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Abstract 

Scheduling is an active research area in the Computational Grid environment. The objective of 

grid scheduling is to deliver both the Quality of Service (QoS) requirement of the grid users, as 

well as high utilization of the resources. To obtain optimal scheduling in the generalized grid 

environment is an NP-complete problem.  A large number of researchers have presented 

heuristic algorithms to find a near-global optimum for the static scheduling model of the grid. 

Relatively a smaller number of researchers have worked on the scheduling problem for the 

dynamic scheduling model.  

This thesis proposes a new resource characteristic based optimization method, which may be 

combined with Earlier Gap, Earliest Deadline First (EG-EDF) policy to schedule jobs in a 

dynamic environment. The proposed algorithm generates near-optimal solutions, which are 

better than those reported in the literature for a specific range of datasets. Extensive 

experimentation has proved the efficacy of our method.  
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1. Introduction 

Grid is a distributed computing environment that connects resource providers to users [1]. 

Grid users submit their jobs into the system. The Grid system is aware of the resources 

available at any point of time. It uses scheduling algorithms for allocating resources to 

different applications, while guaranteeing to the users the Quality of Service (QoS) 

requirements. The resource providers expect the scheduling process to maximize the use 

of resources.  

Quality of Service (QoS) from a user‟s perspective includes the most popular criteria of 

makespan. Makespan is the time in which a set of jobs can be completed by using a set of 

resources available on the grid. Other criteria are the number of missed deadlines and 

tardiness, where tardiness is the sum of delays from deadlines for all the jobs. From the 

resource provider‟s perspective, Resource Utilization must be maximized. It may not be 

possible to schedule the jobs on the available resources in such a way that all the different 

criteria can be optimized. Thus maximizing the resource utilization may not lead to 

minimization of makespan.  

The problem of allocation of jobs to resources in such a way that all the criteria of 

interest are optimized is called the problem of optimizing the grid scheduling. Since the 

problem is known to be NP-complete [2], researchers have developed heuristic 

algorithms for obtaining near-optimal schedules. Optimizing grid scheduling for a static 

environment, where one has complete information about all the jobs is an easier problem 

than the problem of obtaining an optimum schedule for a dynamic environment, where 

jobs are arriving even as these are being scheduled.  
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This thesis proposes a new resource characteristic based optimization method, combined 

with the Earlier Gap, Earliest Deadline First (EG-EDF) policy, to schedule jobs in a 

dynamic grid environment. The model of the environment assumes that new jobs are 

arriving even as the jobs are being scheduled and allocated to resources. However the 

resources are assumed to form a static set.   

The rest of this thesis is organized as follows. In section 2, we describe some related 

works. Section 3 states the model of the problem, which is being studied in this thesis. In 

section 4, we present our scheduling method. Our testing methodologies, as well as the 

experimental results are shown in section 5. In section 6, we analyze the test results. 

Section 7 presents the conclusions. 
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2. Related Works 

Scheduling algorithms are applied in a distributed system to satisfy multi-objectives for 

both the users and the resource-providers. Scheduling problems can be classified into 

static and dynamic scheduling problems. In static scheduling problems, the resources and 

the tasks in each job are known to the scheduling system in advance. On the other hand, a 

dynamic scheduling system does not have full information about the resources and the 

jobs, when the execution starts. Additional jobs continue to arrive dynamically, even 

when some of the jobs have been scheduled and are getting executed [3]. Some local 

search based scheduling algorithms are computationally costly and are usually applied to 

static problems, while schedule based scheduling algorithms are mostly used in dynamic 

environments [4]. Most of the scheduling algorithms, used in today‟s grids, are queue 

based scheduling algorithms. Klusacek and Rudova [4] state that queue-based scheduling 

can handle single objectives. However, complex objectives such as deadlines, resource 

utilization, response time, flow time, or slow down are hard to achieve by queue-based 

solutions. 

2.1 Queue Based Scheduling 

Sun Grid Engine [5], Condor [6] together with Grid management system GridWay [7] are 

well-known systems that use queue based scheduling policies. All the scheduling 

progress is managed based on a single queue or multi-queues.  

2.1.1 Sun Grid Engine 

Sun Grid Engine (SGE) [5] is a Sun open source resource management software. It has 

been selected as the scheduler for the world‟s largest operating grid infrastructure: the 
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Enabling Grids for E-ScienceE (EGEE) [8]. When a job is submitted by the user, it is sent 

to the scheduler. The user requests certain execution features when they submit a job, and 

SGE would allocate that job to the queue of a system, which can provide the features [8]. 

Sun Grid Engine uses the notion of queues to distinguish between different types of jobs 

and different components of the cluster. Grid Engine queues can allow execution of many 

jobs concurrently, and Grid Engine tries to start new jobs in the cluster, that is most 

suitable and least loaded. Sun Grid Engine improves the average resource usage. It has 

been claimed that SGE was able to obtain a utilization of as much as 98% [5].  

2.1.2 Condor-G 

The Condor project [6] has been used since 1984. Condor-G agent is one of the products 

of the Condor project.  

2.1.2.1 Condor in the Grid 

The Grid Resource Access and Management (GRAM) protocol [9], designed by the 

Globus project [10], provides an abstraction for remote process queuing and execution. 

Condor-G represents the marriage of technologies from the Condor project and Globus 

project [6]. Figure 2-1shows the architecture of the Condor and Condor-G in the Grid 

environment.  
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Figure 2-1 Condor in the Grid (Figure 1 from [6]) 

 

 

Condor-G does not support all the features of GRAM, otherwise it would have become 

complex and unusable [6].  

2.1.2.2 Kernel and Condor Pool 

Condor-G can be used in Grids for providing both the reliable submission and job 

management service. The kernel of Condor-G performs the fundamental operations of 

scheduling. The whole process is shown below:  

When a job is sent by a user to an agent, the agent stores the job information in the 

shadow. 

1. Both the agent (A) and the resource (R) are in contact with the matchmaker (M). 

2. The matchmaker matches the requirement of the job and the compatible resource. 
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3. The agent contacts the resource and validates the information about the resource, 

and the agent sends the job to the resource for execution. 

Figure 2-2 shows the whole scheduling process. In the figure, the sandbox provides the 

resource to prevent mischief by other jobs. The process is executed in the Condor pool, 

shown in Figure 2-3. 

 

Figure 2-2 Scheduling Process (Figure 2 from [6]) 

 

 

Figure 2-3 Condor Pool (Figure 3 from [6]) 

2.1.2.3 Gateway Flocking 

Each condor pool may have a Gateway (G) for communication with other condor pools. 

The gateways may be connected through a network. If the local condor pool A does not 
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have a resource, which matches the requirements of the job, the Matchmaker (M) of the 

condor pool A can go to a resource in another condor pool though the gateway of pool A. 

This process is called “Gateway Flocking”. Figure 2-4 shows the case of two condor 

pools A and B. The matchmaker in pool A finds that none of the resources in pool A 

matches the requirements of the job, submitted by agent A. So the matchmaker sends the 

job requirements out through the gateway. The matchmaker in condor pool B finds that a 

Resource R in condor pool B matches the requirements of the job, submitted by the agent 

A in condor pool A. 

 

Figure 2-4 Gateway Flocking (Figure 4 from [6]) 

2.1.2.4 Direct Flocking 

Gateway Flocking supports communicating at the organizational level, while direct 

flocking permits an individual user to join multiple communities. Instead of 

communicating through the gateways, in direct flocking, an agent (A) reports itself to 

multiple matchmakers (M) in different condor pools, as shown in Figure 2-5: 
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Figure 2-5 Direct Flocking (Figure 6 from [6]) 

2.1.2.5 Scheduling through Foreign Batch Queues  

When an agent receives a large number of jobs, it may execute the jobs through foreign 

batch queues. This service is provided by Condor-G.  

Figure 2-6 shows an example of scheduling of two jobs through foreign batch queues in 

two different condor pools: 

 

Figure 2-6 Scheduling through Foreign Batch Queues (Figure 7 of [6]) 

2.1.2.6 Gliding in 

Thain et al. [6] state the following disadvantage of the Condor-G system:  

 GRAM couples resource allocation and job execution, so that the agent must 

direct a particular job to a particular queue. Furthermore, the queue-based system 

must submit jobs to multiple queues or potentially long queues.  
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To solve the problem, Thain et al. [6] used “gliding in” technique. The 3-step process 

is explained through Figures 2-7, 2-8 and 2-9: 

 Step 1: A Condor-G agent (A) submits the jobs, received by it, to two foreign 

batch queues via GRAM, shown in Figure 2-7. 

 

Figure 2-7 (Figure 8a from [6]) 

 Step 2: The resources form a personal condor pool with the user's personal 

matchmaker, shown in Figure 2-8. 

 

Figure 2-8 (Figure 8b from [6]) 

 Step 3: The agent gets the jobs executed through the resources in the personal 

condor pool as shown in Fig 2-9.  
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Figure 2-9 (Figure 8c from [6]) 

2.1.3 GridWay 

Huedo et al. in [7] state that GridWay Framework is a tool that hides the complexity and 

dynamicity of Grid from developers and users, allowing the solution of large 

computational problems in a Grid environment by adapting the scheduling and execution 

of jobs to the changes in Grid conditions and in the demands from application. The Local 

Resource Management (LRM) system is the generic denomination for the cluster 

component which manages the execution of user applications [8]. GridWay is a Local 

Resource Management (LRM) like environment for submitting, monitoring, and 

controlling jobs [11]. In GridWay Framework, a transfer queue is used for 

communicating jobs from the Local Resource Management (LRM) system to the gridway 

meta-schedulers [11]. When jobs are submitted to the system, they are put into the 

transfer queue, and all the operations, such as start executing a job, terminating or 

suspending a running job, or resuming a job, are all executed through the queue, shown in 

Figure 2-10. It is concluded in [7] that GridWay provides adaptive scheduling and 

execution on Grids in an efficient way. 
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Figure 2-10 Transfer Queue in Gridway 

2.2 Local Search Based Scheduling 

The scheduling problem is recognized as a NP-complete problem [12], [13]. Various 

local search procedures have been developed for solving computational optimization. 

Local search can be used on problems that can be formulated as finding a solution 

maximizing a criterion among a number of candidate solutions. Local search algorithms 

move from solution to solution in the space of candidate solutions (the search space) 

until a solution deemed optimal is found or a time bound is elapsed.  

Local search algorithms can be used to solve the distributed scheduling problems: Given 

a set of distributed resources and jobs, scheduling is the process of allocating the jobs to 

the compatible resources. The objective of scheduling is to satisfy both the QoS of the 

users and the usage of the resources, and they are also used as the evaluation of the 

performance of scheduling. The relations between general local search algorithm and the 

http://en.wikipedia.org/wiki/Candidate_solution
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application of the local search algorithm to the distributed scheduling are shown in Table 

2-1: 

 Local Search Algorithm Distributed Scheduling 

Objective Finding a solution maximizing a 

criterion among a number of 

candidate solutions. 

Finding a schedule minimizing the 

makespan, number of delayed jobs, 

total tardiness, etc. 

Solution A new solution is generated for 

each move. 

A new schedule is generated for 

each one or several jobs arrival. 

Termination A solution deemed optimal is 

found; A time bound is elapsed; 

The best solution found by the 

algorithm has not been improved 

in a given number of steps, etc. 

A schedule deemed optimal is 

found; A time bound is elapsed; 

The best solution found by the 

algorithm has not been improved in 

a given number of steps, etc 

Feature A deemed optimal solution (not 

global optimal solution) can be 

found  

A deemed optimal schedule (not 

global optimal schedule) can be 

found 

Table 2-1 How to Apply Local Search Algorithm in Scheduling Problems 

Most local search based scheduling algorithms use heuristics [4]. The heuristic 

algorithms, such as Tabu Search (TS), Genetic Algorithm (GA), Simulated Annealing 

(SA), and Ant Colony Optimization (ACO), are considered to be a good way to find a 

local optimum solution in the search space [14].  

Kousalya.K and Balasubramanie.P [14] showed the main strategy of Ant Colony 

Optimization (ACO), while Abraham et al. [15] give a brief introduction Tabu Search 

(TS), Genetic Algorithm (GA) and Simulated Annealing (SA). 

2.2.1 Ant Colony Optimization  

The Ant Colony Optimization (ACO) is a probabilistic technique for solving 

computational problems. In Ant Colony Optimization (ACO), the ants try to build a 

feasible solution to apply the stochastic decision policy repeatedly [14]. If one ant finds a 

good (i.e., short) path from the colony to a food source, it leaves a pheromone trail. Other 

http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Probability
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ants are more likely to follow that path, and positive feedback eventually leads all the 

ants following a single path.  

Kousalya.K and Balasubramanie.P [14], [16] use ACO to allocate a set of independent 

jobs to a number of distributed resources. The objective is to obtain a schedule with a 

minimum value of makespan. Three important values: pheromone (τij), the attractive of 

the move as computed by some heuristic information (ηij), and the completion time of ith 

job on the jth machine (CTij) are defined. The value of τij indicates a prior desirability of 

the current move, while ηij indicates how profiTable it has been in the past to make that 

particular move [14]. The value Pij decides which job to be run, and which machine is 

used to execute that job. Pij represents the probrability to move from a state i to a state j, 

and is calculated by the formula Pij = 
τ   η   

 

    
 

 τ   η   
 

    
 
 . The proposed algorithm starts only if 

there are some tasks which are not scheduled. The authors of [14] propose the use of two 

algorithms. The value of pheromone evaporation ρ initialized to 0.05, while the 

pheromone deposit τ0 is set to 0.01. The number of ants is set to 2. 

Algorithm 1 aims to schedule the jobs which are in the set of unscheduled job list, while 

the local search algorithm is shown in Algorithm 2 for further optimization. The pseudo 

code of Algorithm 1 is shown in Table 2-2: 

 

 

http://en.wikipedia.org/wiki/Positive_feedback
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Table 2-2 Algorithmic Frame for an Ant Algorithm (Algorithm 1 from [14]) 

Algorithm 1 can be concluded as the following 5 basic steps shown in Table 2-3, where 

the first three steps are done by each ant, and the 4
th

 and the 5
th

 step are performed by the 

whole system: 

 

 

 

 

 

Table 2-3 Ant Algorithm Applied in Scheduling 

 

Algorithm 1 Algorithmic frame for a Ant Algorithm:   

 
For each Ant do 

      Randomly select Taski and resourcej 

      Add (Taski , resourcej , free[j], free[j]+ETij) to the output list. 

      Remove the Taski from the unscheduled list to scheduled list 

       For each Taski in the unscheduled list do 

Calculate the heuristic information (ηij), where 

A minimization function F and the heuristic information ηij is used to find out the 

best resource: 

F = max(free(j)), and ηij = 1/ free(j) 

Find out the current pheromone trail value (τij) 

Update the pheromone trail matrix where, 

τij = ρτij + Δτij  

Calculate the Probability matrix where, 

Pij = 
        

 

    
 

          
 

    
  

   
 
   

 

Find out the highest value of Pij and add (Taski , resourcej , free[j], 

         free[j]+ETij) to the output list. 

Remove the Taski from the unscheduled list 

Modify the resource free time 

free[j] = free[j] + ETij 

      done 

        Find out the best feasible solution by analyzing of all the ants scheduling list 

done 

Step 1: Each ant randomly select job i from the set of tasks and resource j from the set of 

resources. 

Step 2: Once a job is selected and scheduled, Task i is removed from the unscheduled 

list to the scheduled list. 

Step 3: For each ant, in each iteration of Task i in the unscheduled list, calculate and 

find out the highest value (best solution) of Pij. 

Here, each ant generates a list of solutions, we store the best solution from 

each list into set Sl, and then we select the best solution from Sl: 

Step 4: Find out the best feasible solution from the scheduling list of all the ants. 

Step 5: Outputs (Taski, resourcej, free [j], free[j]+ETij) to Algorithm 2. 
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After the solutions generated from Algorithm 1, there may have some „problem‟ 

resources that performs bad. The authors in [14] try to reduce the makespan using local 

search techniques. The neighborhood is a solution of single transfer of a job from the 

problem resource to any other resource [14], so that a new better solution may be 

generated. This is shown in Algorithm 2, and some values are defined and initialized as:  

 S:Current solution, initialized as (Taski, resourcej, free[j], free[j]+ETij) which is 

generated from Algorithm 1. 

 s‟: New generated solution (initialized to NULL). 

The pseudo code of Algorithm 2 is shown in Table 2-4: 

 

 

 

 

Table 2-4 Algorithmic Frame for a Local Search Algorithm (Algorithm 2 from [14]) 

Algorithm 2 can be concluded as the following 2 basic steps shown in Table 2-5: create a 

set of neighbors of S, and find out the better solutions from the set of neighbors: 

 

 

Table 2-5 Local Search Algorithm 

Step 1: Create a set of neighbors of S, calculate the value 

of neighbor s‟. (The value of S and s‟ is evaluated by Pij.) 

Step 2: If s‟ is better than S, then S=s‟. (A better solution 

is found) 

Algorithm 2 Algorithmic frame for a local search algorithm:   

 
Repeat until s‟ <> S 

   Find out the problem resource‟s and problem resource‟s problem job 

   Create neighbor of S(s‟) to transfer the problem job to some other resource 

     If s‟ is better quality than S then 

  S = s‟ 

End repeat 

The output is in S 
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As a result, ACO is used in scheduling problem, and the experiment results in [14] shows 

that using ACO algorithm can achieve better resource utilization and better scheduling. 

2.2.2 Tabu Search 

Tabu Search (TA) is a meta-strategy to solve local optimality and has become an 

optimization approach that is used in many fields [15]. Tabu Search explores a set of 

problem solutions, repeatedly moves from one solution S to another solution S‟ in the 

neighborhood N(S) of S, to find a local optimal evaluated by some objective functions 

[15].  

A template for simple Tabu Search [17] is shown in Table 2-6: 

 

 

 

 

 

 

 

 

 

Table 2-6 Template for Simple Tabu Search (Simple Tabu Search in [17]) 

Notation: 

 S: the current solution 

 S*: the best-known solution 

 f*: values of S* 

 N(S): the neighborhood of S 

 N‟(S): the “admissible” subset of N(S) (i.e. non-tabu or 

allowed by aspiration) 

 T: tabu list 

Initialization: 

        Choose (construct) an initial solution S0. 

        Set S: = S0, f*:=f(S0), S*:=S0, T:=ø 

Search: 

        While termination criterion not satisfied do 

 Select S in argmin[(f(S‟)); 

S‟ N‟(S) 

 If f(S) < f*, then set f*:=f(S), S*:=S; 

 Record tabu for the current move in T (delete oldest entry if 

necessary); 

Endwhile 

       In this algorithm, argmin returns the subset of solutions in N‟(S) 

that minimizes f. 
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Klusacek et al. [18] applied Tabu Search (TS) for dynamic arrived distributed job 

scheduling problem. Rasooli [19] used Tabu Search based algorithm to allocate the 

independent jobs to the distributed resources. 

The Tabu Search optimization stated in [19] aims to minimize both the flowtime (the 

total running time of all the jobs) and makespan (the maximum time that a job used) of 

the whole process. According to the algorithm of scheduling in [19], the distributed jobs 

are first, based on their deadline in ascending order, allocated to the resources, and 

waiting for their execution in a set of queues. Before executing, Tabu Search 

optimization is applied, that the jobs may be allocated to another position of the queues. 

Once a job is moved to another position in the queue, the flowtime and the total 

makespan are changed, and can be calculated by the scheduler in the system.  

The Tabu Search Optimization applied in [19] can be described as the following 6 steps: 

1. Select the resource with the highest expected flowtime/makespan. 

2. Transfer the job which has the maximum completion time to other resources. 

3. If a job is moved onto machines with smaller flowtime/makespan, the move is 

accepted. 

4. Once the job is moved, it is placed into the Tabu-list to prevent cyclic moves. 

5. Once the machine is selected, it is placed into the Tabu-list to prevent cyclic 

selection. 

6. Repeat step 1 to 5, until a terminate condition is reached. 
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The experimental results in [19] show that using Tabu Search optimization can improve 

the flowtime and makespan of the distributed job scheduling problems. 

A scheduling problem solved using Tabu Search is shown in Section 2.3.3. 

2.2.3 Simulated Annealing 

Simulated Annealing (SA) is another heuristic that searches through the neighborhood of 

an initial state to find a local optimum solution [15]. SA avoids getting trapped within a 

local minimum [15]. At the beginning of the algorithm, the control parameters, T 

(temperature), p (probability), and f (objective function) are set to an initial state. The 

value T is reduced by a specific rate in each move, and once it is reduced to a specific 

small value (set by the user), SA is terminated, and the solution is found.  

Fidanova in [20] applied a SA-based algorithm to solve the scheduling problem. The 

objective is to schedule all the incoming applications (jobs) to the available distributed 

resources [20], and minimize the makespan for the complete schedule. The jobs are 

distributed and independent, while the resources may be either homogeneous or 

heterogeneous.  

The author in [20] introduced three important variables: The completion time of job i on 

machine j (CTij), the function free(j), and the starting time of job i (bi). The value of bi 

indicates the starting time of job i on machine j, where machine j would have finished the 

previously assigned jobs. The value of CTij is defined as the wall-clock time at which 

machine j completes job i, and it is calculated according to the formula CTij = bi + ETij, 

where ETij represents the expected execution time of task i on machine j. If machine j has 
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no load before the allocation of job i, bi = 0. Funtion free(j) indicates the time that 

machine j is free, that is, the value of bi is decided by free(j). 

The whole algorithm can be described as the following 5 steps:  

 Generate the initial feasible solution S 

As we mentioned, the objective is to schedule all the incoming applications (jobs) to the 

available distributed resources, so the solution of each allocation is represented by the 

triples (job, machine, starting time). For example, if one solution is written as (ji, mj, bi), 

then it means job i is executed on machine j starting at time bi. The set of solutions can be 

represented as a matrix M with three columns, the first column represents the jobs, the 

second represents the machines to execute the job in the same row, and the third 

represents the corresponding starting times. Each row of matrix M represents a solution. 

S represents the set of the solutions (rows) of M. The author in [20] used a greedy 

heuristic to create the initial solution: the first job executed on the first free machine j 

with the minimal value of free(j), and the same method is used for the second job in the 

set and so on. 

 Initialize the Cooling Parameters 

The author [20] has chosen the initial value of the temperature parameter T as 8 and the 

cooling rate F as 0.9.  

 Generate the neighbors and select the solutions from S 

The set of initial solutions S is generated and represented as a matrix with three columns. 

To create the neighbors (S‟) of S, we swap two of the tasks, so that the value of starting 
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times and the free(j) functions are changed. If a better solution is generated from S‟, we 

replace this new solution as the current best solution. This swapping step is repeated 

according to the termination criterion, which is shown in the next two steps.  

 Update the Temperature Parameters 

The temperature parameter T is updated according to the formula Tk = F*Tk, where k = 1, 

2, … 

 Termination of the Solution (Termination Criterion) 

The whole process is terminated if the value of T is updated less than a specific small 

value Ѳ, (where 0< Ѳ <1). 

The experimental results in [20] show that using SA algorithm can obtain good load 

balancing of the machines and achieve a good performance 

2.2.4 Genetic Algorithm 

Genetic Algorithm (GA) can be used to solve optimization problems based on the genetic 

process of biological organisms [15].  

GA has four basic processes:  

 Initialization: Randomly generate the initial population.  

 Selection: A proportion of existing population is selected to breed a new 

generation. 

 Reproduction: Generate a second generation population through genetic operators: 

crossover and/or mutation. 
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 Termination:  Terminate the process when the condition for termination is 

reached.  

Aggarwal.M et al. [13] applied Genetic Algorithm to “obtain the best schedule for 

mapping of tasks to compute-nodes”. In this paper, the assumption is that the grid 

workload may consist of multiple jobs, and each job is represented by a Directed Acyclic 

Graph (DAG). In [21], Martino and Mililotti applied Genetic Algorithm to solve the 

problem of “allocating a set of distributed jobs to a set of interconnected computing 

nodes”. Fissgus [22] applied Genetic Algorithm to solve the problem of “scheduling of 

mixed task and data parallel modules comprising computation and communication 

operations” [22].  

Abraham et al. [15] use Genetic Algorithm to allocate Jn (n=1, 2… N) independent user 

jobs to Rm (m=1, 2, … M) heterogeneous resources, and to minimize the makespan, and 

flowtime. The authors in [13] introduced an important variable: The completion time. It 

is the time, when the last job j finishes processing (Cj). The makespan in [15] is defined 

as Cmax = max {Cj, j = 1, …, N}, and flowtime as     
   . To formulate the algorithm, 

the authors of [15] also proposed 3 job lists and 3 resource lists: 

JList1 = Job list maintaining the list of all the jobs to be processed. 

Jlist2 = Job list maintaining only the list of jobs being scheduled. 

Jlist3 = Job list maintaining only the list of jobs already allocated. 

Rlist1 = List of available resources (including time frame). 

Rlist2 = List of resources already allocated to jobs. 

Rlist3 =List of free resources = (Rlist1-Rlist2). 
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Table 2-7 shows the pseudo code of GA approach for job scheduling applied in [15]: 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-7 GA Approach for Job Scheduling on the Grid (GA Approach in [15]) 

 

 

 

1. If the grid is active and (Jlist1=0) and no new jobs have been submitted, wait for new jobs to be 

submitted. Update Rlist1 and Jlist1. 

 

2. If (Rlist1=0), wait until resources are available. If Jlist1>0, update Jlist2. If Jlist2 < Rlist1 (available 

resources) allocate the jobs on a first-come-first-serve basis and if possible allocate the longest job J on 

the fastest resource M according to the LJFR heuristic. If Jlist1 > Rlist1, job allocation is to be made by 

following the heuristic algorithm detailed below. Take jobs and available resources from Jlist2 and Rlist3. 

 

3. At t =0; generate an initial population with P chromosomes Popi(t), encoding the schedules. Feasibility 

of each chromosome is to be checked and makespan for each schedule represented by the chromosome is 

to be calculated. In certain cases, illegal offspring‟s (duplicated jobs, missing jobs, jobs outside the list) 

are generated due to genetic operators that require to be repaired immediately to ensure that each job 

appears only once in the sequence. 

 

4. Begin GA loop 

While (until the specified fitness value is achieved) do; 

    

   a. For each chromosome (i=1 to P), first allocate the jobs to the available resources based on the     

LJFM heuristic and once a resource is free (due to job completion), a job is allocated based on the SJFM 

heuristic. There after LJFR – SJFR heuristic is applied alternatively after completion of every job. 

Calculate the make span and total flowtime for the generated schedule. Also calculate fitness value of 

each chromosome, Fitnessi=FitPopi(t); 

 

   b. For (i=1 to P), Create new population NewPopi(t+1) which is choosen randomly based on the fitness 

value of each chromosome Popj(t) in the current population Pop(t). The probability for selection a 

chromosome for the next generation may be defined as pj= 
        

          
   

 or according to the selection 

strategy adopted; 

  

   c. Apply crossover operator on the population according to the probability selected, Crospop(t+1) = 

recombined chromosomes of the population NewPopi(t+1); 

  

   d. Apply mutation operator on the population according to the probability selected, 

MutPop(t+1)=mutated population CrosPop(t+1). 

 

5. Evaluate fitness of each individual and when the Fitnessi has reached the required value end loop. 

 

6. Check the feasibility of the generated schedule with respect to resource availability and user specified 

requirements. Then allocate the jobs to the resources and update Jlist2, JList3, RList2 and Rlist3. Un-

allocated jobs (infeasible schedules or resource non-availability) shall be transferred to JList1 for re-

scheduling or dealt with separately. 

 

7. Repeat steps 1-6 as long as the grid is active. 
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The basic steps of Genetic Algorithm: Initialization, Selection, Reproduction, and 

Termination applied in the GA approach for job scheduling on the Grid in [15] are shown 

in Table 2-8: 

 

 

 

 

 

 

Table 2-8 Basic Steps of GA Approach 

2.2.5 Hybrid Heuristic Algorithms 

Some researchers have proposed hybrid heuristic algorithms. In [23], a hybridization of 

Genetic Algorithms (GAs) and Tabu Search (TS) for scheduling independent tasks in 

computational grids has been presented. In [24], an evolutionary hybrid scheduling 

algorithm is proposed. Benedict et al. [24] state that Niched Pareto Genetic Algorithm 

(NPGA) with Simulated Annealing (SA) works better than other heuristics, which they 

have tested.  

Abraham et al. [15] have evaluated scheduling systems based on GA, TS and SA. The 

authors [15] claim that the hybridization of GA and SA algorithm provides a better 

Initialization: Randomly generate the initial population  

Selection: Select the new population according to pj= 
        

          
   

 or the 

selection strategy adopted; 

 

Reproduction:  

 Crossover: Apply crossover operator on the population according to 

the probability selected, Crossop(t+1) = recombined chromosomes of 

the population NewPopi(t+1); 

 Mutation: Apply mutation operator on the population according to 

the probability selected, 

MutPop(t+1)=mutated population CrosPop(t+1). 

 

Termination: Evaluate fitness of each individual and when the Fitnessi has 

reached the required value end loop. 
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convergence, while a hybrid GA and TS algorithm improves the search efficiency as 

compared to a scheduler, which uses GA only.  

Abraham et al. [15] proposed hybrids GA-SA approach for job scheduling in Grids. 

Some steps of the hybrid GA-SA approach are the same as the GA approach stated in 

section 2.2.4.  

Table 2-9 shows the pseudo code of hybrid GA-SA approach in [15]: 

 

 

 

 

 

 

 

 

 

 

Table 2-9 GA-SA Approach for Job Scheduling in Grid (GA-SA Approach in [15]) 

The GA-SA approach is different from GA approach applied for job scheduling on the 

Grid in [15]. Instead of the reproduction step used in GA approach, GA-SA applies two 

basic steps of SA: cooling loop and reheating loop, which help to find a better schedule. 

1 and 2 are the same as used in GA. 

 

3 Generate an initial population of P schedule vectors and for i =1 to P, initialize the ith threshold, 

Th(i), with the energy of the ith configuration. For each schedule (i=1 to P), first allocate the jobs to 

the available resources based on the LJFM heuristic and once a resource is free (due to job 

completion), a job is allocated based on the SJFM heuristic. There after LJFR – SJFR heuristic is 

applied alternatively after completion of every job. 

 

4 Begin the cooling loop 

Energy bank (EB) is set to zero and for i = 1 to N randomly mutate the ith schedule vector. 

Compute the Energy (E) of the resulting mutant schedule vector. 

If E Th(i) , then the old configuration is restored. 

If E Th(i) , then the energy difference (Th(i) –E) is incremented to the Energy Bank (EB) = 

EB+Th(i) –E. Replace old configuration with the successful mutant 

End cooling loop. 

 

5 Begin reheating loop. 

 Compute reheating increment eb=
        

 
, for i = 1 to N. (Ti(k) = cooling constant). 

 Add the computed increment to each threshold of the schedule vector. 

End reheating loop. 

6 Go to step 4 and continue the annealing and reheating process until an optimum schedule vector is 

found. 

 

7 Same as step 6 and 7 as mentioned in GA approach. 
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If an acceptable optimum schedule vector is found in the cooling and reheating process, 

the whole process is terminated. 

 

Heuristic Literature 

Tabu Search Klusacek et al. [18], Rasooli et al. [19] 

Genetic Algorithm Aggarwal et al. [13], Abraham et al. [15], Martino and 

Mililotti [21], Fissgus [22],  

Simulated Annealing Fidanova [20] 

Ant Colony Optimization Kousalya.K and Balasubramanie.P [14] and [16] 

Hybrid Abraham et al. [15], Xhafa et al. [23], Benedict et al. [24] 
 

Table 2-10 Literature on the Use of Local Search Algorithms to Develop Grid Scheduler 

2.3 Schedule Based Scheduling 

Schedule based scheduling methods allow precise mapping of jobs onto resources in a 

dynamic environment [4]. The advanced Grid resource management system GORBA 

[25], as well as CCS [26] use schedule based policies to schedule jobs or workflows. 

Furthermore, in [6] and [25], heuristic algorithms are also applied for their further 

optimization.  

2.3.1 GORBA 

GORBA (Global Optimizing Resource Broker and Allocator) uses simple polices to 

create the schedule, and applies a heuristic algorithm as its optimization method. Suß et al. 

[25] state that the applications in GORBA are represented as workflows, while the 

resource broker is the component to form and calculate the schedule as well as planning 

for the future resource deployment. In GORBA, each work node is managed by the 

resource management system (RMS). A hybrid algorithm, HyGLEAM, is used in 
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GORBA for optimizing the schedules. HyGLEAM is a combination of the Evolutionary 

Algorithm GLEAM (General Learning Evolutionary Algorithm and Method) and local 

search algorithms [27]. Jakob et al. [27] state that GLEAM algorithm consists of the 

Evolution Strategy and real-coded Genetic Algorithms with data structuring concepts. 

The local search algorithms used by HyGLEAM are the Rosenbrock algorithm [28] and 

the Complex method [29].  

Stucky et al. [30] state that if time constraint exists, only one heuristic is deployed. In 

addition, due to the re-schedule strategy, it is quite time consuming for the large number 

of jobs [30]. In GORBA, an application and resource management system is embedded 

between two interfaces: 

 The Grid Application Interface (GAI) to users and to administrators [30] 

 Interfaces to third-party grid middleware, such as Globus service [30] 

Grid Application Interface (GAI) mediates between the application and resource 

management system. GORBA uses a third-party middleware layer to get up-to-date 

information of the resources [30]. Currently, GORBA uses Globus service as its third-

party middleware, but it is planned to be flexible in deploying third-party software and 

utilize UNICORE alternatively [25].  

Figure 2-11 shows the architecture of the GORBA system in Grid, and the coarse 

architecture of GORBA.  
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Figure 2-11 Architecture of GORBA in Grid (a) and the coarse architecture of GORBA 

(b) (Figure 1 from [30]) 

 

2.3.2 CCS 

Hovestadt et al. [26] state that advanced reservation and quality of service are needed to 

be solved by co-allocation. It is hard for queuing approach based resource management 

system to solve this problem. Instead, advanced reservations can be solved by planning 

approach: assigning start times to each resource request, so that a complete schedule is 

planned. CCS (Computing Center Software) [26] has been designed to provide “a 

uniform access interface” [31] for HPC users, and provide “a means for describing, 

organizing, and managing high performance computing (HPC) systems” [26] for system 

administrators.  

A complete schedule about the future resource usage is computed and made available to 

the users. First Come First Serve (FCFS), Shortest/Longest Job First (SJF/LJF) policies 

are used to assign the jobs into the schedule, while backfilling is applied to fill in the gaps 
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of the schedule. CCS re-computes the schedule from scratch when a dynamic change 

such as job arrival or machine failure appears [4].  

Fig 2-12 shows the 5 components of (Computing Center Software) CCS 

 

 

Figure 2-12 Architecture of CCS (Figure 3 from [26]) 

 The User Interface provides a single access point to one or more system via an X-

window or ASCII interface. 

 The Access Manager (AM) manages the user interfaces and is responsible for 

authentication, authorization, and accounting. 

 The Planning Manager (PM) plans the user requests onto the machine. 

 The Machine Manager (MM) provides an interface to machine specific features 

like system partitioning, job controlling, etc. 

 The Island Manager (IM) / Domain Manager (OM) provides name service and 

watchdog facilities to keep the island/domain in a sTable condition. 

Computing Center Software (CCS) provides mechanisms for the user-friendly system 

access and management of clusters [31]. It is defined as a planning system in [26], and as 
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a schedule based system in [4]. CCS is able to handle both advanced reservation and 

quality of service [26], [31].  

2.3.3 Earlier Gap, Earliest Deadline First and Tabu Search Optimization  

Klusacek and Matyska [2] applied a schedule based method to handle the scheduling in 

dynamic environment. Dynamic jobs arrival is simulated, and a Tabu Search optimization 

is used for further optimizing the schedule. 

Earlier Gap, Earliest Deadline First (EG-EDF), combined with Tabu Search Optimization 

is a solution designed and applied by Klusacek and Matyska [2] to simulate and solve 

“the distributed large scale dynamic arrived jobs scheduling” problem. Earlier Gap, 

Earliest Deadline First (EG-EDF) and Tabu Search Optimization are the two main parts 

of the scheduling process. Earlier Gap, Earliest Deadline First (EG-EDF) add newly 

arrived jobs to the schedule, while Tabu Search Optimization moves the jobs already 

allocated in the schedule and make further optimization for the schedule. Earlier Gap, 

Earliest Deadline First (EG-EDF) is applied for any time a new job arrives, while Tabu 

Search Optimization is applied after every 10 jobs have arrived. 

The authors [2] attempt to satisfy three objectives: Minimizing the total tardiness (the 

total delayed time) of the jobs, the number of the delayed jobs, and the makespan (the 

processing time from the first start of the first job execution to the end time of the last 

execution) of the whole scheduling process.  

2.3.3.1 Earlier Gap, Earliest Deadline First  
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Earlier Gap, Earliest Deadline First (EG-EDF) algorithm is applied for each newly 

arrived job into the existing schedule of each resource. Once a new job arrives, the best 

position for the job according to the current schedule is selected.  

Gaps may be generated during the execution. A gap is considered to be the CPU idle (no 

job is executing on some CPUs of some machines) of the machines during the execution. 

A suitable gap for a job means the gap contains more CPUs than the job required. Figure 

2-13 shows an example of a gap with 2 CPUs generated at time t0. 

 

Figure 2-13 A Gap with 2 CPUs 
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Figure 2-14 Earlier Gap, Earliest Deadline First 

Figure 2-14 shows the main strategy of Earlier Gap, Earliest Deadline First (EG-EDF) 

Algorithm. When a new job arrives, it follows the following policies: 

1. Gap 1 to gap 11 represent the suitable gaps for new arriving job, and all of them are 

candidate positions. 

2. Generally, jobs on schedules of each machine are sorted according to their deadline. 

The deadline of the new arrived job is assumed between the kth and the k+1th job on 

each schedule. So, positions between k to k+1 of each schedule of machine are candidate 

positions. 

3. EG-EDF tries on all the candidate positions, evaluates and figures out which candidate 

performs the best. 

4. The scheduler search for all the candidate positions from the first machine to the last. 

For each machine, it is searched from the earliest candidate position to the latest one. 

5. Once the job is allocated, it cannot be moved by EG-EDF. 
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6. The scheduler has all the information of the machines, schedules, and the jobs arrived.  

7. The performance are evaluated by the three objectives: makespan, tardiness, and 

number of delayed jobs by using AcceptanceCriterion(). 

The pseudo code of EG-EDF is listed in Table 2-11 and Table 2-12: 

 

 

 

 

 

 

 

Table 2-11 Earliest Gap, Earlier Deadline First (EG-EDF from [2]) 

 

 

 

 

 

 

Table 2-12 Method AcceptanceCriterion() (AcceptanceCriterion() from [2]) 

Algorithm 1 Earliest Gap – Earlier Deadline First (job) 

1: scheduleinitial := [mach sched1, .., mach schedm]; schedulenew :=  ; 

schedulebest :=  ; gap_found := false; k := 0; 

2: for i := 0 to m do 

3:    if machinei is suiTable to perform job then 

4:        if suiTable gap for job was found in schedulenew[i] then 

5:            gap_found := true; 

6:            schedulenew := scheduleinitial; 

7:            schedulenew[i] := place job into found gap in schedulenew[i]; (EG strategy) 

8:        else if gap_found = false then 

9:            schedulenew := scheduleinitial; 

10:          k := index of the first jobk   schedulenew[i] whose djobk > djob; (k is the 

index of the first job with later deadline) 

11:          schedulenew[i] := insert job into schedulenew[i] between jobk−1 and jobk; 

(EDF strategy) 

12:      end if 

13:      if AcceptanceCriterion(schedulebest, schedulenew) = true then 

14:          schedulebest := schedulenew; 

15:      end if 

16:    end if 

17: end for 

18: return schedulebest 

 

Algorithm 2 AcceptanceCriterion(schedulebest, schedulenew) 

1:   if schedulebest =  ; then 

2:       return true; 

3:   end if 

4:   compute makespanbest and nondelayedbest according to schedulebest; 

5:   compute makespannew and nondelayednew according to schedulenew; 

6:   weightmakespan := (makespanbest − makespannew)/(makespanbest); 

7:   weightdeadline := (nondelayednew − nondelayedbest)/(nondelayedbest); 

8:   weight := weightmakespan + weightdeadline; 
9:   if weight > 0.0 then 

10:     return true; 

11: else 

12:     return false; 

13: end if; 
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2.3.3.2 Tabu Search Optimization 

Unlike Earliest Gap, Earlier Deadline First (EG-EDF), Tabu Search is applied to make 

some further optimization for the jobs which are already allocated to the schedule of each 

machine. Tabu Search Optimization is necessary, even if the jobs are currently allocated 

to the best position by Earliest Gap, Earlier Deadline First (EG-EDF). EG_EDF 

algorithm does not guarantee to generate the best solution, when more new jobs arrive. 

Furthermore, once a job is allocated, even if a better solution were possible, EG_EDF 

will not allow the jobs to be moved. 

As we mentioned, EG-EDF algorithm is applied for every newly arrived job, while Tabu 

Search algorithm is used for every 10 jobs arrived. Tabu Search is a local search based 

heuristic algorithm. The maximum number of iterations of the Tabu Search manipulation 

in [2] is set to 1000. During each iteration, only one job in the schedule is to be moved. 

Before showing the Tabu Search Optimization, there are two concepts to introduce: 

 Tabu Job 

Tabu-Job is generated during the Tabu Search Optimization. TabuList is a list with 

specific size.  In the process of Tabu Search Optimization, once a job is moved, or put 

back to the original position, it is put into the TabuList, and once a job is put into the 

TabuList, it becomes a tabu-job. Once a job becomes a tabu-job, it is no longer a 

candidate job that considered to be moved. Furthermore, sometimes the TabuList may be 

full, and a new job is put into the TabuList. In this case, the job first put into the TabuList 

is no longer a tabu-job, and that job becomes a candidate job that considered to be moved. 
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For example, if there the size of TabuList is 5 and now we put the 6
th

 job into the 

TabuList. In this case, the 1
st
 job in the TabuList is no longer a Tabu-Job. 

The number of Tabu-Job is initialized as 0. 

 Machine Used 

The jobs have allocated by EG-EDF are stored in the schedules of machines, waiting for 

their executions or further moving by Tabu Search Optimization. In each iteration of 

Tabu Search Optimization, only one job is considered to be moved. Before selecting the 

jobs, the machine is selected in advance. If in some iteration, a machine may contain only 

tabu-jobs in its schedule. In that case, this machine becomes a “Machine Used”, or a used 

machine. Used machines are not considered to be a source to select. 

Figure 2-15 and 2-16 show the main strategy of Tabu Search Optimization. When every 

10 jobs have arrived and when the jobs have been allocated to suitable machines by EG-

EDF, Tabu Search Optimization is applied and follows the following policies: 

1. Before Tabu Search Optimization, all the machines and the jobs allocated in the 

schedules by EG-EDF are not in the “Tabu Job” and “Machine_used” List.  

1. The Scheduler knows which jobs have been delayed. 

2. In each iteration, the job selected to be moved is the last “non-tabu job” in the schedule 

of the “not used machine” with the highest number of delayed job.  

3. Assume all gaps in Figure 2-15 are the suitable gaps for the job to be moved by Tabu 

Search Optimization, and are considered to be the candidate positions. 
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Figure 2-15 Tabu Search Optimization – Before Moving a Job 

4. Tabu Search Optimization tries to move the job to the candidate positions, once a 

better performance occurs, the current iteration terminates, and the job is moved. A new 

iteration is started, shown in Figure 2-16. 

 

Figure 2-16 Tabu Search Optimization – After Moving a Job 
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5. If no better performance is found, the job is moved back to the original position and a 

new iteration is started. 

6. Once a new iteration starts, the job tested in the last iteration is set as a “tabu-job”, 

shown in Figure 2-17. 

 

Figure 2-17 Tabu Job 

  

7. Once a machine contains only “tabu jobs”, it is set to a used machine, shown in Figure 

2-18. And once all the machines are used machines, a new iteration is started, and all the 

machines are no longer used machine, shown in Figure 2-19. 
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Figure 2-18 Machine Used 

 

Figure 2-19 All Machines are Used Machines 
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The pseudo code of Tabu Search Optimization is listed in Table 2-13 and Table 2-14: 

 

 

 

 

 

 

 

 

Table 2-13 Tabu Search Optimization (Tabu Search from [2]) 

 

 

 

 

 

 

 

Table 2-14 Method MoveJob() (MoveJob() from [2]) 

  

Algorithm 3 Tabu Search (iterations) 

1:   schedulebest := [mach sched1, .., mach schedm]; schedulenew := schedulebest; tabujobs :=  ; 

machinesused :=  ; 

2:   for i := 0 to iterations do 

3:     source := k such that: k   (1..m), machinek   machinesused, schedulenew[k] has highest number of 

delayed jobs;  

4:     if source = null then 

5:        machinesused :=  ; (All machines were used – start a new round) 

6:        continue with new iteration; 

7:     end if 

8:     job := last job from schedulenew[source] such that: job   tabujobs; 

9:     if job = null then 

10:      machinesused := machinesused   machinesource; (No non-tabu job is available in 

schedulenew[source]) 

11:      continue with new iteration; 

12:   end if 

13:   remove job from schedulenew[source]; 

14:   if MoveJob(job, schedulebest, schedulenew) = false then 

15:      schedulenew := schedulebest; (returns job to the original position); 

16:   else 

17:      schedulebest := schedulenew; (updates the best so far found solution) 

18:   end if 

19:   tabujobs := tabujobs   job; (and remove oldest item if tabujobs is full) 

20: end for 

21: return schedulebest 

 

Algorithm 4 MoveJob(job, schedulebest, schedulenew) 

1:  Sort the list of machines with their number of CPUs, if two machines have the same number 

CPUs, sort them according to 

their speed; 

2:  for j := 0 to m do 

3:    if machinej is suitable to perform job and suiTable gap for job was found in schedulenew[j] 

then 
4:         schedulenew[j] := place job into found gap in schedulenew[j]; 

5:         if AcceptanceCriterion(schedulebest, schedulenew) = true then 

6:             return true; 

7:        else 

8:        schedulenew[j] := schedulebest[j] (removes the proposed move);} 

9:        end if 

10:   end if 

11: end for 

12: return false; 
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3. Motivation and Model Formalization 

3.1 Motivation 

In Chapter 2, we mentioned the schedule based scheduling method EG-EDF and Tabu 

Search Optimization. EG-EDF policy applied in [2] make use of resources by the 

utilization of gap, and the centralized scheduler is responsible for the evaluation of the 

performance of the whole system, such as makespan, tardiness, number of delayed jobs, 

and resource utilization.  

As we mentioned, Tabu Search Optimization [2] method is applied to further optimize 

the performance after applying EG-EDF policy. However, it may generate some 

shortcomings that influent the whole performance. As we mentioned in chapter 2, the 

schedules are changed only according to the characteristics of the jobs waiting in the 

schedule. Every 10 jobs arrive, the scheduler would make alternations on the schedules 

according to the characteristics of those 10 jobs as well as the jobs former arrived but not 

starting their executions. This leads to the randomization of the alternation of the 

schedule, as well as the whole performance. Furthermore, it is impossible to guarantee 

the completion time of each machine at the same time. 

Figure 3-1 and 3-2 shows the schedule forms after applying EG-EDF and Tabu Search 

Optimization: 
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Figure 3-1 List of Schedules 

 

Figure 3-2 List of Completion Time 

In Figure 3-1, the machines are sorted according to their speed of CPUs in descending 

order. The lengths of jobs that each machine handles are random, so that the completion 

time (shown in Figure 3-2) of each machine would also random, and it is impossible to 

complete the executions of each machine at the same time. 

To fix this shortcoming, we aim to figure out a new optimization method to complete the 

execution of each machine at the same time. We allocate more lengths of jobs to the 

machines which have higher speeds, and fewer lengths of jobs to the machines which have 

slower speeds. The ideal schedules and completion times we aim to form are shown in 

Figure 3-3 and 3-4: 
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Figure 3-3 Objective List of Schedules 

 

Figure 3-4 Objective List of Completion Times 

3.2 Model Formalization 

In this thesis, we attempt to solve the optimal scheduling problem in a dynamic model. 

However we assume that the computational resources are a set of machines, which are 

waiting for the arrival of a dynamic set of independent jobs. During the execution, once a 

job arrives, it is allocated to an appropriate machine by using a well-defined policy.  

Before introducing the algorithm, we describe some basic definitions.  

 Release date, of a job represents the time of arrival of that job.  

 Deadline of a job is the desired completion time of that job.  

 If job j fails to complete its execution before its deadline, it is delayed. 
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 The tardiness of job j is defined as the time interval between the actual completion 

time and the deadline of the job j.  

 Job j may require one or more CPUs for its execution. Let m be the number of 

CPUs required by the job j during a particular interval of time after its release. 

During this interval of time, let n be the number of free CPUs available with 

resource i. Then job j can be executed on machine i provided n is greater than or 

equal to m.  

 The interval of time is time required to execute job j. It will depend upon the speed 

of the machine i, and the length of job  j.  

Each machine in our work represents one resource, and contains multiple processors 

(CPUs). All the CPUs within a machine are assumed to be identical. The machines have 

the same allocation policy: It is not allowed to execute the same job on two or more 

machines. Moreover, once a job is being executed, it is not moveable until its completion. 

3.3 Evaluation Criteria 

We use 4 criteria for evaluating the quality of the schedule:  

 Makespan 

 Number of delayed jobs 

 Tardiness 

 Machine Utilization 
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3.4 Objectives  

The two objectives of this thesis are:  

1) Minimize the criteria: makespan, number of delayed job, tardiness, and machine 

utilization;  

2) Further characterize the datasets (jobs) for which our approach would provide better. 
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4. Proposed Algorithm 

4.1 Earliest Gap, Earlier Deadline First (EG-EDF) 

The proposed algorithm is a modified version of the Klusacek and Rudova algorithm [2]. 

Our algorithm is also consists within two parts: when a new job arrives, we apply the 

Earliest Gap, Earlier Deadline First (EG-EDF) to generate the initial schedules, and then 

after the arrival of 10 jobs, and scheduled by using EG-EDF, the schedule is refined by 

using the  Resource Characteristic Based Optimization (RCBO).   

In Chapter 2, we have described EG-EDF. It is applied for every newly arrived job. It 

determines the „tentative best‟ position for the newly arrived job in the schedule.   

4.2 Resource Characteristic Based Optimization 

To further optimize the schedule formed by EG-EDF, we apply a new Resource 

Characteristic Based Optimization (RCBO) every time after the number of new jobs, after 

the last application of RCBO, has reached the value of ten. RCBO is applied to change the 

positions of some jobs that have already arrived and are waiting in the schedules of some 

machines. RCBO may move the jobs to a better evaluated position.  

As we mentioned, in our simulation, the jobs are dynamic, that is, the meta-data about the 

jobs are not known. The data about the machines is assumed to be static.  Instead of 

creating the strategy of the Tabu Search optimization based on the information of the 

arrived jobs, as was attempted by Klusacek and Rudova [2], we use RCBO policy for 

optimization of the schedule. 
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The pseudo code of Resource Characteristic Based Optimization (RCBO) is shown in 

Figure 4-1 and 4-2: 

 

 

 

 

 

 

 

 

 

Figure 4-1 RCBO 

  

 

 

 

 

Figure 4-2 Weight_Function() 

The main strategy of RCBO is that, as shown in chapter 3, we try to allocate more lengths 

of jobs to the machines with a higher CPU speed, while allocating less to the machines 

with a lower CPU speed, while maintaining the constraints on the type of machines 

required for the job. 

 

  

1. Evaluate the value of current makespan makespancur and num of delayed jobs delayedcur; 

2. Evaluate the value of new makespan makespannew and num of delayed jobs delayednew; 

3. weightmakespan=(makespancur – makespannew)/makespancur 

4. weightdelayed=(delayedcur – delayednew)/delayedcur 

5. Weight_Function()= weightmakespan + weightdelayed 

6. If Weight_Function() > 0, return true; 

Else return false; 

1. Sort the machines in descending order according to their speeds 

2. Select the last job from the slowest machine, and find the candidate positions of this job from 

the fastest machine to the slowest machine. Once a position is found, evaluate the 

performance according to the Weight_Function(). If the Weight_Function() return true, 

move that job to the position. Else, try the next position. If all the positions are tested and no 

better performance is found, return the job to the original position. 

3. Once a job is selected, it is marked as job_selected, and not considered to be a source in the 

next iteration.  

4. Once a machine contains only job_selected, all the jobs are no longer job_selected. This 

machine is marked as machine_selected. 

5. The length of job_selected and machine_selected are set to 100. If more than 100 jobs are 

marked as a job_selected, the jobs marked earlier are no longer in the list of job_selected. 

6. Iteration is set to 1000. 
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5. Experiment Evaluation 

5.1 Testing for Validation 

In this section, we present the test results for the proposed algorithm. The performance of 

our new approaches is tested using ALEA simulator [1]. We have compared our results 

with the results for the Klusacek and Rudova (KR) algorithm as reported in [2]. We have 

performed extensive tests by using 8 sets of jobs with the same 150 machines, as reported 

in [2]. The number of the 8 job sets are set to 3000, 12000, 30000, and 60000. The jobs 

are generated by a fuzzy generator after the range of parameters is set. 

We assume that the resources as specified in the machine description file do not change. 

The jobs in each job description file, and the machines in the machine description file are 

represented by different parameters, and each of the parameters is generated randomly, 

according to a uniform distribution, within a reasonable range. For example, the number 

of CPU requirement of each job ranges from 1 to 8, while the machine speed ranges from 

200 to 600. 

Table 5-1 shows the range of each parameter of both the jobs and the resources. The 

performance of RCBO, compared with the algorithm applied in [2], is shown in Table 5-2, 

5-3, and 5-4. 

Job execution time 500–3000 

Jobs with deadlines 70% 

Number of CPUs required by job 1 – 8 

Number of CPUs per machine 1 – 16 

Machine speed 200 – 600 

Table 5-1 Range of Parameters for the jobs 
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The performance of RCBO, compared with the algorithm applied in [2], is shown in 

Table 5-2, 5-3, 5-4 and 5-5. 

Num of Job KR   RCBO 

3000  6846 6877 

3000 6875 6877 

12000  14803 14793 

12000  17460 17468 

30000  17460 17468 

30000  14514 14457 

60000  18462 18240 

60000  12776 12652 

Table 5-2 Comparison of Makespan 

Num of Job KR   RCBO 

3000  2578 2570 

3000 2578 2570 

12000  11304 11304 

12000  11736 11740 

30000  29340 29370 

30000  24520 24540 

60000  49040 56520 

60000  51820 51840 

Table 5-3 Comparison of the Number of Nondelayed Jobs 

Num of Job KR RCBO 

3000  243108 246316 

3000 239655 246316 

12000  125624 128657 

12000  34185 34137 

30000  34185 34137 

30000  1484505 1531140 

60000  128657 125242 

60000  435844 433932 

Table 5-4 Comparison of the Total Tardiness 

Num of Job KR RCBO 

3000  92.05% 91.98% 

3000 89.495% 90.705% 

12000  90.535% 90.88% 

12000  88.75% 88.995% 

30000  88.94% 89.28% 

30000  91.17% 91.49% 

60000  92.985% 94.90% 

60000  92.985% 93.92% 
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Table 5-5 Comparison of the Machine Utilization 

We found that as compared with the KR algorithm makespans are improved in 4 of the 8 

data sets by using RCBO algorithm. The number of non-delayed jobs is type better for 

RCBO algorithm for 5 of the datasets. As compared to the KR algorithm, the total 

tardiness is reduced by RCBO algorithm for 4 of the 8 datasets. 

5.2 Analysis of Tests 

The algorithms applied in [3] take processing time, which is highly uncertain. For some 

of the schedules, the optimization schedule may take a short time, while for others it may 

be required to spend a much longer time. The end-time for processing in different 

machines is also likely to differ a great deal. We sort the list of machines according to 

their CPU speed. Figure 5-1 shows the length of the schedules. The processing time of 

each machine is shown in Figure 5-2. 

 

 

 

Figure 5-1. The Length of the Schedule in [3] 

 

 

 

Figure 5-2. The Processing Time in [3] 

 

Figure 5-2 The Processing Time in [3] 

 

 

Figure 5-1 The Length of the Schedule in [3] 
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5.2.1 Objective of RCBO 

Figure 5-3 shows the schedules that RCBO algorithm aims to form. 

 

 

 

 

 

Figure 5-3. Length of Schedules using RCBO    

 

 

 

 

Figure 5-4. The Processing Time using RCBO 

 

If we can make the time of each schedule of machines equivalent, shown in Figure 5-4, 

the processing time of the total schedule would be shortened. Since the requirements for 

each job may be different and the machines in a grid are assumed to be heterogeneous, it 

may not be possible to achieve the ideal, as shown in Figures 5-3 and 5-4. However since 

 

Figure 5-4 The Processing Time using RCBO 

 

 

Figure 5-3 Length of Schedules using RCBO 
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the algorithm expressly aims at the objective, the expectation is that the results obtained 

by RCBO algorithm would be better than those from the KR algorithm. 

5.2.2 Analysis of the total processing time of the proposed new approach 

Before the analysis of the new approach, we state some variables in Table 5-5: 

VARIABLE REPRESENTATION 

Si The CPU speed of the ith machine 

Ni Number of CPU on the ith machine 

Rj Number of CPU required by job j 

Tj,i Processing time of job j on machine i 

Lengthj The length of job j 

Li Total job length (Schedule length) on machine i 

 

Table 5-6 Variables 

The objective is to optimize the total schedule, and the performance of total schedule is 

decided by the slowest schedule[k] (if the kth machine performs slowest) of the set of m 

machines. So, we aim to minimize schedule[k] = schedule[i]max, where i   [1, m].  

We have Tj,i = Lengthj / Si, (each machine) and Li =            
    (Assume 

schedule[i] contains n jobs). 

So, processing time of schedule[i] can be represented as: 

Ti = Li/Si, with the constraint that Ni ≥ Rj. 

Our objective can be represented as: 

Minimize (Li/Si)max 
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To analysis the two forms shown in Figure 5-3 and Figure 5-4, we research on one same 

set of jobs. Given a set of jobs, we have the corresponding total Length of the jobs, 

which can be represented by:    
   . 

Fig 5-4 shows the machines finish execution of the schedule[i] at the same time, say T.  

If some machines finish their executions faster than T, others must finish slower than T. 

(As shown in Fig 5-2.) As a result, T is the smallest value of execution time. 

Fig. 5-4 is showing a good form that minimizing the schedule, which is minimizing the 

value of schedule[i]max 

5.2.3 Distribution of the parameters of the jobs 

The number of CPU required by each job is between 1 and 8. Figure 5-5 shows the CPU 

distribution of each data set that we used to test: 

 

Figure 5-5 CPU Distribution of Each Date Set 
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In Fig.5-5, x-axis represents the number of CPUs a job required, while y-axis shows the 

percentage of the quantity the job requires the specific number of CPU. For example, a 

point P (2, 12.5%) represents there are 12.5% jobs of the total jobs require 2 CPUs, and if 

the total number of jobs of a data set is 60000, then there are 60000×12.5% = 7500 jobs 

require 2 CPUs.  

We randomly select 4 data sets with the number of jobs 3000, 12000, 30000, and 60000 

respectively. The CPU distribution is shown in Fig 5-6: 

 

Figure 5-6 CPU Distribution of 4 Data Sets 

In Fig. 5-6, the CPU distribution is shown. To represent the property of each distribution, 

we use the definition of “standard deviation” and “variance” to represent how much 

variation there is from the "average" (mean).  

5.2.4 Standard Deviation 
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In probability theory and statistics, the standard deviation of a statistical population, a 

data set, or a probability distribution is the square root of its variance. Standard deviation 

is a widely used measure of the variability. The variance of a random variable or 

distribution is the expected, or mean, or the deviation squared of that variable from its 

expected value or mean. Thus the variance is a measure of the amount of variation within 

the values of that variable. 

Table 5-6 shows the value of standard deviation and the variance of the CPU distribution 

of the 8 data sets. 

Number of Job Standard 

Deviation of 

CPU 

Distribution 

Variance of 

CPU 

Distribution 

Number of 

Criteria 

Improved  

Average 

Number of 

Criteria 

Improved 

3000_1 0.539% 0.290% 0 2 

3000_2 0.469% 0.219% 4 

12000_1 0.254% 0.065% 2 2.5 

12000_2 0.162% 0.026% 3 

30000_1 0.174% 0.030% 3 3 

30000_2 0.198% 0.039% 3 

60000_1 0.128% 0.0163% 4 4 

60000_2 0.099% 0.0098% 4 

Table 5-7 Standard Deviation and Variance of CPU Distributions 

5.2.5 Analysis of the probability of two different distributions 

To find the relations between the number of jobs, the value of standard deviation and the 

variance, and the performance, we generate Fig 5-7, and Fig 5-8: 

Figure 5-7 shows the relations between the number of jobs and the number of criteria 

(performance) improved: 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistical_population
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Absolute_deviation
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Figure 5-5 Relations between the Number of Jobs and the Average Number of Criteria 

Improved 

In Figure 5-7, x-axis represents the number of jobs, while y-axis shows the number of the 

criteria improved. As it is shown, the more the jobs, the more criteria improved. This is 

analyzed and proved in part a) of this section. 

Figure 5-8 shows the relations between the number of the criteria that improved and the 

average standard deviation of the CPU distribution: 
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Figure 5-6 Relations of the Average Number of the Criteria Improved and the Average 

Standard Deviation of the CPU Distribution 

In Figure 5-8, x-axis represents the value of the average standard deviation of the data 

sets with the same number of jobs, while y-axis shows the number of the criteria 

improved. As it is shown, the lower the value of the standard deviation it is, the more 

criteria improved. This is analyzed and proved in part a) of this section. 

From both Figure 5-7 and 5-8, we can indicate that the more the number of jobs it has, 

the lower the value of the standard variation it would be. This indication can be proved 

by the property of the randomization: If the number of job is large enough, the 

distribution of their CPU required is more likely to be equivalent, that is, the value of 

standard deviation and variance would more likely to be smaller. While, if the number of 

job is small, the distribution would be less equivalent, that is, the value of standard 

deviation would more likely to be larger. 
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According to Figure 5-7, and 5-8, we generate Figure 5-9, which shows the relations 

between the value of standard variation and the number of jobs:  

 

Figure 5-7 Relations between the Average the Standard Variation and the Number of 

Jobs 

In Figure 5-9, x-axis represents the number of the jobs, while y-axis shows the value of 

the correspond value of standard deviation. 

As we have indicated and analyzed, the larger the number of jobs it has, the lower the 

value of the standard variation it would be.  

Therefore, if the quantity of job is limited in a small amount (for example, 10 jobs), even 

if the parameters varied in a specific range, it is hard to predict the parameters of each job. 

It is even harder to predict the parameter of the next job arrives. However, if we focused 

on a large number of jobs (infinite number of job if possible), and each parameter of jobs 

are varied in a same specific range, it is reasonable to predict the distribution of the jobs, 

and the parameter of the next job.   
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6. Conclusion and Future Works 

In this thesis, we have proposed a new resource characteristic based optimization 

algorithm. The algorithm first uses EG-EDF to put every newly arrived job in the existing 

schedule. After the schedule has been thus modified ten times by ten newly arrived jobs, 

it is refined by using RCBO method.  

Compared with the KR algorithm, the RCBO algorithm generates solutions, which in 

many cases, are better than those generated by using the KR algorithm. We are working 

on modifying various parameters of the RCBO algorithm to improve its working. We are 

also conducting further studies to determine whether a meaningful correlation between 

the standard deviation in the characteristics of the data sets with the improvement in the 

performance by use of the RCBO algorithm can be established.  

In this thesis, resource characteristic based optimization implemented using a static set of 

resources and dynamic jobs environment, where the dataset of the jobs and the resources 

are generated synthetically. In the future, we intend to incorporate additional factors, such 

as the preemptive of the job, the failure tolerance, and the cost of the process. We are 

investigating algorithm‟s performance using larger and real workloads. Furthermore, new 

proposed algorithms can be implemented into a more complex model with both dynamic 

resources and jobs.  

  



58 
 

Bibliography 

[1] Klusacek, D., Matyska, L. and Rudova, H. Alea – Grid Scheduling Simulation 

Environment. In Parallel Processing and Applied Mathematics. Heidelberg, 

Germany: Springer-Verlag, Lecture Notes in Computer Science 4967. (2008) 

 

[2] Klusacek, D. and Rudova, H. Local Search for Grid Scheduling. In Doctoral 

Consortium at the International Conference on Automated Planning and Scheduling 

(ICAPS‟07), Providence, RI, USA. (2007) 

 

[3] F. Dong, S.K. Akl, Scheduling algorithms for grid computing: State of the art and 

open problems, Technical Report No. 2006-504, School of Computing, Queen‟s 

University, Kingston, Ontario, Canada, January. (2006)  

 

[4]  Klusacek, D. and Rudova, H, Improving QoS in computational Grids through 

schedule-based approach. In Scheduling and Planning Applications Workshop at the 

Eighteenth International Conference on Automated Planning and Scheduling 

(ICAPS'08), Sydney, Australia. (2008) 

 

[5]  Gentzsch, W. Sun Grid Engine: towards creating a compute power grid. In 

Proceedings of the first IEEE/ACM International Symposium on Cluster Computing 

and the Grid, 35–36. (2001) 

 

[6] Thain, D., Tannenbaum, T., and Livny, M. Distributed computing in practice: the 

Condor experience. Concurrency - Practice and Experience 17(2-4):323–356. (2005) 

 

[7]  Huedo, E., Montero, R., and Llorente, I. The GridWay framework for adaptive 

scheduling and execution on Grids. Scalable Computing: Practice and Experience 

6(3):1–8. (2005) 

 

[8]   Borges, G., David, M., Gomes, J., Fernandez, C., Lopez Cacheiro, J., Rey Mayo,P., 

Simon Garcia, A., Kant, D., & Sephton, K. Sun Grid Engine, a new scheduler for 

EGEE middleware. In IBERGRID–Iberian Grid Infrastructure Conference. (2007) 

 

[9]  K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. 

Tuecke. A resource management architecture for metacomputing systems. In 

Proceedings of the IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel 

Processing, pages 62-82. (1988) 

 

[10]  Ian Foster and Carl Kesselman. Globus: A metacomputing intrastructure toolkit. 

International Journal of Supercomputer Applications, 11(2):115-128. (1997) 

 

[11] http://www.ogf.org/OGF20/materials/789/GridWay_Update_vOGF.pdf as of 2nd 

March 2010 

 

http://www.ogf.org/OGF20/materials/789/GridWay_Update_vOGF.pdf


59 
 

[12] Papadimitriou, C. and Steilglitz, K. Combinatorial Optimization: Algoritms and 

Complexity, Dover Publications, 1998. 

 

[13] Mona Aggarwal, Robert Kent and Alioune Ngom, “Genetic Algorithm based 

Scheduler for Grid Applications”, accepted at HPCS‟ 05, Guelph 

 

[14] Kousalya.K and Balasubramanie.P. Ant Algorithm for Grid Scheduling Powered by 

Local Search. Int. J. Open Problems Compt. Math., Vol. 1, No. 3, December. (2008) 

 

[15] Abraham, R. Buyya, B. Nath, Nature‟s heuristics for scheduling jobs on 

Computational Grids, International Conference on Advanced Computing and 

Communications (2000). 

 

[16] K. Kousalya. To Improve Ant Algorithm‟s Grid Scheduling Using 

 Local Search. International Journal of Intelligent Information Technology 

Application, 2(2):71-79. (2009) 

 

[17] http://www.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm as of 27th 

March 2010 

  

[18] Klusacek, D., Matyska, L., and Rudova, H. Local Search for Deadline Driven Grid 

Scheduling. In: Third Doctoral Workshop on Mathematical and Engineering 

Methods in Computer Science (MEMICS 2007), pp. 74–81 (2007)  

 

[19] Aysan Rasooli, Mohammad Mirza-Aghatabar, Siavash Khorsandi. Introduction of 

Novel Dispatching Rules for Grid Scheduling Algorithms. In Proceedings of the 

International Conference on Computer and Communication Engineering, Kuala 

Lumpur, Malaysia, pp. 13-15 (2008) 

 

[20] Fidanova, S.: Simulated Annealing for Grid Scheduling Problem. In: IEEE John 

Vincent Atanasoft International  Symposium on Modern Computing(JVA‟ 06), pp. 

41-45 (2006) 

 

[21] Di Martino, V. and Mililotti, M. Sub optimal scheduling in a grid using genetic 

algorithms. Parallel Computing, Vol 30, p. 553.565. (2004) 

 

[22] U. Fissgus. Scheduling Using Genetic Algorithms. In Proceedings of the20th 

International Conference on Distributed Computing Systems. IEEE Computer 

Society Press, pp:662-669, (2000) 

 

[23] Xhafa, F., Gonzalez, J.A., Dahal, K.P., Abraham, A.: A GA(TS) Hybrid Algorithm 

for Scheduling in Computational Grids. In: Corchado, E., Wu, X., Oja, E., Herrero, 

A ., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 285–292. Springer, 

Heidelberg (2009) 

 

http://www.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm


60 
 

[24] Shajulin Benedict, Rejitha R. S, and V. Vasudevan. An Evolutionary Hybrid 

Scheduling Algorithm for Computational Grids. Journal of Advanced Computational 

Intelligence and Intelligent Informatics, Vol.12, No.5 pp. 479-484. (2008) 

 

[25] Suß, W., Jakob, W., Quinte, A., and Stucky, K.-U. GORBA: A global optimising 

resource broker embedded in a Grid resource management system. In Zheng, S. Q., 

ed., International Conference on Parallel and Distributed Computing Systems, PDCS 

2005, 19–24. IASTED/ACTA Press. (2005) 

 

[26] Hovestadt, M., Kao, O., Keller, A., and Streit, A. 2003. Scheduling in HPC resource 

management systems: Queuing vs. planning. In Feitelson, D. G.; Rudolph, L.; and 

Schwiegelshohn, U., eds., 9
th

 International Workshop, JSSPP, volume 2862 of LNCS, 

1–20. Springer. (2003)  

 

[27] Jakob, W., Quinte, A., Süß, W., Stucky, K.-U.: Optimised Scheduling of Grid 

Resources   Using Hybrid Evolutionary Algorithms. Proc. 6th Int. Conf. on Parallel 

Processing and Applied Mathematics, Poznan, PL, Springer, LNCS 3911. (2005) 

 

[28] ROSENBROCK, H. H. "An automatic method for finding the greatest or least value 

of a function," The Computer Journal, Vol. 3, p. 175. (1960). 

 

[29] M. J. Box, A new method of constrained optimization and a comparison with other 

methods, 

 Compute. Journal., 8, pp. 42–52. (1965) 

 

[30] Stucky, K.-U., Jakob, W., Quinte, A., and Suß, W. Solving scheduling problems in 

Grid resource management using an evolutionary algorithm. In Meersman, R., and 

Tari, Z., eds., OTM Conferences (2), volume 4276 of LNCS, 1252–1262. Springer. 

(2006) 

 

[31] A. Keller and A. Reinefeld. Anatomy of a Resource Management System for HPC 

 Clusters. In Annual Review of Scalable Computing, vol. 3, Singapore University 

 Press, pages 1–31, (2001) 

 

 

 

  

http://www.fujipress.jp/finder/xslt.php?mode=VolumeNo_index&jo_code=JACII&volnum=00120005&jo_volume=12&jo_issue_number=5


61 
 

VITA AUCTORIS 

Name:   Peng Du 

PLACE OF BIRTH: Beijing, China 

YEAR OF BIRTH:  1985 

EDUCATION: Wuhan University of Technology, Wuhan, China 

   2003- 2007 BEng 

   University of Windsor, Windsor, Ontario, Canada 

   2008-2010 M.Sc  

 


	University of Windsor
	Scholarship at UWindsor
	2010

	Resource Characteristic Based Optimization for Grid Scheduling
	Peng Du
	Recommended Citation


	tmp.1351257124.pdf.8F9IB

