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Abstract

With the advent of the Internet and World Wide Web, online communication becomes
increasingly popular. As broadband network technologies are becoming widely
accessible, the media rich, highly interactive online applications for virtual enterprise,
distance education etc. will be a reality. How to take full advantages of technologies
available and effectively integrate them into a cohesive distributed distance education
system that addresses adequately the scalability and the openness still pose a challenging
question.

To address this need, we have developed an approach based on the principles of
component-based development, utilizing standard component infrastructure and its
services. We apply this approach to the online real-time communication system with
capability of rich real-time interactions, which addresses key requirements for distance
learning.

We provide a rigorous modeling and specification of the system, which describes the
attributes that the distributed system must exhibit and prescribes the behavior of the
system. This modeling shall allow software engineers to examine the behavior of systems
under the development.

Based on this specification, we have developed a prototype of the distributed system to
validate the effectiveness of our approach. The system is implemented with Java
(JDK1.2) and the middleware is CORBA. The system is capable of handling multi-party
real-time communication for a range of media types in a uniform manner. This system
€ncompasses management facility such as authentication and allows dynamic services
generation.

Running tests of this system in both Intranet and Internet environment have shown

satisfactory results of this approach.

Keywords: Distributed Object, CORBA and CORBA Services, Online Communication, Modeling, Formal
Specification, Distance Education, Asynchronous Decoupled Communication

1ii



To My Wife and My Family

wv



Acknowledgments

[ am extremely thankful to Dr. Indra A. Tjandra, my thesis supervisor, for his guidance,

instruction and consistent support at every stage of this thesis work.
I'am also very grateful to Dr. Yung H. Tsin and Dr. Nader G. Zamani for their valuable
suggestions and comments on this thesis work. Dr. Jessica Chen should be thanked for

her chairing my thesis defense.



Table of Contents

Abstract
Dedication
Acknowledgement

1. Introduction
1.1 Motivations and Objectives
1.2 Brief Overview on Methodologies
1.3 The Organization of this Thesis

2. Background: Distributed System, Component-Based Development, and Our Targeted

Domain--Distance Education

2.1 Basic Concepts of Distributed Systems
2.1.1 Major Characteristics of Distributed System
2.1.2 Basic models of Distributed Systems

2.2 Component-Based Development
2.2.1 The Trend of Software Development
2.2.2 What Component-Based Development Can Offer
2.2.3 Component Infrastructure Technologies

2.3 Online Distance Education System
2.3.1 Context of Online Distributed Education
2.3.2 The Trend in Distance Education
2.3.3 Requirements for Online Distance Education

3. CORBA Overview and its Event Service Investigation
3.1 Overview of CORBA
3.1.1 OMA's Reference Architecture
3.1.2 CORBA Essential Components:
3.1.3 Location and Language Transparencies in CCRBA:
3.2 CORBA Event Models and Event Channel
3.2.1 Event Service Specification: IDL Interfaces
3.3 Rational for Evaluations of Various COSEvent Implementations
3.4 Examining ORBacus Event Service V3.1.1 Implementation
3.5 Examining ORBacus Event Service V3.1.3 Implementation
3.6 The Properties regarding Fairness, Starvation and Logical Order

4. Mathematical Modeling of the Distributed System
4.1 Essential Components and their Interactions in the System
4.2 Examples of Communication Patterns
4.3 CCS Notations
4.4 Modeling Distributed Education System

iii

v

[V QS IR



4.5 Summary of the System Modeling and an Example lllustration

5. System Design and Implementation
5.1 Development Environment
5.1.1 Platform
5.1.2 Development Tools
5.2 Design Considerations and System Architecture
5.2.1 Some Design Considerations

5.2.1.1 Deficiency of the Conventional Client/Server Approach

45

49
49
49
50
52
52
52

5.2.1.2 Distributed Object Solution and Using CORBA Event Service as a Central

Hub
5.2.1.3 Authentication Management
5.2.2 System Architecture
5.2.3 A Typical Graphical User Interface
5.3 The Contracts among Components—IDL Interfaces

5.3.1 The IDL for Event Supplier and Consumer--CosEventComm
5.3.2 The IDL for Event Administration--COSEventAdmin

5.3.3 The IDL for Message Passing and Coordinator
5.4 Detailed Designs and Implementations

5.4.1 Detailed View of Some Components of the System

5.4.2 Chat Component
5.4.3 Drawing Object Component
5.4.3.1 Classes for Basic Drawing Objects
5.4.3.2 Funciionality for the Drawing Component
5.4.4 Images Handling Component
5.4.4.1 How to Pass Image Messages
5.4.4.2 Functionality of Image Component
5.4.5 Real-Time Video Capture
5.4.5.1 Non-Integrated/Loosely Integrated Approach
5.4.5.2 Fully Integrated Approach
5.4.6 Media (Video/Audio) Playing Component
5.4.7 Utilities Package
5.4.8 Communication Component
5.4.9 Coordinator Component
5.4.9.1 JDBC Setup for Oracle8i
5.4.9.2 Coordinator Implementation Consideration

5.4.10 Dynamic Event Channels Creation and Registration

5.4.11 Incorporating Web Server and Servlet
3.5 System Features and System Requirements
5.5.1 System Features
5.5.2 System Requirements
5.6 The Operation of the System
5.7 Rooms for Improvement

6. Conclusions

53
54
55
55
56
57
57
58
61
61
62
63
63
66
68
68
70
70
71
72
74
75
76
77
77
78
79
80
80
80
82
83
85

87

vii



Appendix A: List of Packages and Files in the system
Appendix B: System Environmental Variables Settings
Bibliography

Vita Auctoris

89

92

93

97

viii



1. Introduction

This thesis is primarily concerned with online real-time communication modeling and
development in connection with distance education. This introduction gives our
motivations and objectives, introduces problems we will be tackling, as well as outlines

the overall thesis organizations.

1.1 Motivations and Objectives

Today the Internet is so pervasive that it becomes a standard vehicle for delivering
information and a very attractive medium for publishing. With the technology advances
on the Intemet and World Wide Web, online communication and collaboration have
become increasingly popular. As broadband network technologies such as ATM
(Asynchronous Transfer Mode), Cable Modem, and ISDN (Integrated Services Digital
Network) are becoming common and widely accessible, the media rich, highly interactive
online applications for virtual enterprise, distance education etc. will be a reality.
Distributed computing system will be the key to exploiting this astonishing high
performance pervasive technology [Colou96]. Component based development will
provide an effective approach being able to take full advantages of technologies available
[Brown98]. Its underlying component infrastructure will provide a framework to
seamlessly integrate distributed components being developed independently and running
anywhere transparently in the network.

Our motivation is also largely driven by the online distance education systern. How to
take the full potential of technologies available to deliver distance education is one of the
most exciting challenges for many educational institutions. Interaction is the key to
successful education of any type. Unfortunately, a typical Internet-based distance learning
system involves almost exclusively text (and/or graphics) and has insufficient capability
of interactive communication with the instructors. For some online courses, the use of

multimedia objects and real-time interactions are highly desirable [Ma98].



Despite the fact that a variety of online communication applications are available, how to
effectively integrate them into a cohesive distributed distance education system that
addresses adequately the scalability and openness still poses a challenging question.
To address this need, we propose an approach based upon the principles of component-
based development, utilizing the standard distributed object infrastructure and standard
available object services. Our open architecture will allow the distributed distance
education system to extend at various ways, where new services can be added as required.
We will formally specify this distributed communication system with mathematical
modeling. By using formal or rigorous specifications, much of the ambiguity that is found
inevitably in informal specifications could be eliminated [Alenc99]. It also enables
software engineers to reason about and examine the behavior of the system under the
development. Based on this specification, a prototype will be developed to validate the
effectiveness of our approach.

Therefore our objectives in this thesis can be summarized as the follows:

* To develop an effective approach and methods for online real-time communication
development. This approach will allow us to exploit fully the benefits that distributed
systems can offer.

¢ To formally specify this distributed communication system for online distance
education with rigorous mathematical modeling. This modeling will enable software
engineers to reason about and examine the behavior of the systern.

* To develop a prototype based on this specification to validate the effectiveness of the
developed approach. This prototype shall have sufficient capacity and functionality
for effective communication of a range of media types.

The online real-time communication system for distance education is actually a

subsystem of the overall distance education system. The merit or the strength of this

development approach also lies on the fact of its open architecture and infrastructure,
which provides a foundation to seamlessly integrate distributed components and to extend

for hosting new services.
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1.2 Brief Overview on Methodologies

We build our distributed system with emphasizing its openness, scalable and extensible
nature. The openness is a major attribute of distributed systems, which are largely
constructed from open services built around a standard communication framework.
Components-based software development (CBSD or CBD) is about the creation and
deployment of software-intensive systems assembled from components. It integrates the
prefabricated component instead of building from scratch into the component
architecture. Component-based technology is inseparable from the underlying
infrastructures. In order to support a CBD approach, it is common to utilize some form of
component infrastructure or component-oriented middleware to handle all of the complex
details of component coordination.

We will discuses more detail about distributed system and component-based development
in the following chapter.

CORBA (Common Object Request Broker Architecture) is one of component
infrastructure for distributed object system. Its widely available object services and
facilities will alleviate developer many concems for distributed system development.
CORBA is suitable for heterogeneous environment and supports different programming
languages, which is an industry standard for distributed object technology.

One of important attributes in our approach is that we will utilize CORBA standard Event
Service as the central hub for our real-time communications. This service is capable of
performing administration work and conducting effective group cast. The genetic
message type supported by the Event Service Channel will allow various typed messages
to be communicated in a uniform manner.

Online real-time communication system among multi-parties can be effectively built with
TCP/IP socket approach. Why we choose the object-based distributed approach? We
conduct comparisons among these approaches in the following.

Compare with other approaches—socket, RPC and Java RMI:

Socket is an abstraction for inter-process communication across different machines. For a

basic communication mechanism, Java supports sockets, which are flexible and sufficient



for general communication. However, sockets require the client and server to engage in
applications-level protocols to encode and decode messages for exchange, and the design
of such protocols is cumbersome and error-prone. Although hand optimized socket
communication can outperform the systematic ORB approach, the cost for development,
maintenance and management will well outweigh the gain of the performance. Such
performance differences can only be noticeable in very high-speed networks where high
performance communication is crucial [Gokha96].

Remote Procedure Call (RPC), which abstracts the communication interface to the level
of a procedure call. Instead of working directly with sockets, the programmer has the
illusion of calling a local procedure. RPC, however, does not translate well into
distributed object systems, where communication between program-level objects residing
in different address spaces is needed. However distributed object remote method
invocation can be built on top of RPC. Additionally, many available CORBA object
services will make the distributed object application much easier.

Java Remote Method Invocation (RMI) [Sun97] is a distributed object model for the Java
language that retains the semantics of the Java object model, making distributed objects
easy to implement and to use. Java RMI system assumes the homogeneous environment
of the Java Virtual Machine, and the system can therefore take advantage of the Java
object model whenever possible.

In essence both CORBA and Java RMI belong to distributed object paradigm, thus
sharing many similarities. RMI is Java VM exclusive and optimized for Java
environment, while COBAR s targeting to diverse heterogeneous environment, suitable
for large-scale enterprise integration. CORBA has widely available infrastructure
services, providing for administration, generic decoupled communication, transaction etc.
To use these standard services instead of building from scratch is conformed to the

principles of component-based development, which is pursued in this thesis.



1.3 The Organization of this Thesis

The remaining part of this thesis is organized as the following. In chapter 2, the
background information related to this thesis will be presented. We will discuss major
characteristics of distributed systems and fundamentals for component-based software
development. They provide principles and guidelines for the generic distributed
component system design. Then we will introduce basic concepts and the essential
requirements for our targeted domain --Online Distance Education. In chapter 3, we will
present CORBA overview and conduct investigations for a couple of Event Service
implementations. CORBA is chosen as our middleware component infrastructure for our
distributed system. Its basic Object Service, Event Service, is employed as our messaging
central hub. By examining a couple of Event Service implementations, we will gain
confidence in utilizing such service for our distributed system with desirable quality. In
chapter 4, a mathematical modeling for our distributed system is presented. We will
identify the essential components for our distributed communication system and
communication patterns for online distance education. CCS (Calculus of Communication
System) notation is used for our system modeling. This modeling will allow software
engineers to examine the behaviors of the distributed system even before building the
system. In chapter 5, detailed system design and implementation will be presented. We
will firstly present the system development environment, system architecture, and major
distributed component interfaces. Then we will discuss in detail about design and
implementation, including components for chatting, drawing, images handling, video
capturing, media playing, authentication, dynamic channel generation etc. Finally, in

chapter 6, we will present conclusions and future works.



2. Background: Distributed System, Component-Based
Development, and Our Targeted Domain--Distance Education

This chapter is primarily dealing with some background information, which provides
principles and guidelines for the generic distributed component system design. We will
discuss major characteristics of distributed system and fundamentals for component-
based software development. They form a basis for our system design goals. We will
apply these principles in the object-based online real-time distributed communication
system. Although such design may apply to any distributed communication system in
general, we have chosen our application domain for online education system. Towards
this end, we will introduce some basic concepts and essential requirements for our

targeted domain --Online Distance Education.

2.1 Basic Concepts of Distributed Systems

A distributed system consists of a collection of autonomous computers linked by a
computer network and equipped with distributed system software [Coulo96]. Distributed
system software enables computers to coordinate their activities and to share resources of
the system—hardware, software and data [Silbe98]. Users of a well-designed distributed
system should perceive a single, integrated computing facility event though it may be
implemented by many different computers in different locations [Orfali96].

Distributed systems have become a norm for the organization of computing facilities.
They can be used to implement general-purpose interactive computing systems and to
support a wide range of commercial and industrial applications of computers. They are
increasingly being used as the basis for new applications in areas as networked
information services and multimedia applications, where communication is a basic

requirement.



2.1.1 Major Characteristics of Distributed System

There are six key characteristics, resource sharing, openness, concurrency, scalability,
fault tolerance and transparency, which are primarily responsible for the usefulness of
distributed systems.

* Resource sharing: The term resource here is a rather abstract one, including from
hardware components such as disks and printers to software-defined entities such as files,
windows and database. Resources in a distributed system are physically encapsulated
within one of the computers and can only be accessed from other computers by
communications. For effective sharing, each resource must managed by a software
program—resource manager, which offers a communication interface enabling the
resource to be accessed, manipulated and updated reliably and consistently.

® Openness: The openness is the characteristic that determines whether the system can
be extended in various ways. The openness of distributed system is determined primarily
by the degree to which new resource-sharing services can be added without disruption to
or duplication of existing services.

Open distributed systems are based on the provision of a uniform interprocess
communication mechanism and published interfaces for access to shared resources. Open
distributed system can be constructed from heterogeneous hardware and software,
possibly from different vendors.

* Concurrency: Concurrency brings benefit of higher performance. Concurrency and
parallel execution is natural to distributed systems in terms of the following facts: the
separate activities of users, the independence of resources and the location of server
processes in separate computers. Concurrent accesses and updates to shared resources
must be synchronized to ensure that they do not conflict.

* Scalability: Scalability is that the system and application software should not need to
change when the scale of the system increases. Scalability has been a dominant concemn in
distributed systems during the last decade, and its importance continues. The demand for
scalability in distributed systems has resulted in such a design philosophy—no single
resource (hardware or software) is assumed to be in restricted supply. As the demand for

a resource grows, it should be possible to extend the systems to meet it. Some techniques



such as replicated data, caching and deployment of multiple servers, have been
successfully applied in coping with large-scale applications.

* Fault tolerance: Computer system sometimes may fail due to the hardware or
software. In this case, programs may produce incorrect results or they may stop before
they have completed the intended computation.

Generally there are two approaches for designing of a fault-tolerant computer system, 1)
hardware redundancy: the use of redundant components and 2) software recovery: the
design of programs to recover from the faults.

The servers can be designed to detect faults in their peers; when a fault is detected in one
server, clients are redirected to the remaining servers. Distributed systems provide a high
degree of availability in case of hardware faults. When one of the components in a
distributed system fails, only the work using the failed component is affected. A user may
move to another workstation and a server can be started on another computer.

* Transparency: Transparency addresses the needs of users and application
programmers to perceive a collection of networked computers as an integrated system,
hiding the distributed nature of the resource used to perform the user’s task. The
implications of transparency are major influences on the design of the system software.
The two most important transparencies are access transparency—enables local and
remote information objects to be accessed using identical operations, and location
transparency—enables information objects to be accessed without the knowledge of their
location. They are sometimes referred to together as network transparency. Other
transparencies include Concurrency, Replication, Failure, and Migration transparencies,
etc. They all together provide a useful summary of the motivation and goals for

distributed system.

It should be noted that the above characteristics are not automatic consequences of the
distribution. Distributed system and application must be carefully designed in order to
ensure that these key characteristics are attained.



2.1.2 Basic models of Distributed Systems

There are two basic models, i.e. the client-server model and the object-based model for
distributed systems.

The client-server model is a well-known and widely adopted system model for distributed
systems. In this model, there is a set of server processes, each acting as a resource
manager for a collection of resources of a given type, and a collection of client processes,
each performing a task that requires access to some shared hardware or software
resources. Some processes can be both client and server processes. This is the case when
resource managers may themselves need to access shared-resources managed by another
process. The basic scenario in this model is as follows: Client processes issue requests to
servers whenever they need to access one of their resources. If the request is a valid one,
then the server performs the requested action and sends a reply to the client process.

The object-based model is similar to the traditional object-oriented programming model
in which every entity in a running program is viewed as an object with message-handling
interfaces providing access to its operation [Myer88]. In the object-based model, each
shared resource is view as an object. Objects are uniquely identified and may be moved
anywhere in the network without changing their identity. The basic scenario in this model
is as follows: A resource-using program sends a message containing a request to the
corresponding object whenever it needs to access a resource. The message is dispatched
to the appropriate process that performs the requested operation and sends a reply
message to the requesting process if required.

The object model is attractive due to its simplicity and flexibility. It enables all shared
resources to be viewed in a uniform way by the resource users. Distributed object
paradigm is the extension of the traditional object oriented notion, in the sense that
objects can interact with other objects that are not within their address space in a same
manner. This thesis is embracing object-based model. The research here is centering on

methodologies for object-based distributed system.



2.2 Component-Based Development

Component-based development (CBD) is an essential approach adopted in this thesis for
software system development. This is the trend of current software development. In this
section, we will present some fundamentals related to CBD. We will discuss what its

benefits are and the technologies that will make this approach a reality.

2.2.1 The Trend of Software Development

Recently, component and component-based software engineering have gained substantial
interest in the software community [Kozac98, Brown96]. During the last decade the focus
of business software applications has shifted from centralized and monolithic applications
to the modular (component-based) and distributed systems [Brown98, Jacob97, Adler95].
This trend underscores some clear advantages of a modular and distributed system, which
easily adapts to the needs of the market; does not rely on the particular technology or
single vendor; engages in high level software reuse; and is characterized by high
scalability and extensibility [Butle99]. Using prefabricated components to assemble new
applications will dramatically shorten the software development life cycle [Dean97].
These advantages will lend companies a competitive edge in this ever-dynamic market.
Software components are basically reusable software. In the 1980s software reuse for
rapid software development was pursued by broad application domains [Jacob97]. They
tried to gather application assets, and wait for the flood of customers to make use of them.
However, the majority of “reuse initiatives” did not succeed [Brown99]. There were a
number of obvious reasons: the technical infrastructure supporting reuse was immature,
cataloging assets was hard, the assets were diverse and of varying quality, the interfaces
and behavior of assets were poorly defined, etc. Why CBSE may be more effective now?
The reasons may be the following: the maturing object technology; object oriented
programming has better structure for facilitating CBSE; domain-specific libraries and
frameworks starting to appear; potential robust technology support; the maturing web
infrastructure [Brown99].

10



The emergence of CBD is one of the most important events in the evolution of
information technology [Butler99). While developments in hardware and networking
have provided increasing capability, software development has remained a ‘craft’
industry, often with problems of delayed and canceled projects, inadequate quality, long
cycle times, and high costs. Software packages can not be viewed as an adequate
alternative either because they are often involving long, costly, and difficult

implementation projects, and even more difficulties in integration and upgrading.
2.2.2 What Component-Based Development Can Offer

There are economical reasons, such as reducing cost, shortening time to the market,

speeding up technology refinement and improving interoperability, which drive many

organizations towards greater use of available commercial solutions. Consequently, many

application systems consist of a combination of COTS (Commercial Off the Shelf)

packages, legacy data, home built solutions and integration code. The only way to design,

assemble, and maintain these application systems is to consider them to be collections of

parts modeled as interacting components.

Additionally, the style and architecture of applications being developed has significantly

shifted from centralized mainframe-based applications accessed via terminals over

proprietary networks to distributed, multi-tier applications remotely accessible from a

variety of client machines over Intranets and the Internet. Instead of building a small

number of large projects, the organizations now are typically building a large number of

smaller projects.

From technical point of view, the main advantages of adopting a component-based

approach to overall development are [DSouz98]:

* Reuse of implementation and related interfaces at medium-granularity, which is
higher level reuse than that of objects.

® Unit of maintenance and upgrade: no longer need to upgrade entire system,
components get replaced or added as needed.

¢ Parallel development: identifying the medium grain chunks, and focusing on early
design of interfaces makes it easier to develop and evolve parts in parallel.

11



® Scalable: Interface-centric design yields scalable and extensible architecture.

e Leverage standards: Since component technology implies that some base set of
standards for infrastructure services are provided, a large application can leverage off
these standards and save considerable efforts.

e Manageable and self contained units: A component is technically practical unit to
configure, version and package.

e Higher-level capabilities: It can support capabilities that are impractical for “small”
object such as language independent access of interface and transparent interaction

between distributed components.

2.2.3 Component Infrastructure Technologies

Component-based technology is inseparable from the underlying infrastructures. In order
to support a CBD approach, it is common to utilize some form of component
infrastructure or component-oriented middleware to handle all of the complex details of
component coordination. In essence, this infrastructure provides a common set of
component management services available to all of the components interested in using
that infrastructure.

There are three major component infrastructure technologies available now, including
OMG’s CORBA [OMG95, OMG98b], Microsoft’s COM/DCOM [Micro96], and Sun’s
JavaBeans/EJBs [Sun98]. DCOM provides suitable solutions for Microsoft environment
and EJBs is ideal for Java solution. CORBA has clear advantages in terms of crossing
platform and language boundaries [Meta98, Chung98], which is truly suitable for large-
scale enterprise solution. We will discuss CORBA in detail in next chapter.

As about our campus environment, there are machines of UNIX/LINUX, Windows (NT
and Win95/98), Macintosh etc., which has certain diversities already. CORBA would be a
good choice for the infrastructure technology to cope with this devise heterogeneous

environment.

2.3 Online Distance Education System

12



In this modern fast paced society pushed and pulled by an ever-expanding technology,
people consistently have to update or reengineer their knowledge and skills. Education is
becoming one of most important enterprises in this century. As we will be building
distributed system for online distance education, we must understand the context and

requirements of the system.

2.3.1 Context of Online Distributed Education

It is estimated that at least half a million Canadians are participating in about 4000
distance courses across Canada. There are over 800 U.S. universities and colleges
offering degree courses online, more on non-degree courses according to Peterson’s, the
college guide publisher. People believe that there is so much need to provide time-
flexible and place-flexible education that is of high quality. Many people choose distance
education rather than the traditional classroom setting due to various reasons, such as
time, distance, physical disabilities, transportation limitations and expenses, or non-
school commitment [Schne94]. In addition, even for traditional full time students,
distance learning can provide attractive options with great flexibility.

When the Internet and World Wide Web (Web) took off in 1994, many schools and
researchers used the Web to construct a distance education environment. The Intemnet has
become a standard vehicle for delivering information and a very attractive medium for
publishing. How to take the full potential of the technology available to deliver distance
education is one of the most exciting challenges for many educational institutions.
Interaction is the key to successful education of any type. Unfortunately, a typical
Internet-based Distance Leaming System involves almost exclusively text (and/or
graphics) and has insufficient capability of interactive communication with the
instructors. For some online courses (for example chemistry, physics, mathematics,
geography, engineering and computer science, just to name a few), the use of multimedia
objects and real-time interaction are desirable.

Although the bandwidth of the Internet itself is often the bottleneck for the delivery, the
real-time media (video and audio) over the Internet has recently come to the reality with

minimal speed requirement of 28.8kbps modem. The current stage of communication
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technology, such as the availability of ISDN (Integrated Service Data Network) and ATM
(Asynchronous Transfer Mode), enable us to develop more advanced distance education
system relying on broadband computer networks. Consequently, it will be realistic in the
near future to use multimedia and to allow real-time interaction between students and

instructors.

2.3.2 The Trend in Distance Education

There are many buzz words around in respect to distance learning or online education,
such as Virtual Classroom, Cyber School, Wired Education, Education on Demand,
TeleLecture, just to name a few. Traditionally, universities are involved with research,
teaching and service. Online education is concemned with content, context (lifestyle), and
certification. Education in the 21% century will simply be considered as education,
regardless of where, when, and how it is delivered.

Because of the capability of the Internet to support discussion groups and text, graphics,
audio, video, file transfers over electronic mail, in asynchronous format, and also video
conferencing, whiteboards, and chat in synchronous real-time modes, a different learning
medium has evolved in contrast to the traditional style. Since Web-based instruction is
such a new medium, evidence of the effectiveness of online courses compared to
traditional instruction is lacking. Therefore Web-based instruction must be designed to
accommodate individual learning styles. This does not mean using all available
technologies but instead using those appropriate technology mechanisms that will directly
contribute to enhance leamning.

To build a quality online education system is not quick, not easy and not cheap in the
short term. It has a value-added perspective, such as increasing access, serving rural
communities, and expanding student education choices. The challenge for the future will

be to balance access, quality, and cost in delivering courses and programs at a distance.

2.3.3 Requirements for Online Distance Education
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As an online leaming system, it must possess some certain features and functionality in
general. The system should have an open architecture design so that it can adapt to the
new technologies to take their advantages. Since the online learning systems have been
developed for a number of years, people have certain criteria about what to look for in
such systems although they may not agree with each other for every detail. Sunil Hazari
[Hazar98] presented an exhaustive list regarding this criterion. In essence, we can classify
requirements of online education into the following categories: (1) Static, dynamic
documents and asynchronous interactions (e.g. static web page management, dynamic
document with CGI and front end scripting or client-server applications, email, message
board and student record management). (2) Interactive teaching: active, synchronous and
real-time (e.g. text chat with white boarding—facilitating or simulating computer lab
instructions, streaming audio/video/animation) (3) Active/interactive learning (remote
application invocation—compile and execution, self-evaluation, quizzes, assessment and
SO on).

While the first category consists of basic features that system must exhibit, we will
emphasize the importance of interactive teaching and active/interactive leaming in our
distance learning system. This is because the interaction is the key for any successful
education. We will develop a system enabling interactive features, which shall bring
classroom-like and lab tutorial experiences to the online education. In particular,
multiparty of students and instructors can interact in a real-time. The instructor can send
images captured lively or pre-stored to the participants, while they can have live chat and
sketch their ideas with collaborated drawings.

Broadly speaking, interactions can be either between the students and instructors in real-
time or between student and computing processes (or services). The above intended built
system is primarily addressing the need for the human online real-time interactions. As
about the human and process interactions, they could be remote compilation or execution
for instance in Computer Science education. Our open component-based architecture will
enable these sub systems to be integrated seamlessly into the overall online education
system. In fact our generic architecture (see Figure 5.1 for detail) is very inclusive, which
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encompass all essential requirements from all three categories with emphasis on the real-

time online communication capabilities.
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3. CORBA Overview and its Event Service Investigation

OMG’s CORBA [OMG95, Siege96] is an industry standard for middleware or distributed
component infrastructure, which integrates seamlessly the independent developed
components running over a heterogeneous environment. It has been chosen for the
middleware glue for our object-based distributed online communication system.

CORBA Event Service is one of OMG’s common object services [OMG98b], which
facilitates decoupled and asynchronous communications style among CORBA objects.
The Event Service will be a central hub for our message communication system. To gain
significant confidence in utilizing this service, we will investigate a few examples of the
Event Service implementations. By carefully examining the system attributes among
different implementations, we feel that it is very desirable to have a precise mathematical
model to describe the system attributes or quality of service (QoS) that must be exhibit in

the corresponding implementations.

3.1 Overview of CORBA

CORBA — Common Object Request Broker Architecture — was designed by the Object
Management Group (OMG) to support open distributed communication between objects
across a wide variety of platforms and languages [OMG95]. Interestingly, despite the
“Object” in its name, CORBA does not directly expose the notion of object identity; and
could more properly be considered as a distributed component framework [Szype98]. In
fact, a “Distributed object is a component by definition” [Orfal96].

To meet its goals of heterogeneous computing, CORBA opted to become a source-code
standard, rather than a binary one. Component interfaces are defined within modules,
using the CORBA IDL (Interface Definition Language). Different programming
languages have standardized bindings to the IDL. Programmers either (a) manually write
IDL code, then compile it into the source-code versions needed to write their
implementations; or (b) use a vendors programming language compiler that offers direct

generation of IDL.
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3.1.1 OMA’s Reference Architecture

Figure 3.1 illustrates the OMA (Object Management Architecture) reference architecture.
The OMA contains the following:

* CORBA “bus™--ORB: the base level of IDL-based interface definitions, the interface
and server repositories, and the request broker.

* CORBA Services: a variety of largely infrastructure services, ranging from events,
transactions, relationship, naming, lifecycle, licensing, and externalization.

* CORBA Facilities (horizontal): A set of higher-level object specifications providing
commonly required services to applications such as printing, email, compound
documents, structured storage, workflow, etc.

* Domain Interface (vertical): standards for business objects in “vertical” domains,

including health care, telecomm, financials, etc.

App. Objects Domain Objects
Q\ \ /Q /
Object Request Broker

VNN
ST OO

Object Services CommonFacilities

(O corsa obiect il 1 cpacy App. Warap

Figure 3.1 OMA reference Architecture

There are of course your application specific objects as well. In the figure, the Objects
and Legacy Application Wrappers are represented as different shapes, to highlight the
capability of CORBA in incorporating legacy code.

Almost all major programming languages have their mapping to CORBA IDL. They
include C, C++, SmallTalk, COBOL and recently Java [Siege96, Vogel97].
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3.1.2 CORBA Essential Components:

Figure 3.2 shows the CORBA detail architecture with essential components. We will
describe the main features for CORBA, which are associated with components in this
figure.

An ORB agent or daemon process: It is responsible for locating and launching servers
and facilitating client communication with servers.

IDL stubs: The code generated by IDL compiler for specific IDL interface to allow static
invocation of operations of that interface via proxy objects.

DII—Dynamic Invocation Interface: This acts like generic client stub, which enables
clients to make operation invocations even without IDL stubs.

IDL skeleton: The code generated for a specific IDL interface that invokes object
implementations of that type.

DSI-Dynamic Skeleton Interface: The counterpart of DII at server side. A generic
interface that allows interpretation of incoming requests to a server for IDL types that are

not known at compiler time.

in args
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HO®  operation() :
 Clieat = 2 Object Impl.
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IDL DSI
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IDL ORB Aodt:p.
Stubs Interface
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Figure 3.2 CORBA architecture, showing essential components.
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Object Adapter: This is the component capable of activating servers whose objects are
required by invocations. BOA is also the place to specify the thread policy, i.e. thread per
client, thread per invocation etc.

CORBA GIOP/IOP: CORBA 2.0 [OMG98a] includes specification for ORB
interoperability called General Inter-ORB Protocol. This is a description of the way in
which IDL types are laid out in a message format for invocation request. This GIOP
message format is the basis for the specification of the Internet Inter ORB Protocol
(IOP), which uses TCP/IP as its transport protocol. Any CORBA 2.0 compliance must
implement IIOP.

An optional additional protocol, DCE Common Inter-ORB Protocol (DCE_CIOP) is
specified, which utilizes DCE-RPC mechanism [DCE95].

CORBA2.0 also provides a specification for Interoperable Object Reference (IORs),
which allows an object reference from any compliant ORB to be used by a client using

any other ORB. IIOP ensures the interoperability among different ORB vendors.

3.1.3 Location and Language Transparencies in CORBA:

As discussed in chapter 2, transparencies are major design issues in distributed systems.
How does CORBA achieve the location transparency? When the client obtains the remote
object reference (ObjRef in Figure 3.2), the client can just invoke the remote object
operation the same way as it invokes the local one (same address space). In fact, the
operation call will go through the following steps. 1) The IDL stub will marshal the
passing parameter as necessary. 2) The ORB will locate the remote object and send the
function call through the transport and network layer. 3) The server side ORB will receive
the call, together with BOA, identify and activate the corresponding object
implementation servant. 4) IDL skeleton will be used to unmarshal the calling
parameters, and the operation associated with the object servant will be invoked. If there
are any return values, the return message will be going through the reversed way. In fact
the processes described above encompass many other transparencies, such as transport,

network and operating system transparencies.
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One of other transparencies that assists in the integration of distributed applications in
CORBA is programming language transparency. This is due to the fact that CORBA
objects are typed by interface definitions and referenced by object references, the
implernentation behind the interface can be in one of several programming languages
(SmallTalk, C++ or Java etc.) If the implementation language is Java, a new transparency
--implementation transparency will be introduced. This is due to the fact of Java “Write
Once Running Anywhere”, platform independent nature.

3.2 CORBA Event Models and Event Channel

CORBA Event Service is one of OMG’s common object services, which facilitates
decoupled and asynchronous communications style among CORBA objects [Schmi97,
Schmi97a]. As you may have noticed, the message sending between CORBA object is
essentially synchronous. Although “one way” semantics is basically asynchronous
invocation, but various implementations of “one way” makes it inadequate to be an
alternative of asynchronous communication.

CORBA event supports both push and pull models. There will be push/pull suppliers and
push/pull consumers. CORBA event service utilizes the so-called event channels as a
mediator to decouple the event suppliers and consumers. The push event supplier will
push the event to the event channel (the event for pull supplier will be pulled by the event
channel), the events in the event channels will be consumed by the interesting parties via
the way of either pull or push. There is an event queue management in the Event Channel,
hence providing a buffer for the decoupling.

Figure3.3 illustrates the Event Services, showing various event models—Push/Pull Server
and Push/Pull Client. There could be multiple instances or none for each event model to
connect to the Event Channel. Event Service provides all kinds administration work for

registered parties, thus free developers’ concemns to manage those connections.
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Figure 3.3 CORBA Event Services, showing the Push Server, Pull Server, Pull Client and Push Client. The
3-D look arrows and the solid arrows correspond to the direction of the control or invocation flow and the
data/message flow respectively.
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The role of the Event Channel as a function of communication models can be
summarized at the following table. Based on the nature of our communication system, we
will primarily employ the Push/Push model—Notifier. This stems from the fact that we

need to propagate the communication messages as soon as possible to the interested

parties.
Supplier
Push Pull
Push Notifier Agent
Consumer (Canonical Push/Push Model) (Hybrid Pull/Push Model)
Pull Queue Procurer
(Hybrid Push/Pull Model) (Canonical Pull/Pull Model)

Table I. The role of the Event Channel as a function of communication models

3.2.1 Event Service Specification: IDL Interfaces

The interfaces of the two primary components in Event Service have been defined with
IDL in the modules of CosEventComm and CosEventChannelAdim. The following IDL
code segments are part of these specifications. This will be served as a starting point for
the implementation discussion in the following sections. For thorough specifications,

please refer to chapter 5 or CORBA Service Specification [OMG98b].
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module CosEventComm {
exception Disconnected{};
interface PushConsumer{
void push(in Any data) raises (Disconnected);
void disconnect_push_consumer();

b
module CosEventChannelAdmin {
exception AlreadyConnected{};

interface ProxyPushConsumcr:CosEventComm::PushConsummcr{
void connect_push_supplier(in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

-

3.3 Rational for Evaluations of Various COSEvent Implementations

OMG recognizes that application domains have diverse requirements for the event style
communication. Such diversity includes the requirements for reliability, from the best
effort to guaranteed delivery semantics, performance, availability, throughput and
scalability [OMG98b].

There exists no such one-fits-all implementation that can optimize such diverse technical
requirements. OMG intended to define the QoS very vaguely so as to encourage
innovations for different requirements. This also poses a problem on selecting an
adequate Event Service implementation for specific application logic. Therefore it is
imperative to have a mathematical model which is capable of addressing precisely the

system attributes and behaviors.
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There are many COS (CORBA Object Service) Event implementation available, being
provided by different vendors. Examples are OOC’s ORBacus Event [OOC98, OO0C9I9b],
IONA’s OrbixTalk [Orbix98], and HP ORB Plus Event Service (based on I[IOP). Because
we have the source code available for ORBacus, we will primarily focus on the
investigation of this product. There are many details in the implementation, which can
have significant impact on the system properties. However, this kind of impact can not be
thoroughly realized through examining solely the manual or software documentation.
This suggests the need for looking into the code of the implementation. OOC has made its
source code available. Moreover, we have ORBacus Version 3.1.1[OOC98] and Version
3.1.3[00C99b] for a comparison. More interestingly, these two versions provide a sharp
contrast in terms of the degree of concurrency, which could be critical in a distributed

environment.

3.4 Examining ORBacus Event Service V3.1.1 Implementation

ORBacus 3.1.1 event service is kind of primitive if we compare it with its 3.1.3 version.
It is unfair to compare an early product with the relatively matured one. However, the
point here is to shed the light upon the quality of services affected by the implementation.
It is not intended to evaluate the sophistication associated with both implementations.
There are eight classes in the package of com.ooc.CosEventChannelAdmin, i.e.
EventChannel, SupplierAdmin, ConsumerAdmin, ProxyPushConsumer,
ProxyPullConsumer, ProxyPushSupplier, ProxyPullSupplier, and Server. The first seven
classes are the implementations corresponding precisely to the IDL interfaces defined in
org.omg.CosEventChannelAdmin module. The Server is responsible to start Event
Channel Service. It is worth noting that the concurrency thread model of the BOA (Basic
Object Adapter) for this Server has been specified as ThreadPerClient. The option to be
able to specify the particular thread model for the BOA handling requests has been an
important feature for ORBacus.

The suppliers and consumers follow the same pattern as the general case to register
themselves to the SupplierAdmin and ConsumerAdmin respectively. For example, a
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PushConsumer obtains the IOR of the ConsumerAdmin by invoking the method
for_consumers of the EventChannel. Further the ConsumerAdmin will create a
ProxyPushSupplier object, which exchanges its object reference with that of the
PushConsumer. Perhaps most of implementations will follow this pattern for the
registration. This is because a well-defined protocol bounded by the IDL interfaces.
Because this protocol involves double hand shaking (additional registration to the
Consumer/SuplierAdmin thus enabling the graceful disconnection management), it is
sometimes considered as an overkill registration for certain circumstances [Schmi97b].
However this feature is necessary if Event Channel is designed to be used in general

cases.

A sequence diagram for the event propagation process utilizing ORBacus3.1.1 is
illustrated in Figure 3.4. The diagram is for the case when there is one PushSupplier, two
PushConsumers and one PullConsumer. However these remote objects (in terms of the
view of Event Channel) are not presented in the diagram due to the space limitation. The
scenario is the following: 0) The PushSupplier pushes an event any to its corresponding
ProxyPushConsumer. 1) This ProxyPushConsumer invokes EventChannel.receive(any).
2) EventChannel in turn invokes the synchronized method ConsumerAdmin.receive(any),
note that this synchronization is an important concurrency control mechanism when multi
PushSupplier may present. This will ensure the consistent order of the events for all
consumers. 3),4),5) The ConsumerAdmin will further push the event to the all registered
ProxySuppliers one by one. It is important to notice that in this implementation each
ProxyPushSuplier will immediately invoke its corresponding remote PushClient within
this nested call. However, in the case of ProxyPullSupplier, the event will be stored
within the queue locally managed by the ProxyPullSupplier. In this situation, the nested
calls can be returned quickly without involving an additional remote method invocation.
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Figure 3.4 Sequential diagram for the event propagation for ORBacus 3.1.1

It is not difficult to infer that this implementation is inadequate for the circumstance of
one-to-many or many-to-many push-push (notification semantics) communication style.
Each supplier has to wait for that which all PushConsumers have received the event.
During this period of time, this supplier will be blocked for the next move. For a 1-to-m
push-push communication, the supplier will be waiting for 1+m remote calls before its
regaining the control. Perhaps in case of one-to-one push-push communication, this
implementation is still useful. If that is the case, it is better to engage the supplier and
consumer directly without employing the event channel in the first place. If there are
more than one supplier, more trouble will be warranted. All the ProxyPushConsumers
(corresponding to the Suppliers) will be waiting for the synchronized call to the
ConsumerAdmin.receive(any). Therefore in terms of performance and concurrency
access, this implementation is incompetent to accomplish push-push style

communication. On the other hand, one may notice that the ProxyPullSipplier will
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maintain a queued event. This is the only type of the queue managed within the Event
Channel. Therefore this implementation is still useful for the push-pull (queuing
semantics) style communications. For instance, the assembly line pattern implemented
with Event Channel Service (push-pull) is a successful example of using this
implementation [Tjand99]. There are some other issues related to the faimess and
potential starvation. Because these issues are common to the implementations of the both

versions, we will discuss them in the following section.

3.5 Examining ORBacus Event Service V3.1.3 Implementation

ORBacus Event 3.1.3 is becoming very sophisticated comparing to its previous
counterpart. It was claimed to be one of the most comprehensive and complete
implementation of OMG’s COSEvent. There are three packages
CosEventChannelAdmin, CosEventServer, CosTypedEventChannelAdmin and about 30
classes in total. Noticeably, Typed Event Channel has been implemented in this version.
In order to compare with the conclusion we arrived in the last section, we will still
concentrate on issues related to the event propagation through the event channel.

In essence, the process before the ProxySuppliers' remains unchanged as far as the event
propagation concerned. The fundamental change in the ProxyPushSupliers is that it now
maintains an event queue (actually managed by PusherbasedThread). The
ProxyPushSupplier is now a multi-threaded accessed entity. One thread is responsible to
push the event to the remote consumer when there are events in its event queue. Another
thread is passively waiting for its event queue to be inserted by the ConsumerAdmin. The
wait() and notify() style synchronization has been extensively used to improve the
concurrency and to reduce resource consumption.

The sequence diagram will be extremely complicated due to the many synchronized
threads. Therefore we will rely on the simple diagram (space diagram) as shown in
Figure3.5 to assist the description of the whole propagation process. We want to

emphasize that there are individual queues for each ProxySuppliers, which will decouple

! ProxySuppliers indicates ProxyPushSupplier or ProxyPullSupplier or both; the same to ProxyConsumers
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the remote pushQ) invocation from the ConsumerAdmin.receive(). The actual
implementation for such a queue management is rather complicated, spanning to a few
threaded objects (not shown in the diagram). The presentation of such detail is beyond

-
\r:cew )
CAdmin
re°7ze0
OFOC e

push(
| Quel |

our current interest.

[ Quaz 1 w0

Figure 3.5 A diagram illustrate ORB3.1.3 implementation, one PushSupplier and two Push Consumer case.
The PushS, ProxyPC, ProxyPS, PuchC, and Cadmin represent the objects of PushSuplier,
ProxyPushConsumer, ProxyPushSupplier, PushConsumer and ConsumerAdminstration respetively.

One can certainly recognize the significant advantage of this implementation. Although
suppliers still need to wait the ConsumerAdmin to finish the receive() for all of the
ProxyPushSuppliers, they are all Just involved with the local calls. It may be thought that
an individual event queue for each ProxySupplier is an overkilled feature. Despite the
extra memory and processing power incurred, this multi-queue arrangement may enhance
the concurrency in the consumers’ side as well. Each ProxyPushSupplier can push the
event to its corresponding PushConsumer with its own designated pace. All consumers
will not interfere each other. In the certain circumstance where the network traffic is
highly unbalanced, the consumers with slow connection may suffer from the event
dropping. However the individual problem will not cause problem in a whole, which is a
desirable attribute for the distributed environment. If in the one-queue implementation,
the slowest connection will dictate the speed on a whole! Some persistent storage policies

may resolve the issue regarding the event dropping thus achieving guaranteed delivery
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[IONA98]. Additionally, such a multi-queue arrangement is a uniform implementation
when PullConsumers are present. PullConsumers must have their own event queue.

There are rooms for further improving the suppliers’ side concurrency. A common event
queue may be implemented at EvenChannel stage. Suppliers push calls will return after
successfully inserting their events in this queue without further propagating to the
ConsumerAdmin. This stems from the fact that ConsumerAdmin has to manage multiple
push to all of the ProxySupplies, which could be costly. Because these calls have been
local since ORBacus3.1.3, the improvement may not be so significant as compared with
that from ORBacus3.1.1 to 3.1.3. Anyhow this one-queue arrangement seems to be a
natural choice at the first place if no multi-queue arrangement present. We will be

modeling its behavior in the next chapter.

3.6 The Properties regarding Fairness, Starvation and Logical Order

These implementations (including both V3.1.1 and V3.1.3) do not ensure fairness. There
is a synchronized call at ConsumerAdmin.receive(). There could be many suppliers which
may inside EventChannel.recive() call and wait for entering this synchronized call.
Because the Java thread model is not a FIFO sequence, the competing
ProxyPushComsumers, corresponding to suppliers, will be getting a chance to run the
synchronized ConsumerAdmin.receive() in a random order. This implementation is not
fair, because the propagation of the events is not based on the order of the arrival
sequence of the event. Starvation could potentially occur in case of existing many
pending events.

The fair and starvation free implementation could be achieved for example by employing
the so-called bakery algorithm [BenAr90]). However such implementation may incur
expensive overhead. In our targeted system, we are not concerned much about the arrival
orders in the Event Channel. The situation for the starvation to happen will also be
extremely rare. If the starvation is becoming a problem for our particular use, we could
simply replace this Event Service with other more adequate one for instance the one with

the characteristics discussed above. Because we are using the standard Event Service,
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such replacement will be truly plug&play. Virtually no coding will be required least to
say any effort related to re-engineering, which also underscores the beauty of component-
based development.

On the other hand, logical order will be retained in this implementation. For example, the
reply to the message M will appear after the message M at all of the consumers. Because
of the synchronized ConsumerAdmin.receive(), any propagation of an event to all
ProxySuplliers will be completed before starting another propagation. This will guarantee
the event queue managed by each ProxySuplliers being consistent. This order will be
retained by the clients when ProxyPushSupplier pushes the events. There are subtle
variations for drawing collaboration regarding the consistency, which will be discussed at
the design and implementation part in chapter 5.

ORBacus3.2 is also becoming available at the time of this writing. There are virtually no
changes having been made pertaining to the respects discussed above. However there are
two  more modules being added, i.e. OBEventChannelFactory and
OBTypedEventChannelFactory. These Event Channel Factories may facilitate dynamic
event channels creation. They are important components when we are dealing with the
conceived “Dynamic System Configuration”.

Moreover, IONA’s OrbixTalk [IONA98] provides a reliable and guaranteed delivery
messaging system compatible with CORBA Event Service. Its MessageStore, a persistent
cvent storage, ensures that if registered listeners miss messages through system or
network difficulties, any missed messages will be forwarded as soon as the target
recipient comes back online. Furthermore it employs IP multicasting protocol to save on
network bandwidth and accelerate notifications. OrbixTalk is suitable for those where
such reliable and guaranteed QoS is critical. There may be a performance trade off if such
reliability is implemented. Due to the fact that no source code is available, we can not

carry out a more detail investigation as we did for ORBacus.
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4. Mathematical Modeling of the Distributed System

As we discussed in the last chapter, the different implementation of the COSEvent service
(although being conform to the same interfaces) will have significant impacts on the
quality of service and application logic. Sometimes even subtle variations among
implementations will result in differences in various aspects from the performance to the
degree of concurrency. In the severe case, a certain implementation may not be suitable to
fulfill the application logic at all. Therefore, it is very desirable to have a rigorous
mathematical model capable of describing the system precisely. We will develop our
model using CCS, Calculus of Communicating Systems as our process notation. A
variety of analysis questions related to the model with CCS can be readily answered with
the tool the Concurrency Workbench (CWB). We will model an online communication
system for distance education, which utilizes Event Channels as its mediator. Generally
speaking, such a mathematical model or formal specification will enable the software
engineer and designers to reason about the behavior of the system through simulation
even before the system is built. It can also be very helpful or even crucial to validate

products at the testing phase.

4.1 Essential Components and their Interactions in the System

The essential components of the distance education communication system are depicted
in Figure 4.1. These components are AU—Authentication, SA—System Administrator,
S—Student, /—Instructor, EC—Event Channel and DB—Database. The DES represents
the whole system—Distance Education System.

Generally speaking, the DES comprises of a set of students, S={S,, S,,..., S,}, a set of
instructors, I={I,, I,..., I,}, a set of event channels, EC={EC,, EC,,..., EC,}, one
authentication component AU, one database instance DB, and one system administrator,
SA4. In principle, there could be a number of instances of AU as well as a number of
instances of DB, which corresponds to the case of distributed database. For the sake of
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simplicity, only centralized AU and DB are specified in our modeling. Given the fact that
the AU component is primarily dealing with the authentication process, the job load
corresponding to this component may not be significant in our interested circumstance.
Therefore, it is sufficient to have only one instance of AU and its associated DB.
However, it is possible to extend this centralized database case to a distributed one with
certain modification. It is also possible to have a number of S4. For brevity, we also
assume that there is only one S4. The components S={81, Sa.... Spp, I={1}, I, ..., I},
EC={EC,, EC;,..., EC,}, AU, DB and SA are distributed over the heterogeneous network
environment, running on different machines (or on different processes within the same
machine).

The interactions or the communications between the components can be modeled as a set
of actions, Act={getReqSt, getReql, sendReqDB, getinfo, sendlorToSt, sendlorTol,
sendStMsg, receiveStMsg, sendIMsg, receivelMsg., etc.} as illustrated in Figure 4.1.
There exist some other actions such as the connect/disconnect to the event channels etc.
We will include these actions in our modeling process later on. The meaning of the
actions in the Act set is actually pretty much self-explained. For example, the action

getReqSt, is the interaction between S and AU, indicating that S issues a request for the
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authentication. The action, sendRegDB represents the interaction between AU and DB,
indicating that 4U sends request to DB on behalf of the student or instructor. The action,
getinfo represents that AU gets the corresponding information from the DB and then
sends the IOR (Inter-operable Object Reference) to the student via the action
sendlorToSt. The actions, sendStMsg and receiveStMsg, correspond to sending messages
to and receiving messages from EC, respectively. The same interpretation applies to the
case of instructor by replacing St (Student) with / (Instructor) in the above.

The functionality of AU is essentially to return the IOR of the desired EC to the
authenticated users. This functionality is very similar to that of CORBA Naming Service
[OMG98b]. However, CORBA Naming Service does not provide automatic
authentication. In essence, when one knows the name of a CORBA object, he can use that
object by obtaining its IOR from the Naming Service. In our situation, we can have more
fine controls regarding the authentication by storing the information and rules in the DB.
This could be very desirable, for instance, to the distance education system. Students can
only receive the services that they are eligible to, e.g. the classes they have registered.
Although such authentication information either password or the registration can be
stored in a file system, DB could be more flexible and reliable regarding aspects of the

query support and concurrency control.

4.2 Examples of Communication Patterns

Event Channel can facilitate many to many (m-to-n) communications for either push or
pull at both supplier and consumer ends. In principle, the users (students or instructors)
can register to be the supplier of one set of ECs and the consumer of another set of £Cs.
Based on the roles of the instructors and the students in the education system, we
identified the following patterns as the most significant ones in the DES.

¢ Uni-direction: one to many

This case is as shown in Figure 4.2. An instructor, / is the supplier of the event channel
EC and many students S|, S,,..., and S», are the consumers of the same event channel EC.
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This has a broadcast or multicast manner. The pattern like this corresponds to the case
that the instructor is giving a “one direction” lecture to the students.

Figure 4.2 Uni-direction: one to many communication pattern

¢ Bi-direction, one to many and many to one

This case is shown in Figure 4.3. On one hand an instructor, / is the supplier of the event
channel EC; and many students S, S,,.., and Sm are the consumers of the same event
channel EC,. This is exactly the same to the previous case. On the other hand, S, S;,...,
and S, are the suppliers to the EC, with the instructor / as its consumer. This pattern
enhances the feature of the previous case by providing the feedback directly to the
instructor. This arrangement will definitely increase the interactions between the
instructor and the students. This is similar to the case when students can raise questions to
the instructor in the classroom. However, these questions are private to the instructor and
other students can not “hear” directly. Although in the traditional classroom setting, the
questions will be heard on a whole. It could be beneficial to the students if the question is
beating the points. But sometimes, it may interrupt the normal sequence of the lecture.
With this bi-direction pattern in place, the instructor can screen the question and answer

the question selectively to the whole.

34



Figure 4.3 Bi-direction: one to many and many to one pattern

¢ Group communication: many to many (n-to-n)

Group discussion pattern provides the highest degree of interactions among the users
with the least regulations. As a matter of fact, it is not necessary to make the distinction
between instructors and students. They can be identified in general as users as shown
in Figure 4.4. All users will register to the both ends, supplier and consumer of an
Event Channel, EC. This pattern mirrors the case of tutorial or lab session in the

school.

Supplier End Consumer End

Figure 4.4 Group communication: many to many communication patterns

Although, we discuss the above communication patterns in the context of online distance
education system, they could readily apply in principle to any online communication

system.
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4.3 CCS Notations

We will use the CCS (Calculus of Communication System) [Milne89, Bruns97] notations
for our system modeling. Although other process notations (such as CSP [Hoarc85] and
ACP [Bacte90]) can also be utilized, CCS tumns out to be more practical and a wide
variety of analysis questions can be answered with the tool, Concurrency Workbench
[Bruns97].

The basic elements of CCS consist of agents, actions and operators. An agent is a part of
a system whose behavior consists of discrete actions. An agent may be decomposed into
sub agents acting concurrently and interactively. An action models a real world event.
Each action of an agent is either an interaction with other agents through communication,
or it occurs independently and concurrently. Operators control the occurrence of actions.

The simple Arbiter, for instance, can be modeled in CCS as follows:

def
Arbiter = req.acq.rel. Arbiter

This definition states that from the state Arbiter a req (request action), then an acg
(acquire action), and finally a rel (release action) transition can be performed, leading

back to state Arbiter.

def
The above expression consists of the prefix “.” and = operators. We will give the precise

meaning of these operators by the rules in the following.
e The prefix operator «.”

Theruleis: a.P—25 P .
where a stands for an action and symbol P stands for a CCS expression.

The rule indicates that a P can perform an action « and thereby become P. The prefix

operator is not commutative but associative.
def

e The definition operator =

def
The rule for = is as the following:
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P——H P a4

a

The rule states that if an expression P can reach another expression P’ by a transition a,
and if 4 has been defined to be P, then 4 can also reach P’ by a. Informally, one can say
that if 4 is defined to be P then A4 can do whatever P can do. For brevity, we will often

def
use “="to replace * = ” in our expressions.

¢ The summation operator “+”
The meaning of “+” is given by two rules
P—=5pP 0—— 0
P+Q—=93P P+0—°,30

The first rule states that if an agent P can perform action a and becomes agent P’, then
P+Q can also perform a and become P’. The second rule is the symmetrical case for Q.
This operator models the idea of altemnative or choice. P+Q can do whatever P or Q can
do.

Although it is often to have only binary summation such as P+Q, it can be applied to a

general case with more than two agents (ZE) and even sum over infinitely many
iel

agents. The summation is commutative, associative and idempotent.

* The composition operator “|”
The following three rules will define the meaning of the composition:
P—2,p 0—99 p—ypol,o
PIQ——P|0 PIQ— PO PIQ—— P|Q
The first rule says that if P can perform a and become P’, the P|Q can perform «a and
become P’|Q. The second rule is the symmetrical case for Q. The third rule says that if P
can perform / and become P’, and Q can perform / and become @', then P|Q can perform

T and become P’|Q".
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The actions / and / are mutual complemented, indicating that the action / can

synchronize with its complemented partner 7 . Complementation follows the rule that

I=1. Therefore the synchronized action of P and Q results in a r action because 7
represents an internal activity to a system which can not be observed from outside.

The rules imply that a component of P|Q either can act independently, or can synchronize
with its partner to produce an internal action. Composition is both commutative and

associative.

¢ The restriction operator “\”
The following rule will dictate the meaning of the restriction operator ““\":
P—=5p
P\L—=5P\L
The L stands for a set of labels or actions. The rule states that P\, can perform any action

ageluUl

of P except the actions in L and L .
¢ Re-labeling

def
For example, if we want to define Arbiter, =req,.acq,.rel,. Arbiter;, we can use the

already  defined  Arbiter and the re-labeling  operator. That is

def
Arbiter, = Arbiter{req, / req,acq, / acq,rel, / rel]. The lists of label pairs inside the

square brackets define re-labeling functions. A list of the form /,/,, ...in/l, defines
functions that maps /;to /;’ and Zto Z for i from 1 to n.
The rule for the re-labeling is
P—5 P
P10 Pl
That is if P can perform « and become P’, then P[f] can perform f{a) and become Plf].
So far, we have introduced all the necessary CCS notations for our system modeling.

4.4 Modeling Distributed Education System
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As discussed previously, a distance education system, DES comprises the following
components: a set of students, S={§,, S, ..., S,}. a set of instructors, I={I,, I,..., In}, aset
of event channels, EC={EC,, EC,,..., EC,/}, one authentication component AU, one
database instance DB, and one system administrator, S4. In CCS notation, these
components will be modeled as agents. These components will be running potentially on
different machines concurrently and transparently. The interactions among these
components are modeled as actions, which belong to the set of Act={getReqSt, getReql,
sendReqDB, getlnfo, sendlorToSt, sendlorTol, sendStMsg, receiveStMsg, sendIMsg,
receivelMsg., etc.}. The complete collection of this 4cr set will be identified along the
process of our modeling. In essence, the DES can be specified as the following:

DES = (SA|DB|AU|EC|S|I)\ L
where S={S, Sz, ... Sa}, I={l}, I...., In}, and EC={EC,, EC,, ..., EC,}; LcAct

We will further elucidate the semantics of the above expressions.
e Agent S4, the System Administrator:
SA = setinfo.SA
This implies that S4 can do an action of setInfo—set information to DB and return back
to the state of SA. 54 is recursively defined by this way.

e Agent DB, the Database:
DB = setinfo. DB + send Re gDB. getinfo. DB

The setInfois the complement action of setinfo. DB is recursively defined. DB can have

interactions with S4 and return back to the DB after the setinfo action. On the other

hand, DB can have interactions with AU (see the following paragraph for the detail). After

a sequence of actions, send ReqDB. getinfo , DB retumns back to its original state.

» Agent AU, the Authentication component
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AU = AUS + AUI
AUS = get Re qSt.send ReqDB. getinfo.sendlorToSt. AU
AUI = get Regql.send Re qDB. getInfo.sendlorTol. AU
AU is also defined recursively through the intermediate agents AUS and AUI. AUS
represents the authentication process to the students. This is that AUS gets request from
the student, sends this request to the DB, gets the info from DB and then returns the info
(the IOR) back to the student. The same scenario applies to the AU, corresponding to the
case for the instructor. 4US and AUT have been defined in a generic way. In reality, there
could be up to n students and m instructors.
We can use the relabeling method in CCS to cope with this situation.
AUS; = AUS[get ReqSt, / get ReqSt, sendlorToSt, / sendlorT: oSt]
AUI; = AUI[get Regql ; / get Reql ,sendlorTol ; / sendlorTol]

Consequently, AU will be defined as:
AU = 3 AUS, + Y AUI,

i=l.n Jj=l.m

e Agent S: the set of students
Suppose that there are n students, then we have
§=1{5,.S,,....5,}
where S; (i=1,2,...n) is defined as:
S, = get ReqSt,.sendlorToSt, connectSupStE C.,;-SP,
+ get ReqSt; .sendlorToSt, connectConStEC, , . SC,

the action connectSupStEC;; represents that the student S; is registered to the EC; as the
supplier while connectConStEC;; corresponds to the case that S; registered to the EC; as
the consumer, j, ke(1,2,.. m). The different subscribes J and k are used, implying that the
student S; can be the supplier and consumer of different ECs. This corresponds to the case
of our example, bi-direction. If j=k, we have the case of group communication as
discussed previously.

Further, SP; and SC; are defined as the following:
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SF, = connectConStEC,, .SPC, + disconnectSupStEC, ;.S, + sendStMsg, .. SP,
SC; = connectSupStEC, ,.SPC, + disconnectConStEC, x-S, +receiveStMsg, . .SC,

SPC, = sendStMsg, ;. SPC, + receiveStMsg, , .SPC,
+disconnectSupStEC, ;.SC, + disconnectConStEC, %-SP

The semantics of SP; is that the student S; has connected to a supplier end of a EC; while
SC; indicates that S; has connected to a consumer end of a EC;. The semantics of SPC; is
that the student S; has connected to a supplier end of a EC;and a consumer end of another
EC; (it is possible that j=k).
Si, SP;, SC; and SPC; have been recursively defined. SP; can connect to the consumer end
to become SPC;; or disconnect from the supplier end to become S;; or send a message to
the connected supplier end to return back to SP;. The similar scenario applies to SC;. SPC;
can send and receive messages from EC; and EC; receptively. SPC; can disconnect to the
supplier end to become SC; or disconnect to the consumer end to become SP;. The
behaviors of the student have been unequivocally defined through this formal
specification.
e Agent [ the set of Instructors
Suppose that there are m instructors, then we have

I1={l,I,..,1.}
where [; (i=1,2,...m) is defined as

I; = get Reql;.sendlorTol, connectSuplEC, P/
+get Reql,.sendlorTlt, connectConlEC, , .IC,

Similar to the previous case, the action connectSuplEC; ; represents that the instructor /; is
registered to the EC; as the supplier while connectConlEC;; corresponds to the case that
I; registered to the EC; as the consumer, j, k&(1,2,.. m). The different subscribes j and k
are used, implying that the /; can be the supplier and consumer of different £Cs. This
corresponds to the case of our example, bi-direction. If j=k, we have the case of group
communication as discussed previously. However if only the action connectSuplEC;; is
conducted, we are in the situation of one direction (one to many) pattern as shown

example previously.
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Furthermore, /P; and IC; can be defined as the following:
IF, = connectConlEC, ,.IPC, + disconnectSuplEC, ;.1I, + sendIMsg, ,.IP,
IC, = connectSuplEC, ,.IPC, + disconnectConlE C.i-1; +receivelMsg, , .IC,

IPC, = sendIMsg, ,.IPC,; + receivelMsg, »-1PC,
+disconnectSuplEC, ;+-1C; +disconnectConlEC, , .IP,

The semantics of /P; is that the instructor /; has connected to a supplier end of a EC; while
IC; indicates that /; has connected to a consumer end of a EC;. The semantics of IPC; is
that the instructor /; has connected to a supplier end of a EC; and a consuruer end of
another EC; (it is possible that j=k).
1, IP, IC; and IPC; have been recursively defined. IP; can connect to the consumer end to
become IPC;; or disconnect from the supplier end to become I;; or send a message to the
connected supplier end to return back to /P;. The similar scenario applies to IC;. IPC; can
send and receive messages from EC; and EC; receptively. IPC; can disconnect to the
supplier end to become /C; or disconnect to the consumer end to become IP;. Similar to
the case of students, the behaviors of the instructor have also been unequivocally defined
through this formal specification.
e Agent EC: the set of Event Channels
Suppose that there are p Event Channels, then we have

EC={EC,EC,,...,.EC,}

where

EC, = ZconnectSupStEC,. +-EC, + ZconnectConStEC,. +-EC,

i=1.2_n i=l2.n
+ gdisconnectSupStECi.,‘.ECk + ZdisconnectCanStEC,. +-EC,
i=l.2_n =2 n»
+ gconnectSupIEC,. +-EC; + gconnectConIEC,. +EC,
+ ;di::connectSupIEC,..,c.EC,t + gdisconnectConIEC, +-EC,
+ lZsendStMsgi x-enQue, . ECQ, + . g:sendIMsgi +-enQue, .ECQ,

In the above expressions, apart from enQue; all actions (more precisely, their
uncomplemented partners) have been defined in Agent S and Agent /. For example,
connectSupStEC;; has been defined in Agent S, implying that the student S; is connecting
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to the supplier end of Event Channel k. The complementation action of this is

connectSupStEC, ;  as defined in the above. The action enQue; is related to the insertion

of an element to the event queue of EC;. The definition and semantics of these queues
will be presented in the next section.
ECQ: is the intermediate representation, which implies that EC; has events stored in its

queue and is ready to be forwarded to its consumers. ECQx is defined as the following:

ECQ, =deQue, . Hrecezve[]l{sg k- )(HrecezveSMsg £ )ECOX,

ECOX, =empty,. EC +notEmpty, . ECQk

HrecezveIMsg jx-=receivelMsg ; , .recevielMsg i -e--receivelMsg . .

where
HrecetveSMsg, & - = receiveSMsg, , . -recevieSMsg, , ....receiveSMsg, , .

There are u instructors and v students registered as consumers of event channel &
(obviously, u<=m, and v<=n). Once there are stored events in event channel, the event
channel will remove the oldest event and forward it via receiveMsg to all its consumers
one by one.

After its sending the event to all of its registered consumers, the event channel will enter
an intermediate state defined as ECQX.. This state will have synchronized actions empty
or notEmpty with its queue. If the queue is empty, the event channel will return back to

EC,. Otherwise, it will return to ECQ%. ECy has been recursively defined.

e Agent QO: the set of Queues
Each @, will be associated with its event channel E Ci. we thus have

0=1{0,0,...0,}
As we discussed previously about some detail implementation of event channels, we
came to the point that event queue within the EC is very crucial for the quality of service.
The push-push notification communications could be implemented even without a queue,

as the case of ORBacus3.1.1. This kind of configuration is hardly to provide any
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decoupled communications. The supplier will be directly engaged to all consumers when
pushing an event. Given the time cost for each remote method invocation, such direct
engagement is highly undesirable. Therefore it is important to model the queues
associated with the event channels. What we specify here is very fundamental, i.e. there
exists one event-queue for each event channel. The length of the event queue is /, i.e. up
to / events can be stored in the queue. If there are more than / events inside the queue, the
oldest event will be removed to satisfy length_of queue =/.
To meet certain quality of service, the specified characteristics of the queue is essential.
Nevertheless, more advance approach may be utilized in the implementation, such as one
queue for every consumer in a channel as in the case of ORBacus3.1.3.
The queue Q; or Qs is defined as follows:

(* = enQhue, 0" + empy, .0

i) =enQue, .0 +deQue, .0 + notEmpty,.Q"

D — enOue. .0 + deOue. 0D 4 mmrFmrs A
. =enQue, .0, +deQue, 0" + notEmpty, .Q!

i = enQue,.deQue,.Q\" + deQue,.Q!" + notEmpty, . "
where 0, ¥ will be turned into 0,"*” and O,"” respectively following the complemented
actions of enQue; and deQue;. Obviously, O«'” can not have an action of deQue;. The

semantics of enQue,.deQue,.Q," is that the oldest event will be removed upon the

insertion of the (7+1) element. Clearly only 0,'” will be synchronized with empry; and the
rest with notEmpty;.

Up to this point, we have modeled all of the essential components for our distributed
education system including the event queues. Based on this model, a formal specification
can be generated when the system parameters are given. These parameters include the
number of event channels (p), the number of the students (n), the number of the
instructors (m), the length of the queue (/), and the communication pattern for the
particular channels. The behavior of the system could be tested and reasoned with the
tool, such as Concurrency Workbench (CWB) [Bruns97]. The whole system can be
further implemented based on this specification. By employing the distributed object



technology such as CORBA, the interfaces of the components can be further specified
with CORBA IDL. This enables the components to be separately developed or purchased.
These components can be deployed in different machine nodes over the Internet. With
CORBA as its component middleware or infrastructure, these components will be
running concurrently on each machine and integrated seamlessly in a whole over the

heterogeneous network.

4.5 Summary of the System Modeling and an Example lllustration

In the last section, we have presented our mathematical models in a step by step fashion
and discussed the semantics pertaining to them. In addition to the agents of S4, DB, AU,
S. 1, and EC, we also modeled the queue Q associated with EC. Although Q is logically
internal to EC, we have to explicitly include Q in the system DES since there are actions
such as enQue, deQue, empty, and notEmpty associated with it. However other agents
such as SP, SPC, ECQ etc. do not need to be included explicitly. This is because they are
just intermediate steps in defining S, £C recursively.
Therefore we finally model the distance education system as:

DES = (SA|\DB|AU\ECIQISID\ L
where §={S,, S, ..., Spb. I={I}, I, ..., I,}, EC={EC,, EC;,.... ECyt and Q={Q,,0>....0p);
L = {setinfo,send ReqDB, getinfo} U Get Req U SendlorTo L SendMsg U Re ceiveMsg
 ConnectEC U DisconnectEC U EnQue U DeQue w Empty w NotEmpty

and

Get Reg = N {get RegSt;} ,-:.J_.. {get Reql ;}

SendlorTo = > {sendlorSt,} ; Y. {sendlorl ;}

SendMsg= U U {sendStMsg,,} U U {sendIMsg st

1=l .ns=l_.p J=teme=1.p

ReceiveMsg= U U {receiveStMsg, .} U U {receivelMsg it
p

i=l.ns=l..p j=leme=1,.
ConnectEC = VoY {connectSupSIEC,  } oY {connectSuplEC ,,}
i=lons=l..p j=lemi=l_p
LY {connectConStEC, , } oY {connectConlEC, , }
i=l.ns=l._p J=lemi=l.p
DisconnectEC= U y {disconnectSupStEC,.} v o {didconnectSuplEC it

i=l.ns=l..p Jj=l.mit=l_p

VU  {disconnectConStEC,,} U u {disconnectConlEC "

i=l.ns=l._p J=leme=l_p
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EnQue = ) {enQue,}
i=l.p
DeQue = ) {deQue, }
i=l.p
Empty = o {empty,}
NotEmpty =  {notEmpty, }
=le.p

The semantics of all above actions can be found in the last section, which also includes
definitions of all agents.
As an example, let’s assume a DES system with one instructor, two students, and one EC
channel with uni-direction one-to-many communication pattern and event queue length of
2. That is the case where n=2,m=1/ and p=1 and I=2. The whole system can be specified
as the following:

DES = (SA|DB|AU|ECIQ|S|I)\ L

where S={§,, S,}, I={I,}, EC={EC,} and o={0}

and L={setInfo, sendReqDB, getInfo, getReqSt;, getReqSt;, getReql; sendlorToSt,
sendlorToSt;, sendlorTol,, sendIMsg; ;, receiveStMsg; |, receiveStMsg; ;,
connectSuplEC;;,  connectConStEC;;  conectConStE C:;.  disconnectSuplEC, |,
disconnectConStEC, , disconectConStEC;, ;, enQue,, deQue;, empty,;, notEmpty,}.

The semantics of the agents are as the following,

SA = setInfo.SA

DB = setiInfo. DB + send Re qDB. getInfo. DB

AU = get ReqSt,.send Re gDB. getinfo.sendlorT oSt, AU
+ get ReqSt, .send ReqDB. getinfo.sendlorToSt, AU
+ get Reql,.send ReqDB. getinfo.sendlorTol,. AU

S, = get ReqSt,.sendlorToSt, connectConStEC, ,.SC,
SC, =disconnectConSIEC, .S, + receiveStMsg, ,.SC,

§, = get ReqSt, .sendlorToSt, connectConStEC, ,.SC,

SC, =disconnectConSIEC, .S, +receiveStMsg, ,.SC,

I, = get Regql,.sendlorTol, connectSuplEC, ,.IP,

46



IR, =disconnectSuplEC, .1, +sendIMsg, ,.IP,

EC, = connectConStEC, ,.EC, + connectConStEC, . EC,
+disconnectConStEC, ,. EC, + disconnectConStE C,,.EC,
+ connectSuplEC, . EC, + disconnectSuplEC, ,.EC,
+ W. enQue, . ECQ,

ECQ, = deQue,.receiveSMsg, , .receiveSMsg, ,. ECOX
ECQX, =empty, .EC, +notEmpty, . ECQ,

) __ N (0)
1 =enQue, .0 +empty,.Q,

1" = enQue,.O +deQue,.Q +notEmpty,.Q"

1(2) = enQue, .deQue, . 1(2) +deQue, . lm +notEmpty, . 1(2)

The above semantic expressions can be directly mapped into the CWB agents
expressions. Software engineers are thus able to explore the system behaviors with the
simulator or other facilities available with CWB. For more complicated situation, the
process to convert the specification to CWB agents expressions for given parameters
could be very tedious. This conversion process can be made automatically by
implementing a software tool. Following the modeling and specification presented thus
far, it should be straightforward to implement such a tool. However the implementation
of this conversion tool is beyond the scope of this thesis.

Moreover at a recent work [Tjand99], assembly line pattern with the distributed system
has been investigated. Only the so-called linear fashion was addressed, i.e. there exist
exact a pair of one supplier and one consumer for each channel. In that sense, our model
has addressed certain non-linear features in the communication system.

To summarize, we have presented a rigorous mathematical modeling of the object-based,
real-time communication system for distance education. This model can be used to
generate the formal specification, which allows software engineers to examine the
behavior of the system even before the starting of the implementation. The significant
parts of this modeling include follows: 1) Essential components in distance education
communication system have been identified. 2) The interactions among the components
have been identified. 3) Three most significant communication patterns have been
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classified. 4) Rigorous mathematical modeling and formal specification have been
provided. All of the above constitutes an array of contributions of this thesis. This is the
first time that such mathematical modeling has been applied to the distance education

system.
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5. System Design and Implementation

The system design will be primarily based on the formal specification presented in the
last chapter. Although the behavior of the system has been rigorously specified, there are
still many issues to be addressed in the design and implementation. Many design
decisions and trade-off will be described as we proceed the discussion. We will follow
the methodology of component-based design. Because our targeted audiences are Interet
users, we choose Java as the primary implementation language due to its high portability.
The middleware is built with CORBA compliant product, ORBacus [0OOC99a]. The
result of this implementation will be a prototype of Object-Based, Distributed Online
Real-time Communication System. This prototype will be served as a proof of concepts
of such distributed communication system formally specified at chapter 4, which will in
turn validate that the proposed approach can be successfully applied to our domain. This
system shall be able to handle real-time communication for a range of media in a uniform
manner. Moreover this prototype will have sufficient functionalities and capacities to be
useful in real world.

In this chapter, we will start with the description of the development environment. We
then discuss the rational of design and present the system architecture, followed by the
detailed design of the system, IDL interfaces and description of the implementation.
Finally, we will describe the operation of the system, enlist requirements for such a

system to operate and discuss rooms for improvement.

5.1 Development Environment

5.1.1 Platform

The implementation of the Distributed Communication System is primarily carried out on
an NT4.0 Workstation. This machine is a Gateway 2000 with a Pentium 233Mhz
processor and 96MB RAM. Since the essential components of this system are
implemented with Java, the platform is not really an issue here due to the fact of Java’s
WORA (Write Once Run Anywhere). This is especially true for the user side, which is
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supposed to be deployed to the heterogeneous Internet environment where diverse
platforms are expected. The IP address of this machine is 137.207.16.20 with a domain
name of 3139erie-13.lams.uwindsor.ca (it used to be named as Arjuna).

Additionally, in order to facilitate the video/audio captures and playing, a sound card and
video capture accessory are required. The sound card is provided originally with the
Gateway PC, which is a Sound Bluster PCIL. The video camera is Logitech QuickCam
VC. The major specifications for this video capture device are as follows: 1) capture up to
24-bit colors; 2) resolution with 352x288 pixels; 3) capture up to 30 fps (frames per
second) based on image size, resolution and user’s system. The camera is connected with
the PC through the parallel port, in which case no capture card is needed. This type of
camera is sufficient for the current development. The parallel input setup of this NT is set
as DMA (Direct Memory Access) mode, which will enhance the capture performance. If
even better performance is required for video capture, the PCI type capture card can be
installed. This card can be connected with standard video camera (or VCR as input) for
better quality as well.

The NT Workstation tumns out to be the right choice for this implementation because of
the following: the easy of use, availability of software and hardware, cost, and

sophistication of operation system model.

5.1.2 Development Tools

As stated previously, the implementation language will be the Java language primarily
due to its unrivaled portability. Additional reasons to choose this language include
follows: 1) Java is a pure Object Oriented Language (OOL). OOL is believed to be the
most suitable language for component-based development [Brown98]. 2) Java has some
unique and nice features such as automatic garbage collection, exception handling,
Internet ready, integrated thread support. 3) Its rich portable APIs and many free available
tools make it an ideal tool for our system development.

The middleware or distributed infrastructure will be CORBA. This is due to the following
facts: 1) CORBA is one of industry standard for middleware and component
infrastructure, endorsed by 800+ companies. 2) CORBA is suitable for heterogeneous
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environment [Meta98]. 3) Tools are available for Java CORBA mapping. 4) Standard

object services are available.
In the following, we will list an array of development tools that have been used in the

system development. However they are not equally important or used with similar

frequency in the whole development process. Core Java and ORBacus/CORBA are the
major tools, while the rest ones are used at certain part of the development.

JDK1.2: JDK1.2 is the latest Java Version for Java 2 platform at the time of this
development. It has much more powerful APIs class libraries than those of JDKI1.1. In
particular the Java Foundation Classes (JFC or Swing) for GUI is becoming a
standard core part for this release. Visual J++ is also used in the development.
Because of its incompatibility with JDK1.2, we just use it as an editing and
organizing tool instead of an IDE (Integrated Development Environment).

ORBacus (CORBA middleware tool) with its Basic Object Services such as Naming
Service, Event Service, etc. Together with this tool is its Java to IDL compiler—jidl,
which will translate the CORBA IDL to Java code to be used in connection with
ORBacus. ORBacus3.2 is JDK1.1 compatible, however it will work with Java 2
platform pretty smoothly with a bit of getting around i.e. setting correct system
properties, fixing a few deprecated methods etc.

Visual C++ and Java Native Interface, JNI: We will use native implementation
(Visual C++) for video capture. Visual C++ is used to compile the necessary DLL
files and Java JNI is used to integrate C++ part to the Java environment.

Java Media Framework JMF2.0: This is a standard Java extension, which provides
a Java solution for cross platform media playing and video/audio capture. In this
work, JMF is used primarily to facilitate video/audio playing. Due to performance
consideration, we use native implementation (C++) for video capture.

DBMS: Oracle8i Enterprise Edition has been installed in this NT Workstation to
serve as a database server. Various information or data can be stored to and retrieved
from this database. We can leverage its built-in SQL support, concurrency control,

security etc. for more robust application in compare to the flat file implementation.
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For example, authentication component could use DBMS for storing client
information. All other persistent data and state can be managed by the DBMS as well.

* JDBC: Database access is through JDBC, which is part of Java 2 platform. In this
work JDBC is used to access Oracle®i database through CORBA middleware or Java
Servlet in connection with Web Server.

® Web Server and Servlet: Apache 1.3.6 is installed in the NT workstation. Therefore
our distributed objects system can be closely interacted with web server. The web
server can host document and retrieve information from the database through 3-tier

architecture with Java Serviet/JDBC.

5.2 Design Considerations and System Architecture

5.2.1 Some Design Considerations

There are various ways in building a multi-party communication system over a network.
It could be an approach using TCP/IP (UDP/IP) socket with client/server. It could be an
approach with distributed object utilizing standard Object Services. Our primary concern

is also to have a uniform communication mechanism for various media types.
5.2.1.1 Deficiency of the Conventional Client/Server Approach

Let’s think about a scenario for a typical client/server model for the group
communication. Even for the simplest character-based client/server chat program, many
careful considerations are still involved for writing robust applications. First the
communication protocol must be “invented”. This protocol has to be decent enough in the
first place. Any modification of this protocol may be expensive. As an example for Java
socket programming, the simplest approach may use readLine()/println() in the
Input/Output streams, which requires no parsing. Then the server must be implemented as
multi-threaded one. To be more specific, each client may be assigned as one
corresponding thread. In addition, there will be a writer thread, which will write the
received message to every client. All the threads must be synchronized in some way in

order not to be messed up with each input. The thread for this writer may have higher
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priority than other threads, depending on the policy of the server. The wait()/notify()
could be implemented in order to reduce the unnecessary resource consumption. The
input from each client could be placed in a queue for the writer to process. In this way,
client input could be more responsive—no need to wait the writer processing, and
faimess could be ensure by implementing FIFO waiting queue.

As one can see from the above, it requires many considerations for an even very simple
chat program design. However, there are several problems involved in this design. First
of all, the application is not well modularized, where the communication part is tightly
integrated with the particular application. Second, it is not easy to extend. If we need kind
of parsing, the protocols have to be redesigned. If serialized objects or images have to be
incorporated, complete redesign could be the best solution. Third, how to handle the
scalability? One possible approach could be the duplication of the servers. The server to
server communication protocol will be required. The development process is not uniform

at all. Furthermore the while loop for each client thread will consume the CPU resource.

5.2.1.2 Distributed Object Solution and Using CORBA Event Service as a Central
Hub

Based on the discussions in the last section, we will employ CORBA Event Service as a
central hub for our communication system. The major benefits of this approach are as
follows:

1) The event service is CORBA standard basic service. The component-based
development is to integrate the existing component instead of building form scratch.
Therefore this approach is conform to the principle of CBD.

2) The generic event service, which can propagate all type—ANY type of the event
regardless whether it is string, image or drawings. CORBA IDL provides a standard
way to encode and decode those types to and from ANY. Therefore no adhoc or self-
invented protocol required for each of event types. This shall provide a uniform
solution for a class of communications.

3) Maintenance issues: because of well-defined interfaces, each module can be

maintained and upgraded separately. For example, event service module can be
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replaced with ones from different vendors based on requirements of performance or
Quality of Services.

4) Flexibility in composing of the Event Channels. The output of one channel could be
the input of the others. So channels can be freely composed in a sequential or parallel
way. The communication between the channels is exactly the same with that between
client and channels. This enables the load to be transferred from one channel to the
other.

5) Scalability: Event Channels are distributed over the different machines. The system
can have high scalability.

6) Standard CORBA Objects, which can leverage the security of IOR and many other

layers.

5.2.1.3 Authentication Management

We need to consider issues regarding authorization/authentication and securities, and the
way to provide IOR (Interoperable Object reference) to users. A standard way to make
IOR available to the users is through the standard CORBA Naming Service. However this
approach alone does not lend us an ability to handle authentication process. Although
commercial available SSL will provide a graceful way to handle security issues, the
service itself is very expensive and may not be tailored to our particular need.

In addition to the Naming Service, we design a CORBA middleware component named
Coordinator that will handle the IOR registration and retrieval. This component further
employs the JDBC to connect the Oracle server where the data and user information are
stored. Although we can use the flat file system to store the information, the benefit of
employing a DBMS is evident. For example, we can leave the programmer’s
responsibility for concurrency and security control to DBMS. Additionally DBMS has
SQL support as a standard. The optimization of the queries is automatically performed by
the DBMS engine. This will alleviate our concemns in devising efficient means in
searching information in many different files. Furthermore we automatically have a
highly scalable information storage system. Therefore in this system DBMS is used to

assist our system management in addition to a system repository.
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5.2.2 System Architecture

Figure 5.1 is an illustration of an overall system architecture. This diagram consists of
some similar components to the model component view in Figure 4.1. However, the
current diagram exhibits a more concrete view, which could be a real deployment. The
architecture shows an example of our distributed communication system in distance

education.

Overall System Architecture

Instructor

System
dministrator

Students

FigureS.1 An illustration of overall system architecture

5.2.3 A Typical Graphical User Interface

Figure 5.2 shows a typical GUI for the online real-time communication and collaboration
system. We put this illustrative representation at this stage in order to make our
discussions in the following sections easier. In essence, there are four panel areas within

the main window frame. The upper-left panel is the area for drawing, the upper-right is
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the area for image presentation, the middle panel is for the control of media playing, and
the bottom panel is the place for chatting. A click of the “Connect” button will connect
the user to the desired Event Service. The subsequent real-time communication and
collaboration will be possible to conduct. The functionality of many buttons in the figure
is pretty much self-explained. The menu bar is the place containing many menu items to
trigger different functionality. The overall GUI component is named as CyberClassRoom
since it facilitates classroom-like or tutorial-like experience in Cyber space. The GUI is

implemented with Java Swing.

Heilo, My Friend, How wouid you think about this use case? - Q Conmect

T ,. 0 O

Figure 5.2 A typical GUI for online real-time collaborations.

5.3 The Contracts among Components—IDL Interfaces

In the paradigm of component-based development, interfaces are the contracts between
the service providers and the service consumers. When CORBA is used as the
middleware for distributed object development, interfaces are prescribed with CORBA
IDL. IDL interfaces are grouped into modules. In this section IDLs for a set of modules
being used in the system will be presented.

56



5.3.1 The IDL for Event Supplier and Consumer-CosEventComm

The module CosEventComm (stands for CORBA Object Service Event Communication)
consists of interfaces for Push Consumer, Push Supplier, Pull Consumer and Pull
Supplier. These interfaces have been defined by OMG at its CORBA Basic Service
Specitication [OMG98b].

module CosEventComm {
exception Disconnected {};

interface PushConsumer{
void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

¥

interface PushSupplier{
void disconnect_push_supplier();
’s

interface PullConsumer{
void disconnect_pull_consumer();
e

interface PullSupplier{
any pull() raises(Disconnected);
any try_pull(out boolean has_event) raises(Disconnected);
void disconnect_pull_supplier();

-
.

5.3.2 The IDL for Event Administration—-COSEventAdmin

The module CosEventChannelAdmin (stands for CORBA Object Service Event Channel
Administration) consists of interfaces for Event Channel, Supplier and Consumer
Administrations, and Proxies for Push/Pull Consumer/Supplier. The interfaces of this
module have been defined by OMG at its CORBA Basic Service Specification
[OMGI8b].

#include <CosEventComm.idl>
module CosEventChannelAdmin {

exception AlreadyConnected {};
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exception TypeError {};

interface ProxyPushConsumer : CosEventComm: :PushConsumer {
void connect_push_supplier(in CosEventComm: :PushSupplier push_supplier)
raises(AlreadyConnected);

¥

interface ProxyPullSupplier : CosEventComm::PullSupplier {
void connect_pull_consumer(in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

H

interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier(in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

1

interface ProxyPushSupplier : CosEventComm: :PushSupplier{
void connect_push_consumer(in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);
b
interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
bR

interface SupplierAdmin {
ProxyPushConsumer obtain _push_consumer();
ProxyPullConsumer obtain_pull_consumer();
b

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();
}s
5
5.3.3 The IDL for Message Passing and Coordinator

IDL for Messages (passing through Event Service) is defined in the module of jidl as
shown in the following. Generic (or untyped) Event Channel is used in this system, where
the transferred event messages are the type of CORBA any. However the message must
be an IDL type. Therefore the content of the module Jidl is basically the IDL type
definition. The chatting message is a string type that is a primitive IDL type, thus needs
no further definition. Therefore the following IDL type definitions are essentially for

passing drawing objects.
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//IDL

//Drawing.idl

//IDL type for all of the drawing Object
module jidl {

struct PointCORBA {
long x;
long y;

s

//represent the FreeHandDrawing
typedef sequence <PointCORBA> PointSequence;

struct DrawCORBA {
string hostID;
string timelD;
long color;
long shapeCode; /Rect, Oval, Line, ect.

long x; //Rectangle rect representation;

long y;
long w;

long h;

//other parameters

long lineCode;

string content;

PointSequence points;
5

struct UpdateCORBA {
//Remote Update is limited to the variation
//of the size and the location of the drawing object
string hostID;
string timelD;
long x;//Rectangle rect represntation;
long y;
long w;
long h;

b

1

The IDL type, DrawCORBA represents a structure that corresponds to drawing objects of
a line, a rectangle, an oval, a text content or a freehand drawing. Any drawing object shall
be associated with a bound rectangle corresponding to the fields of x, y, w and h. A
drawing object can be updated and its effect shall be reflected to drawings of all the users.
This is the purpose of the IDL type of UpdateCORBA. The drawing update is limited to
the changes of size and location, thus only the rectangle bound information is being sent.

The combination of hostID and timeID (the time of which a drawing object is created at
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the user machine) can be used to uniquely identify a drawing object. The IDL type
DrawCORBA includes a wide range of basic shapes. If additional drawing types need to
be added, new types- could be added to this module.

The following simple IDL type definition is singled out from the above module because it
is exclusively dealing with the image type passing. Image passing is devised in using a
byte array type. In fact it is a “sequence” of “octet” in IDL, which allows the length of
array to be determined at run time. Although being simple, it turns out to be a very
effective way in passing images. In principle any image in the memory can be serialized
to a byte array as the way to store to a file. This byte array is being defined now as an IDL
type, thus is able to be sent via Event Channel to all parties. This byte array can be
reconstructed to the image as the way being loaded from a file. More discussion about
image message passing will be presented in the section that is dealing with detailed
design.

/IDL

//ByteArray.idl

module jidl {

typedef sequence <octet> ByteArray:;
HH

Generally speaking, drawing objects can also be sent via the byte array type. At the point
of sending, the drawing object can be serialized to a byte array with the help of Java
Serialization Framework. At the point of receiving, the drawing object can be
reconstructed through the deserialization process. This may be served as an alternative
approach for future modification. Although being very simple, the serialization and
deserilization process may incur additional overhead. Nevertheless, the current approach
provides a good demo that three different IDL types i.e. built-in string, composite
sequence and user defined structure type, can be effectively and uniformly transferred
with generic Event Channels.

The IDL interface defined in module Coordinator corresponds to the component in
handling the authentication and management. There are several exceptions defined as

well. This component is functioning as a coordinator as its name indicated. It is connected
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with DBMS on one hand and provides users (Students and Instructors) with
authentication services on the other.
//IDL File
//Coordinator.idl
module coordinator{
/throws exception when there is no such user

//or the passwd and login name not match
exception NotAuthorizedException {string msg; };

//When the user required service is not active or not exist
exception NoSuchServiceException {string msg;};

//When the service has already been binded
exception ServiceAlreadyExist{string mag;} ;

interface Coordinator {
string obtainlOR(in string login, in string passwd, in string serviceName)
raises(NotAuthorizedException, NoSuchServiceException);

void set!OR(in string login, in string passwd, in string serviceName, in string IOR)
raises(NotAuthorizedException, ServiceAlreadyExist);

void clearlOR(in string login, in string passwd, in string serviceName)
raisw(NotAuthoﬁzedException, NoSuchServiceException);

1
Users can obtain the IOR for a service with the method obtainlOR. The user must provide
the login name and password for the authentication. Privileged users, say instructors, can

set the IOR for the corresponding services through the setlOR. Privileged users can also
remove the service by referring the service name through the method clearlOR.

5.4 Detailed Designs and Implementations

This section will discuss details regarding designs and implementations. The overall
component architecture will be given then followed by detailed discussion of each

component.
5.4.1 Detailed View of Some Components of the System

Figure 5.3 shows a detailed view of some components of the system. The Event Channel
module or component (interfaces as well as example of implementations) has been
discussed at length in chapter 3 and this chapter. Therefore they will be touched only
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briefly if they need to be included at all. In essence, the diagram illustrates components at
the user side. The major components are those for chatting, drawing, image and video
capture. There is a Communication Agent component or layer, which handles detailed
connection to the Event Channel. The design and implementation of these components
will be discussed in the following sections. Please note that some components being

shown in the overall architecture are not necessarily to be illustrated in Figure 5.3.

Detail View of Some Components of the System

il _S

Figure 5.3 Component view for a detail design

5.4.2 Chat Component

gligat With the help of Event Channel service as
ient

the central hub, the chat component could be

L Comm. System easily constructed as shown in Figure 5.4.

Event Channel

This over simplified architecture may be used

to illustrate the basic idea and to test whether

the communication is correctly functioning.

Figure 5.4 Chat component communication
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In essence, the chat client will connect to the Event Channel at both ends. As discussed
previously in specification part, we should use push/push model of the Event Channel.
The user can edit text in a text area. When the “Send” button is clicked, the content in the
edited text area will be pushed to the Event Channel. The Event Channel will then send
this message to all registered parties. The copy/cut/paste functionality is implemented so
that content from other text editor can be copied to the Java text area, and vice visa. The
whole chat session can be made persistent by storing to a file. In chat component, the
establishment of connection to the Event Channel is simplified as a single button click—
click Connect button. The detailed connecting process is handle by the communication

layer, which will be discussed at section 5.4.8 Communication Component.

5.4.3 Drawing Object Component

Passing drawing objects to multi-parties is not as straightforward as that for passing text
strings. The basic scenario can be described as the following. 1) A user may use a mouse
to draw the drawings in the drawing area—a canvas. 2) When he finishes a drawing
object, i.e. the mouse button has been released, the drawing object will be pushed to the
Event Channel. 3) The Event Channel will propagate this message to all registered
parties. 4) The client side will draw this object at its local canvas accordingly.

First of all we have to have a design about how the local basic drawings will be
conducted. Then we will discuses the design for the functionality of this drawing

component.

5.4.3.1 Classes for Basic Drawing Objects

Class java.awt.Graphics (java.awt.Graphics2D with more powerful features) provides a
rich functionality of drawing methods. However, if we want to have interactive drawing
process, we may as well encapsulate these drawing objects to our own defined classes.
The class design diagrams are shown in Figure 5.5. These classes are in the package of
classes.graphics.
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The root class in this class hierarchy is the abstract class ObjectDraw, which defines a set
of members and methods common to all of the drawings. The direct subclass of
ObjectDraw is the class TextDraw, which encapsulates the text drawing. Another abstract
class ShapeDraw being direct subclass of ObjectDraw defines some basic attributes for
most of drawing shapes. The concrete subclasses of ShapeDraw are classes
RectangleDraw, OvalDraw, LineDraw, and FreeHandDraw. These class diagrams
emphasize the relationship among classes. Many other fields and methods have not been
shown in this diagram due to the limited space in one page. The root class ObjectDraw in
this hierarchy implements the Serilizable interface, implying that all drawing objects can
be made persistent to a file or streams with the help of standard Java Serialization
Framework. The other interface being implemented is ShapeCode interface, which is
actually just a set of final static type integers corresponding to the drawing types. Under
certain circumstances, we need to know the exact class type of an ObjectDraw object. We
can thus use the ShapeCode information instead of using several “is instance of”’ queries.



Serilizable ShapCode

abs ObjectDraw j) . ’
hodtID:String
tineID:String has —Rectangle |
drawOutline(g)
abs draw(g) -a
AN Color
abs ShapeDraw TextDraw
lineWidth:int text:String
drawOutline(g)
__draw(g) |
AN
RectangleDraw
draw(g)
OvalDraw
draw(g)
LineDraw
draw(g)
FreeHandDraw
pointArray:int[]
drawQutline(g)
draw(g)

Figure 5.5 Class diagrams for drawing objects.

Global ID: You may notice two fields for IDs—hostID and timeID in the class definition
of ObjectDraw. Considering the functionality for drawing update, we must have a Global
ID that can be used to uniquely identify each drawing object. We devise a simple
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mechanism to satisfy this requirement. The Global ID of a drawing object will be the host
ID of the machine plus the time when this drawing object is created. The host ID of an
Internet machine would be unique for each machine. Even in the case of the dynamic IP
assignment, it should be unique in the session. The timelD is implemented as the return
value of Java static method System.currentTimeMillis() call. Thus the accuracy of timeID
will be to the milli-second. Since the drawing process is with a pace of the mouse moving
time scale, this timelD is sufficient for our purpose.

Other basic attributes: 1) the bound rectangle—Rectangle rect, all drawings should
have a boundary; 2) method drawOutline(), which draws the “rect” when being selected;
3) abstract method draw(), which should be implemented for each drawing object. We
have a type ObjectDraw, which can represent all of its sub types. When its method draw()
is called, the actual drawing object will be invoked. This dynamic polymorphism in Java
reflects the beauty of Object Oriented Programming Language.

Based on the prototype nature of this project, the above classes have a sufficient
“expressing” power in drawing. Sophisticated drawing program is a project itself.
However our class design is an extensible one, which allows new drawing types to be

added to the architecture by sub-typing.

5.4.3.2 Functionality for the Drawing Component

The behavior of the drawing component is much similar to that of a conventional drawing
application. You can click the shape that you wish to draw. Then use the mouse to draw
this shape accordingly in the canvas. You can also set the color for the drawing. The
drawing object can be resized and moved around after being created. All these activities
are necessarily to be reflected to drawing canvas of all parties.

Data structures for storing drawing objects: The drawing objects are stored in a Java
Vector object (a kind of dynamic array). When repaint() method is called, all drawing
objects stored in the Vector will be drawn one by one. Additionally, the data structure
Hashtable is also used in maintaining drawing objects. The key for this Hashtable would
be the Global ID-» hostID&timeID (concatenated here) and the value would be the
drawing object itself. This Hashtable will provide direct access to the drawing object
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based on its Global ID. This is important for the update process. If we search around the
Vector for an object with a particular Global ID, it would be too inefficient. One
important point here is that this updating thread corresponds to that of the remote
invocation from the Event Service. An efficient algorithm in updating is thus significantly
important. This justifies the use of Hashtable for this update issue. Therefore we have
utilized both Vector and Hashtable data structures in storing our drawing objects. This
allows possibility of both walking through and direct accessing to drawing objects.
Drawing passing process: When a drawing object is being sent away, its IDL type
DrawCORBA (as defined in module jidl) will be constructed. There is a standard way to
insert this DrawCORBA into an Any object then this Any object will travel through the
Event Channel and arrive at the client side. Upon receiving the DrawCORBA object, the
client will reconstruct the drawing object based on the parameters in DrawCORBA.

We have observed that the set of classes in the package of classes.graphics has made our
local drawing process a very effective one. Unfortunately, this kind of class type can not
be transferred via Event Channels that require [IDL type. The IDL type, eg.
DrawCORBA, maps to a class in Java after compilation with the IDL to Java compiler.
One may think that the drawing classes can subclass this IDL type, which may enable the
drawing message directly pass to Event Channel. This approach poses two problems.
First, if each drawing object has its own corresponding IDL type, their subclass
relationships will make our local drawing a difficult task. The second problem is beyond
our control. That is the Java class so generated by the JIDL compiler is a final type class,
which can not be inherited. We of course could manually modify the “final” key word,
but it is not advisable.

Another approach may use Java Serialization/De-Serialization process as discussed at
section 5.3.3. The drawing message will be essentially the same as image messages, both
being represented as byte array. Although being a cleaner approach, the serialization
processes incur overhead that may takes more time than constructing IDL type.
Additionally, in the implemented approach, we distinguish the original drawing objects
and update ones thus reduce the unnecessary information to be sent over the Internet.

Moreover pure Java solution (i.e. no CORBA component as the middleware) may have

67



better way to deal with this problem, because all serilizable objects can be directly
transferred to Java platforms over the Internet. That is the case for both socket stream and
RMI. This is the advantage of pure Java approach. But we gain many benefits for the

robust server services with incorporating CORBA Event Service.
5.4.3.3 Consistency in Drawing Collaboration

Consistency issues frequently arise from the separation of processing resources and the
concurrency in distributed system [Coulo96]. They include update consistency,
replication consistency and cache consistency etc. When a new drawing object is being
created, it does not pose a consistency problem in general. Since users can move and
resize the existing drawing objects concurrently, this may potentially leave different
drawings at each client canvas. Because we must ensure certain responsiveness for the
local drawing, when the local action is conducted, it must be reflected immediately at
local drawing canvas and then multicast this change to the other parties. Since the update
messages from the Event Channels are consistent to all the clients (as discussed in chapter
3), the ultimate effect will be consistent for each client. However, the sequences of the

actions in reaching the final effect are not necessarily the same to the view of each client.

5.4.4 images Handling Component

This section is dealing with images handling component. We will discuss the possible
means in effectively transfer the image messages over the Internet, including the image
compression. Then we will discuss about the implemented functionality of this

component.

5.4.4.1 How to Pass Image Messages

To devise an effective means to transfer image messages over network is not a so trivial
task. In Java environment, there is a powerful writeObject() for /O, which can write all
serializable object into a file or a byte stream. For example, we can write String or Vector
objects by this way. The Java Serialization Framework will take care all of the details.
However the Image type in Java can not be handled in this way. It is also not feasible to
have an IDL type defined to represent the Image type.
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In fact, the image in the memory is simply a two-dimensional array or a one-dimension
array with pixelsOfWidth*pixelsOfHeight elements. The value of elements in this array is
the RGB (24 bits color representation of Red, Green and Blue in RGB color model) value
corresponding to each pixel. For a very simple approach, we can Jjust retrieve this two-
dimensional array from the memory and send it over as IDL octet sequence. This IDL
type has been defined previously. The receiver will reconstruct this image with available
Java graphics facility. We actually tested this approach and it worked smoothly. However
we encountered performance problems for network traffic. Considering a simple 320x240
image with 24bit color for each pixel, the size for this uncompressed image would be
230Kb. To send this amount of data to multiple parties over the Internet would consume
significant amount of network bandwidth. Therefore images must be compressed before
they are being sent over the network.

Compressing the image:

The most popular compressed formats for image are .gif (or GIF) and .jpg (or JPG, JPEG)
in the Internet world. While GIF may be good for cartoon type image compression, JPG
format is very effective for compression of pictures. It is very easy to achieve a factor of
10 of compression ratio for JPG format.

Therefore we will choose the .jpg format for our image message passing. The components
to compress image into the compressed format and to construct an image from the
compressed format are termed as coder and decoder respectively. They are together
referred as the term of codec.

Codec (or Coder and Decoder) could be either a hardware or software component.
Obviously we are talking about software at this time. Sun has a package called
"com.sun.image.codec.jpeg”, which provides functionality we need. But it is not part of
Standard Java Platform. This is a kind of framework for image codec purpose. Therefore
it is a bit too heavy to bundle this package with our distribution. Additionally the package
itself is a bit too complicated to walk through. As a matter of fact, AWT package has
already a standard way to read a .jpg (as well as -gif) file into the memory. Therefore we

just need to provide a means to compress image in the memory to a .jpg format.
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A Java JpegEncoder component is available, which resides in the package of classes.jpeg.
This is largely a rewriting in Java from its C code counterpart. The use of JpegEncoder
class is pretty straightforward. We just need to provide an OutputStream and a handle for
an image. There is an additional parameter called Quality, which is ranged from 0 to 100
(from poor image quality, high compression to good image quality, low compression). To
achieve higher compression may take much longer time (kind of exponential growth). We
set the default Quality=50, which has been tested to have a good balance between the
compression ratio and the time to conduct this compression. The compression process
will be irrelevant if the time spent on this task is more than that to send its original

message over the network (we are concerned with the dynamic compression on the fly).

5.4.4.2 Functionality of Image Component

We assume that users will view images first then will decide whether to send them over.
The images with either .jpg or .gif format can be loaded into Java environment by
standard Toolkit in Java application or getlmage() in Java Applet. Such image can be
drawn on a Canvas. When the user click the button “Send Image” (presume that the user
has got an handle to the ProxyPushConsumer at the Event Channel), the image will be
compressed and sent to the Event Channel as the way discussed at last section.

Additionally, multiple images can be loaded into the memory and sent as a group. More
accurately, a group of images can be sent one by one at a certain rate. In fact a whole
directory of images files can be loaded into the RAM. Users can set the pushing rate
interactively. The feature of this multiple pushing can be used as a way of simulating the
animation or the slide show. It is a useful feature for the prepared presenters. This
functionality can also be used in testing the performance of network traffic for continues

pushing of captured images without employing an online camera.
5.4.5 Real-Time Video Capture

The interface to the Communication System (Event Channels) does not pose any
differences among different types of media, being either text, drawing objectS or images.
We will focus on the design for the video capture facility at this part. Once the image is
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captured, it will be pushed to the communication system just as the same way with
normal images.

Some considerations: 1) This capture facility may be provided only to the privilege users
e.g. instructorS. For each collaboration group, there are one captured image push
Producer and many Consumers—classroom-like style. Therefore client side can have one
window or one canvas to be associated with this media. 2) Of course, the number of the
producer could be more than one—communication system does not care. This is similar
to videoconference. But in the client side it is necessary to have multi-windows, where
each window corresponds to one producer. Although it is possible to have such
functionality, we will limit one image capture pushing for one Event Channel in this
prototype. 3) This capture functionality provides one more dimension to the means of

input for instructors.

5.4.5.1 Non-Integrated/Loosely Integrated Approach

At the start of this work, Java Environment has Java media framework JMF 1.0, which
provides functionality of displaying video or audio. However until recently, the full
release of JIMF2.0 provides video capture facility. Before this time, there is no easy way
for Java directly access camera. Even with this capability in JMF2.0, the pure Java
solution is still lack of certain performance. This is because the video capture is a very
resource intensive activity. For performance enhancement, Sun provides as well platform
specific reference implementation, which is a SMb package for Win32.

On the other hand, C++ application has libraries readily available for the access to video
camera. For windows, the standard API for accessing video-camera devices is VFW
Video for Windows. A straightforward solution to incorporate the video capture facility is

schematically shown in the figure.
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Figure 5.6 Non-integrated approach for video capture and Java Application
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This is the so-called non-integrated or loosely integrated approach. This is that the Java
application and video capture application are virtually separated entities. Figure 5.6
illustrates a possible architecture of this approach. Although being simple, the immediate
problems could be 1) it may need two UI interfaces and two isolated applications, which
is awkward to work with; 2) it may be enough for occasional off-line capture, but is not
suitable for the online real-time capture.

We have actually tested this approach. The video capture application utilized is simply
the one provided with the Camera. We set a certain capture rate, say one image per
second, and save the capture the image to a designated place i.e. the same file location. A
Java application will read this file with certain rate and push this content for the
communication. There are two major problems. First of all, to save and read the content
in the second storage is extremely expensive in compare to the memory operation.
Perhaps it is even slower than that of network traffic. Secondly, because there is no easy
synchronization mechanism between these two applications, they can be in conflict in
accessing the file. It happens occasionally that either the capture can not proceed or the
Java application read a corrupted file. In either case, the whole process will be terminated
unexpectedly. Therefore other approaches should be pursued in order to solve these

problems.
5.4.5.2 Fully Integrated Approach

The fully integrated approach is to use Java Native Interface, JNI io connect the Java
application part with the C/C++ video capture part [Marti99]. The architecture of this
approach is shown in Figure 5.7. One of the important interface in JNI is to have pixels
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copied from C++ memory space to Java VM'’s memory space. These operations are
conducted in the main memory, thus are much more efficient than those with /O
operation involved. In addition, the threads in both Java and C++ could now be

coordinated.

"

(Java)
Video Capture Push to the EC

(Java)Video device
JNI

(C/C++)
VideoCam

Device Driver
Low Level API

Adapter

7\
Camera

Figure 5.7 Fully integrated approach for video capture and Java Application

Copying C Array to Java VM and Image Format: The C++ part in this component is
using VFW, standard video capture libraries. To write an application against the VFW
interface will not only save the development time but also portable to many device
drivers. This has been Microsoft standard for Windows. It is worth noting that there is a
mismatch between Windows 24-bit image format (BGR upside-down) and Java byte
order (RGB right-side up). Therefore the conversion must be made when copy the C array
to the Java array of pixels. If it has to be a frame-by-frame transfer, the transfer speed has
to be optimized. Therefore the conversion between the image formats would be
conducted in the native implementation to have better efficiency.

Thread synchronization: Many low-level APIs in image capture employ Callback
functions, which requires synchronizing multi threads in both Java and C++. In Java, we

have synchronization mechanism to coordinate multi-thread. In VC++, we can use
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semaphore to coordinate multi-thread through the library call of WaitForSemaphore() and
ReleaseSemaphore(), etc. For example Java application initializes a method to scan a
frame, it will invoke the native scan method through JNI interface. In native C++ part, it
will issue capGrabFram() method to instruct the low level APIs to grab the frame.
Windows environment will use Callback to return the grabbed result, which is an
asynchronous process. These threads would be synchronized with semaphore. This is that
the action to copy C array to Java VM space must wait the corresponding Callback to
complete.

Java images presentation: The design of this part is reflecting the principal of decoupled
and asynchronous approach. The image will be presented at a canvas that implements the
interface Observer. The image grabbing class VideoGrabber extends the class of
Observable. Observer and Observable are standard Java interface and class respectively.
The Observable object can notify all registered Observers that certain changes have
occurred. The Observers can do the update() accordingly. Therefore the image
presentation part does not need to wait synchronously for new event or actively poll the
results. It will be notified when the new array of pixels is arriving.

Captured images pushed away: Once an image has been grabbed into JavaVM space, it
is straightforward to push it into the Event Channel (presume that the user has got a
handle to the ProxyPushConsumer at the Event Channel). The class VideoMediator
residing at the package of classes.camera will encapsulate the functionality of conducting
image capture and sending the captured image simultaneously. The capture/pushing rate
and size of the frame can be set interactively by the user.

5.4.6 Media (Video/Audio) Playing Component

With the help of JMF, both video and audio clips can be played. The classes MediaPanel
and PlayerFrame residing at the package of classes.swing are primarily responsible for
invoking the playing functionality. Users can choose either play the local media file, or
download from the Internet, or even the lively captured one. (The live captured media
playing with JMF is not implemented in the current work.)
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The MediaPanel uses PlayerFrame to interface a Java Bean MediaPlayer, which is
distributed with JMF2.0. MediaPlayer enables a broad rang of media formats to be
played. For the details regarding the compatible formats please refer to the JMF2.0
specification document. PlayerFrame implementing the interface ControllerListener is
listening to the Media Realized Event. At the Realized state, the visual display
component and control panel component can then be retrieved form MediaPlayer by
calling getVisualComponent() and getControlPanelComponent() methods. The control is
also passed to the MediaPanel.

The MediaPanel incorporating MediaPlayer Java Bean requires JMF2.0 support. The
library size for JMF2.0 cross platform pure Java implementation is about 2.5Mb. If this
distribution is a bit too much, we can replace MediaPanel with AudioPanel. These two
panels have exactly the same GUI outlook, thus ensuring a consistent look. But
AudioPanel does not need JMF2.0 support. AudioPanel just use the basic audio clip
playing facilities in Java standard distribution with rather limited functionality.

5.4.7 Utilities Package

The utility classes are resides at the package of classes.util. There are some handy pre-
build dialogs ready to be used. One important component in the utility package is the
MailAgent. This is a handy SMTP (Simple Mail Transport Protocol) Java Application for
simple email. This email client utility provides users an additional dimension for
interaction besides the already rich ways in real-time communications. A user can create
an instance of this email client at any point along with his session. The defauit port for
SMTP is 25. You can specify any server machine that supports SMTP. Sometimes it
involves security problem with firewall. For example, if you specify the server machine to
be “server.uwidnsor.ca”, you have to be within the Campus. You are limited with text
content for SMTP though. If an email has been sent successfully, its content will be saved
to the file you specified. It also supports nickname email address matching.

Another useful class in this package is IORFile. It provides two static methods for writing
IOR to a named file or retrieving the IOR from the file. A user can also invoke a web

browser at any point of his session by click a menu item.
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5.4.8 Communication Component

The communication component resides at the package of classes.comm. The classes of
PushConsumer_impl, PushSupplier_impl, PullConsumer_impl and PullSupplier_impl
are the implementations of IDL interfaces PushConsumer, PushSupplier, PullConsumer,
PullSupplier at module COSEvent, respectively.

The module CosEventChannelAdmin implementation is provided at the package
com.ooc.CosEventChannelAdmin including the implementation for the interfaces
ProxyPushConsumer, ProxyPullSupplier, ProxyPullConsumer, ProxyPushSupplier,
ConsumerAdmin, SupplierAdmin, and EventChannel. They are bundled with
ORBacus3.2 distribution.

Although the CORBA Event Service IDLs are well written, it takes some time to get
familiar with the effective use of it. People complaints that it takes three steps in
connecting to a Event Channel [Schmi97b], i.e. 1) Using EventChannel to obtain
SupplierAdmin; 2) Using supplierAdmin to obtain ProxyPushConsumer; 3) Constructing
PushSupplier with this consumer and connecting the consumer and supplier as necessary.

To make a friendly use of these interfaces, CommaAgent class is implemented to abstract
the use of the IDL interfaces. Two important methods in CommAgent are
getSupplier():PushSupplier_impl and setConsumer(transObj: TransObject). The method
getSupplier() will do all the connection work and return a handle of PushSupplier_impl to
the caller. The caller can use this handle to push messages to the Event Channel. The
method setConsumer() will do all the necessary connection work and to activate the
consumer object in a separate thread. It is important to have a separate thread when we
have both supplier and consumer in the same Java VM.

When we use CommAgent in our system, we assume users will primarily connect to the
Event Channel at both ends. Therefore when a user clicks the button “Connect”, both
getSupplier() and setConsumer() will be invoked thus completing the connection at both
ways.

There is an interface called TransObject which contains a single method update(Any any).
This “any” is the object received by the consumer from the Event Channel. The
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component wishing to interpret the received “any” should implement the TransObject
interface. In our system, the class CyberClassRoom implements the TransObject
interface. Upon the update, the CyberClassRoom will update its content in its chatting,
drawing or imaging sub components accordingly.

The diconnect() method inside class CommAgent will effectively disconnect both
supplier and consumer ends. At the client GUI, a toggle-like button will connect and
disconnect Event Channel by consecutively clicking. The BOA instance will not be
destroyed for each of disconnecting invocation, where only corresponding CORBA
objects are deactivated.

Another class MyORBInit also in this package perhaps is worth noting, which consists of
two static method getORB() and getBOA() to return orb and boa instances respectively.
This class maintains a singleton ORB initialization within a single Java Virtual Machine.
We have experienced problems, for example when more than one of ORB init() at
different point with one virtual machine, BOA initialization exception will be thrown at
the run time. That is why MyORBInit is at its place.

5.4.9 Coordinator Component

Coordinator component is at the package of coordinator, which is essentially comprised
of implementations of IDL interfaces for coordinator module. The root of this package is
not started with “classes”, our root for many previous discussed packages. This is because
Coordinator is a logically and physically separated entity from those classes. There are 17
Java source files inside the coordinator directory, in which majorities are for the stubs,
skeletons and helper files. The class Coordinator_impl implements the Coordinator
interface as prescribed at section 5.3.3. As we discussed previously, this component will

incorporate Oracle8i DBMS through JDBC. We thus discuss each part in the following.
5.4.9.1 JDBC Setup for Oracle8i

IDBC requires appropriate database driver to access a database. A fter this driver is setup
properly, the JDBC call is just straightforward. We can normally employs JDBC/ODBC
driver provided with JDBC package. This JDBC/ODBC driver provides solutions to a
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class of database connection when ODBC is supported by the database. The trend is to
use the direct JDBC driver provided by the Vendor, which shall remove the overhead for
JDBC/ODBC layer. Oracle8i has a JDBC driver and the commander to set it up is as the

following segment:

Class.forName("oraclc.jdbc.dﬁver.OracleDrivcr");
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

Additionally, the connect string to the database instance for this system is as the
following:
url="jdbc:oracle:thin: @3 139erie-13.lams.uwindsor.ca: 1521 :agjDB"

You may notice that this is a fully Internet accessible path. Therefore the middleware
Coordinator can reside at a different machine other than the one Oracle DBMS is running
despite the fact we run them at the same machine.

When the middleware Coordinator is running, the database connection is maintained.
This can increase the performance because establishing the connection to Oracle Server
incurs expensive overhead. But it may not be appropriate for resource and security
reasons to keep the connection alive extensively. In the actual use, the policy can be
decided to make a balance between the performance and resource utilization.

We can connect, for instance, to the University database to obtain the information for
authentication process. To facilitate the prototype use, we have designed some simple
tables for the demonstration purpose only. These tables include NormalUser,
PriviligeUser, UserInfo, CourseComm, Enrollment, etc. NormalUser and PrivilegeUser
tables are storing login ID and password for average and privilege users respectively.
CourseComm table will store the service name {e.g. Event Channel for the course), its
corresponding IOR and other fields such as the session start time and status. Furthermore,

Enrollment table will store students’ registered courses.

5.4.9.2 Coordinator Implementation Consideration
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Since the Coordinator component is essential for the authentication, in order to obtain the
IOR for certain services, we need to have the IOR of the Coordinator server to be
distributed to the clients. Therefore this IOR must be made persistent. This is that each
time the restart of the Coordinator will have the same object reference. To make this
happening in ORBacus, the instance of Coordinator must connect with the same name for
example “Coordinator”. The commander is as the following,
((com.ooc.CORBA.ORB)orb).connect(coordinator, "Coordinator”). Additionally you
must start the Coordinator server for a specified port.

There are two files called Coordinator Client and Coordinator_Server also associated
with this package. Coordiantor_Server is simply a server process to make Coordinater
available to be remotely accessed. Coordinator_Client will be distributed to the client

side, which makes the access to the Coordinator easily.

5.4.10 Dynamic Event Channels Creation and Registration

In our system architecture, users can create Event Channels dynamically and interactively.
Users can choose to register the newly generated channels either to Naming Service or to
the Coordinator. To facilitate dynamic channel generation, there must be some
EventChannelFactory instances running in the distributed system. A user can definitely
start his own. We will use human readable “iioploc” approach [Vinos98] to resolve these
EventChannelFactory’s object references instead of using IOR. In the system all
EventChannelFactory will be running at the port of 8000 with an object key of
DefaultEventFactory. For example, EventChannelFactory in our NT workstation will
have IOR equivalent—iioploc://137.207.1 6.20:8000/DefaultEventFactory.

The caller to create a Event Channel with EventChannelFactory is through class
EventFactoryDialog residing at classes.swing package. There are dialogs—
RegisterNamingDialog, EventFromNamingDialog, and LogDialog, encapsulating
functionality to register (bind/unbind) to Naming service, resolve Event Channel from
Naming, and register (set/obtain IOR) to Coordinator respectively. The naming service is
with a IOR associated with iioploc:// 137.207.16.20:5000/NameService.
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5.4.11 Incorporating Web Server and Serviet

It is desirable that our system framework will interact with the Web Server since web is a
perfect vehicle for delivering information. While the Web Server Apachel 3.6 installed in
this machine provides general information to the public, a small Java Server provided by
JSDK2.0 enables Java Servlet, listening at the port number of 8080. This Java Servlet can
communicate with Oracle DBMS through JDBC. At the minimum use, users can inquiry
about the available event services through the web. Then they can use this information
e.g. the service name to get the IOR from the Coordinator middleware. For the future
enhancement, administrator shall be able to do the administrative work through this
Servlet/JDBC/Oracle architecture over the Web.

5.5 System Features and System Requirements

In this section, system features will be described. Although various aspects of the system
have been discussed here and there in this thesis so far, this section provides a summary
of features including those not having been explicitly addressed before. Furthermore the
system requirements for both server and client side will be presented in order to assist the

use of it when it is deployed.

5.5.1 System Features

In essence, the system will enable users to communicate and collaborate online in real-
time with functionality of chatting, white boarding, image pushing, video capturing etc.
The detail features are listed as the following.

* Chatting: Users can have group chat within a certain channel. Users can edit chat
input or use cut-paste functionality to transfer the text from other text editors. Upon
connecting to certain Event Channel, a user can send messages to and receive
messages from this channel. The whole session can be saved and retrieved at the local

storage.
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¢ Drawing: Various shapes such as rectangle, oval, line, text and freehand drawings
can be drawn on the canvas associated with the draw panel. The functionality is
similar to a mini-paint program. When a user draws a drawing-object, the same
drawing will appear at the screen of all users. When a drawing object is being resized
or moved, the same effect will be reflected to all of the clients. Drawing panel can be
set as being either inserted within the whole GUI or floated. The whole drawing
session can be saved and retrieved.

¢ Image: Images can be loaded, saved or sent to all partners. It supports both GIF and
JPEG formats for loading images. When images are saved or sent, the format
supported is JPEG only. The compression ratio can be set in order to accommodate
the different requirements for the tradeoff between the image quality and the file size
(or more importantly, the network traffic). There is a multi-load mode, which can load
image files of a whole directory to the buffer. The Send-All can send all images in the
buffer to all the clients with user settable rate (Sfps, 2fps, 1fps etc.). Images in the
buffer can be browsed so a user can select the desirable images to be saved to the
persistent storage.

* Real-time video capture: Video images can be captured and be sent to all of the
parties at the real-time. The pushing rate and resolution of images can be set at the run
time. This feature may be reserved to the privileged users, say instructors. If all parties
are able to send real-time captured images, it will be too traffic consuming in the
Internet environment.

® Video and audio playing: Video and audio clips can be played. The clips can reside
either in the local file or downloadable over the Internet (http web server and other
media servers).

* Authentication: All users including students and instructors are required to go
thorough the login process before they are able to use the facility for communication.

* Persistent storage: All chatting, drawing sessions and images can be stored and
retrieved at local storage. There could be an option to store and retrieve sessions from
the center database. This option is desirable if local storage is not accessible (for

example when Applet is treated as un-trusted).
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¢ Dynamic Event Channels creation: A user can start a new Event Channel and
register its name and IOR to a middleware, Coordinator. That means the system can
be dynamically reconfigured. Alternatively, dynamically created channels can be
registered to the Naming Service, which does not need going through the
authentication process.

* Utilities: A Light weight Java E-mail component developed for this project can be
triggered when a user wants to send an E-mail as well. The web browser can also be
started from triggering browser within the application. This is kind of integration with
the web browser (loosely coupled though).

5.5.2 System Requirements

We will list the requirements for both Client side and Server side. Due to the distributed
object nature of the system, there is no distinct line in specifying the Client and Server
sides. In particular, Event Channels can be started at any client machine. When we talk
about the server side, we mean that the machine running Oracle Database, Web servers as
well as CORBA middleware. The client side will be all the rest including both student-
like users and instructor-like users.
¢ Client Side:
Hardware:
e A PC with Pentium 90Mhz CPU or equivalent, 32 megabytes RAM
minimum, 48 megabytes RAM recommended that is the requirement for Java
2 platform runtime.
¢ If video capture is required, a PC with 166 MHz Pentium CPU and 64 MB
RAM are required. A video camera or capture card (e.g. QuickCam VC or
other Window compatible capture facilities.) is required.
® A 28.8kbps modem or LAN network card connected to Internet.
Software:
e Java 2 platform runtime.
e ORBacus3.2 for Java
® Our distributed communication package
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e IMF2.0, if video/audio playing required

® Web browser (Netscape Navigator4.x or Microsoft Internet Explorer4.x)
e Server Side:

Hardware:

e A PC with Pentium 233Mhz CPU or equivalent, 96 megabytes RAM

minimum, running on NT4.0 operating system

® LAN network card connected to Internet.

Software:

e Java 2 platform runtime.

e ORBacus3.2 for Java

® Our distributed communication package

® Oracle8i, Database Manage System

® Web Server (e.g. Apache 1.3.6) and JSDK2.0 for Serviet

5.6 The Operation of the System

Server Start:

We will list services that must be presented in the distributed system and describe the
sequence of starting these services.

Oracle database instance arjDB and Web Server are running as NT Services (daemon
processes).

To start Coordinator:

Java coordinator.Coordinator_Server -OAport 20001

To start Naming Service:

Jjava com.ooc.CosNaming.Server -OAport 5000

To start Event Channel Factory Server:

java classes.server.Server -OAport 8000

This Event Channel Factory Server will enable users to dynamically generate event

channels, which can be registered to the Naming Service or to the Coordinator according
to the users’ choice. However if you want to start a default event channel whose reference

has been distributed with the package, you can type
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Jjava classes.server.Server -ORBservice EventService 1iop://137.207.16.20:5001/Event —ior
If you need the IOR to be printed to a file Event.ref, you may type the following:

Java classes.server.Server -ORBservice EventService iiop://137.207.16.20:500 1/Event -f Event.ref

Client Side:
At each client console, type the following

Jjava classes.swing.CyberClassRoom

The client is now ready for the interactive communication.

The system has been firstly tested over the university Intranet. Server services and Event
Channel are running at our NT4.0 workstation. Two client instances are running at this
machine as well, one of which is associated with image capture and pushing actions with
a setting rate 1fps. Up to four more clients are running at UNIX machines X-terminal
clients, i.e. Marigold and Montague, two UNIX machines in the School of Computer
Science. The reason to use the UNIX clients is because we have many X-terminals
available around in the Computer lab. It is easy to have a few terminals than to have a few
PCs for dispose. On the other hand, it also demonstrates that the interoperability across
different operating system. The overall performance is very satisfactory. The captured
images can be effectively propagated to all clients. At the mean time chatting and drawing
can be conducted. That is the case that all three different media types—image, drawing
object, and text can be effectively communicated concurrently over our communication
system.

The system has also been tested with clients running Win95 over the Intemet with
28.8kbps-modem connection. The chatting and drawing communication are light
communication in nature, thus pose no any significant network delay. The image
communication can also be effectively conducted, but the push rate should be kept low in
compare to the Intranet circumstance.

It is worth noting that the university firewall does not block our CORBA communication
at all. However if the firewall ever impose the restriction on the traffic other than E-mail
or Web-related ones, the HTTP tunneling approach could be placed [Vogel97]. But this
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HTTP tunneling will incur so much overheads for the communication, which may make

the real-time communication impossible.

5.7 Rooms for Improvement

There are sufficient functionality and capacity for this prototyping of the overall system.
However there are many places that could be improved regarding issues of either the
performance or design alternatives.

1) Applet version development

We have implemented our prototype using Java JDK1.2 and there are currently no
popular web browsers capable of running javal.2 Applet. It is possible to modify our Java
application into Java Applet. A trusted Applet will be employed if disk operation is
required. The advantage of using Java Applet is that the Applet can be downloaded
dynamically by the Web browser. Therefore the client can use our system at any point in
the Internet without pre-downloading our package. The cost of distribution and
maintenance will be reduced significantly. The disadvantage is that the Applet download
and start take very long time especially if we have to bundle the support software (ORBs
and Services etc.). Please note that this Applet version will not consist of the video
capture functionality as it has been implemented as native method. Additionally, Applet
has an inhabitant limitation regarding the socket connection, which is restricted to the
server machine where the Applet is downloaded.

2) Allocate a dedicated channel for each media

We could for example allocate three channels for one group communication with each
channel for one media. This allocation should be transparent to the users. For a more
rational arrangement, we can allocate one channel for image and one channel for text and
drawing. The continuously captured images being sent over the Internet will consume
much network bandwidth. On the other hand the missing of the images has higher
tolerability than that of drawing or chatting. We can simply make a smaller length of
queue for the image channel.

3) Balancing the channel load for better salability
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Additionally, new event channels could be automatically activated on demand in different
machines. At the certain point (when reaching certain numbers of the client), the output
of the event channel could redirect to the newly created event channel and this channel is
further connected to the broadcasting end of adding clients. Ideally the event service will
be located at different network. Therefore both the machine load and network load will be
redistributed.

4) Using C++ CORBA object for the Event Channel.

If the event channel becomes a bottleneck for the system, C++ event channel may replace
the Java event channel to enhance the performance. It is known that C++ native code can
outperform the Java counterpart, even with JIT compiler being placed. The CORBA [IOP
[OMG98a] will guarantee their interoperability. This underscores the beauty of CBD.

5) Using JMF to capture video/audio

JMF 2.0 enables sound/video capture, which is the standard Java solution. We currently
just use its playing facilities. Although capturing with JMF2.0 poses certain performance
concern, the eventually cheaper computer hardware will make this graceful Java solution

cven more attractive. This is that we would have a complete Java solution.
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6. Conclusions

This thesis is concerned with the online real-time multi-party communication and
collaboration. We employed distributed object approach, which has higher abstraction
than that of the TCP/IP socket. We follow the component-bases development principles,
which empbhasize utilizing existing software components and standard services instead of
building systems from scratch. A novel approach in utilizing CORBA Basic Object
Service, Event Channel as our message exchanging central hub in real-time
communication was also devised. In addition to the Object Naming Service in helping to
locate the distributed objects, an approach to authentication process, incorporating
database manage system has been an indispensable part of our distributed system.

The overall distributed system has been formally specified with the rigorous
mathematical modeling. This modeling describes the essential components and their
behaviors that must be exhibited in such distributed system. This modeling shall enable
software engineers to observe and examine the behavior of the distributed system under
development.

Based on this specification, a feature-rich prototype for such distributed systems has been
developed to validate our approach. This distributed system supports a range of media
types (e.g. strings, drawings and captured or pre-stored images) real-time online
communication and collaboration in a uniformed manner. Although being developed
primarily for the online education system, the system can be used largely in any real-time
online communication and collaboration systems.

Running tests of such distributed system in an Intranet and Internet environment have
demonstrated its capability and functionality in an effective online real-time

communication and collaboration for a class of media types.

e Summary of Contributions:

87



Development of an effective approach for online real-time communication.
This approach is based on the principles of component-based development and
distributed system design.

Rigorous mathematical modeling with formal notation of CCS applied to the
formal specification of the system. This model will enable software engineers
to reason about and examine the behavior of the system to be built. This is the
first time that the formal method is applied to the distance education system.
Based on the approach proposed in this thesis, a prototype of Object-Based
Online Real-time Communication System for Distance Education has been
developed, which validates the effectiveness of our approach. This system is

useful for a range of media communications in a real-time.

o Future Works:
As far as future works are concerned, there are a number of issues that could be pursued.

From the horizontal perspective, our approach could be extended for a wide
range of common real-time communication system. From the vertical
perspective, our developed system is just one subsystem of overall online
distance education system. The open architecture of our component-based
approach will allow the system extended in various ways. The underline
component infrastructure (CORBA and CORBA Services) will make such
extension a reality. Therefore we can apply the approach and models
developed in this thesis to an overall distance education system.

A translation tool could be developed, which can translate the specification to
CWB format. So that software engineer can conduct model checking and
system behavior examining with CWB.

As discussed in the last chapter, there are immediately improvement works
regarding the implemented system itself. Such improvements will yield a
system with better availability, scalability and performance.
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Appendix A: List of Packages and Files in the system

We list herewith the organization of class and source files for this system. We have the
top directory STOP, which is the root for this file hierarchy (STOP=d:\ylshaoT at the
current configuration). The files are organized with directories, while they are represented
in the following with appropriate indention. Normally each directory of the source files
corresponds to a Java Package. Please note that the source files are not necessarily stored
in the same directory as Java classes package. To be clarified, we write down the
corresponding Java class package for each source file directory. For example, the
directory $TOP/source/graphics corresponds to the package of classes.graphics and the
source file, source/graphics/FreeHandDraw.java will be compiled into the class file,
classes.graphics.FreeHandDraw.class. Each Java source file may correspond to several
classes, including inner classes setting. Some directory names, e.g. graphics and swing,
have the identical ones with JDK libraries. They are packages belonging to our system,
which should not be confused with Java built-in library.
Java Files:
Directory source:
Directory Graphics:--package classes.graphics
File: FreeHandDraw java, LineDraw.java, ObjectDraw.java,
OvalDraw.java, RectangleDraw.java, TextDraw.java
Dirctory Jpeg:-- package classes.jpeg
File: JpegEcoder.java
Directory Server:--package classes.server
File: EventFactoryServer.java, Server.java
Directory Swing:--package classes.swing
File: AudioPanel.java, CyberClassRoom.java, DrawCanvas.java,
DrawPanel.java, EventFactoyDialog.java,
EventFromNamingDialog.java, ImagCanvas.java, LogDialog.java,
MediaPanelDialog.java, PassDIValue.java, PassValue.java,
PlayerApp.java, PalyerFrame.java, RegisterNameDialog.java,
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ReValueDialog.java, ShapeState.java, StartEventDailog.java,
SwinglmageCanvas.java, VideoCanvas.java, VideoPanel.java
Director Util:--package classes.util
File: AboutDI java, ImageCanvas.java, IORFile.java, MailAgent.java
Directory Comm:--package classes.comm
File: CommAgent.java, CurrentIOR java, ImagePushAgent.java,
MyORBInit.java, PullConsumer_impl.java, PullSupplier_impl.java
PushConsumer_impl.java, PushSupplier.java, TransObject.java
Directory Camera:--package classes.camera
File: VideoGrabber.java, VideoGrabberCanvas.java, VideoMediator. java,
Win32VideoDevice.java, BasicSettingPanel.java,
ControlPanelFrame.java, ConnectFailedException. java,
DisconnectFailedException.java
Directory Coordinator:--package coordinator
File: Coordinator.java, Coordinator_Client.java, Coordinator_impl.java,
Coordinator_Server.java, NoSuchServiceException.java,
NotAuthorizedException.java, ServiceAlreadyExist.java,
StubForCoordinator.java, and xxxHelper.java, xxxHolder java etc.
Directory jidl:--package jidl
File: DrawCORBA .java, DrawCORBAHelper.java, DrawCORBAHolder.java
UpdateCORBA java, UpdateCORBAHelper.java,
UpdateCORBA .Holder.java,
PointCORBA .java, PointCORBAHelper.java, PointCORBAHolder.java,
PointSequenceHelper.java, PointSequenceHolder java,
ByteArrayHelper.java
Compile Java files:
At the $TOP directory, for example if we want to compile DrawPanel.java,
we have to type the following:

Jjavac —d . source/swing/DrawPanel.java

IDL Files:
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File: ByteArray.idl:---module Jidl, Coordinator.idl:--module coordianator,
Draw.idl:--modual jidl,
Compile IDL file to Java Source File:
At the $TOP directory, for example it we want to compile ByteArray.idl,

we have to type the following:
jidl ByteArray.idl

C++ and header Files:
Directory source/swing/camera:
File: classes_camera_VideoDevice.h, VideoCam.h, VideoCam.cpp,
VideoDevice.cpp
Compile JNI to C header file and C++ file to DLL:
For JNI automatically generated header file (classes_camera_VideoDevice.h)
At the directory where VideoDevice.class is located, type the following:
javah -jni VideoDevice
To create DLL library (grabber32.dll), we have to type the following:

¢l -LD VideoDevice.cpp VideoCam.cpp  kernel32.lib winmm.lib wsock32.lib vfw32.lib
User32.1ib jvm.lib -Fegrabber32.dl1
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Appendix B: System Environmental Variables Settings

The following is an instance of environment settings at our NT Workstation. These

settings are working environment when implementation is under development.

PATH=C:\jdkl.2.1\bin\; C:\orb3.2\util; C:\javaext\lib; CAWINNT \system32; c:\WINNT;
E:A\VS\MSDev98\Bin; E:\VS\Tools; E:\Microsoft Visual Studio\VC98\bin; E:\VS\MSDev98\Bin;

SET CLASSPATH=D:\oracle\ora81\jdbc\lib\8 1 6¢classes 12.2ip; C:\jmf2.0\lib\jmf jar;

C:\imf2 O\lib\sound. jar;

C:ymf2.0\lib\mediaplayer.jar; C:\ymf2.0\lib\multiplayerjar; C:\ORB3.2\0B jar; C:\ORB3.2\OBNaming jar;
C:\ORB3.2\OBEvent.jar; C:\ORB3.2\0BProperty.jar; C:\ORB3.2\OBTest jar;

SET LIB=D:\oracle\ora81\lib; E:\Microsoft Visual Studio\VC98\lib\; E:\Microsoft Visual

Studio\VC98\lib\vfw32.lib; C:\jdk1.2.1\lib
SET INCLUDE=C:\jdk1.2.1\include; C:\jdk1.2.1\include\win32; E:\Microsoft Visual Studio\VC98\include

These settings will ensure all of our commands presented at Appendix A as well as those
in the text body executed adequately. However these settings depend on where the
corresponding software located. Apart from variables for PATH and CLASSPATH, there
are variables for LIB and INCLUDE, which are required by the JNI and DLL
compilations. Please note that these settings are for the working environment not for the
deployment. In the deployment, the environment is very simple. If we bundle the
ORBacus with our classes in the same directory, we virtually need not set any
environment variables provided that correct running environment for Javal.2 has been set

up in the targeted machine.
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