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/ O T I S ' S

Abstract

A protein-sequence folds into a specific shape in order to function in its aqueous state. If 

the primary sequence of a protein is given, what is its three dimensional structure? This 

is a long-standing problem in the field of molecular biology and it has large implication to 

drug design and cure. Among several proposed approaches, protein threading represents one 

of the most promising technique. The protein threading problem (PTP) is the problem of 

determining the three-dimensional structure of a given but arbitrary protein sequence from a 

set of known structures of other proteins. This problem is known to be NP-hard and current 

computational approaches to threading are time-consuming and data-intensive. In this thesis, 

we proposed an evolution strategy (ES) based approach for protein threading (EST).

We also developed two parallel approaches for the PTP problem and both are paralleliza- 

tions of our novel EST. The first method, we call SQST-PEST (Single Query Single Template 

Parallel EST) threads a single query against a single template. We use ES to find the best 

alignment between the query and the template, and ES is parallelized. The second method, 

we call SQMT-PEST (Single Query Multiple Templates Parallel EST) to allow for threading 

a single query against multiple templates within reasonable time. We obtained better results 

than current comparable approaches, as well as significant reduction in execution time.

111
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Chapter 1

Introduction

1.1 M otivation

Bioinformatics derives knowledge from computer analysis of biological data. Fredj Tekaia at 

the Institut Pasteur offers this definition of bioinformatics: ’’The mathematical, statistical 

and computing methods that aim to solve biological problems using DNA and amino acid 

sequences and related information”. Over recent years, bioinformatics has seen a substan

tial success in the field of genomic research. The success of genome-sequencing computation 

technologies in computational molecular biology has led to a large number of available se

quences in the genome databases. The next field in the post-genome era is protein. Alisa 

Zapp Machalek, 2001 remarked in her NIH (National Institute of Health) Record [41] as ”If 

genes are the recipes for life, then proteins are the culinary result - the very stuff of life. 

Proteins form our bodies and direct its systems. But proteins that twist into wrong shape, 

have missing parts, or don’t make it to their job site can cause diseases that range from cystic 

fibrosis to cancer and Alzheimer’s.” On the other hand, biochemists have established that the 

spatial structure of protein determines its function, which includes protein’s role in health 

and diseases. Thus knowing the structure of protein has large implications in understand

ing the protein’s role in the body and to explore ways to control its action such as disease 

detection/drug design etc.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 1.1 Motivation

The Human Genome Project has led to the identification of over thirty thousand genes 

which may encode over 100,000 proteins as a result of alternative splicing. To understand 

the biological functions and functional mechanisms of these proteins, the knowledge of their 

3-D structures is required. The Structural Genomic Initiatives, launched by NIH in 1999, 

intends to determine these protein-structures within a decade [12]. Unfortunately, the exper

imental determination of protein structures is not as easy as genome sequencing. The current 

laboratory techniques used to determine the 3D structure is x-ray crystallography and NMR 

spectroscopy. Both techniques are costly, time-consuming and difficult for high-throughput 

production.

Conversely, we have huge source of protein sequences from genomic database and the ex

perimental methods to determine the protein sequence gives high throughput and is relatively 

cheap. The question is whether or not we can predict the three-dimensional structure of a 

protein based on its sequence. This is one of the most important and long-standing problems 

in computational molecular biology. The difficulty of determining the three dimensional struc

ture of proteins has led to an increasing gap between the huge number of protein sequences 

and the limited number of protein structures. The number of available protein structures in 

the PDB (Protein Data Bank) database is several orders of magnitude smaller than that of the 

available protein sequences [6]. Thus an affordable approach and a high throughput method 

is urgently needed in order to understand the biological systems and to shorten the gap of 

sequence and protein structures. Thus method can revolutionize in the field of proteomics.

Several approaches have been used to predict protein structures from sequences, with 

varying levels of success. Ab-initio methods initiate any means of calculating coordinates 

for a protein sequence without referencing existing protein structures. However, relatively 

little success has been seen in this approach [64], The comparative or homology modeling 

method [38] attempts to find a structure based on the strength of sequence similarity to 

another protein of known structure. This is based on the premise that similar sequence 

implies similar structure. This approach relies on the success of existing known structures of
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3 1.2 Challenges

close homologue [31] and the subsequent accuracy of alignment.

A sequence can determine the three dimensional (3D) structure but some spatial con

straints lead to the fact that a sequence may fold in different shapes. It depends on the 

spatial position of sequences that occur in the structure. This leads to the idea of predicting 

protein structure of a sequence by ’’inverse folding” [29] that is, to fit the query sequence into 

a known structure from the template database according to its spatial position and determine 

how best it fits. This method is called protein threading.

1.2 Challenges

The Structural Genomic Initiatives took the strategy to determine the protein structures using 

experimental methods only for a small fraction of all proteins and to employ computational 

techniques to model the structures for the rest of the proteins [12]. The basic premises behind 

this idea are that a limited number of unique folds in nature and different proteins share 

significant structural similarity. So, determining the unique structural folds in the laboratory 

may allow us to predict the vast majority of other proteins ’’within the modeling distance” 

of these proteins. Protein threading represents one of the most promising such techniques 

according to the report in CASP2 [17], CASP5 [31] and CAFASP3 [19].

The fact is that only 3% of the known sequence families include a member of known 3D 

structures [6] in the protein databases. Sensitive sequence profile methods can extend the 

range of comparative modeling to the point where 12% of the families can be assigned to a 

known 3D structural super family [31]. But in contrast, the probability of novel protein having 

a similar fold to a known structure is currently as high as 60% - 70% [30]. This observation 

motivates the approach of protein threading to be successful among other prediction methods.

Since the number of unique folds in nature is fairly small, a structural template database 

of several entries can be constructed by excluding those with highly similar structures. Thus, 

each unique fold represents one or several templates. Protein threading chooses the best 

fit template as a structural prediction for the query sequence through finding the optimal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 1.2 Challenges

alignment between the target sequence and each structural template in the database. This 

best-fit template becomes the basis on which a structural model for the target sequence can 

be built. If we can have a criterion to quantify such alignment, based on that an efficient 

algorithm can find the optimal alignment in affordable time.

The alignments between the sequence and the template include the criteria of local con

formation consistency and spatial conformation consistency. The spatial conformation con

sistency is often modeled as pairwise contacts. That means, if two amino acids are spatially 

nearby in the structure, then the two amino acids in the sequence which are aligned to them in 

the structure should have strong pairwise contact potential. Biochemists consider the pairwise 

interaction is important for protein folding. On the other hand, insertion and deletion can 

happen anywhere in the loop or core part of the protein. But predefined core elements, gap 

restriction (i.e. insertion or deletion can happen only in loop region etc.) are some imposed 

assumptions to simplify the computation, but these hide the quality of threading alignments.

While it is true that secondary structure elements are more conserved than the loop re

gions, significant structural information is carried by the residues, that are in the loop regions. 

Insertions and deletions are also observed between similar proteins even inside corresponding 

secondary structure elements. Threading methods that can handle full alignments without 

arbitrary restriction of core elements will thus have an important advantage [71].

There are different approaches [11] [42] [22] [78] [71] [85] [88] [80] of protein threading al

gorithm based on the local or non-local interaction and variable-length-gap or gapless thread

ing have been proposed. Many of above methods suffered with exhaustive searching, some 

of them compromise with quality. The underlying fact is that if pair-wise interaction and 

variable-length gaps are allowed in the alignment between the query sequence and the tem

plate structure, then the protein threading problem is NP-hard [35]. The quality of threading 

depends on the success of the scoring function and the efficiency depends on the searching 

strategy for optimal alignment.
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5 1.3 Goal

1.3 Goal

In light of the preceding discussion, we seek a protein threading algorithm, which is capable 

of trea tin g  th e  pairw ise contact po ten tia l and various length of gaps in th e  sequence-structure 

alignment. Such an algorithm should have the following desired properties:

1. Effectiveness: The pairwise contact potential should be treated rigorously in searching 

for the optimal alignment between the sequence and the template. The problem formulation is 

expected to overcome predefined core elements or gap restriction. Such an algorithm expects 

better alignment accuracy than those similar approaches in the literature review.

2. Efficiency: Such a threading algorithm should run fast to overcome the present limita

tion of selecting only a limited number of representative templates. Of course, it is difficult 

to outperform those algorithms that do not deal with pairwise contact potential or solve a 

limited version of the actual problem. The new method is expected to reduce large sequential 

computational time to thread each of the protein templates (~ 1000) and terminate in a 

reasonable time.

This thesis reports on the development of an efficient and effective algorithm and computer 

program to do protein threading and validates its performance by several experiments.

1.4 Problem  Statem ent

The Protein Threading Problem (PTP, for short) is to determine the three dimensional struc

ture of a given but arbitrary protein sequence, called query, from a set of known structures 

called templates of other proteins.

Yadgari et al. [88] discusses a genetic algorithm approach for PTP, however their method 

threads a query against a single template only instead of a template database. Furthermore, 

their technique is very slow and therefore can not be used for a very large query and/ or 

template. They report results on short queries/templates with length of 300 amino acids at 

most.
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6 1.5 Contribution and Results

As far as we know, the current threading algorithms only thread a single query against a 

single template. To thread against many templates, the given algorithm is applied sequentially 

many times, each time with a different template. Large queries cannot be threaded that way 

against a template database, within satisfactory and respectable time bounds, particularly 

where the templates are large. As a matter of fact, a vast number of proteins have never been 

attempted due to their sizes [89].

With an appropriate parallelization, there is a possibility to thread (very) large queries 

against a set of (very large) templates within reasonable time bounds. There is even a possi

bility to thread multiple queries against multiple templates within reasonable time bounds.

We propose two parallel approaches for the PTP problem. Both are parallelizations of our 

novel evolution strategy (ES) method for protein threading. The first method we call SQST- 

PEST (for Single Query Single Template- parallel Evolution Strategy threading) threads a 

single query against a single template. We use ES to find the best alignment between the 

query and the template, and ES is parallelized. The second method, we call SQMT-PEST 

(for Single Query Multiple Templates Parallel ES Threading) to allow for threading a single 

query against multiple templates within reasonable time.

1.5 Contribution and R esults

The problem representation of protein threading used in Yadgari et. al. 2000 [88] dismisses 

the predefined core elements and gap restriction. We have used the exact formulation as 

Yadgari, 2000. The main contribution of this thesis is to propose an evolutionary strategy 

approach using the representation of Yadgari to the protein threading problem (which is NP- 

hard). The proposed ES threading performs better in quality of solution and in computation 

time than the method described in [88]. We also propose parallel architectures to reduce large 

sequential computation time for the protein-threading based structure prediction approach. 

We have shown that in practice, almost all instances of the intractable protein threading 

problem can be solved by our methods in affordable time. The main contribution of our
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7 1.6 Organization

thesis can be outlined as follows:

• The evolutionary strategy approach for protein threading: The ES approach, we have 

used is in the class of (p +  A)-ES. It conducts effective searching of optimal alignment 

for protein threading that considers

-  Elitist selection and small changes (mutation) in alignment that cause significant 

difference in threading.

-  A novel technique of recombination and mutation, which is well suited and efficient 

for our threading problem

-  A design of normalized fitness criteria, based on energy function, which is distance- 

specific contact potential matrix [11] and it is a good candidate to evaluate fit of 

an offspring.

• Parallelization of the method: We proposed two different architectures for parallel ap

proach and compared their performances. Both architectures reduce large sequential 

time.

-  It gives flexibility to choose a large number of templates from protein databases, 

that eventually increases the threading quality.

-  It allows to breed significant number of offsprings in each generation, that may 

contribute to converge in (near) optimal threading quickly.

1.6 Organization

The rest of this thesis is organized as follows. The chapter 2 describes the background of this 

research. At first it describes the basics about protein and different levels of protein structures. 

Different structure prediction methods and their success are introduced in section 2.2. Section

2.3 introduces the basic components of protein threading methods and its complexity. The
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8 1.6 Organization

brief description of evolutionary strategy is given in section 2.4. Parallel computing and 

parallel architectures are introduced in section 4.2.

A survey on protein threading algorithm and related study have been described in 3. The 

detailed survey of protein threading algorithm and their problem formulation/ representation 

has been discussed. The evolutionary algorithm and parallel approach in protein threading has 

been investigated. The limitations of the existing methods are also outlined in this chapter.

Chapter 4 describes our proposed method for solving protein threading method in parallel 

using evolutionary strategy. Section 4.1 describes our basic evolutionary algorithms, proposed 

for protein threading. It discusses in details the problem representation, methods of using 

mutation and recombination as genetic operators, ES algorithm and its complexity. The 

parallel approaches are discussed in section 4.2. The two proposed methods of parallelizing 

to facilitate the large sequential computing time have been discussed with details of their 

algorithm.

The implementation and experimental results are discussed in 5. The implementation de

tails of the energy function used, ES method and its parallel architectures are discussed in 5.1. 

The implementation environment and details of the system environment for the experiments 

are detailed in section 5.2. Section 5.3 describes about the source and details of the data set 

used for the experiments. The details of experiments, results and discussion are described in 

section 5.4.

The chapter 6 concludes the thesis. It narrates the description of the summary of work 

done. The limitations and future works are also outlined in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Background

Protein is a large molecule composed of one or more chains of amino acids in a specific order. 

Proteins are essential to the structure and function of all living cells and viruses. Many 

proteins are enzymes or subunits of enzymes. A protein chain folds into specific shape in 

order to function in its aqueous state. The conformation of protein can be parsed into several 

different levels ranging from local to overall spatial structure. There are several inter-atomic 

forces that play instrumental roles in the formation of protein shapes. In protein structure 

prediction, these factors are modeled in their scoring function. This chapter provides an 

overview of the architecture of protein structure, methods of protein-structure prediction and 

a survey of protein threading method which is more promising in the structure prediction era.

2.1 P rotein  Structure

The basic building blocks of proteins Proteins are amino acids. The spatial conformation 

of a protein is dominated by the order of the amino acids contained in it, and their side 

chain properties. Protein structures are described in four different levels: primary structure, 

secondary structure, tertiary structure and quaternary structure.

9
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10 2.1 Protein Structure

Amino group
Carboxyl group

Alpha carbon

Figure 2.1: Structure of an amino acid (taken from [76]).

2.1.1 Amino Acids

An amino acid is a complex chemical that consists of an amino group (-NH2) which is called 

N-terminal, an alpha-carbon atom in its center, a hydrogen atom (-H), a carboxyl group (- 

COOH), and a side chain R group as shown in Figure 2.1. In nature, there are 20 different 

amino acids that differ only in their R groups. The structural complexity of the R group 

ranges from a simple hydrogen to a complex atomic ring. These vary not only in their 

structure and size but also in their physicyo-chemical properties. According to the properties 

of their side chains, amino acids can be classified in four groups: hydrophobic, hydrophilic, 

positively charged and negatively charged. The hydrophobic amino acids tend to stay in the 

interior of the proteins whereas the hydrophilic ones are more likely to remain in the exterior 

of the proteins, interacting with surrounding water molecules and thus stabilizing the shape 

of proteins. Two oppositely charged amino acids can form a salt bridge. These interaction 

between amino acids influence the shape of the protein. Each of the amino acids are denoted 

by one capital alphabetical letter or three letters.

Two amino acids are connected to form a peptide by a chemical reaction. Multiple amino 

acids can be connected sequentially to form a polypeptide as shown in 2.2.
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Figure 2.2: Sequence of amino-acids forms a polypeptide (taken from [76]).
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Figure 2.3: Primary structure of protein is simply the order of its amino acids (taken from [76])

Primary Structure

The primary structure of a protein describes the sequence level of protein and it represents 

the linear order of amino acids contained in it as shown in Figure 2.3. Although the primary 

sequence does not explicitly express any structure information about the protein molecule, 

the spatial conformation of proteins can be determined by their primary sequence [5]. Thus 

it is still fair to say that the three-dimensional structure of a protein can be determined by 

its primary sequence. Proteins fold up to complex shapes due to the bonds formed by the 

side chains. As the strong bonds play roles among two nearby residues in the sequence, the 

bonds between distant residues also contributes to form the fold. The former one is called 

local interaction and the latter ones are called non-local interaction. The interactions between 

residues are known as pairwise contacts.
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12 2.1 Protein Structure
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Figure 2.4: Secondary structures of a protein are alpha-helix and beta-sheets (taken from [76])

A segment of protein primary sequence can fold into a secondary structure because of the 

local interactions. The backbone of core structures in protein is known as secondary structure, 

a  helix and (5 sheet are two common types of secondary structure and also known as core 

region. The core regions are more conserved and called template or fold. They are connected 

by loop. There are strong hydrogen bonds among the residues within one secondary structure, 

but the bonds between the residues within a loop are weak.

A combination of a few secondary structures that appears in several different proteins is 

called a motif. An example of a motif is the helix-loop-helix and such structure has clear 

role in protein function while some motifs has no specific role in the function of protein. A 

domain is a more complex combination of secondary structures that by definition has a very
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13 2.1 Protein Structure

specific function. Therefore it contains an active site, which is the a section of the protein 

where some binding to an external molecule can take place.

Tertiary Structure

Figure 2.5: Tertiary structure of a protein is composed of connected secondary structures 
with loops (structure of protein (12as_a) taken from PDB)

A protein may have only one domain, or may contain several. All of them taken together 

form the protein’s tertiary structure. Due to non-local interactions, all secondary structures 

in a protein can form a specific tertiary structure connecting each other with the loops and 

packed of side chains. It represents the 3-dimensional structure of a protein. Frequently, we 

use folds to denote the type of tertiary structure of a protein.

Quaternary Structure

Many large globular proteins consist of several polypeptide chains which are kept together 

by various forces such as hydrogen bonds or disulfide bonds. Such multiple-chain bonds
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14 2.1 Protein Structure

Figure 2.6: Quaternary structure of a protein is composed of multiple-chain bonds (taken 
from [76]).

represents the spatial relationship among all the protein chains and known as known as 

tertiary structure as shown in 2.6.

2.1.2 Factors Determining Protein Structures

The 3D structures of protein are much more restricted whereas the sequence varies extremely 

due to evolution. This happens because of the fact that the fraction of residue exchange does 

not affect the stability of structures. Therefore, one single fold can correspond to many protein 

sequences with very low number of identical residues. According to the work of Rost [56], if 

the proteins of length not less than 100 residues have the sequence identity of more than 35% 

then the two proteins may have very similar structure. In spite of a large number different 

proteins in nature, there are only fewer (approximately 1000) different protein structural 

folds [49], which is the basis of the success of protein threading method in protein structure 

prediction.
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15 2.2  Structure Prediction Methods

2.2 Structure Prediction M ethods

2.2.1 Computational Methods

Several computational methods for protein-structure prediction have been developed and 

proposed. These methods can be grouped in four categories such as homology modeling, ab 

initio, fold recognition and consensus methods.

Homology Modeling

Homologous proteins are evolved from the same ancestor. So they have some degree of 

sequence and structural similarity. An underlying principle for homology modeling is that 

if a set of proteins are homologous, then their 3D structures are more conserved than their 

primary sequences [51]. Homologous modeling is suitable for those target sequences which 

are obviously being homologous with a known three-dimensional structure [38]. These kind of 

target sequences are called homology modeling targets. Homology modeling builds the tertiary 

structure of a target sequence by comparing the target sequence to all of its homologous 

sequences [4], recognizing the most conserved part through multiple alignments [70], copying 

coordinates for these conserved segments from one homolog with known structure and finally 

refining the whole structure through the energy minimization technique [75].

Ab-Initio Folding

The targets that do not have the same fold as some templates or do not have the homologous 

proteins with a known structure are referred to ab-initio folding method for structure pre

diction. This method builds the structural model directly from the target primary sequence 

alone. The scoring function used in this method are both based on traditional atomic force 

field [8] and knowledge based [64] used in recent years. This method starts from simulating 

the folding pathway of a protein and finally building the structural model of the sequence [15]. 

Currently there is no reliable and general scoring function that can always drive a search
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16 2.2 Structure Prediction Methods

to a native fold, and there is no reliable and general search method that can sample the 

conformation space adequately to guarantee a significant fraction of near-natives (less than 3.0 

angstroems RMSD from the experimental structure). Some methods for ab initio prediction 

include Molecular Dynamics (MD) simulations of proteins, Monte Carlo (MC) simulations 

that do not use forces but rather compare energies, and Genetic Algorithms which try to 

improve on the sampling and the convergence of MC approaches.

Protein Folding

The protein folding problem is the following: Given the amino acid sequence of a protein, 

determine:

• where exactly all of its a-helices, /3-sheets, and loops are, and

• how they arrange themselves in motifs and domains

The ability to determine a protein’s native folded state is becoming critical with the massive 

increase in genetic sequence discovery and hence protein primary structure.

Protein Threading

The target sequences that do not have homologous templates but do have the same fold as 

some templates are referred to fold recognition or protein threading. The 3D-structure of a 

target sequence is built by placing its amino acids one by one and sequentially into different 

positions of the template which has the best fit template as the target sequence [4]. After the 

best-fit target is selected, the structural model of the sequence is built on the sequence based 

on the alignment with the chosen template [10] [63] [95].

Consensus Method

Protein structure prediction protocols that combine the outcomes of multiple structure pre

diction programs use the consensus method. The programs employing the consensus method
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17 2.3 Protein Threading

are called meta-server. The first generation meta-servers such as Peons [40] did not exploit 

the information provided by the individual servers. But the recent meta-servers such as 

3DSX [18] and PMODX [33] can now employ fragment assembly techniques to construct a 

new consensus model from their inputs, which is an impressive and promising advance.

2.2.2 Success of M ethods in Prediction

In [57], use of evolutionary information in the form of multiple-sequence alignments results 

70.8% accuracy in secondary-structure prediction of globular proteins. The four membrane 

protein drops it to 70.2%. The strand residues are predicted at 65% accuracy.

At third round of Critical Assessment of Protein-Structure Prediction (CASP3), Jones et 

al. 1995 did best with 77% of residues correctly predicted. But the corresponding number 

for the subset of difficult targets is 73% [20]. The limitation is due to the fact that these 

methods are based on sequence-specific information in the close vicinity of the residue which 

considered only local interaction. The secondary structure is also dependent on the non-local 

interactions [13].

A recent approach uses profiles made by position-specific scoring matrices as input and 

output predicts three consecutive residues simultaneously. This output expansion and unique 

balloting method’s overall secondary structure prediction performance is 77.2% - 80.2% (77.9% 

- 80.6% mean per chain) [52]. With respect to blind prediction, this work is preliminary and 

awaits evaluation by CASP4 [94],

2.3 Protein  Threading

Protein sequences that have the same fold as some proteins with known 3D structures but do 

not have homologous proteins with known structures are suitable for protein threading [14], 

Protein threading makes a structure prediction through aligning the residues of the target 

sequence onto the positions of each template structure from a set of templates. It determines
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18 2.3 Protein Threading

whether the target can have the same fold as the template or not. For the optimal alignment, 

gaps are allowed to the some extent and a pair-wise scoring function can be used. Thus it does 

not consider that all sequence residues are aligned to a template position and all template 

positions are aligned by a sequence residue [68]. The two major criteria for a successful protein- 

threading application is the design of energy function to measure the quality of alignment and 

an efficient alignment algorithm to search optimal alignment.

Protein threading matches the query sequence onto a known protein structure. The com

patibility of a sequence to that structure can be estimated based on this matching. The query 

sequence is a linear structure that is a sequence of amino acid. Protein structure possesses 

the back bone of protein such as core (alpha-helix, beta-sheet), loops including three dimen

sional coordinates of each amino-acid atoms in the space. Assigning a structure to a query 

sequence needs to thread the sequence through all known templates (representative subset 

of known proteins), estimate the compatibility and find the most compatible structure. It 

requires some important components such as the query sequence of the protein, representative 

template database derived from Protein databases [6], an alignment algorithm and an objec

tive function to evaluate the quality of an alignment of the sequence onto a given template 

structure (as shown in Fig 2.7).

2.3.1 Components of Protein Threading

The following four steps aggregates the protein threading approach for protein structure pre

diction. The protein threading components have been shown in the Figure 2.7 (taken from 

http://www.bcbio.de/zib_lecture/ Prakt2004/lect/may_threading.ppt and modified). The 

success and efficiency of the protein threading depends on these steps.

Template Database

A representative set of protein structures extracted from the PDB database is used to form 

the template database. Template is consist of only core segments removing the loop. This
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Figure 2.7: Protein threading process and basic components

generally involves selecting protein structures from databases such as SCOP [48], or CATH 

[50], after removing protein structures with high sequence similarities. Fold library in 1999 

contains 600 to 900 entries depending on the similarity threshold applied [13].

Threading Alignment

The simplest alignment is no-gap alignment in which the query sequence is mounted over an 

equally-long part of a target fold. It is not used for structure prediction, but used for testing 

and adjusting the scoring functions [29]. To approach protein structure prediction, a sequence 

fragment is fitted over a part of target fold allowing gaps both in sequence and fold [69].

The alignment algorithm depends on the scoring function used. Methods based on non 

pair-wise scoring functions uses conventional [29] and double dynamic-programming algo

rithms [69] to find the optimal alignment. Various approaches convert the scoring function 

to non pair-wise and then apply a dynamic-programming algorithm [22] [78]. Others apply 

direct algorithm such as branch-and-bound searching algorithm [37] or Monte-Carlo sampling 

algorithm [9] or linear programming [91] [84] have been investigated. All these approaches 

are discussed in more details in section 3.1.
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Scoring Function

The scoring function measures the fitness between target sequences and templates based on 

the knowledge of the known relationships between structures and the sequences. A good 

scoring function should contain mutation potential, environment-fitness potential, pair-wise 

potential, secondary-structure compatibilities and gap penalties [87] [95] [11]. The quality of 

the score function is closely related to the prediction accuracy.

The pair-wise interaction is an important measure on the quality of protein threading 

method. Thus two approaches in protein threading has been observed where the pairwise 

interaction is explicitly counted in alignment algorithm and a substitution energy score like 

PAM250, BLOSUM62 matrices are used to score them. In other methods, alignment is further 

assessed by the pair-wise interaction score. Some softwares are used to generate the output 

for certain template considering all related potentials such as PROSA, a software tool for the 

analysis of 3D structures of proteins based on [65] [28], FROST (Fold Recognition Oriented 

Search Tool) based on [45] ROSETTA [55] .

We used the distance dependent pair-wise energy matrices proposed by Bryant and 

Lawrence 1993 [11] and is further detailed in section 5.1.1.

Ranking and Modeling

In this phase of threading method, select the threading alignment that is statistically most 

probable as the threading prediction. The ranking for structural prediction is widely accept

able using z-score [10] [66] and machine learning [84],

Fold Recognition using Z-score: The z-score is defined as the standard deviation of the 

optimal-alignment score to the mean alignment-score. The mean alignment score is calculated 

by randomly shuffling the target sequence. The proposed method in [10] calculates z-score 

after threading a pair of sequence and alignment to cancel out the composition bias. Let 

the z-score is denoted by Zraw. An accurate Zraw can cancel out the sequence composition 

bias and offset the mismatch between the sequence size and the template length. But this
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randomization and to calculate accurate Zraw is time consuming. The steps are generally 

taken as follows:

1. Find the optimal alignment between the target sequence and template, and determine 

the optimal alignment score, Eopt

2. Shuffle the query sequence randomly

3. Calculate the alignment scores based on the existing random-alignment, without search

ing the optimal alignment again.

4. Repeat step 2-3 N  times (N  is on the order of several thousands). The mean energy 

score Eavg and standard deviation, 07? is obtained from the N  alignment-scores.

The Zraw can be calculated using the following formula in Eq. 2.1 (adopted from [10]):

V Eopt ~ Eavg 1 ^
" raw —

&E

Skolnick and Kihara, 2001 argued that the use of pair potentials improves the fold specificity 

[66]. The mean Z-score of correctly identified template structure can examine the hypothesis 

as a function of the various potentials used. In this method, they thread the query sequence 

onto each template in the template database and determine each optimal energy. Thus, (E) 

and o being the mean and standard deviation values of the optimal energy in all templates of 

the structural database. If the Z-score for the K th structure is having the energy Ek , then 

it can be determine by the equation 2.2 (adopted from [66]) as follows:

Zraw = EK- ^ E) (2 .2)a

This is one measure of the effectiveness of scoring function. Because, they did not randomize 

the sequence in the evaluation of Eq. 2.2. However, sequence randomization is a compu

tationally expensive process, and it would be a significant advantage to be able to avoid it, 

especially when threading is done on a genomic scale.
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The accuracy of the predicted structure can be assessed by examining the predicted side- 

chain contact-maps [66]. In this method, the number of correctly predicted contacts, Nc 

are recorded. Generating random alignments of the query sequence in the correct template 

structure can do the measure of significance of this quantity. In general, threading with 

single sequence, other than to a template database has no significance on the value of Nc. 

To address this issue, [66] suggests the following metric: if the average number of correctly 

predicted contacts is N° and standard deviation is cr° for the best alignments of the query- 

sequence and each of the template-structure in the template database, then the Z-score for the 

number of correctly predicted contacts can be determined using following Eq. 2.3 (adopted 

from [66])

(2.3)
<T

This quantity measures the significance of a given number of predicted contacts.

Then construct a structure model for the target by placing the backbone atoms of the 

target sequence at their aligned backbone positions of the selected structural template.

2.3.2 Computational Complexity

If pair-wise interaction is considered in the scoring function and variable gaps are allowed 

in the sequence-structure alignment, then the problem is NP-hard [35] [2] [91]. The proof 

is given in [35] and [36] [37] proposed the optimal solution using special-purposed branch- 

and-bound method. In [2], Akutsu and Miyano conducted a comprehensive study concerning 

the approximation of the protein-threading problem. They demonstrated that the thread

ing problem is MAX SNP-hard. It means that no approximation algorithm can guarantee 

an accurate solution within polynomial time. They have shown that the protein-threading 

problem is much harder to approximate than preserving approximation of reduction from the 

DENSE-k-SUBGRAPH problem, for which only an O(n~0 3885) approximation algorithm is
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known so far. They also proposed an 0 (|jE|) approximation algorithm for this problem where 

E is the number of pairwise contacts in the template and gave a constant-factor approxima

tion algorithm when the templates have a planar contact map graph [2]. However, not many 

templates have a planar contact graph [81].

2.3.3 Energy Function

The energy function for protein threading is generally trained by using a database of known 

protein structures (i.e. training database). An accurate representation of the free energy 

represents the best-possible scoring function if the thermodynamic hypothesis are correct. 

Such scoring functions are commonly referred to as energy functions or contact potentials.

Optimization method for energy function is based on formulation of the fact that protein 

in its native structure has the lowest energy compared with other random structures. Here 

native structure is meant as the original structure of the protein in the nature. Based on 

this thermodynamic hypothesis, the first method was developed in [44] and assumed that 

protein sequence in each non-native conformation have energy higher than the energy of the 

native conformation by some margin. Thus a set of linear inequalities have been imposed for 

this requirement and the standard linear programming techniques have been imposed for the 

optimal contact potentials.

The empirical scoring function is a potential-of-mean-force approach where the distribu

tion of the interactions obeys the Boltzman distribution [11]. They compute the contact 

potential as the logarithm of the ratio of the frequency of contacts observed in the training 

database over the frequency of contacts expected in the reference state. Based on probabilis

tic description of the threading model, the scoring function has been developed in terms of 

structural environment states [7].

Other approaches used maximizing the z-scores. The z-score is the measure of the distance 

in standard deviations of a sample from the mean. In [46], they maximized the average of 

individual z-scores to obtain optimal potential for a set of proteins. Thus the proteins with
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low z-scores dominates the averaging procedure.

Many other approaches have been investigated. As examples, the hydrophobic contact 

potential of Huang et al., 1996 [25] reflects packing in the hydrophobic core using only two 

residue classes, hydrophobic and polar, and is remarkable for its explanatory power given 

its simplicity and near absence of adjustable parameters. Maiorov and Crippen 1994 [43] 

used linear programming to enforce a constraint that the native threading scores lower than 

others, but such approaches tend to be brittle. Bryant and Lawrence 1993 [11] used logistic 

regression, based on multidimensional statistics. Boltzmann statistics is the foundation of 

many threading methods such as [28]. White, Muchnik et al. 1994 [77] derived a formal 

probability model based on Markov Random Fields.

2.4 Evolution Strategy

In this section, we briefly describe an optimization technique called evolution strategy (ES). 

The ES is the main optimization tool used in our optimization problem.

Rechenberg [54] pioneered ES and Schwefel [61] introduced ES as method to solve opti

mization problems. ES belongs to the class of evolutionary algorithm that solves the problem 

as a method of natural selection. It works on an encoded representation of the solution. Each 

candidate solution (individual) produced by the problem representation is called as chromo

some. In early ES, the individuals are encoded as vectors of real number and was proposed as 

an optimization method for real valued vectors. But recent ES is open for any encoding. The 

pool of candidate solutions created in each generation is called the population. Each solution 

is associated with fitness value. The fitness value represents the performance of the individual 

solution in relation to the parameter being optimized. It also represents an individual solu

tion’s performance in respect to other potential solutions in the search space. ES is a random 

guided hill-climbing technique in which all candidate solutions are produced by applying mu

tations on each parent individual. The best solutions generated in one generation becomes 

the parent for the next generation. ES is an iterative method and the process of selection,
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reproduction is repeated until some termination criteria is reached. When the termination 

criteria is reached, the solution to the problem is represented by the best individual so far in 

all generations. The basic steps of an ES algorithm can be summarized as follows:

1. Generate an initial population of A individuals

2. Evaluate each individual according to fitness function

3. Select /i best individuals as parents for the next generation

4. Apply reproduction operator i. e. mutation on /x and create A offsprings where A > /x

5. Go to step 2 until a desired solution has been found or predetermined number of gen

erations have been produced and evaluated.

Rechenberg’s ES was developed with selection, mutation and a population of size one, while 

Schwefel 1981 introduced recombination and population with more than one individual, and 

provided a nice comparison of ESs with more traditional optimization techniques. In the 

standard recombinative ES, pairs of parents produces offsprings via recombination, which are 

further perturbed via mutation. Two common variations of ES introduced by Schwefel [61] 

are the (fi, A)-ES and (/x +  A)-ES. These two approaches differ in the selection of individuals 

for the next generation. In (/x +  A)-ES, p best individuals are selected from the set of A 

offsprings to form the parents for the next generation, while in (/x +  A)-ES, /x best individuals 

are selected as parents for the next generation from all (/x + A) individuals.

The most common variants of evolutionary algorithms are Evolutionary Programming 

(EP) [21], Evolutionary Strategy (ES) [54], Genetic Algorithm (GA) [24], and Genetic Pro

gramming (GP) [32], All these approaches differ in three respects such as representation 

scheme, reproduction operators, and the selection methods.
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2.5 Parallel Com puting

Parallel processing has made tremendous impact on many areas of computer application. 

With the raw computing power of parallel computers, it is possible to address many applica

tions that were beyond the capability of sequential computing techniques [74]. Evolutionary 

algorithm is a natural paradigm to map to a multi-processor computer [16]. Parallel ap

proaches are are more demanding where the problem space is very large and fitness function 

is expensive for criteria evaluation.

2.5.1 Parallel Architecture

There are a variety of parameters that can classify and measure the performance of the parallel 

computing architecture. Processor interconnection is one of the most important issues in 

which processors of the interconnected computer exchange information and it affects on the 

efficiency of performance. The two extreme alternatives for processor interconnection have 

been compared in [39] as shared memory and distributed memory as follows:

In shared memory, one processor can communicate with another by writing the information 

into a global shared memory location and having the second processor read directly from 

that location. This makes inter-processor communication very easy, but introduces problems 

having to do with simultaneous access of a unique memory location by multiple processors. 

Thus, it tends to have fewer processors than their distributed memory counterparts.

In distributed memory architecture, each interconnected processors has their own local 

memory. Processors are connected on a communication network and share information by 

passing it through this network. If communication network is complex then it may reduce the 

performance of communication, but it allows many processors to be interconnected. Massively 

parallel machines prefer to have a distributed memory.

In [39], he compared the two architectures and concluded that advanced routing techniques 

have made the cost of communication between any two processors roughly the same as in one 

processor. He also mentioned that the network of workstations on a common Ethernet sub
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network has no notion of processor neighborhood and is likely where parallel optimization 

algorithms will find the most widespread use.

2.5.2 Message Passing in Parallel Architecture

Message Passing Interface (MPI) is a paradigm used widely on distributed memory architec

ture of parallel machines. The goal of MPI is to develop a widely used standard for writing 

message-passing programs. As such the interface establishes a practically portable, efficient, 

and flexible standard for message passing [67] [23]. MPI offers an application-programming 

interface not necessarily for compilers or a system implementation library. It allows effi

cient communication and at the same time allows for implementations that can be used in 

heterogeneous environment.

SHARCNet used distributed memory architecture and MPI can be used to communicate 

among multiple processors.

2.5.3 Parallel Implementations in Bioinformatics

Certain methods for analyzing genetic/ protein data has been found to be extremely computa

tionally intensive, providing motivation for the use of powerful computers. Parallel algorithms 

have been well implemented in many areas of bioinformatics. Yap et. el 1995 applied parallel 

algorithms on biological sequence analysis, especially on multiple sequence alignment problem 

using speculative computation [92] [93]. Schmidt et. el. used parallel algorithms on protein 

database searching [60]. Bokhari et. el. applied parallel techniques to implement the dy

namic programming approach in DNA sequence alignment [62]. Xiao et. el. applied parallel 

algorithm on a cluster of workstation for gene clustering [79]. Zhang et. el. used a data level 

parallel algorithm for structure prediction [96]. Thomas and Amato used Standard Adap

tive Template Parallel Library to parallelize their method for protein folding problem [72], 

Akutsu used parallel approach to search similar structure using structure-structure alignment 

in parallel computer [?]. More recently, we found the marriage of mathematical programming
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and parallel computing for solving protein threading problem in [90]. Yanev used linear pro

gramming LP and network flow formulation to solve protein threading problem in parallel 

processors using commercial LP optimizer, CPLEX.
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Chapter 3

Related Study

This chapter discusses the protein threading algorithms that are currently available and gives 

a brief survey on the existing methods that are relevant to our problem.

3.1 Survey on Protein  Threading Algorithm

There are several protein threading algorithm based on different assumptions. The two basic 

considerations that determine the complexity of this algorithm are whether or not (1) variable- 

length gaps are admitted into the alignment, and (2) interactions between neighboring amino 

acids from the sequence are considered into the score function. If variable-length gaps are 

not permitted [44] then alignments are restricted to substructures of equal length as from the 

database and will be partially out of hydrophobic registration.

Johnson et. al, 1992 [69] permitted variable lengths but pair-wise interactions are ignored 

and only the local environment is considered. In [58], they evaluated interactions with respect 

to the structure’s original native sequence in stead of the sequence actually being threaded. 

In these cases, the global optimum threading can be found using dynamic programming 

alignment method. Dynamic programming employs an affine gap penalty and it biases the 

search to prefer loop lengths in the model structure’s original sequence. This make more 

difficult to recognize for distant structural homolog if their loop length differ substantially.

29
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30 3.1 Survey on Protein Threading Algorithm

In addition ignoring amino acid interactions means giving up a potentially rich source of 

structural information [59].

Among the approaches, Lathrop and Smith, 1994 gave the first mathematical formulation 

of the problem considering both pair-wise interaction and variable-length gaps which applies 

’’special purpose” branch and bound algorithm for searching optimal alignment [36] [37]. The 

method guarantees to find the optimal solution but it has turned out as exhaustive-searching 

and time-consuming procedure for larger sequences. But the success of [36] persuaded other 

researchers to consider the success of prediction and and it is still an active area of research. 

For this reason current search algorithms adopt any of two choices: (1) Approximation Algo

rithm: It may find the optimal solution in many cases and very good solution in respect to 

others, but sometimes fail to find the optimal (2) Exact Algorithm: It may terminate rapidly 

in many cases, but sometimes must require an exponential amount of time.

3.1.1 Exact Algorithm

Branch-and-bound algorithm:

Lathrop and smith [36] [37] have proposed a branch-and-bound method to solve the threading 

problem. [36]is the first approach to formulate the protein threading problem and optimized 

special purpose branch-and-bound method. They considered pairwise interaction removing 

the loops between cores. But in [37], they considered gap explicitly between the cores, but not 

in the core segment. In this approach pairwise contacts is temporarily ignored in subspaces, 

uses dynamic programming algorithm for searching subspaces and then estimate the bound 

of the objective function in the entire space. This process is repeated and some subspaces are 

discarded based on the estimated bound. It has been reported that this method guarantees 

the optimal threading but approximately 5% to 10% threading instances of their own test 

sets can not be handled within a reasonable time [37].

Protein threading is based on the fact that certain proteins with similar structure have 

different loops and similar cores. So the idea is to predict protein structure from the query
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Figure 3.1: Protein Threading Problem (adopted from [ATM97] Page 4)

sequence in a way so that the query sequence fits to a known structure considering its spatial 

position and determine how best it can fit. The protein threading has been shown in the 

Figure 3.1 (adopted from 3.1 Page 3)

The structural model is determined by replacing amino acids with place holder in a known 

structure. Place holders are kept associated with certain properties of amino acids. The struc

tural model keeps record of spatial constraints of the structures such as distance to the other 

amino acids how much inside or outside the whole structure is. Then this structural model 

of known structure is aligned with the query sequence to determine the best fit structure.

So threading procedure relies on two major components among others is:

(1) An alignment algorithm to position a sequence to a structure.

(2) Score function to evaluate the conformation as which one fits best.

The basic inputs for protein threading problem are:

1. A query protein sequence, A with n amino acids such as a i02...ara-

2. A core structural model C, with m core segments Cj

• The length of Cj, each core segment.

• Core segment Cj and Cj+i are connected by loop region, j and for each j maximum 

length (ljmax) and minimum length (/*mm) bound.

• The local structural environments (a — helix, (3 — sheet or loop) for each amino 

acid position in the model.
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32 3.1 Survey on Protein Threading Algorithm

3. An efficient score function to evaluate a given threading.

The output for the threading is:

A set T =  t i , t 2 ,  tm of integer such that the value of ti indicates that what amino acid

from sequence, A occupies the first position from each core segment, c*.

Thus threading is an alignment between the sequence and the core structural model al

lowing the above conditions. The score function and gap between cores play the vital role and 

if pair-wise alignment is allowed on variable length gaps the problem becomes NP-hard [35].

Basically [36] [37] gave the formal presentation of the protein-threading problem and they 

proposed branch-and-bound algorithm, first exact solution for finding the global optimal 

threading using pair-wise interaction of amino-acids and allowing variable length gaps. Ac

cording to that formulation the basic concept of constraints, loop length bounds and scoring 

functions are as follows:

Spacing, order and interval constraints (adopted from [36] Page 368):

1 + E  + l f n) < U < n  + 1 -  Z j U c j  + if") 
ti + ci + limin< t i+1< t i + ci + limax

hi <= U <= ei

With t as some threading, the scoring function is (adopted from [LS94] Page 368):

f( t) = Ei 9i(i, U) +  Ei Ej>i 92(*, j, ti, t j )

where given inputs gi, g2 are contributions from individual core elements and pair-wise 

core elements respectively.

value U determines the position of amino acids from sequence A  in core segment i.

In the protein threading problem, an amino acid sequence and a set of 3D protein struc

tures are given to find an optimal alignment between spatial positions of a 3D structure and 

amino acids of a sequence minimizing the score of a suitable energy function. [36] [37] de

fines the problem in a formal way and this formal definition is modified in a simpler form [2] 

without loss of generality as follows as Figure 3.1 (adapted from [2] Page 4).

The formulation described below is (adopted from [2], Page 4) as follows:
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Input: sequence s — S\S2  sn over a fixed alphabets representing amino acids

core lengths: c1; C2, cm

score function: g(i, j,ti , tj)  such that (g(i,j,U,tj) > 0)

Output: m-tuple t =  {t\,t2 , t m) which maximizes a total score such that 

score (t) =  Y.i<j9{i,3,ti,h)

under the condition that 1 < ti,f* + c* < =  ti+i, tm + cm <  n + 1

By inverting the sign of values of score functions and by adding a constant factor, the 

problem is converted to maximization problem for applying approximation algorithms. In 

[LS94], two kinds of score functions gi(i, U) and g2(i, j, U, t j) are used and they are generalized 

as g(i,i +  l ,ti,U+i) = gi(i,U) +  <72(2,* + l,tj,£j+i) Here they ignore the computing time of 

g(i, j,ti , tj)  since it can be computed in polynomial time for most scoring function. Also the 

effect of loop regions is taken into account by adding a length of loop region to the length 

of a core region and by modifying g(i, j,U,t j) suitably. Thus the loss of generality has been 

taken care of.

Divide-and conquer method:

Mmptett;

weqmgmzi

Figure 3.2: A schematic of sequence-structure alignment. The line at the bottom shows the 
target sequence. Each box represents a core secondary structure (cr-helix or /3-strand) of the 
template. The dotted lines between boxes represent the loop regions. An arc between two 
core secondary structures indicates that there exists at least one pairwise interaction between 
the two cores. The two lines between a core and the target sequence represent a gapless 
alignment between the core and the sequence, (adopted from [85] Page 344)

In the PROSPECT [86] [85] [80] structure prediction program, Xu et. al. developed 

a divide-and-conquer algorithm based on the observation that if the cutoff distance of the 

pairwise contacts is fixed to 7 A, then three-quarters of the template contact graphs are 

topologically simple.
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Figure 3.3: Partition of a template structure that forms a tree structure as indicated by the 
arrow. The first row shows the template with five core elements. The second row shows a 
partition of the template into two substructures, one with three cores and the other with two 
cores. A broken arc ended with a circle is called an open link. Third and fourth shows further 
partitions, (adopted from [85] Page 345)

In this method, they assumed that the contact potentials can be calculated only between 

residues of core secondary structures (a-helix or /3-strands). They also assume that alignment 

gaps are confined to loop regions. Based on that assumptions, the threading problem can be 

schematically represented in Figure 3.2. The goal is to find an alignment between the template 

and the target sequence so that total energy score is minimized.

In PROSPECT [86], an optimal alignment between the target and each template is deter

mined in two steps:

1. Finding an optimal alignment between the target and core elements of the template, 

while penalizing length differences between the corresponding loop regions, using a 

divide-and-conquer algorithm [85]
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2. Alignment loop regions axe done separately after core elements are aligned, using a 

sequence-sequence alignment algorithm like Smith-Waterman.

The quality of an alignment between a target and a template’s core elements is measured 

by a linear combination of 1. singleton fitness that specifies secondary structure and solvent 

accessibility 2. Pairwise contact term the specifies how preferable of two residues in close 

contact 3. Term which penalizes the length differences of corresponding loops.

 ̂ « # ** am*** « « 4 » k * * * ** * as*** «,

*4 O-
O

»

Figure 3.4: A schematic example of divide and conquer algorithm, (adopted from [85] Page 
345)

The threading employs a divide-and-conquer strategy to solve the optimal threading prob

lem. For this purpose, the algorithm pre-process the template by repeatedly dividing it into 

substructures until each substructure contains only one core secondary structure. Dividing the 

template cuts an interaction between two cores into two open links, represented as shown in 

Figure 3.3. The algorithm solves the entire optimal alignment problem by recursively solving 

a series of sub-alignment problems between sub-structures and sub-sequences, under various 

constraints, and combining these sub-alignments in a consistent way. Figure 3.4 illustrates 

the idea, using an example from the last partition step in Figure 3.3.

The idea is to split a template into two subsegments such that each segment is connected 

to as few external cores as possible, to recursively align each subsegment to the sequence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36 3.1 Survey on Protein Threading Algorithm

respectively, and finally to merge the alignments of two segments to form an alignment for 

the whole segment. For topologically complex contact graphs (> 400 residues) of about one 

quarter it runs very slow.

To deal with situations where corresponding cores of two aligned structures may have 

different lengths, PROSPECT allows deletion/additions of up to two residues at each end of 

a core in the template. The number of deleted/added residues from/to a core is determined 

by the optimization algorithm and it increases the computational time significantly.

3.1.2 Approximation Algorithm

Recursive Dynamic programming:

This algorithm repeatedly uses a dynamic programming algorithm to match the target se

quence to the template [71]. At each iteration, the local alignment between the target se

quences and the templates is searched by dynamic programming algorithm. A segment of the 

target sequence is fixed onto a segment of the template if a significant similarity is achieved. 

The iteration is repeated until no significant similarity is found. The unmatched segments of 

the target sequence are interpreted as gaps.

RDP optimizes the following scoring function for evaluating a threading alignment f of 

the target sequence A with a known protein structure B:

£>(/,, B) =  7 * ^ ( / ,  A, A, B)+£*4>H(f, A, B)+(*<l>P(f, A, B ) - G A P ( f , A, B )

In this scoring function 4>s scores the alignment f with respect to the alignment f with 

respect to well-known sequence based mutation matrices, contact capacity potential 6C is 

the compatibility of the query sequence with the structural fingerprint of the template. SH  

is a scoring preference of an amino acid to a specific structural position with respect to 

hydrophobicity and solvent exposure. 4>P denotes the pair interaction term of the potential. 

GAP penalizes insertions and deletions. 7 , 5, e, £ are weighing parameters, which have been 

calibrated empirically.

RDP algorithm is described in pseudo code in [71]. The steps are as follows:
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• Detect local region of high similarity among the target and template sequence

• Local alignment

• Exploit sequence as well as structural signals

• Any pair of locally aligned segments divides the unmatched region of both protein into 

two parts.

• They can be processed independently with the same approach.

• After dividing, the changed structural features of the template are recorded.

The algorithm proceeds recursively, until in the local alignment step, no more significant 

similar segment pairs are found e. g. only one core structure.

Interaction-Frozen Approximation:

The interaction-frozen method was first used to solve protein threading by [22]. In this ap

proach, one end of each contact is fixed to the residue in any current alignment position 

including initial alignment. Then an iterative step is used to search for the next alignment 

based on frozen pairwise potential [22]. [78] used the same approach, but improves the iter

ative step with dynamic programming algorithm until the algorithm converges. No optimal 

alignment is guaranteed.

Monte-Carlo Sampling and Simulated Annealing:

[11] used the simulated annealing method to solve the protein threading problem. Optimal 

alignment between the target sequence and the template has been searched using Simulated 

Annealing algorithm. [42] [47] initializes one initial sequence-structure alignment and then 

used the Monte carlo sampling technique to generate the next alignment from the current 

alignment. Both approaches usually take enough computational time to converge to the 

optimal alignment and it is unaffordable to thread for long sequence. The method allows
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Figure 3.5: Representation of protein-protein alignment. A, example of alignment, B, its 
matrix representation (adopted from [47] Page 523)

gaps and insertion both in the query sequence and in the template structure. The alignment

representation is defined as follows:

An alignment between two proteins of length I and J is represented by a matrix A^  where

i = 1, /  and j  = 1,.., J:
AVJ = 1 if i is aligned with j

=  0 otherwise 
Another way of representing an alignment is by a pointer p.

Pi = j if is aligned to j

=  0 if i is not aligned to any residue
The representation did not allow double matches (i, e, £T=1 A? ^  !)• The reverse of any

fragment in the alignment is also forbidden, i.e. if Ay =  1, then for any i! > 1 and f  < j

—>• A#] = 0. Under this constraints, matrix Ay should have the form shown in Figure 3.5,

i.e. an alignment composed of runs of aligned residues separated by gaps in either or in both
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proteins. These runs are referred to below as fragments of alignment. Each fragment is a set 

of matches (Ay =  1 for (i , j ) =  (i1 + l , f  + 1 ) , {i' + L , j '  + L)) framed into gaps

A , _ = Aj+i+iy+j-,+1 =  0. These fragments are used in the move set as building blocks.

A.

n.

c.

/

D, 7
Figure 3.6: Move set of Monte-carlo method, A, Shift, B, Shrink/ expand C, Split/ merge, 
D, Jump (adopted from [47] Page 523)

Each move in the move set is designed to change the alignment preserving most in the 

matches and hence, leading to small change in energy. It also allows easy introduction of 

constraints on the minimum length of a fragment or maximum length of a gap. This flexibility 

is achieved by making moves on fragments, rather creating and destroying single matches. 

The fragment length is constrained to be greater or equal to Lmm = 6 residues. The moves 

are shown in Figure 3.6.

To sample possible sequence-structure alignments and search for the alignment with min

imal energy, they used the Monte Carlo (MC) method. The power of MC procedure is that
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it allows us to find a global minimum on a variety of rough landscapes. In the search for 

a minimum, it samples possible alignments and allows to study statistical properties of the 

energy landscape.

Linear Programming: 

Mixed Integer Programming for RAPTOR

RAPTOR [83] used a linear programming based approach for protein-structure prediction via 

threading. The protein threading problem is formulated as a large scale integer programming 

based on the contact map graph (shown in Figure 3.7) of the protein 3D structure template. 

RAPTOR is based on the definition and alignment model of threading shown in [84] [81] [82]. 

They followed the basic assumptions which are widely adopted by threading community [11] 

[36] [42],

In their work [84], the threading score function is well defined and consists of singleton 

score such as the environment fitness score Es, mutation score Em. secondary structure com

patibility score Ess and the gap penalty score Ea, pairwise interaction score Ep. So the scoring 

function, E can be derived as follows (the equation is adopted from [84], Page 4):

E =  WmEm +  WSES +  WpEp +  WgEg +  WSSEBS

where Wrn. Ws, Wp, Wg, Wss are weight factors determined by training.

Global alignment and local alignment methods are employed to align the sequence to the 

template. In order to reduce the too many variables in the the formulation, they simplify the 

template contact graph by merging all the vertices representing the residues in one core into 

a single vertex. This is based on the assumption that no gaps are allowed in the core. So they 

model each core as a vertex and adding one edge between two cores if there is at least one 

residue-residue contact between them. It is explained in the Figure 3.7 (adopted from [81] 

Page 5).

Then they construct a bipartite graph to describe all potential alignments between any 

core and any sequence position. They denotes D[i] as all the valid query sequence positions
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Figure 3.7: ” A template contact graph and an example of an alignment between one template 
and one sequence. A small circle represents one residue. The solid arc in the original contact 
graph indicates that its two end residues have an interaction. A dashed arc shows that 
if two sequence residues having an interaction to each other, then the interaction score of 
these two sequence residues are aligned to two template residues having an interaction to 
each other, then the interaction score of these two sequence residues must be counted in the 
scoring function. The interaction score between two sequence residues which are aligned to 
two interacted template residues” [83] (adopted from [83] Page 5).

that Ci can be aligned to. R[i, j, 1] denote all the valid alignment positions of Cj given that 

Ci is aligned to s;. Figure 3.8 (adopted from [83] page 7) illustrates the example of D[i] and

R[i,j,l]-

They presented three versions of linear mixed-integer program formulations with three 

objective functions to formulate the sequence-template alignment problem and proved the 

third constraint set, CS3 [84] is the strongest when the integrality constraints on x and y 

variables are relaxed to allow real values between 0 and 1.

This method focuses on the formulation of the threading problem both in designing scoring 

function and efficient algorithm for alignment. The experimental result proves their quality 

and efficiency in formulation of RAPTOR [84].
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Figure 3.8: ’’Example of D[i] and R[i, j, 1]. R[l, 2, k] is the set of potential alignment positions 
of core 2 given core 1 is aligned to sequence position k. Core 1 has five residues which have 
to be aligned to the sequence based on assumptions in the ’’Alignment Model” subsection. 
Thus, the first two candidate alignment positions of core 2 are invalid if core 1 is aligned to 
position k in order to avoid overlap”. (adopted from [83] page 7)

In implementation of the RAPTOR, IBM OSL [26] package is used to optimize this MIP 

formulation. The above package was used to relax the integer program by allowing all x and 

y to be real between 0 and 1 and solve the resulting linear program. If the solution of the 

linear program is integral, then the optimal solution is found. Otherwise one non-integral 

variable is selected according to some criterion, and generate two sub problems by setting it 

to 0 and 1 respectively. These two subproblems are solved recursively.

For weight training, the weight factors are through optimizing the overall alignment accu

racy and an SVM (Support Vector Machine) method is used to carry out the fold recognition. 

The Z-score is approximated by fixing the alignment positions, shuffling the query sequence 

randomly and calculating the alignment scores based on the existing alignment. Then the 

SVM-Light software is employed to adjust the approximate score.

Network-Flows and MIP

[91] has used the formulation of [36] and derived the objective function for linear programming 

formulation. But in the formulation of objective function, the presence of pair-wise interaction
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Figure 3.9: This graph corresponds to the network flow formulation of the problem, (adopted 
from [YA02] page 9)

between the segments contributes the non-linear term. In order to linearize the problem, they 

introduced new linear variables Zijki € (0,1) in the objective function in stead of non linear 

term, XyXki and add some more constraints as described in [91]. Their formulation aims to 

be solved with commercial LP solver, CPLEX [27]. But their initial formulation fails because 

of weakness of LP-bounds formulation.

[91] introduces the network flows for the above formulation to solve in shortest path from 

an artificial source node to destination which is optimal alignment. The arc weights, ce are 

related to the scores from the above original formulation and each weight is a sum of three 

numbers: segment to position cost, gap cost between segments and local interaction (if any).

The graph represented in Figure 3.9 (adopted from [91] page 9) gives more geometric 

insight for the problem of optimal aligning of some sequence with a core of 5 segments, 

each one with three possible placements. The path given in a thick lines has a length 5 

but taking into account the pair-wise interactions (in this case (1,1,3,2), (3,2,5,2) - the path 

passes through the vertices (1,1), (3,2) and (5,2)). The costs for passing through these vertices 

(cn 32  +  C3252) is added to 5 and obtain the actual length 14 (= 2+7+5) of the threading path. 

In the figure 5.1, lb is the bound obtained by relaxation and is calculated as [34], opt is the 

optimal value determined by computing the exact cost of the path. Thus if weights to all 

arcs and a table of the scores for the designated non-local pair-wise interactions are given, the
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optimization problem will convert to find a path from S to T with minimal updated length.

The CPLEX was run on the MIP model generated from this network flows constraints 

on a large subset of instances. The results of LP relaxation attains optimal. But the fact 

is that all these properties are scoring dependent and they could be lost once the scoring 

scheme changed [91]. They used the CPLEX branching strategy to improve the LP-bounds 

by imposing branching on the SOS (Special order set) constraints in stead of on a single 

variable [27], but at the expense of adding extra constraints. The split and conquer algorithm 

is applied to split the problem into sub-problems and passing the best objective function value 

as a cutoff for the subsequent sub-problems. Thus by having the chance to start with the 

sub-problem which contains optimal path, all other sub-problems will be aborted by the LP 

solver at the moment when dual objective reaches the cut off value.

In [91], the experimental result is compared with the result of [37] and shows that in order 

to generate optimal threading for longer protein-sequence, the time limit varies between 30 

min to 2 hour as compared as the same instances for [37]. But in [91] formulation they 

sacrificed the quality of the comparison with lower accuracy for the chance to test the long 

protein-sequence instances which were never attempted before.

3.2 EA in Protein  Threading

The evolutionary algorithm has been applied on protein folding problem [73] [53]. We also 

found an evolutionary algorithm based approach for protein threading problem, known as 

genetic threading, proposed by Yadgari 2000 in [88]. The method concentrates on the de

velopment of suitable algorithm for (near) optimal sequence-structure alignment in protein 

threading approach based on genetic algorithm. This is the only research that we found in 

literature review in our knowledge so far which is related to protein threading and based on 

evolutionary algorithm. We took it as the key approach for our basis of research and we will 

outline their approach in brief description.

The algorithm puts the residues of query sequence onto the place holder of a known
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protein-template and looks for a reliable alignment with the minimal free energy. This is 

a process of threading approach in protein structure prediction. Yadgari, 2000 used one of 

the available energy function, described in [11] for their threading algorithm. The method 

includes a representation of the problem, the suitable genetic operators and their approach 

for insertion/ deletion of residues in sequence-structure alignment.

Problem Representation: The method proposed a fixed length string to represent the 

individual solutions and to use a string of integers o, 1, 2, ..., K to represent the solutions 

where K is the length of structure. Each T  in the string represents a residue from the 

sequence is aligned onto that position of the structure while each ’0’ represents no alignment 

of query-residue. Numbers bigger than 1 represent the number of query-residues that does 

not have suitable match on the next structural position. Each such solution validates the 

length of the representative string equals the length of the structure while sum of all integers 

in the string is equal to the length of the sequence. The representation is further described 

in details in 4.1.1.

Genetic Operators: The proposed method used genetic operators such as mutation and 

crossovers. The mutation was done by introducing a gap or by deleting the mismatched 

residues from the sequence. It was performed by increasing or decreasing randomly the 

integer in the solution string and offsetting the same amount in other positions. The proposed 

crossover represents a combination of two alignments. It performs by choosing a random 

position and building two new offsprings by concatenating the prefix of one with the suffix of 

other and vice versa. Since the arbitrary crossover of two alignments are not guaranteed to 

represent a valid alignment, each string is further validated.

The method did not use the predefined core elements or gap restriction for any represen

tative solution. It used the trie data-structure to efficiently remove the duplicate solutions 

so that early convergence can be avoided. They reported good results for their threading 

method.
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3.3 Parallel Approaches in Protein  Threading

Akutsu and Sim, 1999 has developed a protein threading system based on multiple structure 

alignment [3]. They used a parallel architecture for comparing two similar structure. In 

similar structure search, an input structure is compared with all structures (several thousands 

of structures) in PDB. For that purpose, they used a simple master-slave model. The master 

process watches the status of all slave processes. If the master process finds an idle slave 

process, then it sends a protein structure, which is not yet compared, to the slave process. 

The slave process computes a structure alignment (using stralign [1]) between that structure 

and the input structure, and then it returns the result to the master process. Although this 

model is very simple, it works quite well because each comparison can be made independently. 

They reported that they could achieve near linear speedup ratio per slave process (up to 50 

processes) by means of storing all 3D data in main memory.

Yanev et. al. 2003 [89] modified their linear-programming based approach used in [91] 

for parallelizing the computational algorithm in multiple processor using the capability of LP 

solver CPLEX. In this formulation, they used the properties of the MIP model that permits 

a decomposition of the main problem into a large number of subproblems (tasks). They 

showed a branch and cut technology can be efficiently applied for solving these tasks in a 

parallel manner and it leads to a significant reduction in the total running time. If the split 

and conquer method can split the problem into subproblems of equal size, then the intervals 

should be of equal length.

They applied the CPLEX call-back function technique [27] to make the task atomic and 

this method overcomes the slowing down of the global optimization process by learning from 

hardest one. The operations of the slave processor are as follows: (1) sending to the master the 

locally computed solution i.e. only the objective function value (2) receiving the record from 

the master, and (3) using it to update the cutoff value. This periodical updating of the logical 

record with the best global value allows the parallel processes to evolve simultaneously much 

faster. Furthermore, a cancelation of non-promising tasks in due course leads to significant
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reduction in the total time.

Yanev et. al. has further improved their algorithm to super linear speed up and reported 

in [90]. In [90], they proposed a naive parallelization based on centralized dynamic load 

balancing since the amount of job is not known prior to execution. The splitting strategy 

suggests to split the problem in r subproblems, which are considered as tasks that need to be 

spread over p processors. The solution of the original problem is the minimum of all solutions 

computed in the manner. In the centralized dynamic load balancing, the tasks are handed 

out from a centralized location (pool) in a dynamic way. The pool is managed by master 

processor. The master processor sends the task to each slave processor from the pool. Once 

the slave processor is done, it sends back the result to master. The master processor keeps 

track of slaves and sends the tasks on demand to idle slaves.

3.4 Lim itation of the Existing M ethods

The several methods have been proposed for protein threading. But due to the complexity of 

the problem, most of the researches solve only limited version of actual problem.

While it is true that secondary structure elements are more conserved than the loop re

gions, significant structural information is carried by the residues, that are in the loop regions. 

Insertions and deletions are also observed between similar proteins even inside corresponding 

secondary structure elements. Threading methods that can handle full alignments without 

arbitrary restriction of core elements will thus have an important advantage [71].

Many of above methods suffered with exhaustive searching, some of them compromise 

with quality. Due to the computational bound, branch-and-bound and divide-and-conquer 

algorithms are limited to thread only small sequence and templates (< 400 residues). Similarly 

linear programming based approach considers resultant core energy in stead of actual residue- 

residue contact for simplicity of the problem.

[88] discusses a genetic algorithm approach for PTP, however their method threads a 

query against a single template only instead of a template database. Furthermore, their
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technique is very slow and therefore can not be used for very large query and/ or template. 

They report results on short queries/ templates with length of 300 amino acids at most.

Since threading a query to each template is still a computational challenge, the current 

threading algorithms only thread a single query against a single template. In practice, we 

need to thread a query sequence onto multiple number of template-structures. To thread 

against many templates, the given algorithm is applied sequentially many times, each time 

with a different template. Large quarries cannot be threaded that way against a template 

database, within satisfactory and respectable time bounds, particularly where the templates 

are large. In matter of fact, vast number of proteins have never been attempted due to their 

sizes [89].

The parallel method we have observed in [3] concentrates in structure-structure alignment 

in order to see the similarity between two protein templates. They used this parallel approach 

to facilitate a profile-based search in threading. The method in [89] [90] observed substantial 

speed up in their linear-programming based approach for large proteins using a optimization 

software, but the method is limited to thread a single query onto a single structure.
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Chapter 4

Proposed M ethod

In this chapter we described our proposed method for solving protein threading problem. 

Our method concentrate only on the algorithmic part of protein threading problem. We have 

demonstrated a new method based on evolutionary strategy applied on a suitable problem 

representation of Yadgari et. el. 2000 [88]. The problem representation, fitness function, 

mutation and recombination operators used, and ES algorithm has been discussed in details. 

In this thesis we also applied parallel computation on our evolutionary strategy based method.

4.1 Proposed ES Approach

4.1.1 Problem Representation

Our problem representation is same as in Yadgari [88]. Given a query Q and a template 

T, we seek to find the best alignment between Q and T. Given a template database D =

Ti, T2, .... , Tn , we seek to find the best alignment from the set of best alignments between Q

and all T  (1 < i  < N ). The template that yields the best alignment is therefore, the solution, 

we are looking for. Thus finding the best alignment between Q and all templates in D gives 

the threading solution, and the search space is the space of all possible alignments. In order 

to apply ES to the protein threading problem, we therefore, need to represent an alignment

49
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50 4.1 Proposed ES Approach

appropriately for ES to evolve it and find the best solution.

An alignment between Q and given T  is represented as a fixed length string of integers 

S = Si, f>2, S3,  ••••, S |T | where 0 < S* < \Q\, 1 < i <  |T|, and S* = |Q|.

Fig 4.1 shows the correspondence between a query-template alignment and an integer 

string representation of the alignment. S* =  0 represents a structure deletion; Si — 1 rep

resents a match between a given amino-acid in the query and a template position (a match 

means that the amino acid is assigned to that position in the template’s structure); S) > 1 

represents gaps in the sequence when aligned to template.

Sequence - S W F I G N A L G A T S

Structural

S W F  I - - G N A L T  S

Structure
Deletion

S equence
Deletion

Figure 4.1: Representation of the problem formulation and schematic view of the threading 
process

The schematic view of the threading process is shown in Fig 4.1. The template’s structure 

is presented by the bold trace through the circles that represent the structural positions (12 

in the example). The query sequence on the top is threaded through this structure and the 

associate coding 111100111311 is shown in the bottom. In this threading, the first 4 amino 

acids S, W, F, I of the query are matched to the first 4 structural positions of the template 

(that is S, W, F, I assume the position 1, 2, 3 and 4). Next in the threading, the amino-acid G, 

N, A assume the positions 7, 8 , 9 respectively, which are then set to values 1 in the encoding.
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Position 5 and 6 of the template are not matched to the query (this is represented by the dash 

line) and thus specify the structural details in the alignment (thus, corresponding positions in 

the encoding are set to 0). The following amino-acid in the query, L takes position 10 of the 

template, but its corresponding position in the encoding is set to 3 (not 1) to signify that after 

this structural position, the next 2 amino-acids of the query are not matched to any structural 

position (this is an example of sequence deletion where the deleted letters are G and A). Thus 

a position Si = v in the encoding specifies that the next v — 1 letters of the query are not 

matched to any structural position while the current amino-acid takes position %. Last query 

letter, T and S are matched to last positions and corresponding positions in encoding takes 1 

each. Below, we show the alignment between Q and T, and the corresponding encoding E.

T: 1 2  3 4 5 6 7 8 9  10 11 12
Q:  S W F I G N A L G A T S
E:  1 1 1 1 0 0 1 1 1 3  1 1

In this paper, we use (p +  A) — E S  as our optimization method. Initially, we generate a 

random population of p parents, that is each parent is initially a random integer vector, S = 

Si, S2 -...S\t\, where 0 < Si < \Q\, 1 < % < |Tj and such that the constraint = 1*51

satisfied.

4.1.2 Fitness Function

Besides an appropriate problem representation, the design of our appropriate objective func

tion is also very fundamental to the process of ES. The objective function is needed to assess 

how good or bad a candidate solution is. Candidates are selected according to their objective 

values and the best p candidates among the current candidates are always selected as the 

new parents for the next generation. In a protein molecule, the bonds between the atoms 

of its amino acids determine the three dimensional conformation of the molecule in space. 

Thus the three dimensional structure (or the fold) of the problem is decided by the linear 

sequence of its amino acids. A protein always assumes a stable fold, and such fold has always
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the lowest possible energy state. Therefore, an energy function can be used to determine, if a 

query protein, such that when some of its amino acids match some positions of the template 

protein, it folds at the lowest possible energy state. The energy state of the template’s fold 

is known as well as its atomic coordinates in three dimension. The query’s actual fold is 

unknown but we want to predict it. When the query is aligned to the template (as discussed 

earlier) and folded accordingly, we can then compute the energy of the fold. If the actual 

unknown fold of the query is the same as template’s fold, then it will have the lowest energy 

state (which is the energy of the template’s fold), assuming that the fold is attained from the 

best alignment between the query and the template.

Many energy functions are defined in literature. In this paper, we use the energy function 

discussed in [88] which is itself based on a more complex energy function studied in [11]. 

Given an alignment, its total energy (that the energy of its associated fold) is

E'total E single T Epair T Egap ?

where ESingie and Epmr are computed from the energy matrices of [11], and Egap is the 

alignment gap penalty function which is set to 3 energy units. Etotai is a function of the amino- 

acid type, the distance between amino-acids, the hydrophobicity of the amino-acids and the 

alignment gaps. Esingie describes how well the individual amino acids of the query match their 

assigned structural positions of the template. Epair reflects the pairwise interactions between 

the amino-acids. We refer the reader to paper [11] for discussion of how Etotai is computed 

from the energy matrices.

The best solution vectors are those whose corresponding alignments or associated folds 

have the lowest energy. Since our ES maximizes an objective function, we transformed energy 

function appropriately for ES to maximize. The transformed energy function is the objective 

function that ES will use in order to select the best solution. We will use the term fitness 

function as the energy value is normalized such that it is between 0 and 1.

Given a query Q, a template T  and a solution vector S — Si, S2 -—S\t\, our fitness function
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is defined as

E(S) -  EnF(S) = 1 -
Emax Emin

where E (S ) is the actual energy of the fold associated with the alignment corresponding to 

S, Emm (respectively Emax) is the lowest (respectively highest) bound on the energy value and 

can be obtained by assigning to each column of the alignment, the minimum (respectively 

maximum) possible energy value from the energy matrices. Thus we always have Emin < 

E(S) < Ernox. The closer E(S)  is to Emin then the lower is the energy of the fold, and thus 

the larger is the fitness of S.

4.1.3 M utation

Mutation helps evolutionary process to explore new areas of the search space by generating 

totally new solution vectors. It also helps to maintain the diversity of a population, which in 

turn helps to avoid getting stuck in local optimum solution. Mutation operation randomly 

alter certain positions of a given solution vector. With our representation, mutation should 

be designed in such a way that it always produces valid solutions, that is the constraints 

~  IQ I and 0 < Si < \Q\ must be satisfied on resulting solutions. Our mutation 

operation gives valid vectors and is as follows:

We randomly generate an integer ne[0, -p] and randomly select two positions pi,p2e[l, |T|], 

Pi 7̂  P2 , to alter. We then increase Sp1 and decrease Sp2 by a same small random amount 

me[0, given a parent vector S  to produce a mutant vector. The offset m  must be selected 

such that 0 < SPi ±  m < \Q\, to ensure the validity of the mutant. This process of altering a 

pair of positions is repeated n times. For example, if parent S = 1110401031, n =  1, p-\ = 4, 

P2 = 9 and m  =  2 then after mutation , the mutant will be 1112401011. It should be noted 

that mutation operation is applied A times on the current set of parents to yield A mutants.
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4.1.4 Recombination

We also applied a recombination operator on randomly selected pairs of parents. Recombi

nation aims to combine genetic materials from two parents and pass them on to the next 

generation, depending on the fitness of the parents. First, we generate a random integer 

ne[0, p] as the number of recombination operations to apply on the current population of /i 

parents. We then repeat the process of recombination n times, as follows:

Randomly select two parents Si and S2, randomly generate a binary string M  (we call 

’mask’) and construct the offsprings Ci and C2 in the following manner: at position p, C\p <— 

Sip and C2p S2p if Mp = 1, else Clp S2p and C2p <- Sip if Mp = 0. The following

example shows the recombination process.

51 =  1 1 0 2 0 1 0 3

52 =  2 0 1 0 3 1 0 1

M -  1 0 0 1 0 1 1 0

Ci =  1 0 1 2 3 1 0 1

C2 =  2 1 0 0 0 1 0 3  
We may need to correct a child C), if it is not valid, so as to satisfy the constraints discussed

earlier. In the example, Ci and C2 are invalid and thus will be corrected to make them valid.

4.1.5 ES Approach for Protein Threading

Figure 4.2 illustrates our ES approach for protein threading, called EST algorithm. The basic 

iteration of EST is shown in Figure 4.3. Starting from a random initial population U of p 

candidate solution, we create subsequent generations by recombining members of U and then 

create a set of M  of A mutatants from the set of R  of recombinants, and finally, the next p 

parents are selected from the best in R  and M. We also keep track of the best solution so far 

and preserve it across generations. The inner while-loop locally optimizes the current best 

solution in (R \ J M ) in order to escape a local optimum trap, and the best solution so far is 

updated only if it is weaker than the current best in R  and M.  Our method is elitist since
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• Given Q and T, create random population U — {U\, U z , U ^ }

• Evaluate (U)

• Bestso- far  <— best solution in U

• Repeat

-  R  =  {i?i, R 2...., R/j,} *— Recombine (U)
-  M  = {M1,M2,....,Mx} <- Mutate (U)
-  Evaluate (R(JM)
-  Current <— best solution in R  |J  M
-  i * -  0
-  While F(current) < F  (Best so-far)  and i < 10 Do

* C <— Mutate (Current)
* B <— Mutate (Best s o - fa r )
* Current <— best among C, B  and Current
* i <— i + 1

-  If F(Current) > F(Bestso-far)  Then
* Bestso- far  <— Current

-  U = {U\, U2, U f j , }  <— best solutions in R ( j  M  [j{Current, Bestso- far}

• Until stopping criteria attained

• Return Bestso- far

Figure 4.2: EST Algorithm.

the best solution in a current generation and the best solution so far are passed on the next 

generation.

4.2 Parallel ES for Protein  Threading

We propose two parallel evolution strategies for protein threading. The Single Query Single 

Template Parallel ES Threading (SQST-PEST) method threads one query against one tem

plate. The Single Query Multiple Templates Parallel ES Threading (SQMT-PEST) method 

threads one query against a set of templates. Both parallel approaches are implemented on
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Parents for 
generation, g

Recombination: 
Combination of 
genetic codes

-CorrectionRecombiiants

Mutation: 
Change in code

Descendants

-Evaluation, (RUM)  

-Local Optimization 

-Selection

delete

Parents for 
generation, g + i

l2211

Figure 4.3: Iteration of EST

grids architecture. The parallelization are based on master-slave architectures, that is, one 

processor, the master, is selected to distribute tasks among other processors, the slaves, which 

process their given tasks independently of each other. The master collects results from slaves 

and returns the best threading solution. The following sections discuss SQST-PEST and 

SQMT-PEST algorithms.

4.2.1 SQST-PEST Approach

Figure 4.4 shows the SQST-PEST algorithm for threading one query Q against one template 

T. Figure 4.5 visualizes the flow chart of SQST-PEST approach.

Given a query Q and a template T, the master processor creates an initial population 

U = { U i , ..., U/t} randomly. The master recombines and mutates U to produce a population of 

R recombinants and M mutants, and then distribute the set R 1J M  among p slave processors. 

Each slave, Sj(l  < j  < p) receives the global best-solution so far, along with its subset Pj 

from the master. S j  evaluates each solution in Pj ,  locally optimizes the current best solution 

in Pj ,  and returns its best solution so far to the master. The master collects each slave’s
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1. Master: Given Q and T

• Create random population U =  {Ui, ..., Utl}
• Bestso- far  <— Best solution in U
• Repeat

-  R = { R i , R tI) <— Recombination (U)
-  M  = {Mi, <— Mutate (U)
-  Split R { J M  into p sets Pi, ...Pp
-  Send Best so - fa r  and set Pj to slave Sj, 1 < j  < p
-  Receive Bestso- far  j, F{Pf) from Sj
-  Best so - fa r  <— Best of all Bestso- far  j , 1 < j  < p
-  U =  { U i , L f }  <— Best in (Jj=i pj U \J~?i{Best-SO-farj}

• Until stopping criteria reached
• Return Bes tso .far

2. Slave Sj\ Given Pj =  {[Jx, - JJ„ } and Bestso- far
P

• Evaluate (Pj)
• Current j <— Best in Pj
• i <— 0
• While F(Currentj) < F(Bestso-farj)  and i < 10 Do

-  Cj <— Mutate(Currentj)
-  Bj <— Mutate(Bestso-farj)
-  Currentj Best among Cj, Bj, Current j 
- i  = i+l

• If F(Currentj) > F(Bestso-farj)  Then
-  Bestso- farj  <— Currentj

• Send Bestso-farj ,  F(Pj) to Master

Figure 4.4: SQST-PEST Algorithm

best solution and the energy and fitness values of elements in Pj, called F(Pj). The master 

appropriately updates the global best-solution so far, and then selects the best p solutions 

from R \ J M  and each slave’s result to create a new set of parents U =  {Ui,.... t/M}. The 

master repeats the process of recombination, mutation and so on until our stopping criteria 

is attained. The stopping criteria is either a convergence (that is the global best solution is
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Initial Alignments, U
X

Recombination, R

; Mutation, M
Master

Split (RuM) and send each part 
to each slave with best so far

f  Evaluation &
Loca 
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C Sla
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No

Selection, U

Convergence

STOP

Figure 4.5: Flow chart of SQST-PEST

not improving much for some time) or a maximum number of generation. In SQST-PEST, 

the evaluation of the fj, +  A solutions in the current population is done in parallel. The 

slaves evaluate solutions and perform local optimizations independently of each other 

and in parallel. This approach allows to evolve very large population quickly, as the fitness 

evaluations and the local optimization are very computationally costly, and thus should be 

parallelized.

SQST-PEST can only thread one query against one template. We can thread against t 

templates by calling SQST-PEST t times within a loop, once for each template. This method 

is called serial SQST-PEST and can be used for threading single query onto multiple template.
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1. Master: Given Q and Ti,T2, ...,Tt

• Split {Tu ..., 7]} into p sets of T \ T 2, ...,TP
• Send Q and set Tj to slave Sj ,  1 < j  < p
•  O b ta in  best solution Bj  from each Sj

• Return Bestso- far  <— best in {B i ,B 2, ..., Bp}

2. Slave S f  Given Q and Tj = {T( ,7|'..T//p}

• Apply EST on inputs Q and T?, 1 < i < t /p
• Return the best solution so far to the master

Figure 4.6: SQMT-PEST Algorithm 

4.2.2 SQMT-PEST Approach

Q -  Query sequence
T j ... Tt-Template 

... Sp-Processors

T1... Tp-  Set of templates 
Bj ... Bp-  Best Alignment score

Figure 4.7: Visualization of SQMT-PEST

In order to efficiently thread a query Q against multiple templates 7}, T2, ...31, we can call 

SQST-PEST t times; each time with different template 7}, 1 < * < t. We propose another 

method, the Single Query Multiple Template Parallel ES Threading (SQMT-PEST) for doing 

fast multiple threading. Figure 4.6 shows the SQMT-PEST algorithm and the parallelization 

is visualized in Figure 4.7. In the algorithm, there are p slave processors and each slave Sj
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receives a distinct subset, Tj of templates from {T\, T2, along with the query (each

contain t /p  templates). A slave Sj will then proceed to apply EST algorithm t /p  times, each 

time with a distinct template from Tj . The master returns the best solution out of the best 

results obtained from the slaves.

The splitting of the set of templates into different slave processors distributes the load 

among the slave processors. Since t > p, each of the first (t mod p) slave processors take 

(f  + 1) numbers of templates. The rest of the processors take ~ templates each to make at 

best-possible even distribution of load. If (t mod p)=0, the load is equally distributed among 

the processors in respect of number of template. The splitting strategy is shown in Figure 

4.8:

• k = t mod p

• T* = 4p
• for i = l..p

-  If k > 0
* Ti = I + 1
* k = k — 1

— Send T® templates to slave processor, i

• End for

Figure 4.8: Splitting strategy in SQMT-PEST Algorithm

In this approach, each slave runs the EST algorithm f  times independently of other slaves 

and in parallel. This allows the possibility of threading a query against large template sets 

in reasonable time. Also, as a matter of future research, SQMT-PEST will run much faster 

if the slave use SQST-PEST in place of EST algorithm. Notice also that the slaves do not 

communicate with each other (and need not to) since they each solve distinct threading 

problems; the problems are distinct because the templates are distinct proteins with possibly 

distinct structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61 4.3 Complexity Analysis

4.3 C om plexity Analysis

The calculation of the fitness value is usually the most costly (in time and space) operation in 

evolutionary computation, as it involves decoding a solution’s representation and processing 

the solution in its original form in order to obtain its fitness. Given a query Q, a template T  

and a candidate solution vector S, the asymptotic complexity of the energy E(S) is 0 ( |T |2); 

since the computation of the Epair term is the most expensive and that the entry for each 

pair of positions (or amino acids) in T  is searched for in the two dimensional energy matrix 

of [11]. Both our mutation and recombination algorithms run in 0 (|T |) time each. In all our 

experiments, we use p < A (where A =  bp, b > 1) and A = a|T| (a > 0). This helps to define 

good upper bounds on our algorithm.

The main operations in our algorithms are identified as follows:

Recombination: The recombination needs to create a binary string random number (0, 

1) as ’mask’. Depending on the bits in binary string, it chooses the bit from either selected 

parents to create recombined individual. This operation is linear and it is applied on the 

length of the template structure, ITI, thus, the computation for each individual represents 

0(|T |). The recombination is applied only on the parents, which is consisted of p individuals. 

Thus the complexity of recombination is pO(\T\)

Mutation: The mutation involves choosing a random offset value and two random position 

in which the offset value is added to one position while the offset value will be subtracted from 

other position. Each offspring is generated with a random number of adding and subtracting 

offsets. The operation is linear and applied to the bits of the individual, thus the computation 

for each individual represents 0(|T |). In each generation, number of total mutants are A and 

thus the complexity of mutation operation is AO(|T|).

Fitness evaluation: The fitness evaluation involves pairwise energy computation. It in

volves to determine the energy from a certain position to all other positions in the place 

holder of the template structure using two dimensional energy matrix and distance as de

scribed in 5.1.1, and get the resultant energy for that certain position. Similarly, we need to
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determine the resultant energy for all other positions and total energy score is the sum of all 

those resultant energies for each position. Since the total position in a solution is \T\, the 

operation 0(\T\2) and since the evaluation is done for (p + A) individuals in a generation, 

total complexity for fitness evaluation is (p +  A)0(|T|2)

Choosing best so far: Choosing best so far involves comparing the fitness value of (p +  A) 

individuals and choose the best. Then it replaces the best so far (if better). Thus the 

complexity for choosing the best so far operation is 0(p  +  A) + 0(\T\)

Local optimization: Local optimization needs to do mutation of current and best so far, 

evaluate them and choose the best if improves. Since the operation involves fitness evaluation, 

so the complexity of this operation is 0 ( |T |2).

Choosing parents (p best): Choosing parents involve comparing fitness among (p + A) 

individuals and choose the p individuals to replace the old parents. Thus the complexity of 

this operation is pO(p + A) +  pO(\T\).

4.3.1 Complexity of EST

In a given generation, the evaluation of solutions and the local optimization contribute the 

most to the complexity of EST. Summing the complexities of all main operations, we obtain 

an asymptotic complexity of (p + A)0(|T|2) +  pO(p + A) =  ^ ^ O d T l3) since A = bp = a\T\, 

(a > 0 , b > 1).

4.3.2 Complexity of SQST-PEST

In a given operation, we must distinguish between computation time and communication 

time. Given p slaves, the master sends ^  + 1 solutions and receives the best current solution 

together with the evaluated fitness of +  1 solutions. Since the master communicates with 

a slave through a queue under MPI and that it takes O(T) time to send/ receive a solution, 

therefore, the communication complexity is l̂ O ( \ T \ )  =

The master’s computation includes recombination, mutation, and selecting best solution
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and next parents. This gives an asymptotic complexity of (p + A)0(|T|) +  pO(X) +  pO(p) = 

^ 0 ( | 7 f )  + § 0 ( |7 » .

A slave’s computation only includes evaluation and local optimization. Therefore, it runs 

in ^ 0 (|T |2) time, that is ^ O ( ^ ) .

In one generation of SQST-PEST, the local time is the sum of communication time and 

computation time. SQST-PEST runs in ^ 0 ( | T | 2) +  pO(X + p) = ^ 0 ( ^ )  +  fO(|T|p) 

time. The second term comes from the last statement in the repeat loop of the master. In that 

statement, we apply ’’multiple elitist strategy”, that is the best solution from all slaves are 

added to the current population and the best p current solutions will be used as next parents. 

Multiple-elitism adds a time overhead as p increases, however, such overhead can be avoided 

not applying multiple elitism. We can randomly replace a current solution by best-SO-far  and 

select p best solutions out of p. + A current solutions instead of p + A + p solutions. Somehow, 

SQST-PEST can improve EST in search by taking advantage of parallelism with the cost of 

having an extra time overhead, that is linear with p. If we disallow multiple elitism, then 

SQST-PEST will be p times faster strategy than EST, given p slaves.

4.3.3 Complexity of SQMT-PEST

Unlike in SQST-PEST, the slaves do all the work in SQMT-PEST. Each slave calls EST 

sequentially on Q and |  templates (t > p) and returns its best solution to the master. 

Therefore, a slave’s computation time is ^(p +  A)0(|T|2) +  | pO(p +  A) =  s^ O ( ^ - t ) .

The master’s computation time is 0(f) + O(p) + 0(|T |); its only task is to send/ receive 

data to / from slaves and find the best solution out of p results from slaves. The communication 

time is O(-yf). The time complexity of SQMT-PEST is therefore rÂ 0 ( ' ~ t )  + 0(p). Again, 

SQMT-PEST is p times faster than EST. Here the master does not repeat, so the overhead of 

0(p) time due to its last statement occurs only once. Although SQMT-PEST is cubic on \T\, 

it is also linear on t (the number of templates). The serial SQST-PEST (that is SQST-PEST 

is called sequentially on t  templates) has the same complexity as SQMT-PEST.
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Chapter 5

Experim ental Results and Discussion

In this chapter we will summarize the structure prediction performance of our ES threading 

method. In literature, several criteria is used to evaluate the performance of structure pre

diction. Since our research has focused only on alignment algorithm of protein threading, we 

decided to the following experiments with existing tightest scoring function available. 1. Self 

threading 2. Comparison with existing methods. Our all computational analysis are based 

on the score function of Bryant & Lawrence 1993 [11], because it has the highest convergence 

rate found (99.8%) [37]. The experiments in this chapter illustrate the promise and remaining 

challenges of protein threading algorithm. In our proposed method of threading, our objective 

is to determine the optimal alignment, not to test the scoring function.

1. Self threading:

Self threading is a method that determines how good the protein sequence finds it own 

structure using the protein threading algorithm. In self threading method, the sequence of 

the template structure is sent as an input of the query sequence for the protein threading to 

align onto its own structure. It illustrates the effects due to structural environment similarity 

and propagated pairwise interactions. Self-threading a sequence through its own structural 

model is an exercise in which alignment errors are explicit and certain behaviors expose very 

clearly. On the other hand, accurate self-threading across a library of diverse structure types 

is a challenging task for any current score functions. The determined alignment error to each

64
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secondary structures and comparing optimal energy with its native energy can help to assess 

the threading model.

2. Comparison with existing methods

The problem representation of our ES protein threading is based on the representation 

of Yadgari et. al. 2000 [88]. Several interesting problems arise when threading is applied 

to homologous extension modeling in cases where very little primary sequence similarity 

remains. These include hydrophobic mismatch, the presence of active site residues in unusual 

structural environments, and secondary structure length mismatch. The globins are a well 

studied case among other threading studies, in which a common structure has been conserved 

while the amino acid sequence has diverged to the point of unrecognizably between some 

family members [11] [69]. In such situations, we need to check how good protein threading 

can predict the structural similarity. Yadgai, 2000 published his data for protein threading of 

sequence and structure taken from homologous protein family. We compared our test results 

with those data presented by Yadgari 2000. Some data has been changed in Protein Data 

Bank and our test results are observed on present PDB database.

The strengths of our parallel methods are investigated using different experiments. We 

found parallel protein threading method in literature review, which is based on linear pro

gramming approach [89]. They used a parallel optimization tool, CPLEX software for protein 

threading. Although [89] used different energy function and approach as us, we have nev

ertheless compared our approach with [89] ’s on their data set. Yanev 2003 reported that 

the data set, they have used are large enough and never been attempted to test before for 

the lack of proper algorithm and computational power. We reported our parallel method to 

attempt for threading on such larger sequences and structures. We will present all details in 

the following sections.
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66 5.1 Implementation

5.1 Im plem entation

The protein threading algorithm was implemented in C++ programming language. The 

parallel implementation was done using Message Passing Interfaces (MPI). The program is 

interactive for different test conditions and allows for extensive experiments without changing 

codes. The data set, energy matrices and experiment files are organized in different folders.

5.1.1 Implementation of Fitness Function

Figure 5.1: Interaction diagram for Pairwise interaction between amino-acids

We have used the distance-specific pair-wise interaction potential values and hydrophobic 

energies from [11] for scoring the fitness of the alignment of the sequence onto the structure 

as described in 4.1.2. The method is outlined as: Given an alignment, its total energy (that 

the energy of its associated fold) is

Etotal Esingle T Epair + Egap,

where Esingie and Epair are computed from the energy matrices of [11], and Egap is the 

alignment gap penalty function which is set to 3 energy units. Etotai is a function of the

R

v
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67 5.1 Implementation

amino-acid type, the distance between amino-acids, the hydrophobicity of the amino-acids 

and the alignment gaps.

In a threading alignment, the residues of query sequence occupy the place-holders of the 

template structure. To determine the energy score for such an alignment, we need to follow 

the interaction diagram based on the distance between two place-holder position as shown in 

Figure 5.1. In the figure, Ci and C) are two segments on a protein sequence and amino acids 

are shown on it. The nearby amino acids have the interaction or repulsion between them 

depending on the types of amino acids and the distance in between them. The interaction 

diagram in Figure 5.1 has shown that the amino acid, D on the C« has the interaction with R 

and N. Similarly, R has interaction with D, N and G. On the other hand, G has interaction 

with R, N and V while V has interaction with only G. The total energy score is the sum 

of resultant interaction-score of each amino acids onto the template structure, such as D, R, 

N, G, V. This pairwise interaction depends on the distance between two amino acid. If the 

distance between two amino acid is more than 10 A, [11] assumes no interaction between 

them and the interaction is taken in the intervals of 0-5, >5-6, >6-7, >7-8, >8-9, >9-10A. 

The pair-wise potential is shown in Figure 5.2 and 5.3, and the hydrophobic potential which 

represents the singleton energy of the amino-acid as it occupies a certain position of the 

template structure is shown in Figure 5.4. All these energy tables are adopted from [11]. The 

total energy is the sum of pairwise and hydrophobic energy. The two different energy scores 

can be shown as follows:

Pair-wise Energy, Epair = Ei=o E^o,|*-j|>5Pair_wise Matrix Score (A*, Ajt dist(i, j)), 

Singleton Energy, Esingie = X^Jo,|j-j|>5 Hydrophobic Matrix Score (A*, dist(i,j))

where dist(i,j) =  Euclidean distance between et-carbon of position holder i to j  in the 

template. A* and Aj represents two amino acids occupied at position holder i and j.

The implementation details of energy function is as follows. The interaction potentials 

are read from the matrices and stored in a three dimensional array in which the first index 

represents the distance group and other two represents the indices of other interacting amino
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Figure 5.2: Distance dependant Pair-wise Potential score (adopted from [11])
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Figure 5.3: Distance dependant Pair-wise Potential score (adopted from [11])
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Figure 5.4: Singleton Energy score (adopted from [11])

acids. Similarly, the hydrophobic matrices are stored in two dimensional array where the 

first index represents the distance group and other one is the index of each amino acids. 

The alignment is represented as a string of integers. Thus the scoring of alignment was 

done by decoding the string of integers in the sequence of amino-acids and gaps. For each 

template structure, the atomic coordinates of amino acids are stored in a flat file database. 

The coordinates of alpha-carbon for each amino-acid is stored in a distance matrix. We used 

a parser to retrieve the coordinates from the PDB file. The distance between amino acids is 

the Euclidean distance between the corresponding alpha-carbon atom of amino acids. From 

each amino acid in the sequence we determine the distance of all other amino acids and group 

them in the distance intervals. Now based on the distance interval and amino-acid types, 

we can get the potential value. All other amino acids those are in contact of certain amino-
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acid in the alignment are counted to determine the potential energy in the same manner. 

The resultant of all those contact energies represents the contribution on energy score for a 

certain amino acid to hold that position. Similarly, summing up all resultant energies for each 

non-local position gives the energy score of that sequence-structure alignment. We did not 

consider the energy between neighboring (i.e. local in the sequence) residues. The rational is 

that neighboring residues will always be in contact (i.e. the physical distance between them 

is small) and thus they will have the same contribution to the total energy independent on 

the fold they are in. The nonlocal pairwise interactions omits the contacts between residues 

whose sequence indices differ by less than 5 as the consideration is taken in [11] [88]. The 

energy score determined for the alignment is used to calculate the fitness of that alignment 

as described in 4.1.2.

5.1.2 Implementation of ES

The implementation of evolution strategy starts with implementing the problem represen

tation and it includes to create a set of initial parents. Mutation as discussed in 4.1.3 and 

recombination as discussed in 4.1.4 are implemented to generate the population for the next 

generation. The fitness of each individual in the population is determined as described in 

5.1.1 and 4.1.2 The parents for the next generation are chosen as the principle of (p + A) - 

ES as described in 2.4.

5.1.3 Implementation of Parallel Architecture

The two architectures for singleton threading and multiple threading is implemented as de

scribed in chapter 4. The program is coded in C-H- and Message Passing Interfaces (MPI) 

functions are used to send the jobs in different processors and receive back the results in 

master-slave architecture as described in 4.2.
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5.2 Experim ental Environment

The environment of the implementation is used as the SHARCnet (Shared Hierarchical Aca

demic Research C om puting Network, h ttp ://w w w .sh a rcn e t.c a /). T he SHARCNet is an  High 

Performance Computing (HPC) platform that spans 11 leading academic institutions in South 

Central Ontario and exists to support leading-edge research. The set up of our programming 

environment is based on the one of SHARCNet systems, called Tiger located at University of 

Windsor. The system specification is as follows:

Compaq Alpha ES40 8 x 833 MHz,

4 GB memory,

Gigabit Ethernet With Fiber Patch network.

The system is ideal for serial/ parallel MPI code development and large computation. But 

since the SHARCNet did not marge yet in the grid architecture, we are limited to use only 8 

processors of Tiger. All our experiments are done in above environment and results are based 

on that.

5.3 Experim ental D ata Set

The experimental data set is taken as the real biological data from PDB (Protein Data 

Bank, http://www.rcsb.org/pdb/), maintained by the Research Collaboratory for Structural 

Bioinformatics (RCSB), and managed by Rutgers, The State University of New Jersey and the 

San Diego Supercomputer Center (SDSC), University of California, San Diego (UCSD). This 

database can be accessed at http://www.rcsb.org/pdb/. The PDB is the biggest database 

for protein sequence and structural data. Each protein can be accessed in the PDB using the 

pdb id of that protein. The sequence of amino acids, secondary structures of protein such as 

cc-helix, /3-sheet and loops, and atomic coordinates can be accessed in the .pdb formatted file. 

BioPerl parser or any other self defined parser can be used to extract the coordinate data. 

The sequence can be downloaded directly in fasta format.
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The potential matrices and hydrophobic potential matrices are given in Bryant and 

Lawrence, 1993 [11].

5.4 R esults and D iscussion

The most important criterion for a threading algorithm is that it should be good enough 

to discriminate a query’s structure from the other structures from the set of templates. To 

evaluate the performance of our algorithm, we first applied self-threading with EST and 

SQST-PEST to see if it returns the correct answer for a given query Q and its own template 

T  (that T  is Q with its structure information). In self-threading, the energy of T  is called 

native energy, Enatvue, and can be obtained from the energy matrices of [11] given Q. We 

compared the native energy of proteins with the optimal energy found by self threading. EST 

determines a (near-)optimal energy, Ethr for given Q and its template T.

Yanev 2003 [89] used a parallel approach for protein threading. Although [89] used different 

energy function as us, we have nevertheless compared our approach with [89] ’s on their data 

set. Yanev 2003 reported that the data set, they have used, are large enough and have never 

been attempted before due to slow computation.

Next, we tested the performances of SQST-PEST and SQMT-PEST. We did experiments 

both on running times and quality of threading, for each parallel algorithm. Furthermore, we 

compared serial SQST-PEST and SQMT-PEST on quality of threading and times. In serial 

SQST-PEST, given Q, a set of t templates, we call SQST-PEST t times to thread Q against 

each template.

5.4.1 System Parameters

The evolution strategy, that we used, falls in the category of (p +  A)-ES. The parameters p 

is the number of parents for each generation and A is the total number of mutants in each 

generation, p and A are set according to the length of a given template, that is |T|. We
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Figure 5.5: EST vs. SQST-PEST as A increases as a fraction of |T| on threading lgal(583)- 
lad3_a(452)
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Figure 5.6: SQMT vs. serial SQST-PEST as A increases as fraction of |T| on query lbbh_a - 
templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291)

used n as |  and performed the experiment for varying number of mutants as fraction of |T| 

(i.e., A as .., 2|T|) for 1000 generation. We did the same experiment for all our EST,
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SQST-PEST, SQMT-PEST and serial SQST-PEST. EST and SQST-PEST were applied on 

one of the largest threading lgal(583)-lad3_a(452). SQMT-PEST and serial SQST-PEST 

were experimented on query lbbh_a - templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), 

leca(136), lapa(261), lcca(291). The threaded energy and computation time is plotted in 

respect of number of A (i.e., as a fraction of |T|). The experimental result is shown in Figure 

5.5 and Figure 5.6. For the parallel methods, we used all 8 processors. All EST, SQST-PEST, 

SQMT-PEST and serial SQST-PEST show that the computational time increases linearly for 

increasing number of A. The threaded quality for each experiment yields with better result 

(decreases) as the number of A increases. The result also shows clearly that the better value of 

threaded energy is obtained at A > \T\ and the threaded energy does not change significantly 

as the A exceeds |T|. At the larger A (A > |T|), the computational time increases without 

improving on the threaded energy. Based on this observation, we consider A=|T| and based on 

that we used ( f l  +  |T|)-ES for all of our EST, SQST-PEST, SQMT-PEST and serial-SQST. 

The number of generations in each experiment is 1000. In all our experiments, we run our 

algorithm 5 times and give the average result of 5 runs as well as the standard deviation. All 

times are reported in minute, Ethr in the table are the energy value.

5.4.2 Experiments with EST

We used EST algorithm to compare its experimental results with existing method. We also 

performed self-threading to determine the strength of the algorithm. The experiment used 

parents, \T\ mutants for 1000 generation. The experimental results are shown as follows:

Threading Comparison W ith Existing Methods

Table 5.2 and 5.1 compare the results between our EST and the GA method of [88], on 

the same protein tested in [88]. For a given query and template, we show energy score and 

the threading time of GA and EST. It should be noted that [88] used 1000 generations and 

a population size of 300 solutions for their GA. EST outperformed GA on all inputs: it
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gave the lowest energy and fastest time. The comparison is shown as Ee% ^ ^ iar% x 100 and 

Tyadgan-Test x ^qq rpĵ -g motivates that the elitist selection of ES algorithm and our algorithm
J- y a d g a r i

for mutation and recombination are well-adopted for threading problem.

The results of our EST without and with recombination are also reported in the Table 5.1 

and 5.2 respectively. The experimental result shows that EST with recombination gives the 

better quality of threading although it increases in computation time than that of without 

recombination. The recombination operator combines the genetic materials of two different 

individuals and transfers the genetic information to the offsprings. The matter of fact that 

the recombination operator in our algorithm is applied on the parents and only the better 

individuals in a generation (elitist selection) are chosen as parents for the next generation. 

Thus it combines the genetic information of two better individuals and it is expected that 

better parents may recombine to better offsprings. The well adopted recombination performs 

better in evolutionary computation and the result showed that our recombination fits well for

Table 5.1: EST vs. GA Threading [88] without recombination
Query

(Length)
Template
(Length)

Yadgari 2000 EST without recomb
Ethr Time Dfhr Comp. Time Comp

lbbh(131) 2ccy(128) -175 29 -173.1±4.3 -0 .6% 18.3±3.1 36.9%
lash(147) lcca(291) -111 33 -121.2±4.1 9.2% 32.2±3.3 2.4%
2pfl(156) lkdu(85) -94 13 -91.2±4.9 -3.0% 9.2 ±2.5 29.2%
2rhe(114) ltlk(103) -122 20 -109.5±4.4 -10.2% 11.1±2.5 44.5%
lccr(112) 451c(82) -37 14 -39.5±4.6 6 .8% 8.1±1.9 42.1%
lrtc(268) lapa(261) -491 120 -479.5±5.1 -2.3% 77.5±4.1 35.4%

Table 5.2: EST vs. GA Threading [88] with recombination
Query Template Yadgari 2000 EST without recomb

(Length) (Length) Ethr Time Ethr Comp. Time Comp
lbbh(131) 2ccy(128) -175 29 -191.5±3.8 9.1% 22.5±2.9 22.41%
lash(147) lcca(291) -111 33 -165.2±4.1 48.8% 36.1±3.3 -9.4%
2pfl(156) lkdu(85) -94 13 -121.4±3.9 29.1% 11.3 ±2.7 1.3%
2rhe(114) ltlk(103) -122 20 -141.5±4.1 15.98% 14.3±2.5 28.5%
lccr(112) 451c(82) -37 14 -56.1±4.1 51.6% 10.3±2.1 26.4%
lrtc(268) lapa(261) -491 120 -513.2±5.1 -4.48% 83.5±4.2 30.4%
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this threading problem. We have determined the effect of recombination operator in all our 

experiments with EST, SQST-PEST and SQMT-PEST.

Self Threading

To evaluate the performance of our algorithm, we applied self-threading with EST to see if it 

returns the correct answer for a given query Q and its own template T  (that T  is O with its 

structure information). In self-threading, the energy of T  is called native energy, Enative, and 

can be obtained from the energy matrices of [11] for given Q. We compared the native energy 

of proteins with the optimal energy found by self threading. EST determines a (near-)optimal 

energy, Ethr for given Q and its template T.

Table 5.3 shows the results of self-threading with EST. A given row shows the native energy 

{Enative) of a query and the actual lowest energy (E thr ) obtained by threading the query against 

itself, and the accuracy of EST. For a given sequence, the self threading accuracy is calculated 

as (1 — IEthE~auv?m I) x *s 100% accurate when (E thr) = {E nauve)- The table shows

the self-threading result with EST. The protein lcca yields less than 100% accuracy, although 

EST actually gave an energy lower than EnaUve. EnaUve should be < Ethr bat our result 

shows that Ethr < Enative for lcca protein. This is an exceptional behavior of protein that 

shows that some proteins may not always in global minimum energy in respect of the energy 

matrices. The experimental result shows that the proteins larger than 400 amino-acids could 

not find the own template in self threading. Thus, we recommend that our present algorithm 

for EST should be limited to use in threading for the protein that has length of less than 

400. The effect of recombination is found in lcem(363) where without recombination, the 

query could not find the template, but it found the template with recombination. All in all, 

the result show that EST is very accurate and can be trusted for threading proteins against 

non-self templates.
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Tab e 5.3: Self threading with EST
Sequence
(Length)

Enative EST with recomb EST wout recomb
Ethr Result Time Ethr Result Time

lkdu(85) -14.9 -14.9 100% 10.1 -14.9 100% 8.7
ltlk(122) -139.5 -139.5 100% 13.6 -139.5 100% 11.8

2ccyA(128) -79.2 -79.2 100% 21.1 -79.2 100% 18.1
lapa(261) -122.2 -122.2 100% 78.3 -122.2 100% 73.2
lcca(292) -119.9 -124.5 96.2% 86.3 -124.5 96.2% 79.5
lcem(363) -199.2 -199.2 100% 110.2 -193.5 97.1% 100.1
lgpl(432) -211.3 -211.3 100% 129.5 -203.8 96.4% 116.6
3grs(478) -176.1 -173.4 98.5% 139.1 -167.1 94.8% 123.5

5.4.3 Experiments with SQST-PEST

The SQST-PEST aims to thread on the larger protein sequences and templates with better 

time and threading quality. The strength of SQST-PEST has been tested using self threading 

with the larger proteins found in PDB. We also did the experiments with SQST-PEST for 

large threading examples reported in [89]. The performance of SQST-PEST on different 

number of processors are also reported.

Self-threading with SQST-PEST

The SQST-PEST has been applied on the larger protein where our EST failed to find the own 

template in self-threading examples. We have used 8 processors for all these experiments and 

the result is shown in Table 5.4. The experimental result shows that SQST-PEST successfully 

finds the native structure in self threading where some proteins (larger than 400 sequence- 

length) failed in EST. As it can be noticed that our algorithm for SQST-PEST described in 

5.7 uses the local optimization for the current best result in each slave processors. Then the 

current best from each slave processor is sent to the master processor where all the current 

bests are compared and finally updates the global best. Thus the parallelization of expensive 

fitness function and local optimization in each slave processor empowered SQST-PEST to 

successfully find the own template for the larger protein as large as of 700 sequence-length in
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an affordable time. Our other experiments indicate that using of more slave processors for 

larger protein may exceed this limit of size of protein and will yield with better threading 

quality as well as computation time.

Table 5.4: Self threading with SQST-PEST
Sequence Enative EST with recomb EST wout recomb
(Length) Ethr Result Time Ethr Result Time

lcem(363) -199.2 -199.2 100% 31.4 -199.2 100% 27.8
lgpl(432) -211.3 -211.3 100% 38.5 -211.3 100% 33.6
3grs(478) -176.1 -176.1 100% 41.1 -176.1 100% 37.5
lgal(583) -231.1 -231.1 100% 52.6 -231.1 100% 47.1

lw63_A(618) -273.2 -273.2 100% 58.1 -273.2 100% 51.6
101g_A(722) -366.8 -366.8 100% 68.3 -359.6 98.1% 61.1

lmvw_A(840) -311.9 -298.7 95.7% 81.2 -291.6 93.49% 69.7

Results of SQST-PEST for Large Proteins

Table 5.5: SQST-PEST vs. Yanev [89] without recombination
Query Template # o f

proc.
Yanev
Time

SQST wout recomb
(Length) (Length) Ethr Time Comparison

2bmh(455) lcem(363) 4 11.6 -298.1±5.1 18.3±2.1 -57.8%
3min(522) lgpl(432) 4 13.3 -392.2T4.7 22.2±3.1 -66.9%
2cyp(294) 3grs(478) 5 34.2 -251.3T4.2 21.1 ±2.5 38.3%
lgal(583) lad3_a(452) 5 43.2 -212.5±4.5 23.2±3.1 46.3%

Table 5.6: SQST-PEST vs. Yanev [89] with recombination
Query

(Length)
Template
(Length)

# o f
proc.

Yanev
Time

SQST with recomb
Ethr Time Comparison

2bmh(455) lcem(363) 4 11.6 -323.5±3.3 23.2±1.8 -100%
3min(522) lgpl(432) 4 13.3 -419.1±3.8 29.5±2.1 -121.8%
2cyp(294) 3grs(478) 5 34.2 -271.3±3.5 26.3±3.1 23.1%
lgal(583) lad3_a(452) 5 43.2 -228.2±3.4 31.4±2.9 27.3%

We compare SQST-PEST with the approach discussed in [89]. Yanev [89] implemented a 

parallel linear programming approach for protein threading on some large proteins. However,
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Yanev used different energy function and different approach than SQST-PEST; so we can only 

compare threading times to see how affordable is our computation time. Table 5.5 and 5.6 

shows the performance of SQST-PEST with and without recombination on the proteins used 

in [891. The comparison is made as T/an^-T^ x ^qq SQST-PEST gave results comparable
L J J -y a n e v

to Yanev’s; sometimes they are better though some others are worse. Notice also that we 

achieved better times than Yanev on its two hardest pairs of query-template’s (see last two 

rows).

Performance of SQST-PEST

7D - W ith re comb. 

Without recomb.60 -

5 [i -

3D -

20  -

Nun be r of Slave P rocessors

Figure 5.7: Performance of SQST-PEST on lgal(583)-lad3_a(452) as p increases.

Next we reported the performance of SQST-PEST on the hardest pair of query and tem

plate used in [89] (see the last row of table 5.6), as the number of slave processors increases 

from 1 to 7. The pair is (lgal, lad3_a) and was the hardest threading task in [89]. Figure 5.7 

shows the performance in time of threading the query lgal against the template lad3_a with 

and without recombination as the number of slave increases. This is consistent with the time 

complexity of SQST-PEST. Table 5.7 shows the performance in energy for the same input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81 5.4 Results and Discussion

Table 5.7: Performance of SQST-PEST on lgal(583)-lad3_a(452) as p increases.
#  of proc. SQST with recomb SQST without recomb

Ethr Time Ethr Time
2 -216.8T3.8 70.5±1.9 -196.1T4.4 64.4T2.1
3 -220.1T4.1 48.5±2.1 -202.4T3.4 42.1±1.8
4 -224.2±3.9 36.4±2.9 -206.1T4.6 30.6T2.6
5 -228.2±3.4 31.4±2.7 -211.6T3.4 25.3T2.3
6 -232.6T4.1 28.5T1.9 -215.5±4.1 23.8±1.8
7 -233.3T3.3 25.4T1.8 -219.9T3.8 20.6T 2.1
8 -234.8±3.4 23.6T1.6 -221.5T4.3 18.1T1.9

pair as we add more slaves. As one can see adding more slaves yields better energy. This 

is due to the improved search strategy of SQST-PEST given more slaves. We also reported 

the results of SQST-PEST with and without recombination in Figure 5.7 and in Table 5.7. 

The effect of recombination improved the quality in SQST-PEST but did not have effect on 

time and energy in increasing the number of slaves. This also complies with our SQST-PEST 

algorithm since the algorithm does the recombination operation in the master processor.

300

SQMT wthnecomb. 
SQMT wtfout recomb.250

200

150

100

Nunber of slave processors

Figure 5.8: Performance of SQMT-PEST (with and without recombination) on query lbbh_a 
- templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) asp  
increases.
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5.4.4 Experiments with SQMT-PEST

The SQMT-PEST aims to thread single query with Multiple templates. We tested SQMT- 

PEST on query lbbh_a with 7 different templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), 

leca(136), lapa(261), lcca(291) with different number of slave processors. The performance 

in time of SQMT-PEST with and without recombination is, shown in Figure 5.8 in terms of 

computing time with varying number of slave processors. The execution time of SQMT-PEST 

depends on the size of the largest template. Recall that each slave calls EST many times and 

sequentially on number of input templates. Thus some slaves will work harder (run longer) 

than other slaves, and the slave that receives the largest template or set of larger proteins will 

run the longest. SQMT-PEST can be well benefited if each slave processes the same number 

of templates, that if t mod p = 0 and well distributed with the length of proteins.

Table 5.8: Performance of SQMT-PEST on query lbbh_a - templates 451c(82), lkdu(85), 
ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) as p increases.________________

#  of proc. SQMT with recomb SQMT without recomb.
Best-fit Template: Ethr Time Best-fit Template: Ethr Time

2 2ccy_a: -191.5±3.5 273.2±2.8 2ccy_a: -176.1±4.1 233.1T2.2
3 2ccy_a: -192.1T3.7 197.8T3.1 2ccy_a: -176.8T3.9 163.7T2.4
4 2ccy_a: -192.4±4.1 144.7±2.6 2ccy_a: -177.1±3.9 118.4±2.6
5 2ccy_a: -191.5±4.5 112.7±2.9 2ccy_a: -177.5±4.5 100.5T1.9
6 2ccy_a: -192.8±4.1 100.2± 2.1 2ccy.a: -177.2±4.1 94.3±2.1
7 2ccy_a: -193.2T4.1 96.5±2.9 2ccy_a: -178.2±4.2 90.2T2.7
8 2ccy_a: -193.5±3.6 91.7±3.5 2ccy.a: -178.5±3.6 87.3±2.9

Table 5.8 shows the energy results of SQMT-PEST on the same data set, and for each 

value of p. It returned the same best-fit template without significant improving of energy 

values. It also complies with the algorithm since, in SQMT-PEST, each slave performs the 

same EST for the templates sent by the master but slaves are working independently. The 

experimental result shows that the effect of recombination in SQMT-PEST gives better quality 

in threading but does not affect on varying number of processors. But the computation time 

with recombination takes longer compare to without recombination if less number of slaves
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are used. This is because the recombination is done in slave processors in SQMT-PEST.

5.4.5 Comparisons between SQMT-PEST and Serial SQST-PEST

_________ Table 5.9: Serial SQST-PEST vs. SQMT-PEST with 7 slaves_________
Query

(Length)
Template
(Length)

SQMT-PEST Serial SQST-PEST
Ethr Time Ethr Comp. Time Comp.

lbbh_a 2ccy_a(128) -193.5±4.1 91.7 -215.3±3.6 11.3% 63.9 30.3%
(131) lapa(261) -183.2±3.2 ±3.5 -194.2±3.1 5.8% ±3.1

lcca(291) -164.4±3.8 -172.1±3.6 4.7%
lkdu(85) -134.1±3.4 -145.3±3.8 8.4%
ltlk(l03) -131.2±3.3 -136.5±3.3 4.1%
451c(82) -129.1±3.2 -137.2±4.1 6.3%
leca(136) -116.6±3.1 122.1±4.1 4.7%

SQST-PEST can only thread one query against one template. We can thread against t 

templates by calling SQST-PEST t times within a loop, once for each template. We com

pared the performances of serial SQST-PEST and SQMT-PEST on the same data set as in 

the previous section. We returned the threading result on query lbbh_a with 7 different tem

plates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) for both 

methods. Table 5.9 shows the results of both algorithms with 7 slave processors for threading 

protein lbbh_a against 7 different templates. The threading quality in serial SQST-PEST is 

better in all 7 threading compare to SQMT-PEST. Again serial SQST-PEST is faster than 

SQMT-PEST. The comparison of threaded energy and time is shown as x 100

and Tsq™~^“aqst x 100 respectively. In serial SQST-PEST, since we are using SQST-PEST 

to thread onto each of the template structures, each threading is done on 7 different slave 

processors. This facilitates serial SQST-PEST to use the power of better local optimization 

in each of 7 slave processors (as SQST-PEST algorithm) and that’s the reason it outperforms 

SQMT-PEST which allows to perform EST in each slave processor only.

In the set of template structures all templates are of different length and this causes 

unbalance in SQMT-PEST since we do not split the structure information in different slave
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processors (i. e., we send one structure to a slave). In SQMT-PEST, the slave with the largest 

protein will work longer than other slave processors. On the other hand, in serial SQST-PEST, 

it performs the expensive fitness evaluation simultaneously in different slave processors. The 

splitting of offsprings for each generation is better balanced than SQMT-PEST. It contributes 

on running SQMT-PEST slower than serial SQST-PEST.

300

250  - SQMT-PEST 
Serial SQST-PEST

c

150 -

i -  1 DO ■

0 1 2 3 4 5 6 7 8

Number of slave processors

Figure 5.9: Serial SQST-PEST vs. SQMT-PEST as p increases

Table 5.10: Serial SQST-PEST vs. SQMT-PEST as p increases
#  of processors Best-fit Template: Ethr

SQMT-PEST Serial SQST-PEST Comparison
2 2ccy_a: -191.5±3.5 2ccy_a: -191.6±3.8 .05%
3 2ccy_a: -192.1±3.7 2ccy_a: -198.1 ±4.1 3.12%
4 2ccy_a: -192.4±4.1 2ccy_a: -204.3±3.3 6 .2%
5 2ccy_a: -191.5±4.5 2ccy_a: -210.1±3.1 9.7%
6 2ccy_a: -192.8±4.1 2ccy_a: -212.6±4.1 10.3%
7 2ccy_a: -193.2±4.1 2ccy_a: -214.1±3.6 10.8%
8 2ccy_a: -193.5±3.6 2ccy_a: -215.3±3.6 11.2%

Figure 5.9 shows the performance in time of both algorithms as the number of slave 

increases from 1 to 7. Although serial SQST-PEST is faster than SQMT-PEST for all values
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of p, both algorithms suffer the load imbalance problem. In serial SQST-PEST, the unbalance 

happen when p does not divide (p +  A) and thus some slaves work larger than other slaves; 

therefore, for two consecutive values of p, the reduction in running time is small, we can take 

a better advantage of SQST-PEST if (p +  A) mod p = 0 and t mod p = 0. In SQMT-PEST, 

the different sizes of the template structures is also a concern. The slave with the largest 

protein or with a set larger proteins will cause unbalance in SQMT-PEST and work longer 

than other slave processors. That’s one of the reason that serial SQST-PEST performs faster 

for all values of slave processors, p.

Table 5.10 show the predicted structure for each value of p on the same data set for both 

algorithm; they both returned the same structure prediction with serial SQST-PEST giving 

better energy values. It also clearly noticeable that as p increases, the threading quality is 

increasing with serial SQST-PEST while SQMT-PEST did not have significant change in 

energy value. This is the same reason as SQST-PEST performs better quality than EST.
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Chapter 6

Conclusion and Future Directions

6.1 Sum mary of Work Done

The evolutionary strategy, applied on protein threading involves several aspects: problem rep

resentation, designing efficient genetic operators such as mutation and recombination, using 

the fitness criteria based on the energy function that evaluates the individuals for surviving 

in the next generation. We proposed an evolutionary strategy of (/j, +  A)-ES and implemented 

the ES threading method. Our system parameters in protein threading and ES with our 

proposed recombination performed better in the quality of result and in computational time 

than similar approaches involved in literature review. The proposed ES with recombination 

performed better in threaded energy though its execution is slower than without recombina

tion. The experiments with self-threading show the strength of our algorithm both for EST 

and SQST-PEST.

Since protein threading involves large sequential computation and repeating the same 

operation with a large number of different data sets without further communication, it is 

well suited for parallel computation. We proposed and implemented two different methods 

of parallelization and both of them contributed in reduction of large sequential time for 

protein threading. Our method, SQMT-PEST is adopted for involving protein threading in 

structure prediction, where it needs to thread the query sequence with multiple structures in

86
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the template database. On the other hand, SQST-PEST facilitates to attempt in threading 

large sequences, which were rarely been attempted before due to lack of a suitable algorithm 

and lack of computational power.

The experiments illustrate that both SQST-PEST and SQMT-PEST reduce large com

putation time. To facilitate the SQST-PEST method in structure prediction, we used SQST- 

PEST to run in serial with multiple structures. The method performed better than the 

SQMT-PEST method that splits different templates in different processors.

Though what we have shown are some crude experiments, they are sufficient to indicate 

that our method of protein threading can be well suited for structure prediction.

6.2 Lim itation and Future Work

The results that we have presented, indicate that evolutionary strategy is a promising ap

proach to the protein threading problem. Although the threading shown here may not be 

guaranteed to find optimal and consistently good results since the problem is very compli

cated and search space is huge. But the algorithm consistently finds the better score than 

structural alignment and the genetic algorithm based method proposed in [88]. It also consis

tently finds the structure in self threading for certain lengths of templates. Since we have used 

evolutionary strategy instead of genetic algorithm, the strategy for overcoming local optima 

is a concern. Our strategy of using local method explained in 4.1.5 performed better when 

attacking local optima.

Choosing mutation offset to be part of the length of sequence (Q/4) gives the diversity 

of descendants and hunts for possible solutions. We plan to continue investigating on the 

mutation offset, other mutation operations and use of some other suitable recombination 

operation for generating descendants more efficiently.

The parallelization technique we have developed, is suitable for attacking large sequential 

computations of database search in the protein threading problem. We are aware of the fact 

that threading a large sequence with large structure is still a computational challenge both
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for correctness and time. There are some large data sets of protein sequence which are never 

been attempted. The evolutionary strategy, by nature is well suited to parallel computation 

of criteria evaluation and our SQST-PEST performed better in that respect. The multiple 

local optimization in SQST-PEST showed significant improvement in searching for the best 

alignment. Thus, we can test our SQST-PEST program in greater number of processors for 

larger queries and template structures.

Our future plan is to combine SQMT-PEST and SQST-PEST with an efficient parallel 

program so that while the program simultaneously does the threading with multiple struc

tures, the threading of query with a structure will also be done simultaneously in parallel 

processors (i. e. each slave of SQMT-PEST will run a SQST-PEST instead of EST). This 

may contribute to a larger reduction of time to overall protein-threading-based structure 

prediction.

Load balancing in the slave processors is a concern for the performance of parallel com

puting. The fact of serial SQST-PEST and SQMT-PEST is that they are having with similar 

complexity but serial SQST-PEST runs faster. One of the reason behind that is because 

of load balancing. This also opens up the issue of future research. A template database of 

equal-size of structures can be used to see the performance of SQMT-PEST and serial SQST- 

PEST. Load balancing in parallel methods can be improved by sending work on demand to 

idle processors.

The ES threading and its parallel techniques can be extended further for future research 

in protein folding and some other protein structure prediction methods. Heuristics may be 

used to generate initial parents for efficient searching in protein threading. By extending 

this threading concept with partially determined X-ray/ NMR data may improve structure 

prediction. Solution obtained from ES threading could be a good starting point of ab-initio 

method. We can improve the parallelization methods using some hybrid approaches.
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