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Abstract

This dissertation proposes a general framework to efficiently identify the objects of in-

terest (OI) in still images and its application can be further extended to human action

recognition in videos. The frameworks utilized in this research to process still images

and videos are similar in architecture except they have different content representa-

tions. Initially, global level analysis is employed to extract distinctive feature sets

from an input data. For the global analysis of data the bidirectional two dimensional

principal component analysis (2D-PCA) is employed to preserve correlation amongst

neighborhood pixels. Furthermore, to cope with the inherent limitations within the

holistic approach local information is introduced into the framework. The local in-

formation of OI is identified utilizing FERNS and affine SIFT (ASIFT) approaches

for spatial and temporal datasets, respectively. For supportive local information, the

feature detection is followed by an effective pruning strategy to divide these features

into inliers and outliers. A cluster of inliers represents local features which exhibit

stable behavior and geometric consistency.

Incremental learning is a significant but often overlooked problem in action recog-

nition. The final part of this dissertation proposes a new action recognition algorithm

based on sequential learning and adaptive representation of the human body using

Pyramid of Histogram of Oriented Gradients (PHOG) features. The changing shape

and appearance of human body parts is tracked based on the weak appearance con-

stancy assumption. The constantly changing shape of an OI is maximally covered by

the small blocks to approximate the body contour of a segmented foreground object.

vi



In addition, the analytically determined learning phase guarantees lower computa-

tional burden for classification. The utilization of a minimum number of video frames

in a causal way to recognize an action is also explored in this dissertation. The use

of PHOG features adaptively extracted from individual frames allows the recognition

of an incoming action video using a small group of frames which eliminates the need

of large look-ahead.
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Chapter 1

Introduction

In general, a scene is a collection of objects which may or may not be interacting

with each other. The ability of human beings to recognize objects and scenes is a

much researched topic across various scientific fields. These researchers share a com-

mon goal to discover the secrets behind successfulness of human vision system. The

computer vision community is faced with the challenge of devising novel, robust and

efficient algorithms to learn models which are helpful in categorizing huge amount of

visual data. The main objective for this dissertation is to develop new techniques and

tools to recognize objects of interest (OI) from input data of varying dimensionality,

i.e., images and videos. Throughout this dissertation, the terms object recognition

and action recognition refer to the identification of OI in input images and videos,

respectively. Ideally, an object recognition scheme should reliably formulate the clas-

sification task of locating an OI. The classification formulation allows the utilization of

various feature extraction and machine learning techniques in order to learn optimal

model from a training dataset. Object recognition has varied applications including

robot guidance and automation, path planning, and biometrics. The localized recog-

nition of the target object, robot guidance and path planning are important for the

tasks which are too dangerous for humans to carry out and require high precision

such as mining, battlefields, and space applications. Figure 1.1 shows some scene
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Figure 1.1: Sample images of Caltech dataset representing different variations of each
category (shown row wise).

images from the publicly available Caltech dataset with different objects at various

scales, lighting conditions and viewpoints.

The identification of actions in videos is far more complicated in comparison to

still images due to changing backgrounds, poses, lighting conditions, action dynamics,

occlusions and camera movements. The acquisition of non-static but repeatedly iden-

tifiable features is of key importance for reliable classification. The typical application

of action recognition may include, but is not limited to, surveillance, security, sports

events, military applications and the onset prediction of critical events and abnormal

behavior at public places. Figures 1.2,1.3 demonstrate some examples from frequently

used action datasets Weizmman [6] and KTH [11] acquired with static background and

camera conditions. Such controlled environment videos have been used as benchmark

input sets to validate the performance of various frameworks. However, researchers

2



Figure 1.2: First row: Randomly selected actions. Bending, Running, Jack, Jump, Side,
and Skip (left to right). Second row: Segmented frames using [48].

have recently started using videos of unconstrained environment to mimic real life

situations. The fundamental concept of this dissertation is to address the challenging

but an important problem of recognition of natural human actions in diverse and

realistic video settings. Unconstrained videos contain significant camera movements,

occlusions, cluttered backgrounds and multiple movements along with a large degree

of affine deformations (Figure 1.4). The need for unconstrained environment videos

arose because of the limited action classes recorded with simplified scene settings.

However, research investigating natural videos with human actions subjected to indi-

Figure 1.3: Sample frames for six different actions (left to right: boxing, clapping, wav-
ing, running, jogging, and walking)from KTH dataset [11].

vidual variations of people in expression, posture, motion and clothing is limited due

to the unavailability of realistic and annotated video datasets [35].
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1.1 Basics of Recognition Framework

Action recognition from videos and object recognition in images share common prob-

lems like cluttered background, occlusions and varying lighting conditions and, thus,

share common strategies to deal with significant intra-class variations. A traditional

recognition framework consists of a source, transducer/sensor, a feature detection

stage and a classifier to learn a model in a supervised or unsupervised fashion (as

shown in Figure 1.5). The source produces patterns which might be controlled, ran-

dom physical phenomenon or acts of nature. The sensor generates information in

the form of scalar values of vectors about the patterns emanating from the source.

Ideally, the sensor should be able to extract components to fully represent source pat-

Figure 1.4: Realistic actions from three classes of human actions: getting out of car,
answering a phone and kissing (modified version of [35]).

terns to make a decision. The selection of a sensor is based on the required accuracy,

available resources and physical limitations of the scene being probed. The third step

in recognition is the extraction of features by transforming sensor measurements into

the feature space. Pre-processing, interest points computation and dimensionality

reduction are commonly used techniques to achieve simple yet distinct features. The

last and final block of Figure 1.5 is the heart of recognition framework which provides

mapping between feature space and decision value a particular feature belongs to. In

general, feature extraction and classifiers play a pivotal role in robust performance

of a proposed framework. It should be noted that recently published literature is

based on the use of non-linear classifiers or the bank of linear classifier to deal with

multiclassification problems.
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1.2 Motivation

In this section, a brief review of motivation and the proposed ideas of various recog-

nition approaches are presented. An image or video can be considered as a collection

of different blocks such as persons, objects, animals and structures etc. Sometimes

this collection shows redundant information which can be removed by representing

the original data into new space by using tools like discrete cosine transform (DCT),

or principal component analysis (PCA) [49],[50]. Such transformation reduces the

dimensionality of the input data, however, correlation amongst neighboring pixels is

lost. This leads to an important but mostly overlooked problem: how to efficiently

retain correlation information amongst neighboring pixels lost during customary di-

mensionality reduction operations such as PCA and Kernel PCA. In recent research
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Figure 1.5: Basic setup of a recognition framework.

reports, the bag of features based approaches have been used to address problems

related to visual recognition. The bag of features corresponds to clustering the his-

tograms of identified interest points or vectors. The simple yet improved occluded

object recognition generated by bag of features prompted its use in text categoriza-

tion, action recognition and for biometric applications [51],[87]. In literature, the

term bag-of-visual-words (BVW) has been used to relate the same concept for fea-

tures of images and video. With the emergence of new invariant feature detectors,

the BVW schemes offer advantages like affine invariance and lower memory require-

ments since the feature labels are stored instead of p-dimensional vectors. In addition,

the BVW offers tolerance to both inter-class and intra-class deformations and lower
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computational burden in matching because of the quantization of alike features into

similar clusters. The negative side of the BVW approach is the determination of an

optimal vocabulary size. In general, larger vocabulary sizes generate higher accuracy

but at the same time they are more prone to be sensitive towards noise. The BVW

approaches have inherent limitations of ignoring the mutual spatial and/or geometric

information of identified features which leads to inefficient representation of the global

structure of an object or action being sought. Hybrid features are being increasingly

used due to the complementary information offered which improves recognition ac-

curacy [86],[95],[12]. The efficient detection and representation of global as well as

local features guarantees classification to be carried out in real-time since the major

computational burden during the testing phase is posed by feature detectors which

can be minimized by using adaptive region of interest selection.

The final step of recognition consists of efficient classifiers that can efficiently

handle linear as well as non-linear mapping amongst features and their classes. In

the past, k-NN, AdaBoost, SVM, HMM, neural networks and probabilistic models

have been used for classification and correspondence problems [86],[87],[12],[13],[26].

Traditionally, the performance of a classifier is mainly dependent upon the training

phase to learn a model. In recognition research, two potential problems involving the

training of a classifier have not gained much attention despite their direct effect on

real-time implementation of the existing frameworks. First of all, much less research

efforts have been devoted to minimize the training time which poses a major bottle-

neck in classification. Secondly, can the training be performed in an sequential way

while maintaining lower computational complexity?

After thorough review of literature it is observed that action recognition research

is mainly concentrated on batch mode processing. In batch mode processing, it is

assumed that the entire video is stored in advance before being labeled for a specific

action or relatively large look-ahead is available to identify an action present in each

frame. There is a need for research which proposes a solution to label an action present
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in video frames based on minimum number of frames. This solution will not rely on

assumptions about background, foreground masks, position of an object of interest

and any unrealistic pre-processing like video-level normalization and stabilization.

Additionally, it should not assume the availability of future frames for identification

of an event in an incoming video.

1.3 Contribution

This section briefly describes the approaches developed to deal with the limitations

of the existing schemes mentioned above.

• A recognition framework trained analytically leading to learning speed approx-

imately thousands times faster than traditional learning paradigms.

• A dimensionality reduction technique to better preserve correlation information

amongst neighboring pixels or coefficients of feature space.

• An improved framework utilizing parallel classifiers, i.e., extreme learning ma-

chines (ELMs) to simultaneously process hybrid feature sets determined using

unique global and local information of an input data.

• In action recognition, an automatic removal of instable and useless local fea-

tures that belong to background or static areas of the scene using principal

eigenvectors of graph Laplacian is employed.

• A new class of spatio-temporal features selected using the motion selectivity at-

tribute of 3D dual-tree complext wavelet transform (3D DT-CWT) with better

ability to capture the dynamics of inter-class and intra-class variations.

• For larger deformations, computation of local features in images and videos

using FERNS and affine SIFT (ASIFT), respectively, to find correspondence

between local patches.
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• A real-time action recognition without look-ahead information to segment or

track an object to label a video.

• An incremental training approach to adaptively train the classifier for unseen

instances of the action being probed.

1.3.1 Object Recognition using Analytically Trained

Classifier

To improve the previously proposed recognition framework based on partial object

information [95], a new supervised recognition scheme is presented which employs

hybrid features, i.e. global and local, for accurate classification of an object at a con-

siderably higher speed [52]. The global and local object information is extracted using

bidirectional two-dimensional PCA (2D-PCA) and Ferns based conditional probabil-

ities, respectively, while parallel extreme learning machines (ELMs) are employed to

classify individual feature types. Finally, a fusion process is initiated to integrate

classification estimates of all ELMs based on a normalized weighted sum strategy.

The first contribution of this research is unique image representation using bidirec-

tional 2D-PCA and the Ferns style approach to represent global and local feature

sets, respectively. The second contribution is the application of ELM, a single hidden

layer feedforward neural network which transforms the learning problem into a simple

linear system whose output weights can be analytically determined through a gen-

eralized inverse operation of the hidden layer weight matrices. Such transformation

supports reliable recognition with minimum error and at learning speed thousands

of times faster than the traditional neural networks. The simpler structure of the

classifier enables the categorization task to be finished in fraction of seconds which

is significantly faster compared to other modern algorithms [74, 87]. The superior

performance of proposed method is observed through comparable accuracy against

state-of-the-art approaches.
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1.3.2 Action Recognition using 3D Dual-Tree Complex Wavelet

Transform

The proposed action recognition technique introduces an efficient way for simultane-

ous processing of multiple video frames to extract spatio-temporal features for finer

activity detection and localization [54]. These features are obtained through the

use of motion-selectivity attributes of 3D dual-tree complex wavelet transform (3D

DT-CWT) and are used to train a classifier for categorization of an incoming video.

The proposed learning model offers three core advantages: 1) the proposed learning

framework is trained significantly faster than traditional supervised approaches, 2)

The use of the 3D transform allows simultaneous processing of volumetric video data

instead of frame by frame analysis, 3) richer representation of human actions because

of the directionality and shift-invariant property of DT-CWT. Isolating motion into

several subbands in different directions, and celebrated properties of non-separable

3D DT-CWT reduces artifact generated by separable 2D transforms. No assump-

tion of scene background, location, objects of interest, or point of view information

is required for activity learning. Bidirectional 2D-PCA is employed for feature ex-

traction that has enhanced capabilities to preserve structure and correlation amongst

neighborhood coefficients of a video frame. The spatio-temporal features extracted

using 3D DT-CWT provide improved representation of governing dynamics involved

to perform a particular action. For classification, ELM is utilized because of its ex-

peditious training capabilities and generalized performance. The research results of

this dissertation compare favorably to recently published results in literature.

1.3.3 Visual Vocabularies for Action Recognition

Most of existing frameworks use only the global information of the input video af-

ter segmenting moving objects for action recognition. Despite favorable results the

computational load to segment a foreground object and extract spatio-temporal fea-
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tures is relatively high. The 3D DT-CWT based scheme for action recognition is

further refined through incorporation of local information of a moving person to im-

prove accuracy [55],[105]. The new technique introduces a human actions recognition

framework based on multiple types of features without the need of a segmentation

phase. Taking the advantage of the motion-selectivity property of the 3D DT-CWT

and the affine SIFT local image detector, spatio-temporal and local static features

are extracted. The framework does not assume any unrealistic pre-processing (like

stabilization and/or foreground masks to track a movement) for an incoming video.

Intuitively, all of the local descriptors do not carry discriminative information related

to an action being detected since features may also be detected from static objects

or background of a scene. All such features with low information are required to be

eliminated in further recognition processes. Pair-wise constraint of features are ap-

plied to prune such features which are instable and not detected throughout the video.

Such constraint is helpful to discover the discriminative foreground features where the

matching is performed only on a pair of video frames which are not adjacent. Finally,

visual vocabularies of both kinds of features are generated to be used for training

of an ELM. The proposed technique is significantly faster than traditional methods

due to volumetric processing of input video, and offers a rich representation of hu-

man actions in terms of reduction in artifacts. Experimental examples are provided

in the sections below to illustrate the effectiveness of the proposed approach. Both

military and industrial applications can potentially benefit from the proposed recog-

nition framework due to its real-time processing and improved precision as compared

to other well-established schemes.

1.3.4 Action Recognition through Recursive Training

Previous section described action recognition schemes using multiple types of features

extracted from entire video which presents a batch mode solution of the problem in-

hand. To cope with practical situations the common assumption of availability of
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future frames in action recognition has to be ignored. A limited number of existing

action recognition techniques are based on features extracted from past video frames

without specialized pre-processing [17]. A unique framework is proposed for real

time action recognition based on moving object tracking through online updating of

appearance and shape. The changing shape of a moving object is modeled through

a small number of rectangular blocks. The pyramid histograms of oriented gradients

(PHOG) [57] are computed of these blocks to represent global and local parts of

the human body for changing locations with the course of the video. However, the

rectangles bounding local parts of the human body may overlap leading to redundant

but related information. Both kinds of features are learned using the incremental

training scheme by providing sets of training data to ELM while the number and

size of training sets need not be necessarily pre-defined. For the incremental learning

scheme of ELM, except for the number of hidden nodes no other network parameters

need to be manually selected. The proposed scheme offers real-time implementation

of action recognition without any segmentation or stabilizing operations on an input

dataset. Furthermore, the features are adaptively extracted from the scene regions

best representing the changing shape and appearance of a moving object.

1.4 Literature Survey

It is noticeable that recognition techniques for objects and actions carry many com-

mon characteristics in modeling and classification. For the last three decades, research

in visual recognition has focused on information and feature extraction from 2D im-

ages. Just like other fields, initial investigation in object recognition started with

assumptions to keep things simple such as uniform background, however, the grow-

ing requirements and applications of this area led to the development of methods

which are far more complicated and natural in essence. A review of recent work on

recognition in still images and videos is presented in the next two sections.
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1.4.1 Related Work in Object Recognition

Visual representation is of fundamental importance in recognition frameworks. The

projection of a 3D world onto 2D planes adds complications in recognition and the

situation is more aggravated due to lack of intelligence in machines today. Li et al.

[73] present an excellent introduction to the challenges and recent advancements in

learning and recognition of single and multiple classes of objects. Object recognition

methods can be mainly divided into two main categories 1) geometry based methods

2) appearance based methods. Existing techniques from both categories are briefly

reviewed below.

Geometry based Object Recognition

Due to limited computation power in the past, recognition schemes assumed problems

in controlled environments with stable illumination and background. Early object

recognition methods focused on identification of an object using range data [58],[59]

which provides better depth information of the scene and can ultimately support

reliable detection of contours and regions. Image intensity values have been pointed

out as the prime source of information due to passive nature of visual sensing devices

and advancement in vision research. However, automated extraction of features is still

an open problem for the scenes with cluttered background and various deformations.

Simply, a recognition scheme can be defined as a strategy to search an object

in 2D projection i.e. an image. One category of object recognition operates on the

hypothesis-proof principle, first is the hypothesis stage where a correspondence is

found between a post of the 3D object model and image features and later the model

is projected onto the image and all the evidence is used to verify the judgement [60].

Fischler proposed an efficient algorithm, RANdom SAmple Consensus (RANSAC), to

reduce the number of hypotheses [106] whereas trees have also been used to integrate

geometric constraints among primitives and explore all possible correspondences to

speed up the search [107]. The basis idea of RANSAC is to compute the aligning

transformation using a minimal number of randomly sampled correspondences. The
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degree of its consensus with other correspondences is used to measure the accuracy of

one transformation. Another subcategory of object recognition based on geometrical

information, a set of features are extracted and matched against the hash table. This

type of indexing has successfully been implemented for document indexing.

All geometry based methods are helpful to recognize an object by matching images

to 3D objects which is feasible due to geometric constraints subject to the availability

of the discriminative shape of an object in real images. However, such information is

not always available which leads to the utilization of the appearance based methods

for recognition.

Appearance based Object Recognition

Most real images are composed of multiple objects of various categories with cluttered

backgrounds which complicates successful implementation of geometric constraints.

In such situations, the modeling of low-level features is easier and more reliable. Often,

the knowledge of object profile is insufficient to identify them in images whereas

the appearance of the same object may provide more meaningful and identifiable

information. The appearance based methods can basically be divided into two main

classes 1) pixel-level methods and 2) patch-level method.

a) Pixel-level Methods

This category is based on histograms or statistics of raw features such as output of

a filter operation at single pixel. The histogram intersection can also be used for

partial matching in situations like occlusions. A simpler way to represent statistics

of raw features is the use of histograms, spatial correlation of colors, histogram of

oriented gradients (HOG) and pyramid of HoG (PHOG) [61],[109],[57]. It should

be noted that raw features may include very simple features such as gradient, pixel

values, textures and colors. For efficient processing, coarse level feature can also be

used as a starting point to detect in high resolution images with lower computational

complexity.

Another powerful set of appearance features is the Haar-like features for object
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recognition [77] which is named for its intuitive similarity with Haar wavelets. Texture

features have also been used in recognition schemes where the computation of texture

features is performed using Wavelet transform, Gabor filters, steerable features and

gray-level co-occurrence method [62], [49], [110].

b) Patch-level Methods

These methods are computationally efficient as compared to pixel-level methods since

only a small number of patches need to be processed instead of a higher number of

pixel values. Secondly, patch-level detectors have been effectively used for recognition

because of their repeatable and robust performance in presence of large deformations.

Recent advancements in object recognition have produced amazingly accurate classi-

fications based on partial object information represented through patch level descrip-

tors. The fundamental concept is to represent patches selected randomly or around

interest points by a vector, such as the Scale Invariant Feature Transform (SIFT)

[10], which can be directly compared against other vectors or their clusters [86],[95].

A variety of feature detectors are available ranging from corners, and edges [111]-

[115]. The corners are the most commonly used feature in object recognition which

can be detected using Harris corner [116] and other techniques [56],[111],[112]. Schemid

proposed local gray-value invariants for image retrieval. However, the Harris corner

detector is not invariant to scale changes. To cope with such image deformations,

feature detectors can be applied on various image scales. Edges have profoundly been

used in recognizing objects of different classes [74],[97],[104]. These techniques not

only devise a shape model for contours as more discriminative, but also apply con-

tour matching algorithm for recognition. To capture both appearance and contour

information, contour networks and the extraction of patches from sampled points of

contours have been proposed [74],[117]. Most detectors apply differential or intensity

extrema strategy; a sequence of nested contiguous region is obtained using various

thresholds on an image and later Maximally Stable Extremal Region (MSER) is ap-

plied to find the regions with approximately stationary area. Different variants of
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basic feature detectors are invariant to translation, rotation and scaling. For robust

performance, research efforts are directed towards the development of detectors which

are also invariant to perspective distortions such as Harris-affine, Hessian-affine and

affine SFIT (ASIFT) to name a few [14],[113].

The patches surrounding detected interest points can be further represented in

a discriminative way which is also invariant to different changes. A simple way to

find a descriptor which is invariant to intensity changes is the gradient of flattened

patch. To obtain rotation invariance the idea of steerable filters [62] can be used.

The Gaussian derivatives, on different orientations, are convolved with the extracted

patch and all the outputs of the filters are represented as a vector. Shape context

and spin images have also been used to represent partial object information using the

boundary fragment model. The SIFT [10] is one of the most effective descriptors which

Figure 1.6: Performance comparison of ASIFT, SIFT and MSER for tilt value ≈ 3.2 [14].

divides a patch into 4 × 4 grid of cells followed by a histogram of oriented gradients

for 8 orientation bins resulting into a vector with 128 dimensions. The gradient

location and oriented histogram (GLOH) [113] and PCA-SIFT [118] are extensions

of the SIFT. Recently, a affine version of SIFT has been proposed which permits

reliable identification of features that have undergone very large affine distortions

as measured by parameter called transition tilt. State-of-the art methods hardly
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exceed transition tilts of 2 (SIFT) whereas ASIFT can handle transition tilts upto 36

and higher. Figure 1.6 shows the performance comparison of ASIFT against SIFT

and MSER schemes (from left to right). The poor performance of Harris-affine and

Hessian-affine have not been shown which found 3 and 1 correct matches for the

similar image pair, respectively. Recently, Ferns a new patch corresponding scheme

based on Naive Bayesian classifier has been proposed [85] and is capable of efficiently

handling a large number of classes. The main idea is to recognize patches around point

of interest by using multiple binary features to model posterior probabilities. The

problem is computationally tractable by assuming independence amongst arbitrary

set of features. The algorithmic implementation of the scheme does not require more

than ten lines of codes and still its performance is remarkable on image sets containing

very significant perspective changes. The performance comparison of matched rates

Figure 1.7: Detected matches for planar target using Ferns and SIFT (top to bottom)
[85].

between SIFT and Ferns is presented in 1.7 where the top row shows matches obtained

using Ferns and the bottom row is the representative performance for SIFT.

An image can also be represented as bag of features. In the training phase, a
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database of patch features is created with the class of labels. For the testing phase,

the detected patches are matched with the patches already stored in database. Since

matching between patches can sometimes be accidently matched to the patches of

objects from wrong categories, the content of an input image is labeled based on the

majority voting scheme. For category level recognition, a histogram of the quantized

patches, also called as bag-of-visual-words, is an effective representation. The quan-

tization of local patches can be computed using clustering algorithms such as kNN.

Bag-of-visual-words has profusely been used in recognition of objects and scenes for

impressive results [47]. However, spatial relationship between features or their dis-

tribution is lost in the bag-of-visual-words representation of an image. The missing

spatial layout is important to distinguish certain images which may have different

objects but similar color histogram. To avoid such situation, color correlogram and

probabilistic constellation of patches have been proposed [61],[74]. It should be noted

that color correlogram computes the pair-wise relationship between two colors at a

certain distance whereas the constellation model attempts to represent the proba-

bilistic distribution of patch appearance and pair-wise patch correlation. In short,

the constellation model describes the relative positions between pair-wise distinctive

patches. In multiple scale matching instead of considering highest resolution of image

partition, spatial pyramid match kernel [65] conducts image matching from the coarse

to the finest level through histogram intersection. The matching is weighted by pyra-

mid level since matching of different levels in a pyramid have varying importance.

In general, the matches are performed at finer resolutions and are assigned higher

weights whereas histogram intersection is used to measure the similarity between two

models. Oliva and Torralba [66] presented a holistic approach by treating a scene

as an object and attempted to describe the shape of a scene by a set of perceptual

dimensions.
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1.4.2 Background Survey of Action Recognition

From psychophysics points of view, it has been proven that humans are capable of

recognizing actions solely from global information of the motion. Inspired by this

research several techniques have been proposed to model human motion by capturing

the global information using an attached marker. The use of an attached marker in

applications like surveillance systems is infeasible because of practicality reasons as

human body parts should be automatically detected for such problems. The vision

based action recognition scheme can be mainly divided into two categories based on

extracted features from a video sequence. The recognition belongs to the holistic ap-

proach if extracted features represent global shapes, contours and/or dimensionality

reduced coefficients from feature space, otherwise, if it uses partial information of an

incoming video it is termed part based approach.

Holistic Approach for Action Recognition

The correlation of a template action with an incoming video is considered to be the

simplest holistic approach for action recognition. Features like intensity, gradient,

and optical flow can be used in correlation [41]. The model based on correlation

between optical flow field has been used for high action recognition rate [5]. The

global information of a sequence of video frames can be described using silhouettes

and contours. A 3D model of moving articulated subjects for multiple camera views

is constructed using visual hull. The shape obtained from the reconstructed 3D model

can be used to recognize human motion [42]. Instead of reconstructing a 3D model

utilizing multiple cameras, the silhouettes can be directly embedded into a 3D space-

time shape volume which supports a better representation of shape volume changes

due to pose variations. Such integration of silhouettes results in transformation of an

action recognition problem into 3D object recognition. The features extracted using

differential geometry on the surface of the action volumes (refer to Figure 1.8) is

proposed by Yilmaz and Shah with a reasonably good performance for action recog-

nition [25]. To recognize an action from an arbitrary view, matching between 2D
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Figure 1.8: Sketches shown for actions of falling, tennis stroke, walking and dancing (left
to right). Color codes are: red (peak), yellow (ridge), white (saddle ridge),
blue (pit), pink (valley), green (saddle valley) [25].

silhouettes of the test sequence and key poses of each type of actions has been pro-

posed [67] where such poses are also shared amongst various categories. The scheme

to capture view independent motion changes by using silhouettes to generate motion

history volume was proposed by Weinland [44] which is an extension of the idea to

record the moving path of a motion into a single image [43]. The performance of sil-

houettes and shape matching algorithms solely depends on the results of background

subtraction which is adversely affected by camera movements, lighting variations and

occlusions. Therefore, matching solely a shape in global approaches is not reliable

for highly accurate recognition frameworks. The use of multiple types of features for

action recognition is getting increased attention in the research community due to

the availability of complementary information which helps minimize the effects posed

by a single feature type. Schneider proposed the combined use of motion and shape

information detected by using optical flow and linear Gabor filters for action recogni-

tion [17]. Schneider’s research shows impressive accuracy while using a lower number

of past video frames, snippets, without the use of impractical assumptions such as

the availability of look-ahead and foreground masks. The features from snippets are

extracted in two parallel processing streams using different scales, orientations and

speed while the filter responses are MAX-pooled and concatenated to be classified

using a bank of linear classifiers. Although, this method was not designed for action

recognition at the sequence level it achieves top performance on bench mark datasets
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using bag-of-snippets of length one.

Part-based Approach for Action Recognition

Bag of features approaches have been proposed in the past to overcome the limita-

tions of recognition schemes using global information such as background subtraction,

tracking and variations in texture and color. Such features may include static and

local features or the combination of both to represent an action. The human visual

(a) (b) (c) 

Figure 1.9: (a) Results of detecting the strongest STIP features (bottom row) for football
and clapping sequence (top row) (modified version of [11]), (b) visualization
of cuboid based behavior recognition [30], (c) sampled spin images for actions
bend, jack, walk and wave1 (red points are the oriented points) [12].

recognition is capable of recognizing an action from a single frame with cluttered

background without necessarily requiring motion or temporal information. Such in-

stantaneous postures, if selected precisely to provide important information, can also

be used in the recognition process through extraction of features like HOG, appear-

ance and position contexts [18],[68],[120]. Multiple frames can also be used instead

of a single instantaneous pose in order to make up for the lacking information of

motion, especially, in situations where motions features are not precisely extracted

due to undesired variations in the scene or camera movements [47].

Since the introduction of the 3D Harris corner detector and the 1D Gabor filter in

temporal direction to extract space-time interest points (STIP) and spatio-temporal

(ST) features; these features have effectively been used in recognizing various motion
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related tasks [30],[11],[35],[12],[13]. From Figure 1.9(a) it is clear that the identified

points correspond to neighborhood with high spatio-temporal variations in sequence

data. Recently, Ning et al. proposed a scheme based on the 3D Gabor filter to detect

interest points to solve the problem of pose estimation. In [12] Liu et al. proposed

the use of spin images (Figure 1.9(c)) which can provide a richer representation of

changes of the local shape of an actor with respect to different reference points.

These reference points may correspond to different limbs of the human body. Once,

the spatio-temporal features have been detected then schemes like majority voting,

statistical distribution or learning model can be used for classification [18],[45].

Combining multiple types of features is a relatively new field of research in action

recognition. Fanti et al. [121] proposed the combination of velocity and local ap-

pearance descriptors. A generative scheme to learn the hierarchical model using both

static and dynamic features has been proposed in [18] whereas Liu’s work [12],[13],[47]

and the results of Schindler’s strategy [17] also verified the usefulness of integrating

more than one types of features.

The rest of this dissertation is divided into four chapters. The next chapter

presents a supervised recognition framework based on training performed analytically

to avoid the traditional bottleneck of learning schemes. Chapters 3 and 4 are dedi-

cated to fresh action recognition frameworks based on finder activity representation

extracted using 3D dual-tree complex wavelet transform. The incremental learning,

preserving neighborhood correlation information of video frames and real-time track-

ing based action recognition are noteworthy contributions in these chapters. At the

end of this dissertation conclusion and future research plans are presented.
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Chapter 2

Analytically Trained Recognition

Framework

This chapter presents a new supervised learning scheme1, which uses hybrid informa-

tion, i.e., global and local features, for accurate identification and classification at a

considerably high speed both in training and testing phases. The first contribution of

this chapter is the unique image representation using bidirectional two-dimensional

PCA and Ferns based approach to represent global and local information of an ob-

ject, respectively. Secondly, the application of extreme learning machine supports

reliable recognition with minimum error and learning speed significantly faster than

traditional neural networks. The proposed method is capable of classifying various

images in a fraction of second compared to other modern algorithms that require at

least 2-3 seconds per image [87].

2.1 Object Recognition: Literature Survey

Object recognition or categorization is a task of classifying an individual object to

belong to a certain category. Automated vision systems, in general, do not perform

1This chapter incorporates the outcome of a joint research undertaken in collaboration with A.A.

Mohammed under the supervision of Dr. Q.M. Jonathan Wu [52].
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better categorization than humans due to lack of intelligence, and knowledge. Despite

some early success in automatic recognition; the problem is far from being solved due

to preserved non-planar geometry and significant 3D depth variations in images of

natural scenes. The image databases are an essential part of recognition research.

For comparison of emerging algorithms; a number of publicly available databases

have been established such as UIUC, Caltech, MIT, GRAZ and PASCAL. These

databases provid a common ground for evaluation and assessment of fresh algorithms.

Detecting objects in measurements is a complicated task owing to their enormously

large number of possible poses, appearances in varying image acquisition conditions,

and occlusions (see Figure 2.1 for sample images).

Computer vision community has been following a line of investigation to develop

algorithms which can efficiently detect features, global or local, and regions for robust

recognition of objects of interest. Each recognition method proposed in the past has

its own merits and limitations; in general common approaches use image databases

which contain object of interest at perceptible scale with minor deformations/pose

variations. Feature extraction and representation of significant objects in an incoming

image using the generated features is an initial step towards visual recognition. Next,

a classifier is trained using the representation established at an earlier stage. The pop-

ular classifiers include support vector machines (SVM), Bayes classifier, Fisher linear

discriminant and traditional neural networks, and hidden markov models (HMM) to

name a few. For above classifiers; a degraded classification is observed due to non-

convex feature space generated by the images captured under different geometric and

lighting environment. Unfortunately, categorization turns out to be a complicated

chore due to noticeable changes in appearance and other deformations caused by

variations in the scene depth. Classification schemes use a wide variety of features

like color, texture, orientation, blob, centre of gravity and mutual geometric relation-

ship amongst feature points to learn a classifier. Visual recognition frameworks range

from constellation of local features [74],[75], and complex geometric models [76] to the

23



Figure 2.1: Sample images from Caltech database.

use of motion cues [77],[80]. Object categorization schemes with smaller variations

in pose [74],[78],[79] and manual pre-segmentation of objects to minimize the compu-

tational cost have also been proposed [81]. Part based schemes [74],[78],[82],[86],[95]

represent object structure using patches covering distinctive parts of an object. Such

patches are extracted from neighborhood of interest points detected using localized

operators like Harris corner detector. In [87], Ali and Shah proposed a promising

approach to use the global structure of an object by modeling non-linear subspace

of categories using Kernel PCA (KPCA) and selecting a discriminative feature set

employing AdaBoost algorithm. Opelt et. al [86] used multiple kinds of features to

encode the extracted patches and later used AdaBoost framework to select the best

features for categorization.

The performance deterioration is observed in approaches which use only global in-

formation, especially in images with considerably large background clutter, geometric

deformations, and occlusions. The correlation amongst neighborhood pixels is also

ignored due to vectorization of an image during dimensionality reduction operations

such as PCA and kernel PCA. On other hand, part based recognition schemes are

computationally expensive requiring significantly large amount of training samples

(extracted/synthesized for different view points) that eventually leads to momentous

increase in computational cost. Above precincts lead to two important but overlooked

problems in the past recognition studies.
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• How to minimize the training time which poses a major bottleneck in

classification.

• How to efficiently retain the correlation information amongst neigh-

boring pixels which is lost during customary dimensionality reduction opera-

tions such as PCA and KPCA.

We propose a hybrid approach for recognition that combines global and local ob-

ject information for robust and reliable recognition. The use of two-dimensional PCA

(2D-PCA) [92] along mutually orthogonal directions is proposed to encode global

information of an image which can better preserve association amongst neighboring

pixels. Technique based on multidimensional PCA [93] is recently proposed for face

recognition. The use of general tensor discriminant analysis (GTDA) for gait recog-

nition, proposed by Tao et. al [99], is proven to generate improved accuracy with

minimal undersample problem during classification. In [100],[101] incremental and

supervised approaches for tensor analysis have been proposed which generate better-

quality recognition with structure preserving processing in higher dimension data

similar to bidirectional 2D-PCA. However, our recognition method differs from [99]

in two ways 1) using hybrid object information for classification 2) synthesizing im-

ages for various affine deformations to train our classifiers for potential objects’ views.

For local object information, feature vectors are generated from patches around stable

feature points detected using Harris corner detector. Multiple views of such patches

are generated through affine deformations which result into considerably increased

number of training samples. Later, extreme learning machine (ELM) [88] is applied

for recognition using both kinds of feature vectors i.e. global and local information.

The use of any other supervised learning framework such as neural network or

AdaBoost may require longer training intervals due to their specific learning strategy

while ELM can finish the similar training task at speed approximately thousands

times faster than traditional neural networks and minimum training error. ELM has
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been successfully applied for multicategory classification such as microarray gene ex-

pression for cancer diagnosis [89] and classification of music genres [90]. Our proposed

method allows to combine the strengths of both types of features and exploits highly

discriminative feature sets for classification using ELM. A wide variety of experiments

using standard datasets are presented to ascertain the superior performance of our

proposed scheme over other state-of-the-art methods.

2.2 Extreme Learning Machine

Feedforward neural networks (FNN) have been widely used in different areas due to

their approximation capabilities for non-linear mappings using input samples. It is

a well known fact that the slow learning speed of FNN has been a major bottleneck

in different applications. In the past theoretical research, the input weights and hid-

den layer biases need to be adjusted using some parameter tuning approach such as

gradient descent based methods. However gradient descent based learning techniques

are generally slow due to inappropriate learning steps with significantly large latency

to converge to a local maxima. Huang et al. [88] showed that single-hidden layer

feedforward neural network, also termed as ELM, can exactly learn N distinct ob-

servations for almost any nonlinear activation function with at most N hidden nodes

(see Figure 2.2). Unlike the popular thinking that network parameters need to be

tuned, one may not adjust the input weights and first hidden layer biases but they

are randomly assigned. Such an approach has been proven to perform learning at

an extremely fast speed, and obtains good generalization performance for activation

functions that are infinitely differentiable in hidden layers. ELM converts the learning

problem into a simple linear system whose output weights can be analytically deter-

mined through a generalized inverse operation of the hidden layer weight matrices.

Such a learning scheme can operate at approximately thousands of times faster speed

than learning strategy of traditional feedforward neural networks like back propa-
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gation (BP) algorithm [7]. Improved generalization performance with the smallest

training error and the norm of weights demonstrate its superior classification capabil-

ity for real-time applications at an exceptionally fast pace without any learning bot-

tleneck. For N arbitrary distinct samples (xi, γi) where xi = [xi1, xi2, . . . , xip]
′ ∈ Rp

and γi = [γi1, γi2, . . . , γim]′ ∈ Rm (the superscript “ ′ ” represents the transpose), a

standard ELM with L hidden nodes and an activation function g(x) is modeled by

L∑
i=1

βig(xl) =
L∑

i=1

βig(wi.xl + bi) = ol, l ∈ {1, 2, 3, . . . , N} (2.1)

where wi = [wi1, wi2, . . . , wip]
′ and βi = [βi1, βi2, . . . , βim]′ represent the weight vectors

connecting the input nodes to an ith hidden node and from the ith hidden node

to the output nodes respectively; bi shows a threshold for an ith hidden node and

wi.xl represents the inner product of wi and xl. Above modeled ELM can reliably

approximate N samples with zero error as

N∑

l=1

‖ol − γl‖ = 0 (2.2)

L∑
i=1

βig(wi.xl + bi) = γl, l ∈ {1, 2, . . . , N}. (2.3)

where above N equations can be written as Υβ = Γ where β = [β′1, . . . , β
′
L]′L×m and

Γ = [γ′1, . . . , γ
′
N ]′N×m. In this formulation Υ is called the hidden layer output matrix

of ELM where ith column of Υ is the output of ith hidden node with respect to inputs

x1, x2, . . . , xN . If the activation function g is infinitely differentiable, the number of

hidden nodes are such that L ¿ N . Thus,

Υ = (w1, . . . , wL, b1, . . . , bL, x1, . . . , xN). (2.4)

Υ =




g(w1.x1 + b1) · · · g(wL.x1 + bL)
... · · · ...

g(w1.xN + b1) · · · g(wL.xN + bL)




N×L

(2.5)
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Figure 2.2: Simplified structure of ELM.

The training of ELM requires minimization of an error function ε in terms of the

defined parameters as

ε =
∑N

l=1(
∑L

i=1 βig(wixl + bi)− γl)
2 (2.6)

where it is sought to minimize the error, ε = ‖Υβ − Γ‖. Traditionally, unknown Υ

is determined using gradient descent based scheme and the weight vector W is tuned

iteratively by

wt = wt−1 − ρ
∂ε(W )

∂W
. (2.7)

The learning rate ρ significantly affects the accuracy and learning speed; a small value

of ρ causes the learning algorithm to converge at a significantly slower rate whereas

a larger learning step leads to instability and divergence. Huang et al. [88] proposed

minimum norm least-square solution for ELM to avoid aforementioned limitations

encountered in conventional learning paradigm which states that the input weights

and the hidden layer biases can be randomly assigned if the activation function is

infinitely differentiable. It is an interesting solution; instead of tuning the entire

network parameters such random allocation helps to analytically determine the hidden

layer output matrix Υ. For the fixed network parameters, the learning of ELM is

simply equal to finding a least-square solution of

‖Υ(ŵ1, . . . , ŵL, b̂1, . . . , b̂L)β̂ − Γ‖ (2.8)
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= min
wi,bi,β

‖Υ(w1, . . . , wL, b1, . . . , bL)β − Γ‖. (2.9)

For a number of hidden nodes L ¿ N , Υ is a non-square matrix, the norm least-

square solution of above linear system becomes β̂ = Υ∗Γ, where Υ∗ is the moore-

penrose generalized inverse of a matrix Υ. It should be noted that above relationship

holds for a non-square matrix Υ whereas the solution is straightforward for N = L.

The smallest training error is achieved using above model since it represents a least-

square explanation of a linear system of Υβ = Γ as

‖Υβ̂ − Γ‖ = ‖ΥΥ∗Γ− Γ‖ (2.10)

= min
β
‖Υβ − Γ‖. (2.11)

2.3 Feature Extraction

A systematic framework for object recognition is presented based on hybrid object

information. Successful extraction of good features from images is crucial to object

recognition considering large variations in realistic images.

2.3.1 Global Feature Vector Computation

Karlhunen-Loeve expansion, also known as principal component analysis (PCA), is

a data representation technique widely used in pattern recognition and compression

schemes. In [92], Yang et al. proposed two-dimensional PCA for image representa-

tion. As opposed to PCA, 2D-PCA is based on 2D image matrices rather than 1D

vectors, therefore the image matrix does not need to be vectorized prior to feature

extraction. An image covariance matrix is constructed by directly using the original

image matrices. Let X denote an M -dimensional unitary column vector. To project

a Q ×M image matrix A on X; a linear transformation Y = AX is used which re-

sults in a Q-dimensional projected vector Y . The total scatter of the projected data

is introduced to measure the discriminatory power of a projection vector X. The
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total scatter can be characterized by the trace of a covariance matrix of the projected

feature vectors, i.e., J(X) = tr(Sx) where tr(.) represents the trace of a matrix and

Sx denotes the covariance matrix of projected feature vectors. The covariance matrix

Sx can be computed as

Sx = E[(Y − E(Y ))(Y − E(Y ))′] (2.12)

= E[[(A− E(A))X][(A− E(A))X]′] (2.13)

tr(Sx) = X ′[E(A− E(A))′(A− E(A))]X. (2.14)

The image covariance matrix is defined as Gt = [(A− E(A))′(A− E(A))]. It is easy

to verify that Gt is a M × M nonnegative definite matrix; suppose that there are

P training image samples, the jth sample of size Q × M is denoted by Aj where

1 ≤ j ≤ P . Gt is computed by

Gt =
1

P

P∑
j=1

[(Aj − A)′(Aj − A)] (2.15)

J(X) = X ′GtX (2.16)

where A represents the average image of all training samples. Above criterion is

Table 2.1: Time spent for training and testing using ELM on global feature vectors.

Time
Planes Background Cars Bikes Faces Leaves

TT CT TT CT TT CT TT CT TT CT TT CT

Planes N/A N/A .078 .062 .140 .062 .078 .078 .078 .062 .094 .047

Background .094 .078 N/A N/A .047 .047 .094 .047 .109 .031 .156 .016

Cars .156 .094 .031 .047 N/A N/A .125 .047 .140 .031 .125 .031

Bikes .125 .078 .078 .047 .094 .047 N/A N/A .109 .047 .078 .047

Faces .094 .047 .140 .031 .109 .031 .094 .047 N/A N/A .109 .016

Leaves .094 .047 .109 .016 .125 .016 .140 .047 .094 .016 N/A N/A

TT: Training Time (sec.), CT: Classification Time (sec.)
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called the generalized total scatter criterion. The unitary vector X that maximizes

the criterion is called the optimal projection axis. We usually are required to select a

set of projection axes, X1, X2, . . . , Xd (where subscript d is a scalar value represent-

ing the number of dimensions), subject to orthonormal constraint and to maximize

the criterion J(X). Yang et al. [92] showed that extraction of image features using

2D-PCA is computationally efficient and better recognition accuracy is achieved than

traditional PCA. However the main limitation of 2D-PCA based recognition is the

processing of higher number of coefficients since it works in row directions only. Zhang

and Zhou [94] proposed (2D)2 PCA based on assumption that training sample images

are zero mean and image covariance matrix can be computed from the outer product

of row/column vectors of images. We propose a modified bidirectional 2D-PCA to

extract features by computing two image covariance matrices of the square training

samples in their original and transposed forms respectively while training image mean

need not be necessarily zero. The vectorization of mutual product of such covariance

matrices results into a considerably smaller sized feature vectors which retain better

structural and correlation information amongst neighboring pixels. Figure 2.3 shows

better ability of bidirectional 2D-PCA to represent the global structure of various

object categories. Figures 2.3(a-b) are plotted using Caltech (Airplanes and Leaves)

and MIT (Cars and Pedestrians) datasets respectively, whereas Caltech (Airplanes

and Motorbikes) datasets have been used for Figures 2.3(c-d). The first two compo-

nents of feature vectors obtained using bidirectional 2D-PCA and Kernel PCA are

plotted against each other. In Figures 2.3(a-b); we observe nearly separated classes

for Caltech and MIT datasets; this validates our claim that 2D PCA achieves supe-

rior categorization (see Table 2.2) for these datasets. For kernel PCA (Figure 2.3(d));

it is quite clear that the first two components, representing the largest eigenvalues,

are almost identical and analogous overlap of these feature vectors may lead to poor

classification. For the same datasets; use of bidirectional 2D-PCA generates classes

which are partly converged as shown in Figure 2.3(c). Table 2.1 demonstrates the
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Table 2.2: Training and detection accuracy using ELM on global feature vectors.

Accuracy
Planes Background Cars Bikes Faces Leaves

TA CA TA CA TA CA TA CA TA CA TA CA

Planes N/A N/A 98 86 100 100 99.5 91.2 100 90.6 100 97.6

Background 96 79.8 N/A N/A 100 100 97.5 73.7 99.5 82.6 99 92

Cars 100 100 100 100 N/A N/A 100 100 100 100 100 100

Bikes 99.5 91.6 99 80.1 100 100 N/A N/A 100 93.8 100 95

Faces 100 97.1 99.5 87 100 100 100 91.3 N/A N/A 100 92.7

Leaves 100 97.2 97.5 85.8 100 100 100 96.8 100 95.4 N/A N/A

TA: Training Accuracy (%age), CA: Classification Accuracy (%age)

extremely fast classification capability of ELM using global features. However, the

accuracy achieved using these global features is not stable and varies with the selec-

tion of datasets in different combinations to represent positive and negative classes

during recognition (see Table 2.2 for mutual combinations of Airplanes, Background

and Motorbikes from Caltech datasets). Therefore, we propose to combine comple-

mentary information, i.e. local feature vectors, along with the global contents of an

image to attain reliable classification which is independent of view point changes and

dataset combinations. It should be noted that all Matlab implementations of our

experiments are executed on a desktop computer equipped with Intel Core 2 Duo

processor of 2.6 GHz speed and 2GB RAM.

2.3.2 Local Feature Vector Computation

Identifying textured patches that are distinctive and detectable under varying pose

and lighting conditions in neighborhood of stable feature points is a widely researched

area with numerous applications. Different strategies have been proposed to use local

patches or contour based information for object detection with features being shared
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Figure 2.3: Non-linearity capture among datasets.

among different classes [77],[95]-[98]. This section proposed extraction of partial ob-

ject information using feature vectors computed from local patches surrounding a set

of stable feature points. These feature vectors are used as complementary information

to enhance classification accuracy.

A semi-naive based classifier, recently proposed by Mustafa et al. [85], is used

to determine the class of local patches surrounding stable key points. The solution

for patch correspondence problem provided in [85] shows promising results, com-

parable to state-of-the-art, yet simple by exploiting statistical information of pixel

intensities. To detect preliminary stable key points, randomly selected images of a

specific class are deformed and Harris corner detector is applied. We select Harris

corner detector for its simplified and efficient implementation to detect key points

with minimal computational burden compared to other schemes such as SIFT, com-

plex filters, PCA-SIFT, and cross-correlation [83],[84],[102]. The parameters for affine
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deformations are randomly picked from a uniform distribution therefore two images

of a similar object may have differently been warped at two different time instances.

The corners identified for deformed set of images change based on chosen parame-

ters and background clutter. It is realized that the rising number of affine warped

images can lead to higher computational load. However, comprehensive training sets

to mimic possible appearances of local patches generate improved recognition. On

other hand, such a pronounced computational complexity is defied only in training

whereas the recognition of an incoming image during testing phase is undemanding

and high-speed procedure. Figure 2.4 shows different feature points detected at vary-

        

        

(a)
        

        

        

        

(b) 

Figure 2.4: Preliminary key points detected under varying poses.

ing deformations; two sample images from Caltech airplane and motorbikes datasets

are used and it is obvious that number of detected feature points are changing in

different transformations. A list is maintained to keep track of points, which have

been repeated the most, to extract local patches. We declare the identified key points

as stable if the their rate of recognition is more than 75% of the total number of
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Figure 2.5: Left : Extracted local patches for Ferns computation, right : Histogram
of identified key points for varying affine deformations.

deformations. A high variation in number of detected feature points is observed;

please refer to histogram presented in Figure 2.5 where the number of identified key

points is significantly changing for varying affine parameters. For practicality, white

noise is also added so that the patch is processed in conditions akin to a real life

situation. The patches surrounding stable key points of size 16 × 16 are extracted

whereas the deformed versions of images help to achieve synthesis to symbolize the

possible appearances under varying poses. Figure 2.5(left) shows extracted patches

(blue squares), with a height and width of 16 pixels each, using an illustration image

from Caltech (Airplanes) dataset; please note that the recognized stable key points are

represented by the green color whereas outliers have been represented by red. After

extraction of local patches; assigning each patch to a most probable object class is a

subsequent task. Let ci, i = 1, 2, . . . , H be a set of classes and fj, j = 1, 2, . . . , Z be a

set of binary features to be computed from extracted patches. We want to classify a

patch based upon binary features as follows:

ĉi = arg maxci
P (C = ci|f1, f2, . . . , fz), (2.17)

P (C = ci|f1, f2, . . . , fz) =
P (f1, f2, . . . , fz|C = ci)P (C = ci)

P (f1, f2, . . . , fz)
. (2.18)

Assuming uniform prior probability P (C) and denominator P (f1, f2, . . . , fz) as scaling

factor; our problem is reduced to

ĉi = arg maxci
P (f1, f2, . . . , fz|C = ci). (2.19)
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The computation of each binary feature fj depends upon mutual relationship of two

pixel intensities located at dj,1 and dj,2 in the patch.

fj =





1, if I(dj,1) < I(dj,2)

0, otherwise

(2.20)

where I(.) represents an image patch. Assuming a complete independence between

features leads us to

P (f1, f2, . . . , fz|C = ci) =
z∏

j=1

P (fj|C = ci). (2.21)

However, the correlation amongst neighboring pixels of a patch is ignored hence an

acceptable compromise can be modeled as

P (f1, f2, . . . , fz|C = ci) =
M∏

k=1

P (Fk|C = ci) (2.22)

where M represents the number of feature clusters of size S = Z/M each, a Fern Fk

is represented by

Fk = fσ(k,1), fσ(k,2), . . . , fσ(k,S) (2.23)

where σ(k, S) shows a random permutation function with range 1, . . . , Z. A reliable

and fast patch correspondence using above relationship is reported in [85]. A per-

formance and computational load trade-off is observed for varying values of M and

S. In training phase, class condition probabilities for individual ferns are estimated

which are combined to label corresponding extracted patches. We generate M + 1

dimensional local feature vectors for individual patches which comprise of conditional

probabilities of mutually independent ferns and their combined information to com-

pute the conditional probability of a local patch. Finally, such feature vectors are

used for training and testing purposes using ELM as classifier working on local type

of features.

36



2.4 Learning Classifiers with Parallel ELMs

The classification algorithm is provided with a set of training images where positive

label indicates that an object of interest is present in an image while negative label

represents its absence. All images are converted to gray level and resized to square

dimension matrices. There is no further pre-processing applied to datasets and we

assume no prior information about location, view point and/or image acquisition

constraints. To avoid the curse of dimensionality, bidirectional 2D-PCA is employed

which requires multiplication between two covariance matrices (one for each of row

and column directions). The output of this dimensionality reduction step is a square

matrix which is vectorized and termed as global feature vector.

The proposed recognition scheme declares an incoming image as positive class

if the relevant object is present. For fast pre-processing direct intensity values are

used to extract both kinds of features, i.e., global and local. Generating a variety of

features representing various contents of an image allows to knob varying geometric

attributes of an object and achieve better categorization. Figure 2.6 represents a

generalized framework that supports integration of a wide variety of learnable local

descriptors for enhanced classification. We used only single type of local feature vector

generated using Ferns [85] style patches surrounding stable feature points identified

using Harris corner detector. Due to significantly shorter training time, and mini-
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mized computational burden; we use more than one ELMs in a parallel fashion to

process all categories of image feature simultaneously for real-time classification. The

training process for an ELM operating on global feature vectors is not the same as

one using set of local features. Computed global training feature vectors are directly

input to an ELM, whereas training for a ELM that deals with local features, starts

with application of corner detector by deforming the training images and keeping a

track of the number of times same feature point is identified. Such image deforma-

tions are suggested to train our classifier for possible pose variations, and is proved

to be feasible due to fundamentally soaring training speed (see Tables 2.1, 2.3). The

number of feature vectors representing the local patches of an image may vary de-

pending upon stable key points detected from a synthesized set of images for different

affine deformations. A majority voting scheme is adopted for reliable estimation of

an image class since we observe false alarms for individual local patches due to low

information content and an accidental matching among different regions of two dif-

ferent objects. The ELM operating on global feature vectors does not require voting

scheme since one-to-one correspondence holds between feature vectors and individ-

ual images. Finally, a fusion process is initiated to combine n estimates originating

from all ELMs based on normalized weighted sum strategy that allows us to assign

importance to each approximation based on confidence (as follows):

Label =





+1, for
∑n

i=1 wi.ei ≥ Th;
∑n

i=1 wi = 1

−1, otherwise

(2.24)

where wi,ei and Th represent weight, estimate for individual ELM and threshold

respectively. In our proposed framework, user has better control over preference to be

given to an individual feature type. Since the penchant strategy for different feature

types is solely dependent upon application, photometric and geometric elements of

individual objects. The value for threshold, i.e., Th may vary between zero and

one depending upon required confidence. It is obvious that a high value of Th may
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result into increased reliability of classification with lower false positives and increased

chance of false negative alarms. During experiments, we assigned a 0.5 weight values

to each of the estimates originating from two ELMs operating on both kinds of feature

vectors whereas a threshold of 0.75 is setup for final classification. Different steps

involved in our proposed algorithm are presented in Figure 2.6.

Table 2.3: computational time (sec.) for GRAZ dataset.

Bikes Cars Persons

Training Time

Bikes N/A 4.29 4.31

Cars 4.30 N/A 4.34

Persons 4.30 4.37 N/A

Classification Time

Bikes N/A 3.21 2.93

Cars 3.25 N/A 3.01

Persons 2.91 2.96 N/A

2.5 Results and Discussion

We used standard datasets to test the viability of our proposed method. The datasets

from Caltech include Airplanes, Cars Brad, Faces, Leaves, Background, and Motor-

bikes whereas GRAZ and MIT image sets comprised of Bikes, Cars, Persons, and

Pedestrians respectively. Table 2.3 presents the CPU time allocated for classification

of GRAZ datasets using 53712, 53455, and 46495 features for Bikes, Cars and Per-

sons datasets respectively. It is clear from the allocated CPU time that our proposed

algorithm performs categorization at tremendously swift speed. In addition to speed,

accuracy is another critical issue to judge the competence of a classifier. Numbers of

experiments using challenging categorization image sets have been performed to ana-

lyze the performance of our ELM based classifier; the classification results of MIT and

Caltech datasets are presented here for comparison of classification accuracy. Figure
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Performance Analysis of Classification Accuracy
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Figure 2.7: Classification accuracy using MIT dataset for varying number of principal
components.

2.7 shows accuracy achieved for classification of MIT datasets (Cars and Pedestri-

ans used as positive and negative classes respectively). Above 95% categorization

accuracy is achieved for MIT database using multiple principal components, it is

also realized that increasing the number of principal components is not a solution

to improve detection accuracy. Our experiments are based on binary classification

problem however they can be extended to multiclass scenario with minor modifica-

tions. It is an interesting aspect to investigate the impact of changing threshold Th

on accurate classification. The optimal value for Th can help to minimize false alarms

and precisely identify the object class present in an input image. Since we do not

get classification with perfect confidence because of noisy measurements and various

distorting parameters during image acquisition therefore we try to estimate an accept-

able compromise between accuracy and confidence. The adjustment of Th to a value

of 1 may lead to rejection of correct classification with lower confidence and increased

false alarm ringing is witnessed for lower values of threshold. Various experiments

are conducted with changing values of Th to obtain an optimal solution, the number
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Table 2.4: Details of datasets used in analysis of changing threshold against accuracy.

Positive Class Negative Class Training Images Testing Images

Caltech Leaves Faces 200 436

MIT Pedestrians Cars 300 1140

GRAZ Bikes Persons 200 476

of principal components to represent global feature vectors are fixed to 36 whereas

number of training and test images are different for specific datasets based on their

respective sizes. For these trials, we randomly picked Leaves and Faces, Pedestrians

and Cars, Bikes and Persons to represent positive and negative classes from Caltech,

MIT and GRAZ datasets respectively. The number of images for both classes of ob-

jects also varies with datasets and readers may refer to Table 2.4 for further details.

The achieved accuracy for various image sets is represented in Figure 2.8 for varying

Performance Analysis for Varying Threshold
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Figure 2.8: Performance analysis for changing threshold.

values of threshold Th. The proposed method performs considerably well for MIT

dataset on changing threshold however an inconsistent classification is observed for

rest of the datasets included in our experiments. One may notice that the devia-
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tion in achieved correctness is higher for the combined results of all three input sets.

However, a decrease in deviation amongst generated classifications is observed for

0.7 ≤ Th ≤ 0.8. Such smaller deviation value amongst classifications for all datasets

represents the steady performance of our scheme for images with differing geometric

and radiometric variations. Therefore, one may conclude, based on experimental ev-

idence, that the value of Th set to a lower value or very close to 1 may lead to rising

false alarms and rejection of correctly classified object with lower confidence due to

uncertain conditions. The Caltech dataset is used to test the performance of our

proposed framework against state-of-the-art. The images are randomly selected from

various Caltech datasets to represent negative class. For Caltech datasets; Table 2.5

presents an accuracy comparison of categorization for different modern algorithms;

our proposed method achieves an average accuracy above 97% and outperformed

other well-established schemes.

Table 2.5: Accuracy comparison for different approaches (%).

Dataset(s) Our Method [87] [97] [74]

Bikes 94.6 93.4 92.5 73.9

Planes 95.3 90.0 90.2 92.7

Cars 99.0 96.0 90.3 97.0

Leaves 98.3 94.2 - 97.8

Faces 97.9 98.0 96.4 -

2.6 Summary

We present a novel supervised learning algorithm for object detection and categoriza-

tion that combines the strengths of both global and local features and demonstrate

its considerably high speed in both training and testing phases. The proposed frame-

work is capable of handling changes in pose, illumination, inter-class and intra-class
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attributes. The proposed parallel architecture where each ELM module is simultane-

ously working, on distinct feature types, formulates a potential classifier for problems

requiring significantly faster and reliable categorization. Features obtained through

synthesized views of extracted local patches add further information to classification

which is partially invariant to pose and lighting conditions.
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Chapter 3

Visual Vocabularies for Human Action

Recognition

This chapter introduces a novel recognition framework for human actions using hy-

brid features1. The hybrid features consist of spatio-temporal and local static features

extracted using motion-selectivity attribute of 3D dual-tree complex wavelet trans-

form (3D DT-CWT) and affine SIFT local image detector respectively. The proposed

model offers two core advantages: 1) the framework is significantly faster than tradi-

tional approaches due to volumetric processing of images as ‘3D box of data’ instead

of frame by frame analysis, 2) rich representation of human actions with reduced ar-

tifacts using completely symmetrical complex filter banks. No assumptions of scene

background, location, objects of interest, or point of view information is made. Bidi-

rectional two-dimensional PCA (2D-PCA) is employed for dimensionality reduction as

it preserves structure and correlation amongst neighborhood pixels of a video frame.

For action recognition, different representations have been proposed such as op-

tical flow [2], geometrical modeling of local parts space-time templates, and hidden

Markov model (HMM) [3] (large number of features may result in higher computa-

tional load). Generally, the precision of optical flow estimation is reliant upon tribu-

1This chapter incorporates the outcome of a joint research undertaken in collaboration with A.

Baradarani, S. Seifzadeh under the supervision of Dr. Q.M. Jonathan Wu [54, 55, 105]
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lations in aperture and properties of the surface being captured. Geometrical model

[1, 8, 15] of local human parts is used to recognize the action using static stances in a

video sequence that match a sought action. In space-time manifestation, outline of an

object of interest is characterized in space and time using silhouette or body contour

to model an action [5, 8, 15, 25, 28, 36]. The volumetric analysis of video frames has

also been proposed [6] where video alignment is usually unnecessary and space-time

features contain descriptive information for action classification. In [6] promising re-

sults are achieved assuming that background is known for preliminary segmentation.

Space-time interest points for action recognition have been proved to be a thriving

technique [11, 27, 29, 30, 32, 35] independent of pre-segmentation or tracking of indi-

vidual dynamic objects in a video. To improve classification performance, both shape

and spatio-temporal features have also been combined [12, 13, 17]. Some researchers

have proposed to integrate a priori information of a scene into recognition process

which may include operations like stabilization, video trimming and segmentation

using readily available masks or automated detection of movements in consecutive

frames [6, 28, 31].

The spatio-temporal (ST) features [12, 30] and space-time interest points (STIP)

features [11, 35] have successfully been used in action recognition. The ST feature

detector produces dense set of features with a reasonable performance in activity

recognition tasks. The detector applies two separate linear filters to the spatial and

temporal dimensions respectively instead of using a 3D filter that consumes higher

computational time. The ST volumes around interest points are extracted for further

processing. To detect events in a video sequence, the extraction of STIP features

is based on the idea of Harris and Förstner interest point operators. It is extended

to spatio-temporal domain by acquiring the image values in space-time which have

large variations in both spatial and temporal dimensions. Moreover, STIP features

can be represented using three different local space-time descriptors, i.e., Histogram

of Oriented Gradients (HoG), Histogram of Optical Flow (HoF) and the combination
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of both termed as HnF.

Using 3D dual-tree complex wavelet transform (3D DT-CWT), in this chapter, a

novel action recognition framework is proposed that processes volumetric data of a

video sequence instead of searching a specific action through feature detection in indi-

vidual frames and finding their temporal behavior. Dual-tree complex wavelet trans-

form is constructed by designing an appropriate pair of orthogonal or biorthogonal

filter banks that work in parallel. Proposed by Kingsbury [9], 2D dual-tree complex

wavelet transform has two important properties; the transformation is nearly shift-

invariant and has a good directionality in its subbands. The idea of multiresolution

transform for motion analysis was proposed in [4] and further developed as 3D wavelet

transform in video denoising by Selesnick et al. [19, 20]. This is an important step to

overcome the limitations caused by the separable implementation of 1D transforms

in a 3D space and also due to an artifact called checkerboard effect which has been

extensively explained in an excellent survey on theory, design and application of DT-

CWT in [21]. Selesnick et al. refined their work in [20] by introducing non-separable

3D wavelet transform using Kingsbury’s filter banks [9, 21] to provide an efficient

representation of motion-selectivity (the so-called directional -selectivity of DT-CWT

in two-dimensional space).

To determine spatio-temporal features, complex wavelet coefficients of different

subbands are represented by lower dimension feature vectors obtained using bidirec-

tional two-dimensional PCA (2D-PCA), i.e. a variant of 2D-PCA [23]. Bidirectional

2D-PCA performs in both row and column-wise directions and better preserves the

correlation amongst neighboring pixels. To extract local static features, affine SIFT

descriptors are computed for patches around detected interest points. A pruning

strategy is applied to eliminate the descriptors which belong to static parts of a scene

in a video since such information is not significant for accurate activity recognition.

Finally, we construct visual vocabularies using both kinds of features as input to

a classifier in order to recognize an action present in an arriving video. Extreme
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learning machine (ELM) is a supervised learning framework [88], single hidden layer

feedforward neural network, that is trained thousands times faster speed than tra-

ditional learning schemes such as gradient descent. ELM is applied to classify the

actions represented by visual vocabularies.

3.1 Preliminaries

3.1.1 Dual-tree Complex Filter Banks

Consider the two-channel dual-tree filter bank implementation of the complex wavelet

transform as shown in Figure 3.1. The primal filter bank B in each level defines the

real part of the wavelet transform and the dual filter bank B̃ represents the imaginary

part. When both the primal and dual filter banks work in parallel to make a dual-

tree structure. Recall that the scaling and wavelet functions associated with the

analysis side of B are defined by two-scale equations φh(t) = 2
∑

n h0[n]φh(2t − n)

and ψh(t) = 2
∑

n h1[n]φh(2t − n). The scaling function φf and wavelet function ψf

in the synthesis side of B are similarly defined via f0 and f1. The same is true for

the scaling functions (φ̃h and φ̃f ) and wavelet functions (ψ̃h and ψ̃f ) of the dual filter

bank B̃. The dual-tree filter bank defines analytic complex wavelets ψh + jψ̃h and
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Figure 3.1: (a) The primal filter bank B; (b) The dual filter bank B̃.

ψ̃f+jψf , if the wavelet functions of the two filter banks form an Hilbert transform pair.

Specifically, the analysis wavelet ψ̃h(t) of B̃ is the Hilbert transform of the analysis

wavelet ψh(t) of B, and the synthesis wavelet ψf (t) of B is the Hilbert transform

of ψ̃f (t). That is, Ψ̃h(ω) = −jsign(ω)Ψh(ω) and Ψf (ω) = −jsign(ω)Ψ̃f (ω), where
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Ψh(ω), Ψf (ω), Ψ̃h(ω), and Ψ̃f (ω) are the Fourier transforms of wavelet functions

ψh(t), ψf (t), ψ̃h(t), and ψ̃f (t) respectively, sign represents the signum function, and

j is the square root of -1 [37]. This introduces limited redundancy and allows the

transform to provide approximate shift-invariance and more directionality selection

of filters [9, 21]. It preserves the property of perfect reconstruction and achieves

computational efficiency with improved frequency responses. It should be noted that

these properties are missing in discrete wavelet transform (DWT). The filter bank

B constitutes a biorthogonal filter bank [22] if and only if its filters satisfy the no-

distortion condition

H0(ω)F0(ω) + H1(ω)F1(ω) = 1 (3.1)

and the no-aliasing condition

H0(ω + π)F0(ω) + H1(ω + π)F1(ω) = 0. (3.2)

The above no-aliasing condition is automatically satisfied if

H1(z) = F0(−z) and F1(z) = −H0(−z). (3.3)

The wavelet filter banks of B̃ exhibits similar characteristics

H̃1(z) = F̃0(−z) and F̃1(z) = −H̃0(−z). (3.4)

where z refers to the z-transform.

Non-separable 3D Dual-tree Complex Wavelet Transform

Generally, wavelet bases are optimal for the category of one- dimensional signals.

In case of 2D (two-dimensional), however, the scalar 2D discrete wavelet transform

(2D DWT) cannot be an optimal choice [21, 22] because of the weak line (curve)-

singularities of DWT although its performance is still better than the discrete cosine

transform (DCT). In video, however, the situation is even worse and the edges of

objects move in more spatial directions (motion) yielding a 3D edge effect. The 3D

DT-CWT includes a number of wavelets which are expansive than real 3D dual-tree
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Figure 3.2: Typical schematic of filters in a 3D DT-CWT structure with the real and
imaginary parts of a complex wavelet transform. 28 of the 32 subbands are
wavelets excluding the scaling terms. Only the analysis side is shown in this
figure.

wavelet transform. This is related to the real and imaginary parts of a 3D complex

wavelet with two wavelets in each direction. Figure 3.2 shows the structure of a

typical 3D DT-CWT. Note that the wavelets associated with 3D DT-CWT are free

of the checkerboard effect. The effect remains disruptive for both the separable 3D

CWT (complex wavelet transform) and 3D-DWT. Recall that for 3D DT-CWT, in

stage three (the third level of the tree), there are 32 subbands from which 28 are

counted as wavelets excluding the scaling subbands, compared with the 7 wavelets for

separable 3D transforms. Thus, 3D DT-CWT can better localize motion in its several

checkerboard-free directional subbands compared with 2D-DWT and separable 3D-

DWT. It should be noted that there is a slight abuse of using the term subband here.
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It is more reasonable to use the terms of ‘blocks’ or ‘boxes’ instead of ‘subbands’ in

a 3D wavelet structure.

3.2 Proposed Algorithm

For action recognition, support vector machine (SVM), AdaBoost, k-NN, AdaBoost

with multiple instance learning (MIL), temporal boosting, chaotic invariants, and

representation of actions in space-time shapes have been proposed in literature. The

profound use of multiple types of features is evident from improved detection re-

sults [12, 13] since they provide complementary information for action recognition.

However, trade-off between acquired accuracy and computational time poses a ma-

jor bottleneck for real-time implementation of these schemes in various applications.

In this section, we describe our action recognition framework which utilizes ELM

for classification using hybrid data, i.e., dimensionality reduced features set. Such

data is obtained from two kinds of features, i.e., spatio-temporal features and local

static features. The proposed framework assigns an action label to an incoming video

based upon observed activity. The method is capable of identifying a specific action

present in a video utilizing an ELM trained on visual vocabularies constructed using

hybrid feature vectors. In this work we do not assume any a priori information about

background, view point, activity and data acquisition constraints.

3.2.1 Synopsis of Proposed Framework

The implementation of proposed algorithm starts with the computation of hybrid fea-

ture vectors. As preprocessing operation, incoming video frames are converted to gray

space and resized to square dimension. The 3D DT-CWT is employed to extract co-

efficients which contain embedded spatio-temporal information of volumetric data of

different moving objects. To generate distinctive and lower dimension spatio-temporal

information from videos, bidirectional 2D-PCA is applied on subbands of multires-
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olution decomposition which results into considerably smaller sized feature vectors.

The second class of features, local static features, are extracted by applying ASIFT

on patches around stable interest points detected using Harris-Laplacian and Hessian

Laplacian schemes followed by a pruning strategy [13] to eliminate ASIFT descriptors

for immobile parts in the scene which carry no useful information about the sought

action. Finally, we construct visual vocabularies using both kinds of features with

assigned labels as input to ELM. Visual vocabularies are a way to represent features

for a classifier that associates query images to the training elements. This approach

saves us computational efforts to relate an incoming image to all training datasets.

We try to identify a small number of clusters with excellent discriminative attributes

for various classes. A minimized within-cluster and maximized between-clusters scat-

ter is attempted using square-error partitioning, i.e. k-means, which proceeds by

iterated assignments of points/features to their closest cluster centers and reevalua-

tion of cluster centers. We do not require background subtraction or object tracking

using visual vocabularies and similarity information of features are used to represent

relevant video sequences. The block diagram of our proposed algorithm is presented

in Figure 3.3.

3.2.2 Spatio-Temporal Features

For convenience, we use the term of spatio-temporal features to refer to subband fea-

ture vectors. The spatio-temporal feature vectors are extracted from an input video

sequence using 3D DT-CWT without any segmentation and stabilization operation.

This is an important contribution, the techniques proposed in the past assumed knowl-

edge of background or foreground masks or required manual stabilization operation

of an incoming video before event recognition [6, 26, 28]. The motion selectivity at-

tribute of 3D DT-CWT can reliably extract spatio-temporal features which are truly

discriminative for variations among inter-class and intra-class actions performed by

similar or dissimilar actors. Applying 3D DT-CWT on an input video sequence of
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Figure 3.3: The block diagram of our proposed algorithm (a) main steps of the proposed
scheme (b) steps involved in computation of bidirectional 2D-PCA.

 

 

Figure 3.4: Some sample spatio-temporal features computed using motion selectivity
attribute of 3D DT-CWT. From left to right columns, top view of first
directional subband for four actions, namely, bend, run, skip and wave1
respectively.
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size (Q,M, P ) results into a box of video frames of size (Q/2, M/2, P/2) where Q, M ,

and P represent rows, columns and number of frames respectively. Figure 3.4 rep-

resents extracted features, using first orientational subband decomposition, of four

different actions performed by two actors. The top row shows features extracted

from action videos of actor Daria whereas bottom row corresponds to actor Shahar.

The columns from left to right correspond to four actions i.e. bend, run, skip and

wave1 respectively. It is clearly evident that the extracted spatio-temporal features

capture important deviations in data that occur due to similar actions performed by

different actors under differing dynamics and/or different actions performed by the

same actor.

Yang et al. [92] showed that extraction of image features using 2D-PCA is com-

putationally efficient and better recognition accuracy is achieved compared with tra-

ditional PCA. However, the main limitation of 2D-PCA based recognition is the

processing of higher number of coefficients since it works in row directions only. Pang

et. al [24] suggested an efficient approach, named binary 2D-PCA, to approximate

bases of 2D-PCA using Haar like binary box functions. We propose a modified scheme

to extract features using 2D-PCA (please refer to section 2.3.1 for detailed discussion)

by computing two image covariance matrices of the square training samples in their

original and transposed forms respectively while training image mean need not be

necessarily equal to zero. To avoid the curse of dimensionality bidirectional 2D-PCA

is employed (see Figure 3.3(b) for flow chart of bidirectional 2D-PCA computation).

One may come up with two basic questions that why do we need dimensionality re-

duction and if it is needed then why to use bidirectional 2D-PCA? For first question,

we believe that the reduction in dimension of data will enhance training and testing

speed of our classifier at later stage. Secondly, our extracted feature sets also contain

static information, such as background and motionless objects in the scene, given

that we do not apply segmentation or stabilization operation on an incoming video.

Such stationary information in a feature set causes increased ambiguity and classifi-
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cation complexity which can be minimized by extracting discriminative information

using dimension reduction scheme. Bidirectional 2D-PCA is used instead of other

linear/non-linear dimension reduction schemes to retain the correlation amongst ad-

jacent data points as it plays an important role in volumetric data of an action for

accurate recognition. Figure 3.5(a) shows better ability of bidirectional 2D-PCA to

represent the spatio-temporal information of various action categories performed by

actor Daria. Figure 3.5(a) and (b) are plotted against three different videos that

contain activity of Jack, Bend and Jump respectively. The first two components of

subband feature vectors obtained using bidirectional 2D-PCA and traditional PCA

are plotted. In Figure 3.5(a), the separability of different action classes is noticeable

whereas components are merged for the feature vectors obtained using PCA (Figure

3.5(b)).
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Figure 3.5: Distinctive features represented among different videos. Spatio-temporal
information captured by (a) bidirectional 2D-PCA, (b) PCA.

3.2.3 Local Static Features

The humans have ability to recognize an action from a collection of instantaneous

poses of an object in still images. In such data, only shape and its context infor-

mation is available whereas the motion interpretation is absent. Shape context, his-
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Figure 3.6: Matching of an image pair using ASIFT and SIFT Methods [14]. Left :
ASIFT matching, right : SIFT matching.

togram of gradient of local neighborhood, and appearance have profusely been used

in problem domains like recognition and classification. For automated action recog-

nition using instantaneous frames, more than one images are required to cope with

the unpredictable camera movements. The well known image detectors like SIFT

[10], maximally stable extremal region (MSER), level line descriptor (LLD), Hessian-

Affine and Harris-Affine are designed to locate interest points in the presence of affine

transformations. These methods are not completely invariant to scale changes and

affine transformations, however, SIFT performs better than other methods for im-

ages with large variations in scale. Affine SIFT (ASIFT) is a recent addition to the

family of local image detectors [14] that can reliably identify features which have

undergone very large affine distortions (see Figure 3.6). ASIFT has improved ability

to detect local patches which are distorted by the parameter transition tilt upto 36

and higher whereas none of aforementioned methods support this variation above 10.
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Figure 3.7: Local static features detected in jump video of actor Lena (green circles
represent identified candidate features for matching).

The local static features are described using ASIFT descriptor applied on the patches

located around interest points identified by Harris-Laplacian and Hessian-Laplacian.

The Harris-Laplacian locates corner features while the blob features are identified

using Hessian-Laplacian. Both feature types serve as complementary information for

each other. Figure 3.6 depicts image matching capabilities of ASIFT and SIFT, it

clearly validates the claim that ASIFT outperforms SIFT regarding number of correct

matches between two images of the same magazine largely distorted by affine trans-

formation. Employing detectors (Harris-Laplacian and Hessian-Laplacian) without

segmentation and stabilization operation on video frames has inherent shortcoming

to locate interest points which belong to static scene information such as background

or stationary objects.

3.2.4 Pruning of Local Static Feature

We do realize that ASIFT descriptors for patches around interest points may not

provide any discriminative information for accurate recognition hence such local static
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features are eliminated using pruning strategy based on spectral clustering. The

pruning operation serves as reduction operation on quantity of local static features. A

large amount of detected features (bounded in green circles) are shown in Figures 3.7-

3.8 for two actions jump and wave2 performed by the actors Lena and Ira respectively.

It is noticeable that the features which are not associated with the moving human

body parts do not carry any discriminative information and are justifiably removed.

Figure 3.8: Local static features detected in wave2 video of actor Ira (green circles
represent identified candidate features for matching).

Spectral Clustering

Clustering is one of the most widely used techniques for exploratory data analysis,

with applications ranging from statistics, computer science, engineering, biology to

social sciences or psychology. Spectral clustering, belongs to the era of modern clus-

tering schemes, has profusely been used in different areas due its simple implementa-

tion and effective performance in finding clusters compared to traditional algorithms

such as k -means. Spectral clustering works on the principal of pairwise similarities

of the data instances and can be solved using standard linear algebraic techniques

57



Table 3.1: Spectral clustering algorithm using sparse similarity matrix

Input: Data points x1, x2, ..., xN ; k number of desired clusters

Output: Cluster Labels for input data instances

1. Construct sparse similarity matrix ζ

2. Compute the graph Laplacian matrix L

3. Computer the first k eigenvectors of L; and construct V ∈ RN×k

whose columns are the k eigenvectors

4. Compute the normalized matrix U of V using

Uij =
Vij√∑k
j=1 V 2

ij

, i = 1, ..., N, j = 1, ..., k

5. Use k-means algorithm to cluster N rows into k groups

[38]. Given a set of N data points x1, x2, ..., xN ; a similarity matrix ζ ∈ <N×N is

constructed using notion of similarity ζij ≥ 0 between all pairs of data points xi and

xj. Similarity graph, G(V,i, W ) where V and i represent sets of vertices and edges,

is an efficient representation for data points. Each vertex vi ∈ V in the graph rep-

resents a data point xi with its directed connections to other vertices vj’s with edge

weights ζij ∈ W being positive or larger than a predefined threshold. The problem

of clustering can be reformulated using the similarity graph, where the objective is

to find a partition of the graph such that the edges between vertices of dissimilar

clusters carry lower weights and edges within a group carry higher weights. The

weighted adjacency matrix W = (ζij), 1 ≤ i, j ≤ N where ζij = 0 represents no

connection between vertices vi and vj. The degree of a vertex vi ∈ V is represented

as di =
∑N

j=1 ζij. The degree matrix D is defined as matrix with degrees d1, d2, ..., dN

on the diagonal. A subset of vertices and its complement are denoted by A ⊂ V and

Ā respectively; an indicator vector 1A = (f1, f2, ..., fN) ∈ <N as a vector with entries

fi = 1 if vi ∈ A and fi = 0 otherwise. A stream of research is dedicated to graph

Laplacian matrices which play a major role in spectral clustering. In the past, dif-
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Figure 3.9: Approximation techniques for spectral clustering to minimize storage re-
quirements.

ferent authors have used the term of graph Laplacian for various matrices due to the

lack of unique convention. Two widely used representations of graph Laplacian are

1) unnormalized graph Laplacian 2) normalized graph Laplacian. The unnormalized

graph Laplacian is defined as L = D −W while the later type is represented as:

Lsym = D− 1
2LD− 1

2 = I −D− 1
2 WD− 1

2 (3.5)

Lrw = D−1L = I −D−1W (3.6)

The first matrix Lsym is a symmetric matrix and the second one, Lrw, is closely related

to a random walk. In the ideal case, where data in one cluster is not related to those

in others, nonzero elements of ζ only occur in block diagram form which leads to

diagonal graph Laplacian:

L =




L1

. . .

Lk




It is obvious that L has k zero-eigenvalues which are also the k smallest ones and

their corresponding eigenvectors are defined as RN×k matrix.
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Figure 3.10: Local static features pruned using spectral clustering in jump video of actor
Lena.

Approximation of the Dense Similarity Matrix ζ:

The memory requirement of spectral clustering poses a major bottleneck with ele-

ments equal to the square of the number of data points while storing dense similarity

matrix ζ. For instance, 8TBytes memory, which is usually unavailable on general-

purpose machines, is required to deal with ζ only for 106 data instances (assuming

double precision storage) [39]. Different approximation techniques have been proposed

to avoid storing the dense matrix; Figure 3.9 depicts several existing techniques to

sparsify similarity matrix ζ. To generate a sparse similarity matrix ζ, the k-nearest

neighbor approach is employed to retain only ζij where i (or j) is among the k-nearest

neighbors of j (or i). This process reduces the storage complexity of ζ to O(Nt) in-
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stead of O(N2). The computational complexity to construct ζ can also be reduced by

O(n2d) using KD-tree or Metric trees where d is the dimensionality of data, however,

such techniques are not much effective incase of larger values of d. Another possibility

to minimize computational burden is to find the neighbors which are close but not

the closest. Please be reminded that such approximations may lead to non-symmetric

matrices which can be easily converted to symmetric by setting similar values of loca-

tions (i, j) and (j, i) if ζij 6= 0 or ζji 6= 0. Table 3.1 represents main steps involved in

spectral clustering using sparse similarity matrix. Readers may refer to [39] to find a

detailed discussion on parallel architecture of spectral clustering to avoid the inherent

problem of scalability.

Feature Ranking via PageRank

This section shows the use of motion cues and PageRank (PR) to extract distinctive

local features from the foreground i.e. region of interest. Some videos may have

have constantly changing background, thus the local static features detected for such

scene areas are not continuously detected throughout the video. The PR approach,

successfully used by Google search engine [13], can be used to explore the relatively

important and stable features . For an incoming video; a large directed graph of

features is generated where a vertex represents a feature and an edge represents

a match with another feature. If a feature is consistently matched with many other

features , we consider it more significant than others. The idea is similar to consistent

feature tracking and PR is a suitable technique to analyze the interaction between

the features, by assigning a ranking score to each feature as its relative significance

in the feature network.

The discriminative foreground information is not reliably detected between adja-

cent frames hence we use ASIFT descriptors for a pair of frames (Ft and Ft+τ , 15 ≥
τ ≤ 30) which are τ (depending upon length of video) time instances apart from

each other [13]. Initially, N matched ASIFT feature pairs are estimated, later, a
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graph with weight adjacency matrix WN×N is constructed. Every node of the graph

represents a pair of matched features (i, j) and edge weights are computed to mea-

sure the geometric consistency of two matches. For instance, if (i, j) and (i′, j′) are

two pairs of candidates then the entry ζij,i′j′ ∈ W contains the geometric consistency

score between two pairs of ASIFT descriptors. Intuitively, correct matches should

have a strong correlation with each other while the incorrect ones are random out-

liers. Now the all the candidate features can be divided into two main groups, i.e.

inliers and outliers, using principal eigenvector of W which represents spectral clus-

tering solution of candidate matching descriptors [40]. The matching scores of the

inliers are re-estimated by ζij = w1ζ
geo
ij + w2ζ

app
ij where ζgeo

ij , ζapp
ij represent geomet-

ric and appearance similarity scores respectively whereas wi represents equal weights

assigned to individual similarity score i.e. w1 = w2. The weights wi of scores may

have different values depending upon their confidence level. The geometric consis-

tency is computed by ζgeo
ij =

∑
i′,j′∈inliers ζij,i′j′/vol(inliers) which leads to a sparse

representation of adjacency matrix W after matching all pairs of frames. Given the

constructed large graph G with its vertices and a set of edge weights, the relative

importance of the vertices using PR can be computed by treating each vertex as a

webpage and all the edge weights associated with the vertex as votes cast by the

linked neighboring vertices. The features from foreground have higher number of

consistent matches throughout the video sequence leading to higher votes compared

with features detected in changing background. The PR values of individual features

are represented by Pr1×N which is computed by

Pr = α× Pr ×W + (α× Pr × b + 1− α)× v (3.7)

where α is the scaling factor, b is an indicator vector identifying the vectors with zero-

out degree, and vN×1 is the uniform probability distribution over the vertices. The

initial PR value for each vertex is 1/n. A PR vector Prt is computed for each frame

Ft; only top µ features are selected based on the rank of Pr values. The qualitative

62



Figure 3.11: Local static features pruned using spectral clustering in wave2 video of actor
Ira.

performance of pruning strategy is shown in Figures 3.10-3.11 with eliminated local

static features bounded in red squares whereas the retained cluster of highly discrim-

inative feature sets are bounded in green circles to be utilized in further recognition.

3.3 Results and Discussion

To test the performance of our proposed method, publicly available datasets, Weiz-

mann [6] and KTH [11], are used in our experiments. It is pointed out that the

results presented cannot be considered as direct comparison against other recognition

schemes because of all kinds of variations of the experimental setups and assump-
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tions about a priori knowledge of the video/action being investigated. However, the

presented results demonstrate that our proposed method is robust and can produce

comparable recognition accuracy to other well-documented approaches. Due to lack of

an established quality measure protocol, the best reported recognition accuracies from

past research are quoted. For simplicity, we present recognition results of only one

dataset provided that the similar identification trend is observed for rest of datasets

also.

The Weizmman human action dataset [6] contains 83 video sequences showing

nine different subjects which perform nine distinct actions at varying speeds. The

KTH dataset contains six types of human actions, i.e., walk, jog, run, box, wave and

clap. A leave-one-out cross validation scheme is applied whereas results presented in

this section are averaged values for 10 runs of the same experiment through random

selection of subjects and/or actions in the dataset. We executed all of our experiments

in MatLab environment on an Intel Core 2 Duo processor of 1.80GHz speed and 2GB

RAM.

Important advantages offered by our proposed scheme include no requirement

of video alignment and the amount of feature vectors proportional to the number

of frames and the level of multiresolution decomposition. We apply our classifica-

tion scheme using spatio-temporal features extracted from Weizmann dataset [6], to

demonstrate the need for hybrid features. It is worth pointing that the dimension

of individual feature vectors may affect the video classification since larger feature

vectors retain more information at the expense of higher computational complexity.

However anticipating improved classification by monotonically increasing the size of

feature vectors is not a rationale approach. As presented in Figure 3.12(a), accuracy

is not constantly increasing by raising dimensionality of feature vectors; especially

classification precision dwindls or remains constant at arrow locations as dimension-

ality increases. Size of feature vectors are mentioned as a square of positive integer

value since we are using 2D-PCA based approach in orthogonal directions on 3D
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DT-CWT coefficients. Figure 3.12(a) corroborates our claim that we cannot per-

sistently increase the size of the spatio-temporal features since the accuracy is not

promised but computational complexity. It should be noted that local static fea-

tures provide complementary information for accurate recognition because the use of

spatio-temporal features alone does not guarantee precise identification of an action

whereas the selection of optimal size of features is still a mystifying barrier. In the
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Figure 3.12: Accuracy analysis (a) using spatio-temporal features (of varying size) only
(b) varying number of compared subjects/actions using hybrid features.

past, as per the best knowledge of authors, classification accuracy has been reported

for a fixed number of training and testing actions/subjects whereas it is an interest-

ing investigation to judge the accuracy of a classifier by analyzing its performance for

randomly selected combinations of training and testing videos. Our proposed method

achieves a varying classification precision for different number and combinations of

subjects/videos on Weizmann dataset (see Figure 3.12(b)). One subject is randomly

selected and its corresponding videos are used as testing set whereas the videos of re-

maining subjects act as training set; the number of compared subjects, 2 ≤ Λ ≤ 8, in

Figure 3.12(b) correspond to the average classification accuracy achieved for Λ num-

ber of subject test videos. The classification accuracy presented in Figure 3.12(b) is

obtained using hybrid features and it is apparent that the trend line of achieved ac-
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curacy is downwards for higher number of compared videos. Insightful investigation

reveals the fact that for a larger number of compared videos of the same or different

actions/object has higher probability for false alarms, apparently the same activity

in between repetitions of an actions is observed in a small number of adjacent frames.
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Figure 3.13: Accuracy analysis of different classifiers using hybrid features extracted from
Weizmann dataset.

3.3.1 Why ELM and Hybrid Feature Sets for Classification

ELM is a relatively new scheme with potential application to problems requiring

real-time classification. It is an appealing study to examine the robustness and per-

formance of proposed framework regarding two important issues: 1) why ELM instead

of other classifiers? 2) does the combination of ELM along with hybrid features of-

fer better recognition accuracy? A set of rigorous experiments are performed with

varying combinations of classifiers (ELM, AdaBoost and SVM) and various feature

sets extracted using benchmark datasets. The spatio-temporal features included in
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our trials comprise of spatio-temporal (ST), and space-time interest points (STIP)

features using three different local space-time descriptors, i.e., HoG, HoF and the

combination of both represented as HnF. For all experiments presented in this sec-

tion, it should be noted that 20 stumps and linear kernel have been used for AdaBoost

and SVM classifier respectively. For binary classification, three established classifiers
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Figure 3.14: Performance analysis of different classifiers using Weizmann dataset (a) com-
putational complexity analysis (b) best classifications achieved for varying
iterations.

(AdaBoost, SVM and ELM) are tested for accuracy and computational complexity

using hybrid features extracted from Weizmann dataset. It should be noted that the

training and testing features are randomly selected for all iterations of our experi-

ments whereas once selected the similar data is input to all classifier to fairly verify

their learning and identification abilities. The selected action videos for each iteration

are merely random while the classification setup is also extendable to multiclass prob-

lems. Accuracy of classification is illustrated in Figure 3.13, it confirms the improved

performance of ELM and AdaBoost over SVM, where ELM and AdaBoost show com-

petitive results with a slightly better performance for ELM. For similar experiment,

increasing number of iterations to analyze the statistics, it is seen that the accuracy

of ELM is on the average higher than AdaBoost, as shown in Figure 3.14(b) in terms
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of collective percentage of best classifications achieved by individual classifiers.

In terms of computational complexity, as shown in Figure 3.14(a), SVM is the

most time consuming method with a fluctuating behavior. AdaBoost and ELM show

a steady (almost) computational time where ELM outperforms the former with a

notable time difference. The computational cost becomes an important factor if the

number of iterations or size of input data is increased. The lower computational

burden and comparable accuracy are the deciding factors for ELM to be used as

recognition classifier in our proposed framework. As a next step, for the similar
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Figure 3.15: Performance analysis of ELM using various spatio-temporal features for
Weizmann dataset.

datasets ELM is employed to four types of spatio-temporal features namely ST, STIP

(HoG), STIP(HoF) and STIP (HnF). Figure 3.15 depicts the generated accuracies

for differing iterations. A persistent behavior and the highest accuracy is achieved

using STIP (HnF) with ELM while ST features perform the worst. The classification

performance is gradually rising in order of features ST, STIP(HoG), STIP(HoF) and

STIP(HnF). For all iterations, the average accuracy for ST features is close to 61%
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Table 3.2: Confusion table of per-video classification for Weizmann dataset [6]

Bend Jump Jack Side Walk Run Pjump Wave1 Wave2

Bend 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jump 0.0 0.99 0.0 0.0 0.0 0.01 0.0 0.0 0.0

Jack 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Side 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Walk 0.0 0.0 0.0 0.01 0.97 0.02 0.0 0.0 0.0

Run 0.0 0.0 0.0 0.0 0.01 0.99 0.0 0.0 0.0

Pjump 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Wave1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Wave2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

while we are able to achieve an average accurate classification of 95.70% for STIP

(HnF) features. The recognition achieved using ELM learned by hybrid features is

able to achieve relatively better performance (please refer to discussion below) which

substantiates our choice to select ELM and hybrid features together for improved

classification.

3.3.2 Performance Analysis of Proposed Framework

Table 3.2 shows confusion table, with achieved accuracy of 99.44%, for a random

combination of videos used for testing and training purpose respectively. It can be

seen that only three videos, from Weizmann dataset, are partially misclassified. The

first confusion in classification is observed for video sequences which are labeled as

running while actually they belong to jump and walk actions whereas run has also

been wrongly recognized as walk at some point in recognition process. Apparently,

run-walk are quite similar actions because they only differ by the speed of a performed

action. A jump video is misrecognised as run which is a hard classificatin problem
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Table 3.3: Confusion table of per-video classification for KTH dataset [11]

Box wave Clap Jog Run Walk

Box 1.0 0.0 0.0 0.0 0.0 0.0

Wave 0.02 0.98 0.0 0.0 0.0 0.0

Clap 0.03 0.01 0.96 0.0 0.0 0.0

Jog 0.0 0.0 0.0 0.88 0.04 0.08

Run 0.0 0.0 0.0 0.06 0.90 0.04

Walk 0.0 0.0 0.0 0.02 0.01 0.97

since both videos contain an action to pass in front of camera from side view at a

faster speed. The last wrongly classified video is walk which has been labeled as side

and run since the movements in lower body parts for all three actions are visibly very

close. Furthermore, we test our proposed algorithm using publicly available KTH

video sequences [11] for six various actions; from confusion matrix (see Table 3.3) it

is noticeable that classification uncertainty is present among two action subgroups.

Actions involving hand movements such as box, wave and clap belong to the first group

whereas the second class of actions consists of legs/feet motions (jog, run and walk).

The action of jogging is the hardest classification task because of its similarity with

running and walking. The second most complicated classification chore corresponds to

the video sequences of running and clapping. The classification precision of 94.83% is

achieved for KTH datasets, which demonstrates favorable results for proposed action

recognition scheme. Figures 3.16 and 3.17 present performance analysis, for both

datasets, i.e., Weizmann and KTH, of various methods for human action recognition;

the proposed approach outperforms the previously reported techniques in terms of

accuracy. In addition to improved accuracy, our proposed scheme does not require

any a priori information such as foreground masks for segmentation. On all video

sets, our approach renders improved and/or comparable recognition accuracy against

existing schemes. In Figure 3.16, the categorization precision of [6, 17, 26] is slightly
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better than our scheme however the preprocessing steps of these recognition methods

require specialized knowledge of the scene being probed. The specialized knowledge

may comprise of known background, stabilization of a video sequence that demands

only one dynamic object in a frame and video trimming to avoid action repetition

that causes misclassification because of similar actions being observed in between

action reiterations.

For KTH dataset, our proposed scheme generates recognition accuracy of 94.83%

which compares favorably to previous approaches in terms of correctness, please refer

to recognition accuracies of [17],[26],[27],[34] in Figure 3.17.
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Figure 3.16: Performance comparison for various methods using Weizmann datasets.

3.3.3 Robustness Test

The proposed scheme is tested using Weizmann robustness dataset that consists of

various actions performed by the subject(s) inside a room or in an outdoor environ-

ment with illumination fluctuations, differing walking styles, multiple moving objects

(man walking with dog or minor movements in trees in the background), non-rigid
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deformations and partial occlusions. The walking action is the most observable move-

ment in daily life; we test our algorithm on 10 different styles of walking from the

same view point. Figure 3.18 presents sample video frames from the dataset under-

reference where clutter background, partially obscured human body due to skirt, pole,

and box complicate the classification task. Another kind of activity videos, termed as

robust view, are also included in our experimental trials which contain normal walk

of an actor whose motion is captured from different view points where both scale and

view point deformations are involved. Figure 3.19(a) represents fundamental details

of observed deformations present in datasets used to vigorously analyze the perfor-

mance of our proposed algorithm. The proposed scheme is not fully invariant to view
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Figure 3.17: Performance comparison for various methods using KTH datasets.

changes, however, it exhibits robust behavior in presence of partially occluded objects,

scale changes and non-rigid transformations. Figure 3.19(b) presents recognition of

various methods applied on above mentioned datasets. The black and gray parts of

the bars correspond to correct and wrong classification of a video in action recognition

whereas three bars, from top to bottom, show the achieved accuracy employing [6, 28]

and our proposed method. It is notable that our proposed method generates 100%
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precise recognition for various deformations except view point changes for which [6]

outperforms all other methods; however the comparison may not be a fair indication

of the dazzling performance of [6] which requires a priori background information for

accurate segmentation.

Figure 3.18: Sample images from Weizmann robustness datasets. Left to right: with dog,
with bag, knees up, pole, in skirt and no feet action videos.

Dataset Varying Parameters Dataset Varying Parameters 

Robust View Change in scale and view point No feet & Pole Partial occlusion 

With bag Rigid deformation and partial occlusion Norm walk Dynamic background 

Carry briefcase Partial occlusion With dog Non-rigid deformation 

In skirt Clothes causing extraneous movements Knees up Walk style  

Moon walk Walk style with peculiar arms position Limp Walk style  

(a)
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Figure 3.19: Robustness evaluation of our proposed method using Weizmann robustness
datasets (a) details of dataset (b) recognition comparison for different tech-
niques i.e. [6], [28] and our method (top to bottom).

3.4 Summary

A new human action recognition framework based on multiple types of features is pre-

sented . Our method assumes no a priori knowledge about activity, background, view
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points and/or acquisition constraints in an arriving video. Shift-invariance and mo-

tion selectivity properties of 3D DT-CWT support reduced artifacts and resourceful

processing of a video for better quality and well-localized detection of spatio-temporal

features while Static local features are determined using affine SIFT descriptors. Vi-

sual vocabularies constructed using both kinds of features are input to an ELM that

offers classification at considerably higher speed in comparison with other learning

approaches such as classical neural networks, SVM and AdaBoost to name a few.

Both military and industrial applications can potentially benefit from our recognition

framework because of its real-time processing and improved precision compared with

other well-established schemes.
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Chapter 4

Recognition through Recursive Training

Action recognition within a video sequence is a dynamic area of interest for researchers

due to its imperative applications in both military and non-military problems. Most

published methods in action recognition rely on impractical assumptions such as the

processing of an entire video or require a large look-ahead of frames to label an incom-

ing video. Based on an extensive literature survey incremental learning is an often

overlooked obstruction in the implementation of recognition frameworks which em-

ploy real-time yet powerful classifiers. Schindler and Gool’s work [17] utilizes snippets

of length 1 − 10 frames, this important breakthrough does not rely on impractical

assumptions. These snippets are used to extract shape and optical flow information.

Schindler and Gool’s reported results are based on a bank of linear classifiers and

multiple types of features, which are comparable to the methods using entire videos.

4.1 Introduction and Challenges

This chapter’s objective is to systematically find a recognition method which adap-

tively utilizes the least possible information accumulated over the past few video

frames. Such findings may significantly help to realize action recognition schemes

for real life problems with lower computational complexity. Existing frameworks are

broadly criticized for using higher amount of information than required in recogni-
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tion. Based on recognition capabilities of the human visual system, one can argue

that we do not require an entire video to identify an ongoing event. Additionally, the

use of a sub-sequence instead of an entire video can help to identify actions which

are combinations of more than one actions, e.g., entering into a building may entail

walking, opening a door and then walking again. Most of the existing approaches

fail in such conditions since the features from the entire video may misrepresent the

action as being walking or opening a door instead of entering into a building. To refer

to a sub-sequence of a video the term snippets [17] is used for simplicity reasons and

is congruent with existing nomenclature.

The action recognition frameworks with online sequential learning are far from

reality due to the fact that the training phase in state-of-the-art schemes are assumed

to be offline. Such batch mode training holds back the application of subsisting

frameworks to the problem where events are evolutionary. For example, an exercis-

ing person on a treadmill may walk, jog and finally start running. All the actions

he gradually performs are associable because of some common characteristics, hence

the learnt model needs to be updated as the time passes. Existing techniques must

re-learn the entire model to differentiate amongst evolving actions which are unseen

in earlier training. Such retraining is a time consuming process which is comprised

of numerous iterations through the training data. In traditional learning paradigms,

learning a model may take from several minutes to hours and the learning parame-

ters (i.e. learning rate, number of ensembles, stopping criteria and other predefined

learning constraints) must be carefully chosen to ensure convergence. Additionally,

whenever a fresh training data is received, batch learning uses the past data together

with the new data and performs a retraining. Intuitively, online sequential learning

algorithms present a preferred solution for a generic action recognition scheme.

This chapter’s main emphasis is to find the solutions of three overlooked but im-

portant problems 1) How to efficiently represent global and partial information along

with spatial layout? 2) How to minimize the training time that poses a major bot-
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tleneck in recognition tasks? 3) How to extend the idea of online sequential learning

to action recognition frameworks, which may help to avoid the relearning of existing

information. It should be noted that human or OI are terms used interchangeably to

refer to a target object.

4.2 Proposed Recognition Framework

The motivation behind this chapter is to design a framework that utilizes the mini-

mum number of video frames for action recognition. The proposed recognition scheme

does not require an entire input video, instead, a small collection of frames can be

used to identify an action. Recent work by Schindler and Gool [17] presents an

excellent introduction to the subject with promising results achieved by explicitly ex-

tracting the shape and the optical flow information between consecutive frames. This

chapter borrows similar motivation and extends this idea for incremental learning.

The extraction of features exploiting only a small collection of frames, called snippes

by Schindler, eliminates the need for a large look-in-advance to recognize an action.

This line of exploration has many advantages such as online action recognition with

lower computational burden and identification of events which may have occurred in

a small portion of the video. The proposed framework offers two important contri-

butions 1) action recognition using a small number of frames through tracking based

on shape and appearance variations 2) incremental learning of the proposed frame-

work with generalized performance and training analytically performed at extremely

fast speed. In general, a smaller video sequence consists of a lower content of in-

formation for decision making. However, the useless information of background and

static objects in the scene presents additional challenges. As mentioned earlier the

motivation behind this work is inferred from [17], however, the proposed framework

is significantly different from Schindler’s work in the following ways: 1) unlike [17],

there is no need to trim videos to account for uneven lengths 2) the proposed scheme
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Figure 4.1: Overview of proposed recognition system learned incrementally using PHOG
features extracted from adaptive blocks to approximate contour of a moving
object.

is based on incremental learning which offers better flexibility adopting new classes of

actions without the obligation of rerunning the entire training phase 3) the extracted

features are computed from annotated body parts undergoing rapid variations 4) the

dimensionality of feature vectors are less than half of what is required by [17] which

minimizes the computational load. The proposed framework is able to classify ac-

tions with speeds as fast as 4-5 frames per second with implementation in the Matlab

environment. This performance can be further improved by changing the execution

platform. In addition, the simpler structure of ELM contributes to improved recog-

nition, minimum false alarms and higher training accuracies. The proposed method

is essentially operable for heightened situations such as snippets of lengths ranging

from one frame to an entire video.

4.2.1 Input Data

The input of this algorithm is the single video frame with the contour initialization

as the lone pre-processing step. Additional video trimming, stabilization or segmen-

tation based upon readily available masks are not performed. The initialization of
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contour is the only primitive attention mechanism needed to start classification. It

is worth realizing that the proposed framework can easily be extended to recognize

multiple actions in contrast to existing schemes that handle a single dominant ac-

tion [5],[16],[17]. There is a mentionable difference between our initialization setup

and other state-of-the art. Our method relies on foreground segmentation of a small

window that encapsulates the person of interest based on shape and appearance in-

formation, whereas, Efros et al. [5] localize windows assuming uniform background

and thus extract relative articulations of the human body. The scheme in [16] uses a

person-centered frames with additional motion information being obtained through

the image global coordinates while observing the inverse flow of the background within

a stabilized window. In comparison to silhouette based schemes [6],[28],[46], bounding

box approaches offer further generality since a reliable silhouette extraction requires

static background. On the contrary, bounding boxes are naturally obtained using

person detectors based on sliding windows [109].

Based on the length of snippets, recognition accuracy significantly varies, intu-

itively, higher number of frames tender more information that leads to reliable recog-

nition. Following initialized contour, the articulated target object is tracked in subse-

quent frames and represented with a large box called as tracking window and rectan-

gular blocks that reside inside the tracking window to approximate human contour.

As a point of fact, the track window and the rectangular blocks correspond to bound-

ing boxes for overall human body and the various body parts, respectively. Finally,

Pyramid of Histogram of Oriented Gradients (PHOG) features for rectangular blocks

are concatenated to form a single higher dimensional feature vector per video frame

followed by learning and testing using recursive ELM. The main steps involved in

our proposed framework are depicted in Figure 4.1. The tracking and representation

of a moving human using PHOG is represented in the following section. Please be

reminded that the dimension of PHOG feature vectors computed using track window

and configurable blocks are of different sizes which are trimmed to the maximum
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dimension of 100 due to two reasons 1) to use a single ELM for testing, provided

that available computational resources are limited 2) we do not achieve mentionable

improvement in accuracy for higher dimensional feature vectors.

4.2.2 Adaptive Representation of Human Body as PHOG

Features

A visual tracking methodology deals with a consistent identification of a feature point

or an OI in an input sequence irrespective of variations in shape and appearance. The

implementation of a precise and robust visual tracker is a challenging task whose com-

plication increases further when an OI undergoes large and rapid shape and appear-

ance variations. Generally, the change in appearance is mainly due to change in shape

while the foreground intensity distribution roughly stays stationary. This assumption

of weak appearance constancy can be exploited for accurate tracking of a movement

in a video sequence. A simplest way to track an OI based on appearance utilizes

intensity histogram and the concept of integral images to spot rectangular shapes has

also been successfully used in the past [77],[122]. However, intensity histogram can

not be applied to track shapes varying in an irregular manner. The use of intensity

histogram for an entire image may also deteriorate the performance of a tracker if the

image size is too big and/or the size OI is too small. Usually, it is feasible to scan an

entire image to locate the position of an OI, even with irregular shape, and enclose

it in a box for intensity histogram computation. Subsequently, such representation

still consists of background pixels resulting in corrupted and non-distinctive feature

vectors [72].

Shape and Appearance based Tracking

The spatial layout and geometric information play a pivotal role in tracking an OI

going through rapid shape changes. The unembellished histogram becomes insuffi-
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cient to recognize such OIs and yields unstable tracking. The concept of spatiogram

provides partial solutions to above concerns at the cost of higher computational com-

plexity that leads to tracking performance unsuitable for real time applications. Our

proposed action recognition is based on adaptive tracking utilizing changing shape

and appearance of the entire human body and its parts. The tracking module in

our recognition scheme attempts to model gradually changing shape of an OI (fore-

ground is the alternative term used in this chapter), therefore position and size of

small rectangular blocks within a track window are adaptively changed.

The tracking module in our recognition framework consists of global scanning,

update of intensity histogram based on entire human body and its annotated parts

to closely trail its contours [72]. The appearance is represented by the histogram

that can be easily determined to locate an OI while scanning an entire image. Shape

update is carried out by adjustments of a few blocks within a track window. The

use of such small blocks is helpful to approximate the uneven shapes through integral

histograms. The blocks inside the track window cover the majority portion of an

OI with minimal overlap. The size of tracking window is typically small enough to

perform a fast segmentation for contour extraction of the target object, i.e. moving

human in our case (see Figure 4.2). Finally, the target shape is updated by tuning

the locations and sizes of these blocks so that they can provide maximal coverage of

the OI. The arrangements and associated weights of the blocks are adaptive. The

shape of an OI is estimated by the structure whereas appearance is represented using

intensity distribution and associated weights of the blocks. Exact representation of

shape and appearance is not the goal of the tracking module; rather our focus is

to approximate the varying shape and appearance as a result of human movement.

The weak constancy assumption for appearance helps to reliably find a track with

least computational load. The difficult part of intensity histogram based tracking is

the approximation of foreground object histogram under significant shape variations.

The tracking part consists of three sequential steps 1) detection 2) refinement and
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Figure 4.2: An articulated OI (left), given the contour a track window χ (in blue) and
adjusted blocks ςi (in green) to approximate shape.

3) update. As a starting point, the tracker is initialized with the contour of the tar-

get which automatically determines the tracking window χ and 3 rectangular blocks

ςi along with their associated weights wi. The number of blocks represent a trade-

off between computational resources and required accuracy. It is noticeable that all

the reconfigurable blocks ςi are located inside track window χ that corresponds to a

bounding box for the contour of a moving OI. The foreground intensity histogram

fF
0 for the initial frame and the positions of the blocks ςi are maintained throughout

the processing with minor overlap to account for rapid shape changes due to move-

ments, as shown in Figure 4.3. For each time instance t, we maintain the followings

a) a template window χt with a block configuration b) a foreground histogram fF
t

computed using local histograms fςFi
t of the blocks and their associated weights c) a

background histogram fB
t . For each frame, the entire image is initially scanned to

locate a window χ̃ that encloses the target object. The windows χt and χ̃ should

satisfy the maximum similarity criterion χ̃ = max S(χ́, χ) where χ́ ranges over all the

scanned windows. The similarity measure S is computed by overlaying block config-

uration template window χ to each of scanned window χ́ and accordingly evaluating

local histograms of the transferred blocks. The local foreground histogram fςFi
t for the

block ςi is the intersection of the raw histogram fςi
t with the initial initial histogram

fςFi
0 of the corresponding block. The similarity measure is defined as the weighted
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Figure 4.3: Tracking results using action videos of walk, jack, skip and side (top to
bottom) performed by actor Lena.

sum of the histogram similarities.

S(χ́, χ) =
3∑

i=1

wiD(fςFi
t ,fςFi

0 ), fςFi
t = min(fςi

t (b),fςFi
0 (b))

where b and D correspond to the indexes of histogram bins and Bhattacharyya dis-

tance, respectively. The above weighted sum limits the contributions of blocks ςi with

higher number of background pixels since such mechanism is required against clut-

tered background and noise. Additionally, such configuration of blocks ensembles a

degree of spatial information and shape of the foreground object unlike other schemes

that exploit only one histogram for an identical matching problem.

The next step after locating a target window is the extraction of approximate

body contour using graph cut segmentation on χ̃. The traditional cost minimization

function for such segmentation is based on appearance as well as shape. However,

individual term for shape without dynamic information in cost minimization is a

bottleneck towards improved recognition due to extreme variations in shape. Our
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solution aims to minimize the use of appearance term by incorporating shape infor-

mation through foreground block densities [53],[72],[123]. Since graph cut is applied

in a small window χ̃ the computational load is minimum. The extraction of contour

leads to adjustments in positions of blocks ςi within tracking window χ̃. The obvious

goal is to configure blocks in such a way that a maximal coverage of segmented fore-

ground object is achieved. Simultaneously, these blocks are adjusted in a controlled

elastic manner to account for large articulated motions. A greedy strategy, exploiting

size based ordering, is applied by moving blocks to attain maximum coverage of the

segmented OI. Since the foreground definition is now known, the histogram inside

blocks can be determined with few additions using integral histogram. Finally, to

maintain a stationary foreground density of the initial frame, fF
0 , following weighted

sum relation is used:

fF
0 =

3∑
i=1

Gif
ςFi
t , wi = Gi$i,

where Gi ≥ 0 and $i represents the percentage of foreground pixels in ςi.

Shape Encoding with Spatial Pyramid Kernels - PHOG Features

This part explores the effects of spatial layout, missing in visual vocabularies, of

descriptors in action recognition process. As per the knowledge gathered from our

surrounding, some of the objects are geometrically quite constrained whilst others

have greater variations such as human beings. Despite shape variations, since the

local shape is adaptively extracted using shape and appearance based tracking that

allows us to efficiently symbolize these extracted image regions taking full advantage

of their spatial layout. The PHOG features present a relatively fresh idea based on

spatial pyramid kernel that uniquely represents local image shapes and their spatial

layouts. The main goal is to transform image regions into distinctive descriptors which

can be used at later stage for classification. PHOG descriptors are mainly inspired by

two different sources a) the Histogram of Oriented Gradients (HOG) features [109] b)
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the image pyramid representation of Lazebnik [124] which argues that a strong match

goes beyond a bag-of-words and involves the spatial correspondence. The local shapes

are captured by the distribution of oriented edges within a region, and spatial layout

by tiling the image into regions at multiple resolutions (Figure 4.4). The descriptor

consists of a HOG over each image subregion at each resolution level. The local shape

of an OI is encoded by the histogram of edge orientations quantized into specified bins

where the contribution of each edge is weighted according to its magnitude. Each

bin in the histogram represents the number of edge with orientation residing within

a certain angular range. For spatial layout, at individual pyramid level we compute

Figure 4.4: Shape spatial pyramid representation [103]. Top: an image with its grids
for levels 0,1 and 2 (left to right). Bottom: an image with its histogram
representations for corresponding levels.

HOG feature for each grid cell and concatenate them to form an extended PHOG

feature vector. The PHOG is normalized to sum to unity to ensure that images with

more edges do not get higher weights compared to other plain images. In principal,

the computation of PHOG is justified because of 1) insensitivity to small rotations 2)

compact vector representation 3) the ability to cope with varying degrees of spatial

correspondences. Bosch et al. [103] have presented a generalized technique to embed

shape as well as appearance information based on weighted strategy using kernels.

However, extracting appearance information using SIFT [10] at points of regular grid

with image patches of varying radii is computationally expensive and requires larger
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memory, especially, for multi-channel color images, i.e., HSV. In our experiments we

do not require appearance information while computing PHOG features, firstly, the

appearance has already been matched in tracking part to locate annotated human

body parts. Secondly, it is a time consuming process that deteriorates real-time

performance of our proposed recognition framework. Provided the tracking results
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Figure 4.5: A tracked OI with its computed PHOG features for the track window χ (in
blue) and blocks ςi (in green) to approximate the shape.

shown in Figure 4.2, the computed PHOG features for track window and blocks are

presented in Figure 4.5. It is obvious that a considerable portion of track window

area consists of background information which does not provide any information for

reliable recognition. The enclosed background portion largely varies based upon the

type of action being observed. Please refer to Figure 4.3 where track window χ

for action jack chiefly bounds background area compared to what is covered for

the foreground object whereas this information proportion varies opposite way for

other actions performed by the same actor. This situation demands us to either

discard PHOG features for track window completely or give it less weights for final

classification due to lower confidence. In view of the fact that occasionally large

portion in a track window comprises of only foreground object which ultimately leads

to valuable PHOG features; the contribution of these feature vectors is adjusted

to lower level in snippet classification. It requires special mention that foreground

object are not always completely bounded or covered by the track window χ since

the tracking strategy tries to provide maximal coverage of the OI, however it can
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Figure 4.6: Difference of PHOG features for action videos between walk-jack and walk-
side (top to bottom) performed by actor Lena.

sporadically fail to spot small body portions because of dire contour initialization

and speed of an action or huge shape variations (see Figure 4.3). Although, omitted

body parts, such as foot and hands etc., do not adversely degrade recognition since

spatial layout, blocks overlap, shape and appearance information have already been

integrated for action recognition. A perceptive imagination reveals the fact that the

match amongst PHOG features for dissimilar objects and/or actions eventually leads

to an unreliable recognition which is a likely phenomenon for track window χ in

situations where a large portion consists of scene background (action jack for Figure

4.3). A similar behavior is observed in Figure 4.6, where the absolute difference for

different actions is considerably lower for features from track windows χ compared

against rectangular blocks ςi.

4.2.3 Recursively Trained ELM

The back propagation (BP) algorithms and its variants have been vital schemes for

training of FNNs. It is to be noted that BP is basically a batch learning algorithm

whose main variant, stochastic gradient descent BP (SGBP) represents a sequential
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learning approach for training. The network parameters of SGBP are tuned at each

iteration on the basis of first-order information of instantaneous value of cost function

using the training pattern [70]-[71]. To overcome the slow convergence and shorten

the convergence time, algorithms based on second order information for network pa-

rameter learning have been proposed. However, such schemes require additional time

to process individual training patterns that can degrade the overall performance of

online learning whereas network size of SGBP needs to be predefined and fixed, in

advance.

The learning of ELM (Section 2.2) is simply equal to finding a least-square solution

of |Υ(ŵ1, . . . , ŵL, b̂1, . . . , b̂L)β̂ − Γ‖ = min
wi,bi,β

‖Υ(w1, . . . , wL, b1, . . . , bL)β − Γ‖. The

smallest training error is achieved by using above model since it represents a least-

square explanation of the linear system of Υβ = Γ as
∣∣∣
∣∣∣Υβ̂ − Γ

∣∣∣
∣∣∣ = ||ΥΥ∗Γ− Γ || =

min
β
||Υβ − Γ|| where Υ∗ represents moore-penrose generalized inverse of hidden layer

output matrix Υ. The above solution assumes that all N distinct training observations

are available which is a typical situation for batch learning. However, in real-life

applications such data may arrive in sets varying anywhere from 1 to N [71]. Hence,

the batch ELM algorithm needs to be modified to fit the requirements of online

sequential learning. Under the condition of rank(Υ) = L

Υβ = Γ, β = Υ∗Γ, Υ∗ = [ΥT Υ]−1ΥT = (ψ)−1ΥT (4.1)

The ψ tends to become singular whose non-singularity can be ensured by decreasing

the number of hidden layer neurons or increasing number of training data N in the

initialization phase.

β̂ = [ΥT Υ]−1ΥT Γ (4.2)

Let us suppose that we have a set of initial training set (xi, ti), 1 ≤ i ≤ N0. The

ELM learning for this data presents the problem of minimizing error ||Υ0β − Γ0|| for
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N0 ≥ L where

Υ0 =




G(a1, b1, x1) · · · G(aL, bL, x1)
... · · · ...

G(a1, b1, xN0) · · · G(aL, bL, xN0)




N0×L

and Γ0 =




tT1
...

tTN0




N0×m

A solution to minimizing ||Υ0β − Γ0|| is equal to β̂(0) = (ψ0)
−1ΥT

0 Γ. Suppose that we

obtain another set of training data that contains N1 number of observations

Υ1 =




G(a1, b1, xN0+1) · · · G(aL, bL, xN0+1)
... · · · ...

G(a1, b1, xN0+N1) · · · G(aL, bL, xN0+N1)




N1×L

and Γ1 =




tTN0+1

...

tTN0+N1




N1×m

Now the error minimization problem is transformed into two sets of data

ε =

∣∣∣∣∣∣

∣∣∣∣∣∣


 Υ0

Υ1


 β −


 Γ0

Γ1




∣∣∣∣∣∣

∣∣∣∣∣∣
(4.3)

Gathering information from both sets of data, the output weight matrix β(1) becomes

β(1) = (ψ1)
−1


 Υ0

Υ1




T 
 Γ0

Γ1


 (4.4)

ψ1 =


 Υ0

Υ1




T 
 Υ0

Υ1


 =

[
ΥT

0 ΥT
1

]

 Υ0

Υ1


 = ψ0 + ΥT

1 Υ1 (4.5)

For sequential learning, we are required to represent β(1) as a function of β(0),ψ1, Υ1

and Γ1 
 Υ0

Υ1




T 
 Γ0

Γ1


 = ΥT

0 Γ0 + ΥT
1 Γ1 = ψ0ψ

−1
0 ΥT

0 Γ0 + ΥT
1 Γ1

= ψ0β
(0) + ΥT

1 Γ1 =
(
ψ1 −ΥT

1 Υ1

)
β(0) + ΥT

1 Γ1 = ψ1β
(0) −ΥT

1 Υ1β
(0) + ΥT

1 Γ1 (4.6)

From Equations 4.4 and 4.6

β(1) = (ψ1)
−1


 Υ0

Υ1




T 
 Γ0

Γ1


 = (ψ1)

−1
[
ψ1β

(0) −ΥT
1 Υ1β

(0) + ΥT
1 Γ1

]
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= β(0) + (ψ1)
−1ΥT

1

[
Γ1 −Υ1β

(0)
]

(4.7)

For the k + 1 set of training data, where k ≥ 0 and Nk+1 corresponds to the number

of observations
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Figure 4.7: Data flow diagrams for recursive learning strategy.

Υk+1 =




G(a1, b1, x(
∑k

j=0 Nj)+1) · · · G(aL, bL, x(
∑k

j=0 Nj)+1)
... · · · ...

G(a1, b1, x(
∑k+1

j=0 Nj)
) · · · G(aL, bL, x(

∑k+1
j=0 Nj)

)




Nk+1×L

,

Γk+1 =




tT∑k
j=0(Nj)+1

...

tT∑k+1
j=0 (Nj)




Nk+1×m

.

By generalizing the arguments from Equations 4.5 and 4.7, a recursive approach for

updating the least-square solution is

ψk+1 = ψk + ΥT
k+1Υk+1 (4.8)

βk+1 = βk + ψ−1
k+1Υ

T
k+1(Γk+1 −Υk+1β

k) (4.9)
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Figure 4.8: Performance comparison of batch mode learning vs. recursive scheme
for ELM using concatenated PHOG features of blocks for randomly se-
lected actions from Weizmman dataset. Training (top row) and testing
accuracy (bottom row) are shown.

ψ−1
k+1 =

[
ψk + ΥT

k+1Υk+1

]−1
= ψ−1

k − ψ−1
k ΥT

k+1

[
I + Υk+1ψ

−1
k ΥT

k+1

]−1
(4.10)

The new derivation achieves a similar learning performance as we attain using a

traditional ELM, subject to the condition rank(Υ0) = L. It should be noted that the

sizes of incoming training sets need not be equal. The recursive learning approach

presented in Equations 4.8-4.10 consists of two stages - 1) initialization and 2)

sequential learning phases. During the former stage, Υ0 is prepared with the condition

that the number of distinct training samples should be equal to or greater than the

number of hidden neurons. Later, the sequential learning phase updates the model

by receiving new training data in a one-by-one or group-by-group fashion. Figure 4.7
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Figure 4.9: Performance comparison of batch mode learning vs. recursive scheme
for ELM using PHOG features of track window for randomly selected
actions from Weizmman dataset . Training (top row) and testing ac-
curacy (bottom row) are shown.

represents a flow diagram of the recursive strategy of ELM. It is worth mentioning

that the recursive performance (presented above) becomes equal to traditional ELM

learning if all the training samples are provided in initialization phase, i.e., N0 = N .

The only control parameter to be selected for modified ELM is the size of network i.e.

L. Clearly, training a classifier requires large number of training samples to ensure

better performance during the test phase. The recursive edition of ELM (Equations

4.8-4.10) allows us to sequentially update our model for the new set of training data.

Apparently, the presented recursive learning scheme offers a simple analytic solution

to its batch mode counterpart. However, it is important to analyze the performance
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degradation because of accumulated errors and higher order of computations during

model update. We perform a number of rigorous tests using Weizmman dataset to

judge the performance of online training. The results presented are compared against

traditional ELM working in batch learning mode. Figures 4.8-4.9 show the accuracy

acquired both in the training and testing phase using traditional ELM (left columns)

and recursive ELM (right column).

The performance comparison of concatenated PHOG features obtained from blocks

is shown in Figure 4.8 whereas a similar experiment is repeated using PHOG features

of a track window in Figure 4.9 while using 90% of data for learning a model. For

incremental learning the data is provided in the form of sets each consisting of ten

training samples while the number of hidden neurons is also equal to the size of sam-

ples in individual training sets. The majority of available data is used in learning as

an attempt to investigate the performance variations based on training module which

is evidently a fresh component in an old framework. We achieve a difference in clas-

sification using both kinds of ELMs within a range of less than 5% thus confirming

the claim (Equations 4.8-4.10) that the performance achieved by using sequentially

learnable scheme is comparable to the batch mode learning. Furthermore, another

set of experiments employing same actions and types of features is performed where

the amount of training data is gradually changed from 10% to 90% to explore the

behavior of sequential learning when the amount of data varies from too small to

very large (Figure 4.10). It is to be noted that the accuracy of both schemes using

varying percentage of training features is very close. However, the serial learning per-

forms relatively better because of smaller approximation errors accumulated during

training update for each incoming set of training data. The size of training sets does

not influence recognition whereas an overall decrease in training time is observed on

increasing the size of training sets which is a plausible phenomena since larger groups

of data lead to a decrease in number of times the model requires to be updated. It

is worth noting that the training and testing accuracy of recursive scheme is, respec-
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Figure 4.10: For concatenated PHOG features of blocks; performance comparison of batch
mode learning vs. recursive scheme for ELM using varying percentage of
training data for randomly selected actions from Weizmman dataset.

tively, higher and lower than batch mode learning which shows its tendency of slight

over-fitting however, such small degradation is still acceptable owing to its practicality

for real-life applications.

4.3 Results and Discussions

Before providing accuracy analysis of our proposed framework; a diminutive introduc-

tion to our experimental setup is presented including details of used datasets along

with feature extraction and classifier architecture. In terms of required preprocessing,

our method needs the least attention mechanism as compared to other schemes which

solely rely on specialized steps such as video trimming, foreground masks and a fixed

size bounding box centered at the person of interest. Our method belongs to a class

which favors sparse sampled features, hence, in the end only four feature vectors with
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Figure 4.11: Lowest classification for changing number of frames from Weizmman
dataset using (Left) separate PHOG features from blocks (right) con-
catenated PHOG features of blocks.

the maximal coverage of a moving human body are extracted. Regarding dataset, we

use Weizmman set which has become a de-facto standard for human action recog-

nition. There is no established testing protocol and various methods use different

number of training samples, feature dimensions and learning parameters for their

respective classifiers; comparisons presented in this dissertation are the best quoted

results. However, it should not be counted as direct comparison due to significant

dissimilarities among architectures of different frameworks. For simple classification,

a bank of binary ELMs is applied to classify each individual class of the actions.

An alternative option could be the use of multiclass ELM which requires normalized

data, however, the associated computational overhead for such schemes out weighs

the improvement. At the same time requirement of distinctive set of training sam-

ples critically influences the classification performance as well. The final classification

in our proposed scheme is based on combining individual estimates of features from

track window and blocks using weights wi and (1 − wi), respectively. Keeping in

view the overall details of our proposed framework, the first and foremost concern

to address is the effect of concatenation of PHOG feature vectors extracted from

blocks ςi. Another important aspect is the effect of utilizing features from multiple
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Figure 4.12: Using changing number of frames from Weizmman dataset Left : Accu-
racy analysis and, right : Worst classification analysis.

frames to labels an action. Intuitively, concatenation of features produces a vector of

larger length which, perceptibly, offers distinctive information because of its relation

to a higher dimensional feature space. Please refer to Figure 4.11 which represents

the lower classification achieved using Leave-One-Out cross validation for Weizmman

set. It is noticeable that the lower end of achieved accuracy approximately varies

between 5− 10% for PHOG feature vectors of ςi on using varying number of frames

without (left column) and with concatenation (right column). The graph lines for

multiple frames are obtained using video frames from current and past time instances

only and as the number of frames increases the recognition accuracy also improves

whereas a one-to-one correspondence emerges among features vectors of blocks and

respective video frames because of concatenation. As observed in Figure 4.6, the

feature vectors for track windows of different actions have higher proximity thus their

less discriminative information promotes the idea to assign them lower weights in final

classification. It is evident from results in Figures 4.11 for un-concatenated features

that assigning higher weight to track window degrades the performance of our final

classification. The classification renders stable path on using an increasing number

of frames and concatenated feature vectors of blocks (Figure 4.12) where we achieve

98.01% accuracy by using only four frames compared with the use of entire video for
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a similar level of recognition [28]. It is noteworthy contribution that the recognitions

presented in Figures 4.11-4.14 are for classification of snippets not the whole videos.

Instead of completely eliminating track window information, we use them as har-

monizing feature vectors for reliable recognition since occasionally they outperform

features emanating from rectangular blocks ςi. Based on these results, our method

Table 4.1: Classification comparison against different approaches at snippet level.

Our Method [46] [18] [16] [17]

Frames Used 1/1 3/3 6/6 10/10 1/12 1/9 1/1 7/7 10/10

Accuracy (%) 65.2% 95.0% 99.63% 99.6% 55.0% 93.8% 93.5% 96.6% 99.6%

closely falls into the problem domain of Schindler’s method [17]; Table 4.1 presents

the accuracy analysis of various methods operating on a collection of frames, with

or without look-ahead assumption of a video sequence. It is clear that for snippet of

length 1, the performance of [17] is the best but with the rising length of snippet our

method, utilizing lowest number of frames, outperforms all other frameworks. The

Table 4.2: Classification comparison of different methods at sequence level.

Our Method [46] [18] [16] [17] [28] [1] [55] [54]

100.0% 100.0% 72.8% 98.8% 100.0% 97.8% 92.6% 99.44% 95.04%

effect of changing number of frames and assigning weights to track window is better

realized in Figures 4.13-4.14; the accuracy becomes more stable and achieves close to

perfect recognition using snippet of only 6 frames as compared to 10 frames required

by [46] and [17] for the similar accuracy (see Table 4.1).

Our method is not designed for a video level classification, however, for better

comparison we present the recognition analysis using majority voting of snippets of

length 1 of proposed method against other schemes (Table 4.2). This comparison

validates the claim that short collection of video frames after resourceful processing is
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Figure 4.13: Confusion matrices for varying number of frames 1-6 (left-right and top-
bottom)of videos taken from Weizmman dataset (this figure is best viewed
in colors).

almost as informative as entire video to label an action. Our method achieves perfect

classification to produces comparable results against [46],[17].

4.4 Summary

A method for action recognition is presented which uses adaptively extracted PHOG

features from full body and its annotated parts based on tracking strategy that utilizes

both shape and appearance information. The fundamental motivation behind this

work is to recognize an action using a small collection of video frames which can

serve as building blocks of an action. The detailed experimental evaluation confirms

the enhanced performance of adaptively extracting PHOG features whereas the idea

can easily be extended to actions detection of multiple humans in a video frame.

Furthermore, it has been shown that the method performs well against state-of-the-

art methods using as low as six frames and without impractical assumptions such as
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Figure 4.14: Recognition analysis of proposed method for varying number of frames and
weight of track window (this figure is best viewed in colors).

look-ahead, video stabilization and available foreground masks. The use of snippets

also conforms to reliable recognition for videos containing numerous actions which

are not identifiable by the sequence level schemes.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

This dissertation investigates the learning of multiple types of features for visual

recognition. For still images, global analysis is utilized in an attempt to preserve the

correlation amongst neighboring pixels which provides compact and reliable content

representation. The global analysis of videos requires volumetric processing to de-

crease computational load and extract features which are repeatedly identifiable in

the temporal domain. The spatio-temporal feature sets are efficiently computed be-

cause of shift-invariance and motion selectivity properties of the 3D DT-CWT. These

features support reduced artifacts, better localization and resourceful processing of

a video. The computed spatio-temporal features have shown an enhanced ability to

capture the dynamics of various actions performed by similar or different objects. To

reduce the dimensionality of features obtained through global analysis, bidirectional

2D-PCA is proposed which greatly minimizes not only the number of coefficients but

also conserves the correlation in orthogonal directions.

To add complementary information, sets of raw local features are extracted from

input data and further quantized into representative sets utilizing unique pruning

strategies. To obtain flexible representations of objects instances visual vocabularies
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are employed since a target undergoes large shape variations while performing an

action. For available feature vectors, learning a model is the trickiest and the most

expensive phase because of the requirement of careful selection of various parameters.

To simplify and minimize computational load of training, ELM is applied which

can analytically perform the learning operation with improved generalization and

minimized error.

Despite the successfulness of visual vocabularies which are highly sensitive to the

size of a cluster, they lack spatial information within their representations. Spatial

and geometric information plays an important role in a recognition framework. In

addition, batch mode learning also restricts the application of traditional frameworks

to various fields where new categories are frequently introduced into a system. To

overcome these shortcomings, the framework proposed in earlier part of this disserta-

tion is refined based on tracking using shape and appearance information to extract

PHOG features. Conventionally, PHOG features in recognition are computed for a

specified region of interest (ROI). Such ROIs in this scheme are identified by adaptive

representation of a moving human body using an effective tracking scheme. Finally,

a recursive least-square solution to determine an output matrix of the hidden layer of

neurons is applied. The recursive least-square solution supports online learning which

eliminates the need to relearn whole data if a new chunk of training data is received.

5.2 Future Work

The frameworks proposed in this dissertation can be extended in a variety of ways

such as overcoming the limitations or extending its applications to new domains such

as crowd analysis, surveillance and automotive industry.

5.2.1 Overcoming Limitations

The limitations of current framework is the unavailability of mechanism to deal with

view point changes. Also, it is still an open problem to declare which snippets are
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the most discriminative and contain key information to recognize an action. Such in-

formation can help to decide length and combining spaced out frames in snippets for

recognizing a particular action. Practically there are two uninvestigated but funda-

mental questions in compute vision research; what are the building block units of an

action and how complicated can actions become? Further investigation is needed to

improve the tracking part by embedding prediction-correction mechanism which can

greatly reduce computational cost while trying to locate the most probable location

of the track window.

5.2.2 Onset Prediction of Critical Events

The prediction of the beginning of an abnormal behavior in a crowd, a collection of

dynamic objects, is a relatively new direction of research in computer vision. The

proposed recognition framework can be extended towards onset prediction of critical

events or abnormal behavior. Potential applications of this research include industry,

military, weather forecasting, traffic monitoring, surveillance and sports events.

5.2.3 Nonlinear Theory of Behavior Analysis in Recognition

In the field of automated recognition and classification there is a growing need to apply

psychological methods to analyze the behavior of dynamic objects. Studies show that

the thinking abilities and the response to a similar situation varies significantly for

different species. Such changes in behavior are based on physical maturity, strength,

and whether a particular object is alone or in a group. Initially, one can apply the

holistic approach for prediction at the start of an abnormal crowd behavior because

the existing correlation in a crowd is not taken into consideration. It is believed

that the nonlinear dynamics of interactions amongst group of humans are based on

different parameters which can be modeled using the nonlinear theory of behavioral

analysis. For behavior classification, the idea of ELM can be extended to the temporal
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domain since classification of an observed behavior without considering correlation

among adjacent frames may deteriorate recognition.
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