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ABSTRACT ASYMPTOTIC FLATNESS AND PEELING

by
Mark G. Naber

The properties of Asymptotically flat space-times are considered with emphasis
on Peeling. Penrose’s method of conformal mapping is used to define Asymptotes,
Asymptotic Simplicity and Asymptotically flat space-times. The boundary manifold
is examined by the behavior of its geometrical properties and by group theoretic means.
The behavior of massless fields on flat and curved space-times is considered with the
final results being the Peeling theorems. The Peeling theorems are used to examine
the asymptotic behavior of physical quantities associated with massless fields.

Asymptotically flat space-times which do not peel are also briefly considered.
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1 Introduction

In the attempt to understand nature it has been found expedient to postulate the
existence of isolated systems. This usually simplifies the mathematics and allows an
understanding of cause and effect as well as determining what physical features will
charasterize the system. In Newtonian gravitationanisolated system may be conceived
by requiring that the source of the field (matter) vanish outside a compact set. From
this system such concepts as mass, momentum, angular momentum and higher moments
may readily be developed.

In General Relativity isolated systems are realized by studying spaces which are
asymptotically flat. These are spaces which become, in some sense, Minkowskian at
large distances from the source region of the gravitational field. Asymptotic flatness
was initially studied by examining space-times in which the metri. tensor approached
the Minkowski metric as the distance from the source region became infinite. This
method has coordinate difficulties since a coordinate transformation will change how
the metric behaves in the limit. Similar problems are encountered by requiring the
components of the Riemann tensor go to zero in the above limit. These difficulties
were removed when Penrose introduced a conformal technicjue which adds a boundary
to the space-time manifold and effectively makes infinity finite.

Asymptotically flatspaces have beenstudiedintwo different areas, spatialinfinity
and null infinity. Spatial infinity is achieved by ‘traveling’ to infinity along space-like
directions. Spatial infinity is thusa time-like surface witha fin‘te dimensional symmetry
group. Null infinity is achieved by ‘traveling’ to infinity along a null direction. Null
infinity is a null surface with an infinite dimensional symmetry group. One important
difference between the two infinities is that the boundary manifold for spatial infinity
has an invertable metric whereas the nutl case does not. This paper will primarily be

concerned with the null case.



In the following section Penrose’s definition of Asymptotes and asymptotic
simplicity will be discussed and used to define asymptoticaily flat spaces. The
Schwarzschild solution will also be presented as an example of an asymptotically flat
space-time.

In section 3 the geometrical properties of the boundary manifold will be
examined. This will involve the BMS group, the problem of defining a covariant
derivative and the behavior of various quantities under a conformal transformation.

Section 4 will discuss the properties of massless fields on the space-time manifold.
In particular the concepts of principle spinors (principle null directions) and the phe-
nomena of Peeling will be examined. Examples from electromagnetism will be
presented for conceptual clarification.

Section 5 will examine the physical implications of Peeling. This will make use
of the Newman-Penrose formalism and present physical interpretations of the dyad
components of the vacuum gravitational field. The Newman-Penrose constants will
also be developed.

In section 6 asymptotically flat spaces which do not exhibit the Peeling property
will be considered. These spaces will be found to posses many of the same properties
as spaces which Peel, with the exception of the Newman-Penrose constants.

This thesis makes use of three different formalisms for discussing the topics
presented. They are the Newman-Penrose formalism, spinor calculus and tensor
calculus. The appendices are used to develop the Newman-Penrose formalism and
spinor calculus to the level used in text. They are by no means meant to be complete
but are given to fix notation and provide a convenient reference for the relations used
in text. Hence the reader is encouraged to look over the appendices before beginning

the main text.



2 Defining Flatness

There are three fundamental concepts which are instrumental for understanding
asymptotically flat spaces. These are Asymptotes, Asymptotic Simplicity and the
property of Peeling. Simplicity follows from the manifold’s ability to be compactified
(to have an asymptote), while Peeling is a property of the massless fields on the
manifold. Peeling is analogous to the near field and far field approximations one

encounters in the study of classical electrodynamics.

The concept of an asymptote arose out of the conformal approach due to Penrose
(Penrose 1965). The conformal method is a geometrical approach to asymptotic flat-
ness which is free of the ‘choice of chart’ difficulties one encounters when attempting

to define flatness using the metric or Riemann tensor. The definition follows':
Delinition (2.1) Let {AM .. ) be aspace-time. Anasymptote of {&.(..} isa

manifold A withaboundary | ,asmoothLorentzmetric ¢ ., ,asmocthscalarfunction

Q>0 on {M.guw}, and a diffeomorphism ¥ : A1- A~ such that

(1) On {M.ga}y Yu=0Fw
and at |

(2a) Q=0

(2b) v,0#0

(2c) g™ (V.0)(V,0)=0

with ¥, the gradienton {M,gas}.

Hence, to construct an asymptote one must scale down the metric (to bring infinity

in) and imbed the space-time manifold in a new manifold witha boundary. This process

1 Page 8, Esposito and Witten 1977.



is called compactification. The new metric ¢, is called the unphysical metric in the
literature. Notice that, by definition, the boundary is a null hypersurface (assuming

{ \l.¢.} satisfies Einstein’s equations, without cosmological constant, near 1 ).

The boundary can also be shown to be the disjoint union of two null surfaces, |°

and 1-.° 1~ represents future null infinity and |~ represents past null infinity. Each
of these surfaces then has the topology of S xR' (cylindrical), One should also note
that the requirement of (20 at | forces ¢., tobenon-invertableat | (tobe proved

explicitly later). Hence, there will not exist a unique universal derivative operator on
| (Lie and Exterior derivatives are still well defined).

A useful property for an asymptote is that of regularity. An asymptote is said to
be regular,, if forany p ¢ | and any non-zero null vector {¢ atapoint \ of (X1 .G}
such that the null geodesic in {\!/.¢.,} generated by (“ does not meet p, then
there exists neighborhoods ¢ of p in {M.¢q} and 170/ “ in the space of null
vectorsin { i7. (., )} suchthat nonull geodesicin {\.¢ .} generated by an element
of 1" enters ¢ . Thisessentially says that null geodesics for a regular asymptote behave
nicely, i.e. they do not interfere with each other.

The question of uniqueness can now be addressed. It has been found' that there
are only two freedoms in which an asymptote may be non-unique, provideditisregular.
These are equivalence and extension. Two asymptotes are equivalent’ if one can be
conformally mapped into the other. Let { M. G } be aspace-time, {AM.¢q.0) an
asymptote and w a smooth positive scalar function on {M.g¢a). Then

(M. w3g,, . wQY isalsoan asymptote of {¥.Jus)} (equivalence is also a relation

in the algebraic sense).

2 See page 201, Penrose 1965 for the proof.
3 Page 13-14, Esposito and Witten 1977.

4 Page 13, Esposito and Witten 1977.

5 Page 13, Esposito and Witten 1977.



The otherfreedom isthat of extension. The termextension isused inthe following
sense: forany C (aclosedsubsetof 1) { M-, ¢4 .€2) (restrictedto M - C )isalso
an asymptote®s {\l.g... £} is then an extensionof (VM -C.¢ .. Q). Thus, if an
asymptote is regular it is unique up to equivalence and extension.

From the discussion above, the following theorem due to Geroch’ may he
obtained.

Theorem (2.1) Let {\1. ¢, ) beaspace-time. Then there exists a regular asymptote
{M.ga. L2} unique up to equivalence. This asymptote is maximal,

any other regular asymptote of {\1.&..) is equivalent to one of

which {M.g., .} is anextension.

The proof can be found in Esposito and Witten 1977,

Note that the asymptote guaranteed by theorem (2.1) may have an empty
boundary. Hence, not every space-time will posses a ‘physically’ useful asymptote. At
present there does not exist a means of determining if a space-time has an asymptote
with a non-empty boundary.

The next step towards asymptotic flatness is that of asymptotic simplicity, and the
somewhat less restrictive, weak simplicity.

Definition (2.2) A space-time is said to be asymptotically simple if it possesses a

non-trivial asymptote. Weak simplicity® occurs if the manifold {\7.J,, )} has a sub-
manifold V!, which is simple (correspondingto M, ) such that for some open subset
K of M, including | ,theregionM oN K isisometricwithanopensubsetof {&1.G . }.

The difference between the two definitions can be attributed to the physical

meaning of part (2c) of the definition of an asymptote. Recall (2c):

6 Page 13, Esposito and Witten 1977,
7 Page 14, Esposito and Witten 1977.
8 Page 5, Newman and Todd 1980.



g (7,0)(7,0)=0 al |

=> Every maximally extended null geodesic in {M,g.s)} contains two end

pointson | (oneon |” andoneon I7).

Strict adherence to this version of (2¢) would disallow the existence of black holes and
null orbits. Thereby greatly restricting the number of useful space-times within the
ciass. Weak simplicity on the other hand is essentially the same as simplicity but with
(2¢) changed to read:

(2d) Every null geodesic which does not fall inside an event horizon and which

is not a null orbit has two end pointson 1.
Weak simplicity would then appear to be more applicable to physical space-times.
Penrose has used this definition of weak simplicity to prove the following two theorems’

(Theorem (2.3) will be discussed at length in a following chapter).

Theorem (2.2) If a manifold is weakly simple then the Weyl tensor , C .., vanishes at
1 (Coq=Cheqon ).

Theorem (2.3) If a manifold is weakly simple then all massless spin s >0 fields
exhibit the property of ‘Peeling’.

Theorem (2.2) establishes that the manifold is indeed conformally flat at null infinity.

Theorem (2.3) provides the rate at which the Wey] tensor goes to zero. Theorems (2.2)

and (2.3) present the possibility of defining asymptoticaily flat space-times as follows™:

Detinition (2.3) Let {&1.¢.») be a space-time with smooth Lorentz metric ¢ qp.

Let {{1.{ 4 ) be (weakly)simple such that,

(1) Einstein’s equations without cosmological constant are valid.

9 Page 5, Newman and Todd 1980 (see also Penrose 1965 and Newman and Pen-
rose 1968 for a further discussion).

10 Page 294, Ludwig 1976.



(2) The energy-momentum tensor does not approach a non-zero

muitiple of the metric near 1.

(3) The trace free part of the energy-momentum tensor remains

finite near 1.
Then, {M ..} is asymptotically flat at null infinity.

Conditions (1) and (2) ensure that one is studying a manifold which obeys our
present understanding of gravitation. Requiring the cosmological constant be zero
causes | to be a null surface. Condition (3) together with the Weyl tensor being zero
at | forces the energy-momentum to vanish at 1.

This is not the only possible definition of asymptotic flatness, cf. Ashtekar and
Hansen 1978 and Peresides 1979. The definition given is, however, one of the most
commonly used. Despite the apparent completeness there still exist some ambiguities
in the given definition. Specifically the word ‘smooth’. In the literature there exist
many examples of problems worked out with varying degrees of differentiability, C”
downto C? and C* Clearly C* is too restrictive to be part of a general definition
but, perhaps quite useful for some problems. At present there is no minimum order
known. This problem will be discussed in greater detail later in the text. Another
problem is that examples of asymptotically flat spaces which do not exhibit the peeling
property for the Weyl tensor have been found. This topic will be discussed further in
chapter 6.

An example of an asymptotically flat space-time is given by the Schwarzschild

solution of the Einstein equation". The line element is given by,
(2.1) ds?=-(1-(2m/r))dt?+(1-2m/r) ' dr?+r*(d0®+ sin?0c¢?)

where r = radial distance from source center (spherically symmetric),

t = time,

11 Complete derivation of solution is given in Ray 1970, pages 206-212.

-7-



¢.0 = angular coordinates,

valid v r > 2m.
Following Geroch™ let us make the following substitutions.

Let u = t-r-2m[log(r-2m)],

N o= 1/
The line element is now.

(2.2) ds?=x"2{2dudx - x2(1 - 2mx)du®+ do?+ sin?0d¢?)

As a conformal factor choose Q= . If the point x =0 isincluded as part of the

domain, the boundary r = = is then part of the structure. This gives a manifold whose
limit point »=0 is mapped into the limit point r=c of {Af.Ga}, the original
Scharzschild solution. The conditions for being an asymptote are quite clearly met,
and since ., is a static solution of Einstein’s equation it may be concluded that
{1, { o }is an asymptotically flat space-time, as expected. Note that if m=0, we

have an asymptote for Minkowski space-time.

12 Page 9, Esposito and Witten 1977,
-8-



3 The Boundary manifold

This section is devoted to studying the geometrical properties of the boundary
manifold and the behavior of physical fields at the boundary. The geometrical prop-
erties are unique because the boundary, when viewed as a manifold in it’s own right,
does not posses an invertible metric. The study of physical fields at the boundary is
important because it will give anindication as to appropriateness of the given definition
of asymptotic flatness and motivate a definition of total energy as well as angular
momentum. (Please note that the study of physical fields will be initiated here and

finished in the later chapters.)

A Conformal Properlies

Before the boundary manifold is examined, a brief discussion of Einstein’s
equations and conformal transformations will be given (more can be found in Appendix
III). Many of the following equations can be simplified if the unphysical Ricci tensor

is replaced by"”
(3.1) Sa=Rap = 1/6RG
with R4, = R"™ 4. Itis customary to write the physical version of S, as ... The
Riemann tensor now has the following decomposition:
(3.2) Ravea=Cabed* Tarc Sap=Go1cSda -

Where the Riemann tensor is defined by R qu. % ¢ =2Y, 7, |k and, Cpeaisthe
unphysical Weyl tensor,

With the given definitions of S, and L., , itis possible to construct an equation

which relates some unphysical quantities to L, (found by examining the behavior of

the Ricci tensor under a conformal transformation)™.

13 Same use of notation as Geroch in Esposito and Witten 1977.
14 Page 16, Esposito and Witten 1977.

-9-



(3.3) QS+ 2T o (7,0)- (7™ONT ) Gar = [ A

As the vector 7€) appears frequently, the following substitutions will be made:
(3.4) n,=7,8,
(3.5) [=(7"Q) (M Q7

Thus, equation (3.3) becomes
(3.7 -()-th+2vanb—[gnb=ﬂ-l‘f—nb'

From this equation four other equations may be derived, by using the Bianchi
identity, relating the unphysical metric gae and the conformal factor £ to the cur-

vature fields S q» and Capea. The following derivation follows closely that of Geroch

(Esposito and Witten 1977). First consider the curl of equation (3.7)

(3°8) Qv[ﬂ S b|r+nlﬂsb]f+ 2v[a vh]nt'."v[a ‘[gb]c=v[n~0--l Lb]r:-

Inserting the Riemann tensor where appropriate yields:
(3.9) OV Seye* aSe1c* Rubcdnd_ Ve FGb1e= V1 u-Q-‘ Lyie
Decomposing the Riemann tensor into it's Weyl and Ricci tensor components yields:

(3.10) QY(a Sp)e* Cabcdnd=\7[nn-l Ly ]r_-o'-zgc[rxl—b ]dnd-

If the Bianchi identity is now applied twice contracted, singly contracted and uncon-

tracted the following three equations are obtained:

(3.11) Y2S - VaS=0.
(3.12) Vdcubcd+vlusb]c=0.
(3.13) V9o Q' Coe™= 200720, 1V, Q" Le 41207, [dg, U ¢yt -

A fourth equation is obtained by contraction with n°:

-10 -



(3'14) thnb* 7<:f=!-abnb‘0-4'
B Boundary Manitold

With these preliminaries out of the way the boundary manifold | will now be

examined explicitly. As seen in the previous section, the space-time manifold 1 is
diffeomorphic to the asymptote with the boundary removed (i.e. M -1=)1). Also
note that | may be regarded as a 3-manifold which is a null surface with respect to
{(M.ga. Q). Tostudy | byitself, a great deal of success has been made by mapping

{M.¢u.Q) ontoa new 3-manifold 7 which is diffeomorphic to |. The mapping

is called a pullback, ¢, with inverse g
6t M=->7
¢ :9 Al such that /mage(t)=1
Definition (3.1) The pullback operator for the boundary manifold may be defined
by the following four properties:

(1) Vvu suchthat p:M- R: ti()=pek.
(2) Vu suchthat p:d= R §H(7R)=77L" ().

(3) t" commutes with addition and outer product but not with contraction.

(4) Uniqueness, defined and discussed momentarily.
The following theorem is an immediate consequence of the given definition.
Theorem (3.1) Let o, . beatensoron {M,gas. Q2}. If a, . can be written as
a sum of outer products of vectors such that each term contains a

vector which is proportional to 1. then, ' (ag.)=0.

15 Pullback operators are discussed in more generality in Bott and Tu 1982 and
Choquet-Bruhat et.al. 1977.

-11-

e caren o sl



The proof follows from & (1,)=%"(7,Q0)=7,8'(Q)="7,0=0 and commutivity

with the outer product.

For covariant fields the action of ¢ specifies a unique operation since any

covariant field may be written as a sum of outer products of scalars and gradients of
scalars. For contravariant or mixed tensor fields only a restricted uniqueness can be
guaranteed (due to the non-invertible metricon 7).

To discuss uniqueness we need construct a set which algebraically could be
considered as an ideal of the domainof ¢ " . Let" C denote the collection of all smooth

tensor fieldson { M.y .Q),s5ay o, ,,suchthatif

(v, . )=0.
then LA, Ve )=0.

Geometrically, a vector a“¢ C if andonly if a“c7,7 VvV pc7. Atensor of

rank (1,1) a?,¢C ifandonlyif a®,1®eT,7 ¥ u%eT,7 ¥V pcl

Similarly the same type of statement can be generated for tensors of higher rank.
Due to the algebraic similarities between t' and C,itisfound that C isclosed under
addition, outer product and gradient (hence also closed under lie and exterior deriv-

atives). Note also that C is not closed under contraction.

Now that C is fully defined,a uniqueness statement may be given for ¢ “. Let

a®, ,¢C and let j, . be any element of the set of smooth tensor fields on

{M.ga 0}, If werequire ¢ obey the following relation:

(3-15) t:.(aﬂ“cb..d“a..c)= t.-.(aa”cb..d)c'(pa..c)-

Then " (a®",_4) is unique.

16 Page 20, Esposito and Witten 1977.
-12-



Uniqueness for the pullback is somewhat restrictive, however this is to be

expected when projecting a 4-manifold onto a 3-manifold.
Tounderstand the geometry of 7 anatural place tostartis withits metric. Denote

the image of the metric on {M.g¢ ..} under the puliback as ¢, =t (¢/.) and
let n°=¢"(n%) (recall t"(n,)=0). Both ¢, and n" are in C. The non-
invertability of the metric on 7 will cause an ambiguity in defining a universal
derivative operator and in the act of raising indices. The proof for non-invertability is

given below.

Theorem (3.2) g, is notinvertible.
Proof: Since g, .n° € C the following relation must be true:
i’,‘(Q'ub“b)='3:.‘(Q'ub)".».(“b)
& ()=t (1,)=0
s8N (ga)t (nP)=0

. b _
' gabz =0,

However n° isnowherezeroon 7. Therefore g, hasanon-empty null space and

is therefore not invertible.

Clearly, lowering indices is well defined as ¢, isunique. When anindex s raised

the result will be unique only up to addition of a symmetric tensor whose decomposition
has at least one vector in the null space of ¢, . The pseudo-inverse may be defined

by 17

(3'16) (_.J.umgmng.nb =g.ub '

17 Pages 138 and 145, Strang 1980.
-13-



The arbitrary tensor introduced upon raising an index is of the form

(3.17) vt ®)
where v is arbitrary and n® is given above as part of the null space of ¢,
(3-18) g“b:"bc:flnc"'b‘(“ EC).

Let us now examine the problem of defining a covariant derivative operator on
7. Consider the following equation which defines a covariant derivative operator
1., on a manifold with invertible metric, in terms of the exterior and Lie derivatives

(both well defined on 7 )"

(3-19) l)nab=D|ﬂab]+l/2Ldgab

For D, tobe defined unambiguously it must be required that «, be orthogonal

to n". Equation (3.19) may be expanded for the case of covariant tensors of arbitrary
rank, provided orthogonality is maintained. Equation (3.19)also satisfies the Leibnitz

rule and is additive on a, .

Let a, be orthogonal to 2® and let it also be Lie propagated along 7 T (these

are required to ensure existence of D,D,a.). The given definition may then be

verified against the Riemann tensor for 7. Consider
(3.20) DiaDo @c= /2R ey
Equation (3.20) is additive in a and commutative under scalar multiplication.

R .. is determined up to a multiple of n®,hence R qucq isuniqueon 7. R s can

be shown to have the same symmetries as the usual Riemann tensor. This may be done

18 Page 23, Esposito and Witten 1977.
-14 -



by examining p, ,0,,g.,=0 ad D  D,a. ,=0. Since R apea =0 the Ricci
tensor, R, =¢™" R amen,and the curvaturescalar, K =¢™" R, ,are also well defined
and have their usual properties.

The Bianchi identities are also obtainable. These are found by examining
DiaDy D, a, for a, orthogonal to n“. The Bianchi identities may also be found
by using spinor calculus and looking at the projection of the spin 2 massiess field
equation on 7 (much faster than the above tensor method). Thus the covariant

derivative operator on 9 is satisfactorily defined albeit somewhat restrictive,

To discuss the geometrical aspects of 7 further it is convenient to define a tensor

which is gauge invariant (with respect to conformal transformations) and which con-
tains in some sense, the geometrical information of the boundary manifold. Such a

tensor is given by"

(3:21) P = ntnty,, .

I"“® ., is symmetricin both pairs of indices. Note also that Pett Y, =0 this

ensures that I'*°_, is decomposable for some r“ and ¢, . Since 12" is in the null
spaceof ¢, wealsohave """, =0 If wulr e #0,then wow,v v >0,
This reflects the fact that g, has a positive signature. If o'“1*", =0 and
L,®% =A%, forsome A it can be shown that n” is a conformal killing field
with respectto ¢, -

From the above properties one may conclude that at least locally,every asymptotic
geometry possesses a unique (up to conformal transformation) decomposition for
I-ab

cd *

C Asymptotic Symmelries

19 Page 22, Esposito and Witten 1977.
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['“* . is also useful for looking at the global properties of 7. For example,

asymptotic symmetries. To examine this aspect a base space must first be defined.

Definition (3.2) Let {7.1"® .} be anasymptotic geometry having no almost closed

curves® of 1. Let B represent the set of all maximally extended integral curves of
n*. Let n map 7 =B such that each point of 7 corresponds to the integral curve
on which it lies. Let U be open in 7 and consider a chart such that no n" integral
curve passes through U more than once (this is always possible since we may choose
U as small as we wish and there are no almost closed curves). Let us also choose the
chart such that two of the coordinate functions are constant in U along the integral
curvesof n”. Using 1 the chart may then be projected into B to produce a chart for
Bbasedon n| (" |. Since there are no almost closed curves we may cover B by choosing
a sufficient number of open sets U to cover 7. If B is then Hausdorff. it is called the
base space of the asymptotic gecometry®.

To study the symmetries of asymptotically flat spaces we shall begin by looking
at the Lie algebra produced by the set of asymptotic symmetries. Following this the
group structure will be examined directly from the point of view of conformal trans-
formations.

Firstly, symmetries and infinitesimal symmetries need be defined with respect to

the asymptotic geometry.

Definition (3.3) Let {7.7 . B} be an asymptotic geometry with base B. Then

a symmetry is an automorphismon 7 such that I'"* ., is mapped onto itself,

20 An almost closed curve is a maximally extended integral curve y of n® such
that, for some point p of y, y reenters every sufficiently smatl neighborhood of
p.

21 Page 27, Esposito and Witten 1977,
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Definition (3.4) An infinitesimal symmetry on {7. """ B} isavector £“ such

that L,[%*_,=0 (i.e. a vector which Lie propagates I ab o)
A special subset of the infinitesimal symmetries are the infinitesimal super-
translations, which is an infinitesimal symmetry £ that is proportional to 2" . This

will be seen to form an important subalgebra of L,, (to be defined shortly).
In terms of the decomposition for 1'*®., the infinitesimal symmetries may he
defined as follows:
Lyl q=r"R"Lyg g% 20, Lyn" 1"
Requiring that the right hand side be zero yields:

(3.22) Lidu=2KY oo
(3.23) Lyp“=-kn® ,

forsome A on 7.

The set of symmetries forms a group and the set of infinitesimal symmetries form
it's Lie algebra. As one might anticipate, these will be similar to the Poincare group
and the set of Killing fields for Minkowski space. Infactan infinitesimal symmetry on

the physical space-time produces an infinitesimal symmetry on 7%

Theorem (3.3) Let {§1.¢ ) be aspace-time with asymptote {M. a0} (with
(7.1 ) and Killing field 1. Then 3! n%¢C which is a smooth
extension of 1° on {M.ga.-0). & (n") isalsoan infinitesimal

symmetry.

Proof: On (M. Gas}: LaGa=Li(Q2%F )

22 Page 30, Esposito and Witten 1977.
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= ZIIGM‘JLF](Q)
=207 ¢a L7().
Therefore 7" isa conformal Killing fieldin {41, g} withrespectto ¢ ,and hence

has a smooth extension to N“ in {M.¢..02}.

Let a=Q""L,(Q) whichis smoothin {Al.g..Q}
=% n'v7,0=0a-0 on 7.
We also have L,(n")=L (g®7,0)
=—-an“+Qv%
= L, (nn%g,)=0 on 9
= ' (Ly(nR"Ge))=0
L,_.(“)(t,'n“.'z"gcd)=0

~ab -
['(r.'(n))([ et) = 0.

Therefore ¢, " (1) is an infinitesimal symmetry.

As mentioned earlier, the set of infinitesimal symmetries form a Lie algebra with
its binary operations being addition and the Lie product for vector fields. This Lie
algebra shall be denoted by L,,. Denote the subalgebra of the super translations by
S ... From the definitions of the infinitesimal symmetries and super translations the

following theorem may be constructed.

Theorem (34) S, isanidealof L.
Proof: What need be shown is thatif §"=an“e S, and n€ L. Then L;n€ S,

or L,£%¢S,, (since the Lie product is antisymmetric).
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Lyn=L,n"=aLl,n"
=-aL n"
but by theorem (3.2) Lyn~n"
=2 —aLl,n"cSy
SLyn"eS,,

S, is an ideal of £,

The subalgebra also has another interesting property in that S, may be repre-

sented by the base space, B #. Consider §°¢ S, Then

ngm’=o
Legap=0Lndan® 2"y, aPore
2 Lyt =-(n"D,a)n"

but L¢n® must be zerosince £ S .. Therefore a is constant along the 1 integral

curves. Therefore 3p e B suchthat a=1"(f3). Henceforany £ = an”cS,,3PeB

such that a=1"(B).

To examine what else is in L, besides S, it is useful to look at the quotient

algebra L./ S, . Members of the quotient algebra may be described by the following

two equations *;

(3.24) D(ﬂgb)=kgnb 1

(3.25) L,5,=0

23 Page 31, Esposito and Witten 1977.
24 Proof (sketch) may be found on page 32 of Esposito and Witten 1977.
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With F\;J':guh;‘“ and E:b([‘rs-

From equation (3.25) and the fact that £, is orthogonal to n“, there must exist

an element 1, inthe base space B such that for each £, in the quotient algebra we
may write %, =1 (11.) for some }i, in B. Equation (3.24) may be shown® to be a
pullback of the conformal killing field equation on the base. Thus the quotient algebra
is isomorphic to B3. This is very similar to the algebraic structure of Minkowski
space-time. In this case L,; would correspond to the Poincare algebra, &, to the
infinitesimal symmetries on Minkowski space-time and the quotient group to the
Lorentz algebra.

The asymptotic symmetry group (the BMS group) will now be examined. This
group was first developed by Bondi et. al. (1962) and then generalized by Sachs (1962).

Let u.r.0 and ¢ denote the null polar coordinate system.

Delinition (3.5) A BMS transformation® is defined by

(3.26) = K(8.0) u=-a(s.9))
(3.27) 0 =0°(8.)
(3.28) 0'=0'(0.9)

Thus the angular coordinates are conformally transformed and null hypersurfaces
are mapped into null hypersurfaces. Unlike SL(2,C) (symmetry group for Minkowski
space-time) the BMS group” has an infinite number of parameters and is not locally

compact.”

25 Page 33, Esposito and Witten 1977.
26 Page 863, Newman and Penrose 1966.

27 Proof that the BMS transformations form a group is given in Sachs 1962, please
note that the BMS group is referred to as the GBM group in this article.

28 Page 292, Carmeli 1977.
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The subgroup givenby 6" =0 and ¢ ' = ¢ is called the supertranslation subgroup

(usuaily denoted by N in the literature). The study of this is facilitated by expanding

a(9,¢) into the spherical harmonics.

=L
(329) G(O.Q)): !%bmz__t“rm)’lm(o'(b)
(3.30) Cim ¢X and ”'I'.-m=(_ I )malm

Another important subgroup is obtained by the case of ;=0 V122, This

four parameter subgroup is called the translation subgroup.

(3.31) a=cy+€,8in(B)cos(¢)+e,sin(0)sin(9)+cyc08(0)

The following two theorems concern the above subgroups:

Theorem (3.5) The supertranslations form an Abelian normal subgroup (N) of the
BMS group. The factor group is isomorphic to the orthochronous
homogeneous Lorentz group.

Proof (sketch, Sachs 1962): The supertranslations leave the angles 0.¢ invariant.

Using this one can show that the supertranslations are normal in the BMS group. The

quotient group would consist of only the conformal transformations which, for the 2

sphere, are indeed isomorphic the orthochronous homogeneous Lorentz group.

Commutivity follows from the definition of the BMS transformations.

Theorem (3.6) If N’ is a four dimensional normal subgroup of the BMS group then
N’ in contained in the supertranslation group N.

Proof (Sachs 1962): Consider the image N’/N of N'under the homomorphism BMS

.> BMS/N. Since N’ is normal in BMS, N'/N is normal in BMS/N. Hence N'/N is

normal in the orthochronous homogeneous Lorentz group. However the only normal
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subgroups of this group are itself and the identity. Since the orthochronous homoge-
neous Lorentz group has six parameters we must have N°/N = identity, to avoid a
contradiction. Therefore N’ is contained in N.

In later chapters weaker forms of the definition of asymptotic flatness will be

examined with one of the criteria being that the symmetry group be the BMS group.
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4 The Peeling Theorems

To properly discuss the Peeling theorems, a discussion of massless fields of integer
and half integer spin must first be given. Spinor calculus will be used extensively in
this chapter. The reader is referred to Appendix I for a brief introduction and summary

of useful formulae as well as references for further reading.

Massless vacuum fields of spins > 0 may be represented classically by asymmetric

spinor with 2s indices which satisfies the following equation™:

(4.1) 7% 45 =0
where ¢ ,, ; has 2sindices.

For example, the case of s = 1 generates a representation of the electromagnetic

field (source free):

(4'2) Fuv=0u&!’0vﬂo{¢.IBGPo+e18&?0)-
With F,, the electromagnetic field tensor in vacuum, ¢ ,, satisfies:
(4.3) 7'M =0

Similarly, for the vacuum gravitational field (if and only if the cosmological

constant vanishes), the Weyl tensor describes the spin 2 massless field

(4.4) Cuvpe=0, o VBOUD “Ro O3 sacn€ poCars™ € 4p€ cod-’ PORS h
with Bianchi 7 AN ¢ 18CcD = 0
Consider equation (4.1) and apply the operator 7, . Then

Tyu AM b4p. x=0

17204 06 45.4=0

29 Page 162, Penrose 1965.
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(4.5) O 4s.£=0.
Thus ¢,, . satisfies the wave equation as required for a massless field. Using

the spinor representation it is not difficult to prove the following two theorems con-

cerning solutions of equation (4.1):

Theorem (4.1) A solution of equation (4.1) of spins is given by
(4.6) ¢A8..K’=“MVAMWH..K
where, (1) ¢ 45..5 has 2s indices.

(2) n* is a constant spinor not equal to zero.
(3) W, is asolution of the massless spinss - 1/2 field

equation.
The proof* may be constructed by choosing a coordinate system (Minkowskian)
with constant o, 48 and examining the components of equation (4.1). This yields a
vanishing curl in both pairs of coordinates which can be reduced to one of the com-
ponents of the spin s - 1/2 field equation. It remains to demonstrate symmetry and
that the two curl equations may be satisfied without effecting one another.

The next theorem is proven by induction on theorem (4.1).

Theorem (4.2) A solution of equation (4.1) may be given in terms of a ‘Hertz type™

complex potential x;
(4.7) ‘1’.13..:;‘”""\’”'"wwvd.uvaw"'vxwx

where 1M v -+ - w" are constant spinors and x satisfies

[Ox=0.

30 See pages 165-166, Penrose 1965.
31 Page 165, Penrose 1965.
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Clearly an inductive proof would not be difficult based upon theorem (4.1). As

an example (of theorem (4.2)), consider the s = 1 coulomb field {monopole).
Let x=-cut,"'r, with ¢, =e'"cos(0/2)( 0. ¢are the usual angular coordinates)
u=t-rretarded time.

R=r(|+§€)=raduﬂthslanvv

Then [Jx=0 and® x=0"(r"'). From this we obtain, v ,=-(1/2)a/(RL)E,
and ¢ 5= (/R4 N 5, where

§a=outuard racical null direction,
Ag=opposite tnucard null clirection.

The field ¢ ,, is static, spherically symmetric (as required for a coulomb field)

and has the proper radia! dependance. The real and imaginary components of ¢
determine the electric and magnetic components (respectively) of the field. The dipole

field is similarly obtained. In this case the field is represented by:

(4.8) ¢AB=a|-lMVNv.iM‘75.\‘(I/R)'

If vu, =0 then there is an equal mixture of magnetic and electric dipoles with

perpendicular axes. If vy, =1 then the coefficient « determines how the field is
divided between electric and magnetic components (real for electric and imaginary for
magnetic).

The next topic on the path to the Peeling theorems is that of principle spinors

(principle null directions in tensor language).

32 Note: f=0"(r"*) => Asymptotically smooth of order %

3/3r(f)=0"(r %'y a/04(f).3/3t(f)=0(r *)same notation as in Penrose
1962.
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Definition (4.1) A principle spinor is a 1-spinor which is proportional to one of the

components of the canonical decomposition of ¢ 4.5 where ¢ 4. . represents a

solution of equation (4.1) for a spin s massless field.

Explicitly, &"in a principle spinor of ¢ 4 if and only if,

(4.9) 405" £ =0,
The corresponding principle null direction is given by:

(4.10) £,=0,"% &5,

Proof of existence is given by choosing £"=(1,£) and then considering the

resulting polynomial in ¥ (complex) and appealing to the fundamental theorem of
algebra®, A more involved discussion including the Petrov classification may be found
in Pirani 1965 and Penrose and Rindler 1984.

In general a necessary and sufficient condition™ for at least j principle spinors to
coincide with £ is:

(4-11) ¢AB..FG..KEG"EK=O

where & appears2s - j + 1 times (the proof is similar to the previous theorem).

Intuitively one would expect that very near the source region of a massless field
none of the principle spinors would coincide. Think of the example from electrody-
namics: in the static and induction zones all terms of an expansion (in powers of 1/r)

are important for computation. In the radiation zone however only the leading term,

33 Page 224, Jacobson 1985.
34 Page 164, Penrose 1965.
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1/r,isimportant®, The Peeling theorems describe the rate at which the principle spinors
become coincident with respect to the radial distant from the source region. The

Peeling theorem for flat space may be stated as follows™.
Theorem (4.3) Let ¢, , be a symmetric spinor with 2s indices satisfying the spin
s massless field equation. Then,
(4.12) bas.rc. w58 =007
along all lines of constant retarded time and angular coordinates,
and where there are k £’s on the left hand side of equation (4.12)
when £=0"(r"").

Proof: (Penrose 1965) Choose a coordinate system such that the origin is within the
source region (assumed to be compact). Let u,rand £ be the coordinates as defined
earlier. Choose a particular line, u=u, and ¢ =, (fixed). Then in a neighborhood

of the line let
(4.13) PR TR S
As the inductive hypothesis assume

(4.14) WB..GH..KEH"§K=O(r-k)

along the given line. The hypothesis is true for k =1 as given in the statement of the

theorem, Apply 411" 7 4, to (4.14) then:

EAIJM:7.¢stJa..cH..xE”' 'EK=O("-k-l Y,

(4.15) = B4 n.xE 8N =00,

35 Pages 392-393, Jackson 1975.
36 Page 172, Penrose 1965.
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Hence the relation is consistent for the inductive proof. The key restraint in the
above theorem is the requirementof £ =0 (r~'). This condition may be summarized
physically as requiring that the incoming waves fall off reasonably fast. The previous
examples for electromagnetism fitinto theorem (4.3) (see Penrose 1962 fora discussion
of the Schwarzschild solution and also a discussion of a solution of the Weyl neutrino
equation). Further examples and discussion will be given later in the text.

To discuss the Peeling theorem for curved space-time some generalizations of
the property of peeling must be made. In particular, the generalizations should be

conformally invariant as the ultimate goal is to treat asymptotically flat spaces.

To begin with, let {{1.§.,) be an asymptotically simple space-time with

{A.gu) as the compactified manifold. Let ¢ be a null geodesic in {\1. G},

hence ¢ isanull geodesicin {M.gav}. Let £ beatangentspinor which is parallel

propagated along ¢ . Hence we may write
(4.16) §B§C7sc§.1=0
or equivalently

(4.17) EPEC7 ek 4=0.

Using the conformal invariance of null geodesics it can be shown that the con-
formal weight of £ is-1/2 (i.e. £,=Q'"?g,). An auxiliary spinor " will also be

needed such that £*1n,=1 and which is parallel propagated along ¢ :

(4.18) EBEC7scﬂ.q=0-

Requiring conformal invariance of the parallel propagation equation yields

(4.19) ﬁA:Qh“z'].;*bﬂ“zg.q,
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where” b=/ Q 2n¥ECV 4. Qclr.

For curved space-times the property of peeling may now be defined,

Definition (4.2) Asolution of the massless spin s field equation § is said to peel if
(4.20) Oa ek N ECLEN = O(FTHT)

alonganull geodesic ¢ where £ appearsktimesand 1) appears2s-ktimes. i, and { |
are parallel propagated along ¢ with £417,=1.
The general Peeling theorem may now be stated and proved.

Theorem (4.4) Let {M. ¢} be an asymptotically simple manifold. Let ¢,

satisfy the spin s massless field equation such that it is asymptotically

regular®. Then § ., , satisfies equation (4.20).

Proof: (Penrose 1965) Let ¢ meet | at a point G. Since the manifold is simple we
have:
d/edrQ=84E8v ,,00#0 at G¥.
=> Q/(r-ry) existsat G and is not zero ( r =, at G).

=> ()/F exists at G and is not zero.

Let 1" be a null spinor in the plane spanned by £* and the normal to | at G

(different from £1), Hence, we may write 7 ,,Q intermsof £ ,&, and n,n, atG.

37 Note: 1 is an affine parameter defined along ¢ such that £°5°7,.r =1 and
rF=/0"2dr,

38 & is asymptotically regular if ¢ exists throughout {M,g ..} and is continuous
at [,

39 Dueto V,,Q#0 on | oralong g.
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N7 ,,Q0=0 at G*
NE87 ,Q=0(r-ro)*
= b=0(InQ)

H,=07"2n,+£,00Q"2 Q)
@21) - B, popi? FECLEF =N 0, ot fEC 8 O INQ)
6, . is bounded near G by asymptotic regularity. And, Q*'r-'-% exists at G and is

not zero.
R..S. of (+.21) is o(F™* ),

-

a.pc.xfit NPEC.ER =o(r™* 1),

For the particular cases of electromagnetism and gravity there exists an alternate
proof which does not require asymptotic regularity, only that the field equations hold
in a neighborhood about | and that the conformal factor be at least C° on

{M.¢u.Q}. This case is examined in detail in section 14 of Penrose 1965.

40 Since £'¢,=0.andn"n,=0.
41 Q isatleast C* atG.
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5 The Physics of Peeling

The physical implications of Peeling are most readily discussed by examining the
dyad components of the field spinors. These components will each have different
radial dependence and yield information about the sources and radiative properties
of the field. Ingeneral for a massless field of spins there willbe 2s + 1 dyad components

(complex).

(5.1) b, =50 E) Bl bae
Where £/ is a dyad for the spinor basis such that gd=t gl=nland £'n,= 1.

With ig...ip=1and ip.y...i2,=0 V¥V n+1<2s suchthat ne {0,....25). Inthe
cases of gravitation and electromagnetism ¥, and ¢, are used instead of ¢, to
denote the dyad components.

Applying the Peeling theorem to these components yields the following relation.

(5.2) $,=0"'(r"*"y, n=0,.... 2s

For gravity the components peel as:

(5.3) Ve=0"(r®)
(54) v, =0'(r™h
(5.5) V,=0'(r")
(5.6) Va=0'(r?)
(5.7) y,=0"(r ")

For electromagnetism the components fall off as:

(5.8) 0o=0"(r)

(5.9) $,=0"(r™®)
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(5.10) 0,=0"(r"").

To prepare for the gravitational analysis let us examine the Maxwell field, whose
properties are well understood. Consider the null polar coordinate system for flat
space
(5.11) ds?=cu®+2dudr-r?(d8%+sin®0d¢$?)

with u=t-r.
In this case the spin coefficients (see Appendix II) reduce to

(5.12) p=-1/r a=-(1/2y2r)cot(0)
B=(1/2J2r)cot(0) nw=-1/2r

N=K=c=A=y=v=T=0=0,

The source-free Maxwell equations become

(5.13) (370r+2/rY, =(V2r) ' 24,
(5.14) (d7or+r " Yp,=(y2r) ' 3o,
(5.15) (373t~ 1/28/73r-(2r) oo=(J2r) ' %0,
(5.16) (370u-1728/r-r""Y0,=(2r) " ¢,.

A solution” may be obtained as follows. Let ¢, be given as a function of r, 6

and ¢ ona null surface u=u,. Integrating equations (5.13) and (5.14) produces

(5.17) bo=0o(r.0.9)

(5.18) 0, =r2¢3(0,0)+r2[(r/V2)8¢,dr

42 Page 904, Janis and Newman 1965, slightly different notation.
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(5.19) do=r"'00¢0.0)+r " JE(d,/V2)dr
¢ and ¢3 are l[unclions of integration.

The u dependence of ¢, and ¢7 may be determined by substituting equations

(5.17), (5.18) and (5.19) into equations (5.15) and (5.16). ¢3 is usually called a news
function® due to the fact that it is the radiative initial data and determines the u
dependenceof ¢, and ¢ . Threesolutions are given below in the null polar coordinate
system™ as examples.

Monopole field:
$o=9,=0

-2

by=caor tg=constant

Dipole field:

do=ctysin(O)r
¢,=-y2c,cos(0)r ?-J2a, cos(0)r?
d,==~c,sin(0)r ' —a,sin(0)r ?-a,sin(0)2™"'r?

ty=a,(u)eC? with u=t-r.

Quadrupole field:

bo=Cl,sin(0)cos(0)27 ' r 3+ u,sin(0)cos(0)r
b, = ~ci(3cas?(8) = 1)(6¥2) ' r 2= ctp(Beos2(8) - | (2¢2) 'r - uo(eos?(8) - 1)(27) 'r

dp=~t,sin(0)cos(8)6™ r ! —(i,sin(0)cos(8)27!r~?

43 Page 905, Janis and Newman 1965.
44 Page 906, Janis and Newman 1965.
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~(3/74)ct,sin(0)cos(0)r~? - (1/2)a,sin(0)cos(0)r™*
tp=ct,(u)eC? with u=t-r

In the above examples the real part of ¢, (i=0,1,2) is proportional to the

electric charge, dipole or quadrupole moment for i=0, lor 2 respectively. The
imaginary part is proportional to the magnetic charge, dipole or quadrupole moment
for i=0. lor 2 respectively. Notice as well that the fields do indeed obey the Peeling
theorem.

For the case of a general Maxwell field the expression for total charge may be
given by the following. Let S denote a sphere of constant radius R on a null cone of

constant retarded time u. Then

(5.20) electric charge ~ IRimJ'Re(dJ,)ds,
S0 5

(5.21) meagnelic charge ~ lRimflm(q:l)ds.
-n 5

The proportionality may be made exact once units are chosen. Similarly, the

radiative power of the field is given by*

(5.22) rale of eneryy emmission ~ ij£¢2$2cls.

To examine the gravitational case we shall use a null foliation for curved
spacetime. Following Janis and Newman (1965) a null tetrad is defined as follows:

consider a null hypersurface u = constant. Then the first null vector may be taken as

(5.23) La=t =80  (u=x9%)

45 Page 103, Norman 1964.
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Choose the other three null vectors to obey the orthogonality conditions as presented
in Appendix II. Letting & and \' be arbitrary real functions and, wandg' be

arbitrary complex functions (i = 2,3). The null tetrad may then be written as follows:

(5.24) "=t} ,
(5.25) R* =04+ L6+ N '6Y,
(5.26) m"=wbh + "6y},
(5.27) m"=wbi+E'6!,

For this system the intrinsic derivatives take the form:
(5.28, .29) D=2d/0r, b=wos/or+§'a/ox'y
(5.30) A=Ud/dr+ad/ou+ N'o/oxt,

The spin coefficients are also simplified:

(5.31) nN=¢c=k=0,
(5.32) p=p, T=a+p.

The field equations may then be written as follows*:

(5.33,.34) pDEl=pt'+of' DX'=TE +TE
(5.35, .36) Dp=p2+00 Do=2pa+ ¥,
(5.37, .38) Da=ap+[a DA=Ap+ 0

(5.39, .40) DW=pw+aw=-T DU=Tm+Tw-(y+Y)
(5.41, 42) DR=RBp+ac+V¥, Dy=ta+tR+V¥,

46 Pages 893 and 894, Newman and Unti 1962.
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(5.43, .44) DH=pp+ho+ V¥, Dv=TA+Tu+ V¥,

(5.45) DV, -BVW,=4pV¥,-4aV¥,

(5.46) DV,-bV¥, =3p¥,-2aV¥,-AY,
(5.47) DV,-8¥,=2pV¥;~2AV,

(5.48) DW,- b8V, =pV¥,+2a¥;-3\V,
(5.49) AV -BY,=(dy-p)¥o—2(2T+R)V,+ 30V,
(5.50) AW | ~BY,=vV¥+2(y- )V, =3tV +20¥,
(5.51) AV¥,-6¥,=2vVY,-3uV¥,-2aV¥,+aV¥,
(5.52) AV =BV ,=3vV¥,~2(y+21)¥,— (1-4B) V¥,
(5.53) OX - AE‘=(u+y-y)E +XE

(5.54) oE' -8t = (B-a)g'+ (a-B)E'

(5.55) bw—-dw=(B-a)w+(a-RPlw+p-n
(5.56) BU-Aws=(lL+y-YV)W+AW-V

(5.57) AN-Bv=2av+(y-3y-p-A=-V¥,
(5.58) op-8o=1tp+(B-3a)o-V¥,

(5.59) ba—-bR=pp-Ao-2ap+aa+pRE- ¥,
(5.60) SA-Bp=Tp+(a-3R)A- V¥,

(5.61) 6v-Ap=yu—2VR+yu+pZ+AN
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(5.62) by-ARB=Tpu—-ov+(ji-y+y)B+Aa

(5.63) BT-A0=2TR+{(Y+n—-3y)a+Ap
(5.64) Ap-bt=(y+y-j)p-2at-Ao-V¥,
(5.65) Aa-dy=pv-TtA-AB+(y-y-p)a-¥,

Assuming that Peeling holds each component may be expanded as follows"":
(5.66) Yo=Yt 0(rmt"y nc{0,1.2,3.4)n
To obtain a unique solution there must be given 5 pieces of initial data *,

(1) ¥, givenonasurface u= constant.

(2) ¢°=limr2c on a time-like world tube at spatial infinity.

F =@

(3) ¥{=limr*V¥, onthe intersection of the 1= constant surface and the

time-like world tube for part (2).

(4) Re(¥3)=lim r3Re( WV ,)on the same surface as for part (3).

(5) The purely spatial components of the metric on the same surface as for part
3).

Consider the initial data given by part (2). For gravity the news function is 0®,

As in the electromagnetic case the news will determine the radiative aspects of the

field.

47 For linearized gravity we may write, ¥, = i Wi =51 with the muitipole
=0

moments being given by further expanding the ¥ into the spherical harmonics.
48 Page 909, Janis and Newman 1965.
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The physical meaning of the dyad components for gravity have the following
interpretations®.

¥, and¥; = Gravilational radiation,
V¥, - Momentum and intermediate zone radiation,
¥, = Angular momentum and near zone radijation,
¥, = Quadrupole and higher moments.

The derivatives of ¥ , produce the higher multipole moments of the system. The

news function determines the radiation as follows: consider the first components of

the expansions for ¥, g ,. Then, the following relationships may be produced™:

(5.67) Im(‘lfg)=lm(320°)+1111(606"),
(5.68) wi=a5°
(5.69) | ¥4=-0".

Correspondingly, the news appears in the mass-loss equation. The Bondi mass

of the system is given by

(5.70) M=-(81y2)" [(¥3+0°°)ds.

Taking the derivative with respect to u (the retarded time) and then using equations
(5.67)-(5.69) yields the mass-loss equation.

(5.71) M=-(8ny2)" £d°3°ds

49 Pages 302 and 303, Esposito and Witten 1977.
50 Page 454, Bramson 1975.
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Another interesting property of space-times which Peel is that of the Newman-

Penrose (NP) constants. These constants were first reported by Newman and Penrose

in 1965. They found that for asymptotically flat space-times there exist quantities,

expressed as integrals on any nuil hypersurface at infinity, which are absolutely con-

served. In flat space-times the number of constants is infinite. In curved space-times

there are precisely 2s+ 1 complex constants for a field of spin s. The existence of these

constants leads to an interesting property for asymptotically flat space-times, A sta-

tionary field cannot become non-stationary and then stationary in a finite period of

time unless the Newman-Penrose constants return to their original values®'

To obtain the Newman-Penrose constants let us assume Peeling and that the Weyl

components are reasonably smooth so that

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77

Vo= Wor S+ Wir s War7e0(r ),
v =¥irteoy,
Wo=W3r T+ 00,
Va=¥3r2+0(r™%),
V,=¥Sr-tvo(r?y,

o=0r"?+0(r ).

Applying the Bianchi identity yields the following™:

(5.78)
(5.79)

(5.80)

\Vg=-5‘|’(: ’
Vo=-avi+o°V],

W?=-J\Fg+200‘y3 [

51 Page 179, Newman and Penrose 1968.
52 Page 188, Newman and Penrose 1968.
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(5.81) Vo=—~8¥9+30°V¥9,

Consider the following equation, where the integration is carried out over a null

hypersurface.

(5‘82) Gm=I2372m\y(l)ds n7G{_2'_1.0,].2}

The guantities €, will be absolutely conserved if ¢, =0.

GH’I = I2?2m\|"(l)ds

5

Vo=-d(eVo+40°¥?)

Com=- £ S 2. 8{EV3+40°¥ ) ds

The quantity within the brackets in the integrand has spin weight 3, therefore
from equation (A4.16) we have G, =0 . Hence the G,, are absolutely conserved.

The similar manipulation of equations (5.78), (5.79) and (5.81) does not provide
any further conserved quantities. Hence it is believed that the G, are the only con-
served quantities for gravity®, Similar quantities may be derived for the neutrino( NV, )

and electromagnetic ( F ,, ) fields.

(5.83) N,,,=£ L2 1ramV ol me{-1/2,1/2}
with vg=var2+vir?+o@™)
vo= dyad component of the neutrino field.

(5.84) F,,,=£,>",,,,¢},as me{-1,0,1}

53 Page 189, Newman and Penrose 1968.
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When all three fields are present the N ,, and F,, are the same as given above.

However, the gravitational constants receive contributions from the neutrino and
electromagnetic fields. This amounts to extra terms in the integrand for ¢,,. The
total number of conserved quantities is cumulative for each additional field. Several
authors have attempted to shed light on the physical meaning of the constants with
limited success, cf. Carmeli 1969, Robinson 1969, Exton et. al. 1969 and, Glass and
Goldberg 1970. The NP constants remain an interesting and outstanding problem in

gravitational physics.
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6 Asymptotic Flatness without Peeling

From the discussion of the previous chapter it is clear that Peeling of the gravi-
tational field is a sufficient condition to ensure asymptotic flatness. Couch and Tor-
rence (1972) have shown that an even weaker version of Peeling will still provide

asymptotic flatness. They suggested the following modifications™.

(6.1) Vo=0"(r ")
(6.2) v, =002
(6.3) V,=0(r %)
(6.4) Wy=0(r?)
(6.5) v,=0(r")

with €,>0 €5>€,>€;
and ¢,£2 €51,
Thus ¥, and ¥ , obey the Peeling theorembut ¥,, V¥ ,,and V¥, are allowed

to fall off much slower than Peeling requires. Physically the modifications aliow for
incoming radiation which dies off as ¢ - . The solutions of Couch and Torrence are
however not well defined. Indeed, only the radial dependance has been explicitly
determined and the Winicour-Tamburino energy-momentum and angular momentum
integrals® diverge®. The asymptotic symmetry group can still, however, be shown to

be the BMS group”.

54 Page 69, Couch and Torrence 1972.

55 Complete discussion and derivation of the integrals is given in Tamburino and
Winicour 1966 and Winicour 1968.

56 Page 79, Novak and Goldberg 1981.
57 Page 657, Novak and Goldberg 1982.
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Novak and Goldberg (1981 and 1982) used aslightly stronger versionof weakened

Peeling in which they regarded the gravitational components to obey the following™:

(6.6) Vo=0(r ')
(6.7) ¥, =00

£, <ey and ;%1
with V,. ¥, and V¥, Peeling.

These solutions may be shown to be well defined and having finite expressions
for the energy-momentum and angular momentum integrals (and are in fact the same
as those for Peeling space-times) as well as having the BMS group as the asymptotic
symmetry group (this group structure is to be expected since the Novak-Goldberg
solutions are a subclass of the Couch-Torrence solutions). They may also be shown to
be the weakest possible solution for finite outgoing radiation at future null infinity®.

Given ¥, the solutions may be written as follows®:

(68) - v, =0(r" ",

(6.9) ¥, =a 4+ w0/t 0(r ),

(6.10) CW,=we/rte0(r Y,

(6.11) W= W/ r2-3YY/ 300 )

(6.12) ¥, = (VS0 BW e+ 000 WS- BN W+ 2w W)/ (277

58 Page 81, Novak and Goldberg 1981.
59 Page 95, Novak and Goldberg 1981.
60 Page 81, Novak and Goldberg 1981.
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+ WS/ r-3Wy/rEe 00T,

Where the necessary spin coefficients and functions are defined by,

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

{6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

A=r [ r3v dr=0¢r """
B=-r='[(g-0%r""Ydr=0(r"""")
=r"frx1dr=0(r-2'c‘)
D=-r"fr‘Cc[r=O(r'"€‘)
W=p®/r+gONC /P2 =Y, P20 (r )
w=w®/r+FD- (%W + (1/2)¥ O/ r2+0(r ")
A=AC/r -0 2+ 0(r )
o=0%/r2+ 00 ")
p=-r"'=5%r2+0(r""%)
a=a®r ' +5°a%r 2+ Ba’+0°0%r ¥+ 0 (r )
R=-a’r-'6%°r?-Ba’-0¢%"a’r?+3C- 172073904000
1=3C--1/2r0¥0+0(r ")

y=yo- /2%l a0

vevo-rT WSe 1/2r 23V 00T



That the solution is well defined may be demonstrated by showing that the
non-radial components (from the field equations) preduce a consistent set of equations
with proper time dependence. To obtain a solution the same initial data may be used
as for peeling space-times (see previous chapter). It is possible to produce time evo-

lution equations for the coefficients of the ‘dyad’ components similar to those given

for peeling spaces.

(6.27) \i,0=o(r--i-|:|)

(6.28) ¥, =Yoo
(6.29) Vi=ow3-20°¥;

(6.30) VEEPVERPLIE

(6.31) 7\0=W3

(6.32) Im(¥3)=-Im(a°A%)+Im(dw°)
(6.33) Yo= N0+ p°

These equations do not appear to produce any quantities similar to the NP con-
stants®. Physically this does seem reasonable since the weakened Peeling may be
associated with incoming radiation fields (which would imply the NP constants are
continually changing), whereas the NP constants are derived under the assumption of

no incoming radiation.

61 There does not appear to be any such result in the literature, as well, the author
has made several attempts to produce similar constants with no success.
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7 Conclusion

The aim of this tthesis was to give a discussion of the properties of asymptotically
flat space-times and the implications of peeling. We began with Penrose’s definition
of asymptotic flatness. This lead to an investigation of the properties of the boundary
manifold 1. It was found that this manifold has many interesting and ‘non-standard’
geometrical properties due to its non-invertible metric. From this structure the BMS
group emerged. It is interesting to note that when the BMS group was first investigated
there was hope for a connection with particle physics. There are two main reasons for
this: (1) the group structure is metric independent hence there was hope of using it to
create an S-matrix theory for gravitational waves®; (2) both the Poincare and the BMS
group are the semidirect product of the proper orthochronus Lorentz group with an
Abelian group.

Spinor representation of massless fields were also examined. It is striking that
classically all massless fields (of integer and half integer spin s) may be represented by

the same equation, namely:

v“‘d’ﬂ..o:O
with ¢, having 2s indicies.

These fields were also shown to have very similar asymptotic behavior. Namely that
they peel and have NP constants.

Asymptotic flatness without peeling was also briefly examined. In this section it
was found that the BMS group was still the asymptotic symmetry group (for both cases
presented) and that the Novak-Goldberg solution shared many of the same properties

of peeling spaces with the differences attributed to the presence of incoming fields.

62 Page 2863, Sachs 1962.
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8 AppendixI Summary of Spinor Calculus

This appendix provides a brief summary of spinor calculus relevant to the text.
A more thorough treatment can be found in Pirani 1965, Penrose and Rindler 1984

and Benn and Tucker 1987.
Definition (Al.1) A spinor is an element of the vector space defined by the group

of unimodular2x2 matrices over C (hence summationsare over 0,1 ratherthan(0,1,2,3).
It should also be noted that as a group, spinors form a double valued representation

of the proper homogeneous Lorentz group.

Spinors will be written using Greek letters with Latin indices (standard notation

in the literature)
|-spinor £4,n?
2-spinor %%, 0%,
Complex conjugation will be denoted as

(AL1) ="

Spinor indices may be raised or lowered by use of the Levi-Civita symbol

(Al1.2) By =%

(a13) le1-tear=| O ol

Since the metric is antisymmetric care should be taken with regard to the position of
the indices which are being summed over (think of an arrow pointing down and to the

right)

(A14) Efng=cg m,

=_EAB§AnB
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‘I'heorem (A1.1)® Let £,, be any 2-spinor then
(A1) Eap=%am* 1/2¢ ket
Proof: We begin with the identity, ¢ ;5 € ¢p)=0
€a8€cp* CacCpp* EapEpc =0
€€ =0,%,"-6,%,°
GABECDECD=6AC680§CD-6AD6.BCECD
€ 4p5c =545~ Epa
&8s = 1/2GABECC
S Eap=Eunt] /2€ 158c°

This is an important result used extensively in Spinor Calculus.

Theorem (A1.2) Let £* and 0" be arbitrary 1-spinors. Then § 4 is proportional
to n“ if and only if their inner product vanishes.
Proof: Define a 2-spinor B**=%£"n® and apply theorem (A1.1). The desired result

follows immediately.

Theorem (Al3) Let £* and 1" be 1-spinors such that £,n" =1 then
(A1.6) €45=EaNe~ Nakp

and

63 Page 310, Pirani 1965.
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(AL7) 6”.4=§A‘1:"‘].¢5.B-

Proof: Equation (A1.6) follows immediately from theorem (A1.1). From equation

(A1.6) we have

Cac=8aNc—Nakc

BC 8¢ BC
CCac= T M~ N8,

5%, =g, 07 - 'MEB-
Theorem (A14)* Let §,;.x and n* be arbitrary spinors, Then & ,, 1" =0

if and only if £ 45,5 =X 45.,1" forsome A ;5 ..
Proof: =>
Recall ¢42=¢pa=€p0c" thus £, ,m,-%,4s.,.n,=0 Since this is true

VJ.Ke{O0,1} with 11;,#0 and & ,;_,# 0, it must therefore be concluded that £ is
proportional to 0 in the last index. Hence we may decompose £ into a product of
two spinors, the last of which would be n.

<=
Eag. sk =N ap Nk
= Emac =N g nent
However ngn*=0 bytheorem (A1.2), Therefore & 45,5« N" = O and the theorem is

proved.

The above theorem may now be used to prove a much more general result.
Theorem (Al.5)® Every spinor may be decomposed into a sum of products of

1-spinors.

64 Page 311, Pirani 1965.
65 Page 311, Pirani 1965.
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Proof: Without loss of generality we need only consider a spinor whose indices are all
covariant, In this case there will only be one product of 1-spinors as the final result.
Let us consider an arbitrary n-spinor ¢ ,, ,, which is not identically zero. Then a
1-spinor £, may be found such that it is proportional to ¢ ,,_,x in the last index (a
solutionof ¢ 45 ,+&" =0). If the previous theorem is now applied we can decompose
¢ such that,

Oap.ax=MNap.s5xTor someAl,

The above process is then repeated on the successive A s until we arrive at a

product of n 1-spinors (the process will terminate as nis finite). Thus ¢ ,5. ,x hasbeen
completely decomposed into a product of 1-spinors.
The connection between spinors and tensors will now be discussed. The mapping

between them is denoted by ¢, ”*. Inflat space the following may be used®:

018"'=|/\/§(? l)' 023'\.= l/\/_Z(? :)l):

0

' I 0 . — 0
R A Y ()

0 1
The tensor indices maybe raised or lowered with the usual space-time metric and

the spinor indices may be raised or lowered with the Levi-Civita symbol. The mapping

is applied below
(ALS8) gAV =g AVga
(A l .9) n ABW Y g, A l"'o- 5 B .\'n ub'

The inverse mapping is given by

(A1.10) =gy,

The metric tensor is easily seen to correspond with the Levi-Civita symbot

66 Pages 305 and 309, Pirani 1965.
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(AL11) Tab <=>C 4540y,
(AL12) 6%, <->04 6",
Theorem (A16)" £°t,=2det(81Y),
Proof: £g,=8%%bg,,

=058 0% 8 g,

=0, ecp€yr " 00 80V
=0 50" e cyey EITEOV
=€pp€yy §7VEPY
(A1.13) =2clel (£%Y)
Thus if €7 is real and null the following simplification can be made®

(A1.14) ET<->+5 E".

This is due to the fact that clet(£*¥)= 0 requires £** to be singular. This has an

interesting geometrical interpretation which is discussed at some length in Pirani 1965.

Covariant differentiation may be defined for spinors as follows®:

(Al.'lS) ‘7“ (Efl Xy 1 AX... ) = -\702:}.\’... - vu 1 A ."...’
(Al.16) Vg (EAV BTy = (7 g A5y B s gAYy 8,
(AL17) Vad=0,0¢,

67 Page 313, Pirani 1965.
68 Page 313, Pirani 1965.
69 Page 324, Pirani 1965.
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(A1.18) VN =78

(AL19) Vb ap= V4,0, =0,
(Al.2()) vagd=augd—rnsdgﬁs
(AIZI) I-uB;I = l/zofla‘\-(obd.\'rdab+anodf|.\‘) .

As an example electromagnetism will be examined in spinor form. The elec-

tromagnetic field tensor is defined by”

(AL22) o -F, -F¥, -F,
, F, 0 B. -8B,
F ab = -
E, -B, O B,
E, B, -B, 0
which is antisymmetric. Transforming to a spinor yields
(A1.23) Famex =0 00" oxF ay
If a symmetric 2-spinor is defined such that”
(A1.24) G p=1/2F pq"
we may then write
(AL.25) Faswx=Capuy+®apCuy

Note that there are 6 real components in the tensor and 3 complex components
in the spinor. Thus a real bivector defines a symmetric 2-spinor and conversely.
A further simplification can be effected if we consider a linear combination of

the electromagnetic field tensor and its dual. With the dual being defined as

(A1.26) Flap= 1/2604"F e

This tensor has the spinor correspondence

70 Page 74, Misner, Thorne and Wheeler 1973.
71 Page 313 Pirani 1965.
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(A1.27) F* o <=> (€ 440wy~ $aptiy):

Taking a linear combination between the field tensor and it's dual the following

properties are obtained:

(A1.28) .Fab':Fub+”".nb<_>cl-’.\'¢.iﬂ1
(A1.29) Fao=~IF a
Maxwell’s equations then become™

(A1.30) A wd an = aws

with J 4, being the spinor representation of the four current.

The following is a list of some useful spinor identities, most of which can be found

in Pirani 1965 and Penrose and Rindler 1984.

(A131, .32) £4=5"Cay gf=cg,
(A1.33,.34) gant=-n,8? cep =ty
(A1.35,.36) €18€cp=0 € 500 =0,",-0,%",
(A1.37,.38) €58c =548~ Eaa E=8um™ 1/2C 4ukc”
(A1.39, .40) 0,58 =g P 04 p10%cy =02 b,
(Al141, 42) gP¥=0,"" 0,70 0, =0, "
(A143, 44) 0%cy0, T =87, Yap <=>C 4pCuy
(A145, 46) 67, <=>6" " ¢ 7%, = 2del (§7)
(A147, 48) V€ a5=0 740,77 =0

72 Page 329, Pirani 1965.
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(A1.49) . vugdl:anga‘t_rag.{gﬂ
(AL50) P = 172050 g3 0y + 249 8)
(A1.51) Riemann Spinor = R ywaxcypz = Yasco€wy€yz * €45€co Y wyrz

"";nntrz‘bcnw.\'*Ecoct.'.\'q’.mrz + 2N\ (€ 4cEppEwyEyz* € ap€epCwx€yz)

where the Weyl Spinor = ¥ 45cp = ¥ (18cp) » CUrvature scalar = 24 A andthe trace free

Ricci spinor =& py ;=P (apyrzy=Pasrz.

(A1.52) (VawTax =V os P awYNcorz= R oy avnsXeonz * R % pzavexXereo
(A153) T awVax=Vos ¥ aw=Cas TV x )= Cux ¥4 ayp
(A154) Va7 myp(EcEn) =4 AE(c €nyabay =2V apeccE 8’
(A155) v(APVB)PgC="\P’ABCDED+2AE(.'IGB)C
(A1.56) vH(l.‘f‘-f” .\'ﬁo*‘bofl.‘n\'gE

(AL5T) Va"75,pE8=3AE,

(A1.58) Va PVBIPI)EC=_W.+BCDED

(AL159) vuPvB)PEC”‘WABCDED*’ZAE(AEa)c
(A1.60) ¢a i pyp(EcEp)=—2V spr(c 3 D)EE —4AEccepyakm
(AL61) Y A )in=¢om.".\'§o

(A1.62) V4" 5)p8" =3AE,

(A1.63) DOV apep =V Z® apy2+2Cca Vo A=0
(A1-64) VD)"I’ .4aco=v(c2¢.w)rz
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(A1.65) VE P ayz==3V 4y A
(A1.66) (=Yo7

(A1.67) LY sacn= oV, ARHKW DIk
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9 Appendix II Null tetrad and Newman-Penrose Formalism
This appendix provides a summary of the use of a null tetrad, Newman-Penrose

equations and spin coefficients. Let us begin by considering 2 null tetrad ({,,2,,n W1,

such that

(A2.1) L"=m,m*=m,m"=n,n"=0,
(A2.2) tynt=-m,m"=1,

(A2.3) tamt=t,m" =n,m"=n,m" =0.

'The tetrad shall be denoted by

(A2.4) T o=l ity my ).

The tetrad indices are raised and lowered with n,,,

o1 0 o0
.11 0o o o

(A2.5) [0 =10 o0 o -1l
0 0 -1 0

There exists two types of null rotations which transform the tetrad components
into linear combinations of themselves.

(1) Null rotations about /™

(A2.6) L=> 1,
(A7) m,=>m,+Bl,
(A2.8) n,->n,+Bm,+Bm,+ BB,

73 Page 7, Held 1980.
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(A2.9) with BeC.

(2) Rotate m, with {, and n,, fixed :
(A2.10) m,->e*m, with Ac®.

Using the null tetrad the Einstein equations can be cast into a very compact and

elegant form. If the null tetrad is viewed as a tetrad of 1-forms we may write:

(A2.11) Al=1/20u+u)yal+Cam=~t am,

(A2.12) dn==1/2(U+*U)AR+ W AM*U AN,

(A2.13) dm=-u al-t an+1/2(u-u)am,

(A2.14) di-uat=Conam+C,({an+mam)+«Colam=R/12{ am+

Sp/2rAam+1/28 ,,(tan-mam)+S i Am,

(A2.15) du-2wat=-2C,nam=-Co(lan+mam)-2C_,lam-

R/N2(IAnR+mam)+S z/2rAm+S,=/2(lan-mAm)=S,n/2LAm,

(A2.16) du-wau=Conam+C_,(lan+mam)+C.l am-

R/12RAM+Szn/2RAM=8,=/2({ AR=mMAM)*+ S, /20 Am,

with C, beingthe Weyl tensor components, S,, the traceless Ricci tensor components,

and R the curvaturescalar. u. ¢, and w arethe curvature 1-forms. Letusalso define

the following matrices with 1-form components™

(A2.17, .18) n=(_—[ m) v=(U/2 ot )

m n w -u/2

The Einstein equations may then be written as:

74 See ‘spin’ weight in appendix III on spin spherical harmonics.
75 Page 322-324, Chinea and Guerrero 1985 (slightly different notation).
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(A2.19) dN=yAN-NAY,

(A2.20) dy=yay+wan=-Nan+nayl,
with
l+n m T do-T
21, N=R/24 — ¥y =

(A221,.22) ¥ (m n—l)' (b-T e-T)
(A2.23) a=(—sm_n"8nm'_Snn'—smrﬁ)’
(A2.24) b=(Snz-~Spm Sam~Sim)
(A2.25) d=(_Smﬁ’_smm'"8nﬁ'_8““)’
(A2.26) e=(_sfﬁ-_slm-sm}ﬁl_sll)'

In vacuum the equations reduce to:

(A2.27) dn=yan-nay,
(A2.28) dy=yAay+wan.
In flat space the equations again reduce to form:

(A2.29) dAN=yAan-nay,

(A2.30) dy=yavy.

The exterior product sign may be slightly misleading, in the above three sets of
equations it is meant to imply matrix multiplication such that the product between the
matrix elements is the exterior product.

The set of equations for flat space have been solved with the solution being given
by™:

(A231) ono =5

76 Page 324, Chinea and Guerrero 1985,
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(A2.32) dd=-dcy,
where ¢ and § are matrices whose components are O-forms,

pcSL(2,C) and E=E .
The Ricci rotation coefficients (complex) may also be defined in terms of the null

tetrad:

(A2'33) Ymm’ =T mu:vT ey,

To discuss the Newman-Penrose formalism” let us introduce a spinor basis

{0"*,.") such that

(A2.34) 0% ==0 =1,

The spinor basis is related to the tetrad basis by the following:

(A2.35) ("=6" y0"0",
(A2.36) n*=g", 4%
(A2.37) m"'=g" 075

We may also define a dyad (similar to the tetrad notation presented earlier) for

the spinor basis.

(A2.38) g2 g, =0 and &, =11,

The dyad analog of the Ricci rotation coefficients is then given by

(A239) I- abed = Eml:ugb AU ucd .

[ wbea is Symmetric in the first two indices. The spin coefficients are defined as

components of 1" ;p.q+

77 This presentation will follow closely that of Newman and Penrose 1962.
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cdd\ab] 00 01 11
00 K o« N

(A2.40) Fapea= 10 poa A
0] ¢ E |
11 Yy v

The spin coefficients may also be defined in terms of the Ricci rotation coeffi-

cients, and in the null tetrad notation:

(A241, 42) K=Y,3 =L m* 1Y, M==yay ==, Y,
(A2.43) €=1/2(Y,2)~ Yan )= 17200, 4 Y —m, " 1Y,
(A2.44, 45) p=vias=lym*m’, A=—Yau=-n,,mm .
(A2.46) a=1/2(Yiz4= Vass) = 172(1,, m n" - m,, ,m"m")
(A2.47, .48) 0=Y133= lu.ym*m", H==Vau=—R,.mm",
(A2.49) B=1/2(Yizs~Vasa)=172((,..n"m* = m,,,m"m")
(A2.50, .51) VE—Yop=-n,,mn". T=VYia2= . wm¥nY,
(A2.52) Y=1/2(Yi22- Vasz)=17201,.,n%n" - m,,,m"n",.

Many of the above coefficients carry a specific geometrical significance. A
thorough discussion of this (and the application to ray optics) may be found in chapter

4 of Pirani 1965.
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Four intrinsic derivatives may also be defined which are central to the

Newman-Penrose formalism:

(A2.53,.54) D=1"7,. b=m"v,,

(A2.55, .56) A=n"v,, b=m"v,.

In dyad notation they have the form:

(A2.57, -58) I) = aoo ' b= aol *
(A2.59, .60) A=2d,,, 6=09,,.

Below is a list of identities involving the spin coefficients, intrinsic derivatives

and the null tetrad. The Einstein equations are also given in spin coefficient form.

(A2.61) L'=m m*=m,m"=n,n"=0

(A2.62) Lamt=i,mt=n,m"=n,m"=0

(A2.63) T o= Clyongm, . m,)

(A2.64) Mo = T o T av 9"

(A2.65) Ricci Rotation coefficients =vy,*""=7,,. 1"T"
(A2.66) L Aed At

(A2.67) Reimann tensor =R 0= Rapye T ul a1,
(A2.68) R T A TR T S G TR TR
(A2.69) Y AP = ymap oy

(A2.70) Ricei identity =37 muiep)= /27T mo R ap
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(A2.71) Bianchi identity = Runpgr1=Ym 1R pg1in= Yo' 1:R pqiim

* 2Ryt p¥r' g
(A2.72) o= (YY) L= (e BY My + T L =t L amy i, +
OI Ty PITL I + PO, = KIN Iy — KA+ (C+ an,
(A2.73) Ry ==+ DI,y = (Y* Y, L+ (@ + By + (a+ B, my +
wmn, Hmn,+ v, l,+ Vi, —pm,m,-pjm,m, - Amgm,-Am,m,

(A2.74) My =l n,+ Vi L= Nm —nl,my -k, =ty de+

Gl My * Pl + (€=, + (Y= Y)m, L+ (@-Rym,m, - (a-pBym,m,

(A2.75) 1% =-p-p+(e+€)
(A2.76) Rt = —(yry)rp+it
(A2.77) m*, =n-t-(a-B)

Dyad components of the Weyl Spinor.

(A2.78) Wo= woooo=gdogaogcogoowdacu="Cuvpol"mvlpmo
(A2.79) V=W =8 ELECED Y anco = ~Cuvpa "7 10 M°
(A2.80) Vo= Yoo =8 ' &P EE” Y apen=

1/2C upe( " AYm m’ = 1"n"1"n°)
v

(A2.81) Vy=¥oin =§'105815Cliolwasco"cuvoom""vlpno

(A2.82) Vo=V, =8t T ECED Y Aaco=‘Cp-.-oo;F~u" Ym®n®

Dyad components of the traceless Ricci spinor.
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(A2.83) ¢:1|)=¢_1RP0£'10E.BnEPt A

(A2.84) bor= ppol &
(A2.85) Goa=d aprok T E Y
(A2.86) S o= upeb 'Y E E%
(A2.87) S = et B ETEY
LAZBS)_ P a=P et EETEY,
(A2.89) Ga0=® 1ppok £V E R
(A2.90) $o =P anpeb B ETE
(A2.51) o= et 8P ETEY

Dyad components of the Maxwell Spinor.

(A2.92) o= Fuv " mY =058 E"

(A2.93) 0,=1/72F ("n+m"m*y=¢ 8" &,
(A2.94) 02=Fym'nY=0,,8" 8"
Maxwell’s equations.

(A2.95) By~ Do, =(2a-1)0o=2pd, + K, —21J g0
(A2.96) 50, = Do, =N —21¢, + (20 =p)h,—21J g,
(A2.97) Abo-60,=(2y-N)bo- 2T, + 0, ~ 20 o
(A2.98) Ad =09,=Vveo— 210, + (2B -1)0,-7210d

Commutation relations where ¢ is any scalar function.
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(A2.99) [AD]o={(y+Y)D+(c+e)A-(T+T)B}6

(A2.100) [6.010={(a+R~T)D+KA-0b-(p+e—€)b}d
(A2.101) [0, A ={~VD+(T-a-P)A+Rb+(p-y-Y)b}¢
(A2.102) [o.b]o={C(u-1)D+(p-p)A-(a-B)b-(R~a)d)¢

Bianchi identities.

(A2.103) BYo- DY+ Ddg —bdg=(da-10)V~2(2p+e)V, +3x V¥,
(=20 -208) b+ 2(6+p)Pg 200 ,,-2kd |, Kby,

(A2.104) AV =0W, +DPg=0Pg =(Hy-n)¥o-2(2T+B)¥,+30V¥,
R+ 2(T=R) o, + 209, + (26 - 26 +p)P oy~ 2K P,

(A2.105) 3BV, - DV, )+2(Dd |, -6 )+ by —Abee=3AV¥-9p V¥,
F6(a=1)W,+6k Y+ (=21~ 2y—2Y)bgo+ (20 + 21+ 2T) by,
F2(T-20+1)D,p+ 2(2p =)D | + 20D - 0P = 2K D 5= 2K Py,

(A2.106) B(AY = 0V,)+2(Dd,—bd, )+ (Bbga— APg ) =3vV¥g+

G(y-1)V (=~ 9TW,+60¥ 3= Vdoo+ 2(I—jt=y)bg — PR D o+ 2(T+21) P, +

(Pa+21+T-2B)P o, + (2p-2p=4€)P |+ 20%,, - 2Ky,
(A2.107) 3(BW,- DY)+ Db, 0,0+ 2(8d ) —AP 0)=6AY, -9V,
PO -pI¥4+3KY, = 2vdoe+ 2P g, + 2([I- 1= 2Y)P o+ (21 +4T)d
F(PR+2T+N-20)Ppg— 20D ,+ 2(p-p-€)Py ~ KDy

(A2.108) AV, 0¥ )+ Db,y — 0, +2(09 - AP )=
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6VY UV, +6([-1)V3+30V¥,-2vdy - 2vd o+ 2(2n- ),
2 2AD = AP+ 2(N+T=2R)b L+ 2(B+rr+T)d,, +(p-20 =20 -2p)b,,
(A2.109) DY~ DV, +b8d, ~Ad,o=3AV,-2(a+210) ¥, + (e -p) V¥,
—2ve +2A ey, +(2y =2y + S+ 2(T- )by, —0b,,

(A2.110) AW =W, +8P,— Ad,, =3vV,-2(y+ 21V +(IB-T)V,

—2Vd | = VP, + 2hd 1+ 2(y+ )P, + (T- 20 - 2a)dy,

Contracted Bianchi identities.

(A2.111) Db, —0® - 0Fg; + NP+ IDA=(2y-n+2y-1)bge+
(N=-20=-2T)bg, +(H-20-2T)P o+ 2(p+p) ), + TP+ 0P - Kb - KD,
(A2.112) D®,,-0d ), —0P g+ NPg, + 30N =(2y -y -2|)dg +
Vg = Rbg, +2(N-T)P,, + (N+ 2B~ 2a-T)bg, + (2p+p - 20)b , +db,, — kb,
(A2.113) Dby, —bb, =8P ,+ AD, +3AN=vdg + vd =~ Abg, -

20+ )b, RNy + (2N=T+P2RID ,+ (2B-T+21) &y, + (p+p = 20 = 20 )by,
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10 Appendix III Conformal Transformations
This appendix will provide a brief summary of the Conformal behavior of various
spinors and tensors relevant to General Relativity. Most of the results can be found

in Esposito and Witten 1977 and Penrose 1964 and 1967.

Let {{1.(j.») bead-manifold with metric. Let Q be a smooth positive scalar

function on {V1.Jw}. A Conformal Transformation of {V.Ja} is given by
introducing a new metric, ¢ = 0%, on {X1.¢q ) and regarding the conformally
transformed manifoldas {(M.¢u ).

For each tensor field on {¥.J., ) there exists a real number w called the

dimension of the tensor field. For examplelet a“~¢, , beatensorfieldon (M. Fap)
with t contravariant indices and < covariant indices. Then under a conformal

transformation the tensor field becomes:

(A3.]) au..cb”d=Qu'-u-da“a..cb”d.

The indices of the transformed field are raised and lowered with the new metric ¢ ...

The dimension is unchanged under contraction and is additive under the exterior
product.

To study the behavior of the derivative operator the following tensor is defined:

(A3.2) C™ == Q720" (7 ) A= G g™ 7, Q)
Let a® ., be any tensor field on {A7.J ). Then
(A3.3) r'7acxb"cuf..n""‘:’nc’b"rnr..a"”cbmn‘xm"cct"n"'---"‘Ccnm‘i‘b'""ar..«
_.Cmmfub”rm..a_"'_Cmaoab“cd..m'

The Riemann tensor may now rewritten as follows: let 4. be any field on

{X1.6 a0} then
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(A3.4) | /?'Rubrdkd = ‘\7|u \7 blkr

(A3.5) =10 CL o+ C" 1k )

(A3.6) =L a (1o ke v C" ik )+ C" (g K+ C" b )
(A3.7) = 1/2R pe W a* V0 C" 1k i € g™ o v
(A3.8) S Rape = R T+ 2 C e 200 Y
(A3.9) = Cove=Cunc”

(A3.10) 3 Rap=Rap+ 207 7,7, 0+0 ¢V 80

=307 Ga (7" (71 0)
(A3.11) SR=RO+06QY™7,0-1201"Q)(/,0).

The behavior of the spinor representations of massless fields of spin s is partic-
ularly simple. Consider a symmetric spinor with 2s indices which satisfies the spin s

massless field equation.
(A3.12) T2 4p.0=0
Recall that if there are 4 indices on ¢ ,, , then the above equation may be

interpreted as the Bianchi identity. Hence, this equation should be invariant under all
conformal transformations (see Penrose 1967 for a proof constructed by examining
the behavior of solution, written as a Kirkoff integral, under a conformal transfor-

mation). By requiring this we find that ¢ ,, , must have a conformal density of -s-1

(A3.13) G k=" 04 i

Which yields the desired result  7*¥¢ 4, ,=0.
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11 AppendixIV Spin Spherical Harmonics
Before we define the spin spherical harmonics a definition of ‘spin weight’ and

the action of the two operators & and & (edth and edth-bar) must be given.

A quantity 1) has a spin weight s if it transforms under a rotation of angle &, by
(A4.1) n' ="y,
If 11 has spin weight s (st (n) = 5) the operator & may be defined as
(A4.2) F=-(sin®)*(8/30+i/sin0a/9¢){(sin®) *nk
Note that the quantity &'1] now transforms as
(A4.3) Fy=e'lt-Dan,
with sw((dm)=s+1.
Similarly the operator & is defined as
(A4.4) En=-(sin0)"(3/30~i/sin08/3¢){(sin0)*n}.
wilh sw(dn)=s-1.

We may now define the spin spherical harmonics as,

(A4.5) Y= (=) I (L+ )1 &Y, 0<s<!

(A4.6) (= 1)y ({+sM/(l-s)'F " Y, —{$s%0

=0 =2 =) m= usual spherical harmonics.

The harmonics are defined in what is called the standard gauge. A definition
given in an arbitrary gauge can be found in Dray 1985. Below is a tabulation of some
of the properties of the spin spherical harmonics which will be useful in the text (the
proofs and/or derivations can be found in Newman and Penrose 1968, Dray 1985 and
1986, Moreshi 1986 and Ivancovich et. al. 1989). Note that all integrals are over the

2-sphere.

-68-



(A4.7)

(A4.8)

(A4.9)

(A4.10)

(Ad4.11)

(A4.12)

(A4.13,.14)

(A4.15)

(A4.16)

(A4.17)

(A4.18)

(A4.19)

(A4.20)

s)’hn:\{(i—.s)!/(t.hs)!du)'lm O0<ss!

Y= (1) /(=) &Y, ~1$850

'.) m= (_ | )m-s_s)- t.-m

Js)'lm=\i(l_s)([+s+ I')_-:-I)-hu

3!_.)’““="'\{(f‘8)(1—5+ l)s-lyfm

?Js).hu=_.(l_s)(!+s+ I)s}’lm

&Y =0 Z.Y 4m=0
[ & Edw=0 wilth sw(E)=-1-1.
Jrfuns'l-s’lﬁdw=0 with sw(g)=1(+1.
[AFBdw=-]BZAdw with sw(A)+su(B)=-1

[ mesndw=(s=1)({+s+ 1)/ ) undw
EEN -8 =251

sw(d)=1=-sw(d)

If we let ¢, and © be the complex stereographic coordinates on the 2-sphere.

Then the following identities may be used (Let 1) have a spin weight of s.):

(A4.21)

(A4.22)

(A4.23)

Foa=(1+85) CI(1+5) al,,

a‘tr)'lm=\"(t_s)(l_s+l):r-l)'ma

Y= (=D m) (=) 20 D)L= s) U+ s)
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. . pop-5-m
SRR o

peb P p+rs—m (|+cE)”’

(A424) f.-.)- tmn ;}_'.r'm‘dw = bu' bmm 'y

(A4.25) B8V 1= (L= 1)L+ DU 2YU/ )Y i
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