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Abstract

A data warehouse usually contains large amounts of information representing an 
integration ofbase data from one or more external data sources over a long period of time 
to provide fast-query response time. It stores materialized views which provide 
aggregation (SUM, MIX, MIN, COUNT and AVG) on some measure attributes of 
interest for data warehouse users. The process of updating materialized views in response 
to the modification of the base data is called materialized view maintenance. Some data 
warehouse application domains, like stock markets, credit cards, automated banking and 
web log domains depend on data sources updated as continuous streams of data. In 
particular, electronic stock trading markets such as the NASDAQ, generate large volumes 
of data, in bursts that are up to 4,200 messages per second.

Updating data warehouse views computed from such stream updated base tables require 
frequent transportation of either huge updated base tables or the newly arriving streams 
of data, updated from the data source sites to the data warehouse site. This approach will 
slow down query response time and lead to a network bottleneck. Data warehouse views 
can be maintained incrementally with only arriving new stream data tuples by using a 
semi-join approach to improve on both the network traffic and response time of query. 
However, this semi-join based view maintenance method still suffers from the drawback 
of shipping long bytes of update stream of tuples through the network and performing 
repetitive joining operations even for arriving duplicate tuples.

This thesis proposes a new view maintenance algorithm (StreamVup), which improves on 
semi-join methods by using hash filters. The new algorithm first, reduce the amount of 
bytes transported through the network for streams tuples, and secondly reduces the cost 
of join operations during view update by eliminating the recompution of view updates 
caused by newly arriving duplicate tuples.

Key Words: Data Warehouse, Materialized View, View Maintenance, Stream Data, 
Semi-Join, Hash Filter, StreamVup algorithm.
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CHAPTER 1 

INTRODUCTION

1.1 DATA WAREHOUSE

A data warehouse collects data from a variety o f source databases. These source 

databases hold current data which are periodically populated into the data warehouse fact 

and dimension tables. Generally, a data warehouse system consists of a fact table and 

dimension tables. The fact table is the table that stores the integrated data with some 

measurable aggregate attributes such as total sales, average sales etc. Attributes of the 

fact table are foreign keys representing subjects of interest, the integration attributes, the 

attribute representing the historical (usually time) and the measurable aggregate attributes. 

Dimension tables store detailed information related to foreign key attributes of the fact 

table. Thus, each primary key attribute of the dimension table uses as a foreign key 

attribute of the fact table.

Figure 1 shows the example of two source databases for a simple banking warehouse 

system is given by [EzOl]. The first source database is used for accepting deposits and 

withdrawals of money for the savings account customers, while the other source database 

is used for accepting deposits and withdrawals of money from the checking account.

Savings source database SI
custid transtype amount
0518 dep 500.00
0001 wd 200.00
0300 dep 300.00

customer (custid, name, address) 
balance (custid, balance) 
transaction (transtype, tmame)

Checking source database Cl

cid trans balance
cOOOl dep 700.00
c0518 wd 1000.00

customer (cid, name, address)
transaction (trans, tmame)

Figure 1: Banking source databases

1
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Figure 1.1 presents the fact and dimension table of the data warehouse banking system, 

which is integrated from Savings and Checking source databases. Figure 1.2 shows a star 

schema for two banking source databases. The facts are organized as foreign key 

attributes (cid, acctype, transtype, time-m) and measurable attribute (amount). A 

dimension table describes the foreign key table of the fact table.

Fact-table

B-Activity (cid, acctype, transtype, time_m, amount)

Dimension tables

cust (cid, name, address)
acct (acctype, name)
transaction (trtype, tmame)
time (time_m, min, hour, day, month, year)

Figure 1.1: Fact and Dimension table of the Banking data

For example, the star is able to answer m ultidimensional queries like “Get the total 

number o f deposits by each customer every day, then every month, and then every year”.

cid
acctype
trtype
tim ejn
Amounttrtype

tmame

cid
name
address

acctype
name

time_m
min
hour
day
month
year

Figure 1.2 Star Schema for a Banking data warehouse system

2
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cid acctype trtype time m amount
0518 SI dep 200307260850 500.00
0001 SI wd 200307260910 200.00
cOOOl Cl dep 200307260915 700.00
0300 SI dep 200307260917 1000.00
c0518 Cl wd 200307260919 300.00

Figure 1.3: Two source databases periodically updated into the banking data warehouse

Two banking source databases hold current data which are periodically populated into the 

data warehouse fact and dimension tables. Figure 1.3 shows the historical data for a 

Banking data warehouse system.

W.H. Inmon in [In96] defines data warehouse as a “subject oriented, integrated, time- 

variant, nonvolatile collection of data to support decision support functions”.

A data warehouse is the large database organized around major subjects (entities) of an 

enterprise, such as customer data, sales data, products data, etc. For example, a company 

might have a separate order processing system for sales such as retail sales, outlet sales, 

etc. This order processing system is not able to answer the details of all sales but the data 

warehouse is able to answer the details of all sales like “Get the total number o f  sales by 

each province every year, then every month, week and hour”. A data warehouse is 

integrated from different source databases. It is designed for storing the historical 

database system representing data over a long period of time (up to 10 years). The 

structure of the data warehouse contains some element of time that able to answer the 

queries like: “How much is the total sales record o f Canadian Tire Stores in Ontario in 

the last 10 years? ”

3
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When any new data is loaded into the data warehouse then the old data does not have to 

be updated. For example, the banking data warehouse may store information for 10 years 

and the new information will be moved into the data warehouse to refresh it without 

changing the data that is already in the data warehouse.

The data warehouse also contains materialized views which are derived from the base 

table. Therefore, the data warehouse is able to answer user queries by using the 

materialized views without accessing the remote databases. It is used to speed up the 

query response time since it is faster to access a materialized view than to recompute the 

corresponding query from the source databases or data warehouse fact tables. The main 

reason for developing the materialized views are: (1) identifying the views to be 

materialized, (2) selecting the materialized views to answer queries with a faster response 

time, and (3) efficiently updating the materialized views when source databases get 

updated.

1.1.1 Basic Architecture of a Data Warehouse

Before loading data into the warehouse first go through the process of extraction, 

transformation and data cleaning. Data extraction implements gateways and standard 

interfaces which are used for collecting data from multiple operational databases and 

external sources. The gateways and standard interfaces are Information Builders 

EDA/SQL, ODBC, Oracle Open Connect, Sybase Enterprise Connect, and Informix 

Enterprise Gateway, etc.

The data cleaning tools are used for detecting data anomalies and correcting them such as 

data migration and data scrubbing. When source databases change or update, incremental 

refreshing can be used.

4
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User
a

FRONT-END TOOLS
Data Mining Tools OLAP DSS, EIS, Report

( d  T
Furtliei liamfounalioii .........► Data Warehouse Meta

Datai

ODS

Data Extraction, Integration and Transformation Component

Data
Source

Data
Source

Data
Source

Figure 1.4: Basic architecture of a data warehouse

Figure 1.4 shows basic data warehouse architecture: external data sources, extraction, 

integration and transformation software, operational data store (ODS), data warehouse 

(DW), metadata and also have front-end tools such as online analytical processing 

(OLAP), executive information system (EIS), decision support system (DSS) and data 

mining tools, etc.

5
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Data sources are the data that are integrated into the data warehouse fact and dimension 

tables. They can be in different formats, structure, and measurements such as relational 

databases, object-oriented databases, HTML files, XML files, flat (text) files, stream data 

and others. Stream data is appropriate when the data is changing constantly (often 

exclusively through insertions or new elements), and it is either unnecessary or 

impractical to work on a huge portion of the data multiple times. “Each stream has a 

fixed schema” [BW01]. For example, two streams of data <S999, A B O  and <S999, 

345.00> for two base table S (ID, Name) and T (ID, Balance). Data streams occurs in a 

variety of modem applications such as network monitoring, stock exchange, sensor 

networks, manufacturing processes and weather or environment monitoring, etc.

Data Extraction, Integration and Transformation is a set of programs that extract data 

from the data sources and integrate them into the preferred format of the data warehouse. 

For example, one source database represents gender of customer Male as ‘X’ and Female 

as ‘Y ’, and another source database represents ‘M’ as male and ‘F’ as female.

Operational Data Store (ODS) is optional in the data warehouse architecture and provide 

a centralized view of near real-time data from legacy systems. In a data warehouse ODS 

is used for the staging area before loading the data into the data warehouse. The data in a 

ODS is current, up-to-date and volatile or dynamic. ODS can also contains the data that is 

subj ect-oriented.

Metadata is a directory that describes the data in the data warehouse to users. It is data 

about data, and provides information such as the number of tables in the data warehouse, 

the number of rows in each table, etc.

6
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Front-end tools are application system, such as Online Analytical Processing (OLAP), 

Decision Support System (DSS), Executive Information System (EIS), Data mining tools, 

etc. are used to answer the query for business decision-making.

1.2 DATA WAREHOUSE DESIGN

1.2.1 Multidimensional Data Model

A data warehouse stores materialized views of data from one or more sources, for the 

purpose of efficiently implementing to answer OLAP queries. The data in a warehouse is 

typically modeled multi-dimensionally, and the dimensions are often hierarchical. OLAP 

uses a multidimensional model to provide a solution, which also supports drill-down and 

roll-up analysis. Drill-down starts analysis from the highest level of the summarized data 

of the warehouse before getting to the most detailed level. For example, “Get the total 

number o f deposits o f  each customer every year, then every month, week, hour, minute 

and second'. Roll-up starts analysis from the most detailed level data of the warehouse 

before gradually getting to the highest level of summarized. For example, “Get the total 

number o f deposits by each customer every minute, then every hour, week, month and 

year”.

The multidimensional data model can be seen as a cube of data. “A data cube model is 

introduced that can represent warehouse data in many dimensions” [GBLP96], A data 

cube is a database where a set of critical measure aggregate values, like total sales, is 

stored. “An n-dimensional data cube in relational OLAP is a table with 2n sub-views of 

the data cube” [EzOl], An example of a multidimensional question is “(i) how much 

revenue did the new product generate by month (ii) in the northeastern division, (iii) 

broken down by user demographic, (iv) by sales office, (v) relative to the previous 

version o f the product, (vi) compared with the plan?” - a six dimensional question.

7
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1.2.2 Maintenance of Materialized Views

There are two important problems related to view maintenance: 1) how to maintain 

materialized views when the base tables get updated, and 2) how to reduce the time for 

which the view is inaccessible during maintenance [CGL96], Materialized views occur in 

a variety of modem applications such as the data warehouse, the mobile system, query 

optimization, etc.

There are three maintenance policies for maintaining views after the base tables have 

been updated. Those techniques depend on when the view is refreshed [CGL96]. The step 

that brings a view table up to date is called refresh. A view can be maintained in an 

immediate, a deferred, or a snapshot manner. There are three different view maintenance 

policies that have been proposed:

Immediate View Maintenance [BLT86, CW91, GL95, CGL96, CKL+97]: Refreshes a 

view, immediately updates only part of the transaction that is updated to the base table. 

Immediate maintenance allows fast querying, but comes at the cost of delaying update 

transaction that usually can not be tolerated in many applications such as the stock market, 

weather or environment monitoring, the banking system, etc.

Deferred View Maintenance [KLM+97]: Refreshes when the view is queried. It is 

separate from the update transactions and allows a view to become inconsistent in the 

short period of time. “Deferred maintenance leads to comparatively slower querying than 

immediate maintenance, but it allows faster updates” [KLM+97].

Snapshot View Maintenance [CKL+97]: The view is maintained periodically by 

asynchronous process. “Snapshot maintenance allows fast querying and updates, but 

queries can read data that is not up-to-date with base tables” [CKL+97]

Some papers [CGL96, KLM+97] classify deferred view maintenance and snapshot view 

maintenance together as deferred view maintenance.

8
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1.3 DEFINITIONS

The following are some definitions relevant to this thesis:

Definition 1.3.1

A tuple is a row of information which carries values of attributes for the table. For 

example, in Table 1.1, the student relation has one row of information as {<S#:57>, 

<NAME: BROWN>, <LCODE: NY2092>}

Definition 1.3.2

A semi-join sends the joining attribute values of one relation to the site of the other and 

reduces the other relation by eliminating tuples which are not joinable. To compute the 

joining of R and S, where R and S are at different sites, shipping all tuples of R is 

expensive. In that case we can ship only those tuples of R that join with S. Semi-join can

be defined as R <x S = H r (R M S)

R oc S, the semi-join of R by S consists of the following steps:

1) The joining column of S is sent to the site of R

2) The tuples of R are scanned and the non-matching value of the column of S is deleted 

(thus, R is reduced).

s# SNAME LCODE
25 CLAY NJ5101
32 THAISZ NJ5102
38 GOOD FL6321
17 BAID NY2091
57 BROWN NY2092

Table 1.1: STUDENT relation

S# C# Grade
32 8 89
32 7 91
32 6 62
38 6 98

Table 1.2: ENROLL relation

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



For example, Table 1.1 and Table 1.2 shows the information for STUDENT and 

ENROLL. Semi-join of ENROLL (S#,C#, Grade) to STUDENT(S#,SNAME, LCODE) 

on S# is: (written: ENROLL (S#) cc STUDENT ). The SQL command for semi-join is 

SELECT * FROM ENROLL R LEFT SEMI-JOIN STUDENT S is simply “SELECT 

DISTINCT R . * FROM R JOIN ST The following steps show how semi-join works for 

ENROLL S# oc STUDENT

1. Project ENROLL onto the S# attribute:

32

2. Join the two relations on S#

32

N
s# SNAME LCODE
25 CLAY NJ5101
32 THAISZ NJ5102
38 GOOD FL6321
17 BAID NY2091
57 BROWN NY2092

Resulting in:

S# SNAME LCODE
32 THAISZ NJ5102
38 GOOD FL6321

Definition 1.3.3

Flash table stores the key in an array using the hash function. Hash function divides the 

data key by the length of array and remainder use as an index into the table. For example, 

in Figure 1.5 shows the range of indexes for Hash Table is 0 to 4 with 5 elements. Each 

element is addressing to the linked list o f the numeric data.

10
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if

— ► #

# 11 6

#
#

19 24 9

Figure 1.5: Hash table

For example, to insert 11, we divide 11 by 5 giving us two with a remainder of 1. Thus, 

11 goes on the list starting at Hash table [1], To find a number, we hash the number and 

chain down the correct list to see if  it is on the table. To delete a number, we find the 

number and remove the node from the linked list. Entries in the hash table are 

dynamically allocated and entered on a linked list associated with each hash table entry.

Definition 1.3.4

“A hash filter is an array of bits which store only distinct values of attributes in an array 

before joining relations on their common attributes” [HCY94], The following example

Hq
A B
a4 bl
a5 bl
a7 b2
a9 b4
a l b6
a3 b7

HFR1(B)
h(bi) set

0 0
1 1 '
2 1 -

3 0
4 1
5 0
6 1 ■
7 1 -

V12
B c

■ bl c8
' b2 c4

b5 c3
. b6 c2
■ b7 cl

b8 c9

(a) (b) (c)

Figure 1.6: Use the hash filter H F rj (B) is build by R/

11
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^ M2
B C
bl c2
b2 cl
b6 c4
b7 c2

Figure 1.7:R2 after the application of HFri (B) —>R2

Figure 1.6 and 17 are given by [HCY94], In figure 1.6 (b), relation Rj store the attribute 

values of B in an array of bits 1 for true and 0 for false which is denoted by HFm(B). 

Figure 1.6 (b) shows that the hash function stores same array of a bit, which is 1 for both 

tuples {<A:al>, <B:bl>} and {<A:a2>, <B:bl>}in relation Rj as shows of figure 1.6(a). 

The hash function in the hash filter selects the bits of Ri(B), which are set to 1 (bl, b2, b4, 

b6, b7, b9) before joining with R2. The HFrj(B) is next applied to R2 which is denoted as 

HFri(B) R2 such that only b l, b2, b6 and b7 will join with tuples of R2 to yield the 

table in figure 1.7. The effect of the hash filter operation is reducing the overall cost of

the cutting (e.g; both communication and memory cost) of Rj NR2.

1.4 THE MOTIVATION FOR THESIS

The most vital choice in designing a data warehouse materialized views to be maintained 

for implementing decision support or online analytical processing queries efficiently. It is 

very hard to select a set of derived views for reducing the total query response time and 

maintaining the selected views in a limited storage space. A new approach selects the 

sub-views from a set of 2n data cube in order to reduce response time for the business 

decision support or OLAP query. Several algorithms on view maintenance have been 

described in this thesis report. Among them Counting & Dred algorithm [GMS93] and 

ECA algorithms [ZGH+95] are more important for maintaining a large class of 

materialized views. These algorithms use the view definition to compute the changes of 

the view by using the changes made to the base relations and the old materialized view. 

The most recent work on materialized views is rewriting the online analytical processing

12
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queries, using materialized views in the data warehouse [PKL01], Data Stream and online 

aggregation are recent techniques for identifying redundant views.

Materialized views are very effective for speeding up queries, when the number of new 

data entering into the data warehouse and the number of materialized views are quickly 

increasing. In [MRS+01], Sudarshan et al. improved greedy algorithm with Query DAG 

structure that can efficiently select materialized views to speed up queries, then updates 

can reduce maintenance cost.

OLAP queries increase the query execution cost, reducing performance and the 

productivity of business decision making. In [PKL01], Chang-Sup Park et al. proposed 

the algorithm to rewrite the OLAP query for using different types of materialized views 

that exist in the data warehouse. Recently, research work is increasing in designing 

algorithm for analyzing streaming data. In [DLY02], update the stream view efficiently 

from original sources to the data warehouse materialized views.

In this thesis, we propose a new algorithm, StreamVup that supports the data warehouse 

stream view update with a hash filter. In [DLY02], semi-join is used with an updated 

base table and other non-updated base table before producing delta view. The semi-join 

process will start when any update tuple arrives. We are using the hash filter to avoid 

using the semi-join for the new tuples. The hash filter keeps the information in an array 

and when any new tuple arrives it will first check the array table. If the existing array 

table has the information for the new tuples, then it will join with the existing rebuilt base 

table rather than rebuild it. This way we can save some joining costs when frequently 

updating the base table.

13
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1.5 THESIS PROBLEM AND CONTRIBUTIONS

This thesis presents a new algorithm for efficiently update the stream data from the 

sources data to the data warehouse materialized views. In [DLY02], the semi-join method 

is used for updating the stream data to the data warehouse materialized views. The 

problem with this method is that semi-join works whenever any new update occurs in the 

base table, but it cannot reuse the same information if  the new update tuple matches with 

the previous update tuple. Our proposed algorithm uses the hash filter instead of the 

semi-join to manage the resources efficiently such as CPU response time (the number of 

pages that can be processed per unit time), network bandwidth (the number of tuples that 

can be delivered by the network per unit time) and I/O ports (the number of tuples that 

can be scanned per unit time).

The hash function of hash filter keeps the result in an array of bits, so that when new 

update tuples arrive, the hash function will first check the existing array table before 

starting the joining to rebuild the new base table.

1.6 OUTLINE OF THE THESIS

The rest of this thesis is organized as follows: Chapter 2 reviews existing related work to 

the thesis. Chapter 3 presents detailed description of the new algorithms (StreamVup) for 

data warehouse stream view update with Hash Filter. Chapter 4 gives a performance 

analysis and Chapter 5 discusses conclusions and future research.

14
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CHAPTER 2

PREVIOUS / RELATED W ORK

In this chapter we review related previous work on data warehouse materialized view 

maintenance. Section 2.1 presents early research work on materialized views. Section 2.2 

discusses later research works of Counting, DRed and ECA algorithms on materialized 

views. Section 2.3 presents early research on data cube lattice and maintenance of views 

with aggregation. Section 2.4 reviews recent work on selecting and materializing views 

horizontally while partitioning and propagation of updates from the original data sources 

to the data warehouse materialized views.

2.1 EARLY RESEARCH

Both of the counting and DRed algorithms use the view definition for incremental 

maintenance a large class of data warehouse materialized views to produce rules that 

compute the changes to the materialized views using the changes made to base table and 

the old views [GMS93]. They can be applied to SQL views that may or may not have 

duplicates, and that may be defined using union, aggregation, linear recursion and 

negation. A recursive view means that the view is defined using other views of the data 

warehouse rather than the data sources. “It proposes the counting algorithms for 

nonrecursive views, and the DRed algorithms for recursive views, since each one is better 

than the other on the specified domain” [GMS93].

15
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2.1.1 Counting Algorithm

In [GMS93], the counting algorithm keeps track of the number of derivations (link from 

source node to destination) for a tuple t in the materialized view and only the number of 

the derivations (count) is interesting. The tuple is kept if it has at least one derivation, 

otherwise the tuple is deleted.

a

e c

Figure 2.1: Link and Hop Figure 2.2: example of Link and Hop

For example, Link (a,b) is true if  there is a link from source a to destination b, and hop 

(c,d) is true if c is connected to d via an intermediate node. Figure 2.1 shows link and hop 

and figure 2 . 2  shows hop(a,e) has a unique derivation {link(a,b) + link(b,e)}(heve ‘+’ is 

used for joining the links), whereas hop(a,c) has two derivations {link(a,b) + link(b,c)} 

and {link(a,d) + link(d,c)}. If we define count as the number of derivations then hop (a,e) 

has a count of 1 and hop (a,c) has a count of 2 .

Suppose we delete the link(a,b) from figure 2.2, then we have to reevaluate the hop. Then

the counting algorithm assume that one derivation of each the tuples hop(a,c) and hop(a,e)

is deleted. The result is as follows:

hop (a,e) has no derivation and

hop(a,c) has one derivation {link(a,d) + link(d,c)}

So, hop(a,e) is deleted because hop(a,e) has no derivation but the hop(a,c) is kept 

because hop(a,c), has one remaining derivation.
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2.1.2 Deletion and Rederivation (DRed) Algorithm

The DRed algorithm [GMS93] applies to the recursive views that use negation and 

aggregation and have semantics with SQL views. The DRed algorithm computes the 

changes to the view if any change occurred at the base tables or relations.

For example, the link(a,b) is removed from figure 2.2. The relation hop is modified by 

using DRed, the first step is to compute an overestimate. The overestimate is all the 

tuples that its hop include the link(a,b). Then {(a,e),(a,c)} is included into the set of 

overestimates. When other paths are traversed, it soon discovers that there is a path (a,d) 

and (d,c) that from the hop(a,c). The second step of DRed removes the hop(a,c) from the 

set of overestimate. Finally, the overestimate set contains only (a,e) then the hop(a,e) is 

removed.

2.1.3 Eager Compensating Algorithm (ECA)

The ECA algorithm is used correctly only when the data warehouse keeps up-to-date 

copies of all relations involved in the views. This has some disadvantages: “1) The 

warehouse needs to store copies of all base relations used in its views and 2) Copies of 

relations at the warehouse need to be updated whenever an update occurs at the source”

[ZGH+95],

So, it is a challenge to avoid the overhead of storing copies of base relations, since the 

sources can be simple systems that do not understand the materialized views in a 

warehousing environment [ZGH+95]. In [BLT8 6 ], describes an algorithm, which applies 

incremental changes to a view each time changes at the source are made to relevant base 

relations at the warehouse.
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In summary, when an update Ut occurs in the source database S, the sequence of 

operations that must take place in order to update the warehouse view is:

1) Source sends update £/, to warehouse If\

2) Warehouse queries the source database Qf'h.

3) Source database sends answer At of query Qt to warehouse.

4) Warehouse updates the view by adding answer to the current view U fh.

Thus, for the correct update of a warehouse, the sequence of action is: Uf, Q fh, Ait U fh. 

However, if a later update Uf is recorded at the source before At is computed, giving a 

sequence like Uf, Q fh, Uf, Q /h, Ait Uf’h, Aj, U fh, a warehouse update anomaly arises 

because an update that should not be used in the computation of the first answer has been 

used.

Figure 2.3 shows, how the ECA algorithm hands the view at the warehouse when the 

three insertions to the relations R, S and T. The warehouse view is defined by the

relational algebra expression, W= JIw(R MS MT).

R: W X S: X  Y T:Y  Z
1

-4-
2

- O -

2 5 5 3
Update

Queries
J7w(RMSMT):W

4
■—--------------- -4—Answers

Source Warehouse

Figure 2.3: Processing of updates in a single source and a single view

The following example shows how ECA algorithm updates the view at the warehouse. 

Assume initially the view W is empty. This means the warehouse is initially empty. These 

three updates occur at the source before any queries are answered. Source evaluates Q 

and returns answer A and warehouse receives A and adds it to the view.
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1. Source executes and sends Ui = insert(J?, [4, 2])

2. Warehouse receives Ui and sends Qi = JJw ([4 , 2] MS MI).

3. Source executes and sends U2  = insert (T, [5, 3]) for Qi

4. Warehouse receives U2  and sends Q2  =IJw(R MS' M [5, 3]) |Q  Tlw ([4 , 2\ M S X [5

3])

5. Source executes and sends U3 =insert(S, [2, 5]) for Qi

6 . Warehouse receives U3 and sends Q3 =fIw{R M [2 , 5] M I)©  77r([4, 2 ] M [2 , 5] M T)

Q lJwjR  N [2,5] N l5,3)QI7w  ([4 , 2 ] Xi [2,5] M [5, 3]) for Q2

7. Source receives and evaluates Qi, returns Aj = [4]

8 . Warehouse receives Ai= [4] and adds [4] to the view, W= 0  + [4]

9. Source receives and evaluates Q2 , return Ao = [1 ]

10. Warehouse receives A2  = [1] and adds [1] to the view, W= [4] + [1 ]

11. Source receives and evaluates Q3 , return A3 = 0

12. Warehouse receives A3 = 0  and adds 0  to the view, W =[ 4] + [1] + 0  

The updated view W at the warehouse is ([4], [1]). The result is correct.

In summary, the new algorithm (ECA) is good for correctly maintaining materialized 

views with respect to consistency in a warehousing environment. But it works with a 

restricted warehousing environment with only one source and one simple defined view.
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2.2 LATER RESEARCH

2.2.1 Data Cube

Data warehouse star schema able to answer the multidimensional OLAP queries. The 

multidimensional data model can be seen as a data cube. “An n-dimensional data cube in 

relational OLAP is a table with 2n sub-views of the data cube” [EzOl]. For example, a 

Banking data warehouse has one fact table B-Activity (cid, acctype, transtype, time_m, 

amount) and four dimension tables are Cust (cid, name, address), Acct (acctype, name), 

transaction (trtype, tmame) and Time (time_m, min, hour, day, month, year). Figure 2.4 

shows the data cube for the B-Activity table as a lattice structure. The dimension 

attributes of the data cube are cid (I), acctype (A), 

transtype (P), time_m (T) and amount, and the 

measurable attribute is SUM(amount). The 

measures computed are assumed to be the same, 

each point is annotated simply by the group-by 

attributes. The point (cid, acctype) represents the 

cube view corresponding to the query below.

(SI): SELECT cid, acctype, SUM (amount)
FROM B-Activity 
GROUP BY cid, acctype

Each edges in a lattice can answered the below node without accessing the base table, 

like the edge vj = (cid, acctype, time_m) and the edge vf= (cid, acctype). So, V2 can 

answer the query from vj, defining the following query equivalent to the query above.

(ST): SELECT cid, acctype, SUM(amount)
FROM vj
GROUP BY cid, acctype

(TAP) (IAT) (APT) (IPX)

(IA) (tP) (IT) (AP) (AT) (PT)

O K JA ) (P) JD

( )
Figure 2.4: Data Cube lattice
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S = {data cube top view} 
for i =1 to K  do begin
select that view v not in S such that B (v, S ) is maximized;
S = 5 u  {v} 
end
resulting S is the greedy selecting;

Figure 2.5: The Greedy algorithm

Figure 2.5 shows the greedy algorithm which is defined in [HRU96]. The algorithm is 

selecting a set of k views to materialize for improving the space cost (number of rows in 

the view) for evaluating views. Suppose C(v) is the cost of view v and k is the limit on 

the number of views. The algorithm will first select the top view before selecting some 

set S of views. “The total benefit B (v, S) is the sum over all views w of the benefit of 

using v to evaluating w, providing that benefit is position” [HRU96].

For example, consider the lattice of figure 2.6. 

Eight views, named a, b, c, d, e , f g  and h have 

space costs also shown on the figure. The top 

view a, with cost 100 must be chosen. If we want 

to choose two more views, then the greedy 

algorithm on this lattice must make two 

successive choices of the view to materialize. Figure 2.6: lattice with space costs
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View First Choice Second Choice
b 3 0 x 5  = 150
c 5x5 = 25 5x2=10
d 5 0 x 2  = 100 20x2= 40
e 4 0 x 3  = 120 10x3=30
f 3 0 x 2  = 60 30+0=30
g 69 x 1 = 69 39x1=39
h 60 x 1 = 60 30x1=30

Table 2.1: Benefit of possible choices at each round

The column headed “First Choice” in table 2.1 gives us the benefit of each of the views 

besides a. Each view evaluated using a, therefore will have a cost of 100. For example, if 

view b materializes first, then it reduces by 30 its cost and each of the views d, e, g  and h 

below it. The benefit of b is 5 times 5 or 25 in the first column of table 2.1. Another 

example, if the view e is picked, then it and the views below it, g  and h, each have the 

cost reduced by 40, from 70 to 30 and the benefit of e is 120. So, only view b is selected 

to materialize in the first column. To recalculated the benefits for the second column, 

view (b, c, d, e, f, g, h) will be created from b, at cost of 50, if b is in view (b, c, d, e, f, g, 

h) or from a cost of 100, if not. For example, the benefit of c is 10 (from 70 to 65), 5 for 

itself and f. Choosing /  yields a benefit of 30 for itself, from 70 to 40 and h yields a 

benefit of 0, from 40 to 40. So, only view d  is selected to materialize in the second 

column. The table 2.2 shows the maximum benefits of the materialized views are selected 

by the greedy algorithm. If only the view was materialized then the total cost of 

evaluating all the view is 800. So, the cost would be reduced by 480, from 800 to 320, 

that cost is actually optimal after view b and/are selected by the greedy algorithm.

Materialized Maximum benefit
View

First Choice b 250
Second Choice f 70

Total Benefit 320

Table 2.2: Materialized views are selected by the greedy algorithm
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2.2.2 Maintenance of Views with Aggregation

Materialized views are involving aggregation to speed up the query and to summarize 

data in the data warehouse. As changes are made to the base data, materialized views 

become out of date. Materialized views can be maintained, either start recomputed from 

the beginning if  the size of the view changes is larger or incrementally maintained by 

propagating changes to the base data onto the view.

Many algorithms have been presented to maintain the materialized view. Griffin and 

Libkin [GL95] provide an algorithm to maintain the materialized view by propagating 

changes (deletions and insertions) from base relations to a materialized view through 

each of the aggregations. But this algorithm does not support aggregation with group-by 

attributes. Dalian Quass [Qu96] extends the framework of [GL95] for maintaining 

materialized views with aggregation where aggregation support the group-by attributes. 

“It presents simple maintenance expressions for propagations, insertions and deletions, 

(except deletion with MIN and MAX) through aggregation operations” [Qu96], The 

expressions are explained systematically in [MQM97] with propagate and refresh 

functions. “The aggregate functions are divided into three classes: distributive, algebraic 

and holistic” [GBL+96].

Distributive Aggregate functions COUNT, SUM, MIN and MAX are supported for 

computing by partitioning their input into disjoin sets [MQM97]. For example, COUNT 

can be computed by summing partial counts. If the DISTINCT keyword is used as in 

COUNT (DISTINCT E) (count the distinct values of E) then these functions are no 

longer distributive.
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Algebraic Aggregate functions SUM and COUNT are used for computing AVERAGE 

function and it is algebraic, since it can be written as SUM/COUNT. If the view contains 

the AVG aggregate function, the data warehouse materialized views will contain instead 

the SUM and COUNT functions [MQM97],

Holistic Aggregate functions SUM, COUNT, MIN, MAX, AVG cannot be used for 

dividing into parts. Median, Mode and Rank are example of a holistic aggregate function 

[MQM97],

When the data warehouse is being updated, it is made unavailable to the user for querying. 

When changes occur in the source tables, most warehouses do not apply the changes 

immediately. It is usually maintained at regular intervals, like once a day, once a week, in 

a single batch window. For example, the changes from the sources are received during 

the day, and the views are refreshed during the night. Deferring the changes can make the 

maintenance more efficient, and the views can be frozen for analysis and other functions. 

Usually a data warehouse contains large amounts of data for a long period of time. 

Therefore, efficiently maintaining the summary tables is a critical issue. Mumick et al. in 

[MQM97] presents algorithms which can maintain a large set of summary tables defined 

over the same base tables efficiently. For simplicity of presentation, that paper assumes 

the fact table has been updated, and the maintenance has worked in response to the 

changes only to the fact table, not source tables. It gives a definition of self-maintainable 

aggregation: A set of aggregate functions can be self-maintainable if  it is computed from 

old values of the aggregate functions and from the changes to the base table [MQM97]. 

The aggregation functions COUNT, SUM, AVG, MIN and MAX are self-maintainable 

with respect to insertion. For example, the new value of function MAX can be computed 

by comparing the old value of MAX aggregation function with the change to the base 

table. If the change is larger than the old value, then the new value of MAX should be the 

changed. Since AVG can be computed as SUM/COUNT, it is also self-maintainable. 

COUNT is self-maintainable, but COUNT (DISTINCT E) is not. Not all aggregate 

functions are self-maintainable with respect to -deletion. For example, MIN and MAX 

are not self-maintainable with respect to deletion.
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After deletion a tuple which contains the minimum or maximum value, the new minimum 

or maximum value must be recomputed if  there are changes to the base data. Adding a 

COUNT (*) aggregation function to view can help to handle deletions in some situations. 

If the value of COUNT (*) reaches zero, there is no other tuple in the group that can be 

deleted. The use of COUNT (*) will be shown on an example later.

The view maintenance can be processed into two steps: propagate and refresh. For the 

propagate function, this paper presents a new method which creates summary-delta tables. 

It contains the net effect of the changes on a summary table, for the incremental 

maintenance of aggregate views. It defines three virtual views for a summary table that 

needs to be maintained: prepare-changes, prepare-insertions and prepare deletions. The 

prepare-insertions and prepare-deletions views are derived from the changes in the base 

relations caused by individual insertions and deletions to the aggregate functions. They 

contain every group-by attribute of the summary table and aggregate-source attribute that 

each of the aggregate function computes in the summary table. For example, if the 

summary table contains group-by attributes such as customer id (cid), Account type 

(Acctype), and aggregation function SUM (Amount), the prepare-insertions and prepare- 

deletions views should contain cid, acctype, and aggregate-source attributes Amount for 

insertion, or - (Amount) for deletion. The prepare-changes view is computed as the union 

of prepare-insertions view and prepare-deletions view. The table 2.3 shows how to derive 

the aggregation-source attributes is given by [MQM97],

COUNT(*)
COUNT(expr)

prepare-insertions

1
case when expr is 
Null then 0 else 1

prepare-deletions

-1
case when expr is 
null then 0  else - 1

SUM(expr)
MIN(expr)
MAX(expr)

expr
expr
expr

- expr
- expr
- expr

Table 2.3: Deriving Aggregation-source Attributes
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The summary-delta table is computed from prepare-changes virtual view with the same 

schema as the summary table except the attributes that result from the aggregate 

functions in the summary-delta table present changes to the corresponding aggregation 

functions in the summary table. In the refresh step the changes in the summary-delta table

are applied to the summary table. Since each tuple S t in the summary table cause a 

change to a corresponding tuple t in the summary table, for each St, t is looked up. If t is 

not found it means no tuples in the summary table have same values of group-by 

attributes as S t into the summary table. If t is found, the algorithm checks if the sum of

COUNT (*) from & plus COUNT (*) from t  is zero. If it is, then t is deleted. Otherwise, 

it checks each of the MIN and MAX aggregate function to see if the new MIN and MAX 

values should be recomputed from the base data for f  s group. The recomputation is 

performed when the value $.MIN (e) (<5f.MAX(e)) is less than or equal to t.MIN(e) 

(greater than or equal to t.MAX(e)) was deleted. This algorithm only considers COUNT, 

SUM, MIN and MAX, not including AVG.
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2.3 RECENT RESEARCH

2.3.1 Selecting and Materializing Horizontally Partitioned Warehouse Views

Materialized views are selected from the data cube for speeding up query response time 

for data warehouse view maintenance cost. In [EzOl], C.I. Ezeife presents the 

horizontally fragments method for recomputing the size of the stored partitioned view in 

the data warehouse materialized views.

Data warehouse aggregate views can be stored as 2n subviews of a data cube with n 

attributes answer the data warehouse multidimensional OLAP queries for business 

decision making. The cost of the data warehouse materialized view maintenance is 

increasing when 2n views are stored because these views are huge. In [HRU96], V. 

Harinarayan et al. proposed a greedy algorithm for selecting the best views to 

materialized in order to answer the queries with minimum response time. In [Gu97], H. 

Gupta extended the greedy algorithm to select both view and index. In [Ez97a], C.I. 

Ezeife defines a uniform schema based on a comprehensive cost model for selecting both 

view and index. In [Ez97b], C.I. Ezeife extends this uniform schema to handle dimension 

hierarchies. In [OV91], M.T. Ozsu et al. presented horizontal fragmentation schemas for 

relational databases based on simple predicates and with no access frequencies taken into 

consideration. In [EB98], C.I. Ezeife et al. proposed a partition selection schema for 

partitioning any selected view by using the re-computed size of the partitioned view and 

the fragment-advisor algorithm finds the best view for answering the user queries. The 

partitioned view is based on the actual fragments of the view scanned by queries. The 

greedy algorithm is applied to further selection of the views. In [EzOl], C.I. Ezeife 

extends the greedy algorithm and proposes selection-partitioning algorithm for 

recomputing the size of the partition views. The selection partition algorithm selects n
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best views to materialize. Algorithm first selected the top level view from the data cube 

lattice. After that, it is recomputed the size of the horizontal fragmented view. The view 

partition algorithm finds the simple predicates from each user query by using the partition 

attributes. Simple predicates are defined from the partition attributes value with the help 

of logical operator from the set {=, <, >, *, < >}and the value is from the domain of 

partition attributes. “The importance of each predicate is obtained by adding up the 

product of the application frequency and the cardinality of this predicate on view for 

every application that access the predicate” [EzOl].

The formula for obtaining the importance of a predicate is given as:

X  (access frequency of (Qt)*\Pik\),
Qi | access (Qh Pik) = 1

The number of rows or tuples in the partition of the materialized view is defined by 

predicate Pik , while access (Qh Pik) = 1 means that the number of time query g, accesses 

the predicate Plk. The view partition schema also produces the horizontal fragments of the 

materialized view by minterm predicates. “A minterm predicate is a conjunction of 

simple predicates in either their natural or negated forms” [OV91],

The fragment advisor algorithm finds the best answers to a query from a set of fragments 

of the view. Each fragment comes with the conjunctive minterm predicate defines which 

the minterm predicate is true. Algorithm first set all attributes that is needed by the 

query’s partition attributes (PA), analysis attributes (AA) and measure attributes (MA) 

sets then finding the best view with fewer rows can answer the user query. So this way 

fragments advisor help to find out the lowest total number of rows for answering the user 

query.
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2.3.2 Propagation of updates from original data sources to materialized views

In recent years some research has been done to synchronize the views when the data 

sources are updated. The view maintenance on updating is much more difficult when data 

sources and views are at the different locations, a view synchronization problem occurs. 

That is, views need to be updated according to the updates to the base table. So far there 

are two ways to solve this problem: using self-maintainable views and using updategram 

plus boosters.

In [DLY02], Xin Dong et al. trying to solve this problem as follows: update the data 

warehouse materialized view f-rom the two base tables. One base table is located at the 

updategram side and another base table is located at the booster side. Only the 

updategram side base table collects updated into the updategram, and send it to the 

booster side and data warehouse materialized view side at the same time. The base table 

at the booster side semi-joins with new updated tuples of the updategram, and then sends 

it to the data warehouse materialized view to produce delta view. After that delta view 

merge with the data warehouse original materialized view.

Updategram has two hash pools, one is insert pool and another is delete pool. Insert pool 

collects only insert items of the updated tuples and delete pool collects only delete items 

but before putting the data into the delete pool, it checks the insert pool for checking 

whether the same tuple appears in the insert pool or not. If so, then the tuple will removed 

from the insert pool and the deletion item is discarded. This way, it is removed the 

overlaps as soon as possible when the new tuples are updated into the updategram. Figure 

2.7 shows the updategrm data structure after updating insert tuple: <al,bl>, delete tuples 

<a2,b2> and <a3,b3>. The delete tuple <a2,b2> is discarded because the same tuple 

appears in the i-pool.
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(al ,bl)
(aO,bl)

(a3,b3)

Updategram AU 
i-pool d-pool

Figure 2.7: Updategram data structure

The booster side semi-joins S with the updategram tuples <bl,c2> and <b3,c3> to 

produce two boosters <bl,c2> and <b3,c3> is shown figure 2.8.

Updategra
i-pool

m \\J
i-pool

Base table S 
B C

(al ,bl)—
------------------- i

b0 cl
(a0 ,bl)..._ b l c2

oc b2 c2

(a3,b3) b3 c3
b4 c4

Figure 2.8: Booster side semi-joins with S

At the view side booster item first join with the delete pool of the updategram then it can 

check the insert pool of the delta view for removing the same tuple before putting it into 

the delete pool of delta view. The result of the delta view pools are updated same way as 

for the updategram. For example, Figure 2.9 shows tuple <a3,b3,c3> is produced after 

updategram tuple <a3,b3> of the d-pool joins with <b3,c3>. Before putting it into the d- 

pool of the deltaview, we first check whether the same tuple appears in the insert pool. 

This tuple <a3,b3,c3> is discarded because the same tuple appears in the i-pool of the d- 

pool, then delivers it to the view side. The view side delta view join with the updategram

can be defined as, AView = updategram M booster and the delta view merge into the 

original data warehouse materialized view can be defined as, View' = View © AView.
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Updategram AU 
i-pool d-pool Booster
(al,bl)
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Delta View AV 
i-pool d-pool

(a0,bl,c2)
(al,bl,c2)

-(a 5 ^ c 3 )

Figure 2.9: Joins the updategram and the booster to produce AV

In summary, the proposed algorithm [DLY02] is good for managing the propagation of 

updates from the original data sources to materialized views. But this algorithm 

performance will decrease when the update in the base table is too much.
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CHAPTER 3

DATA WAREHOUSE STREAM VIEW  UPDATE

3.1 INTRODUCTION

A data warehouse stores large amount of data to supports on-line analytical processing 

(OLAP). “Decision support and OLAP application make heavy use of complex grouping 

/ aggregation queries” [TheOl], There are two types o f materialized views can be seen 

into the data warehouse: simple views and auxiliary views. Simple views are used for 

optimally answering the OLAP queries and auxiliary views are used for reducing the data 

warehouse view maintenance cost [TheOl]. D. Quass et al. in [QGM+96] presented an 

algorithm to make a view self-maintainable by using several auxiliary views stored in the 

same location. A view maintenance in a data warehouse requires access to data that is not 

available in the view itself because, while the materialized views are available for view 

maintenance, access to the remote database may be restricted or expensive. Self- 

maintainable views are useful to maintain a data warehouse views by using several 

auxiliary views stored in the same location [DLY02], It allows views to be maintained 

using only the materialized view without accessing the base relations.

When data sources and views are at different locations, then a view synchronization 

problem occurs; that is, views need to be updated according to the updates in the base 

table. Stream update propagation using updategram, which contains updated tuples, (both 

insert and delete tuples), and boosters, contain tuples which will join with updategram to

generate delta view (updategram M booster is called delta view) to produce delta view

update at the view site [DLY02]. The proposed algorithm uses updategramfilter, which 

generates distinct tuples of the updategram to join with the booster site base table. The 

updategramfilter avoids transmitting the whole updategram data in order to reduce data 

traffic. For example, if  the view V joins with both two base tables R and S, all of which 

are located on different locations, if  one of the tables R is updated, which is denoted as 

AR. AR will send into the updategramsfilter, which rebuild new S after joining with AR
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and existing S at the booster side. The updategram joins with the booster to generate delta 

view, which is denoted as AV. This proposed technique saves a great deal of 

transportation and computation. Maintaining a set of auxiliary views means more storage 

space and more cascading maintaining computation at the view side. This algorithm 

divides the workload among the booster site and the view site and divides the resource 

usage among the network bandwidth (the number of tuples that can be delivered by 

network per unit time), I/O (the number of tuples that can be scanned per unit time) and 

CPU (the number o f pages that can be processed per unit time).

In many applications, such as stock market databases and sensor network databases, 

source data is updated much more frequently than users query the views. These queries 

require up-to-date data. We propose the Data Warehouse Stream View Update with 

Hash filter (StreamVup) algorithm based on the Hash filter (discussed in section 1.3) and 

Hash table (discussed in section 3.2) techniques which is capable of efficiently managing 

the propagation of updates from original sources to materialize views by using Hash filter 

(HF) technique at the booster side. Section 3.2 defines several terms in order to present 

the algorithm formally. Section 3.3 describes the proposed algorithm with example. The 

proposed algorithm updates the data warehouse materialized view using Propagate and 

refresh [MQM97]. Propagate has three sub stages which are updategram, updategram­

filter and booster.

3.2 THE PROBLEM DOMAIN

Assume share holder no. 45459 decides to move some savings into company A’s stocks. 

He calls his broker and places an order to buy 750 of A’s shares at a maximum price of 

$11.89. This is called a bidding price. Share holder no. 45459’s broker uses the stock 

market’s trading system to broadcast share holder no. 45459’s bid. When it hits the 

market, the best offer for A’s shares, called its asking price, is $11.89. Share holder no. 

38387 wants to sell some of his shares of A. He instructs his broker to sell 1000 of his 

A’s shares at market value. When his offer meets share holder no. 45459’s bid, a trade is 

done. Each ‘bid’, ‘ask’, ‘sell’ or ‘buy’ is called a tick. There are up to 100 million ticks
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(six-and-a-half hours a day) that can be achieved in some electronic trading markets such 

as NASDAQ.

To facilitate our discussion, let us introduce an imaginary example. The following is an 

example of the data warehouse for the trading activities of the stock market. We will use 

this example throughout this chapter to show how our proposed StreamVup works.

A sample RTicks table data is given in table 3.1 for only 10 tuples although this table 

holds millions of rows typically. This RTick holds continuous streams of data in a 

memory. At the end of the day RTick will erase all shares information records. Ask and 

bid will be erased from the memory. The RTick schema is (ID, Timestamp, SID, MMID, 

PRICE, Volume, Type) where ID is security identifier, TIMESTAMP corresponds to the 

system clock when tick enters the trading system from a single stream. There are up to 

100 million (100 x 1,000,000) ticks per six-and-a-half-hours (about 4,200 ticks per 

second). The timestamp transaction which took place is recorded as year/month/day/ 

minute/second [EzOl]. Since in a day there are 1440 minutes (24 x 60), these four digits 

represent both minutes and hours of a day. The last two digits of time are used to 

represent seconds (1 x 60). For example, first record of the timestamp in table 3.1 is 

20030503093245. The first four digits indicates the year, which is 2003; the next four 

digits represent the month and day, which is May 3 (0503); the next four digits represent 

minute and hour, which is the 9th hour and the 32nd minute (0932); and the last two digits 

represent the seconds of a minute, which is 45 sec. SID is a stock ID, MMID is the 

Market Maker behind this tick and price. Other attributes are VOLUME and TYPE which 

is either ‘bid’, ‘ask’, ‘sell’ or ‘buy’. The RTick is shown in table 3.1. Trading activities 

source database has two base tables R and S. The base table R holds the current share 

information records, which is updated when any share is sold or bought in the RTicks. 

The schema for R is (Timestamp, MMID, SID, Price, Volume, Type), which is shown in 

table 3.2 for only 5 MMIDs as 34349, 38459, 41258, 43458 and 45459 although this 

table holds millions of MMIDs. Data warehouse TicksFT stores all the historical data 

from table R, when any new data is updated in the R. At the same time it will send them 

into the TicksFT, which is shown in Table 3.4. No transactions by the same person occur 

at exact same second, but transactions by different person occurring
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ID TIMESTAMP MMID SID PRICE VOLUME TYPE
1 0 0 0 0 0 1 20030503093245 38387 AC 20.15 600 Bid
1 0 0 0 0 0 2 20030503093245 41258 BG 50.18 1 0 0 Bid
1000003 20030503093245 43458 AC 20.15 600 Ask
1000004 20030503093245 45457 BG 50.18 1 0 0 Ask
1000005 20030503093245 45459 BG 50.17 500 Bid
1000006 20030503093247 47478 BG 50.17 500 Ask
1000007 20030503093247 38387 AC 2 1 . 1 0 600 Ask
1000008 20030503093248 41258 BG 51.07 1 0 0 Ask
1000009 20030503093248 43458 AC 2 1 . 1 0 600 Bid
1 0 0 0 0 1 0 20030503093249 45457 BG 51.07 1 0 0 Bid

Table 3.1: An Instance of the most recent trading activities for RTicks

within the same minutes (eg. BUY and SELL) are shown in table 3.2. The base table S 

holds the details of share information records. The schema for S is (SID, StockName, 

PhaseValue) which is shown in Table 3.3 for only 7 shares information, although this 

table holds thousands of shares information. The R and S are the base tables of the 

trading activities source database and are shown in table 3.2 and table 3.3 respectively. 

Table 3.2 shows the records of trading activities at time 200307300950 and table 3.4 

shows the records of trading activities at time 200307300953.

MMID SID PRICE VOLUME TYPE TIMESTAMP
38387 AC 20.15 600 BUY 20030730095015
41258 BG 50.18 1 0 0 BUY 20030730095016
43458 AC 20.15 600 SELL 20030730095018
45457 BG 50.18 1 0 0 SELL 20030730095021
45459 - - - - -

47478 - - - - -

Table 3.2: An Instance for R in time 2003,07,30,0950
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SID STOCKNAME Phase Value
AC ACME 1 0

BA British Airways 25
BG BG Group 15
CP Compuware 5
MI MIG 30
NR Northern Rock 1 0

SP Scottish Power 50

Table 3.3: An Instance for S

MMID SID PRICE VOLUME TYPE TIMESTAMP
38387 AC 21.10 600 SELL 20030730095315
41258 BG 51.07 100 SELL 20030730095319
43458 AC 21.10 600 BUY 20030730095320
45457 BG 51.07 100 BUY 20030730095317
45459 BG 50.17 500 BUY 20030730095323
47478 BG 50.17 500 SELL 20030730095325

Table 3.4: An Instance for R in time 2003,07,30,0953

We assume that our simple stock warehouse system is used for only historical data from 

base table R of the trading activities database since there is no integration with other 

source databases. Figure 3.1 and 3.2 shows the data warehouse fact, dimension tables and 

star schema. Table 3.5 -  Table 3.8 shows an instance of TicksFT for data warehouse, of 

stock dimension table, of market maker dimension table and of time dimension table

TicksFT (Timestamp, SID, MMID, Price, Volume, Type) 

Stock (SID, StockName, PhaseValue)

MM (MMID, Name, address, phone)

TickTime (Timestamp, day, month, year)

Figure 3.1: Schema of the fact and dimension table for data warehouse
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Stock

Figure 3.2: Data warehouse star schema

TIMESTAMP SID MMID PRICE VOLUME TYPE
20030730095015 AC 38387 20.15 600 BUY
20030730095016 BG 41258 50.18 1 0 0 BUY
20030730095018 AC 43458 20.15 600 SELL
20030730095021 BG 45457 50.18 1 0 0 SELL
20030730095315 AC 38387 21.10 600 SELL
20030730095317 BG 45457 51.07 100 BUY
20030730095319 BG 41258 51.07 100 SELL
20030730095320 AC 43458 21.10 600 BUY
20030730095323 BG 45459 50.17 500 BUY
20030730095325 BG 47478 50.17 500 SELL

Table 3.5: An Instance of TicksFT for Data Warehouse

SID STOCKNAME PhaseValue
AC ACME 1 0

BA British Airways 25
BG BG Group 15
CP Compuware 50
MI MIG 30
NR Northern Rock 1 0

SP Scottish Power 50

Table 3.6: An Instance o f Stock Dimension Table
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MMID Name Address Phone
38387 Smith 3233 Peter St 253-3012
41258 Bob 1487 Josephine Ave 231-5897
43458 Alice 1875 Partington Ave 562-8954
45457 Joe 2356 Pelletier St 532-6532
45459 John 1121Bridge Ave 326-5687
47478 Mike 6 8 6  Church Street 589-4512

Table 3.7: An Instance of Market Maker Dimension Table

Timestamp Second Minute Day Month Year
20030730095015 15 0950 30 07 2003
20030730095016 16 0950 30 07 2003
20030730095018 18 0950 30 07 2003
20030730095021 2 1 0950 30 07 2003
20030730095315 15 0950 30 07 2003
20030730095317 17 0950 30 07 2003
20030730095319 19 0953 30 07 2003
20030730095320 20 0953 30 07 2003
20030730095323 23 0953 30 07 2003
20030730095325 25 0953 30 07 2003

Table 3.8: An Instance of Time Dimension Table

We also assume that two data warehouse stored views as follows: the first view Ticks is 

denoted as Vi and the second view Ticks HISTORICAL is denoted as V2 . The Vi records 

“Get the number o f  SID, stock name, phase value and the balance o f  the Volume for each 

MMID by SID”. The V2  view records “Get the maximum, minimum price and total 

volume o f  the share sold, by each MMID and SID in every month”. Vi and V2  have the 

following heading formats:

V] (MMID, SID, StockName, PhaseValue, BalVolune)

V2 (MMID, SID, MaxPrice, MinPrice, PhaseValue, MonthlyTotal)
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For simplicity of discussion, we are using view Vi in the data warehouse, which is Vi = 

R M S. We assume R receives continuous data records while S does not change meaning,

and the size of R keeps growing but the size of S remains the same. Whenever a new 

tuple arrives in R, Vj needs to be updated. We can update the Vi simply by moving each

tuple tc (tc is the new tuple) of R that arrives into the data warehouse, so that tc N Vi 

updates Vi. The view V) from table R and S, which is shown in the table 3.9:

MMID SID StockName PhaseValue BalVolume
43458 AC ACME 10 600
38387 AC ACME 1 0 600
41258 BG BG Group 15 1 0 0

43458 AC ACME 10 -600
45457 BG BG Group 15 - 1 0 0

Table 3.9(a): View V ' = tc N V,

MMID SID StockName PhaseValue BalVolume
38387 AC ACME 1 0 600
41258 BG BG Group 15 1 0 0

45457 BG BG Group 15 - 1 0 0

Table 3.9(b): View V '

If the new tuple of R arrives, we need to update exit Vi record <MMID: 43458, SID: AC, 

StockName: ACME, PhaseValue: 10, BalValue: 600> with this new tuple tc. We can

simply move this tuple to Vi and V ' = tc M Vi is shown in Table 3.9(a) (here tc is new

tuple at time 200307300950 which is shown in table 3.2). Table 3.9(b) shows the new 

view after updated new tuples.

The above traditional view update technique cannot update materialized views when 

frequently updating at the base table R (e.g. 4,200 records per second). That is why, in 

[DLY02] proposes the streamed update algorithm from original sources to materialized
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view using semi-join. When an update occurs in the base table R, the sequence of the 

operations that must take place in order to update warehouse view is:

1) The update base table sends update to the other non-updated base table S for semi­

join Figure 3.9(c) shows the result of the semi-join with new updated tuples which is 

shown in Table 3.2.

SID STOCKNAME Phase Value
AC ACME 10
BG BG Group 15

Table3.9(c): Roc S

2) Semi-join result will join with new updated tuples which is shown in Table 3.2 before 

updating the warehouse materialized view.

The advantage of semi-join is reducing the joining cost rather than joining the whole base 

table of S. This approach is not efficient to update the materialized views because it needs 

semi-join when updated tuple arrives. So, we need alternative approach to update the 

view efficiently into the data warehouse. Our proposed algorithm solves the materialized 

views update problem using hash filter and hash table (discussed in section 1.3).
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3.3 THE PROPOSED DATA WAREHOUSE STREAM VIEW UPDATE 

ALGORITHM BASED ON HASH FILTER AND HASH TABLE

We propose a new algorithm for the data warehouse stream view update based on hash 

filter and hash table (Figure 3.4). Algorithm efficiently manages the propagation of 

updates from original sources to materialized views. We use the strategy described in 

[CGL96], [MQM97], [EXOO], [DLY02] which splits the maintenance work into 

Propagate and Refresh functions in our algorithm. Our algorithm has two main functions: 

propagate and refresh, which are based on hash pool. The Propagate function is used to 

compute the net effect of changes on a view based on the changes that occurred on the 

base table. There are three sub-functions updategram, updategramfilter, and booster that 

help to create the delta view.

The updategram side packs updated table R, which is denoted as AR. AR tuples are sent 

into the updategram, and updategramfilter simultaneously. The booster side rebuilds S 

when R is updated, which is denoted as AR. A Hash filter is applied on AR to get the 

distinct value of attribute SID in AR. S is rebuilt after the application of HFAR(SID)—> S, 

to produce the booster and then send it into the view side. The view side joins the 

updategram and the booster to produce its update, delta view (AV). Finally, the refresh 

function applies the changes represented in the AV to the Vi.
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Figure 3.3 shows the data warehouse stream view update algorithm work flow. When the 

job at the source database site is completed, the view information will send into the data 

warehouse site for updating data warehouse materialized view.

Source Database Site

AV = U N B

Data Warehouse Site

Figure 3.3: Problem definition of the data warehouse stream view update algorithm
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Algorithm 3.1 (Stream data update warehouse view algorithm using Hash filter 
and hash table: Maintaining hash filter and hash table for stream update 
propagation)

Algorithm Stream-Materialized-ViewO

Input: set of update tuple, AR from relation R (MMID, SID, Volume}
Set of tuple from relation S, set of change updategramPool, 
set of change S // Updategramfilter function rebuilt S joining with AR
set of change deltaviewPool 

Output: a set of updated View- V'

Begin
// Propagate functions: create the delta view

Generate-Updategram = Updategram(ARtuple, type, 
updategramPool)

Updategramfilter = Updategramfilter(updategramPool, S) 
Generate-Booster = Booster(updategramPool, S, 

deltaviewPool)
// Refresh function: refresh the delta view to the original view

Up-to-Date-View = Refresh-Viewfdeltaviewpool, View- V')

End

Figure 3.4: Algorithm for stream data update warehouse view
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3.3.1 Propagate functions

The three sub functions of the propagate functions are updategram, updategramfilter and 

booster. The updategram function is to maintain two hash pools, the insert-pool and the 

delete-pool for removing the overlap of the updategram. The updategramfilter function 

uses hash filter on the updategram to get distinct data from the updategram. The booster 

function maintains delta-view by using two hash pools of the insert-pool and the delete- 

pool. The updategram function is described in section 3.3.2.1, the updategramfilter 

function is presented in section 3.3.2.2 and the booster function is explained in section 

3.3.2.3.

3.3.2.1 Updategram function

We use two hash pools, the updategram insert pool and the updategram delete pool. Each 

pool is maintained as a hash table on the joining columns. When an insertion updategram 

item comes, it is put into the updategram insert pool. When a deletion item comes, before 

putting it into the delete pool, we first check whether the same tuple appears in the insert 

pool. If so, the tuple is removed from the pool and the deletion item is discarded. This 

way it is ensured that overlaps of the updategram are removed as early as possible. The 

complete algorithm in Figure 3.7 uses three other functions, the hashlnsert, the 

hashDelete, and the hashLookup, to insert an item, delete an item, or judge whether a 

tuple is in the hash table. These functions are used in the i-pool and the d-pool of the 

updategram and the delta view hash table.

Figure 3.5 shows how the updategram algorithm puts the new records of table 3.2 into the 

updategram hash table. If the update tuple information type is SELL, then it is sent into 

the delete pool (d-pool). If the update tuple information type is BUY then it is sent into 

the insert pool (i-pool).

Figure 3.5 shows the new updated base table R at time 200307300950, tuples (38387, AC, 

600, BUY) which are put into the i-pool using the hashlnsert function. The second tuple 

(41258, BG, 100, BUY) is also sent into the i-pool. Before we put the third tuple (43458, 

AC, 600, SELL) into the d-pool algorithm, we first call the hashlookup function to check
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whether this tuple is in the insert pool. If so, then the tuple is removed from the pool, 

otherwise it is sent into the d-pool. In this case this tuple does not have a match in the 

i-pool. Therefore the algorithm will call the hashlnsert function to insert the tuple into the 

i-pool. The same is done for the fourth tuple (45457, BG, 100, SELL).

41258, BG, 100

38387, AC, 600 43458, AC, 600

45457, BG, 100

i -  p o o l
U p d a te g ra m  U  =  AR

d -  poo l

Figure 3.5:Updategram data structure after updating stream data at time 200307300950

Figure 3.6 shows the new updated base table R at time 200307300953, tuples (38387, AC, 

600, SELL). We first call the hashlookup function to check whether this tuple is in the 

insert pool before we put it into the d-pool. If so, the tuple is removed from the pool; 

otherwise it will be sent into the d-pool. If this tuple matches in the i-pool then the 

algorithm will call the hashDelete function to delete the tuple from the i-pool, and also 

for the tuple <41258, BG, 100, SELL>. The other two new tuples <43458, AC, 600, 

BUY> and <45457, BG, 100, BUY> are put into the i-pool because these tuples do not 

have a match in the i-pool. Then the algorithm uses hashlnsert function to insert the tuple 

into the i-pool.

U p d a te g ra m  U  =  AR
i -  p o o l d  -  poo l

43458, AC, 600
43458, AC, 600 45457, BG, 100

45457, BG, 100 47478, BG, 500
45459, BG, 500

Figure 3.6: Updategram data structure after updating stream data at time 200307300953
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Algorithm 3.2 (Updategram - Removing Overlaps on Updategrams)

Algorithm Updategram(ARtuple, type, updategramPool)
Input: set of update tuple from relation R and type 
Output: updategramPool

Begin

//tuple insert into the i-pool of the upategramPool 
if  (type = = insert)

hashlnsert(tuple, insert, updategramPool)
// deleted tuple insert into the d-pool of the updategramPool but it will first 
check the i-

pool for removing the matching tuple from i-pool. 
else if  (type = =delete)
if  (hashLookup (tuple,insert, UpdategramPool)) 

hashDelete(tuple, insert, updategramPool)

else hashlnsert(tuple, delete, updategramPool)

End

Figure 3.7: Updategram Algorithm
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// hashlooup function is used when deleted tuple are insert into the i-pool
// T is tuple, it could be to delete, insert or search and function answer is returned
byK

HashLookupfT, k)
i = 0
repeat j = h(k, i)

if (T[j] —  k and deleted_bit(T[j]) == false) 
return j
i = i + 1

until (i =  m or T[]j =  NIL) 
return -1

//hashinsert function is used to insert new tuple into the i-pool of 
updategramPool

HashlnsertfT, k)
i = 0 

repeat j = h(k, i)

if  (T[j] —  NIL or deleted_bit(T[j]) =  true)
T0] = k 

return 
i = i + 1 
until (i == m)
error(“hash table overflow”)

//hashdelete function is used to delete tuple from i-pool when it is matched 
and if  it is false then to insert the tuple into the d-pool of the 
updategramPool.
HashDeletefT, k) 

i = 0
repeat j = h(k, i)

if (T[j] =  k and deleted_bit(T[j]) =  false)
deleted_bit(T[j]) == true 

return k 
i = i + 1
until (i —  m or T[j] == NIL) 
error(“k not found”)

Figure 3.8: Hashlnsert, HashDelete and HashLookup functions for Algorithm

Updategram and Booster
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3.3.2.2 Updategramfilter function

The updategramfilter uses the hash filter (HF) on attribute SID to update the tuple of R 

denoted as AR, then applies it to S to reduce the joining cost of AR join S. Before joining 

AR and S to their common attribute SID, probing the tuple of S against HFAr(SID) (HF 

applies on attribute SID of the AR) and removing non-matching tuples to

UHash filter UHF = HFu (SID)

h (SID) Set
AC 1
BG 1

Figure 3.9: Hash filter built by HFAR (SID) previous AR tuple

Booster (HFAR (SID) -» S)

B = UHF M S
SID STOCK NAME PhaseValue
AC ACME 10.00
BG BG Group 15.00

Figure 3.10: Rebuilt S with previous AR tuple after the applying HFar (SID) - * S

reduce the number of tuples of S to participate in the joining. The joining cost is thus 

reduced. The updategramfilter algorithm is described in figure 3.11. Figure 3.10 shows 

the hash filter (HF) built by the relation AR to its attributes SID, denoted by HFar (SID), 

as an array of bits. Let AR (SID) be the set of distinct values of the attributes SID in AR, 

and h be the corresponding hash function employed. Figure 3.9 found two arrays of bits 

which set to 1 for h (SID) after applying HFar (SID). The advantage of using the hash 

filter is that it can store the previous information in array. Whenever any new tuple 

arrives it will check the existing array table first, rather than doing the whole process 

again like semi-join. If all the tuples AR in updategram match with the existing hash filter 

array table, then we can use the exiting S rather than rebuild the S again. This way we can 

reduce the joining cost. Figure 3.12 shows that AR in Table 3.2 and Table 3.4 are using 

the existing S rather than rebuilding it again.
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Algorithm 3.3 (UpdategramFilter -  use Hash filter (HF) built by Relation AR on its 
attribute SID)

Algorithm UpdategramFilter(updategramPool, S)
Input: set of all update tuples from relation R 
Output: S
Initialized: Array AR(SID[i]) , i = 0
Let Jatt be the set of all joining attributes in R
if(Jatt* 0 )
Begin

Scan AR, and V e Jatt built HFar (SID) // HFAr (SID) is an array of bits 
if  SID[i] e AR(SID) // AR(SID) the set of distinct values of attributes SID in

AR, and h be the corresponding hash function
h (SID[i]) = 1
Scan H F a r  (SID) to S where S contains a relations joining with AR on SID 
if  (AR receives all HF for its joining attributes) then

AR applies HF to filter out non-matching tuples and 
builds the hash table for S

End

Figure 3.11: Algorithm for UpdategramFilter
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3.3.2.3 Booster function

Booster is first joined with the corresponding updategram items in the delete pool and 

then joined with the insert pool. The result is put into the delta view insert pool and the 

delta view delete pool in the same way as was done before for the updategram. The whole 

algorithm is shown in figure 3.13. Figure 3.12 shows the delta view joining the 

updategram and the booster. The booster first joins with the tuple (43458, AC, 600) in d- 

pool of the updategram. The joining resulting tuple is (43458, AC, ACME, 600, 10) 

which is inserted into the i-pool of the delta view to remove the same tuple from the i- 

pool, otherwise it is sent into the d-pool. In this case the tuple (43458, AC, ACME, 600, 

10) is removed from the i-pool of the delta view because it matches the tuple in the i-pool 

and the rest of the tuples are removed in the same way.

Updategram U = AR
i — pool   d -  pool

43458, AC, 600
43458, AC, 600 45457, BG, 100

3E2S8=e€ifCTCI
45457, BG, 100 47478, BG, 500
45459, BG, 500

Booster (HFar (SID) —> S)

B = UHF M S
SID STOCKJMAME PhaseValue
AC ACME 10
BG BG Group 15

Delta View AV = U MB
_____________d -  pool
43458, AC, ACME, 600, 10

45457,BG, BG Group, 100, 15

47478,BG, BG Group, 500, 15

 i -  pool_________
43458, AC, ACME, 600, 10

45457, BG, BG Group, 100, 15

45459, BG, BG Group, 500, 15

Figure 3.12: Joining Updategrams and Boosters in Delta View
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Algorithm 3.4 (Booster Generation -  delta view, joining with Updategram and 
Booster)

Algorithm Booster(updategramPool, S, deltaviewPool,)
Input: S, updategramPool 
Output: deltaviewPool 
Begin

if  (ugram=hashGet(booster.getJoinKey(), delete, ugramPool))
Begin

Aview = ugram M booster 
select_on_Aview
poolEntry(Aview, delete, deltaViewPool) 
if (is the last item of current booster)

for (all item u in Updategram Delete Pool) 
hashDelete(ugram, delete, ugramPool)

End
if  (ugram=hashGet(booster.getJoinKey(), insert, ugramPool))

Begin
Aview = ugram N booster 
select_on_Aview
poolEntry(Aview, insert, deltaViewPool) 
if  (is the last item of current booster)

for (all item u in Updategram Insert Pool) 
hashDelete(ugram, insert, ugramPool)

End

Figure 3.13: Booster Generation Algorithm

51

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



3.3.3 Refresh function

The original view is updated when the delta view is almost full. When merging the delta 

view back to the original view then the operation on the view side can be defined as:

View ' = AView © View, shown in table 3.12

AView
MMID SID StockName PhaseValue Bal Volume
43458 AC ACME 10 600
45457 BG BG Group 15 100
45459 BG BG Group 15 500
43458 AC ACME 10 -600
45457 BG BG Group 15 -100
47478 BG BG Group 15 -500

Table 3.10: An Instance of AView Table

View V
MMID SID StockName PhaseValue BalVolume
43458 AC ACME 10 600

Table 3.11: An Instance of original view Table

View' = AView © V
MMID SID StockName PhaseValue BalVolume
43458 AC ACME 10 600
45459 BG BG Group 15 500
47478 BG BG Group 15 -500

Table 3.12: An Instance of merging original View and Delta View Table
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Algorithm 3.5 (Refresh -  update the view)

Algorithm Refresh-View(deltaview, View- V') 
Input: deltaview 
Output: View-V'
Begin

CREATE View View-V'
FROM deltaviewPool 

UNION 
VIEW-V;

End

Figure 3.14: Merging Original View and Delta View Algorithm
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CHAPTER 4

EXPERIMENTAL EVALUATION AND PERFORMANCE

ANALYSIS

In this chapter, we compare the performance of DLY02 algorithm with StreamVup 

algorithm. The StreamVup algorithm is implemented as described in chapter 3. All the 

experiments are performed on a 1.2 GHz PC machine with 256 megabytes main memory. 

The operating system is Windows XP professional. All programs are written in Java. The 

program shows the performance comparison report of both the existing stream data 

update in [DLY02] with the semi-join and proposed Stream data update with the hash 

filter.

4.1 Dataset

The parameters shown below are used to generate the datasets.

[T]: Number of transactions

[B]: Number of buy tuples

[S]: Number of sell tuples

[R]: Number of remove tuples

[D]: Number of duplicate share name

[N]: Number of update tuples for the data warehouse materialized views.

For example, T1000.B600.S400.R200.D100.N800 means that |T| = IK, |B| = 600, |S| = 

400, |R| = 200, jD| = 200 and |N| = 800. It represents a group of new update tuples is IK, 

the BUY shares transaction is 600, the SELL share transaction is 400, the removed tuples 

(100 same shares is bought and sold) is 200, the duplicate share name is 100 and the total 

number of update tuples for the data warehouse materialized views is 800. The datasets 

with different parameters test different aspects of the algorithms. Basically, if the number 

of these six parameters becomes larger, the execution time becomes longer.
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4.2 Experiment 1: Execution time at different data size with less duplicate tuple

This experiment use fixed sized duplicate tuples and different data size of of the new 

update tuples to compare the performance of DLY02 and StreamVup. The six datasets 

are T1K.B600.S400.R200.D200.N800, T2.5K.B600.S400.R200.D500.N800, T5K.B600.

S400.R200.D1K.N800,T7K.B600.S400.R200.D1400.N800,T10K.B600.S400.R200.

D2K. N800, and T15K.B600.S400.R200.D3K.N800.

Algorithm Runtime (in milliseconds) at different data size with 20% duplicate
tuples

IK 2.5K 5K 7K 10K 15K
DLY02 2750 9641 34844 70860 160734 382500
StreamVup 2610 9120 33194 68584 131531 341407

Figure 4.1: Execution Time (milliseconds) with different data size

® -8 301000
—4—  DLY02 Alg. j 

Stream Vup Alg. ]
2 o 201000

101000

1000 r

^

Different Data Size

Figure 4.2: Execution Time (milliseconds) with different data size

We test algorithms with the maximum support from 5% to 10% against the data size from 

IK to 15K. From figure 4.1 and 4.2, we can find that the execution time of StremVup 

algorithm less than DLY02 algorithm but the time difference is very small. StreamVup 

algorithm increase the performance of the execution time when number of update tuples 

is higher. Next experiment we will check performance with increasing duplicate tuples.
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4.3 Experiment 2: Execution time at different data size with increase the % of

duplicate tuple in the StreamVup algorithm

In this experiment we use different data size with increasing the number of duplicate 

tuples in the transaction. The datasets is described as T(1-15K).B(.6-9K).S(.4-6K).R(.2- 

3K).D(.2-3K).N(.8-12K). In this experiment, we only compare the efficiency with 

increase both the data size and the duplicate tuples.

% of
duplicate
tuples

Runtime (in milliseconds) at different data size

IK 2.5K 5K 7K 10K 15K
20% 2610 9120 33194 68584 131531 341407
40% 2562 9047 32937 66062 136172 336016
60% 2469 8656 31672 63578 133234 329125
80% 2437 8594 31504 63469 131312 315422
100% 2417 8503 30732 59632 128672 309748

Figure 4.3 Execution Time (milliseconds) with different data size

Figure 4.3, we can find that performance gain increases with increasing duplicate tuples. 

It may happen that the gain will increase more with increasing data size at higher 

duplicate levels. In our next experiment we will check the performance gain at different 

data size with the 60% of duplicate tuples.
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4.4 Experiment 3: Execution time at different data size with the 60% of duplicate

tuple

In this experiment 3 we check the efficiency of DLY02 and StreamVup algorithms 

compare the data size with the fixed size (60%) of duplicate tuples in the transaction. The 

five datasets are T1K.B600.S400.R200.D200.N800, T2.5K.B600.S400.R200.D500.N800,

T5K.B600.S400.R200.D1K.N800,T7K.B600.S400.R200.D1400.N800, T10K.B600.S400 

R200.D2K.N800, and T15K.B600.S400.R200.D3K.N800.

Algorithm Runtime (in milliseconds) at different data size with 60% duplicate tuples

IK 2.5K 5K 7K 10K 15K
DLY02 2750 9641 34844 70860 160734 382500
StreamVup 2469 8656 31672 63578 128738 329125

Figure 4.4 Execution Time (milliseconds) with different data size

a>
B "5* 301000i- (j)
8 c  201000 c  o
a. o 101000 m »
ir i  1000
3  3  
Q.
O  a ✓

/

&

• DLY02 Alg. 
StreamVup Alg.

Different Data Size

Figure 4.5 Execution Time (milliseconds) with different data size 

Based on our testing data size which is shown in figure 4.4 and 4.5, we found that 

StreamVup algorithm takes less time than DLY02 algorithm when we increased the 

duplicate tuples.
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4.5 Correctness of Algorithm Implementations

Based on our sample test result we can defined the formula for both DLY02 and 

StreamVup algorithm as a at (n) <x f}t (n), here at , represents the CPU response time 

and n represent the data size. That means, CPU response time increases propositionally 

for both algorithms which represents at for DLY02 and fit for StreamVup algorithm. We 

can rewrite the formula as a at (n) = k fit (n), here k used as a constant. StreamVup 

algorithm performance depends on the value of k. If the value of k >1 then the 

performance of StreamVup algorithm is better than DLY02 algorithm otherwise it is poor. 

The following figure 4.6 shows the value of k is greater than 1 at different sample data 

size that means proposed algorithm CPU response time is better than DLY02 algorithm. 

Having these results, we can say the experiments conducted in previous 3 sections are 

based on correctness of algorithm implementations.

n (n) A(n) k = a d n) / 0t (n)
IK 2750 2469 1.12

2.5K 9641 8656 1.11
5K 34844 31672 1.10
7K 70860 63578 1.11
10K 160734 128738 1.24
15K 382500 329125 1.16

Figure 4.6 Sample Datasets showing the value of k
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH

5.1 CONCLUSIONS

This thesis proposes a new algorithm to support the stream materialized view update 

mechanism which makes full use of available resources to improve performance, and at 

the same time, have the flexibility of adapting to limited resources to avoid a dramatic 

performance break. The proposed stream materialized view updated algorithm is based 

on the hash filter and the hash table to support the huge traffic of stream data efficiently.

Our proposed algorithm uses the hash table for both the updategram and the booster. The 

hash filter is used only in the updategramfilter to perform better instead of using the base 

table. Several updategrams may operate on the same tuple. Removing this tuple reduces 

the computation of joining the updategram and the booster. We are using the hash filter 

rather than using the semi-join, when the updategram site packs the updated tuples into 

the updategram and sends it to the booster side and the view side simultaneously. The 

hash function of the hash filter is storing the result in an array of bit that can later be 

reused if  needed. In semi-join, we can not do that, as it will rebuild the base table at the 

booster side when the updated tuple arrives.

We are using the hash filter to reduce not only response time but also computation 

resources and memory requirement. That is why the updategram, the updategramfilter 

and the booster are small enough to stay in the memory. The join of the updategram and 

the booster also can stay in the memory.
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5.2 FUTURE RESEARCH

If many tables are updated simultaneously, we need to synchronize the update items from 

all the base tables. A key point here is how to add timestamps that can help the view side 

tell the exact order of those updategram from all updated sides. We need an exact order 

for the timestamp, otherwise, we might update the second record before the first record 

and then we will not get the correct information. It is very hard to maintain a timestamp if 

all sides are updated at the same time.
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