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ABSTRACT 
This research considers a remanufacturing enterprise that constitutes a stage in a closed 

loop supply chain. Each returned item is precisely tested and assigned a quality grade 

between zero and a hundred. Consequently, acceptance to the facility, acquisition price 

and remanufacturing cost are all quality dependants. The research implements the 

newsvendor modeling techniques to model the system when a single remanufacturing 

facility satisfies a single market’s demand or when multiple remanufacturing facilities 

satisfy multiple markets’ demand. Thus, non-linear programming or mixed integer non-

linear programming models are proposed to maximize the total profit by selecting 

facilities to operate, optimal minimum quality to accept into each operating facility and 

market’s demand to satisfy from each operating facility. Returns’ quality is considered to 

be stochastic, while markets’ demand could be either stochastic or deterministic. The 

impact of changing returns, quality and demand uncertainties, and transportation cost 

on remanufacturing systems are studied.   
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CHAPTER 1: INTRODUCTION 

1.1 Evolution of Closed Loop Supply Chain (CLSC) 
Products take-back is one of the activities that many enterprises are obliged or 

encouraged to do in today’s industrial environment. There are many motives that 

encourage the process of take-back such as: profitability, ethical responsibility, 

environmental legislation and social benefits (Seitz, 2007). Profitability is the major pillar 

among all and the degree of profitability is also very important in this context. Also, the 

ethical responsibility is one of the major motives and it is revived by notions such as 

‘desirable carrying capacity’, ‘corporate social responsibility’, ‘corporate citizenship’ and 

‘environmental issues and ethics’ (Seitz, 2007). 

Since certain products are to be returned or taken back to certain collection points, a 

type of management has emerged. This management is called reverse logistics, because 

it manages the flow of products from the end customers to the collection points. Indeed, 

compared to the well known direction of product flow from producers to customers, this 

flow of product is in reverse. If the traditional forward product flow is integrated, 

coordinated or harmonised with the reverse product flow, the enterprise will create 

what is called a Closed Loop Supply Chain (CLSC). According to (Akcali & Cetinkaya, 

2011), “the purpose of the Forward Supply Chain (FSC) is to provide value to the end 

consumer in terms of products, whereas the purpose of the Reverse Supply Chain (RSC) 

is to recover economic and environmental value from used products in a cost effective 
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manner. As the Closed Loop Supply Chain is characterised by recovered material, 

component, and product flows between the FSC and RSC, the CLSC’s objective, in turn, is 

to supply the recovered value to the end consumer in a cost effective manner”.  

As a consequence of this take-back, product recovery processes were born in the form 

of reuse, recycling, cannibalization, repair, and remanufacturing.  The following 

descriptions briefly explain each process:  

1. Reuse is the process of directly reusing a product without carrying any repair 

activity apart from simple cleaning and minor maintenance. Examples of such an 

industry include reused pallets, bottles and containers.  

2. Recycling is the process of recovering material in such a way that is destructive to 

the shape or structure of the products.  

3. Cannibalization is the process of reusing in good condition parts and components 

that are recovered from used equipments to perform customer services such as 

maintenance work. 

4. Repair or reconditioning is accomplished by restoring failed products to working 

condition, but not to as good as new condition. With such a process customers 

expect deterioration in the quality compared to new products. 

5. Remanufacturing or refurbishing is the process of transforming or restoring the 

condition of the used product to its original condition or as good as new without 

performing structure destructive processes. It includes processes such as: 

collection, disassembly, inspection, testing, grading, cleaning, identification of 

parts, parts recovery and product re-assembly. 
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Indeed, some of today’s markets do not only receive their products from manufacturing 

facilities around the globe, but also from remanufacturing facilities that are run by 

financially alert and morally responsible management. Remanufacturing has increased 

drastically in the last two decades due to the increase in producer as well as consumers 

awareness regarding remanufacturing outcomes. Remanufacturing is an approach used 

by many companies from different industries such as Dell, Hewlett-Packard (HP), IBM, 

Kodak, Xerox, General Motors (GM), Jasper Engines and Transmissions and Goodyear. 

An example of the different remanufactured products include: photocopiers, cellular 

telephones, single-use cameras, car’s engines and transmissions and retreaded tires. 

Intuitively, the reader might ask whether the remanufactured parts/products will have 

the exact selling value as the new product or not? In another word, does 

remanufacturing occur under perfect substitution environment or not? The answer to 

this question depends on whether the customer will be able to distinguish between the 

new product and the remanufactured product or not. If not, in terms of performance, 

shape, or even mentally, then both products manufactured and remanufactured will 

have the same monetary value and thus they are perfectly substitutable. Mental 

distinction between products can occur due to customer behaviour or customer 

misconception towards remanufactured products. Moreover, the following table, 

according to (Akcali & Cetinkaya, 2011), will categorise remanufacturable products and 

associate each category with its market properties: 
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Product 
Categories Example Demand 

Volume 
Usage 
Period 

Product 
Life Cycle 

(PLC) 

Product Structure 
and 

Remanufacturing 
Operation 

Perfect 
Substitution 

Refillable 
Containers 

Single use 
camera and 

Printer 
cartridges 

High Short Long Both Simple Perfectly 
substituted 

Durable 
products 

Ships and 
automotive 

parts 
Low Long Long Both Complex Can be 

either ways 

Technology 
products 

Cellular 
phones High Short Short 

Structure is 
complex 

Operation is simple 
No Perfect 

Substitution 
Table 1: Remanufacturable Products Categorization 

The system considered in this research is related to the durable products, e.g. tires in 

the Canadian markets, or any system that is similar in nature.  

1.2 Model Motivation 

1.2.1 Quality Uncertainty Recognition 

This research is inspired by a very deep relationship between quality and many 

remanufacturing attributes (e.g. returns’ acquisition price, remanufacturing cost, 

remanufacturing lead time and pre-remanufacturing holding cost). Such a relationship 

could be found in many durable products that have a long usage period and low demand 

volume. For the purpose of comprehension, let us assume the presence of a facility that 

remanufactures a certain type of returns. The returns will be delivered to the 

remanufacturing facility after being used by the customers. Those returns will be 

thoroughly inspected by the remanufacturer and graded. The grading of returns could 

be performed using the weighted average method. For example, each return that comes 

to the facility will be evaluated against its model, age, condition, number of repairs 
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needed and the associated material cost, skills and equipment needed to perform the 

remanufacturing process and/or amount of work needed to remanufacture the return. 

Once the return is graded, it will be given a quality score ranging from 0 to 100. While 

zero is the lowest quality and is considered to be near scrap, one hundred is the best 

quality and will need the lowest remanufacturing or repair efforts. As a result, quality is 

not considered to be deterministic, but rather uncertain just like other uncertainties that 

are greatly addressed in many production planning and inventory control literatures. 

This uncertainty is represented by an appropriate quality distribution. Indeed, literatures 

concerning remanufacturing systems and closed loop supply chains have not adequately 

addressed quality uncertainty as this study will. This fact is stated by (Akcali & Cetinkaya, 

2011) when they say “although the uncertainties associated with the timing and 

quantity of demand and return have been taken into account by developing stochastic 

Inventory and Production Planning  I&PP models, the quality uncertainty associated with 

returns is rarely taken into account in an explicit fashion”. Generally speaking, 

uncertainties in remanufacturing include: timing of used products return, location where 

each used product is returned, fraction of products that are returned, i.e. quantity of 

returns, and quality of returns. 

1.2.2 Costs – Quality Relationships 

Since the quality of returns vary, then the price associated with a particular return as 

well as its remanufacturing cost will depend on the return’s quality. Indeed, in terms of 

quality, the return’s acquisition price could be described by an increasing linear function, 

while remanufacturing cost could be described by a decreasing linear function. Indeed, 
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relating acquisition price to return’s quality was not considered in previous literatures. 

Also, the summation of those two costs will introduce a decreasing linear function in 

terms of quality. As a result, better quality returns are always more appreciated as they 

are associated with lower total spending and thus more profit. The above relations and a 

visualization of the quality distribution are presented in Fingure-1 below. The shaded 

area under the quality distribution curve represents the portion of returns that are 

accepted to the remanufacturing facility. Returns that fall out of the shaded area, are 

considered to be low quality returns and the facility is better off not to remanufacture 

them.  

 

Figure 1: Quality Distribution and the Linear Relationships Between Return Price, Remanufacturing Cost and Quality 

According to (Akcali & Cetinkaya, 2011), “the processing costs and revenues can be 

quality, volume, and/or lead-time dependent. For example, the cost associated with 

remanufacturing an automotive engine that is driven in a cold climate might be higher as 

the engine is subject to more wear and tear (due to extreme temperature changes). 

Similarly, the remanufacturing cost for a two-year-old transmission may be much lower 

than the remanufacturing cost for a five-year-old transmission as more components 
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have to be replaced for the latter. For instance, as we noted earlier, the recoverable 

value residing in remanufacturable technology products deteriorates over time”. 

From such a statement we can notice that the cost-quality relationships have not been 

addressed properly in the previous literatures.  

1.2.3 Perfect Substitution 

This paper discusses a remanufacturing system in which perfect substitution does not 

exist. Therefore, remanufactured products have less monetary values and can not 

substitute the newly manufactured products as discussed above. Literatures concerning 

closed loop supply chain and remanufacturing systems, in the last two decades, have 

heavily considered the case of perfect substitution and not the case without perfect 

substitution, although the second one is much more applicable in today’s market if 

durable products are considered. “In the automotive replacement parts industry, 

however, we observe more complex interactions. Specifically, the remanufactured and 

manufactured parts are perfectly substitutable if the vehicle is under warranty, as the 

OEM decides whether to use a manufactured or a remanufactured part for replacement. 

If the product is beyond warranty, however, then the customer’s willingness to 

substitute a remanufactured part for a manufactured one (or vice versa) depends 

critically on the age of the vehicle and the price difference between the remanufactured 

and manufactured parts” (Akcali & Cetinkaya, 2011). 

Indeed, we have intended to make this work beneficial to as many remanufacturing 

systems as possible. Therefore, perfect substitution is not allowed in this paper. This 
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work will, also, be applicable beyond the warranty period which is three years in most 

cases. Thus, excluding the warranty periods, automotive parts fall in the category where 

perfect substitution is not applicable most of their useful life. 

1.2.4 Modeling for a Single Item 

According to (Akcali & Cetinkaya, 2011), durable products have to be modeled in a multi-

items setting. Indeed, this is true if the company does not take back products in a 

selective way. For example, if the enterprise chooses to accept all grades of returns for a 

certain model, then good and bad returns will be accepted to the remanufacturing 

facility. Most probably, the returns in good condition will be remanufactured and any 

broken parts will be either taken from the new stocks or taken from the faulty returns if 

such parts are in sufficient condition. Therefore, the bad returns are used only for 

cannibalization purposes. On the other hand, if the enterprise is selective in terms of 

quality, then only the returns with better quality than the optimal minimum quality will 

be accepted. In another word, the enterprise takes back only the higher quality portion 

of the return. As a result, all returns will be remanufactured to meet demand and no 

cannibalization is permitted in normal circumstances. Indeed, the enterprise might 

remanufacture more than one type of returns. In this case, multi item model could be 

used.  

1.2.5 Networking in Remanufacturing Systems 

The case where the enterprise runs multiple remanufacturing facilities to satisfy multiple 

markets’ demand when quality is uncertain was not considered in previous literatures 
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although it is very common in today’s market. Each facility might experience different 

parameters such as return and average quality. At the same time, each market might 

behave differently by having different average demand as an example. Such a system 

should be thoroughly tested and this work will have the precedence in doing so. 

1.3 Industry Selection 
As could be noticed from the previous section, quality grading should be carried over 

prior to purchasing or dismantling returns.  Finding such quality grades in many 

industries is impossible due to the lack of knowhow, absence of technological enablers 

or complexity of the return’s structure. Thus, choosing a proper industry is a vital step 

before we could implement our study. One of the industries that has a great potential to 

benefit from this study is the tires remanufacturing or retreading industry.   

Retreading is the process of replacing the tire’s tread for a scrapped tire and produce as 

good as new retreaded tire. Indeed, there are many other options to properly scrap tires 

such as; tires export, tire-derived fuel (TDF) applications, civil engineering applications, 

agriculture applications and ground rubber production. A general supply chain chart for 

the tire industry is represented in the figure below.  
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Manufacturing Tires  Retreading Tires 
 
 

New Tires  Retreads 
 
 

New Tires Users  Retreads Users 
 
 
 Collectors  
 
 
 Haulers  
 
 

Landfill  Energy Recovery 
e.g. TDF applications  Material Recovery 

e.g. ground rubber  Product Recovery 
e.g. Retreading plant 

 

 

Figure 2: Generic Overview of the Tire Supply Chain 

The process of tires retreading or remanufacturing could be the business of two main 

parties and they are: original equipment manufacturer (OEM) or independent 

remanufacturer. There are about 1200 plants that perform tire retreading in North 

America ranging from small plants that produce 20 retreads per day to large plants that 

produce 100 retreads per day. According to (Boustani, Sahni, Gutowski, & Graves, 2010), 

“the tire retreading industry is reportedly the largest sector of remanufacturing industry 

in the United States in terms of the number of remanufacturing (retreading) plants”. 

In North America, 80 to 100 percent of the aircraft and heavy truck tires get retreaded, 

while about 30 percent of the light and off the road (OTR) truck tires get retreaded. Due 

to the incorrect perception about retreads safety, only 2 percent of the passenger car 

Scrap Tire Market 
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tires are retreaded in North America. All North American retreads generate only 3 billion 

dollars in revenue. If compared to the 2.23 billion dollars generated only by Goodyear 

North America in its sales for new tires in the third quarter of the fiscal year 2011, 

retreading should be better managed. Thus, the results reported in this thesis could be 

of use to the retreading facilities as well as many other industries that have similar 

settings. 

Since, the retreading process removes only 10 to 20 percent of the tires total 

construction weight and preserves the core, it is considered to be the ultimate option 

for managing scrap tires. Retreaded tires could be as much as 70 percent cheaper than 

newly manufactured tires. Moreover, tires could be retreaded three to five times 

depending on the remanufacturability of the tires and the condition or quality of the 

returned tires.  

There are many key players in the retreading industry. Some of those players and their 

associated tasks are briefly discussed below: 

1. Collectors or tire retailers collect scrap or used tires after being replaced with new 

or retreaded tires by customers. An example of such retailers in Canada includes 

Costco, Canadian Tires and many other tire garages.  

2. Haulers are businesses that make a profit by aggregating, sorting and delivering 

collected tires to the appropriate processors. The sorting is performed to separate 

retreadable from non-retreadable tires in an effort to sell those retreadable tires 

to a remanufacturing facility. Indeed, retreadable tires could bring up to one third 
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of their original price in revenue for the Haulers. Consequently, every retreadable 

tire is potentially associated with high revenue. This aggregation and sorting 

processes are assumed to be performed periodically.  

3. Processors are the many parties that process scrap or used tires to produce useful 

and environmentally responsible products. A retreading plant is among those 

processors that were briefly mentioned above.  

Every retreaded tire should go through each of the following processes in order to be 

legally remanufactured in Canada: 

1. First Stage Inspection: this inspection is conducted visually by the haulers to sort 

tires into retreadable and non-retreadable tires. 

2. Second Inspection Stage: the inspections conducted by the retreading plant in this 

stage are more rigorous inspection methods as they are performed using high 

technology equipments. For example, Shearography is a machine that possesses 

two digital laser cameras and able to detect any air trapped or any separation in 

the tire casing. If any is found, the tire will be rejected from the retreading plant 

and directed toward the waste stream. Also, the nail hole detection equipment is 

used in this stage to perform a non-destructive test. This test induces electricity 

into the tire’s casing to detect all nail holes or flaws in the tire’s casing. There is no 

limit to the number of flaws that could be repaired during the retreading process 

as long as they do not overlap. In order to apply this study, each tire should be 

quality graded based on number, location and type of flaws exist in the casing as 

well as type of repair needed. Indeed, a nail-hole costs less than a section repair, 
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because it requires cheaper repair material and less repair time. Thus, the 

existence of one section repair will drop the quality grade much more than one 

nail-hole. 

3. Buffing Stage: is the stage where the tires’ tread is peeled off using sharp blades. 

4. Patch and Repair Stage: is where all tires get repaired and patched from any 

damages in the tire casing. Compared to all other stages, this stage is labour 

intensive, because every tire is repaired based on its needs and no two tires are 

identical. As a result, automation can not be implemented in this stage. Also, the 

more repairs are performed, the more expenses the retreading plant will 

experience. Consequently, the plant should identify the minimum quality grade 

that is acceptable for retreading.  

5. Tread Application Stage: tread can be applied using one of two processes that exist 

in the market. The first option is the cold retreading process where the tread is 

already pre-moulded and cured before the tread application. The process is 

completed by adhering the pre-moulded tread to the buffed tire. The second 

option is the hot retreading process where rubber is applied on the buffed tire and 

then they all placed in a mould. The mould including the tire is then heated until 

the tread is eventually formed.  

6. Final Inspection and Shipping: in this stage tires will be re-inspected using the 

same NDT test as before and prepared for shipping. 

As a result of what have been addressed in this section, the retreading plants could 

boost their financial performance by adapting this study or similar studies that 
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encourage quality grading for the returns. Also, tires can be easily quality graded before 

dismantling or before starting the remanufacturing process. Thus, this industry is a great 

candidate that can benefit from our study. 

1.4 Research Objective 
My research objective is to propose newsvendor like models to study the system’s 

performance and return management when quality is uncertain and the enterprise runs 

either a single remanufacturing facility to satisfy a single market’s demand or multiple 

remanufacturing facilities to satisfy multiple markets’ demand. In the single facility and 

single market case, the research will propose non-linear programming models and 

differential-type formulas to maximize total profit by choosing the optimal minimum 

quality that should be accepted into the remanufacturing facility. In the case of multiple 

facilities and multiple markets case, the research will develop mixed integer non-linear 

programming models to maximize the total profit by selecting facilities to operate, 

optimal minimum quality to accept into each operating facility and market’s demand to 

satisfy from each operating facility.  
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CHAPTER 2: LITERATURE REVIEW 
During our literature review, we have noticed that most of the papers concerning CLSC 

and remanufacturing systems did not consider quality uncertainty. On the other hand, 

few papers have considered quality uncertainty under CLSC and remanufacturing 

systems. Among those that considered quality uncertainty, very few papers assigned 

quality distribution to quality. The rest have considered the yield of the returned lot. All 

of those issues and more will be detailed in two sections below. 

2.1 Literature on Remanufacturing with Quality 

Uncertainty 
This work has enormously benefited from the review paper of (Akcali & Cetinkaya, 2011) 

as it offers a general overview of the existing models in the remanufacturing industry. 

This work has reviewed many papers that deal with modeling I&PP systems in 

remanufacturing environment and, at the same time, evaluated many papers that 

reviewed the same topic. These authors’ state that “none of these reviews provides a 

comprehensive and comparative examination of the up-to-date literature that allows for 

a critical assessment of the existing I&PP models”. Indeed, the paper was able to discuss 

many issues related to I&PP and their operational as well as modeling effect, classify the 

existing literature into different categories based on several system parameters, relate 

the system parameters to the used solution methodologies and modeling techniques, 

and suggest several major research paths. In terms of demand and return, the paper was 
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able to recognise that the existing mathematical models have been following one of two 

paths, either deterministic or stochastic. The models under the deterministic class 

consider time either as continuous or discrete. On the other hand, the models under the 

stochastic class were further divided into either continues or periodic review. Each one 

of these subcategories is even divided further into several minor subcategories with 

several papers as an example of each. The minor subcategories were classified based on 

the following: 

1. Modelling parameters or decision variables. 

2. System structure and characteristic. 

3. Time setting and planning horizon. 

4. Type of product and number of items. 

5. Allowance for perfect substitution. 

6. Modeling assumption (e.g. backordering, disposal, lead time, demand and return 

distribution). 

7. Objective function whether to maximize profit or minimize cost. 

8. Solution methodologies and modeling techniques. 

9. Dependence between demand and return. 

One of the most important points that the paper has made, is that the purpose of 

almost all the reviewed papers was to optimise system performance under an I&PP 

policy by controlling its parameters. Only handful papers dealt with finding optimal 

policies. Also, one of the major recommendations in this paper is the need to address 
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quality uncertainty and its effects on closed loop supply chains and remanufacturing 

systems. 

One of the closest work to this research is the paper written by (Ferguson, Guide Jr., 

Koca, & Souza, 2009). The paper claims that by considering return sorting and grading, 

the enterprise will be able to increase the profit by 4 percent. Thus, return has been 

classified into three quality grades: scrap for materials, harvest for parts, or fit-for-

remanufacturing. Furthermore, the last grade was divided even further to include: good, 

better and best grades. Using a general representation, each return is given a grade 

between 0 and 1, where 0 is total scrap and 1 is best quality possible. The paper 

assumed that return could be represented by a probability distribution in terms of their 

quality. Moreover, the paper was able to recognise a decreasing function for the 

remanufacturing cost vs. quality relationship, but the acquisition price vs. quality 

relationship was not addressed in this paper. Also, the pre-remanufacturing holding cost 

vs. quality relationship is represented by a decreasing function. Such a relationship is not 

considered in our model, because all accepted return will be directly remanufactured to 

increase the responsiveness of the system and to cope with market’s conditions. Also, if 

the return is given a probability distribution, it is not expected that all products under 

one category will cost the same during the remanufacturing process. This is due to the 

fact that, under one category there are still many differences between returns in terms 

of quality. This is why our model is much more related to the quality due to the fact that 

it cares more about the quality of the return rather than the quantity in each quality 

category. The model optimises the system performance when both demand and return 
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are considered to be deterministic. Demand certainty comes from the fact that modeling 

is applied to a system where lease trading prevails. Thus, managers can almost precisely 

forecast returns. For both cases, the objective of the firm is “to maximize its total 

expected profit across a finite discrete-time horizon, by deciding optimal returns to 

remanufacture and how many to salvage, and in turn how many returns to hold for 

future periods”. 

Many papers have addressed quality uncertainty in terms of yield of remanufacturable 

parts. In another word, the percentage of parts, out of one lot purchased, that can be 

remanufactured to supply demand. Such a direction was followed by (Bakal & Akcali, 

2006) when their paper discussed the automotive remanufacturing industry in the U.S. 

The paper has taken a bigger picture of the automotive remanufacturing industry since 

they included in their study not only remanufacturers, but also dismantlers and brokers 

as well as the possible integration between them. Ford was given as an example to 

illustrate the unsuccessful business model in the remanufacturing industry. According to 

the paper, such a lack of success was due to the wrong decisions in terms of selling and 

acquisition prices. Therefore, the objective of the paper’s model was to maximise the 

firm’s profit by choosing the optimal selling and acquisition prices. In reality, a firm can 

set the selling price of the remanufactured parts that belong to an old generation of cars 

(e.g. 10 – 15 years old), because there is no more production from OEM. This 

assumption is not applicable for the newer generation of cars because the OEM still 

produces and thus the market will control the selling price. Intuitively, return quantity 

and quality are price dependants, while only demand quantity is price dependant. 
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Quality in terms of yield is argued to be uncertain and have a random behaviour. Thus, 

the higher the acquisition price, the more, in terms of quantity, and the better, in terms 

of quality or yield, the returns will be. Indeed, we can notice here that the system will 

carry on products that are not remanufacturable and salvage them to recycling third 

parties later on. Thus, the business model is overwhelming the performance of the 

system by allowing unwanted returns to be accepted into the system. In contrast, our 

business model forces the firm to qualify the product before accepting it to the 

remanufacturing process. Also, we can notice here a vital difference between the two 

papers. A higher price in our model provides better return quality that requires lower 

remanufacturing cost. In contrast, this paper assign a fixed remanufacturing cost to each 

return no matter what quality it has. Moreover, return and demand quantities are 

assumed to be deterministic. The modeling of the system was performed with 

deterministic as well as random yields. For the random case we have two scenarios. 

First, the yield will be realized first and then the selling price could be set. Second, the 

selling price should be determined before realizing the yield. A final note regarding this 

paper is that the model deals with durable products and thus perfect substitution is not 

considered. 

(Zikopoulosa & Tagarasa, 2008) have presented a study in order to encourage the 

remanufacturing firms to design or develop a sorting or quality evaluation mechanism 

for the returns. This mechanism could be a small electronic or any other device that is 

not necessarily very accurate, but will give an idea about the remanufacturability of the 

return. Thus, the paper compares between the profitability of a system that has no 
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sorting before disassembly and another with sorting before disassembly. Returns in the 

studied system could be either remanufacturable or non-remanufacturable. In addition, 

quality uncertainty was presented as the yield or the proportion of return that is 

remanufacturable. In contrast to disassembling returns before sorting, sorting using such 

a mechanism is not very accurate and thus there are two types of errors: the error of 

accepting non-remanufacturable returns and the error of rejecting remanufacturable 

returns. Moreover, the model has applied the newsvendor concepts as there would be 

under and over stocking costs for any shortage or excess in the return and 

remanufactured inventories. Also, demand was presented as uncertain variable and the 

model was set to suit a single period setting. Finally, the paper optimises the system’s 

performance to increase the total profit by optimising the remanufacturing as well as 

procurement quantities. 

Another study that refers to the quality uncertainty as the yield is the paper presented 

by (Mukhopadhyaya & Ma, 2009). This study is similar to the studies explained above in 

term of system characteristics. For example, the model is designed to suit random 

demand, perfect substitution, single product, and single period. Yield is studied in two 

different settings: deterministic and stochastic. Also, optimality occurs by finding the 

optimal returns to take back, items to acquire or to order, and items to produce. The 

only major novel contribution in this paper is its consideration for delivery lead time in 

the case of random yield. Delivery lead time is considered in the context of whether the 

system will be able to place the order for new material to produce new items after 

obtaining the yield or not. If such a lead time is long, then acquisition process will occur 
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before the yield is revealed. In contrast, if the lead time is short, then acquisition process 

will occur after the yield is revealed, thus system’s performance will increase. 

Most of the available literatures classify returns into remanufacturable or non-

remanufacturable returns when quality uncertainty is considered. One of the few 

studies that classified return into more than two classes is the study presented by 

(Teunter & Flapper, 2011). Therefore, they assumed that returns can be divided into k 

different quality types and each type has a certain probability. Thus, quality is presented 

by a multinomial distribution. Also, their model is configured to suit single period 

setting, certain and uncertain demand, newsboy-type setting, sorting is performed after 

acquisition, and acquisition price is either fixed or quantity dependant. One of the 

common points between this paper and our work is the fact that remanufacturing cost is 

quality dependant. Unfortunately, due to the sequence of events in their system, quality 

dependency did not consider acquisition price. Optimality was found by choosing the 

proper acquisition quantity that minimises the total expected cost.  

Most of the previous studies are tailored to suit the automotive industry, but the study 

(Robotis, Bhattacharya, & Van Wassenhove, 2005) is tailored to suit a special case in the 

cell phone industry or some other cases related to products with short PLC. The study 

presents a reseller who has two suppliers with two different quality trends high and low 

as well as two groups of customers with two different quality trends high and low. Cell 

phones are acquired in bulk and have certain quality distributions related to both 

suppliers’ trends. Acquisition cost, in this setting, is supplier dependant. Also, demand 

from the secondary market has certain distributions and minimum acceptable qualities 
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for both market trends. As long as the quality of the cell phone is above the market’s 

acceptable quality, it is a potential sell and has a fixed price that does not depend on the 

quality of the cell phone. If the quality of the cell phone is below the acceptable quality, 

it is either gets disposed of or remanufactured. Thus, the paper objective’s is to compare 

between the performances of the two system orientations, with and without 

remanufacturing activities. Optimality is sought in the optimal acquired quantity, in the 

optimal remanufactured quantity for the later system, and in the quality level that a 

product should have in order to be remanufactured in the later system. We have noticed 

that this study is different from our study since it does not require all products to be 

remanufactured to as good as new condition. Also, acquisition price is not quality 

dependant as the case of our study. Also, this study allows for downward substitution 

rather than perfect substitution. Downward substitution is the process of supplying 

lower quality demand with higher quality items to capture the market and to avoid 

inventory accumulation. 

Simulation has also been used in various studies to verify the importance of quality 

classification. Such a study is presented by (Behret & Korugan, 2009). They have tested a 

hybrid system with a perfect substitution option. Both demand and return are stochastic 

and follow Poisson distributions. In their study, there are many quality related 

parameters that are either different or similar to the quality related parameters 

presented in our study. Such parameters include, yield or recovery rate, 

remanufacturing processing cost, remanufacturing effort, operational disposal cost, and 

remanufacturing overflow disposal cost. Simulation was run for a benchmark system 
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with no quality classification and for an alternative system with quality classification. In 

the alternative system, returns are classified into three qualities: good, average and bad. 

As a result of the study, quality classification is vital in the following cases: 

1. When the quality difference between returned products is high. 

2. When the return rate is high and the demand rate is low. 

3. When the proportions of different qualities in the returned products are close to 

each other. 

4. When the difference between the remanufacturing costs of different qualities is 

high. 

5. When the difference between the acquisition costs of different qualities is high. 

6. When the difference between the operation disposal costs of different qualities is 

high. 

7. When the difference between the overflow disposal costs of different qualities is 

high. 

8. When the difference between the recovery rates of different qualities is high. 

The problem settings defined in the study (ARAS, BOYACI, & VERTER, 2004) is very 

similar to that defined in the paper presented by (Behret & Korugan, 2009). They have 

presented very similar cases in which quality classification is a better approach. We 

noticed few differences between the two studies such as number of quality 

classifications for returns. Also, remanufacturing lead time is considered to be a quality 

dependant parameter in the later study. Moreover, this paper is one of the few papers 

,encountered in our literature review, that calculated holding cost based on quality level 
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using operating cost of remanufacturing and opportunity cost of capital. Finally, this 

study used the Continuous Markov Chain optimization technique to solve for the 

minimum long-run average system cost. 

2.2 Literature on Remanufacturing without Quality 

Uncertainty 
Many papers have addressed uncertainty in demand and return without addressing the 

uncertainty in quality. An example of such papers is the work presented by (Shi, Zhang, 

Sha, & Amin, Coordinating production and recycling decisions with stochastic demand 

and return, 2010). The study presents a perfect substitution environment with 

manufacturing and recycling options. The study has the precedence in presenting the 

return quantity as a non-linear function of the acquisition price. The total expected 

profit has been maximized by optimizing recycling quantity, manufacturing quantity, 

serviceable inventory stocking level as well as acquisition price. Lagrangian relaxation 

method, subgradient algorithm and heuristic algorithm all have been used to solve the 

problem and the results were compared to the results obtained from the GAMS solver. 

Also, this work has the precedence in considering manufacturing and recycling 

capacities. Moreover, various relationships have been studied through sensitivity 

analysis including: profit vs. manufacturing and recycling capacities, stocking level vs. 

demand uncertainty, production and recycling quantities vs. return uncertainty, and 

acquisition price vs. return uncertainty. A very similar extension of the previous work is 

Optimal Production Planning for a Multi-Product Closed Loop System with Uncertain 
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Demand and Return presented by (Shi, Zhang, & Sha, 2011). One of the few differences 

between the two papers is that this work is modeled by considering a linear relationship 

between return quantity and acquisition price. Another difference between the two 

works is that the return horizon is considered from the beginning of the planning period 

to the end of remanufacturing period in the later study. Another extension of the earlier 

work is Optimal Production and Pricing Policy for a Closed Loop System presented by 

(Shi, Zhang, & Sha, 2011) with similar problem settings. The study optimizes quantities 

of return and demand by setting the optimal acquisition and selling prices. In contrast to 

the earlier study, this paper assumes that quantities have linear relationships with their 

corresponding prices. Similar to the earlier study, many relationships have been studied 

in this paper such as the effect of uncertainties in demand and return on production and 

pricing policies. 

As per the study (Hsueh, 2010), it has the precedence in presenting dependency 

between demand and return which takes into account the different phases of the 

product life cycle. The study assumes that both demand and return follow normal 

distributions with changing means depending on the specific phase of the PLC. Closed 

form formulas have been derived to calculate the optimal production quantity, 

reordering point and safety stock in each phase of the PLC. As per the study, production 

quantities of new products should continuously increase with time as the mean of 

demand increases with time in the growth phase. In the later phases (e.g. maturity and 

decline), production quantities of new products should continuously decrease with time 

as the return of used products gradually increase in the system until the production 
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facility is saturated with used items that will lead to some disposal activities in the final 

stages of decline phase. 

Deterministic models are those models that assume every variable in the system to be 

known with certainty. An example of such an approach is the paper written by (Koh, 

Hwang, Sohn, & Ko, 2002) which analyzes the reusable items industries. This paper 

models a system where used items perfectly substitute newly purchased items. 

Intuitively, the system consists of previously known demand to be supplied from 

serviceable inventory, which has been fed by processed returns or newly purchased 

items. The returns accumulate in a warehouse to a certain level before they get 

processed. Also, the model analyzes the system in two different settings. First, one 

recovery process and one or more orders are allowed (1, n). Second, one order and two 

or more recovery processes are allowed (n, 1). This modeling classification has been 

considered as a weakness by the authors themselves, as the optimality might occur with 

multiple recovery processes and orders. For each setting, two different cases are 

modeled by the paper depending on the relative demand (d), production (P) and return 

(r) rates. In the first case, p>d>r, while the second case implies that d≥p>r. The objective 

of the paper was to find EOQ by finding the optimal number of items to be ordered in 

each order and to find EPQ by finding the optimal quantity of items to start production 

with. The objective function was to minimise total cost when all fixed and variable cost 

are considered (e.g. holding, ordering and setup costs). To find the optimal solution 

three steps are needed. First, we find the optimal inventory level to start production 

with. Second, we find the optimal number of orders or production processes (n), 
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depending on the setting, by using the research procedure. Third, we find number of 

items in each order or the EOQ. An extension of this literature is the paper introduced by 

(Konstantaras, Skouri, & Jaber, 2010) which generally followed the same stream of work. 

The advancement compared to this work was in the general structure of the business 

model. The later had the return tested first and then either remanufactured to as good 

as new or refurbished to meet secondary market.  

An extension of the study (Koh, Hwang, Sohn, & Ko, 2002) is the paper prepared by 

(Chiu, Li, & Wang, 2009) which considered constant ordering lead time and variable 

normally distributed demand. The paper has two main objectives. The first objective is 

to find closed form formulas for the economic order quantity (EOQ) and for the 

economic return quantity (ERQ). The relevant quantities include the optimal number of 

orders, the optimal quantity in each order and the optimal level of return to start 

remanufacturing with. The second objective of the paper is to test the significance of 

ordering lead time L and mean demand quantity μ in the total cost of the system. The 

importance of considering L and μ was tested using the derived formulas as well as 

Kruskal-Wallis Test. One of this paper weaknesses is that it examines the case of p>d>r 

considered in (Koh, Hwang, Sohn, & Ko, 2002), but did not examine the other feasible 

cases.  
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CHAPTER 3:  MATHEMATICAL MODELS 
As depicted in Figure-2, returns received by the remanufacturing facility could be one of 

two types: either used tires that have not been retreaded before or used tires that have 

been retreaded before. The figure, also, shows that new tires customers only feed the 

CLSC without being part of the loop. Once the used tires are received by the 

remanufacturing facility, each tire will be inspected and then assigned a quality grade. If 

the return has a higher quality grade than the optimal minimum quality, then it will be 

advanced to the remanufacturing process without being stored. Otherwise, it will be 

rejected from the remanufacturing process and assigned back to the hauler. Redirecting 

rejected tires to another waste stream or to another processor is the responsibility of 

the hauler.  This is due to the fact that the Canadian Government enforces end users to 

pay a collection fee with each scraped tire turned in. This fee is handed to the haulers 

for their collection and distribution services. The remanufacturing facility will bear no 

cost associated with any rejected tire including the transportation cost, because it is the 

haulers responsibility to deliver the appropriate tire to the appropriate processor.  Also, 

the remanufacturing facilities offer the haulers the highest acquisition price among all 

processors. As a result, the haulers are better off satisfying remanufacturers’ demand as 

conveniently as possible. Moreover, the paper studies both a base case where demand 

is deterministic and a generalized case where demand is stochastic. The system include 

post-remanufacturing inventory in the case of uncertain demand as production might 

exceed actual demand. Due to the same reason, over-stocking cost is introduced to the 

model only in the case of uncertain demand. Moreover, under-stocking cost is 
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considered in both demand cases as it might be optimal not to satisfy demand even if it 

is predetermined. 

Model Assumptions: 

• Each return is tested and then quality graded. Based on the return’s quality grade, it 

is decided whether to accept the return or not, the acquisition price for the return 

and the remanufacturing cost of the return. Therefore, the testing and quality grading 

processes are assumed to be very precise and the speculation of return’s 

remanufacturing cost is always correct.  

• It is assumed that the acquisition price vs. quality follows an increasing linear 

relationship, while the remanufacturing cost vs. quality follows a decreasing linear 

relationship. Since it is more profitable to remanufacture higher quality returns 

compared to lower quality returns, the summation of the previous two relationships 

produces a decreasing linear relationship and it is called total spending vs. quality. As 

a result, the slope of the acquisition price vs. quality linear relationship is always less 

than the slope of the remanufacturing cost vs. quality linear relationship. 

• Quality is assumed to be stochastic with either normal or exponential distribution.  

• Demand is assumed to be either deterministic or stochastic with normal distribution. 

• Return is assumed to be deterministic. This assumption works very well with the tire 

retreading industry especially if off-the-road (OTR) or passenger cars’ tires are 

considered. As discussed earlier, only 30% of OTR and 2% of passenger cars’ tires are 
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retreaded. Thus, the hauler is, most probably, capable of providing such supply to the 

remanufacturer. Indeed, variation in the amount of tires collected by the haulers will 

not considerably affect, if it would, the amount of returns needed by 

remanufacturers. As a result, assuming return to be deterministic is still realistic.  

• Rejected tires are not associated with any cost as far as the remanufacturing facility is 

concerned.   

• Inspection cost is assumed to be zero. Therefore, the more the returns, the better it is 

for the remanufacturing facility and the worse it is for the hauler and vice versa.  

• The system does not have a pre-remanufacturing inventory, because of two main 

issues. First, tires are combustible and could attract mosquitoes. Thus, they should be 

stored in a controlled, shaded, and dry environment. In addition, they are very bulky 

and storing those tires requires a spacious warehouse. Thus, the remanufacturing 

facility might be better off avoiding a pre-remanufacturing inventory system, due to 

the high cost associated with storing. Also, if we assume that the facility stores tires 

before remanufacturing and grades all returns before either accepting or rejecting 

them. Intuitively, the facility will remanufacture higher quality returns first and store 

lower quality returns for later use. If the next period has arrived and the lower quality 

returns have not been remanufactured yet, then the facility will tend store them for 

another period until they are needed due to the presence of higher quality returns. 

As a result, those lower quality returns could face aging before they are even directed 
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to the remanufacturing process. Therefore, it could be better for the facility not to 

include a pre-remanufacturing inventory system. 

• Post-remanufacturing inventory or sometimes called serviceable inventory as well as 

the over-stocking cost exist in the stochastic demand case only, because it is not wise 

to exceed demand if it is deterministic.  

• Under-stocking cost is considered in both demand cases as it could be more 

profitable not to satisfy all demand in certain occasions.  

• The model assumes single item, single period and no perfect substitution. 

3.1 Models Formulation for Single Facility and Single 

Market Setting 
In this subsection we consider an enterprise that operates only one facility to satisfy its 

own market’s demand. This implies that demanded items could only be supplied from 

that facility only. For such a setting, transportation cost is not considered. Also, the 

facility should be operating for the enterprise to make a profit. 

3.1.1 Parameters and Variables 

Parameters 
R Quantity of returns 
D Forecasted demand, used for the base model when demand is deterministic 
U Under-stocking Cost 
O Over-stocking Cost 
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P Selling price 
Cs Setup cost 
a Acquisition price when quality is zero 
b Slope of acquisition price vs. quality linear relationship 
α Remanufacturing cost when quality is zero 
� Slope of remanufacturing cost vs. quality linear relationship 
µq Average quality, used when the system is modeled with both exponential and 

normal quality distributions 
σq Quality standard deviation, used when the system is modeled with normal 

quality distribution 
fq(.) PDF for the variables following the distribution assigned for quality 
Fq(.) CDF for the variables following the distribution assigned for quality 
d Actual demand, used for the generalized model when demand is stochastic 
µd Average demand, used when the system is modeled with stochastic or normally 

distributed demand  
σd Demand standard deviation, used when the system is modeled with stochastic or 

normally distributed demand 
fd(.) PDF for the variables following the distribution assigned for demand 
Fd(.) CDF for the variables following the distribution assigned for demand 
a + b * q  Acquisition price vs. quality linear relationship 
α – � * q Remanufacturing cost vs. quality linear relationship   
Stochastic Variables 
� System profit, which is the objective function to be maximized 
q Quality of Returns graded between 0 and 100 
Decision Variables 
Q Optimal minimum quality that should be accepted to the remanufacturing facility 
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3.1.2 Mathematical Models 

If demand is certain, then the profit function will be as the following: 

� = �� � ∗ � � q ��	 
��� �− �� � + � ∗ �� ∗ � � q ��	 
��� �
− �� [

�� � − � ∗ �] ∗ � � q ��	 
��− �� ∗ �� −� � � q ��	 
��� �� − �� (1)  

Subject to:  

� ≥ � � ∗ � q ��	 
���  (2)  

If demand is uncertain, then the profit function will be as the following: 
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 �	� � � q ��� ���� � d �d� �d	− �� (3)  

The meaning of each term in the above models is given as follows:  

�� � � q ��	 
��� �: In equations (1) to (3), is the quantity of returns accepted and 

remanufactured by the facility as the integration of �� q ��	 
�� will give a percentage and 

the multiplication in R will give a quantity. 

�� � ∗ � � q ��	 
��� �: In equation (1), is the revenue generated from remanufacturing and 

selling all accepted returns. Equation (1) was built for the deterministic demand, thus 
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the company will not produce more than the forecasted demand as this will add 

unnecessary holding cost. As a result, all accepted returns are assumed to be sold by the 

end of each period. 

�� � + � ∗ �� ∗ � � q ��	 
� �� �: In equation (1) and (3), is the accepted returns’ acquisition 

cost and it is quality dependant.  

�� [�� � − � ∗ �] ∗ � � q ��	 
��: In equation (1) and (3), is the accepted returns’ 

remanufacturing cost and it is quality dependant. 

�� ∗ �� − � � � q ��	 
��� ��: In equation (1), is the under-stocking cost if there is any present 

in the system. As mentioned before, equation (1) was built for the deterministic 

demand, thus the company will not exceed the forecasted demand as this will add 

unnecessary holding costs. As a result, all accepted and remanufactured returns are 

assumed to be sold by the end of each period. Also, the company might choose not to 

satisfy all forecasted demand as this might hurt the optimality of the system. 

�� ≥ � � ∗ � q ��	 
��� �: In equation (2), is the demand constraint and it forces the system 

not to have over-stocking scenario. 

�� � ∗ d � d �d	 
d� � � q ��� 	��
�
� �: In equation (3), is the revenue generated from satisfying 

demand. We can notice in this term that all demanded items could be satisfied and an 

over-stocking situation might occur, because demand is less than the accepted and 

remanufactured returns �� � � q ��	 
��� �.  
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�� ��� � � q ��� 	��
�

∗ � � � q ��	 
� � d �d	
d�� �: In equation (3), is the revenue generated from 

selling all the accepted and remanufactured returns �� � � q ��	 
��� �. Also, we can notice 

in this term that demand could exceed what have been sold to the customers and an 

under-stocking scenario might occur.  

�� ∗ � [� � � q ��	 
� − d] � d �d	 
d��� � � q ��� 	��
�
� �: In equation (3), is the over-stocking cost 

encountered by the system. As mentioned before, since demand is uncertain, there is a 

possibility that the over-stocking scenario occur. 

�� ∗ � [d − � � � q ��	 
�] � d �d	 
d���� � � q ��� 	��
�

�: In equation (3), is the under-stocking cost 

encountered by the system. Again, since demand is uncertain, there is a possibility that 

the under-stocking scenario occur. 

3.2 Models Formulation for Multiple Facilities and 

Multiple Markets Setting 
Many enterprises in the remanufacturing business have a network of multiple 

remanufacturing facilities. Each facility has its own characteristics. For example, each 

facility faces different quality distribution and different quality parameters such as mean 

and standard deviation. Also, each facility could experience different amount of returns 

and could be located in such a way that transportation cost should be controlled. At the 

same time, markets could, also, behave differently. For example, demand in each 
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market might be different. All of those factors affect the way the system is optimised 

and the optimality values to maximize the profit. Thus, this section will address the 

possible involvement of a network and the model associated with it.  

Therefore, in this subsection we consider an enterprise that operates multiple facilities 

to satisfy multiple markets’ demand. This implies that demanded items by each market 

could be supplied from one or multiple facilities. Also, the enterprise might not operate 

all facilities to reach optimality. Therefore, transportation cost should be considered. 

3.2.1 Indices, Parameters and Variables 

Indices 
i Set of facilities (1,...,F) 
j Set of markets (1,...,M) 
Parameters 
U Under-stocking Cost 
O Over-stocking Cost 
P Selling price 
a Acquisition price when quality is zero 
b Slope of acquisition price vs. quality linear relationship 
α Remanufacturing cost when quality is zero 
� Slope of remanufacturing cost vs. quality linear relationship 
R i Quantity of returns assigned for facility i 
D j Forecasted demand for market j, used for the base model when demand is 

deterministic 
Cs i Setup cost for facility i 
Ca i Capacity limit for facility i 
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T ij Transportation cost per item from facility i to market j 
μq i  Average quality of returns delivered to facility i  
σq i  Quality standard deviation, for the normal quality distribution, experienced by 

facility i  
fq(.) i  PDF for the variables following the distribution assigned for quality in facility i  
Fq(.) i  CDF for the variables following the distribution assigned for quality in facility i  
d j Actual demand for market j, used for the generalized model when demand is 

stochastic 
μd j Average demand for market j, used when the system is modeled with stochastic 

or normally distributed demand 
σd j Demand standard deviation for market j, used when the system is modeled with 

stochastic or normally distributed demand 
fd(.) j  PDF for the variables following the distribution assigned for demand in market j 
Fd(.) j CDF for the variables following the distribution assigned for demand in market j 
a + b * q Acquisition price vs. quality linear relationship 
α – � * q Remanufacturing cost vs. quality linear relationship  
Stochastic Variables 
� System profit, which is the objective function to be maximized 
q i Actual quality of returned item to facility i 
Decision Variables 
ω i Binary variable (0,1):   0 = facility i is not operating 
     1 = facility i is operating 
Q i  Optimal minimum quality to accept into facility i 
V ij Number of items supplied by facility i to market j 
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3.2.2 Mathematical Models 

If demand is certain, then the profit function will be as the following: 

� = �  ! ij ∗ ��
��

�
�� � − � � � + � ∗ � i � ∗ � i  � q "� i # i 
� i  

�� i

�
�� �

− � � [
�� i

� − � ∗ � i ] ∗ � i  � q "� i # i 
� i  
�
�� � − �� ∗ $ � j

�
�� −  ! ij

�
��

�
�� %�

− & ' i ∗ �� i

�
�� ( − �  ) ij ∗ ! ij

�
��

�
�� � 

(4)  

Subject to: 

1. Quantity constraint �∑ ! ij
��� ≤ � � i  � q "� i # i 
� i  �� i

�    for each i (5)  

2. Capacity constraint �� � i  � q "� i # i 
� i  �� i

≤ � i �     for each i (6)  

3. Demand constraint �� j ≥ ∑ ! ij
��� �     for each j (7)  

4. Quality constraint # 1 �+ i ≥ "1 − ' i # ∗ (!,-. /-0, 123�,-)�      for each i (8)  

5. Quality constraint # 2 �+ i ≤ 100 ∗ ' i + "1 − ' i # ∗ (!,-. /-0, 123�,-)�      for each i (9)  

6. Excess quantity correction constraint �! ij ≤ ' i ∗ � i �     for each i and j (10)  
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If demand is uncertain, then the profit function will be as the following: 

� = ��� �∑ � ij
�����	��� ∗  d j � d �d j � j �d j 	 + ��� �	∑ � ij

����
��� ∗ �� ij

���� � d �d j � j �d j 	
− ��� �� + � ∗ � i � ∗ 
 i  � q �� i � i �� i  

	
 i

���� 	 − ��� [
	
 i

� − � ∗ � i ] ∗ 
 i  � q �� i � i �� i  
���� 	

− ��� ∗ �  �� ij

���� − d j !∑ � ij
�����	���  � d �d j � j �d j 	

− ��� ∗ �  d j −�� ij

���� !	∑ � ij
����

���  � d �d j � j �d j 	 − "�# i ∗ �� i

���� $− %��& ij ∗ � ij

������� ' (11)  

Subject to: 

All constraints presented in equations (5 – 10) except the demand constraint presented 

in equation (7). 

The meaning of each term in the above models is given as follows:  

�∑ ∑ ! ij ∗ ������� �: In equation (4), is the revenue generated by selling all items supplied 

from all facilities i to all markets j in the case of deterministic demand. 

�∑ � � + � ∗ � i � ∗ � i  � q "� i # i 
� i  �� i

��� �: In equations (4) and (11), is the overall returns’ 

acquisition cost experienced by the enterprise.  

�∑ � [�� i

� − � ∗ � i ] ∗ � i  � q "� i # i 
� i  ��� �: In equations (4) and (11), is the overall returns’ 

remanufacturing cost experienced by the enterprise.  
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�� ∗ "∑ � j
��� − ∑ ∑ ! ij

������ #�: In equations (4), is the overall under-stocking cost the 

enterprise is facing.  

�∑ ' i ∗ �� i
��� �: In equations (4) and (11), is the overall setup cost the enterprise is facing. 

�∑ ∑ ) ij ∗ ! ij
������ �: In equations (4) and (11), is the overall transportation cost 

experienced by the enterprise. 

�∑ ! ij
��� ≤ � � i  � q "� i # i 
� i  �� i

�: In equations (5), is the quantity constraint and it makes 

sure that facility i will only satisfy demand from what have been accepted and 

remanufactured by the facility.  

�� � i  � q "� i # i 
� i  �� i

≤ � i �: In equations (6), is the capacity constraint which makes 

sure that production from facility i does not exceed the capacity limit for that facility. 

�� j ≥ ∑ ! ij
��� �: In equations (7), is the demand constraint and it forces the system not to 

exceed the deterministic demand from market j. Thus, the system will experience no 

over-stocking scenario in the case of deterministic demand. 

�+ i ≥ "1 − ' i # ∗ (!,-. /-0, 123�,-)�: In equations (8), is the first quality constraint and 

it makes sure that the optimal minimum quality Q i is meaningful if that facility i is not 

operating. As a result, if the facility is operating and � i = 1, then � i ≥ 0. Also, if the 

facility is not operating and � i = 0, then + i ≥ (!,-. /-0, 123�,-). As � i  become very 
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large or close to infinity, the acquisition cost, remanufacturing cost and quantity 

produced by the facility will converge to zero. As a result, the facilities that do not 

operate experience neither production nor cost. Thus, quality reading will be meaningful 

in both cases. 

�+ i ≤ 100 ∗ ' i + "1 − ' i # ∗ (!,-. /-0, 123�,-)�: In equations (9), is the second quality 

constraint and it makes sure that the optimal minimum quality Q i is meaningful if the 

facility i is operating. Furthermore, if the facility is operating and � i = 1, then 

� i ≤ 100. Also, if the facility is not operating and � i = 0, then + i ≤ (!,-. /-0, 123�,-). Indeed, a very high quality reading associated with a certain 

facility means that both costs and the number of items accepted to that facility converge 

to zero indicating its disruption. Thus, quality reading will be meaningful in both cases. 

�! ij ≤ ' i ∗ � i �: In equation (10), is the excess quantity correction constraint. In our 

model we use distributions that have values between ± infinity. Thus, the previous 

quality constraints might be not enough to block all returns from entering a non-

operating facility. This is true, because we could not choose infinity instead of a very 

large number while programming the solver program as infinity is unrecognised value. 

Thus, this constraint is added to compensate for such an error if it exists. As a result, this 

constraint ensures that no demand is satisfied from a non-operating facility. 
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�∑ � �∑ � ij
����
���� ∗  d j � d "d j # j 
d j �: In equation (11), is the revenue generated by the 

enterprise, if the uncertain demand in market j is found to be less than all 

remanufactured items supplied by all facilities �∑ � ij
�
��� � to that specific market.  

�∑ � ��∑ � ij
����

��� ∗ ∑ ! ij
��� � d "d j # j 
d j �: In equation (11), is the revenue generated by 

the enterprise, if the uncertain demand in market j is found to be more than all 

remanufactured items supplied by all facilities �∑ ! ij
��� � to that specific market. 

�∑ � ∗ � "∑ ! ij
��� − d j #∑ � ij

����
����  � d "d j # j 
d j �: In equation (11), is the expected over-

stocking cost, if the uncertain demand in market j is found to be less than all 

remanufactured items supplied by all facilities �∑ ! ij
��� � to that specific market. 

�∑ � ∗ � "d j − ∑ ! ij
��� #�∑ � ij

����

���  � d "d j # j 
d j �: In equation (11), is the expected under-

stocking cost, if the uncertain demand in market j is found to be more than all 

remanufactured items supplied by all facilities �∑ ! ij
��� � to that specific market. 



43 
 

CHAPTER 4: SOLUTION METHODOLOGY 

4.1 Solver Approach 

4.1.1 A Single Facility and Single Market Setting with Deterministic 

Demand 

We start by rearranging the profit function in equation (1) to get the following: 

� = � ∗ �� + � −  − �	 ∗� � q ��	 
� + � ∗ �� − �	 ∗� � � q ��	 
� − � ∗ � − ������  (12)  

4.1.1.1 Exponential Behaviour for Quality Uncertainty 

Since quality is assumed to be exponentially distributed, then: 

� q ��	 = ,�
� � q� �4 q

 (13)  

By using the following two concepts: 

�,��  
5 = 16 ∗ ,�� (14)  �5 ∗ ,��  
5 =  65 − 16� ∗  ,�� (15)  

The following holds true; 

� � q ��	� = � ,�
� � q� �4 q


� = 7−,�
� � q� �8���� ∞+ = 7−0 − $−,�
� � q� �%8 = ,�
� � q� � (16)  
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And, 

� � � q ��	 
� = � � ∗ ,�
� � q� �4 q

 
� = 7− "4 q + �# ∗ ,�
� � q� �8∞+����
= �−0 − 7− "4 q + +# ∗ ,�
� � q� �8� = "4 q + +# ∗ ,�
� � q� � 

(17)  

Therefore, the profit function in equation (12) will be: 

� = � ∗ �� + � −  − �	 ∗ ,�
� � q� � + � ∗ �� − �	 ∗ "4 q + +# ∗ ,�
� � q� � − � ∗ � − �� (18)  

Also, the constraint inequality in equation (2) will be:  

� ≥ � ∗ ,�
� � q� � (19)  

4.1.1.2 Normal Behaviour for Quality Uncertainty 

In order to use the errorf function that is built in the solver program, we need to express 

the profit function using the standard normal distribution rather than the normal 

distribution. 

 Therefore, we let: 

9 =
� − 4 q: q

→ � = : q ∗ 9 + 4 q  (20)  

∴  
� = : q  
9 (21)  

Also, the integration limits will change based on equation (20): 9 = ∞ �;ℎ,< � = ∞	 <
,  
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9 =
+ − 4 q: q

 (;ℎ,< � = +) 

Because quality follows a normal distribution, then  

� q ��	 = 1: q ∗ √2� ∗ ,�
��
� q �� �∗� q

�� �
 (22)  

By substituting the values of q, fq(q) and dq into equation (12) and changing the 

integration limits, the profit function can be expressed as: 

� = � ∗ ��� + � −  − �	+ 4 q ∗ �� − �	� ∗� 1√2� ∗ ,
���  
9���
� q � q� �
+ : q ∗ � ∗ �� − �	 ∗� 9 ∗ 1√2� ∗ ,
���  
9 − � ∗ � − �����
� q � q� �  

(23)  

We can notice that the term � �√�! ∗ ,�	��  
9���
� q � q� �  follows a standard normal 

distribution. Thus, it can be replaced by �1 − ,-->-� $�
� q� q

%� while using the solver. 

Also, the term  � 9 ∗ �√�! ∗ ,�	��  
9���
� q � q� �  can be integrated using the function below: 

�5 ∗ ,���  
5 =  1
2� ∗  ,��� (24)  

∴ �9 ∗ ,
����  
9 =  −,
���� (25)  
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Therefore, equation (23) can be rewritten as the following: 

∴ � = 
 ∗ (�� + � − � − ��+ ) q ∗ �� − �� * ∗ +,-1 − .//0/�1 − ) q2 q 345
+
2 q ∗ 
 ∗ �� − ��√2� 7898:.���
�� q �� �∗� q

�� �;8<8=− � ∗ > − �� 
(26)  

The constrain function in equation (2) will also be reformulated to be: 

> ≥ 
 ∗ +,-1 − .//0/� 
1 − ) q2 q 345 (27)  

4.1.2 A Single Facility and Single Market Setting with Stochastic Demand 

To represent demand stochastically, it was assumed to be normally distributed. The 

model will be solved with exponentially distributed quality first and then with normally 

distributed quality. Similar to the deterministic demand model in the previous section, 

the profit function was analysed. 

?, ��23,:  @ =
d − 4 d: d

→ d = : d ∗ @ + 4 d  (28)  

∴  
d = : d  
@ (29)  

∴ @ = ∞ �;ℎ,< d = ∞	 <
,  @ = −∞ �;ℎ,< d = −∞	 <
, 

@ =
� � � q ��	 
��� − 4 d: d

 (;ℎ,< d = � � � q ��	 
��� ) 

Because demand follows a normal distribution, then  
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� d �d� = 12 d ∗ √2� ∗ .������ d �� �∗� d

�� �
 (30)  

Then, 

� � d �d	 
d = 
� � � q ��� 	��
�
� � 1: d ∗ √2� ∗ ,�
�"
� d �� �∗� d

�� �
 : d  
@� � � q ��� 	��

� 
� d� d
�
=  � 1√2� ∗ ,
�� #�  
@ = ,-->-� $� � � q ��	 
��� − 4 d: d

% 

� � � q ��� 	��
� 
� d� d
�   

(31)  

Also, 

� d � d �d� �d = 
� � � q ��� �����	 � �2 d ∗ ? + ) d �2 d ∗ √2� ∗ .������ d �� �∗� d

�� �
 2 d  �?� � � q ��� ���� �� d� d�	

=
2 d√2� ∗ � ? ∗ .��� ��  �? + ) d ∗ � 1√2� ∗ .��� ��  �?� � � q ��� ���� �� d� d�	

� � � q ��� ���� �� d� d�	
= 

−2 d√2�  +,,,
,,-.��� ∗����

� � � q ��� ���� �� d� d  !!"
�

3444
445+ ) d ∗ .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345 

(32)  

In a similar way 

� d � d �d� �d
	� � � q ��� ����

= 
2 d√2�  +,,,

,,-.��� ∗����
� � � q ��� ���� �� d� d  !!"

�

3444
445+ ) d − ) d ∗ .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345 

(33)  
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Therefore, equation (3) can be rearranged to be as the following: 

� = � ∗ 78889
888:−2 d√2�  +,,,

,,-.��� ∗����
� � � q ��� ���� �� d� d  !!"

�

3444
445+ ) d ∗ .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345;888<

888=

+ � ∗ � 
 � q ��� ��	
 ∗ 7898:1 − .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345;8<8=
− � � ∗ 
 � q ��� �� − � � ∗ � ∗ 
 � q ��� �� − � � ∗ 
 � q ��� �� + � � ∗ � ∗ 
 � q ��� ��	
	
	
	

− �78889

888:� 
 � q ��� ��	
 ∗ .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345+
2 d√2�  +,,,

,,-.��� ∗����
� � � q ��� ���� �� d� d  !!"

�

3444
445

− ) d ∗ .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345;88<
88=

− �78889
888:2 d√2�  +,,,

,,-.��� ∗����
� � � q ��� ���� �� d� d  !!"

�

3444
445+ ) d − ) d ∗ .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345

− � 
 � q ��� ��	
 ∗ ABBBC1 − .//0/�+,-@ 
 � q ��� ��	
 − ) d2 d 345DEEEF;88<
88=

− �� 

(34)  
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Equation (34) can be simplified more to be 

� = �� + � + �	 ∗ ABBB
BBCD4 d −� � � q ��	 
��� E ∗ ,-->-� $� � � q ��	 
��� − 4 d: d

%
−
: d√2�  FGG
GH,
�� ∗$%&� � � q ��� 	��

� 
� d� d '()
�

IJJ
JKLMMM
MMN + �� −  − � + �	 ∗� � � q ��	 
���

+ �� − �	 ∗� � ∗ � � q ��	 
� − � ∗ 4 d − ����  (35)  

4.1.2.1 Exponential Behaviour for Quality Uncertainty 

For the exponential distribution we apply the results obtained from equations (13), (16) 

and (17) to further rework equation (35) in order to suit the exponentially distributed 

quality. 

� = �� + � + �� ∗

ABBBB
BBBBB
BC
+-) d − 
 ∗ .��
 � q# �35 ∗ .//0/�+,,

-
 ∗ .��
 � q# �
− ) d2 d 344

5

−
2 d√2�  

+,,,
,,,,,
-
.��� ∗

����
����∗$�	� 
 q� ��� d� d  !!!

!!"�

3444
44444
5
DEEEE
EEEEE
EF

+ 
 ∗ .��
 � q# � (�� − � − � + �� + �� − �� ∗ �) q + 1�* − � ∗ ) d − �� 
(36)  
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4.1.2.2 Normal Behaviour for Quality Uncertainty 

Similarly, for the normal distribution we apply the results obtained in section 4.1.1.2 to 

further rework equation (35) in order to suit the normally distributed quality. 

� = �� + � + �� ∗

ABBB
BBBBB
BBBBB
BBC

+,,-) d − 
 + 
 ∗ .//0/�+,-1 − ) q2 q 3453445 ∗ .//0/�
+,,,
,,-
 − 
 ∗ .//0/�+-1 − ) q2 q 35− ) d2 d 3444

445

−
2 d√2�  

+,,
,,,,,
,,,,
,,-
.
��� ∗

����
�����
�����∗$%%&%�����


�� q� q  !!"�� d

� d  !!!
!!!!!
!"�

344
44444
4444
445

DEEEE
EEEEE
EEEEE
EF

+ ABBBC
 ∗ (�� + � − � − ��+ ) q ∗ �� − �� * ∗ +,-1 − .//0/�1 − ) q2 q 345

+
2 q ∗ 
 ∗ �� − ��√2� 7898:.���
�� q �� �∗� q

�� �;8<8=DEEEF − � ∗ ) d − �� 
(37)  

4.1.3 A Multiple Facilities and Multiple Markets Setting with 

Deterministic Demand 

To solve the model equations presented for this setting, we will use the same 

procedures followed in the previous sections of this chapter. Thus, no details are 

presented while working the equations out. 
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4.1.3.1 Exponential Behaviour for Quality Uncertainty 

� = �  ! ij ∗ �� + �	�
��

�
�� � − �  ! ij ) ij

�
��

�
�� � − �� ∗ � j

�
�� � − & ' i ∗ �� i

�
�� (

− � � i

�
�� ∗ ,�
� i � q i� � ∗ � + � + �� − �	 ∗ "+ i + 4 q i #�� (38)  

The term �� � i � q "� i # i 
� i
�� i

� in the first and second quality constraints should be 

expressed as �� i ∗ ,�
� i � q i� ��. 
4.1.3.2 Normal Behaviour for Quality Uncertainty 

� = %��� ij ∗ �� + ��������� ' − %��� ij & ij

������� ' − %� ∗ �> j

��� ' − "�# i ∗ �� i

���� $
− 78889
888:�
 i

���� ABBBB
BBBC+,,-1 − .//0/�+,-1 i − ) q i2 q i 3453445 ∗  � + � + ) q i �� − ��! + �� − �� ∗

2 q i√2� ∗ .��� ����
 i �� q i� q i  !!"
�

DEEEE
EEEF
;888<
888=

 

(39)  

The term �� � i � q "� i # i 
� i
�� i

� in the first and second quality constraints should be 

expressed as �� i ∗ $1 − ,-->-� � i 
� q i� q i

%�. 
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4.1.4 A Multiple Facilities and Multiple Markets Setting with Stochastic 

Demand 

4.1.4.1 Exponential Behaviour for Quality Uncertainty 

� = OPPQ
PPR ABBBB
BBC�� + � + �	 ∗ FGG

GGHS4 d j − ! ij

�
�� T ∗ ,-->-� $∑ ! ij

��� − 4 d j: d j

%�
��

−
: d j√2� ∗ ,
�� $%&∑ ����� ij 
� d j� d j '()

�

IJJ
K

+ �� + �	 ∗ ! ij

�
�� − � ∗ 4 d j LMMMM

MMN
UPPV
PPW

− �  ! ij ) ij

�
��

�
�� �

− & ' i ∗ �� i

�
�� ( − � � i

�
�� ∗ ,�
� i � q i� � ∗ � + � + �� − �	 ∗ "+ i + 4 q i #�� (40)  

Just as before, the term �� � i � q "� i # i 
� i
�� i

� in the first and second quality constraints 

should be expressed as �� i ∗ ,�
� i � q i� ��. 
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4.1.4.2 Normal Behaviour for Quality Uncertainty 

� =

78889
888:�

ABBBB
BBBC�� + � + �� ∗

+,,,
,,,- ) d j − �� ij

���� ! ∗ .//0/�+,-∑ � ij
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(41)  

Similar as before, the term �� � i � q "� i # i 
� i
�� i

� in the first and second quality 

constraints should be expressed as �� i ∗ $1 − ,-->-� � i 
� q i� q i

%�. 
4.2 Analytical Approach 
Due to the complexity of the multiple facilities and multiple markets setting, only the 

single facility and single market setting will be analytically solved in this paper. Future 

work might include the solution for the multiple setting.  
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4.2.1 A Single Facility and Single Market Setting with Deterministic 

Demand 

In order to find the optimal minimum quality Q that should be accepted to our 

remanufacturing facility, we take the derivative of the profit function in equation (12) in 

terms of the quality (q) and equate it to zero. Thus, we will have the following 

expression:  
�
� =  � � q ��	 ∗ ��� + � −  − �	+ �� − �	 ∗ �� = 0 (42)  

At the same time we have to satisfy the demand constraint in equation (2). Therefore, 

we find what quality satisfies � = � � ∗ � q ��	 
���  and what quality satisfies equation (42) 

and then we take the higher quality as the optimal quality Q.  

We rewrite equation (42) to suit the assumption that quality is exponentially distributed. 

Thus, we have the following equation: 

�4 q

,�
� � q� � ∗ ��� + � −  − �	 + �� − �	 ∗ +� = 0 (43)  

And if quality is assumed to be normally distributed, then equation (42) will be rewritten 

as the following: 

�: q ∗ √2� ,�
��
� q �� �∗� q

�� �
∗ ��� + � −  − �	 + �� − �	 ∗ +� = 0 (44)  
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4.2.2 A Single Facility and Single Market Setting with Stochastic Demand 

In a similar way we need to take the derivative of the profit function in equation (3) in 

terms of the quality (q) and equate it to zero to find the optimal minimum quality Q. Due 

to the complexity of the model, we will use Leibniz’s rule which states the following: 

.� -�5, .	
5 = � X-�5, .	X. 
5 + -�ℎ�.	, .	 
ℎ�.	
. − -�0�.	, .	 
0�.	
.�*�+��,�+�  
�*�+��,�+�  

Thus, first term in equation (3) will be: 



� �� � ∗ d � d �d	 
d� � � q ��� 	��


� �

= � ∗ D� ∗ � q ��	E ∗ D� � � q ��	 
��� E ∗ $� d D� � � q ��	 
��� E% 
Second term in equation (3) will be: 



� �� ��� � � q ��� 	��



∗� � � q ��	 
� � d �d	
d�� �
= � ∗ D� ∗ � q ��	E− � ∗ D� ∗ � q ��	E ∗ $Y d D� � � q ��	 
��� E%
− � ∗ D� ∗ � q ��	E ∗ D� � � q ��	 
��� E ∗ $� d D� � � q ��	 
��� E% 
Third term in equation (3) will be: 

� �� � + � ∗ �� ∗ � � q ��	 
��� � = � + � ∗ � 	 ∗ � � q ��	  
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Fourth term in equation (3) will be: 

�� �� − � ∗ �� ∗ � � q ��	 
��� = �� − � ∗ �	 ∗ � � q ��	 
Fifth term in equation (3) will be: 



� �� ∗� �� � � q ��	 
� − d
�� � � d �d	 
d� � � q ��� 	��



� �
= � ∗ D� ∗ � q ��	E ∗ $Y d D� � � q ��	 
��� E%  

Sixth term in equation (3) will be: 



� �� ∗� �d −� � � q ��	 
�] 
�� ��� � � q ��� 	��



� d �d	 
d�

= � ∗ D� ∗ � q ��	E ∗ $Y d D� � � q ��	 
��� E% − � ∗ D� ∗ � q ��	E 
By rearranging all the previous terms we can find that  ���� has the following expression: 

� � q ��	 ∗ ��� + � −  − �	+ �� − �	 ∗ � − �� + � + �	 ∗ $Y d D� � � q ��	 
��� E%� (45)  

As a result, if quality is exponentially distributed, then the optimal quality Q can be 

found by: 


) q

.��
 � q# �
∗ 7898:�� + � − � − �� + �� − �� ∗ 1 − �� + � + �� ∗ +,-H d +-
 .��
 � q# �35345;8<8= = 0 (46)  
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And if quality is normally distributed, then optimal quality can be found by: 


2 q ∗ √2� .���
�� q �� �∗� q

�� �
∗ %�� + � − � − �� + �� − �� ∗ 1 − �� + � + �� ∗ IH d  
 − 
 ∗ H q �1�!J'

= 0 (47)  
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CHAPTER 5: NUMERICAL EXAMPLE AND RESULTS 

5.1 Data Collection 
Due to the difficulty in collecting real data, improvising data from several reports and 

internet websites was the optimal approach. Thus, a type of tires that is used for off the 

road (OTR) application has been selected to conduct our study on. An example of (OTR) 

tires is the tire type 1400R24 Radial. The table below briefly represents the data 

generation process. 

Parameters Logic of Data Generation Resources 

R i 
• Number of tires generated has a one to one relationship with the 

population. 
• Approximately, 6.1% of those tires are OTR tire type. 
• Approximately, 25% of those OTR tires are retreadable. 

Found or calculated 
from (Ontario Tire 
Stewardship, 2004). 
 

P = 250 
• Since the price of remanufactured tires are 30% to 70% less than 

new tires and the cost of a new 1400R24 radial tire is about 
$395, then the selling price P is chosen to be $250 which is about 
36.5% less than a new tire. 

(Tire Retread & 
Repair Information 
Bureau) 

α = 169 
& 

 � = 0.68 

• Average number of nail holes in an ORT is about 20 which is 
assumed to occur in the middle of the quality spectrum. 

• Average cost of retreading a tire is $135 and 25% of it is assumed 
to be contributed by the repair stage. Thus, 20 repairs are 
associated with $34.  

(State of North 
Carolina, Department 
of Administration, 
2011) and (Ontario 
Tire Stewardship, 
2009) 

a = 90 
&  

b = 0.2 

• Average cost of purchasing a retreadable tire is $100. Thus, it is 
associated with a tire that has 20 nail holes in it.  

• It is assumed that each tire with no repair needs will be 
purchased by $110. Then, we can work out acquisition cost 
associated with each quality. 

(Ontario Tire 
Stewardship, 2009) 
 

[μq i]Normal 
& 

[μq i]Expo 

• When quality is normally distributed, most of the returns are 
assumed to have quality readings that are close to the center of 
the quality spectrum. 

• When quality is exponentially distributed, most of the returns are 
assumed to have bad quality readings which indicate an abusive 
working environment.   

• In this study we have assumed that the values of (μq i) depend on 
the type of industries exist in the province. For example, the 
more a province is involved in mining or industrial activities the 
worse the average quality will be. This is due to the fact that 
harsh industries cause more damage to the tires in service. 

Wikipedia 
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[σq i]Normal 
• The quality range (0 - 100) should cover as many σ under the 

normal quality curve as possible. Indeed, this indicates that the 
quality of returns is correctly represented. 

 

D j 
or 

[μd j]Normal 

• Due to the lack of data, demand on OTR tires is assumed to be 
one percent of the province population. Indeed, the higher the 
population the higher the number of units will be sold from any 
commodity. Thus, relating demand to the population is realistic. 

 

[σd j]Normal 
• Following the same principle, a higher population contributes to 

a higher variance in demand. Thus, σd will be calculated by 
dividing average demand by a hundred. 

 

U 

• Since we are applying a newsvendor like model, under-stocking 
cost is considered to be the profit lost in case of shortage. Thus, 
it will be calculated based on the total cost of the return at 50 
quality reading and the selling price as; 
 
U = price –total cost of return at 50 quality reading 

 

O 

• Similarly, since we are applying a newsvendor like model, over-
stocking cost is considered to be the profit lost in case of 
overage. Thus, it will be calculated based on the total cost of the 
return at 50 quality reading and the salvage value (assuming half 
of what it is for the price ) as; 
 
O = total cost of return at 50 quality reading – salvage value   

 

Cs i 

• It is very difficult to measure the set up cost associated with each 
plant without the presence of real data. In any case, the setup 
costs are assumed to be equal in all facilities. This assumption is 
supported by the fact that all considered facilities are located in 
the same country.  

 

Ca i • Will be chosen to be very high, because it is more important to 
study the effect of other vital parameters. 

 

T ij 

• Trailer’s dimensions are 99”, 111”, and 52’ in width height and 
length respectively.   

• The approximate tires’ diameter is 1400 mm and tires’ depth is 
315 mm. 

• Thus, a truck can carry as many as 176 tires. 
• A truck cost per mile, which is equal to $1.06, is calculated based 

on the figure presented in (Siebert). 
• Thus, the tire transportation cost per mile is found to be 0.6023 

cents. 

(Siebert) and 
(Alibaba.com) 

Index  
(i and j) 

• Since each Canadian province has its own waste tire 
management program and retreading plants, then this study will 
consider facilities in the capital of Ontario, Quebec and 
Manitoba. 

 

Table 2: Data Generation Logic 

To represent the different costs vs. quality linear relationships, the figures below were 

constructed. We can notice here that the last relationship is the total spending or cost 

on returns with respect to each quality grade if they were to be accepted into the 
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facility. Such a relationship is formed by adding both the acquisition cost and the 

remanufacturing cost. We can also, notice that it follows a decreasing pattern. Based on 

the literatures reviewed before and during the production of this work, this should be 

the case. In any case, if this relationship was an increasing one, which this model does 

not support, then the facility is better of remanufacturing the worse quality returns 

rather than the better quality returns. 

   
Figure 3: Acquisition Price, Remanufacturing Cost and Total Spending vs. Quality Linear Relationships Constructed 

for the Numerical Example 

Also, based on Table-2, the following numerical example parameters were selected;  

Parameter Value Parameter Value Parameter Value 
i ∈ {ON, QC, MB} [(σq)ON]Normal 10 Cs MB 10,000 
j ∈ {ON, QC, MB} [(σq)BQ]Normal 9 Ca ON 500 K 

R Ontario 205,875 [(σq)MB]Normal 8 Ca QC 500 K 
R Quebec 122,000 DON/[(μd)ON]Normal 135,000 Ca MB 500 K 

R Manitoba 19,825 DON/[(μd)QC]Normal 80,000 P 250 
[(μq)ON]Normal 50 DON/[(μd)MB]Normal 13,000 U 15 
[(μq)QC]Normal 45 [(σd)ON]Normal 1,350 O 110 
[(μq)MB]Normal 40 [(σd)QC]Normal 800 α 169 
[(μq)ON]Expo 15 [(σd)MB]Normal 130 � 0.68 
[(μq)QC]Expo 13 Cs ON 10,000 a 90 
[(μq)MB]Expo 11 Cs QC 10,000 b 0.2 

Table 3: Numerical Example Parameters 

To find the total tire transportation cost (T ij) from a capital to another, the tire 

transportation cost per mile is multiplied by the distance between the two capitals. 

 

0
50

100
150

1 16 31 46 61 76 91

Acquisition price

0
50

100
150
200

1 14 27 40 53 66 79 92

Remanufacturing cost

0
100
200
300

1 16 31 46 61 76 91

Total spending on returns
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 Toronto  
(ON) 

Quebec City  
(QC) 

Winnipeg  
(MB) 

Toronto 
 (ON) 0 490 1270 

Quebec City  
(QC) 490 0 1550 

Winnipeg  
(MB) 1270 1550 0 

Table 4: Distances Between Provinces' Capitals 

5.2 Mathematical Model and Solver Results 
Based on the data and parameters given in Tables-3 & 4, the decision variables and 

profit for all four scenarios – namely: exponential quality and deterministic demand, 

exponential quality and normal demand, normal quality and deterministic demand, and 

normal quality and normal demand– related to both single and multiple settings were 

calculated and depicted in Tables-5, 6, 7 & 8. 

 Exponential q 
and 

Deterministic D 

Exponential q 
and 

Normal D 

Normal q 
and 

Deterministic D 

Normal q 
and 

Normal D 
Total Profit Z 

$ 157,180 $ 128,290 $ 2,378,800 $ 2,307,113 

Optimal Quality 
Q ON 

6.3 6.6 46.0 46.3 

Number of Items 
Remanufactured by ON 

factory 

All demanded 
items 

135000 

Less than average 
demanded items 

132,340 

All demanded 
items 

135000 

Less than average 
demanded items 

133,060 
Table 5: Numerical Example Results for ON’s Single Facility and Single Market Case 

 Exponential q 
and 

Deterministic D 

Exponential q 
and 

Normal D 

Normal q 
and 

Deterministic D 

Normal q 
and 

Normal D 
Total Profit Z 

$ -20,140 $ -36,600 $ 1,192,026 $ 1,152,130 

Optimal Quality 
Q QC 

5.5 5.8 41.4 41.6 

Number of Items 
Remanufactured by QC 

factory 

All demanded 
items 

80,000 

Less than average 
demanded items 

78,409 

All demanded 
items 

80,000 

Less than average 
demanded items 

78,815 
Table 6: Numerical Example Results for QC’s Single Facility and Single Market Case 
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 Exponential q 
and 

Deterministic D 

Exponential q 
and 

Normal D 

Normal q 
and 

Deterministic D 

Normal q 
and 

Normal D 
Total Profit Z 

$  -29,394 $ -31,961 $ 150,626 $ 144,580 

Optimal Quality 
Q MB 

4.6 4.9 36.8 37.0 

Number of Items 
Remanufactured by MB 

factory 

All demanded 
items 

13,000 

Less than average 
demanded items 

12,739 

All demanded 
items 

13,000 

Less than average 
demanded items 

12,802 
Table 7: Numerical Example Results for MB’s Single Facility and Single Market Case 

 Exponential q 
and 

Deterministic D 

Exponential q 
and 

Normal D 

Normal q 
and 

Deterministic D 

Normal q 
and 

Normal D 
Total Profit � $ 107,644 $ 59,733 $ 3,721,452 $ 3,603,820 

Optimal Quality 
QON Factory 6.3 6.6 46.0 46.3 
QQC Factory 5.5 5.8 41.4 41.6 
QMB Factory 4.6 4.9 36.8 37.0 

Number of Items 
Remanufactured by Factor i 

ON Factory 135,000 132,340 135,000 133,060 
QC Factory 80,000 78,409 80,000 78,815 
MB Factory 13,000 12,739 13,000 12,802 

Number of Items Delivered 
by Factory i to Market j –(V ij) 

ON - ON 135,000 132,340 135,000 133,060 
ON - QC – – – – 
ON - MB – – – – 
QC - ON – – – – 
QC - QC 80,000 78,409 80,000 78,815 
QC - MB – – – – 
MB - ON – – – – 
MB - QC – – – – 
MB - MB 13,000 12,739 13,000 12,802 

Operation of Facility i (ω i) 
0 = facility i is not operating 

1 = facility i is operating 
 

ON Factory 1 1 1 1 
QC Factory 1 1 1 1 
MB Factory 1 1 1 1 

Table 8: Numerical Example Results for Multiple Facilities and Multiple Markets Case 

We can notice from the results presented in the tables above that the settings in which 

quality is distributed normally are more profitable than the settings in which quality is 

distributed exponentially and has higher optimal quality readings. This is caused by the 

fact that in the setting where quality is normally distributed, most of the returns are in 

better shape compared to the setting where quality is exponentially distributed. Thus, 

the enterprise’s total spending on remanufacturing will be enormous in the later case.  
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In both deterministic cases, demand has been fully satisfied. Intuitively, deterministic 

demands will be satisfied as long as the total spending on remanufacturing is less than 

the selling price plus the under-stocking cost (P + U). Also, we can notice the effect of 

demand uncertainty on facilities’ production and its direct relationship with the over and 

under-stocking costs. As the over-stocking cost (O) exceeds the under-stocking cost (U) 

in value, the models work out the optimal qualities toward unsatisfying the average 

demand. Thus, the quality reading will be higher compared to the deterministic case. 

Vice versa, as the under-stocking cost (U) exceeds the over-stocking cost (O) in value, 

the models work out the optimal qualities toward satisfying or even exceeding the 

average demand in certain cases. Consequently, the quality reading could be lower than 

the quality reading for the deterministic cases. 

From Table-9 we can notice that ON, QC and MB facilities are all operating, because they 

have ω i values of one. Also, form the V ij values we can observe that each market’s 

demand is satisfied from its facility’s production. Thus, if we apply the single facility and 

single market models for each of the market we should achieve the same optimal quality 

readings as if we apply the multiple facility and multiple market models. Also, as it is 

expected, the summation of all profit values for each market calculated by the single 

facility and single market models will give the same profit value calculated by the 

multiple facilities and multiple markets model.  

Pondering upon the tables above, the reader might wonder how the models would allow 

for negative profit values. In chapter 6, adequate explanation is presented to clarify such 
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models’ behaviour.  In any case, the negative values can be avoided by doing one or 

multiple of the following realistic actions that increase the enterprise’s profit: 

1. Sell tires at a higher price, if possible, and consequently change the under-stocking 

cost and over-stocking cost values. 

2. Alter the acquisition and the remanufacturing processes in such a way that lower 

the total spending vs. quality curve and at the same time change its slope so that 

more profit can be generated. 

3. Spread awareness among cars’ and trucks’ owners on how to maintain tires. For 

example, over inflating and under inflating are among the many causes that 

deteriorate tires’ quality. Once this is accomplished, the average quality reading 

should increase and affect the profit positively.  
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CHAPTER 6: SENSIVITY ANALYSIS 

6.1 Sensitivity Analysis for Single Facility and Single 

Market Setting 
To proceed with the sensitivity analysis for the single facility and single market setting, 

the Ontario market has been chosen to conduct our study on. Ontario’s parameters 

were driven again from Table-3 with the exception that the selling price was reduced to 

$235. Also, the slope of the remanufacturing cost vs. quality linear relationship has been 

increased by changing � value to one. Consequently, such a change in � value leads the 

total spending vs. quality linear relationship to be modified as depicted in Figure-4. 

Those two alterations were conducted to clearly allow the system to freeze at one point 

and reject any further decrease in quality as it will come later in this chapter.  

  
Figure 4: Effect of Changing � Value on the Total Spending vs. Quality Linear Relationship 

6.1.1 Return vs. Optimal Quality and Profit 

As the return value (R) decreases, more lower quality returns are needed. How much 

more depends primarily on the quality distribution used. Thus, the optimal quality and 
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profit will decrease, as the value of return (R) decreases. By referring to Figure-4, we can 

notice that when a returned item has a quality value of lower than 30 its production will 

affect the profit negatively, because the total spending on remanufacturing will be more 

than the selling price P = 235. If needed, the model will allow the optimal quality to be 

less than 30, but not less than the quality value associated with (P + U) in the total 

spending vs. quality linear relationship which is 11.25 in our case. Thus, the system will 

freeze at 11.25 allowing for only the under-stocking cost to be acquired with each 

unsatisfied demand. What have been explained before can be noticed from the optimal 

quality vs. return curve in Figure-5.  

 

Figure 5: Optimal Quality vs. Return 

We observe that the normally distributed system freezes at a lower return value (R) than 

the exponentially distributed system. This due to the fact that the normal distribution 
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has most of its returns under the bell shape centered at a quality equal to 50. On the 

other hand, the exponential distribution has most of its returns accumulated towards 

the lowest quality possible. In general, it is noticed that a system with normal return 

behaviour is more appealing than a system with exponential return behaviour. Figure-6 

shows the general trend in profitability and the superiority of normal distribution. It is, 

also, important to understand that this superiority could be reversed if the amount of 

returns is extremely high. This fact is true because each distribution behave differently 

towards its higher end of quality.   

 

Figure 6: Profit vs. Return 
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6.1.2 Total Spending Relationship vs. Optimal Quality and Expected 

Unsatisfied Demand  

a, α, b and � work in synchronization to set the total spending on each quality graded 

return that will be produced by the remanufacturing facility. In another word, they work 

together to identify the total spending vs. quality linear relationship. Therefore, a 

change in one of those parameters might be enough to explain all what needs to be 

explained in this subsection. Thus, (b) value will be changed from 0.1 to 0.9 to decrease 

the slope of total spending vs. quality linear relationship and consequently our decision 

variables. Also, as the value of (b) goes up, the quality associated with (P + U) value 

increases.  

  
Figure 7: Total Spending vs. Quality Linear Relationships with Different b Values 

As explained earlier, the models will behave normally by satisfying all demanded items 

in the deterministic demand cases and by considering all distribution parameters as well 

as (U) and (O) values in the stochastic demand cases. Such behaviour exists as long as 

the optimal quality is larger than the quality associated with (U + P) value in the total 
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spending vs. quality linear relationship. If the quality needed to satisfy demand is less 

than the quality associated with (U + P) value, then the later quality is considered to be 

the optimal one. This is due to the fact that the facility is better of incurring under-

stocking cost with each unsatisfied demand rather than a higher cost associated with 

remanufacturing low quality returns.  

In our example, b value starts from 0.1 and the quality, at which the total spending will 

be U + P = 250, is 10. This is self explanatory when Figure-7 is studied. If quality is 

exponentially distributed, then the optimal quality is just less than 20 and if it is normally 

distributed, then the optimal quality is just above 56. We can notice that both optimal 

qualities are more than the quality associated with (U + P) value. As the value of (b) goes 

up, those optimal values will stay, roughly, the same until the quality associated with (P 

+ U) exceeds 20 if quality is exponentially distributed and 56 if it is normally distributed. 

Then quality associated with (P + U) will become the optimal one and all curves will 

eventually overlap as they will have the same optimal quality. Also, the unsatisfied or 

expected unsatisfied demand will increase as (b) value increases. Indeed, exponential 

models get affected first, because they offer lower number of high quality returns. All 

what have been explained can be observed from Figure-8 & 9 below. 
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Figure 8: Optimal Quality vs. b Value 
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Figure 9: Expected Unsatisfied Demand vs. b Value 
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6.1.3 Quality Uncertainty vs. Optimal Quality and Profit 

Changing quality uncertainty is accomplished by changing the value of σq or quality 

standard deviation whenever quality is normally distributed. To understand the effect of 

changing σq on both optimal quality and expected profit, high (R = 2,000,000) and low (R 

= 200,000) returns have been selected. When return is high enough, the optimal quality 

will be higher than the average quality (μq = 50). In this case, as σq changes from a higher 

to a lower value, quality uncertainty decreases and the bell shape of the quality 

distribution shrinks towards the average quality μq. As this happen, the model has 

nothing but to decrease the optimal quality in order to remanufacture enough returns 

for the optimal demand to be satisfied (Figure-10).  

 

Figure 10: Optimal Quality vs. Quality Uncertainty When Return is High 
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will increase the optimal quality, adapting the new bell shape, in order not to 

remanufacture more than the optimal demand to satisfy (Figure-11).  

 

Figure 11: Optimal Quality vs. Quality Uncertainty When Return is Low 
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Figure 12: Profit vs. Quality Uncertainty 

6.1.4 Demand Uncertainty vs. Optimal Quality and Profit 
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Figure 13: Profit vs. Demand Uncertainty 
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Figure 14: Optimal Quality vs. Demand Uncertainty 
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remanufacturing purposes, the less the total spending would be. This is due to the fact 

that with more facilities, the enterprise will be able to utilize more high quality returns 

from all markets. As a result, the enterprise can satisfy demand by remanufacturing 

those high quality returns with low total spending. The second cost, is the cost of 

transportation. The higher the transportation cost, the higher the need for more 

facilities to satisfy different markets’ demand.  The importance of this factor depends 

greatly on the industry and the size of the remanufactured products. As the products 

become bigger, bulkier and heavier transporting products will become more costly. As a 

result, the urge to increase the number of remanufacturing facilities becomes higher. 

The factory setup cost is the third cost that should be considered while managing the 

critical tradeoffs. High facility setup costs are always associated with the need to 

aggregate production. The interactions between those three costs while seeking 

optimality when certain parameters are changed will be discussed in the next two 

subsections.  

The sensitivity analysis that are to be conducted will only consider the deterministic 

demand cases and will pay no attention to the differences in behaviours between the 

different quality distributions, because the effect of demand and quality uncertainties 

have been discussed in the previous section. Also, quality will not freeze before 

satisfying all demand, thus all demanded tires will be satisfied. All parameters used for 

this analysis are driven from Table-3. Similar as before, some of those parameters have 

been changed in order to clearly show certain attributes in the models. 
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6.2.1 Transportation Cost vs. Facility Production, Optimal Quality and 

Profit 

In this Analysis, we will use the model with normal quality and deterministic demand 

setting. Also, the parameters that have been altered in this analysis include the amount 

of returns R i where they have been doubled. Higher separations between the different 

markets’ average qualities and quality standard deviations have been implemented. To 

conduct the analysis, transportation cost per mile per tire has been decreased from 0.02 

to 0.001. At the higher transportation costs, the enterprise has nothing but to supply 

each market’s demand from its own facility. This trend has continued until the 

transportation cost became 0.018.  

As the transportation cost decline further, we can notice that ON’s production increases, 

while QC’s production decreases. This could be achieved by decreasing and increasing 

ON’s and QC’s optimal qualities respectively. To understand what is happening here we 

need to notice that ON’s returns average quality is 50, while QC’s returns average quality 

is 40. This implies that if R ON is very high, then ON’s facility could possess extra high 

quality returns that could be cheaply remanufactured and still be transported to QC at a 

lower cost than producing from QC. Moreover, not all QC’s demand is satisfied by ON’s 

facility, because QC’s facility still receives many high quality returns that are cheaply 

remanufactured. Thus, it is not optimal yet to close the facility and save the set up cost. 

At this stage, the cost associated with remanufacturing ON’s high quality returns is not 

low enough to overcome the high transportation cost between ON and MB. Therefore, 

MB’s facility will completely satisfy its own demand. 
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When the transportation cost is, as low as, 0.012 and below, ON’s facility supply portion 

of QC’s and MB’s demand for the same reasons mentioned above. By further decreasing 

transportation cost to 0.009, the enterprise can shut down MB’s facility and satisfy all of 

its demand from ON’s facility. Indeed, MB’s demand D MB, amount of return R MB and 

average quality of returns μ q MB are the lowest among all facilities. Thus, it is a great 

recipe to close MB’s facility and save the setup cost as long as the transportation cost is 

insignificant. From Figure-17, we can notice the great change in the enterprise 

profitability as a result of this shut down.  All what have been explained above can be 

easily grasped from Figures-15 and 16 below.  

 

Figure 15: Facilities’ Production vs. Transportation Cost 
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Figure 16: Facilities’ Optimal Quality vs. Transportation cost 

 
 Figure 17: Profit vs. Transportation Cost 
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The analysis in this model is very similar to the analysis conducted in the previous 

subsection. Thus, the detailed analysis will not be presented here. In any case, similar to 

what have been mentioned before, as markets’ demand decrease the facility with high 

return R i and average quality will have the chance to possess extra good quality returns 

and supply other markets that have low returns R i and average qualities. Figure-19 

clearly shows the first stage where each market’s demand is satisfied by its own facility. 

Followed by the stages where ON’s facility supplies QC’s market only and then by the 

stage where it supplies both QC’s and MB’s markets. This goes on until all demanded 

tires are supplied by ON’s facility and every other facility is shutdown to save the setup 

costs. 

 
Figure 18: Facilities’ Production vs. Markets’ Demand in One Graph 
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Experiment #s: 1 - 7 

 
Experiment #s: 8 - 11 

 
Experiment #s: 12 - 28 

 
Experiment #s: 29 - 30 

Figure 19: Facilities’ Production vs. Markets’ Demand in Segmented Graph 

In the previous two figures the dotted lines indicate the production needed from each 

facility if it is to satisfy its own market’s demand only. 

Indeed, by now we know that the amount of returns remanufactured by each facility is 

controlled by the optimal quality. From Figure-20 we can notice that as markets’ 

demand decrease the facilities’ optimal quality increase implying that the system can 

avoid some of the low quality returns. With each facility shut down, we can observe that 

it coincides with a slight drop in other facilities’ optimal qualities. This is caused by the 

urge to satisfy a sudden increase in demand by the facility or facilities in operation.  

0
20000
40000
60000
80000

100000
120000
140000
160000

1 2 3 4 5 6 7

ON's 
Production
QC's 
Production
MB's 
Production

0
5000

10000
15000
20000
25000
30000
35000

8 9 10 11

ON's 
Production
QC's 
Production
MB's 
Production

0
2000
4000
6000
8000

10000
12000
14000

12 15 18 21 24 27

ON's 
Production
QC's 
Production
MB's 
Production

0

100

200

300

400

500

29 30

ON's 
Production
QC's 
Production
MB's 
Production



82 
 

 

Figure 20: Facilities’ Optimal Quality vs. Markets’ Demand 

In addition, we can notice from Figure-21 that the profit, generally, decreases as 

demand decreases. This is totally intuitive, but what could be confusing is the increasing 

pattern at the high markets’ demand. As we comprehended from previous sections, the 

facility is better off remanufacturing returns even if the total spending is more than (P) 

value, but less than (P + U) value. Thus, when demand is high, the facility had nothing 

but to satisfy portion of that demand from the unprofitable low quality returns to avoid 

a higher cost of under-stocking (U). As a result, the profit had been affected negatively.  

 

Figure 21: Enterprise Profit vs. Markets’ Demand 
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Indeed, the general definition of the under-stocking cost (U) is the profit lost due to 

unmet demand and it could be calculated by the difference between the selling price 

and the manufacturing cost. In contrast, when (U) is applied in a remanufacturing 

context, its calculation should follow a different approach. Truly, quality of returns 

should influence the value of (U), because the profit lost associated with missing 

demand that could be met by remanufacturing very high quality returns is completely 

different than the profit lost associated with missing demand that would be met by 

remanufacturing very low quality returns. Such quality influence on (U) could be studied 

further in later researches.  
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusion 
Quality uncertainty and its effects on remanufacturing systems are among the hot topics 

that need great attention due to their immense financial impact. Also, the numerous 

papers published in the remanufacturing literature have abundantly considered 

perfectly substitutable products, although many products in today’s market are not 

perfectly substitutable. This work, as noticed, has studied system’s performance under 

the impact of both issues. Also, we were able to study system’s behaviour when both 

acquisition price and remanufacturing cost vary linearly with the quality or condition of 

the returned items. The summation of those two costs forms a decreasing linear 

relationship with the quality in such a way that producing better quality returns is more 

profitable than producing worse quality returns. In addition, this work has considered 

networking when quality is uncertain due to its great influence on system`s optimal 

values. 

In order to apply this study, the remanufacturing enterprise should be able to 

thoroughly inspect and then quality grade each return based on its condition. This 

quality grading should be performed before deciding whether to accept or reject 

returns. Also, the remanufacturing process and cost should be quality dependent either 

totally or partially. Since remanufacturing cost is quality dependant, acquisition price or 

return cost should be quality dependant. The dependence of acquisition price on quality 
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could lead suppliers to better select returns or could lower cost associated with 

remanufacturing. Indeed, safety laws and municipal regulations could be a decision 

factor whether to apply or not to apply this study. One of those industries that could 

benefit from our work is the tires retreading industry under the Canadian regulations.  

This research developed non-linear programming models to find the optimal minimum 

quality to accept into the remanufacturing facility if the enterprise posses single facility 

to satisfy single market’s demand. In case the enterprise possesses multiple facilities to 

satisfy multiple markets’ demands, the research developed mixed integer non-linear 

programming models to select facilities to operate, to find the optimal minimum quality 

to accept into each operating facility and to find portion of market’s demand to satisfy 

from each operating facility. Quality in both cases is assumed to be either exponentially 

or normally distributed, while demand is assumed to be either deterministic or normally 

distributed.  

By using GMAS solvers to solve the models, we were able to see how the quality and 

profit are affected by the amount of items returned to the remanufacturing facility. 

Indeed, the models with exponential quality behave differently than the models with 

normal quality due to the differences in concentration of returns along the quality 

spectrum. Also, the effect of changing linear relationships’ parameters (e.g. a, α, b and 

�) on the system’s behaviour has been studied. Understanding such behaviour allows us 

to better manage the remanufacturing enterprise and increase its profitability. 
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As far as normally distributed quality is concerned, system’s reaction to lowering quality 

uncertainty is not the same. If the amount of returns is found to be much more than 

demand, then the optimal quality decreases as uncertainty decreases. Vice versa, if the 

amount of returns is much less than demand, then the optimal quality increases as 

uncertainty decreases. In all cases, the increase in quality uncertainty affects the 

objective function or the profit negatively. Furthermore, when demand is considered to 

be stochastic, system’s reaction to the increasing demand uncertainty is not always 

increasing nor always decreasing the optimal quality. It depends greatly on the values of 

under-stocking cost (U), over-stocking cost (O) and the different costs vs. quality 

relationships. Again, when demand uncertainty increases, the objective function or 

system’s profit decreases. 

In the multiple facility and multiple market cases, there are always tradeoffs between 

setup cost, transportation cost and the total spending associated with remanufacturing. 

The higher the number of operating facilities, the higher the setup cost, and the lower 

the transportation cost and the total spending associated with remanufacturing. 

Therefore, it is imperative to manage those three sources of cost effectively in order to 

reach optimality. Such management might lead the enterprise to operate a 

remanufacturing facility in one market, but at the same time satisfy portion of that 

market’s demand from a remanufacturing facility assigned for a different market. 
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7.2 Future Research 
We have noticed that the literature concerning remanufacturing lacks the involvement 

of quality uncertainty and its effects on systems’ behaviour. Thus, this subsection 

suggests several topics to be further investigated in order to better understand quality in 

the remanufacturing context. The influence of price on quality could be further 

investigated. For example, in the literature concerning remanufacturing, higher price is 

associated with higher returns. After the accomplishment of this work we came to know 

that higher price could be associated with both higher returns and better returns’ 

condition or quality.  

Also, return in our models is assumed to be deterministic. Therefore, a possible 

extension of this work is to consider return to be stochastic. Furthermore, we have 

noticed in our model that the more return received by the remanufacturing facility the 

better it is for the remanufacturer and the worse it is for the supplier or the hauler due 

to transportation cost. This is supported by the fact that our models attach no cost to 

any return before it is accepted and remanufactured by the facility. Therefore, return 

may, also, be considered as a decision variable where the optimal value of return is 

greatly influenced by the pre-remanufacturing inspection cost and penalty associated 

with any rejected return.  

As has been addressed before, under-stocking (U) and over-stocking (O) costs should be 

quality related when applied in a remanufacturing context. For example, in a normal 

production or manufacturing system, (U) is considered to be the profit lost due to 
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leaving one demand unit unsatisfied or the difference between the selling price and the 

manufacturing cost. Such value is found to be constant. In a remanufacturing 

environment, the total spending associated with remanufacturing is not constant, but 

rather quality dependant. Therefore, having (U) and (O) defined based on quality could 

be a possible extension to this work or to any other work that uses newsvendor like 

model to resolve remanufacturing issues.  

In our work, we have considered only two attributes that are quality dependant. In 

another problem setting, there could be more. For example, if the enterprise stores 

returns before the remanufacturing process, then pre-remanufacturing inventory cost 

should be considered in the model. Such cost is quality dependant, because better 

quality returns were purchased with higher prices than lower quality returns. Moreover, 

if remanufacturing lead time is to be considered, then it could be quality dependant too. 

As a result, higher quality or better condition returns take lower time to remanufacture.  

Finally, our models could be, further, extended to include multi-periods, multi products 

and dependant markets settings.  
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