsic derivative.
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tions but is the sum of an infinite set of perturbations which satisfy the full set of
perturbation equations. Recall the previous decompositions of Schwarzschild and
Kerr:
g = n - 2m
5

L (4.66)

g n - 2mid. (+.67)
K KK

Now add and subtract the Schwarzschild perturbationto ¢
<

- _ L= 11
g = n - 2mil - 2m(ti-11), (+.68)
g = g - 2mh, (4.69)
K 5
where A = 1l-11.
KK SSs

We now view 72 as an object on the Schwarzschild geometry. As such it does not

obey the linearized field equation and is not trace free (it can not be written as a
double null vector). The Schwarzschild metric and a tetrad are given in appendix 3.

Given the tetrad, the timelike and rotational Killing vectors are

a _ 1 _2m a a
ke = 2(1 77)1 + n°, (4.70)
o o [SINO) e oy, (4.71)
) ."21

Notice that when the mass goes to zero the timelike Killing vector reduces to the
timelike Killing vector for Minkowski.
For this case the first-order Taub numbers are,

Tt(limelike) = 0, (4.72)
1

t(rotational) = -8nma. (4.73)
!
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If we use the normalization from the first two examples, the above Taub numbers
are what we expect. The perturbation, A, induces angular momentum (-ma) but no
mass. All mass information is contained in the background geometry.

Taue normalization for the first-order Taub numbersis 1/8n for both the

timelike and rotational Killing vectors. Whereas for the zero-order Taub numbers
there is a factor of 2 between the normalization for the timelike and rotational
Komar quantities. This may be explained as follows: the Komar superpotential gen-
erates only the Ricci tensor,

Lofab:b = kbRab- (4.?4)

The 2-surface integral samples just the Ricci tensor not the full Einstein tensor.
However angular momentum and energy are most properly defined using the energy
momentum tensor, i.e. the Einstein tensor. The Glass superpotential generates the
functional derivative of the Einstein tensor not just the Ricci tensor.

U, = k°(D,G%,)-(h) (4.75)
Thus, it is expected that if a superpotential could be found that would generate the
Einstein tensor, then, the factor of 2 between the 2agular momentum and the

energy would vanish.

o, = k°G°, (4.76)
1‘: = 8nm (+.77)
1;: = -8nmad (+.78)
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S Further Applications .

We will now apply the method of Taub numbers to the perturbation results of
Regge and Wheeler (1957), Vishyeswara (1970) and Zerilli (1970). Regge and
Wheeler?4 were interested u1 the stability of the Schwarzschild solution under met-
rical perturbations. Their results were inconclusive due to coordinate difficulties.
The stability questio:: was finally answered by Vishveshwara®5 who had the Kruskal
coordinats*6 in which i» work. Essentially what they wanted to know was, if the
metric is pertrbed by a solution of the linearized field equations, would the per-
turbed metric oscillate about the Schwarzschild solution or would the perturbations
grow exponentially in time?

For the vacuum Schwarzschild geometry, solutions of the linearized field equa-
tions can be divided into two classes: axial and radial (in the literature these are
lternatively called electric and magnetic or odd and even parity perturbations47),
‘The under letters A and R shall differentiate between the axial and radial perturba-
tions. The most general form of the perturbations can be written, in coordinates

(t,r.0,¢), (after a gauge transformation h-> h + Lg)as43

h,, = -{ho(r)25?n6§,+r}(r)26(',6§,}e"“sin(e)aiep,(cos(e)).(5.1)
A

2m r
Ray = {HD(T-I)GS:GS * Hamo2828y ~ H 2845,

- r2K6267 - r®Ksin?(0)6363)e "' P (cos(8)). (5.2)

In terms of the tetrad we are using for the Schwarzschild metric the perturbation

takes the following form,

44 Regge and Wheeler 1957.
45 Vishveshwara 1970.

46 Kruskal 1960.

47 Zerilli 1970.

48 Vishveshwara 1970.
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-—n(.[ab)_mb]]( hor )
h,, = {32 -
49t & irsin(®) \2m-r h

. l(l[’;b)_mb)]
iry2sin(8)

(hl(r-zm)—hu)}e-t“Sin(e)aieP‘(COS(e)) (5.3)

r

2 -
h,, = {talb( ik r){}L,'.,/2+1112—1r1r,]
[ 2r

,
nunb(zm_r)[H0+H2+2Hl]
+ lainlH—Hol-2kmmy e ™ P (cos(8) (5.4)

Let us first consider stationary axial perturbations for ¢ = 1. In this case we will

expect that the first order Taub numbers will be zero for the timelike Killing vector

and non-zero for the rotationat killing vector. The two unknown functions are

[yl

hy = =, c=conslant. (5.5)
h, = 0 through a gauge transformation (5.6)
o h, = SRV W 1{ YIR (M, = My ] — Ves7y
as i @lMpy = My, kr—2m @lMe)~ Mol 757 .
h% = 0 (5.8)
A

Notice that the perturbation is trace free. This reduces the superpotential to three

terms,
yet = kERSE™ o+ (k"R YN+ 2™ERY 5.9)

For the timelike Killing vector none of the three pieces of the superpotential have

components along ! *n®}, therefore

t(timelike) = 0 (5.10)
|

as expected. For the rotational Killing vector we obtain,

1(rotational) = -2nc (S5.11)
|
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Setting ¢ = 4 ma gives the Kerr value. One of Vishveswara’s results was that there
are no stationary axial perturbations with  { values greater than 1. In fact the

{ = 1 caseis the only one possible since the { = O solution is identically zero.
Hence the above calculations represent the only stationary axial perturbation. This

is quite interesting since, if we examine the Kerr sotution viewed as a perturbation

of Schwarzschild,

ATy (5.12)
we find that,
R(a=0) = 0, (5.13)
dﬁab-
Eia-o ’}(£= 1)nb + f(n:b)' (5'14')
where £ ..., is a2 gauge term.
fo = ig(r)sin(8)(m,-m,) (5.1S5)
c cr r-2m
r)y = — + - ln( ) 3.16
9tr) 2y2m  +J/2m? r ( )

Thus, if we are constructing a curve of solutions beginning at Schwarzschild, such
that the curve is a proper Taylor series (satisfies the sequential set of field equa-
tions), and we wish to go along the stationary axial direction, then the only direction
in which we can go is towards the Kerr solution. This result might have been
guessed since the Schwarzschild solution is the unique solution for non-rotating
black holes49 and the Kerr solution is the unique solution representing stationary

axisymmetric black holes>0.

49 Page 299, Chandrasekar 1983.
50 Page 292, Chandrasekar 1983.
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There are two stationar  radial solutions, ( = O,1. Forthe { = 0 case

we expect a mass contribution with no angular momentum. The ( = 1 solution
has been shown to displace the center of attractions1 and will not be treated by the

Taub number method. For { = O the solution is given by32

N = H, = 0, (5.17)
Hy = Hy = < (5.18)
° 2 r-2m’ :
-3c -2cr
= ?ab = iulb(?) + n"n"l:(_:é_;)_z]' (5.19)
RS = 0. (5.20)

Once again the perturbation is trace free which simplifies the calculations. In
this case we find that the rotational Taub number is indeed zero and the timelike
Taub number is proportional to the constant c.

From these results it would appear that the rotation parameter ‘a’ is a good
curve parameter. For Kerr viewed as a curve starting at Schwarzschild we have,

if'-‘-in (5.21)

g = g + 4mah{l=1) + gauge + -
X s 4 Sl

where the h are tabulated in appendix 3. The zero-order and first-order field equa-

tions are satisfied and, if the series is summed, the vacuum field equations are satis-

fied.

For Kerr viewed as a curve starting at Minkowski we have,

L] ]
g =7 - 8-r—mnn + -lmaf{z(l=l) + gauge + Z%h.(S.ZZ)

1=2

51 Vishveshwara 1970.
52 Zerilli 1970.
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The £ are tabulated in appendix 3 and the tetrad used is the tetrad for Schwarz-

schild with the mass parameter set to zero. Here the zero, first and second order
field equations are satisfied and, if the series is summed the vacuum field equations
are satisfied. Thus it would appear that the rotation parameter is indeed a good
curve parameter, and we would expect that the sequential set of field equations

(1.21) are satisfied, for the two cases, by the two sets of fields as given in appendix 3.

38



6 Future Work
In this section some of the open questions raised in the preceding sections shall
be discussed, as well as, some future applications of Taub numbers and the formal-
isms developed. b
To begin let us return to the sequential set of field equations for curves of solu-

tion g(\) € EinAF.

Rap(g) = O (6.1)
(DR) (1) = Sa (6.2)

Inverting the field equations sequentially has been suggested, c.f. Lerner and Porter
1974. A closed form for the source term to all orders has not yet been presented (as

is done here). Consider the functional form of D R.,:
l m m m
(DqRub)'(h) = §(hab‘ m T h:ab - h biam h n:bm)' (6.3)

Consider a gauge transformation h - h + Lg suchthat33

Xo" = Ra'u = ha (6.4)
xt., = %h. (6.5)

This transforms D, R,, into the following,
2(DgRap) (h) = hgpt + 2RYG,nR"™. (6.6)

This is a covariant wave equation, and for a flat space background we have

aZ
2(DqRab)'(h') = (a—tE - vz)h‘ab‘ (6'7)

53 Chung 1973, Friedlander 1975 and Peterson and Ruffini 1977.
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A Green function for flat space may readily be constructedd4. Let

\ !
Capea(x.x") = G(x.x )E[ﬁacabd * Dag0pc]- (6.8)
Then,
hub = fcubcd(-\.'-\-‘.)scrj(x‘)d4‘\.|‘ (6'9)
where,
a2
(va ) aTz)G("'"‘") . B'(x-x"). (6.10)

Let us rotate the time variable into the complex plane suchthat { - T then,

2
—(\72 + %3)0(::,.\”) = 5% (x-x"). (6.11)

The solution for this operator, the 4 dimensional Laplacian, is well known.

_ 1
G(x.x") = lcl-fglm[‘lnz[(F—F‘)z-(t-t')z-ie]} (6.12)

For a background geometry which is not flat Dewitt and Brehme (1960), Chung
(1973) and Peterson and Ruffini (1977) have adopted Hadamard’s method (1952) to
generate a Green function for the covariant wave equation. This is more involved
than the above derivation but for simple geometries it should not be too difficult.

The source term, S, will be somewhat tedious to compute for n > 2. Comput-
n

ing S only involves taking derivatives of the hl rlz, various contractions and

summing the series. Hence it would seem that a program for a symbolic computer

languaged5 could be written which would evaluate S given hI I;z Generating
n R-

each new field would then involve 10 integrations. Depending upon the nature of

54 Chung 1973, Friedlander 1975 and Peterson and Ruffini 1977.
55 For example, Maple or Mathematica.
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the preceding perturbations and the Green function, these integrations might also
be handled by Maple or Mathematica. The fields Ilt. fnl , ... could then be ana-
lyzed using the Taub number method.

One comment: curves passing through (or perturbations of) Schwarzsl:hil:d niay
be generated with the Green function for flat space, due to the Xanthopoulos theo-
rem. Here one would choose the first field to be :‘11 = BT"'ncn,, . The theorem allows
us to set all higher-order fields to zero; however we need not do this. We may, for
example, choose to set fzz to be one of the time-dependent perturbations of
Schwarzschild generated by Vishveswra or Zerrilli. We would simply let the mass
parameter in the tetrad decomposition go to zero. We are then looking at a pertur-
bation of Schwarzschild in terms of Minkowski geometry. The higher-order fields
may then be computed with the flat space Green function. It is hoped that this
method could be used to generate an exact radiative asymptotically flat vacuum
solution. This would be an important resuit.

An interesting open question raised is that of a superpotential for the zero-
order Taub number when the Einstein tensor is not replaced by the Ricci tensor.

This question has a partial answer due to Penrosev6 1986, Goldberg 1990 and is
discussed by Glass 1993. A superpotential may be constructed using a Killing poten-
tial Q.

Q®* = Q'**! (6.13)

%Q“":b = k% = Killing vector (6.14)

Consider the double dual of the Riemann tensor,
R'™, = -R™, - 20pR5 - 26,0 (6.15)

From the Bianchi identities we know,

§6 Penrose and Rindler 1986.
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'R'mnab

= 0. (6.16)
If we combine this with the Killing potential we obtain,

l + L ]

:-3V,.( R'™N Q%Y = 267 k%, (6.17)
This apparently solves the problem. Unfortunately it also introduces a new gauge,

the gauge of the Killing potential. To Q we may add any antisymmetric 2-tensor

which is divergence free.
Q®® - Q + A (6.18)
such that A™", = 0 (6.19)
In particular, for vacuum spacetimes, we can add the divergence of a Killing vector.
I3 (6.20)
ket = R%,k® = 0 (6.21)

It is doubtful that the Taub integral would remain invariant under such a transfor-

mation.

[rmatds,, = [R™,Q" 4% 1dS,  (6:22)

To use this potential one may need to separate out that part of Q which is pure
gauge and work with what is left. Clearly there need be further work in this direc-
tion.

Given that all vacuum spacetimes are locally linearization stable, another
potentially useful application of Taub numbers may be constructed by redefining the
region of integration such that the superpotential would throw the integration onto a
sphere about the source region at a finite value of r. Inthiscase X, would remain
the same (see chapter 4) but I, would become null at a finite value of r and then

intersect I, in a two sphere about the source region:
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T = fU‘”’dSab. (6.22)
1

53(r)

This type of construction should fmq use in astrophysical applications, where mea-

surements are indeed at a finite v:'ilue; of the radial parameter (luminosity distance).
One topic not addressed here is that of jsravitational radiation. Habisohn>7

has investigated the properties of
L - 2 ﬂb . h L] h -
-zc(’} h) f(.ogc )+ l)r:‘,ats,,. (6.23)

where o is a spacelike hypersurface on the conformally rescaled manifold. It was

found that this generated the second order contribution to the Bondi flux. Glass38,
working in the physical spacetime, has used the time dependent perturbations of
Vishveswara to confirm the Habisohn result. Both calculations are involved and
somewhat messy. A further investigation computing 21 due to the initial f;l and
then using the superpoiential to compute 'g directly would be useful.

It should be noted that the higher order Taub numbers need not represent only
radiation. For finite values of r the Kerr solution, viewed as a perturbation of Min-
kowski or Schwarzschild, has rotational Taub numbers of all orders. Each higher
order goes like (a/r)". Thus, when the integral is pushed cutto S we are left

with - ma.

§7 Habischn 1986.
58 Glass 1993.
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7 Conclusion

In this work we have examined the construction of the Taub numbers from the
point of view of curves of solution to the Einstein equations. This was a fruitful
approach in t'hat.a formulation for Taub numbers of all orders was given, as well as,
making explicit a solution generation technique and derivation of the Xanthcpoulos
theorem.

In developing the realm of applicability of the Taub number method a discus-
sion of linearization stability was given. Taub numbers with zero value on space-
times with compact Cauchy surfaces without boundary are used to exclude spurious
solutions of the linearized field equations which are not tangent to the solution
manifold. Asymptotically simple spacetimes are linearization stable, wherein Taub
numbers are free to be non-zero and take on physical meaning.

The gauge invariance of Taub numbers was also presented. Gauge invariance
was demonstrated for all cases with the exception of gauge transformations on the
set of fields { ’1‘ veee nf}l} for spacetimes with noncompact Cauchy surfaces. This
remains an open question in the field.

From the results presented it would appear that given a solution § € FinAF

we can determine the mass and angular momentum by splitting the metric into two

pieces,
g =g * h (7.1)
where g is a background geometry which contains the appropriate Killing vectors

and h is a symmetric 2-tensor which represents the sum of the set of fields

{’ll reee ‘:} ' } which satisfy the sequential set of field equations (1.21). Then,

Mass(g) = g=[£(@) * T(M]cimetike), (7.2)

Angular Momentum(g) = é—rl—l[%g(g) + '::(h)](rotationat).(?.B)



This construction offers an explanation of the factor of 2 anomaly between the mass
and angular momentum Komar quantities in that the Komar superpotential is
incomplete. The Komar superpotential generates only the Ricci tensor, not the
Einstein tensor (the energy momentum tensor)?9. Once the gauge difficulties asso-
ciated with the Penrose potential are understood the zero-order Taub numbers need
not be computed through the Komar construction. In this case the formula for mass

and angular momentum will be more symmetric.

Mass(§) = glg[g(g) * TR |(imetike) . (7.4)

Angular Momentum(g) = —;——n['g(g) + 'f(h)](rotational). (7.5)

The author feels that this splitting of the spacetime metric into a background
geometry plus an additional set of fields does not violate the spirit of general relativ-
ity, but rather, enhances it. From the Kerr examples we see that the manner of the
splitting is not important, only that the background geometry contain the
appropriate Killing vectors and that the sum of the perturbation and the background
metric yield the metric one is studying. To put the statement in more mathematical
terms; provided the curve of solution ends at the solution under investigation and
begins at a solution where mass and angular momentum have their associated sym-
metries (Noether) the mass and angular momentum of the spacetime in question
may be computed by the Taub number method.

There have also been a number of interesting questions raised in this work for
future stady. It would appear that much more remains to be understood about Taub

numbers.

59 See Glass and Naber 1993 for a more detailed discussion.
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8 Appendix 1 Notation and Conventions

This appendix fixes notation, conventions and provides a convenient list of for-

mulas used in the text. The sign conventions are those of Chandrasekhar 1983.

Connection:
rzc=%g‘”{‘;i‘f + 3i'§ -‘:i"f } (Al.1)
FZﬁ%g‘“{gm.:+gk.¢,-g,,c.,}- (Al1.2)
Covariant derivative:
VA=A, =40+ A'TS,. (A1.3)
VoAp=dy o= AT, (Al.4)
A= A% g+ AT g+ AT - AT, (Al1.5)
Riemann Tensor:
R®ea A’ =A% ge— A% .4, (Al .6)
R®yeada=Abica™ Aoide (A1.7)
Ronge A™ + Ringe A" = A%, = A%, (A1.8)
R™caAam* R acaAmp= Acbica ™ avider (A1.9)
e =Thae ™ Thea ¥ Thlba =Ml be (Al1.10)
Ricci Tensor:
Rab= R (A7.11)
Rap=T e =T s * T Moy =T ol hs (Al.12)

In the following D, shall denote the functional derivative of an object with

respect to the metric and D the functional derivative with respect to the connec-

tion. loz and %F are fraquentiy used to denote the background metric and its inverse,



There is a difference in notation between this work and Glass 1993, Glass uses an
under number to denote the order of functional derivative and an over dot to

denote the order in a Taylor expansion.

Roh) = (DR ) (R) (Al.13)
Colh.h) = (D2G4p)- (R h) (Al.14)

?\2
Gab = Gas * Map * FGa * - (A1.15)

Consider a curve of solutions in the form of a power series.

A2 A2
Gu(N) = Gav * Nhgy * Thoy * Zohg oo (A1.16)
The inverse curve of solutions is denoted by,
db db db ?\2 db ha db
= - A —_ et . Al
A A TR T (A1.47)

Where the inverse metric coefficients are given by,

{ﬂb = _I}ﬂb' (.'il.ls)
er’“’ = —r_}"" + 2r|;‘:!11“’. (41.19)
ab  _  _ s r! b
{ B ‘-.,i!(n—i)! ic:n-: ) (‘-11'20)
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Lermer and Porter have shown that the Riemann tensor and its contractions

are analytic in a neighborhood of Minkow.i60 (it is expected that the proof may be

generalized to an open sub set of Fin.4F). Hence we can expand these operators

in a Taylor series as well.

r‘°a,,=r;,,+ml‘;,,+%zlz";,,+... (Al
A2
Sea= Rca * h’f%ed""é"g%ca*m (Al
5 A2
Rbd=Rod"’7\{ebd+'é‘§bd+m (Al

Given the above notation the following relations can be obtained.

e ! Y n! cm - ¢ d v«.[h n!
=T 2 rrayrd, ent 4 L 40T (g (4
F=(D,l" )-(h)—nf-—i'-!—h‘r" (Al
nae = (Polan) ()™ Lt 4
R%ea=(DsRS -(r)+2n-l-——"-!——r° r Al
nbcd_( r bcd) n ;.]i!(n—i)!n-ll[cld]b (
n-1
= * r _L a 1
Rea=(DrRoa) (n)*z...is(n~i)!nl:,‘f°f‘”° (Al

n=1

n! a apr !
—{nl:: ile [‘_ld]b '(!,l ‘,,l:, "ld]:cl} (Al

a - a . h.
A pea = (D g R bed) (n)+2|_|i!(n—i)!

a=1 n| a a i
Roa=(DyRoa)-(R)+ 2 e Tl = (R i me))
a ] a a a
(DqRbcd)'(h)=§(hb:dc+h‘;:bc_hbd c-h'c:bd) (A!
l a a H+J a
(DgRbd)'(h)=—(hb:da+hd:ba-hbd o~ Nasa) (Al
2
60 Lerner and Porter 1974,
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(DR %ea) (M) =20 4.0 (A1.32)

(DrRoa) ()= 2T ey (Al.33)
: L e ¢ ey
(Dgrab)'(h)=§(ha:b+ b:n-hnbc) (AIS‘I-)

Thus for a curve of vacuum solutions the connection and metric coefficients

can be cbtained by solving the following,

n=-1

|
iR (F)=2 ) srrnii D e - (AL.35)

(Dand)‘(ﬁ)=2l_l i(n-i)!

t -1

———’”—{(h‘ﬂ"im);a]*nfl“udl:'a]b}. (Al.36)
The following recursion relations can also be obtained.
(DM, Chavnh) = =nhS(D;'To,) (hieoch) 22, (A1.37)
(DARSma)  (hueeish) = —RRS(DI 'R M) (Reeiiih) n22
+ (D M) (R RI{(DTRR) (R) = him)
= Dy ' Tha) (e RY(DTRa) (R) = h%e)s  (A1.38)
(D2R ) (R h) = =rhS(DY 'R0 (heoi k) n=2
+ (D) TR (R RI(CDTRG) - (R) = h%a)

= (D' Th) (e RI(DGTS)  (h) = R%a).  (A41.39)
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9 Appendix 2 Newman-Penrose Formalista

The Newman-Penrose (NP) formalism is employed throughout this work for
computations. This appendix is intended to provide a convenient reference of for-
mulae and conventions. For a thorough c'lisc;Jssi.on of its origins and use see New-
man and Penrose 1962, Pirani 1965 and Chandrasekhar 1983. This appendix follows
Chandrasekar 1983.

The NP formalism is a tetrad formalism with the basis vectors chosen to be
null, two of which are real and two of which ars complex. The null tetrad shall be

denoted as follows:
etay= (%%, m?, m"%). (A2.1)

The tetrad vectors obey the following relationships.

,=1"m,=1"m,=0 (A2.2)
nn,=nm,=nm_=0 (A2.3)
m°m_=m°m_=0 (A2.4)
®n,=-m°m_ =1 (A2.5)

The tensor index of the tetrad is raised and lowered with the metric tensor.
E(a)b=gbc9fa) (A2.6)
elay= 0 (o). (A2.7)

We may construct a constant syinmetric matrix by taking the trace of the

square of the tetrad.

e(a)8ore = Neayee) = (A2.8)

o 0O -~ 0O
o OO —
o
I

This matrix can be used to lower tetrad indices, while its inverse 1‘*?®’ can be

used to raise tetrad indices.
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el =, (42.9)
€(a)e = ﬂ(q;(b)eﬁb) (A2.10)
17 e = B6a) (A2.11)

The metric tensor can be constructed from the tetrad by taking the trace of the

square of the tetrad over the tetrad indices.
Tab = Creyals” = laftp+ Lyny—m m, - m m, (A2.12)

We can now write any tensor object in terms of its tetrad components and con-

versely.
Aaytagtan = Q(a,)ble(uz)bz---etc_)b.Ab'bzmb" (A2.13)
Apbyb, = 9(a,)b,e(az)bzmeca,)an/’(nl)(az)m(u“) (A2.14)
The Ricci rotation coefficients can now be defined.
Yiayeye) = Elar@sinio (A42.15)
Yearoyce) = T Yoraice) (A2.16)

The spin coefficients are then given by the following relationships61 62 63,

Kgyallﬂl::;m‘ljn-mg;;tltj=2[[a,b]mazb (A2.l7)
1 1 LY B p— iy}
E=§(Y211+Y341)"§(l-::n t'+m, m'l’)
a1 — — _
= a3 lb+§([[c.b1mumb"'m[a.b]malb"'m[a.b][ﬂmb) (A42.18)

n=you=m,,n'l'=-n, ml
e b — a b g—b
=gt M * Mg ) U+, "M (A2.19)

0=vyy3=l,m'm'=-m,, l'm'=2m ,m*® (A2.20)

61 W.J. Cocke 1989.
62 Chandrasekhar in A. Schild lectures 1982,
63 Page 42, Chandrasekar 1983.
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! 1 R
B= '2'(Y2|3 * Y:H:!) = §(Il:)n m,+ m];]mtmj)

—_ 1 . .
=m£a.blmumb"’§(m[a.b3n 1°+ng, pym Ib*l[a.b]namb) (42.21)

= = m ey
H Ya43 m,,nm

= - m! !
n.mm
ab azsb = a—b
n[u.b]m m Mg o)t m m[a.b]n m ("’.2.22)
-1

p = YJH = ll:Jm'E’ = —mn]l'm

= E[ﬂ-b]r'n‘ﬂtb * m[u.blﬁatb + I[n.blmaab (42.23)
a=l( + )="l*(l Gl ™ l—,)
5(Yz1s ¥ Yaas) = 5A L, pm v m, mm

_ _— l — -_—a a— \
=m[u-blmamb+§(m[a.blnuzb"'"(n.b]m 1°+l{q.5)R m’ (A2.24)

A=Vpu=M, M = =0, m'm =2m ,n"m" (A2.25)
T = Yy = l,,m'n' = -m,,l'n’
"[a.b]malb * Z[u.b]manb + m[,,,,,]nnib (A2.26)

I l- - ]
y= §(Yz'2 + Yauz) = -2-(1,”n'n’ +m, m'n')

1 —b = —b
‘—'n[a.b]nulb*i(ﬂ{ﬂ_blmam *'m[u_b]manb'*mln_“nam ) (/‘2-2?)

V= Yap= M RN = —n,, MR =20, 50 T (A2.28)
Many of the above spin coefficients carry a specific geometrical significance.
For example64: if {® is geodesic, then x = O; if % is expressible in terms of an
affine parameter, then €+ €=0;if {* is hypersurface orthogonal (proportional to a
gradient), then p = p ; ifl9is equal to a gradient, then T = a+P;if n® is parallel
propagated along (¢, then n=0;if m® and m° are parallel propagated along

64 Couch and Torrence 1968.
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te,then ¢ - g=0;:if m2 and 7 are surface forming, then |, = ; if = is parallel

propagated along n°, then t=0; if n°is geodesic, then v =0; if n® is affine,

then y+vy=0;if m® and m® are parallel propagated along n®, then y-y=0.
Using the tetrad, four intrinsic derivatives can be defined. |

D=1°7, A=n°7,

—

b=m°7, b=m"9, (42.29)

The scalar components of the Weyl and Ricci tensors and Ricci scalar are

given below. C,,.q is the Weyl tensor.

Wo=—Coqsl?ml'm’ (12.30)
V) ==C e Pn%U'm* (A2.31)
¥,==Cpops!?m®m’'n’ (42.32)
¥,==C,ostPn'm'n’ (42.33)
¥,=-C,q:t?m’n'm’ (142.34)

i
¢°D=-§qulplq (."2-35)
4’01=‘*—qu[me (4'12-36)
¢, = -_iqu(l"n“m"E") (42.37)

1
¢,2=—§qun"m" (42.38)

l

|
¢°2=_§qumpmq (.{2-40)
\ =R (42.41)

A=zo A2.
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Given these definitions we have the following sets of equations63,

Commutation relations:

AD-DA=(y+Y)D+(e+e)A-(T+n)6-(T+N)6,  (A2.42)

6D-Db=(a+B-n)D+xA-(p+e~-€)b-ab. (42.43)
6A~AB=-vD+(T-a-B)A+(n-y+y)b+Nb, (A2.44)
86-85=(u-p)D+(p-p)A+(a-R)6+(B-a)s.. (A2.45)

Ricci identities:
Dp-8x=(p*+00)+p(e+€)-KT-x(3a+B-n)+d,yy, (A2.46)

Do-bx=0(p+p+3e-€)-xk(T-N+a+3B)+V¥,, (A2.47)

Dt - Ax = p(T + m) + o(T + n)

+ T(e ~ €) - k(3y + ¥) + ¥, + &, (A2.48)
Da-de=a(p+e-2€)+Bo-Be-kA-Ky+n(e+p)+d,,. (42.49)
DR-de=o(a+n)+B(p-€)-x(n+y)-e(a-M)+¥,, (A2.50)

Dy - Ae = a(t + n) + B(T + n) - y(e + €)

- €y * Y) + TR - vk + ¥, + &, - A, (A251)
DA-8n=(pA+op)+n(n+a-P)-vk-A(3e~€)+d,,, (A2.52)
Du-br=(pu+or)+n(n-a+p)-ple+e)~vk+¥,+2A, (42.53)

Dv -~ Am = p(n + T) + A(U + 1) + n(y - ¥)

- Vv(3e + €) + ¥, + &, (A2.54)
AN-Bv=-A(p+p+3y-Y)+V(3a+B+n-T)-¥,, (A2.55)

bp-80=p(a+B)-0(3a-F)+T(p=p)+x(L-R)=¥,+d,y,.(A2.56)
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ba - BB = (up - Ad) + ca + BB - 2aB
~ y(p - p) * e(n - p) - ¥, + &, + A, (A2.57)
BA-Bbu=v(p-p)+n(n-p)+u(a+R)+A(a-3R)- ¥+, (42.58) -
bv-Ap=(p?+AX)+p(y+y)-vn+v(Tt-3p-a)+d,,. (A42.59)
by-AR=y(T-a-B)+HT-0V-ev-RB(y-y-p)+ak+&,,,(A42.60)
BT-A0=(po+Ap)+T(T+B-a)-0(3y-Y)-kV+d,,, (A42.61)
Ap-dt=-(pu+oN)+T(B-a-T)+p(Y+Y)*+Vk-¥,-2A,(A2.62)
Aa-by=v(p+e)-A(T+R)+a(y-p)+Y(B-T)-¥,. (42.63)
Eliminant relations:
D(p - p) + 6x - 8x = (p - p)p * p *+ € *+ €)
+ x(T + 1 - 3a - B) - x(t +n - 3a), (A2.64)
D(k = W) + 8(a + B - n) - §a + B - @)
= (v * V) - p) *+ a(n - 2B) - a(n - 2P)
+ KV - kv + Bn - BN+ (p + p)(k - p), (A42.65)
D(k-K-Y+Y)+A(e-€)-bn+fn=(e+&)(L-p)
T(a+n-B)-t(a+n-B)+Aa-Ao+pu-pp+2(ey-€y), (A2.66)

A(R-p)+ov-8v=(p-p)(L+p+y+y)+v(T-3B-a+1n)
-v(Tt+n-3B-a), (A2.67)
D(t-a-B)-Ax+d(e+e)=p(T+n)+xA+0(T-a-B)
e(t-n)-p(Rra+n)+e(2a+2B-t~n)+k(L-2y), (A2.68)
b(p-e+€)-bo+D(B-a)=p(a+B+T)-p(T-B+a+n)
+(e-€)(2a-n)+a(n-2a)+xk(y~y-p)+ kN, (A2.69)
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DA+AG-8(T+n)=0(3y-y*p-pm)+(n+T)(n-T+a)
+A(p-p-3e+e)-Brn-Tp. (42.70)
Dv+A(a+E-1)-8(y+ V) =v(p-2€)+ A(-a-R)+p(A+T)
—L(a+B+T)*Y(n-T)+y(2a+2B-n-T)+ oV, (42.71)
A(B-a)+8A+B(y-y-u)=Vv(E-€=p)+A(T-2B)+a(n+u)
SR T (B (y-VI(T-2B)+ o v, (42.72)
Du+Ap-8n-Bt=pp-pp+n(i-a+R)+t(B-a-1)
pLY*V)=n(e-€). (42.73)
Bianchi identities:
—BY,+ DV, +(4a-T)V¥~2(2p+€)¥ +3xV¥,~ Dby, +bdy,
+2(e+p)Py +20% 10— 2KkP ) kP * (M-2a=-2R) P, =0.(A2.74)
EW,-D‘Pz—J\\VO+2(n—a)‘F,+3p\l'2-2x\l’3+5¢0,-A¢oo_—2(a+?)¢°,
+209 |, + 0P g - (L-2Y-2Y)$o~ 21 ,-2DA =0, (42.75)
-5‘F2+D\F3+2?\\lf,—3n‘V2+2(e-p)‘l'3+x‘}‘4—D¢2,+6¢2°+2(5-e)¢2,
—21d o+ 20, ~ KD,y - (20-2R-T)P,,~20A =0, (42.76)
BY,-DV,-3AV,+2(2n+a)¥,-(4e-p)¥,~Ad,0+ 5%, +2(a-T)y
+2v |, + T, 20, —(L+2Y-2Y)$,, =0, (A2.77)
SAY BV (dY- )W m2(2T+B)Y  +30W = Do, + By, + 2(N-B) by,
—2k®,,~Nbgo+20%,, +(p+2e-2€)D,, =0, (12.78)
CAY HBY, VY o+ 2(Y =RV BTV, 20¥ + Adg, — 5P, + 2(H- )Py,
—2p®,,~Vboe +2TP +(T-2R+2a)$,,+26A =0, (42.79)
CAW, BV, 2VY  ~ BV, + 2(B-T) W+ 0V - Dby + by + 2(T+ RISy,

—2ud,, ~Nd,yu+2nd ,+(p-26-2€)d,,-20A =0, (A42.80)
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CAW OV, +3VY,-2(y+2p) ¥, - (T- 4BV, +Ad,, -89,
+2(R+y)by ~2Vd, ~ V0t 2N ¢, + (T-2a-2B)¢,, =0.(A2.81)
Contracted Bianchi identities:
Bb, + 60,, - D(P,, + 3A) - Ady = kb, + xdy
+ (20 + 2T - Wby, + (2@ + 2T - W, - 2(p + PPy,
- by, - 0, + (R + H - 2(y * ¥)}dg, (A2.82)
§o,, + bd, - A(P,, + 3A) - Dd, = -vdy - Ve,

+ (T - 2B - 2m)d (T - 2B

2m)d,, + 2(p + w)e,,
~(p + p - 26 - 28)P,, + Ady, + Ad,, (A2.83)
8(d,, - 3N) - Dd,; - Ady + bdy, = xb, - Vg
+ (T - o+ 20 - 2B)b,; - 0%, + Ad, + 2(T - W),
- (2p + p - 28)%;, + (20 + p - 2Y)%,. (A42.84)
The derivatives of the tetrad legs are given below.
lm-(Y+§)lalb-(a+ﬁ)lumb—(c—1+|3)laﬁ,,-§mul,,-tﬁ,lb+3mnmb+aﬁﬂr_nb
P My +PM My — XM Ry — KM, Ny +(E+E) 1, (A2.85)
o = =(€ * ngry = (Y + Vgl *+ (@ + Blram,

+ (@ + B)agm, * MM n, *+ AMgn, + vmgl, *+ Vil

- pm,m, - Im,m, - Amgm, - Am,m, (A2.86)
Map = E[nnb * ;[ulb - Kluﬁb - Elamb = XRgh,
- tnyl, + on,m, * pn,m, *+ (€ — €)M,n,

+ (Yy=VImly, *+ (a-BYm,m, - (a-B)m,m, (A2.87)
(2 =-p-p+e+e (A2.88)

no=-y-y+p+p (A2.89)
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mé =n-t-a+fp (42.90)

Dl,=-xm_ -xm_+(e+€)l, (12.91)
Dn,=-(e+€)n +nm +nam, (42.92)
Dm,=nl,-xn_ +(e-€)m, (42.93)
Aly=(y+*Y)l . -tm_-1m, (A42.94)
Ang==(y+y)n,+vm,+vm, (42.95)
Amg=vi, -t +(y-y)m, (42.96)
6l,=(a+B)l,~om, -pm, (42.97)
b, =-(a+B)n,+um_+Am, (42.98)
bm =Xl -on_ -(a-B)m, (12.99)
dm,=ul,—pn,+{a-p)m, (A2.100)

The last three sets of equations make the earlier geometrical interpretations of the
spin coefficients manifest.

Once the tetrad is chosen there still remains six degrees of freedom by which
we may rotate the tetrad. These degrees of freedom are partitioned into three
groups. Rotations about 1, rotations about n and rotations which leave the direc-
tions of n and 1 fixed but rotate m and 7266 67
Case I:

66 Janis and Newman 1965.
67 Chandrasekhar 1983.
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S (42.

n = a+am+am-+aal, (42.
m-am+al, (42.

Yo =2 V¥ (A2

¥, 2 ¥ +aV¥,, (A2.

YV, = V,+2aV¥,+a V¥, (42.

YV, = V,+3a¥,+3a°¥,+a ¥, (A2.
Y, o Y, +daV¥,+6a V¥,+4a ¥, +a ¥, (42.
K =2 X, (A2.

g - o+ax, (A2.

p = ptax, (A2.

€ = e+ax, (A2.

T = T+ap+ac+adax, (A2.

n - n+2ae+a-x+D(a). (A2

a > a+a(p+re)+ra-x, (A2.

B = B+ae+ac+aax, (A2.

Ny - y+taa+a(B+r)+aa(pre)~a o+aa x, (A2.

A o A+a(2a+n)+a’(pr2e)+a x+8(a)+ab(a), (42,

L o p+an+2aB+2ade+aoraa x+6(a)+ab(a),. (42.

101)
102)

103)

104)

105)

106)

107)

108)

109)

110)
111)
112)

113)

114)

115)

116)
117)
118)

119)

v o veah+a(p+2y)+a(t+2p)+a o+raa(n+2a)+aa (p+2€)

+ada’k+(A+ab+ad+aaD)a. (A2.
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Case H:

{ » l+am+am+aan, (42

n = n, (A2

m = m+an, (42

¥, = Vo+daV +6a’¥,+4a’V¥ +a'y,, (A2
¥, 2 V,+3aV¥,+3a’v,+a’V,, (A2
¥, = V,+2aV¥,+a?Vy,, (A2

¥, & ¥,+aV¥,, (A2

v, » ¥, (A2

x = x+ad+a(p+20)+a’(n+2a)+a’r+aa(t+28)

aa®(p+2y)+aa’v-(a+ab+ab+aad)a, (A2,

g > o+a(2B+1)+a’(p+2y)+a’v-ba-aDa, (A2

p = prat+2aa+aay+a’r+aa’v-ba-aDa, (A2

€ = e+aB+a(a+n)+aa(p+y)+a’r+aa’v, (A2
T o T+2ay+a’v-Da, (A2

1 - n+ap+ai+aav, (A2

a 2 a+ay+ai+aav, (A2

B = B+a(py)+a’v, (A2.

Y 2 y+av, (A2.

A 2 A+av, (A2

L 2 p+av, (A2

121)
122)

.123)

Jd2:4)
125)
126)
127)

.128)

129)

.130)
131)
132)
.133)
134)

133)

136)

137)

.138)

.139)



Case III:

e
Yo 7 GE Y
18
"I'rt K g',‘-‘p‘]o
A
v, =» V¥,

TREE S [T

v = 4%,

I 1.
-3 — -
Y Ay 23.-1+21AA9.
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(A2

(A2.

(A2.

(A2.

(A2.

(A2,

(A2.
(A2.

(A2.

(A2.

(A2.

(A2.

(A2.
(A2.

(A2.

(A2.

(A2.

(A2.

140)

141)

142)

143)

144)

145)

146)
147)

148)

149)

150}

151)

152)
153)

154)

155)

156)

157)



€ 5 ATe-1472DA+1i47' D6, (42.158)
2 2
a = e"°Q+.l_ie"°56-l_-1"9"°5.'l. (-"2-159)
2 2
B - e’°B+%ie‘sbe—%.-}"e"’ﬁ.i. (42.160)
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10 Appendix 3 Solutions and Perturbations

For the calculations, a null tetrad is chosen for each geometry, such that

ma

and m° are surface forming and the differential surface element foran  S? cut.of

8- is proportional to [ Pr®!.

In Cartesian coordinates the Minkowski metric is

n = diag(l,-1,-1,-1). If we transform to a null polar coordinate system

(u,r,0.¢) we have the following,

ds® = du® + 2dudr - r’(de®*+sin?(6)d¢?),

A null tetrad is then given by,

= 'y 2

-+

y? + z2,

= rsin(@)cos($).

= rsin(8)sin(¢).

- -
™

FE =

Lo

rcos(9),

rZ

63

sin{0).
62,
+ lﬁg'

2

52,

-—=(62 + isin(8)58)),

(A43.1)
(A3.2)
(A3.3)
(A43.4)
(43.5)
(43.6)

(A3.7)

(A3.8)

(43.9)

(43.10)

(43.11)

(43.12)

(43.13)



In these coordinates, u = constant defines a null hypersurface and r is a radial
parameter which is a luminosity distance. The non-zero spin coefficients are,

1

T T -1 (43.14)
3]
_ cos(‘) . _ cos(.e) . (A3.15)
2J2rsin(6) 2J2rsin(0)
m and 1 are surface forming. The timelike Killing vector is given by,
a a l a
k® = n% o+ St°. (43.16)
The rotational Killing vector is given by,
rsin(9) —a
k® = ———=(m°-m ). A3.17
A e ( ) ( )
The tetrad derivatives are given below.
pi, = Dn, = Dm, = O (43.18)
Al, = An, = Am, = O (A3.19)
I
8, = -m, (A3.20)
bn, = --— (A3.21)
a 2r ¢ )
om, = U8, (43.22)
Jar
1 1 cot(0)—
= - - - 3.23
6 a 2’-[“ rn'ﬂ Jér z (A )
| — -
lﬂ:b = _Fmamb - _mamb (A3-24)
N, = ——m,m Lam (A3.25)
a:b 2r a b 2r a b .



l—tm-lnm
2r et e

_cot(e)

yar

b a b

_(mﬂ+aﬂ)

Var

_ (mg —Fn—a)
riy2sin(e)

_ta

r

V2

rsin(e)

J2i

65 = (m®+m%)

b (m®-m®)

6

)

1 i
Tz_,-:(a°+sin(e)a°

m, +

cot(9)

.
¥

m,m, (13.26)

(A43.27)

(43.28)

(A3.29)

(A3.30)

(A3.31)

(A3.32)

(A3.33)

(A43.34)

(A43.35)

(A43.36)

(A43.37)

(A43.38)

(A3.39)

(A3.40)

For most of the calculations there is no time or * ¢’ dependence. In which case,
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D = 2,,
1
A = -2D,
2D
6 = E - La
Jar °
The Schwarzschild metric in coordinates (t,r.0.4) is,
2
ds? = (1-%@),1‘2 _oar
r _im
J-g = risin(e).
A null tetrad is given by,
l, = 8% - ———8|
a e r—2m6“'
" r—2m 0 l 1
n, = 7 6, + 26ﬂ.
r 2 s 3
m, = -—=(8, + isin(0)6,)
v
r a
oo r--2m6g MR
1 r-2m
a = "“60 - - a
g0 2r o1
a l ( a i ﬂ)
m® = —[65+—=—b5].
rf2\ % sin(8)°
r
b= —zmot T e
] r-2m
/ = =2 -
A 2! ( 2r )a’
1 i
° - T(‘“ sin(e)"‘)

- r%de?+sin?(8)de?),

(A3.41)

(43.42)

(A3.43)

(A43.44)

(A3.45)

(A3.46)

(A3.47)

(A3.48)

(A3.49)

(A3.50)

(A3.51)

(A3.52)

(A3.53)

(A3.54)



Note that an alternate tetrad for Minkowski spacetime can be obtained by letting
the mass parameter go {0 Zero.

The timelike and rotational Killing vectors are given by,

r-z2m
kﬂ - a ﬂ‘ . )
; n" + > { (13.955)
a rsin(8), o —a
= m°-m). A3.56
e ( ) ( )
The non-zero spin coefficients are,
I 2m-r
p Ft ll 2'_2 + (4“3-8?)
cos(0) cos(0)
= Tt B = —f/——————, A3.58
2J/2rsin(0) 2/2rsin(0) ( )
m
Y=o (A3.59)
The tetrad derivatives are given below.
! My, - tmum, - lmm A3.60
a:b rz atb r a''th r a’tth ( . )
m r-2m__ — r-2m—
nub = -ﬁn‘ﬂlb -+ 2r2 mcmb + ""_2r2 mamb (A3-6l)
r-2m 1 cot(O —_
Mow = =5t lm, = tngm, - SZ2d(mm,-mem,) (43.62)
a 2
18, = = (A3.63)
r
pe, = 21 (A3.64
a rz r . )
. cot(8)
= A3.65
a T2r ( )
Dl, = Dn, = Dm, = 0O (A3.66)
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Am, = 0
m
Ala = ,jlﬂ
An, = ‘ﬂzn"
r
}
ﬁla = ":mu
2m-r

bm, = Mm"
Ja2r
o 1 cot(6)—
277 o ) Zr "
- r \ar
1 r
52 = =}
a a * r-2mnu
-2m
6, = - -
a Rq ar Iu
52 o _(Ma*ima)
a .\/2r
5 = _(mu—ﬁa)
a ri 25]“(9)
r=2m
85 = n° a
0 L 2r !
l r
67 = 1% - ]
! 21 r-2m
r — g
6u o — mu“'m
2 JE( )
] rsin(9) m"
b = — —~(m'-m
3 J2i ( )
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(A3.67)

(13.68)

(A3.69)

(A3.70)

(A3.71)

(A3.72)

(A3.73)

(A3.74)

(A3.75)

(A3.76)

(A3.77)

(A3.78)
(A3.79)

(A3.80)

(A43.81)



For most calculations there is no time or * ¢' dependence. In which case,

D = 2, (A3.82)
A = ZE;FD (A3.83)
5 = & = T;;d" (A3.84)

The Kerr metric as a G.K.S. transformation is derived in chapter 7 of Adler,

Bazin and Schiffer 1975. The tetrad used here is the tetrad for Minkowski.

Gav = TMas ~ 2Z2mlal, (A3.85)
I, = Pul, + Prn, + Pm, + Pm, (A3.86)
[ 4
P = Py + IP, (A3.87)
{o rp2+a?cos?(9)
= =] - = .
Pu 2( T (A3.88)
2 2 2 e
Pr = 10(1 re *“2°°52( )) (A3.89)
P a?+p
P, = -25in(8)cos(8)—— (A3.90
9 \{E (124'92 90)
Py = -Zsin(0)—r2, (43.91)
] \[5 a2+p2 .
2 2 (2 2.2
2 _ I ~a j(r’-a®) 2,22
P > * -V 3 +a‘rccos“(9) (A3.92)
2 p?
2 = A3.93
0 p4+a2r2c032(9) ( )

The Kerr metric viewed as a perturbation of Schwarzschild is given below.

ds? = g,dxidx’ - 2m(lals ™ lals)axdx®  (43.94)
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Where g is the Schwarzschild metric as given previously. In terms of the Schwarz-

schild tetrad the perturbation terms are as follows.

. = Ko + K,n, + Km, + Km, (A3.95)

!
X
K, = %‘3(1-,1,"'fm) (A3.96)
K, = l"(r-rzm"‘"") (A3.97)
K = -II_ZEF(AZ—E%) (A3.98)
A, = g(p—i;—‘:?‘-"-’f—zg) - rfg‘m (A3.99)
Ay = _r?z(sgze:::sze) (A3.100)
A, = -'%i—i:—zg (A3.101)
éﬂéb = —(rf#)znanb (A3.102)

The Taylor expansion in the rotation parameter a is given below.

hoy = f‘a’[‘b - gaéb (A3.103)
- au
Ray = ) hoy— (A3.104)
ne0 R :
hee = 0 (A3.10521)
0
- J2isin(0)
’l’-nb = 2r..‘.[mb,"mb)]m—) (A3.106)
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in?(0)-rcos?
msin<(0)-rcos“(8) n.n,

I
h = —{4r
hao = 51 ( (r-2m)?

sin2(9)

(2URey* 2MMpy ¥ MMy + MgMy)

2y2rsin(9)cos(8)
(r-2m)

RE[Meyy + My ]} (A3.107)

isin(9)

pr {sin(8)cos(8)(m m,~m,m,)

gnb =

sinz(e)(r—Zm
2y2 r

r(9cos?(0)-1)-2m(cos?(0)+ 1)
2/2(r-2m)

)i(n[ﬁzb)_mb)]

RelMmyy =Myl (A3.108)

etc...
It is also useful to expand the perturbation of Minkowski to get Kerr in a Tay-

lor series. In this case, we use the Schwarzscnild tetrad with the mass parameter set

to zero. The perturbation is given below58,

xdx+yd dx-xdy =, ]
VY oIS 12y+*d3§4‘13.109)
a?+p at+p? P

dxodx® = tﬁ[dt +p

Transforming to polar coordinates we have,

[g[dt+(Dz+a2cosze)rdr_azrzsinecosede_arzsin:iidq:(]:s'l 10)

p(a®+p?) p(a?+p?) a?+
L= Bl, + B,n, + Bm, + Bm, (A3.111)
a
Lo
B, = S(1-4,) (43.112)
B, = l,(1+A,) (A3.113)

68 Page 253 Adler, Bazin and Schiffer 1975.
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A,

Aq

L

2y2isin(8)
2

Ly [1 A }
S I PR
J2rl "% “sin®

r(p®+a®cos?o)
p -.a2+'p2

_a’r®sin(0)cos(8)
p(a®+p?)

ar?sin?(9)
aZ+p?

- Rlm,y - m,,]

]
ﬁ{—4cosz(9)nanb

+ ZﬁSin(e)Cos(e)n(a[mb)+Fr—"b)]

s 2 e — —_
s”'2( )(21(,nb,+2m(,mb)-—mamb-mumb)}
h = gf—e—){sin(e)cos(e)(ﬁnﬁb-m,,m,,)
sinz(e)[ (7= My ]
2\/5 {a b) &)
(9cos?(8)-1) —
ﬁ Rplmyy—myl}

elc...
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(A3.

(43.

(43

(A3.

(A3.

(A3.

(A3.

(A3.

d14E)

115)

116)

A17)

118)

119)

120)
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