University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1982

Image thresholding and feature extraction techniques.

Mohammed Arif Janjua
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Janjua, Mohammed Arif, "Image thresholding and feature extraction techniques." (1982). Electronic
Theses and Dissertations. 2379.

https://scholar.uwindsor.ca/etd/2379

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2379?utm_source=scholar.uwindsor.ca%2Fetd%2F2379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

CANADIAN THESES ON MICROFICHE

THESES CANADIENNES SUR MICROFICHE

A

I * National Library of Canada
. Collections Development Branch

Canadian Theses on

Microfiche Service sur microfiche

Ortawa, Canada
K1A ON4

NOTICE

The quality of this microfiche is heavily dependent
upon the quality of the originat thesis submitted for
microfilming: Every effort has been made to ensure
the highest quality of reproduction possible.

If pages are missing, contact the university which
granted the degree.

Some pages may have indistinct print especially
if the original pages were typed with a poor typewriter
ribbon or if the university sent us 3 poor photocopy.

Previously copyrighted materials (journal articles,
published tests, etc.) are not filmed.

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1870,
c. C-30. Please read the authorization forms which
accompany this thesis.

‘-

'IHIS DISSERTATION
HAS BEEN MICROFILMED
" EXACTLY AS RECEIVED.

NL-33G {r. 82/0C6

-

.S.B.N.

Bibliothéque nationale du Canada
Direction du développement des collections

Service des theéses canadiennes

AVIS

La qualite de cette microfiche dépend grandement de
la qualité de la thése soumise au microfilmage. Nous
avons tout . fait pour assurer une qualité supérieure
de reproduction.

S'i! manque des pages, veuillez communiquer
avec l'université qui a conféré le grade. :

La qualité d'impression de certaines pages peut
laisser a désirer, surtout si les pages originales ont été
dactylographiées a l'aide d‘un ruban usé ou si ['univer-
sité nous a fait parvenir ume photocopie de mauvaise
qualite. . )

Les documents qui font.deéja [‘objet d’'un droit
d’'auteur {articles de revue, examens publiés, etc.) ne
sont pas microfilmés. ¢

La reproduction, méme partielle, de ce microfilm
est soumise a la Loi canadienh'e' sur le droit d'auteur,
SRC 1870, c¢. C-30. Veuillez prendre connaissance\ des
formules d’autorisation qui accompagnent cette thése.

L4
\

. A

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e —— e At + St e 4



N

National Library  Bibliothdque nationale

0-31S-0A34o-4

-

a

THESES CANADIENNES

l CANADIAN THESES
of Canads du Canada ON MICROFICHE SUR MICROFICHE
w— .
- § i
— - -

NAME OF AUTHOR/NOM DE L AUTEUR.

57257

JREVTPTY

TITLE OF THESIS/TITRE DE LA THESE

-technigues.

.
P S vea v S e AT

UNIVERSITY/UN/! VERSI TE

WA

§inggor One

DEGREE FOR WHICH THESIS WAS PRESENTED/, .
GRADE POUR LEQUEL CETTE THESE FUT PRESENTEE.

~
YEAR THIS DEGREE CONFERRED/ANNEE D°CBTENTION DE CE GRADE

NAME OF SUPERVISOR/NOM DU DIRECTEUR O THESE

o
Permission is hereby granted to the NATIONAL LIBRARY OF
CANADA to microfilm this thesis and to lend ;r sell copies
of the film.

The author reserves other publication rights, and neither the

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

L sutorisation est, par la présente, accordée & la BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette thése et
de préter ou de venc;re des exemplaires du film. |

L'auteur se réserve les sutres droits de publication: ni la
théseni dQ longs extraits de celle-ci ne doivent étre imprimés

ou gutrement reproduits sans I"sutorisation écrite de !"suteur.

7

3 - A . Mot . { ) {
oaten/paré__Lebi. 18 1973 2 SIGNED/SIGNE M i v+ 6(/”“( Ao eyt
PERMANENT ADDRESS/RESIDENCE FIXE I U vtk 1o jk :

¥ (A G (i)

AN JO
UL

SOA

NL<®1 (3~74) N

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ap
’

IMAGE TERESHOLDING

AND FEATURE EXTRACTION TECHNIQUES

i

Moharmed Arif Janjua

~

A Tﬁesis

Submitted to the Faculry of Graduate Studies through
the Department of Electrical Engimeering im Partial
Fulfillment of the Requirement for the Degree of

Master of Applied Science
at the _
University of Windsor -

Windsor, Ontario
Canada

1981

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced w

~

ith permission of t

LA -

v

@ Vohammed Arid Janjua 1982

770394

/

he copyright owner. Further reproduction prohibited without permission.



Reproduced with permiss

ion of the copyright owner.

APPROVED BY

A

Dr./M.A. Sid—Ah((n/ed

IQJbKAf{ <7/}>QAAF4-'

Dr. H. E. ews -

Further reproduction prohibited without permission.



- ‘ " © | ABSTRACT LT
. An approach to transforming an image in ofﬁer‘to facilitaté threé;
hold*;election is pre%en;éd.‘ A thrégﬁold ;;n be‘selected_automaticisly
by examining €h¢ histoérém of the gray-levels in an image. If ﬁhe §isto-
gra& is bimodal, it wo;ld be simp1§ tg threshold the image. ﬁcwever,

the problem become; a little more complex when the histogram is not
clearly bimodal. It has been proéosed previOus;y that one could sﬁeéify
a histogram and map it onto an image in order to vield a transfarmed

- % image whose histogram has the specified distributioenm.

This cthesis presents an approach whereby a bimodal histogram con--

v
.

sisting o% two Gaussian distributions of different méans, but same staﬁd—
ard deviations is specified. 'This histogram is then used o transform
~ the orig%nal imagé into one that has the specified distribution. This
transformed iﬁage could then easily be chresboldedrat a single level.
The approach of direct histogram specification has also been employved
for purposes of multi-level chresholdiné, and the results achievé& have
been very encouraging.
. This thesis also addresses a technique for feature extraction using
xtemplate matching. The application of this approach to fault detection

.

of manufactured parts is illustrated. The-development of 2 system is
-~

thus proposed (particularly for applications to quality control), which

would efficiently threshold an image and extract features from it.

~

(¥4
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INTRODUCTION . ’ .
‘ . ) .v:, i s T
1.1. An- Image Model ’ ; SR :
~ The term."image" is defired in Webster's Diﬁtiphary as "a repre-

"~ . sentation, likemess, or imitqtiom of an object or thing, a vivid or

: . * C . R - ‘_ ’ . -
A.picture is defined as "« representation made dy a painting, drawing
or photography. A vivid, graphic, adcuwate description of an e@ject or

SV . | ' .
thing so as to suggest ¢ mental image or give an aecurcte idea of -the

. . thing itself.” However, in the content of image processing, the word

- u

; 'picture! is used svnonymous with the word “image'. . .

An image is considered as g.flat object whose appegrance varies
. . N ) .u " *
from point to point. This variation can be described by arsingle para-

S L.

meter im. the case of 'black and white' pictures, corresponding.to the

-

'intensity. of light emanated at each point. An image is thus a two-

— -

dimensional light intensity function f(x,v), where x and y denote spa-
. - . . [

tial coordinates and the value of.cpﬁ picture function f.at any point

—_— © -

(x,y) is proportional to the total amount of light reaching the observer

t B .

from the given poigt. - This is also referred to as tﬁe gray level of

the picture at that point [1,2,3,4].
. ;

s While processing images on a digital computer, one usually wishes
to regard them as discrete arrays of numbers, i.e., as matrices, rather

than as functions. The row and columm indices of the matrix identify a

point in the image, and the corresponding value of chs matrix element
” ‘ - .

" identifies the gray level of che.ihége~at that point. Each element of

the matrix is commonly referred to as a pixel.

1

grephic deseription, something intwoduced to represent something else.”

.~



1.2. Image Thresholding ‘ e Sleal s S s

e R T = S -

In digital picture processing, it is often‘de‘trable‘co assume 5

chat a picture function can take on* only a fiuite SGt of Jaluas, gr_‘&

. e > -

other words, its gray levels are quantized. Thus the gxay levels

picture are spread out 1nto kY fxn-te.numbgr of*discrete values— degend—- T "f

- = » - - N
- ~ . . . z 8
-* e, - S

i -

- ing upon the resolutiod desired-and \he constraints of computer memory.-:.“

A binary—valued picture funccioniwhich can'take .on only :wo valggs -
(black and white - with'no in:ermedla:e gray levelsl.is uSually of

particular importance in feature extraction. Thus a picture.is appro—
priately transformed into two distinct levels by selecting an appropri-_

ate 'threshold level'. This ptocesé of thresholding an image is per--

formed to separate- the objects in an image from its 'backgro&hd',
o .

’//{%ereby achieving the desirable information content of an image.
: The techniques of thresholding an image can be classified with
three broad categories as follows:

1.2.1. Fixed threéholding

F
.

In this approach, one threshold level is selecFed for the -entire
image. The process of selecting an optimum threshold, so és not éo

) lo;e gny_desirable information is by no means an easy one. “In past

. yeﬁ?é, several techniques for dptiﬁal threshold selection have evolved.

It has been shown-in vgrious papers that instead oﬁ choosing a crude .
threshold'for a gi&en picture, somelsortvéf prg—érocessing should be
performed on it, in order to facilitate the selection of a threshold
[1,3;5,9,10,11j.

One widely ;ccepted ﬁethod of threshold selection is where a

o T . . \ P
threshold is selected automatically.by examining the probability

Reproduced with permission of the copyrlght owner. Further reproductlon prohibited without permission.



A vayer,

. - » ' . . 3.

4
~

distrib;tion of the gray levels iqzuzimage [1,2,3,6;8],'vhich is alseo
N
referred to as a histogram of its griy leve%s. If the histogram of an

iﬁaée'égggests,thac it is_f;asible to segment the gray level population
, o of an'image into two distinct sub-populations;-then a chfeshold is said
’ | to exist. Consider tﬁe hiscﬁgram,of Figure 1.1. It is quite evident
that if we choose a threshold level at the'boétom of the valley,
sepéracing the £wo parts, (say, T), we would then be segmenting tﬁe
gray levels into two sectioms, one;represen:ing the 'objects' and the
;chér, tée "background'. . Thus, if the histogram of an image is bimodal,
Y - it would bg quite:straightfbrwaré to select a suitable;threshold for
that image. However, in mogttsitua;ions, this is not the case, and
_tﬁfeshold’selection could p;se a problem.
: } X o
1.2.2. Variable thresholding ’
As discussed in the previous sections, more often than not we
arrive at a situation where the histogram of an image is not clearly
» b;modal. This suggests that it is not possible to appropriately thres-
hold the entire image at one fixed level. Chow and Kaneko T14]
suggested to segment an image into smaller sections, and to find a
tp;eshold for each small segment of the im;ge. In their paper, they
~ suggested t@ segment an image into f x 7 smaller regions, each subse-
queﬁt region overlapping 50%Z of the éﬁevigus one. Histograms were then
computed for each region and thresholdﬁﬂwere assigned to regions having
biéodal histograms. For regions where thresholds could not be assigned,
théy were iyterpolaced based upon the average value of the g;ay»levels
of that region, and upon the thresholds assigned to their neighbouring

"regions. The entire image was thus thresholded at various levels.

Chow and Kaneko [14] displayed the effectiveness of this approach to

o
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¢

- medical applicationé, and Nakagama and Rosenfeld [13] showed that this A

1

method was very useful in other applications as well.

1.2.3. Multi-level thresholding

-

o While dealing with the selection of -a thteshold! one might encoun-

' ~
ter a situation where i§&V°UId be difficult, if not totally impossible,

to select one good threshold level for the entire image; For example,

-

if che histogram of an image comsists of three or four peaks, it would
_be difficult to choose one leyvel that would separate the image into two
o classes. If some sort of a crude threshold,!ével wai\se}ected, it >
. / N . °

would result in a considerable loss of igf%rmat!ﬂn.

{

In order to cope.wiph situations offthis sort, the idea of multi-
level thresholding was introduced [2ﬁ]./;s the name suggests, this
technique deals with selecting more tﬁanrone threshold level and_thus
segmenting the image into.more than just two §lasses. The thresholds
can be selected art the intervening valley bottoms between the peaks of

" the histogram. The various sub-populations in the image can be appro-—
priately segmenged by ;his scheme of thresholding.

AS in the casevpf binary-level thresholding, the main problem in
thresholding the image at more than one level arises in situations
where the peaks‘of the histogram are‘not very well defined, and the
detéction of a-valley between the peaks Becomes impossible. This pfob-
lem could be overcome.if one could traunsform the histogram of an image

* . in such a way that it becomes easier toAdetect the valley between the
peaksi i
1.3. Histogram Modifdication
*. The idea of modifying a histogram so that the valley between the

-

peaks of a2 histogram is easier to detect, has been of wide use in image

s

-
L
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- e -

thresholding. Weszka and Rosenfeld [6] have suggested. an approach where
the 'edge value' of the pixels is used to modify th; histogram. The
edge value refers .to a transition in gray level between adjacent pixels.

If the rate of change is high, it indicates the presence -of an ‘edge'

-
’

between two different sub-populations in a histogram. Weszka and Rosen-
feld have shown the use of scatter plots, a . plot between gray level and
edge value; to modifying a histogram so that the valley is’deeper, and

bad

thus easier to detect. The uée of edge points for segmentation purposes
has been sﬂown té yield satisfactory réesults [7,l7j in most cases.

Histogram-modification has also been éhow& to be of great use in
the'enhancement.of images. Histogram equalization is-one of the tools
used for this phrpo;e. o , 7
1.3.1. Histogram eéualization

The process of obtaining a ungform‘histogram for an igage‘is known
as -histogram equalization.. It has.been shown [1,5,16] that by egualiqr
ing the histogram, one cogl& enhance the contfast oﬁgéd‘image. Ball
[16] has suggested to transform a histogrﬁé_using a transformation func-
tion equal to the cumulative distribution functien of the pixels. I&Qs
would vield an almost uniforﬁ distribution, thereby increasing the-
dynamic range of the pixels. This would in turn contribute to increas-
ing the contrast of the image, consequently improving izs wvisual
.quality.

However, an eqpalized histogram does not aid in selecting a
threshold for the imagel Gonzalez and Fittes, [15] have extended tﬁis
approach, and have suggesped that it is possible to directly specify a
histogram and then transform the image into one whose histogram has
th;t desirable distribution. This‘thesis presents the applicétion of

. . ‘<:"‘\\\\
J



this concept to chresﬁovld selection.
1.3.2. Direcc.hisiograﬁ specification
"The concept of direct histogram specification as explained in [1],
[15]l§nd {23] suggests that we can directly specify a histogram,and map
it onto an image, to yleld an image whose histoéram closely‘resembles
the desired shape. This suggests that if an image does not have a
c¢learly bimodal histogrgm and selecting a threshold presents a problem,
we could directly specify a bimodabzhistogram and after appropriazely
transforming the original image, obtain an iﬁage whose histogram’is
bimodal. Since a histogram is fhe probability distribution of ﬁhe gray
levels, we could specify a histogram comsisting of two uni-modal distri-
bucions, sufficiently far apart on the intemsity axis. Each distribu-
tion would then correspond to the object and background populations
respectively. ‘
This technique can also be extended for purposé§ of multi-level
) thresholding. In situations where the péaks and valleys in the original
histogram are not clearly defined, a transformation can be applied on
the histogram .to appropriately segmeﬁt it into distinctive sub-popula-
I tions. In this case too, the histogram specified can be assumed to
\\ comprise of three or four uni-modal distributions, depending upon the
number of thres;;lds desired. These distributions should be such that
the valley between any two peaks is clearly defined.
It follows from the above discussion that the task of selecting a
good threshold in an image~can be greatiy facilitated by transforming a
histogram, using the direct histogram specification technique.
Thresh?lding is one form of extracting features from an image by

-

segmenting it into two classes, depending upon the gray level of each

I3
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pixel. However, there are sicuatioﬁs where the exact shape;and size
of the objects is of primary concern. For such situations, there are
other techniques of  feature extraction, as described in the following
séccion.
_ 1.4. Feature Extraction

It has beén mentionéd earlier that thresholding the image amounts
to extraéting features from it, based on the properties of each pixel.
Depending upon the intensity level of the pixel, it is classified as an
object point.or a background peint. An alternative to this technique
cculd be the extraction of features based upo; local regional properties.

-

In this way, instead of .classifyving each point to a region, we classify

4

local regional properties. 'This increases the dimension of the feature.
vector used for segmenting an image in terms of its objects and back- )
grounds. One widely accepted approach of imagg segmentation based on
classification of regional properties is template matching.
'1.4.1- Template matching
The approach of template matching for purposes of image segmenta-
tioﬁ has been adopted widely due to its simplicity [1]. This method is
based on detecring transitions in gray levels between regions. The
various regions are usually characterized by the differences in their
gray level content. However, there are other features, nameiy texture
~difference [17] and colour difference,which can be used to classify
regions.
Template mgtching is used to identify certain characteristics in an
image. A template can be defined, in context to digital image process-

ing applications, as an array designed to detect some invariant regional

property fl].' If we have some a priori information about the shape and
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_size of the feature being looked for, a cemplaté.coﬁid be desigﬂed to
X . - R . '~ . ~4 -
detect that feature. Otherwise, templates designe

~~ -

features of interest could be used to extract them.

d- for various

‘

Template matching can also be consiaéred as correlating the
template pattern withAthe image. At all points wﬁere the pattermn
matches closely to the image, the respouse of the template will be
maximum, thereby indicating a high correiaﬁioﬁ between the image chérac-
teristics and the templat% pattern at that point.

There are other applications of image processing where it is

required to find the boundary between the objects and the background.

&

_This information could be Qery useful in determining the size of the
objects. Since a thresgé ed imége comprises of just two levels,
following~the Sorders of the objects would yield the desired bouﬁdary.
1.4.2. Boundary following

One application.of image processing is in the quality control of
manufactured parts [19]. Here, it is required to locate the.defects in
a particular component, and to determine whether tﬁe defect is‘tolerable
OoT not. Thi§ is done by taking the image of the éart and thresholding ’
it. If the threshold scheme adopted is an efficient one, the defects
on the object; which could stem from a dent or a scratch on the surface,
would appear as a dark portion on the wbice object. This is because the
light reflected off a dent or a scratch while taking the image would be
less as compared to that reflected off the surface of the object. These
dark portions’can be detected by using a boundary following algorithm,
which would follow%the edge between the object and the defect. In this

way, we could also obtain the size of the defect. Boundary" following

-

would also aid in detecting a fault on the edge of an object. If there



s - N ! . .-

\"ﬁis a chippédAedge pn,zﬁe\ggject, it could be detected while foliowing

- the borders [19]. = o ' -

Another way of locating faults could be to remove the inherent .-

features in an~image and whatever remains would be the fgult. Obvious— '
ly, -this would require'a~previous knowledge of what the image looks'
like: Mgreover, one would ﬁeed to know the exact size and shape of
the inherent features. If this information was aveailable, one‘coulé
use.templace matching to remove the features.. A template could be
designed according to the exact shape and size of the feature, whi;h
. would detect and remove 1it. ) . -

There are some shortcomings, however, in using template matching
for fault detection. Firstly, the size of the inherent feature in the
image may make it impractical to implement a template of that size.
Secondly, the'shapé and size of the feature may vary from part to part.
Even if it varies slightly, thé response of the template could change
and thus c;use problems. However, témplaca matching could be used to
identify a certain known ﬁortidn of the feature, and then one could
follow the borders of that feature to identify it completely. The
feature thus Qetected would be inherent in thé image of every part, and_%

-

after removing it from the image, whatever remains as black would be
- LY
the defects. In order to identify the defects, one would simply need

to count the black pixels inside ;he object.
1.5. Problem Statement

The problem of threshold selection in cases where the histogram of
an %mage is not bimodal is considered in this thesis. Given the-desir-

able distribution of a histogram for purposes of binary level threshold-

ing, it is required to use a gray level transformation function which
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m%ﬁs’the'gray ievels df an image into itself; such chgt ﬁhe output imagé
obtained by aﬁplying this transforqgﬁiqn funcrion to gach pixel in the
/) : original image woﬁ;d'yield the specified distribution. This apﬁroaéh
is also extended'fog purposes of multi-level thresholding.

. . ‘ . _ This thesis also considers the problem of fault detection in
manufactured parts. It is required to invéstigaté the possible use of
template matching for fault detection, considering its simplicity of
operécion when comﬁared\to standard boundary.fellowing algorithms.

1.6, Thesis Organization
In Chapter II, the theory bevond histogram modification is presen-
téd. “The techniques of histogramlequalizatiOn and directly séécifying
a histogram for an image have been discussed.
\\\’ ) Chapter IIIrelates to an explanation of image threshold;ng. Both
' single-level and multi-level thresholding techniques‘are discussed.
The application of the direct histogram specification technique for
purposes of single and multi-level thresholding has been described.
In Chapter IV, the use of template matching for feature extraction
///#”‘\\\\_,hés been discussed. In addition, ‘an algorithm for boundary following

. has beén'explained. Finally, a groblem oriented example has peen con—

sideréd wheré the techniques of template matching and boundary follow-

ing have been used for purposes of fault detection in manufactured
parts.
?o conclude,Chapteé v éresents a summary of the research conducted

for this thesis, and the conclusions obtained from it.
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' k CHAPTER II
HISTOGRAM MODIFICATION
' A histogram of gray levels provides an entire description about
the appearance of an image. Since a histogram is the probability dis-
tribution of the gray levels, it can provide u;eful information about
the gray level ranges occuﬁied by tﬁe-"objects" or the background in
an image. This information is oftén of particular importance in image
enhancement.
2.1. Construction Of A Histegram
As statéd earlier, a histogram gives us the probability distribu-
tion of tﬁe gray levels in an image. If‘wé plot the number of occurr-

- - o .
. ences versus the gray levels in an image, the resulting graph is called

a histograﬁ of gray level content. Mathematiciily, this can be stated

as
p_(r,) = -r% (2.1-1)
0 s T, S L-1
k=0,1, «..c.., L-1 )
where
e - thé k-th intensity level
pr(rk) - probability of occurfence of the k-th gray level
x oy - number of tiies the k-th gray level appeéxs in the image
n - .total number of pixels in the image
L - total number of levels in the image. o

A plot of pr(rk) vs r, is then referred to as a histogram of gray

k

’

levels in an image. A listing of the computer program for plotting a

12

-
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histogram isibrovided in Appendix A.

It has been shéwn in various paperg that useful enhancement results

can be achiéved by modifying the histogram of gray levels in an image.
- A consideréble improvement in the coutras£ of an image can be achieved

by transforming a hisrogram into one with 2 more or less uniform dis-

tribution. This process of "equalizing"‘the histogram is explained in

the follgwing article. o

2.2 Gray Level Equalization [1], [15], [16]:

It should be éstablished at the onset that the concepts being
introduced in this article and the next are formulated in thé contin-
uous domain. However, since we need the discrete version of theée con-
cepts to process images on a digital computer, their equivalence is
ascertained in the next chapter.

The object is to transform the original image into one whose
histogram has an almost uniform distribution. Let 'r' and 's' be the
normalized gray levels in the original and englized image respectively.
The levels have been normalized for simplicity.

~ 0srsl ; 0sss1 (2.2-1)
Tﬁe level 0 represents black and the level 1 represents white in
the gray scale. Thgv’s‘ levels of the equalized image are obtained

after some transformation of the form
s = T(r) (2.2-2)

This would produce a level s{r) for every pixel valué in the original
t

image. There are some constraints on the transformation function and
N~ ——
it is assumed to satisfy the following conditions: »

(1) In order to preserve the order from black to white in the gray

_ scale, the.transformation function T(r) should be single-valued
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and strictly monotonic in the'in:erval 0 srsl.

(1i) In order to ensure that during the transformation, we do not exceed

D
.

the allowed fﬁnge of'pixel values we need

0 <T(r) s1 f;r 0 srsil
Consider the transformation function of the form shown in Fig.2.l.
A transformation of this sort s&tisfies the two conditions impesed on it.

.

The inverse transformation from 's' back to 'r' can be representedas
_r=Tl(s) 0sss1 (2.2-3)
where it is assumed that T_l(s) also satisfies the conditions (i) and

L

(ii) previqusly imposed, with respect to ihe variable s.
Let pr(r) and ps(s) be the probability densiéy funéci;né of the
original and transformed iyage réspectively. It has been empHasized that
Fhese density functions-céula rélay a.great deal of .information about the .
general characteristics of an image. It has been shown from‘ﬁfObSbilitY
theory that; if pr(r) and T{(r) are knowm, and T;l(s) satisfies condi-

tion (i), then the probability density function of the transformed gray

levels is given by the relation -

) o .
p_(s) = [}>(r)-f{] (2.2-4)
- r ds r = T-1(5) .

-

It has been shown in [1], [5], [15], [16] that it is possible to
transform the histogram of an image to one having a uniform probability

distribution using the following transformation function:

—

T

s =~T(r) =J' pr(w) dw (2.2-5)
° 0srsl

This transformation function, which is equivalent to the cumulative
distribution function of r, produces an image where ps(s) is a uniform.

density in the interval 0 <s < 1. Before proving this, one must
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appreciate the fact that this transformation function satisfies the

conditions imposed onr it, since the cumulative distribution function

increases montonically as a function of 'r' within the rahge'of values

.. -

. the 'r' levels could take. In order to prove that this transformation

“indeed does produce a uniform distribution, let us focus our attention
on Eq.(2.2-5). .The variable 'w' is a dummy variable of.integration,

. and by taking the derivative of 's' with respect to 'r', we could have
from Eq.(2.2-5) ' R e

ds _ . .
ar -. Pr(r) . (2.2-6) f

Substituting this value in Eq.(2.2-4), yields

. - . 1 s )
ps(s) " [pr(r) pr(r)i| r = T_l(s') .
v 4
=1 0ss sl ] (2.2-7)
\  This is a uniform distribution within the interval of definition

of the transformed variable S. 1t should be ‘noted at this stage that
this résult does not depend upon the density inside thé‘integral of
Eq.(Z.Z—Sj. This implies that if the transformacion function described
in Eq.(2.2-5) is performed on any distribution — jdeally speaking, the
‘result obtained would be the same, i.e., a uniform densgtyiﬁithin the
given interval. This bgservation is broug}i_za\g§g_ip transforming an
image such that its histogram acquires ?/ﬁesirable shape.
2.3. Direct Histogram Specification [l]% {15]:

The technique of gray level equaliﬁé@ion e%plained in the previous

section is somewhat limited in its applicagion because it only generates

, - ¢
a histogram with a uniform distribution, thbreby improving the contrast
- |

P}
/
/

/
/
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of the -image. In many cases, this may not be the sole objective.
However, this concept could be utilized for.purposes of interactive

image enhancement, as shown in [1], [15].

-

) - It is desirable in certain- cases that some ranges off§;§523evels

to directly specify a hisiogram desired, and transform the original

image into one, whose histogram has the desirable shape. The shape

in an image be highlighted. 1In order to meet this end, it is possible

of the desired B;stogram‘could vary, depending upon the required appli-

cation.

The procedure of directly specifying a histogram and mapping it

onto an image to obtain a transformed image having a histogfam of the

ébecified distribution, can be divided into three steps. The first

step is to equalize the levels of the original image using the trans-

formation function shown in Eq.(2.2-5). The next step would be to equa- .

lize the levels of the specified probability distribution. Let pz(z) be

the probability density function of the desired image, in other words,

e

-

the specified histogram is a plot between pz(z) and 'z' levels. The
transformation function in this case is the same as the one used for

the originél image.

- zZ

~2
v = G(z) = pz(m) dust (2.3-1)
o

. . "0sz s

'v' denotes the equalized levels of ;5e specified histogram. As proven

;iﬁ Eq. (2.2-7), pv(v) — the probability distribution of the equalized

/N,

(specif;ed) histogram v would be a uniform density in the interval

6 s g.S 1.

.
3y

-~

-
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\ - . .
" From Eq.(2.3-1), the invetse process, z = G'l(v) should yield back

the desired levels, but this is purely hypothetical since the 'z' levels

-

are exactly what we are trying to oﬁtain. In this case, we are just

! dealing with the desirable shape of the histogram, and the image does
not exist. Therefore, since we do not have the '2' levels, the inverse
‘pProcess z = G-l(v) would not really carry a meaning. We could obtain

a transformed image having the desirable histogram, if we could obtain

the 'z' levels.
t

The}preceding argument necessitates the next\step in our ling of
action. We know‘gzza}Eq.(Z.Z—fs that the probabil;ty‘distribucions
pv(v) and ps(s) are identical, since they are both uniform densitiés in-
depen@ent of the densify inside the integral in either case. This means
that insteaé of using the 'v‘.levels obtained frqm Eq.(2.3-1) in the
inverse process, if we use the 's' levels obtained from Eq.(2.2-5), the
result would remzin the same. In other words, for Eq.(2.3-1), the
inverse process ; = G_l(s) should yield the same result as using
z = G'l(v). The 'z’ i;vels obtained in this manner would be the levels
of the desired image — the image whose histogram has the desired distri-
bution. ) . . -

It follows from thé above discussion, that it is possible to spébi—.
fy the desired distribution in a histogram, and trandsform the original
image into on; whose histogram closely resembles the specified shape.

S
Thus, whatever our purpose is cof transforming the histogram of an image
into a desirable shape, it’can be achieved by the direct histogram speck—

fication technique described in this chapter. The application of this

concept on different images is explained in the next chapter.

v .
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CHAPTER III
IMAGE THRESHOLDING

Image thresholding is a special case of pattern classification in

which a one-dimensional feature space is used, the feature-being the
gray level of the pixel. If an image comnsists of dark objects on a
lighe backgrOund, or vice versa, the cbjects can be separated from.the
background by thresholding the image. By choosing an apprépriate thres-
hold level, we could assign each pixel in the image into:oné o% the two
- . .
classes, light or dark, depending upon whether the gray level of the
pixel is below or above Fhe specified threshold level. Often; the
choice of selecting an ‘'appropriate' threshold level poses a
problem. The choice has to be such that a negligible amount of informa-
tion is lost. It might be possible in éome cases, that segmenting the
image ingo just two classes, codld result in a considerable loss of
information. In order to cope with such situa;ions, it may be necess-
‘ary to choosg more than éne threshold, and segment the image intoc more
than two classes to adeéuately describe the picture.

It follows therefore, that selecting a good threshold is of para-
mount importance in most image processing applications. The techniques
of thresholding an image at a single level or at 'multi-levels' ére
diécussed in the following sections.

3.1. Binary.Level Thresholding

The progess of transforming an image into two levels, black and

white, by using an appropriate threshold level, is referred to as binary

. level thresholding. 1If the average gray level of the objects is signi-

ficantly different from that of the background, threshold selection would

18 -
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be fairly straighcforward: However, in most situations this is not the case.
It is, therefore, not possible.to arbitrarily choose a threshold, since
the correct fhreshold may not be the §ame for all pictures. It is some-
times possible, however, to choose a good threshold for each image, auto-
matically by examining the histogram of its gray lévels. If we find two
peaks on the histogram of an image, it would be reasqeable to choose a _
threshold that separates these peaks. Consider for example, a histogram
of the shape shown in Fig.3.l. In this-case, we would choose a threshold
‘level 'T', at the bottom of the valley between the two peaks, since this
threshold appears to separate the gray level population into two distinc-
tive sub-populations, corresponding to the object and background pepula-
tions. All pixels in the image below the selected threshecld level would
be rendered~black, while those above that level would become white — thus
. reducing the image to a binary-one.
An image would have a bimodal histogram if we make certain assump-

tions about it, such as:

(2) The given image consists of objects on a background, where the

probability distribution of gray levels for any small region of the pic-

tur; consisting solely of the object.on the background is uni-mod;l.

(b) The gray levels of adjacent points inceri;r to the object, or to

the background, are highly correlated, while at the boundary between them,

adjacent points differ significantly in gray level.

Under these conditions, the gray level histogram of an image would

primarily consist of two.uni—modal histograms corresponding to the

object and background populations, respectively. If the average gray

level of these populations is significantly differeﬁt from one another,

-
we would have the two distributions spread fairly far apait on the

/
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'intensity axis of the histogram. Moreover, if the object population and
the poundary population take on a small range of intensity values, and
the two populations are comparable in size, the histogram of the image
will be bimodal, like the one shown in Fig.3.l. Otherwise, the resulting
histogram may be a mixture of two uni-modal distribu;ions, but it may be
difficult to separate the two. For example, if the object population is
much greater than the background, or if ﬁhey lie very close to each other,
it would be very difficult to select one level that would separate the two
populations into different classes. Therefore, if the histogram of the
image is clearly bimodal, the selection of one threshold level for class-
ifying the image in terms of its objects and background would not pose a
problem. !

(i) Smoothing plus thresholding:

T

This method suggests the use of an operation that would 'smooth’ the

image by removing noise, etc. from it [9]. This '"smoothing' operation
would then aid in selecting a good threshold for the image.
(11) Sharpening plhs thresholding:

In this technique, one could use an operation that yields high
values at all edges in the image and low elsewhere. This method couid
greatly aid in separating the object from the background, -thus facilitat-
ing the selection of a good threshold [6], [20], [21], [22].

A(iii) Matched filtering plus thresholding:

In this technique, one needs to have some information abéu; the shape
and size of the objects in an imagg; This technique suggests the use of
a filtering operation on an image with a certain template éattern- This
template acquires the shape of the characteristic being‘looked for in an

image. Thresholding the image would single out points where the image

N
o

v s - -
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matches the pattern closely.

One widely accepted method deployeé for purposes of threshold selec-
.tion, when éhe histogram of the image is not clearly bimodal, is the.
variable thresholding scheme. This technique was developed by Chow and
Kaneko [14], for use in the detection of the hea;t region on chest X-rays.
This method was applied to some general images and it proved to give\use-
ful reSults;

3.1.1. Variable thresholding

fhis tgchniﬁue suggests that instead of using one threshold level
for the entire image, we could have different thfesholds for-different
sections of the image. This means that instead of selecting a thresh-
old level for tﬂ; image based on its global characteristics, we could
set different thresholds according to the local characteristics in the
image. °*Based on this idea, Chow and Kaneko [14] have suggested to seg—
ment the.image intec smaller regions and select an 3ppropri§Ce threshold
for each region. The segmentation scheme is illustrated in Fig.3.2. The
entire image is divided into 7 x 7 regions, with each subsequeni region
including 50% overlap with the previohs one. A histogram is then com-
puted for each region. TFor regions having bimodal histograms, thresholds

. can be set automatically at the bottom of the valley between the two
peaks. However, for regions.which do not have bimodal histograms,
thresholds are computed as a weighted average of the ﬁeighbouriﬁg thres-
holds. Thus, the entire image is thresholded at different levels, there-
by yielding a binary level image.

An example of(the 5uc§essful results achieved by using a variable

thresholding scheme is illustrated in Fig.3.3. Fig.3.3(a) shows the

original image of 2 iady. This is a 128 x 128 image having 256 gray
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levels. Fig.3.3(b) shows the thresholded image ébtained after variable
thresholding. This image has just two le&gzgi.bléck and whi;e, and we
can see that there is a negligible loss of information. )

Although the method of variable thresholding seems to give useful
results, it does not lend itself to applications where speed of operation
is of the essence. This gives rise to the need for investigating simpler
and faster techniques of threshold selectiom.
3.1.2. Image transformation

As mentioned earlier, if the histogram of an image has two peaks
¢lose together, or. very unequal in size, it would be difficuit to detect
the valley between them. Furghermore, if the histogram has more than two
peaks, it would be impossible to detect a valley, as there will be m;;e
than one valley. Therefore in these cases, the selection of a good
threshold level for purposes of binary level thresholding would be very
difficult, if not impossible.

In order to overcome this problem, one needs to transform the image

to one with a histogram that is clearly bimodal. In this conmnection, an

_attempt has been made to utilize the concept of direct histogram specifi-

cation towards its use in the problem of selecting an optimal threshold
for the image. This section explains the working of this technique,
using different types of images as examples.

Our objective therefore, is to transform an image whose histogram
is not suitable for threshold selection into another image whose histo-
gram is clearly bimodal, sc that the selection of a threshold does not
present a problem. Consider the image shown in Fig.3.4. Fig.3.4(a) is
the image of a strain gauge. The 'object' part of this image is the con-

ductor which has a slightly higher intensity level than its insulator
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(b)

Fig‘j}re 3.3 (a) Original image (b) Image after variable thresholding

’
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background. It is required to locate the defects in this particular
component, and therefore it is imperative that we first obgéin a good
thresholded image. Fig;3.6(b) éhows the histogram of the image. It is
clear from the shape of this histogram that it is not possible to select
a ggod threshold level for this image. ,Thérefore, we would need to

. transform this imagé for this purpose. The first sceﬁ towards achieyiﬁg
this objective would be to equalize the levels of the ofiginal image.
(a} Equalizing Levels of Original Image

Referring back to Eq.2.2-5, we could use the cumulative distribu-

tion function of the intensity levels to transform the original histo-
gram info an almost &niférm_dis:ribution.A However, .for the practical
implementation of the concepts explained in Chapter II, we would have to
approximate them for the discfete domain. Therefore, the results obtain-
ed would be an approximate to the ideal ca;e. Eq.2.2-5 can be written

in the discrete domain as

]
[ty

O

s, = 'r(rk) = pr(rj)

n
(S
I ~17
| o}
3 |
AN
7
he
et
|
s
g

.
(]

for

k=0,1, ..., L=-1
where

T the gray levels are normalized for simplicity,

L is the total number of levels,
nj is the number of times the j-th level appears in the image,
n is the total number of pixels in the image.

This produces a transformed level 's' for every level 'r' in the original
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image. These transformed levels are then assigned to fheir closest
valid level théreby yieiding a new image (with the original levels
transformed), which has an almost unifo;m &istribution. Tﬁe effect of
this transformation can be seen igJFig:3.5. .

Fig.3.5(a) shows the original‘histogram of the image shown in Fig.
3.5(c). After the equalization process, we can see by the ﬁiscogram of
Fig.3.5(b) that we;have achiévea an almost uniform distribution. The
reason this histogram is not exactly uniform is that the imagezsize
‘being used was 128'x 128 pixels. If the image is sampled further into
a 556 x 256 size, tﬁe result would be a closer-approximation to a uni-
form histogram. The effect of this process on the original image can
be seen in Fig.3.5(d). It is noticed that the contrast of the original
image has improvéd, since the dynamic range of its pixels has been -
increased. A listing of the computer program used to perform histogram
equalization is provided in Appendix A.-

The process of histogram equalization was carried out on several
images. Consider the image of a cable connector in a lab shown in
Fig.3.6(c). This is the image of a cable comnector and an éﬁformation
plate on a piece of machine — the writing on the plate is not clear
because of under ;ampling. Its hist;gram is shown in Fig.3.6(a). After
the equalization process, we can see in Fig.3.6(b) that the resulting
histogram has>3n almost uniforﬁ distribution. In this case also the
histogram would have been closely approximating a uniform histogram if a
256 x 256 image were considered. The memery censtraint of the computer
prevented the implementation of this}#lgorithm on anhimage of ; larger

size than 128 x 128. The improvement in the contrast of the original

image is also clearly visible in the equalized image shown in Fig.3.6(d).
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° This observation can also be appreciated in the image of a girl shown

in Fig.3.7.. Fig.3.7(a) is the image and Fig:3.7(b) is obtained aftex

equalizing the histogram of the original image. .

Ié fallows from the above examples thét égualizing the gray levels

o .
in an image would enhance its visual quality, viz-a-viz its contrast.

However, improvipg the contrast of the image is not our ultimate goal,

and we therefore have to perform further p}océssing*to sult our require-

~

ments.’
(b) Specifying Desirable Histogram

The next step is to specify the distribution desired in the histo-

” .
gram. * Consider the histogram shown in Fig.3.8. This h%?cogram gives

-

the ideal case of the object and background popuiatigns being clearly

divided into different gray level ranges. If we transform cur original

image into one whose histogram has this desired distribution, it would
N .
be very simple”to select a threshold at the bottom of the valley separa-

+

ting the two populations.

The Thistogram of Fig. 3.8 was generated by -combining two

Gaussian distributions with sufficiently different means, so that the

average ggéy levels of the populaéions be significantly far apart on the
intensity axis. The standard deviation of both the distributions was
taken tc be the same, and relatively small so that the two distributions
digqnot overlap. it should be mentioned here that.the selection of means
and standard deviatién of the distribution was carried out pufely on a
trial and error basis. Further work in the area could be dome towards

establishing a criterion for automatically selecting the means and

standard deviation for a dﬁsired histogram of any image.

v
.

>
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Figure 3.5\ (¢) Original image (d) Equalized image
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Figure 3.6 (c¢) Original image (d) Equalized image
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Figure 3.7 (a) Original image {(b) Equalized image
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6ur objective therefore, is to transform an image into one whose
‘histogram has the d{stribution shown in Fig.3.8.
(c) Mapping Histogram Ontc Image
¢ The next mode of action is to map the desired histogram onto an
image. This would require the histogram equalization process to be
carried ocut for the levels of the desired histogram. The transforma-
tion function would be the same as in Eq;3.1—l, except that it is now
apﬁlied on the levels of the desired histogram. Let z; be the levels

of the desired histogram. The transformation would then be

. k
= G = . « I
v (z,) jzo pz(zJ)
k n.
- 3 ' _
= Z = (3.1-2)

j=0

for

k=40,1, ..., L-1
where all the symbols used have the same connotations as in Eq.3.1-1.
It has been explained in the previous chapger, that in order to
obtain an image whose gray levels have the distribution of the desired
histogram, wé could use the inverse transformatiog |
z, = 67H(s) (3.1-3)
Eq.3.1-3 suggests that we assign each of the transformed values
(Vk) to the 's’ levei closest to it. (Remember that the 's' levels were
obtained afrer equalizing the levels of the original image). We can
therefore obtain the desired levels z) using the inverse transformation
of Eq.3.1-3. After appropriately transforming the levels, we can obtain
an image given by the desired levels zy. This image would then have a
histogram whose distribution would closely resemble the specified

\"
distribution.
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This téchnique has been applied to several images and the results
obtained are illustrated. Fig.3.9 shows the result of this transforma-
tion at each step. Fig.3.9(a) is the histogram of the original image ~
which in this case is the strain gauge of Fig.3.4. Fig.3.9(b) is the
equalized version of the original histogr;m. Thé desired distribution
is specified in Fig.3.9(c), and the resultant histogram obtained after
the transformation is shown in Fig.3.9(d). It can be seen that although
this distribution is not exactl§ " the.shape of the specified distribu-
tion, vet it has been transformed into two separate classes. The dis-
crepancy between the specified and resultant histogram is due to the
.fact that this techmique is guaranteed to vield exact results only in
the continuous case. Here, since we are only approximating the.concepts
obtained.for the Con;inUOus domain,.the result would also approximate tge

ideal case. As the number of levels in the image decreases, the error

between the specified and resultigg histogram would tend to increase,
Since the practical limitacions\gf the syvstem have to be borne in mind,

one has to-contend with the trade—offs\gfgfired for such situations. In

—

this case, however, the trade-off seems to be a reasonable one as select-
ing a thre;hold based on the resulting histogram is no longer a problem, -
and our objective is reasonably fulfilled.

Fig.B.lO shows the effect of thresholding the transformed image at
a single level, thereby reducing the image ﬁo a binary one. The thres-
hold level can be easily selected based cn the histogram of Fig.3.9(d)
it could be any level 'separating the two populations. Fig.3.10(a) is
the original image on which the transformation was carried out, and

Fig.3.10(b) is the thresholded image. It can be seen that the original

image having 256 gray levels is most adequately described in just two
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levels, with a negligible loss of information.

-

The effedt of this transformat%on can also be noticed in the image
of the cable conneétor of Fig.3.6(c). Fig.3.11(a) is the histogram of
the oriéinal imaée. The histogram of Fig.3.ll(p) is obtained after
equalizing the levels of the original image. Fig.3.11(¢) Is che
specified distribution ‘and the resultant ‘histogram is shown in Fig.3.1ll
{d). It can be appr;;iated that a threshold can easily be selected for
this histogram.

Fig.3.12(b) shows the effect of thresholding the original image at
a single level, obtained from the histogram of.Fig.B.ll(d)ﬂ ‘Thg yhite

portion at the top of the.igage,results*from the effect of Aon—uniform‘
illumination on the object while sampling it. This effect could be
- removed from the image before transforming the histogram, by various
‘means, e.g., homomorphic filtering [19].
Another image .on which this transformation technique was applied is

.

shown in Fig.3.13(a). The thresholded image is shown in Fig.3.13(b).
&

Although it is diffi;ult to select one threshold level for this image,
a satisfaécory result is seen to be échieved from this transformation.

¢

It can be inferred from the previous discussion, that it is possible

to transform an imége whose histogram is not clearly bimodal, into one
whose histogram has a desirable shape which can be specified. This
approach was found to yield useful results for purpoée§ of binary level
chfesholding, however, there could be situations where selecting just a
single threshold level would result in a loss of desirable informatton.

For these situations, one needs to investigate the idea of thresholding

the image at more than just a single level.
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(a)

(b)

3.10 (a) Original imagé\ (b) Image thresholded after bimodal

transformation ;
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3.2. Multi-level Thresholding

Consider an image whose histogram has the distribution shown in
Fig.3.i&. It vould be very difficult, if not totally impossible, to
select one threéhold level for this image, such that a negligible amount
of information is losteg It 1is necessary therefore; that we choose more
than one threshold level to extract the objects from the background.
For the case of the histogram of Fig.B.QA, we would need three thres-

hold levels, T,, T, and T,, to adequately describe the image. This

1
would mean that the original image will be represented by more than just

two levels. All levels lying between 0 and '1‘1 would have a certain

value; levels 1¢ing between T, and T2 would have another value, and so

1
on. Thus, for the case where we have three.threspold levels, the image
after thresholaing will contain four levels. This approach of thres-

holding the image at more than just a single level is called multi-level

thresholding.

A

As in the case of binary level thresholding, the shape of the histo-
gram is mostly not conducive to multi-level thresholding. It is not
alwavs easy to separate the various sub-populations. One commonly en-l
countered difficulty is that some ranges of gray levels may occur a sig-—
nificantly greater number of times compared to the rest, s; that when
plotting the entire histogram, these gra& level ranges play a dominant
role and sincg the scale on the axis is uniform, observing the distribu-
tion of the lesse; occuring gray levels becomes 3 problem. In order to
overcome this, a section of the histogram is considered at a time, and a
bimodality is searched for. . If a bimodality is found (4], a threshold
level is selected appropriately for that section. All pixels having

intensity value less than this threshold are assigned'one gray level.

3

Reproduced with permission of the copyright owner. Further reprbduction prohibited without permission



(a)

(®)

(a) Original image (b) Image thresholded after bimodal
transformation

. Figure 3.12
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- .vFrom this threshold, another sectian of the hist;grém is subjected to
the bimodality test. If a threshold can be selected for this section,
all pixels withvintensity‘value lying between the first and second
thresholds are assigned another gyay level. This process is carried on
until the entire histogram has been scanned to check local bimodality.

*  Thus an image having a histogram of the shape of Fig.3.14 can be

R - appropriately represented in four levels Li’ Lz, L3 and L“.

*A
f8

The process of selecting thresholds by sectioning the histogram
would work if a bimodality is detected in e;;h section being considered.
However, in most instances, this is nr‘he ca.'Se. If a small section of

the hi;cogram is being considered, we might not encounter a bimodality.
If the size of the section is increased, we might comé across a'situacion
where thefe are more than two peaks, or the valley between the two peaks
may not be very distinguishable. In such cases, this threshoiding scheme
could result-in a loss of information. This is illustrated in the thres-
holded image of ihé Eable coﬁnector shown in Fig.3.15. Fig.3.15(b) was
obtained afte; thresholding the original image at three levels, afcér
sectioning the histogram. It can be seen that this image misses out on
some detail from the original image.

The limitation of selecting thresholds after sectioning the histo—

‘ gram prompted sthe need to investigaé% the idea of direct histogram speci-
fication for pufposes of multi-level thresholding. This technique was
used on various images and the results proved to be quite encouraging.

The only difference in the case of multi-level thresholding with
that degcribed in Section 3.1.2, is in the specification of the desirable
histogram. Since birary level thresholding desires a bimodal histogram,

the combination of two Gaussian distributions was specified. However,
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in this case, a multi-modal histogram is desired, with each of the peaks
being separated from the other by a sufficient amount. Theref§re, a
combination of four Gaussian distributions with different means and same
standard deviation, of the" form shown in Fig.3.16 is specified. As in
the case of birary level thresholding, the means and standard deviatioQ
of the specified distribution was arbitrarily chosen. The rest of the
process is exactly the same as described in Section 3.1.2. N

The result of chis_transformation on the histogram of the image of
the straig gauge is illuécrated<in Fig.3.17. Fig.3.17(a) is the histo-
gram of the original image. After equalization, the histogram has an
almost uniform distribution shown in Fig.3.l?(b). Fig.3.17(c) is the
desired histogram we specified, and the resultant hisﬁogram_is shown in
Fig.3.17(d). It'tan be seen that the histogram has been transformed
into four different sub-populations, and thresholds can be selected
appropriately to separate these sub-populations. Fig.3.18(b) shows the
image of the strain gauge represented in four levels after being thres-
holded at three different levels. ~

The use of multi-level thresholding cannot be fully appreciated by
the image of Fig.3.18(b). However, consider another image of the strain
gauge shown in Fig.3.19(a). This image consists of two backgrounds so
to say, one being the Insulator background having a low average inten-
sity level and the other being the bacgground at the outer borders of
the image having a éelacively higher average intensity levéi:, Fig.3.19
(b) shows this image threshclded at a single level, and we can see that
all the desira@le information in the image (the conductor part) is lost.

However, thresholding the image at multi-levels would yield the desired

information, as shown in Fig.3.19(d).
- 7
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Figure 3.18 (a) Original image (b) Multi~level thresholded image
after transformation
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(b)

Eigure 3.19 (a) Original image (b) (mage thresholded at a single level
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(d)

Figure 3.19 (c) Original image (d) Image after multi-level thresholding
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Figure 3.21 (a) Original image (b) Multi=level thresholded image
after transformation . -
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This traunsformation was also carried out on the imagg-of the cable
conneétor. Fig.3.20(a) shows the histogram of the original image. The
resulting histogram after the transformation is shown in Fig.3.20(d).

It i{s evident that the original histogram has been transformed into a
shapeffhét resembles the specified shape, thereby greatly aiding the
task of selecting'appropriace thresholds for the image. Fig.3.21(b)
sho&s the effect of thresholding the original image of Fig:3.2i(a)‘at
three differént levels. Comparing Fig.3.21(b) with Fig.3.15(b), we can
appreciate the greater gmounc of detall present in the image th;esholded
using the image transformation technique.

Another example of the use of the direct histogram specification
technique to aid multi-level thresholding is illustrated in the image
of Fig.3.22(a). The same process of transformation was carried out, and
the image was~chresholded at three levels to vield the threshoided image
of Fig.3.22(b).

Thes; examples suggest that the technique of transforming the
original image into one whose histogram has a desirable distribution
can be used for purposes of single and multi-level thresholding to yield

very satisfactory results. A listing of the computer program used to

implement this technique is provided in Appendix A.
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Figure 3.22 (a) Original image

(b) Multi-level thresholded image
after transformation
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.CRAPTER IV
FEATURE EXTRACTION - o -

In most image processing applications, :he‘éventual goal is to ) <7
extract fhe désirable,inférmation'in an image. If the original image‘"
is of a poor quaiity, various processes could be carried out to enhance
the visuél quality of the image. It is also possible to extract features
in an image by various méans. Thresholding the image efficiently,
amounts to classifyiné the image into one of t;o c¢lasses, object and
.background. - This is one way of extracting the object from its backgrouna,
annd a2 need for a good thresholding scheme is empéasized,.otherwise some
inherent features of the image may be Jost. -

Thresholdipg is a form of featuré extraction whereby an image is
segmented into different classes based on the properties of each pixel.
Depending upon the intensity level qf the pixel, it is classified into
being an object peoint or a backgrouﬁd point. An altern;tive to this
form could be the extraction of features in an image based on local
Vregiongl pro#erties. Thus, instead of Zlassifying each point to a
regio;,'we classify local regionai properties. This increases the
dimension of the feature vector ;sed for seggenting an image in terms
of its object or background. One widely_accepted region—-dependent
approach for segmentation of images is template matching. This concept
has wide appli;ationé due to its pragmatic feasibility and‘siﬁplicity.
4.1. Template Matching -

This method of feature extraction is based on -detecting transitions
in gray levels between regions. The various regioms are usually charac-

"~
terized by the differences in their<gray level content. However, this

58
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is not necessgrily the only feature that can be used for establishing
\region characteristics. Texture differences or colour differences (when
- deéling with coloured imagés) can also be used to difierentiate.bétween
regions.
Template matcﬁing is used to identify certain characgegistics in
an iﬁage. A templatg Is defineé, in context to digital image processing
applications, as ;; array.designed te detect some invariant regional
property. A template ié sometimes also referred to as a mask or.a
window. In using template ma£ching for feature extraction, it woyld
be advantageous to have some prior information regarding the approximaté
shapé and size of the characteristic being identified. This would help

-~

in choosing an appropriate size of the template. . Each template would

"

then be designed to detect>the property being looked for. The following

. . . discussion explains the prdceés of template matching to detect three
: - €
different characteristics in an image. . e

5.1.1. Point template

Consider a simple example of detecting isolated points on a con-
stant intensity background. 4 3 x 3 templatg of the form sﬁown in Fig.
4.1 can be used for this purpose. The centre of the tegplate (marked S)’
is moved around the image'from péinc to poiﬂc. At every,gosétion, each
point in the image lying inside the template area is multiplied by the
corresponding element of the template and the re§ults are added.
Notice that the sum of all the elemen;s in the template is zero. There-
fore, when the‘templaCe occupies an area of constant background, meaning
"thereby thag-the gray levels of points inside the template area are the
same, the sum of the operation perfo;med at each position would be zero.

A o
However, if the cehtre of the templése-lies on a particle point, the sum

-
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Figure 4.1 Point tempglate
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would be different from zero, since the gray level of.the point~would
be different-from its surrounding-backgrOund. The sum would also ge
diéferég;\g;Bg zero if the particle point lies inside the template
ar;a, but does not correspond to the centre of the template. In this
case, the magnitude of the responsé would be weaker than if the-point
occurred at the centre. In other wbr@é, since only the point lying at
the centre of the template is multiplied by 8, the sum in this case
woﬁld be more than if the particle yere located at any other point. In
order to exactly Jocate the point, a threshold level would be spegifiéd
in such a way that the wegker responses can be eliminated. 1t can be
said, theréfore, that a partiéle point is located at the‘centre of the
template when the response of the template at that position exceeds the
threshold level;;~By moving the template throughout the image; we could
detect all isolated points in\the image. This process can be explained
mathematically [1] as follows: .

We would represent the template ipd the image pixels lying inside
the templace as a vector. Let z,» 22,‘;..,Izq be the weights in a 3 x 3

template. A 3 x 3 template size is being chosen for convenience; the

procedure could be generalized for an m x n template. Therefore,

(6.1-1)

where the first three elements of Z are the elements in the first row

of the template, the next three are from the second row, and so on.
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v

- Let Xys Xpy eees fq~be the gray levels of the pixels inside the s
template\area. It should be emphasized here that the element zl.of

the template should be on X, 25 O1 X,, and so on. Thus

. o

-

(4.1-2)

x
Lq

The pfeceding discussion on template matching suggests that it is

basiéally a cross correlation between the element® of the templafg and

, - ':
thefimage points. Therefore, the response of the Cemﬁiggé at each
position would be given by the inner product of the two vectors X and
Z, which is defined as

e ' ) - . )
Z'X z,%y + z,%, S R quq | (&4.1-3)

It can be seen that Eq.(4.1-3) is the same as taking the ‘sum of
S .

products as explained earlier.

If we specify a threshold level T, to eliminate all weak responses,
we can detect a particlé point at the centre of the template if

Z'X>T . o (4.1-4)

This was a simple case involv;ng the detection of a single isolated
point against a constant background. This idea could be eﬁtended to
identify other characteristics-gs well.

‘ -

4.1.2. Line template

Consider the four templates shown in Fig.4.2. Thege templates are

designed to detect straight lines, one pixel thick in an’ image. The

lines could be oriented in a vertical or horizontal direction, or slanted
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(e) ) (d)

Figure 4.2 Line templates designed to detect (a) Horizontal line
(b) Slanting line (c) Vertical line (d) Slanting line
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at 45°. For example, consider the template of Fig. 4.2(a). The sum of
the elements of this'template is zero. Therefore, 1f this tehplate was
to be moved around the image from point to point, its reséonse would be
zero for a constant background and maximum for a horizomntal line one
pixel thick. Using a threshold as in‘tﬁé pr;vious case, the line can be
identified to lie in the middle row of the rtemplate. , Similarly, the
template shown in~Fig.4.2(b) wo;ld detect a line slanted at an angle of
45°. The template of Fig.4.2(c) would detect a vertical line and the
template of Fig. 4.2(d) would identify lines slanted at an angle of ~45°.
/ If we are interested in the identification of any one of the four.
features, we could use the appropriate £emplate. Since in each template>
the preferred direction is weighte& with a larger coefficient, one tem-
plate could only identify the feature it is designed for. However, if
we do not have a priori knowledge of the shape ;f the feature, we
would not know which templatg to use. Therefore, it may be necessary to:
use all four templates and determine the closest match to the image
section. For example, let 21’ 22, 23 and Zu be four nine-dimensional
vectors‘pf the form of Eq. 4.1-I. These would stem from the elements
'of each of the four templates shown in Fig. 4.2. As described earlier,

the response of each template would be given by

Z{X for 1 =1, 2, 3, 4 (4.1-5)

where X is the vector of the image péints lying inside the tempiate
area. If we wish to determine the closest match between the image
section under -review and each of the four templates of Fig. 4.2, we can
-say that thé vector X is closest tc the i-th template if the response of
this template given by Eq.4.1-5 is the maximum._ This can be stated as

Z!'X > 21X (4.1-6)
1 J

| §
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for .all values of 3, except j = i.
. 2N .
If the condition given by Eq.4.1-6 is satisfied, we can say that
the region under question matthesfclosest to the i-th template. -
This was a situation where templates were designed to detect
straight lines. It should be understood that templates could be
designed for any featqre, and all the arguments presented above would
hold true. | ’
4.1.3 E&ge—detection template
The concept of edge-detection 1s based on detecting transitions in
gray level between regions. We would say that an “"edge" haﬁéﬁeen detec-
ted if there is a siénificant change in gray level between adjacent
. . reg&ons. This information would aid ;2 segmentiég the image Iinto diff-
erent classes by delineating the boundaries between them. Using some
sort.of a two-dimensionai differentiation process, we could detect
these transitions in gray levels. Implementing a two-dimensional deri-
vative fuqctioq_uogld yield high values at all-edges in the image, and
low elsewhere. The edge strengths produced by the differentiation pro-
- cess depend upon the local contrast in the image. Since a thresholded
image just contains two levels, corresponding tc the objects and the
background, detecting the edges in such an image would yield the outline
of the objects.
~N
In order to find the gradient at a point, comnsider a 3 x 3 template

shown in Fig. 4.3. This template can be used to find the gradient at

the point e. We can define Gx’ the gradient -in the x-direction to be

G =(g+2h+1) - (@a+2b+c).... (4.1-7)
We can see by looking at the image region gi&en in Fig.4.3, that

) A
Gx is the difference between “the first and third Yows of this image

_ e
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5
()

Figure 4.3 3 x 3 template used for edge detection

»~
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section, where the elémeits closer to e (b and h) aré given twice as

much weight' -as ;ompared to the other-elements. This weighting is
_‘baséd_more on intuitive grounds than anything else. Therefore, Gx

would represent an estimate of the derivative in the x-direction.

This argument could be extended for calculating the derivative in
the y-direction as well. Gy’ the gradiert in the y—dire?tion would be
the diffe;ence between the first and third columns of the image -section
‘of Fig. 4.3.

~

Gy = (¢+20+i)-(a+2d+g) .... (4.1-8)

The gradienc at the point e would then be defined as

: L
- 2 27* -
¢ = [c +‘cy ] | (é.l 9)

In order to simplify this expression for use on the computer, an
alternative definition, using absolute values would be

G = icx‘ + lc (4.1-10)

v
The absolute sum of the derivatives in the x and y direction would
then*give us the gradient‘at the point e. if this technique is applied
on a binary level image, we can say that an edge occurs when G is non-
zero, otherwise the point e lies interior to the object or the background.
This technique of edge detectiop can be used on a thresholded image,
in apblications where it is desired to outline the objects from the
. background. This process is appliéd to locate the boundaries between
o
objécts and the backggyﬁnd on several images and the fesults can be seen
in Fig. 4.4 througthig. 4.6. The imageg on the ﬁop are the ;riginal
images and after thresholding them and carrying oug che'edge detection

technique described above, we can obtain the images at the bottom which

have the object part of the image outlined from the background.
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Figure 4.4 ‘(a) Original image (b) Boundaries of objects in image |

.
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Figure 4.5 (a) Original image (b) Boundaries of objects in image

»
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Figure 4.6 (a) Original image (b) Boundaries of objects in image
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This was just one technique of boundary delineation in images
where the edgé decection(template was brought to use. However, there
.are several other techniques available for this purpose, some of which
will be discussed in the next section. -

4.2. Boundary Following

As mentionéd earlier, some image processing aﬁplications require

1

the detection of the boundary between theiobjects and the gackground.

One way of achieving this objective is to determine.the edges ig a
thresholded image as shown earlier. Basically, a thresholdeq image is
one where ££e objects have been sepafated from the background, and édge
detection on 5uch an image would just outline the objects. This infor-
mation could be_of great use in épplications like quality control of
manufactured parts. In such applications, we are usually interested in
the fggye~and size of the object in order tovdetermine whether it is
faulcty or Qot. This necessitates the process of outlining the Boundaries
of the cbject, to locate defects, if any, in it.

It has been described éarlier that boundary following is based on
locating two regions ;f higher and lower intensities, ‘and ;n case of a
thresholded image this‘wéuld amount to locating the transition from black,/ﬁ-//
to white. There are several boundary following algorithms which can be |
used for the detecéion of these transitions. The work?ng of omne
algorithm which has proved to give useful results [4], is explained
below. ' .

Since our objective is to determine whether or not there is a tran-
sition in gray-level between adjacent pixels, at ever& point we will have

to consider its gray level and compare itr to the gray level of all pixels

surrounding it. The first step would be to obtain the first border point

“
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‘the process. At the first border point, we compare, its gfﬁi level-to

- 720

by scamning the thresholded image amd looking for a transition-in gray

lével. The first transition reached would be the spafting point for

-~

the gray level of the eight pixels surrounding it, ‘as shown in Fig.4.7.

Say, point a is the first border point and point b is the previous point

which was\not‘quorder point. Now, we move clockwise .from b and check
the next pixei, which in this case would be €. If there.is a transition
between b and C, € would be the next border point, and b would still be

the'prev;ous point. If however, C is not a border point, we proceed

‘further-in the same direction and search until a transition is reached.

-

Whenever a transition is known to occur, we will have a border point

. and-a previous point. At:the new found border poipt we will continue

LY

the search process again starting from the previous point. It is im-

A}

portant though that the search process. be conducted sequentially in one

direction only.

- ' This method of §earching around an already foJ;d ﬁorder point would
outline the boundary of a closed se;tfﬁn. After the bor@ers of.a closed
section have beeg'obcained, we ‘start the scanning procedure again of
séarchiﬂg for a transition in gray level to give us a border point of

another closed section. The search pfocedure, as explained abbve, is
.- " b - .- .
3 . * <
then used to ocutline the borders of this closed section. The whole -
= - {
image is thus scanned and the objects can be outlined from their back-

A

-

ground. ¢

The algorithm described above ¥s designed to follow cépsed‘borders.

-~

<

‘¢

This means that starting from the first point, w§/§ollow the border “

. . :
points by the search process, and this process ends when we arrive at
N 3 - N R * -

the point we originally started from. I§~the‘border is. disconnected -

- -e

3]

///’ c :‘.. ' . .

he
— i ) :

‘o

-
L3 . ¥, - .
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Figure 4.f Sequence of search to follow berders
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however, this method would outline a closed section of the border,

and in order to outline the other discomnnected section, we would have

[y

- to coﬂsider it as another closed borxder. This proce§s‘dbu;€ also
. . LA : : ) -
P

detect all isolated points in the image.
< This method of borde; following is quite veréatile iz nature.
Apart from'jﬁst outlining the boundaries, we can also calculate the
areaAoccuﬁied by the obj%cts in the image. This is done by storing
the co-orQ}nates of all border points obtained in the search process,
and froa thése co—ordinétes the perimeter of each closed border can bér
determined. This informacion i; very useful in applications where
besides the shape, we also neéd to determine the size of the objects.
One application where this information is of immen§e importance is the
- . aeggption of faults in manufacturgd parts.
" The application of image processing to quality control is finding
wide acceptance in industry tag ;.' The ﬁext section considers a probieﬁ
ﬁsé%n\ted example and explains use of template.matching and boundary

\

) < . )
following to exttract the desirable, information from the image.
. . ] ,

4.3. A Problem Oriented Example

a

In this section we'will consider the application of image process-—
ing tc an important aspect of industry, na§e1y~quality control. The
concepts of template matching and boundary following are shown to be of
great use in the detéction of faults in manufactured parts. The image
of each component coming- down a manufacturing line is studied, and

- " depending upon whether the pa}ticular component is faulty'or not, a
decision is made based on that componenf fulfilling thé’required

.

specifications or not. -

| . .
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P 4

Consider the image of a piston head shown ip Fié.4.8(a) used in
thé automobile industry. It is required to detect the faults if.any,
on the surface of tﬁe piston head. This fault may stem from a dent or
a scratch or even a chipped edge. These piston heads are manufactured
by the thousands every day,\gnd it is necessary to have an au;omatéd
system of fault detection. IA some large plants a 2 second detecticn
time is required. This imposes a speed factor in the algorithms used
in the fault detection process.
It can be appreciated that while obtaining the image of 'the pistoﬁ
head, all irregularities on the sﬁrfape in the form of a dent or a
scr§CCh would'appear to be darker than the rest of the surface. This is
obvious>since a lesser amount of light would be reflected from a
deﬁression in the surface. These irregularities can be detected by an  .___
efficient thresholding scheme, as illustrated‘bf.the thresholded image
shown in Fig.4.8(b). Notice that the dark‘spocs shown are the possible
defects on the surface. The "eve-brows" (getting the name from their
sﬁape) however, are Inherent features of the piston head. The impof?;
ance of obggining a good thréshold level is clearly evident in this
example, because if the threshold level selecged was not a gocd oné, it
was possible .that the dark spots could have been merged with the rest

) of the surface, thus giving a wrong picture of what the image is actu-
ally like.
\ After obtaining a chresQolded image and detecting the faults, our

¢

flext step is to determine whether the particular part is acceptable or .
not. The faults in the part may be 6fva minor nature and fall within

its toleérance limit. Secondly, the fault may occur at the edge of the

part,‘in which case we would not be able to distinguish it from the

:
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76.

o

(a) ' .

PossItLE
DEFECTS

(b

Figure 4.8 (a2) Image of piston head (b) Thresholded image with
possible defects indicated

1
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sbackground. Therefore, it is necessary to folidb the boundaries of
the piston head and compare it to éhg boundaries obﬁained for a stand-
ard part. // e
Referring back to the image of Fig.4.8(b), it seems logical that
if the eye-brows on the surface (which as mentioned before are inherent
features of the piston_head) b¢ femoved, whafevef black portion would
remain-insid; the piston head would bepthe faults. Theréfore, a simple
count of all tﬁe black pixels inside the piston head would give us the
number of faults. This deduction seems quite simple, but the'process of
removing the inherent features in the image could’pose ;o be a problem.
In applications of the form described above, we have ﬁhe image of
a standard part to go by and thus have prior knowledge about the inher-
ent features of the image. The shape and size of these featureg\couid
vary from part to part, but not O a‘gxeat degree. We therefore have
an idea about the approximate shape and size of these features. Going
back to ?ur discussion on extracting features through template matching,
we know that we could design a template for whatever feature being looked
for, if we had prior Information about the shape and size of the feature.
It seems reasonable therefore,‘chac if we designed a template giving
appropriate weight to suit the shape and size of the eye-brows, we
could extract them from the image, and cnly the defects would remain.
There are twe problem§ however, in this approach. Firstly,'since the
shape and size of the eye-brows vary from part“to part, it would be
difficult to design one template that would give the éesired result 4n
every image. Secondly, the area occuéled by the eye-brows in the image

is quite largg,ang\?esigning a template cf those dimensions would be

veryqﬁmpractical. If we came across another situation where the feature

-

1 _ .
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under guestion was relatively smﬁll in size, and we knew its exact
éhape, we could extract the feature using template matching. -

In thi;”;;émple, we notice from Fig. 4.8(b) that the eyé—brows
consists of one straight vertical line and a curved portion. Now in -

each part the eye-brows may be oriented slightly different, or their
size may vary, but essential;y all of them would have a straight ver-;
tical line and a curQed portion a}ongside it. Therefore, if we can
locate the straight line of the eye-brow, we could obtain a point on
the border of the eye-brow and the rest of the surface. This can be
a;hieved by using a3 template designed to locate vertical lines. Con-
sider the template shown in Fig. 4.9: This template pattern when
correlated with the image of Fig. 4.8(b), w;uld detect all vertical
lines in the image, ten pixels long. The length of ten pixels was
arbitrarily chosen, so that the template does not locate small scratches
on the surface, and misinterpret éhem as a2 border.

Once all the four vertical lgnéﬁ cf the eye-brows have been
detected, we can apply the boundary following algorithm explained iﬁ
the previous section t0 remove the eye-brows from the.image. Since
the vertical lines detected by the templates are known to lie on the
border, the utilization of that technique would not be a problem.

This approach was carried out on the image of Fig. 4.8(b), and tﬁe
eye-brows were extracted from the image. Fig. 4.10 shows just the
eye-brows of the image extracted by the use of template matching and
then boundary following. Removing the ;ye-brows from the image reduced
the image of the pistoﬁ head to the shaﬁe of Fig. 4.11. It can easily

be noticed that the earlier defects are still present, only the

—

‘inherent features of the image have been removed.  The number of faults
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Figure 4.9 Template designed to detect vertical line ten pixels long
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Figure 4.10 (a) Original image (b) Features extracted.
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. Figure 4.11 (a) Original image (b) Image with inherent features removed
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can now be determined by a simblevéount of all thé pixels having,iero
intensity level (bl;ck) inside the piston.

In the example discussed above, it is clear that if a béundary
following algorithm was c§ be employed, the process of template match-
ing seems redundant. This is because tﬁe area o§ the defects in this
case are much smaller than ﬁhe inherent‘feature of the image, and the
eye-brows c?n easily be detected even without template mat%hing. How-
ever, it is\gﬁphasized that the exaﬁple discussed above was just to
illustrate the possible use of template matching in fault detegtion.
Consider for example, an image whosé features are small in,comﬁarison
to the defects, and its exact ghape and size were known. In chi§ case,

. the inherent features in the image ﬁould be removed by template match-
ing and a boundary following procedure need not be ucilized;

It can therefore be concluded from this example that it is poss-—
ible to use template matching for purposes cof fault detection in manu-
factured parts, if the feature being censidered is of’a relatively small
size and we have a priér knowledge of its exact shagé. If that is not
the case, a point an the border cof the feature can be located through
template matching, and then a boundary following algorithm can be
uc{lized to extract the feature from the image. Removing the inherent
features from an image would reduce the task of fault detection to a

simple count of the black pixels in the image.
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CHAPTER V
SUMMARY AND CONCLUSIONS ‘ ‘1

5.1. Summary

Image thresholding has been known to be a useful tool for extract-
ing features from an image. The problem of selecting a good threshold
;evel therefore, has often been the focal point of rgsearch for many
image processing applications. Several techniques have evolved in past
yeérs for threshold selection. One widely accepted technique ié where
a thréshold is selected automarically by examining the histogram of the
gray levels in an image. If the histogram is bimodal, a2 threshold can
be selected t$ lie at the bottom of the valley between the two peaks.

However, the problem becomes a little more .complex when the histogram

is not bimodal. o

The research conducted for this thesis was based upon the extrac—-

tion of features in an image through thresholding and boundary following.
~ For situations where the histogram of the image was not clearly bimodzl,

ché ;%proach of variable threshelding was verified. In this approach,
thresholds are selected region-wise and the entire image is thresholded
at various levels depending upon the local properties of the regions.
These regions are obtained after segmeg;ing the original im&ge into
smaller sectigns.

It has bekn shown earlier that it is possible to .transform an
image into one whose histogram has a specified distribution. This
thesis discusses %he use of the approach of direct histogram specifica-
tioﬁ for purposes of binary level thresholding. A bimodal histogram

is specified and the original image is transformed into one whose

83
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hisﬁogram has the désirable shape, thus facilitating the task of thres-—
"hold selection. This approach was also extended for purposes of multi;
level thresholding. This is uséd in casei where it is not possible to
select one threshold level for the entire image, and it is necessary tqli
gelecé more than one threshold for the image. In this case, tﬁe histo-
gram specified was a multi-modal histogram, and transforming the image
égpropriacely yielded an image having a hiiiigram of approximately the
same distribution ag thelone specified.

Research was also carried ?ut for specific abpli&ations to, quality
contfol. The concept of template matching was utilized to obtain bound-
aries of a thresholded image. It was also showﬁ that- template matchiﬁg
could be a useful tool for the extraction of features. )

Finally, a problem oriented example in quality control was consid-
ered where it was desired to locate the defects‘in a manufactured part.
A boundary following algorithm was utilized after template matching
to extract the inhergnt features in the image. A template was designed
for the par;icular feature being looked for, and since a large sized
template would have been iﬁpractical; ﬁpeAconcepé of bouqﬂafy*following

- was also employed to detect the faultg. The inhe;ent features in the
image were removed, leaving behind the possible defects.
5.2. Conclusions -

In cases where an image does not have a bimodal histogram and
threshold selection; poses to be a problem. The approach of variable
thresholding was verified, and the results obtained were very satisfac-—
tory. However, this approach required extensive computation and was not
suitable for purposes where efficiency in terms of time was a great con-

cern. g

~

‘ f
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. The concep£ of direct h;stog?am specification was used for purposes
of binary level tﬁresholéing. It is known that ah image can be trans-—
formed into one whose histogram has a specified shape. This concept was
applied.fo; bingry levél ;hresholding by specifying a bimodal histogram
conéisting of differgnt means and same standard deviations. The selec-
ﬁion of ‘means and.standard deviations was totally ar£itrary and no
criteria has begn established for. their selection. It was.shéwn that an
image whose Histogram is not ‘clearly bimodal can be transformed into one
wﬁose histogram closely ;esembles the specified bimodal distribution.
This greatly-aids the selection of a good threshold level.

This approacﬁ of image trahsformacion was also extended Q?r purposes
of multi-level thresholding, and it was shown that for cases where. the -

« Selection of one threshold level for the eq;ire‘image results in a loss
of'information; more thgn one threshold can be seleqted, thereby segment-
‘ing The itﬁage into more than £vo levels.

The concept of templdte matching was used for purposes of fault
. - detection of manuféctured parts. It was seen that this approach could
& . .

only be used where the size of* the- feature being detécted was small and

N .

its exact shape and size were known. Otherwise, a portion of the feature

could be detected through template matching; and a boun@ary foiiowing
scheme utilized to extract the feature from the image. It was also’
noticed that by ?emoving the inherent features in an image, fault detec-
tion w0uld-be greatly simplified. These features can be rem&ied simply
by template matching, or combining it with bougdary following, depehding
upon the size of the feature in question.

.In conclusién, we can envis;ge the development of a system which

would efficiently threshold an image using the direct histogram Specifi-

1
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cation technique and then extract featgPes from it using template match-

ing, and if necessai'y, boundary fé)llowit;g.

L

»
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D
A D
SN
A
=
Ml
Y
9 v
—
L d
il

"
T
5]
‘f‘

I

U

RO+ 8
L 28 K=1.NF
PREVEI=PROKIANT

)

FLOTTING THE PROEIZILITY DISTRISUTION

DT OR

':I\=FLORT{I—13
CAORTINUE
) QPEM &, "FTTOLY .

CRLL PLTEKS A PEL MNP
CLOSE @
ACCEPT “MWISH TO CONTIMUE L —=—=0F NOITYV O ——=—== . THT
IFCIWNT. ECL 40G0 TO 1@33%

‘ STOP

—~T - EMND

1)
N

~—
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C FILENAME PROBDEN
C | AR R I e e S S N R e e e o e ool i
i THIS PROGRRIM IS USED TO EQURLIZE THE HISTOGRAM OF AN ITMAGE
n , R
DIMENSION IPC128. 1280, PRI2SE)D, SCZTE . HI2583, NAMELSY, IFILECS)
DATR IRLNKS” 7/
180 ACCEPT “# OF PIXELS PER LIN:—';Nb.ZE
ACTERT 7# OF LINES + NLLINE
RCCERPT “# OF LEWELS o .NP
HNTRILINE#NSITE
DO-L I=L T
1 NBMECT h=IRLNK
WRITECLA, 22
2 FORMAT” 7, 4%, “"INPUT FILENRAME:~7. 22
PEADCIL, ZHONAMEIIN, I=L, S0
iy FORMATCSARZY 7 g )
AFEN 1. NRME, LEN=2eNSIZE. REC=NL INE
Do 4 T=1.NLINE N
4 READCLI CTIF{TL J2, J=1. NEIZED ’
- CLOSE 1
c
o RUANTIZING LEVELS TO LIE BETWEEN 7G7 & 2357
C ‘@’ REFRESENTS BLACK B[ “255° REPPESENTS WHITE
C . '
IBIG=TP{1. L
ISMRLL=IFCL. 13
na S I=1. MiLINE
SR T T=L NSIZE .
IFLIP OIS ,).PT IBIGHIRIG=IRCI, J0
JTFCIRCT, T LT, ISMALL ISMALL=IFCT. 72
< CONTINUE -
IDIFF=IBIG--IZMALL
O 2 IT=10NLINE
O os I=L. MZIZE :
RIP=C (235 @«FLOAT (IR (T, J0-ISMALL DY AIDIFF+a T
= IPC1. T3=RIP
C
c CRLCULATING THE PROSARILITY DENZITY FUNCTION
(¢
DO T K==L MP
FRiKa=a o
¥ CORTINUE
- PO 2 I=1.HLINE

DO 2 JI=4., MNZIZE
o H=IrlI, Th+1
PRIV ISPROE L, &
Do 2a ¥=1.HP
2¢ PRI I=PROE I AMT

\

m
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C .
C COMPUTRTION OF TRANSFORMATION FOR UNIFORM PROBARILITY DENSITY
c ) . ) .
. S3O=PRELLR ’
BIG=S4) ;
SMARLL.=Sd1D )
DO S T= NP . . .
° q\ JN=S T=A2+PRP7 I
IFCSCTY. GT. BIGHRIG=SC I
IFCSCTID, LT, SMALL YSMBLL=S:{ T>
K CONTINUE .
c
c SSSIGHING TEANSFORMED LEWELS TQ THREIR TLOSEST
c VRILLTD LEWEL
N
DIFF=EIG-SMALL
) DO 1@ I=1.NF
. 18 SCT=SIN=-aMALLD ADIFF )= {NF—-1L"
-C A
o SUBSTITUTING NEM LEWELS INTO PICTURE
N C -
; D 42 T=ALNLINE
DO A2 J=1. N3IZTK
IPCI, Jo=S4IPN T, JTh+l0+@ S
i2 CONTTHUE
nQ as I=4.9%
LS IFILECT i =]IBLNK
WRITEC1G. LT.
Rl FORMATY " 7, 1%, “TPANSFORMED IMAGRE FILENSHME =<, 2>
FERD L. A2 'fIFILE I3 I= 1;5)
iz FORMRT (SR .
OFPEN 2;IF1L~ ILEN=2#NTIZE, REC=NL INE . -
DO 13 T MLOTNE
iR WRITEC20CIRLI, Th, J=1, NSTZED
' CcLose =z @
TYPE™ “
ACCEFT “PROGFRAM = STOP{@Al———————— CONTINIEINE, @h=——=37, THT
IFCIWT. ME. @XG0 TO 1Gad
‘ sToR ¢t
ErD

-
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FILENAME MODHIST

L Xe X!

THIS PROGRAI TRANSFORMS THE ORIGINAL IMAGE INTO ONE
WHOSE HISTOGRAM PESEMRLES /8 SPECIFIED DISTRIBUTION

00N,

DIMENSION IPC128, 128), PRI2SEN, SCRSE), NANECSY, IFILECE
Dzmensrow.x\zso> PZVRSEY. WI2TEN. IVY
DRTR IBLNKAS" 7/ ] .

1@03 ACCEPT “# OF FIMELS PER LINE=".NKSIZE

ACCEPT “HOF LINES = NL.INE

NT=Ni.. INE#*NS1ZE

DO 1 I=1.S

NAME ¢ T2 =1RLNK

WRITE (18, 2

FORMETY ~ <. 4%~ IHNPUT

PERDCi};R)(HRHSnIJ'I=1

FORM3T (SAZD

QPEN 1. NAME. ILEN=2#NSITE. REC=N. INE

DO 4 I=1.NLINE

PEADCANCIPII, J). J=1. HSIZED

CLOSE 1

) | S

-)

4a

- GRIRNTIZING GRAY LEVEL INTENSITIEZ TO LI =
‘@7 RPEPRESENTS BLACK AND “2T%7 FEPRESENTS LH

N )

]

181G= IPC1 13

TCHHLE—I LoAn

DO S T=1. NxINr . ,

DO S J=1.NS S FIE ~
IFCIP(I, 7% GT. IRIGIIBIG=TFCT. T

IFCIFCI, Io LT, ISMALL Y ISMELL=IPCT, 1 .
= CONTTHUE

INIFF=IBIG-1SMALL

DO € I=d. NiLIME .

0O & J=i. HNSIZE _

RIF=( (255 achnqrrT=«v TA-ISMGI_ LI AIDIFF Y +3, S
IPCT, T)= —RIF

CAL.CULLATING THE PROBREBILITY DENTITY FUNCTION

M)W

Lo 7T K
TPRIKY=
DO & I=1, HLINE
0O & J=1.NSIZE
K=IP{I, Jo+1

PROKISORIKI+L. B

DO 2% Kel, 256 i \\
FRCEI=PROK AT RN

-J

)

N
gl
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. Co . 92,

, - , . N
COMPUTATION OF TRANSFORMATION FOR UNIFORM PROBABILITY DENSITY.
SC1Y=PR{AY
BIG=S<1>
SMALL=S<1> - ‘ ' -
DQ 8 J=2, 255" ‘ .

SCID=S{I~1D+PRITD

IF{SLTIY. GT. RIGOIRIG=SCTIY - : -

IFCSCIY. LT, SMALE DSMALL=SY T ‘

CONTINUE

ASSIGNING TRANSFORMED WALUES TO THEIR CLOSEST “WRLID LEVEL
DIFF=BIG~SMALL o S

0O 18 I=1. 258 ,

SCIX=C (SN =SMALL 3 DIFF X » 2SS

GENERATING THE DESIRE[D FROE. DENSITY FUNCTION

’

ACCEPT “DESIFED DIST. :— BIMODALCL)==MILTIMODSL (2 ——=2>", IFT
IFCIFT. EQ 13GO TO 291 ) - ’
IFCIFT. EQ. 232G TO 282 .-
CRLL GAUSS{PZ. x> '

GO TO 263

CRLL TESTIRZ. &)

COMPUTING TRANSFORMATION FOR DEIIRED PROE. DENZITY FUNCTION

WCLM=RE(L
BIG=%{40
SMALL=Y L
oo I=2.
SRS SIS TS DI Sl )
IFCYIN GT. BIGHBIG=V (IS
IFWCT D LT, SMALLOSEMALL=Y (T X
CONRT ITNUE

e

Py g

DO 12 TI=1. 255

- et

e L S T N e N N
SO S T - SMALIL D ST IFRE D

TRANSFORMING PICTURE TOQ ONE HAWING THE E
PROBSETLITY DENSITY FUMCTION

It

i
=

n

OO 4% T=
Do1s ¥=

0O 12 L=,
IFCIRCT, I3 EQL I¥ILIXGO TO 14

80 TO AT , .
IFCT, Fu=
GO TO AT
CONT IMUE
CONT INUE

'
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pQ ag I=4. 3
1e IFILECIZ=IBLNK
e WRITEC1B, 172 T

93.

17 FORMATY” . 4X: “TRANSFORMED IMAGE FILENRME:-7.Z)

PEADC11, 8> CIFILELID, I=1, 35

18 FORMAT (SA2)
OPEN 2, IFJE. LEN=2*NSIZE, REC=NLLINE
PO 12 I=l. NLINE

18 WRITEC2XCIPCI, I, J=1, NSIZED
CLOSE 2 ) -
TYPE~ . :
ACCEPT PROGRAM :— STOPCE) —-—- CONTINUEINE. @
: IFCINT. NE. 823G T 1ead ‘
> - STOF ' -
' ENE:
- ~ ~ - .
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. -

SUBROUTINE GAUSSIF, %0 -
T S S S e S A e B
FIILENAME GRUSS

D700

THIS SUBRQUTINE FLOTS & RIMODG. DISTRIRUTION
CONSISTING OF THO GAUSSI AN DI STRIBUTIAGNS

a0

DIMENSION F(25SD. X256 il
- ACCEPT “FIRST MEAN YRI_LE=". ETAL
ACCEPT “SECOND MEAN WRLUE=", ETAR
ACCEPT “FIRST STANDSRD DEVIRTION=". ST
ACCERT “SECOND STANDARD DE”'RTIHN -, 81
PI=3. 14158 -
Y243, 141593 - -
DO 1 N=1, 128
WOMOYTFLOAT n\'~=0nTuﬁ.en
FONI =1 CSIGMRLYSORT D Y U ERP L = O NI =E TR D sk @0 0 24 TS TGMAL #2210 0
L CONTINUE )
oD 2 N=123.258
WONY=FLOATENI AFLOATLISE> - '
FoNY= L1 - CSIGMAZFSART YD ) Ml r'—'“\fN'—:TR““**“)K’“*QEIC1H2**21))
2 COMT INUE , ' -
OFPEN Q. “sTYTOL"
CrRi.l. PLTEKS 5
CLOSE 9 . -
PETURN '
ENL ’ T

GiRL
GiMR2 .
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SUBROUTINE TESTIF, ¥0 .

FTLENAIME TEST

N1 1 1 e 2 e e b NN e N e M M T N e e e

™M) )

- c THIS SUBROUTINE PLOTS & MULTIMOORL DISTRIBUTION
C CONSISTIRG OF FOUR GRUSSIAN DISTRIBUTIONS
n
- NIMENSTON F{2SED, HI25ED
ACCERT -FIRST MEAN VALUE=". ETAL
BTOEPT “SECAND MEAN VALUE=", ETR2
ACCERT THIFRD MEAN VRALLE =.ETAT )
ACCEPT “FOURTH MEAN YWAILUE=".ETA4 _
ACCEPT “FIRST STANDARD DEWIATION='. STGMAL :
ACCERT “SECOND ETANDRRD DEYVIATION=". SIGMAZ - —
. ACCERT “THIRD STANDGRD DEVIATION =7. SIGMAZ
ACOERT “FOURTH STANDARD REWIATION=". SIGiMR4 _
FI=3. 241583 - ' , yas
- . YE2¥I. 441583 . . ~

DO L N=i. &4
¢ MINMSELORT (NI AFLORT L2358y
FoNY =L A IGMARL+SORT oY I & EXP (= ORI =ETRL 1k 20 (2% TSI GHMBL++20 0 0
1. CONTINUE
DQ 2 MN=2S 18
T OMINISFLORTCMIAFLOAT 2TAD

P ' FUNN=C /S TGRS IART I Y I I ERKP (=W NI =ETARI ek 20 A 2 (ST GHMAZF 2D 1 0
CONT I MR
oI N=E12R 13T .
HONI=FLOAT N .*"FL..I'_"HT CETED

i)

o CONTINUE
DO 4 N=1S83, 256 :
RUNDSFLOST NI AFLOAT A2
B NS L ST GRS ORT (N 5 5 T M = N —E T A w2 3 0 2o ST GMAG A2 0 3
K T CONTINUE . '
DPEM . SETTOLY
CARML _PLIEKS (. F. 2580
CLOSE Y X -
‘ ' RETLIEN .
EMD .

==
e
T

-
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. —~

C 0 A M 2 S SR M N N %**wwm*m*w
c FILENR%E HTEST o=t
- C NN e A R R N R R e o i b e i *
C THIS FROGRAPM IS LUSED FOR~THR§SHOLDING THE TMAGES AT LEVELS
c QOETARAINED FROM THE TRANSFORMED HISTOQGRAMS -
c

DIMENSION Nﬂﬂ:'<‘-IFIIE.S),IP 122 1288, IFTHLRD
- DRTAR IBLNKA," 7/
13243 ACCEPT % OF PINELS PER IINF "o NLINE
HACCERT “# OF LLINES ”-NQI?E

ACCERT “# OF LEWELS . NF
DO 1 I=1. 3 .
1 NAMEC T Y=IBLNK
MRITE L8, 22 : .
2 FORMATC" 7. AX: “INFUT FILENAME (=7, Z2
EERDCAI. TP NAME TN, IT=t S
=z FORMAT (SR

OPEN L. NRME. LEM=2+NL INE. REC=NIIZE
0O 4 T=Ll. NLINE

4 READCALYCIPCI. T2, J=1. NSIZED
CinsE 1

ACCERT “TOTAL NQ. 0OF THRESHOLDS=<, MAM
PO S T=1. MAN
ACCEPT “ THRESHOLD ILEWEL=", ITH
+ IFTHYI>=ITH

= CONTIMNIE
‘M=t
nooE I=l. 123 ~
o0 oS J=1,123 E
IFCIPCT, Jo1E IFTHS MW IPCT, Th=0
& CDNTINUE
plc M=M=+
] IFeM GT. MAMDGD TO =
DO T IS4 MiLIME
oo 7 I=L.MEIZE _
IFCIRCT. I0 BT, IFTHOM=LY "SNP TRCT. I LE, TFTHIMHXGO TO 2
G0 TO T
o IPCI, Iy=CIFTHIM=A Y+ IFTHIMI W /2
7 CONTIHUE
, ) GO TCO A
T . 0O 14 T=1. MLINE
P o0 14 J=1. MNSIZE
P IFCIPCI, J). GT. IFTHOMANI Y IR T, Th=MNP-1
g 14, CCONTINUE
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Do 12 I=1,5
12 IFILECI>=IRLNK .
WRITECL®, 130 -
13 FORMBTY"  “. 41X, *THRESHOLDED IMOGE FILENAME:-~.
. READ (AL, 14X CIFILECIY, I=1, 5
14 FORMAT(SA2)D
< ‘ OPEN 2, IFILE, ILEN=2+NLINE, REC=NSIZE .
DO AS I=1. NLINE ‘ ~
is WRITEC2>CIPCT. T3, J=1. NSIZE)
CLOSE 2 .
TYPEL _— * .
RCCEPT “NISH TO CONTINUSCLM—=——=0R NOT<@)——==D~, INT
IFCIMT. EQ. 42G0 TO 1202 .
STOP
END

N
v

. .

N
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st~ e s~ e o e e e s o oK M R R S R R
FILLENRHMS MULTHRESH

o000

THIS PROGRAIM IS USSEL FOR MULTI-]EVFL THRESHOLDING
CONSIDERTING SECTIONS 0OrF THE HISTOGRAM

N0

CDIMENSION NRMECS)., IP<A28. 122). PRIRSE), XL258), IFILECS)
DIMENSION M1{258, PR1C2TEN. IFTHS 1ﬂ\ i .
DATA IBLNKS " 7 .
1833 RCCEPT “# OF PIMELS PER LINE=", NS
RCOEPT “# OF LINES = NLIN:
. ACCERT “& OF LLEVELS = NP
DO L T=1.5 :
NAME CI > =IRi_NV
WRITE 1@, 20 .
FORMATY " 7. 4. “INPUT FILEMAME =", 20
PEAD AL, T HAME T, T=1, S5
FORMST (S8
OPEN 1. NARMS. ILEN=2+NSIZE. PEC=NL.INE
DO 4 I=i. NiZINE
PEADCLY CIPC T,

1
4 .
//,—' CLOSE 1
_ NT=NIi_INE*NIIZE
. ‘? -
c
C

ZE

N

'—4

3.T=10 NS

-t

CALCULRTING THEZ PROPABILITY DENSITY FUNCTION

DO T K=1.NFP :
PROK =G, @ ’
0O 2 I=1, KM
DO 2 T=10N
K=IP\I,J +1
PROKISPROKI+L, @
DO 28 K=1.NP
PROK =PRI ANT
WK S =FLOAT (=10
CONT INUE

i.A
'f" Age ]
ﬂlﬂ

M

p
Ulr

)

o

FLOTTING SECTIONS OF HISTGG?@H

O N

M=

ITH=G

IT=ITH4L

ACCEFRT “SIZE QF SECTION QOF HIST. =-7. MUM

LL2=TTH~+MUM

DO 45 I=1. MNuUM -
s Ii=7+ITH

ALCIO=FLOAT (T X0

PRACI>=PFIILD

CORTIMHNUE

1
|
DAl

1
(

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DNDNOO0
3

=

o8

OPEN @, *sTToL"
CALL. PLTEKSCX1, PRL. NUID
CLOSE @ ‘

RCCEPT “HISTOGRAIM BIMODAL{L)—-—0R NOT(@

IFCIBM EQ 4060 TO 22
IFCIBM. EQ. B82GO TG 55

SELECTING A THRESHOLD

RCCEPT “LEVEL TQ SEPARATE PEAKS=". L1

FINDING MRAX. BRETHEEN G&L1

NO1=3T

PERFL1=PRINIL)

NOM=NOL+1

DO L1EE T=NOHL i
IFCPRCIY. GT. PERKLIGD TO S@
GO TO 186

PERKL=PR{I>

NOL=1

CONTTNUE

WRITECIG, L8ONOL . -

FORMAT” ‘.1, FIRST PERK QCCURS AT .-
FINDING MAX, BETWEEM L1 & END. OF SECTION

L2=li+2

J=Li+l

FPERKZ=FR{JI>

NO2=J

DO 2aa I=L2. 1.7
IFCPRCIY. GT. PERKZIGO TO <@
GO TO. 238

PERKZ=FRIIN

NO2=T1

CORTINUE

WRITE LR, 1830NO2

FORMAT( 7olM. TSECOND PERK QCCURS AT

FINDING YALLEY BETMEEN PERKS

JO=HOL

MQ=NQL+1.

MARLLT=PR{TION

BO Tad I=MQ. MNQZ
IF{PRCTS BCL Q0G0 TO Zoa
IFCPROI. LT, WRLLISGS TO Fa
GO TG Z@a

WALLI=PROI?

HTH=I-1

| CONTIMUE

-
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100.
¢
c TESTING FOR VALIDITY OF THRESHOLD
C .
ACCEPT “ACCEPTED RATIO OF PEAK TO YALLEY=", TRATIO -
ACCEPT “SMAIL. NO. TQ PREWENT DIW. BY & =-,EPS
IF (PEAKA-PERK2Y 16. 16. 21
T RATIO=PERYL.” WALLI+EPS) g
<zt RATIO=PEAK2. (WAL I+EPS) §
~ IFCRATIO. GT. TRATIONGD TO €@ .
. GO TO °&
a0 QRITECLA, 1T NTH ,
17 FORMATL®  *, 4X. “THRESHOLD LEVEL=". ISX
L MM+
IFTHSMI=NTH
ITH=NTH
GO TQ S5
ag TYPE “NO THRESHOLD AWAILABLE”
- GO TO S5 '
=5 ACCERT “WISH TO GIVE ARFBITRARY THRESHI1)——=0F NOT(@)=—=2". IDM
IFCIDM EQ 1260 TO S@2 .
IECION EQ. 8BGO TO SaL
san ACCERT “ARRITRARY THRESHOLD=". ITH
GO TO 11
S TFCLLT. EO. NFOGO TO <8
GA-TE. 116
c . »
g ASSIGNING LEVFLS TO SEGMENTED SECTIONZ
som MEN=M
KOo=1. . i
DO &1 I=1. Mi IME
DO €RL J=i.NSIZE =
IFCIPCT, Th. LE IFTHOKOINIPCT, Th=G
] CONTIHUE .
AGa Ko=KO+1 : v
. IFCKD. GTPMANIGO TO €85
D0 S22 Ist. NLINE
0O S@2 J=1.NSIZE '
IFCIPCT, T3 GT. IFTHOKO-1). BND. IFCT. ). LE. IFTHIKOY 3G TO £58
3D TN Em2 )
S5@ TPCL, Th=0 IFTHIKO~1 3+ TFTHOKOD 302
e COMTINUE
G0 TQ 4ed
65 DO 7A@ I=i, M INE
- DO THR J=1.NSIZE
IFCIFCT, I0, GT. IFTROMAND YIPLT, Thanp—1
o CORT INUE

4

Re : L .
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g @ I-1. 5 )

IFTLECID=IBLNK 7 -7

: WRITEAR, 16D )

14 ‘ FORMATC” 7, 41X, “THRESHOLDED IMRGE FILENAME :@- 7.2
READ (AL, LA CIFTLECTID, I=1, 50 :

14 FORMAT(SRZ > ; :

OPEN 2. IFILE. LEN=2#NSIZE. REC=NL INE

DO 12 I=d. NLINE .

WRITEC2) CIPCI, I, J=4, NSIZED

CLOSE 2 '

TYPE © 7 -

ACCEFT “WISH TO CONTINUECA)—==—=DF STOP{&A)=w——- >, INT

. IFCIWNT. EQ. 4.2G0 TO 1220 ‘

. STQP :

END
~>

0
X

(BN
)
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A R R S i N e S b qeododeokok

FILENAME TEMP

% 2 M MR N M v i e S S e 2 MR MR R R 2 A e i -
Y. : . -

THIS FROGRAM IS USED TQ ﬁg\?CT EDGES USTNG TFMPuRTE MATCHING
DIMENSION NRMEC(SY, IFILECS), TPCIRS, 1230, ITE128), IT2C122)

INTEGEFR A. B, C. D, E. F, G. H. G GY. GRAD
DRATR IBLNKAS" 7/

ACCERPT 7 # OF PIXELS PER LINE =7.NLINE
RCCEPT 7 # QF LINES =7, HSIZE
RCCEPT ~ # QF LEVELS = NF

oo 1 I=t S

NRMEC I 3 =IRLNK
WRITE 16, 20
FORMATC” 7L 14X “INPUT FILENAME = .22
REANCIL IDINAMEC TN, I=1. S
FOquT(qH“'
PEN L. €. LEN=2#NSIZE, REC=NL INE
DO EY r=1 NLIN;

READCLICIFCI, T3, J=1. NSIZED
CLOSE 1

CRLCUILLATING THEI GRADIENT - .
Lo S I=2. 227

DO 5 JT=2. 827

A=IFCT-1. I=12

P=IFCI-1. 0

IR TI=1, JT+10

D=IFCI. T-40

E=IFRCT. J+1 2

F=IP{I+1. J=12

G=IP{I+1. 70

H= PO I+1, T+4X

Gr= (F+24GHH Y — (A DB+
GY={(C+2HE+H I — A+ 2HT+F
GRAN=ADS XY +ARSCGTY

TRANSFORMING PIXEL WRLUES DEFPEMDING UPON WKRETHER
GRADIENT 12 MoM-zZ=s0 df NOT

M=+l s 20 =01 20
IFCM EQ. 8060 TQ 7

Go TO = '
TFCGRER. NE, G360 TO &
GO TO d@ :

1T Ta=MFp-1

GO TO =

ITLS To=6

G0 TO &
IFAGEAD, NE. @G0 TO 4t

%?. _ ,
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. G TO 12 .
11 IT2¢ Id=NP-1.
GO TR 5.
12 ITRCTx=0
& - CONTINUE
‘ K=I-3
IFJK. GT. 2230 TQ 47
GO TO S
1R IF:M EQ. @G0 TO 44
GO TO 1< -
T 0O 18 T=2.127
e IP\I—¢=.3=IT1{JF
18 CONTINUE
GO TO =
15 DO AT J=2. 127
IPCTI-2. ID=IT2¢I
17 CONTINUE
S CONTINUE
DO 22 I=2. 127
T=225
IFCI, J0=ITL0 T
22 CONTINUE
DO 23 1=2.427
1=127 '
IPCI, I0=IT20 T N
23 CONTTNUE
DO 18 I=1.%
’ R IFTILECIN=TRLNK
WRITE (10, 18D
12 FORMAT (- 7, 4, "QUTPUT FILENAME = “, T3
PESDV AL, ZANIIFTLET Y, T=1, S5 . ’
26 FOPNHT“‘Q“‘ ‘
PEN ”,TF\IF LEN=Z#MNSITE. REC=MILINE
DO 21 I=4, NiLINE
21 WRITECSYCIPCI, I, T=1, NSIZE>S
CLOSE =2
TYPE .
ACCERPT “WISH TOQ CONTINUE L =-=0F STORC @ e——=27, TWT
IFCINT. B0, A0G0 TO 189
=2TOF
END
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. C ****w*:«:k***:*k***********#**
C FILENAHME REMOYERON
C 9 240 14 MR R N b R R e i 14 e 1 N e e N S NN M e e
: Y
o THIS PROGRAM IS USED TO DETECT THE STRRAIGHT LINT OF
C . THE “EYE-EROMS” IN THE PISTON HERD RBY TEMP_ATE MATCHING
c THE EQUNDARY OF THE EYE-BROW TS THEN FOLLOWED AND THIS
C FEATURE IS RPEMOVED
C

DIMENSION NAMECSY, IFILECS), IPCLRE, 4220, IRG10, TOL&4D
INTEGER HIORD, YCORD. LMT IS0, LYT IS

DIMENSION KA1G). KR LR, KCOLad

COMMONSBLALNT. LYT

DATA TBLNKS” 7

1gaa ACCEFT ~ # 0OF PIXELS PER LINE =7.NLINE
ACCEFT 7~ & QF LINES =7 NSIZE

Dt T=1. 9

1 NAME X T 2= IBLNE
MRITE LS, 23 S
2 EQRMATC . 7. 4M, 7 INPUT FILENRME = .22
RERDCAL. T /HAMET Y, I=1, 5
3 FORMAT Y SAIN
DFEN L. NAME, LEN=2+NSTZE. FEC=N. INE
DO 4 T=1. NLINE
Ki PEANG AN CIFPLT, Th, T=1, NSIZED -
: TLOSE 1.
{:‘ 4
C “ITH” GIVES THE THRESHOLD LEWEL FOR TEMPLATE RESPONSE
I .
RCCEFT “THRESHOLD LEWEL = “. ITH .
o
c SIZE OF TEMPLATE AHD STARTING POSITION IS SPECIFIED
i -
SEAG RCCEFRT “BEG RO OF TEMP=-", INITE )
ACTERT CEND RO OF TEMP=-. IFIMNF
RCCEPT “BEG OOl OF TEMP=-. INITC
BCCEPT “EMD CRi OF TEMP=-. IFINC
o .
c IMAGE DIWVINED INTD FOUR CUADRANTS. ERCH QURDRANT
v c CONSIDERED SEFPRRATELY X
c
/7/(“//’fﬂ—"- ACCEPT “BES RO OF QUAD=". IRS0 )
4 4 ATCERT CEND RO OF QLIRD=. IREG
ACCEPT “BEG CoL OF QUAN=-. TCED
oF

RCCEPT “EMD COL nURD=". 1720

[ 4
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CETECTING R STRAIGHT LINE USING A LINE TEMPLRTE

D0

IFCICER EQ 42G0 TO S@a - ot
GO TQ =61 T
JupM=1
GO TQ sez2
Jit=—4 .
MHi=08
DO 48 I=INITR. IFINR
Ni=NA+1
IR(N1>M=T
N2=0 ?
DQ LS J=INITC. IFTNC
NZ=NI+1
ICINZY=T
- TSUMA=G
no 188 IA=1. 48
IMR=IR+I .
KACTIAM=C =3 0+ TP IMAL :
ISUMR=TISUMS+F 8 TR Y
CONTINUE
ISUMB=g
Do 2ea TBE=1, 1@
IMR=Ig+1I
KELIBDY=2+IFIMD, T2
TSUMR=ISUMER+KE TR
2 CONT INUE
ISLIMC=a o
DO ZTRE NC=1, 18
IMC=I+NC
KOINCHI= (=13 T TMOT.
ISUMC=ISLRIC+E T OMNOD
e COMTINLE -
’ IRESP=ISUMAISUME+ISUME D
TFOIRESP. GT. ITHYGO TO 2%
CONTINUE
CONT THULE

TN
o
)

Iy T

DARDA]
-

b=
by}

o
I
[
u’

12 N

BOUNDERY FOQLILQWING OF EYE-BEROU

I4.J1 ARE CMQRDS OF FIRIT BORDER FOINT

LIS N IS MBS T ol o

2 IX=IFCHL+T
JA=ICONZD

STRARTING POINT

nno
)]
-
pu,
k()
i
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ID. JD BRE CO-ORDS 0OF PREWINUS POINT

ID=I4

JD=J1+TUi

IPCIL. J1h=4a3

CALL NEROR<IL. Tl ID. JD.LXET.LYTD
DO 18l K=2.28 ¢

L=K

IFCIPCLXTOLY, LYTCLY), EQ. @ OR. TPCLXT ALY, LYTHLY ). NE.

CONTINUE

IXA=L¥TOLD

IVi=LYTLS

JON=J1+1 .

IFCIYL. EQ. JON. AND. IX1, EQ. T4AXGO TO Jen3
GO TO <@t '

Ti=1IX1

Ji=I%1

IPCTL. J1=203

TFCTL. BEQ MCARD. AMD. T2, BEQ YOORDOGD TR o
ID=LATCL =1 ’
JO=LY T -12

GO TO 2az

I1=Tx1

Ji=Iv1

TP{TL, TLa=3aa

ITFCIL EQ XMCOFD. AN, J1 EQ. YCORDNGO TO S0
ID=LET -4

JD=LYTL-42

GO TO 2e2

FREMOWING INHERENT FEATURE CEYSE-BRMS) FEIM IMASE
Lo .Sl I=IFRQ. TREQ

I=ICEMA

IFCIPAT. To, EG. 48@1G0 TO SaZ

J=T+1

IFCT. GT. ICECYGD TO S@L

G0 TO Saz

IFCT. T3=255

T=J+1 -

~

IFCT GT. ICEaHGH TO S@at
TRELISCT. T BCGL S, QR TR L.
IFVIRGIL I0. BEQL 2554G0 TO S&%
G TC S@a4

IM=TJ+1

|
-/

m
)

GO TO S19

I=TmM
GO TO S62
JM= T+,

IFCIM, GT. ASHG0 TO Sai
GO TO SBT__

D ZTEANE0 T Sa

-

106.

ZS55G0 TO 142



107.
@4 IPCI, 1D=23S v
J=J+1
IFCT. GT. ICEQNGO TO Sai
i ; IFCIPCI, J>. EQ. 482, OR. IP<I. ). EQ. S@@>G2 TO 588
GO TO S04
- S8 IRCT, J)=255
J=J+1 v,
IF2 T GT. ICEDJGO D SEL
IFCIPCT, NE. 235260 TO S8
, KMC=T+3
IFCIPCT, KMCY. NE. 255)G0 TO o4
Se4 CONTINUE
ACCERT “WISH TO CHANGE CO-0RDS(AM=—0F ROTC@)-=-=27, IST
IFLIST. Q. L0GO TO Sead
, 0O 41 I=1.5
11 IFILECT >=IBLNK _
WRITECAQ, 12D ' . . .
12 FORMATC” <. 4%, “OUTPUT FILENAHME = <. 23 :
PEAD AL, ATDCIFILECID, I=1, S :
13 FORMATYSADY
QPEN 2. IFILE. LEN=2+*NSIZE. REC=NLING
ﬁﬁ 14 T—1 : Wi INL‘.
14 NSITES2){ IPCT. Ih, J=1, NSIZE>
CLOSE 2 .
ACCERT “MISH TO COMTIMUE(Li=-=0R STOPCGEN=—==237, IWT
IFCTHT. BQ. 4030 TO 1a3a 4
sTOP !
END: :
Pal
) A &
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SUBRCUTINE MNABOR{IL, J1, 1D, JD. LT, LYTD

FILE NAME = RKRABOR

—— ——— o e e —— — —
-

-
.
.

THIS SUSROUTINE COMPLTES THE COORDINATES OF EIGHT
NEIGHROURING FPIXKELS AROLIND R PRRLDER FQINT. STARTING
SEQUENTIALLY FROM R/ “PREVIQUS” PQINT

O0OO0ONHNOHO

o

DIMENSION LATCEM LYTLED
Ka=T0-T1 -
Z=ID-It
LXTCLN=ID
LMTE2I=LXT LI +KL
EXTCII=LRTC2) K2
XTSI =L NTOEd-KR
LXTCS =L kT 040 —KL
LETCE =L KT S0~
LXTLT =TI +K2
LTS =LRTFo+K2 g
LY TLL=TD
LY TCRI=LY T -K2 .
LY TLID=LYTCR20-K1 '

LT x =l wTOE —KL
LYTCSH=L YT +K2
N LYTCENSLYTUSI+K2
LYTCT =l TS +KA
LYTLEy=LYTITa+KL
. RETUSN
EMD

-

//f’/‘\\\;,//-
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