
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Parallel evolution strategy for protein threading. Parallel evolution strategy for protein threading.

Md. Rafiqul Islam
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Islam, Md. Rafiqul, "Parallel evolution strategy for protein threading." (2005). Electronic Theses and
Dissertations. 2990.
https://scholar.uwindsor.ca/etd/2990

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2990?utm_source=scholar.uwindsor.ca%2Fetd%2F2990&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Parallel Evolution Strategy for Protein Threading

By

Md. Rafiqul Islam

A Thesis
subm itted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfilment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2005

© 2005, Rafiqul Islam

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09831-7
Our file Notre reference
ISBN: 0-494-09831-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ O T I S ' S

Abstract

A protein-sequence folds into a specific shape in order to function in its aqueous state. If

the primary sequence of a protein is given, what is its three dimensional structure? This

is a long-standing problem in the field of molecular biology and it has large implication to

drug design and cure. Among several proposed approaches, protein threading represents one

of the most promising technique. The protein threading problem (PTP) is the problem of

determining the three-dimensional structure of a given but arbitrary protein sequence from a

set of known structures of other proteins. This problem is known to be NP-hard and current

computational approaches to threading are time-consuming and data-intensive. In this thesis,

we proposed an evolution strategy (ES) based approach for protein threading (EST).

We also developed two parallel approaches for the PTP problem and both are paralleliza-

tions of our novel EST. The first method, we call SQST-PEST (Single Query Single Template

Parallel EST) threads a single query against a single template. We use ES to find the best

alignment between the query and the template, and ES is parallelized. The second method,

we call SQMT-PEST (Single Query Multiple Templates Parallel EST) to allow for threading

a single query against multiple templates within reasonable time. We obtained better results

than current comparable approaches, as well as significant reduction in execution time.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to give my gratitude to all who gave me the possibility to fulfill this thesis. First

of all, I wish to express my deepest sense of gratitude to my advisor Dr. Alioune Ngom

for his guidance, encouragement, support and inspiring idea of this thesis. His instructions,

comments and other assistances in preparing this thesis is invaluable. His influence pervades

this thesis. I owe him lots of gratitude for having me shown the way of research.

I would like to thank to my committee members Dr. Majid Ahmadi, Dr. Luis Rueda and

Dr. Jianguo Lu for their constructive criticism, valuable suggestions, technical assistance and

referring through the course of this thesis.

My greatest appreciation is expressed to my family for their enduring love, encouragement,

and support along the long way, without which I would be too weak to do anything.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iii

Acknowledgments iv

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation... 1

1.2 Challenges... 3

1.3 G o a l .. 5

1.4 Problem S tatem ent.. 5

1.5 Contribution and Results... 6

1.6 Organization ... 7

2 Background 9

2.1 Protein S tructu re ... 9

2.1.1 Amino Acids ... 10

2.1.2 Factors Determining Protein Structures.. 14

2.2 Structure Prediction M ethods.. 15

2.2.1 Computational M eth o d s... 15

2.2.2 Success of Methods in P red ic tio n .. 17

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Protein Threading ... 17

2.3.1 Components of Protein Threading... 18

2.3.2 Computational Complexity... 22

2.3.3 Energy Function .. 23

2.4 Evolution S tra te g y .. 24

2.5 Parallel Com puting.. 26

2.5.1 Parallel A rchitecture.. 26

2.5.2 Message Passing in Parallel A rchitecture... 27

2.5.3 Parallel Implementations in Bioinformatics.. 27

3 Related Study 29

3.1 Survey on Protein Threading Algorithm ... 29

3.1.1 Exact A lg o rith m ... 30

3.1.2 Approximation A lgorithm .. 36

3.2 EA in Protein Threading.. 44

3.3 Parallel Approaches in Protein Threading ... 46

3.4 Limitation of the Existing M ethods.. 47

4 Proposed M ethod 49

4.1 Proposed ES Approach... 49

4.1.1 Problem Representation... 49

4.1.2 Fitness Function ... 51

4.1.3 Mutation ... 53

4.1.4 Recombination .. 54

4.1.5 ES Approach for Protein Threading... 54

4.2 Parallel ES for Protein Threading... 55

4.2.1 SQST-PEST Approach.. 56

4.2.2 SQMT-PEST A p p ro ach ... 59

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Complexity A n a ly sis .. 61

4.3.1 Complexity of E S T .. 62

4.3.2 Complexity of SQ S T -P E ST ... 62

4.3.3 Complexity of SQM T-PEST... 63

5 Experimental Results and Discussion 64

5.1 Implementation.. 66

5.1.1 Implementation of Fitness Function... 66

5.1.2 Implementation of ES .. 71

5.1.3 Implementation of Parallel Architecture .. 71

5.2 Experimental Environment.. 72

5.3 Experimental Data S e t .. 72

5.4 Results and Discussion.. 73

5.4.1 System Param eters.. 73

5.4.2 Experiments with E S T .. 75

5.4.3 Experiments with SQ S T -P E ST ... 78

5.4.4 Experiments with SQM T-PEST... 82

5.4.5 Comparisons between SQMT-PEST and Serial SQ ST-PEST........... 83

6 Conclusion and Future Directions 86

6.1 Summary of Work D o n e ... 86

6.2 Limitation and Future W ork ... 87

Bibliography 89

Vita Auctoris 100

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Structure of an amino acid (taken from [76]).. 10

2.2 Sequence of amino-acids forms a polypeptide (taken from [76])........................... 11

2.3 Primary structure of protein is simply the order of its amino acids (taken

from [7 6]) .. 11

2.4 Secondary structures of a protein are alpha-helix and beta-sheets (taken from [76]) 12

2.5 Tertiary structure of a protein is composed of connected secondary structures

with loops (structure of protein (12as_a) taken from P D B) 13

2.6 Quaternary structure of a protein is composed of multiple-chain bonds (taken

from [76])... 14

2.7 Protein threading process and basic components... 19

3.1 Protein Threading Problem (adopted from [ATM97] Page 4) 31

3.2 A schematic of sequence-structure alignment. The line at the bottom shows

the target sequence. Each box represents a core secondary structure (a-helix or

/3-strand) of the template. The dotted lines between boxes represent the loop

regions. An arc between two core secondary structures indicates that there

exists at least one pairwise interaction between the two cores. The two lines

between a core and the target sequence represent a gapless alignment between

the core and the sequence, (adopted from [85] Page 3 4 4) 33

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Partition of a template structure that forms a tree structure as indicated by the

arrow. The first row shows the template with five core elements. The second

row shows a partition of the template into two substructures, one with three

cores and the other with two cores. A broken arc ended with a circle is called

an open link. Third and fourth shows further partitions, (adopted from [85]

Page 3 4 5) .. 34

3.4 A schematic example of divide and conquer algorithm, (adopted from [85] Page

345) ... 35

3.5 Representation of protein-protein alignment. A, example of alignment, B, its

matrix representation (adopted from [47] Page 5 2 3) .. 38

3.6 Move set of Monte-carlo method, A, Shift, B, Shrink/ expand C, Split/ merge,

D, Jump (adopted from [47] Page 5 2 3) ... 39

3.7 ”A template contact graph and an example of an alignment between one tem­

plate and one sequence. A small circle represents one residue. The solid arc in

the original contact graph indicates that its two end residues have an interac­

tion. A dashed arc shows that if two sequence residues having an interaction

to each other, then the interaction score of these two sequence residues are

aligned to two template residues having an interaction to each other, then the

interaction score of these two sequence residues must be counted in the scor­

ing function. The interaction score between two sequence residues which are

aligned to two interacted template residues” [83] (adopted from [83] Page 5). . 41

3.8 ’’Example of D[i] and R[i, j, 1]. R[l, 2, k] is the set of potential alignment

positions of core 2 given core 1 is aligned to sequence position k. Core 1 has

five residues which have to be aligned to the sequence based on assumptions

in the ’’Alignment Model” subsection. Thus, the first two candidate alignment

positions of core 2 are invalid if core 1 is aligned to position k in order to avoid

overlap”. (adopted from [83] page 7) ... 42

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.9 This graph corresponds to the network flow formulation of the problem.

(adopted from [YA02] page 9) ... 43

4.1 Representation of the problem formulation and schematic view of the threading

process.. 50

4.2 EST Algorithm... 55

4.3 Iteration of E S T .. 56

4.4 SQST-PEST Algorithm.. 57

4.5 Flow chart of SQST-PEST.. 58

4.6 SQMT-PEST A lgorithm ... 59

4.7 Visualization of SQ M T-PEST.. 59

4.8 Splitting strategy in SQMT-PEST Algorithm ... 60

5.1 Interaction diagram for Pairwise interaction between amino-acids 66

5.2 Distance dependant Pair-wise Potential score (adopted from [11]) 68

5.3 Distance dependant Pair-wise Potential score (adopted from [11]) 69

5.4 Singleton Energy score (adopted from [11])... 70

5.5 EST vs. SQST-PEST as A increases as a fraction of |T| on threading lgal(583)-

lad3_a(452)... 74

5.6 SQMT vs. serial SQST-PEST as A increases as fraction of |T| on query lbbh_a

- templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261),

lcca(291) .. 74

5.7 Performance of SQST-PEST on lgal(583)-lad3_a(452) as p increases................ 80

5.8 Performance of SQMT-PEST (with and without recombination) on query

lbbh_a - templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136),

lapa(261), lcca(291) as p increases... 81

5.9 Serial SQST-PEST vs. SQMT-PEST as p increases.. 84

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 EST vs. GA Threading [88] without recom bination.. 76

5.2 EST vs. GA Threading [88] with recombination.. 76

5.3 Self threading with E S T ... 78

5.4 Self threading with SQST-PEST... 79

5.5 SQST-PEST vs. Yanev [89] without recom bination.. 79

5.6 SQST-PEST vs. Yanev [89] with recom bination.. 79

5.7 Performance of SQST-PEST on lgal(583)-lad3_a(452) as p increases.................. 81

5.8 Performance of SQMT-PEST on query lbbh_a - templates 451c(82), lkdu(85),

ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) asp increases................. 82

5.9 Serial SQST-PEST vs. SQMT-PEST with 7 slaves... 83

5.10 Serial SQST-PEST vs. SQMT-PEST as p increases................................ 84

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otivation

Bioinformatics derives knowledge from computer analysis of biological data. Fredj Tekaia at

the Institut Pasteur offers this definition of bioinformatics: ’’The mathematical, statistical

and computing methods that aim to solve biological problems using DNA and amino acid

sequences and related information”. Over recent years, bioinformatics has seen a substan­

tial success in the field of genomic research. The success of genome-sequencing computation

technologies in computational molecular biology has led to a large number of available se­

quences in the genome databases. The next field in the post-genome era is protein. Alisa

Zapp Machalek, 2001 remarked in her NIH (National Institute of Health) Record [41] as ”If

genes are the recipes for life, then proteins are the culinary result - the very stuff of life.

Proteins form our bodies and direct its systems. But proteins that twist into wrong shape,

have missing parts, or don’t make it to their job site can cause diseases that range from cystic

fibrosis to cancer and Alzheimer’s.” On the other hand, biochemists have established that the

spatial structure of protein determines its function, which includes protein’s role in health

and diseases. Thus knowing the structure of protein has large implications in understand­

ing the protein’s role in the body and to explore ways to control its action such as disease

detection/drug design etc.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1.1 Motivation

The Human Genome Project has led to the identification of over thirty thousand genes

which may encode over 100,000 proteins as a result of alternative splicing. To understand

the biological functions and functional mechanisms of these proteins, the knowledge of their

3-D structures is required. The Structural Genomic Initiatives, launched by NIH in 1999,

intends to determine these protein-structures within a decade [12]. Unfortunately, the exper­

imental determination of protein structures is not as easy as genome sequencing. The current

laboratory techniques used to determine the 3D structure is x-ray crystallography and NMR

spectroscopy. Both techniques are costly, time-consuming and difficult for high-throughput

production.

Conversely, we have huge source of protein sequences from genomic database and the ex­

perimental methods to determine the protein sequence gives high throughput and is relatively

cheap. The question is whether or not we can predict the three-dimensional structure of a

protein based on its sequence. This is one of the most important and long-standing problems

in computational molecular biology. The difficulty of determining the three dimensional struc­

ture of proteins has led to an increasing gap between the huge number of protein sequences

and the limited number of protein structures. The number of available protein structures in

the PDB (Protein Data Bank) database is several orders of magnitude smaller than that of the

available protein sequences [6]. Thus an affordable approach and a high throughput method

is urgently needed in order to understand the biological systems and to shorten the gap of

sequence and protein structures. Thus method can revolutionize in the field of proteomics.

Several approaches have been used to predict protein structures from sequences, with

varying levels of success. Ab-initio methods initiate any means of calculating coordinates

for a protein sequence without referencing existing protein structures. However, relatively

little success has been seen in this approach [64], The comparative or homology modeling

method [38] attempts to find a structure based on the strength of sequence similarity to

another protein of known structure. This is based on the premise that similar sequence

implies similar structure. This approach relies on the success of existing known structures of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 1.2 Challenges

close homologue [31] and the subsequent accuracy of alignment.

A sequence can determine the three dimensional (3D) structure but some spatial con­

straints lead to the fact that a sequence may fold in different shapes. It depends on the

spatial position of sequences that occur in the structure. This leads to the idea of predicting

protein structure of a sequence by ’’inverse folding” [29] that is, to fit the query sequence into

a known structure from the template database according to its spatial position and determine

how best it fits. This method is called protein threading.

1.2 Challenges

The Structural Genomic Initiatives took the strategy to determine the protein structures using

experimental methods only for a small fraction of all proteins and to employ computational

techniques to model the structures for the rest of the proteins [12]. The basic premises behind

this idea are that a limited number of unique folds in nature and different proteins share

significant structural similarity. So, determining the unique structural folds in the laboratory

may allow us to predict the vast majority of other proteins ’’within the modeling distance”

of these proteins. Protein threading represents one of the most promising such techniques

according to the report in CASP2 [17], CASP5 [31] and CAFASP3 [19].

The fact is that only 3% of the known sequence families include a member of known 3D

structures [6] in the protein databases. Sensitive sequence profile methods can extend the

range of comparative modeling to the point where 12% of the families can be assigned to a

known 3D structural super family [31]. But in contrast, the probability of novel protein having

a similar fold to a known structure is currently as high as 60% - 70% [30]. This observation

motivates the approach of protein threading to be successful among other prediction methods.

Since the number of unique folds in nature is fairly small, a structural template database

of several entries can be constructed by excluding those with highly similar structures. Thus,

each unique fold represents one or several templates. Protein threading chooses the best

fit template as a structural prediction for the query sequence through finding the optimal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 1.2 Challenges

alignment between the target sequence and each structural template in the database. This

best-fit template becomes the basis on which a structural model for the target sequence can

be built. If we can have a criterion to quantify such alignment, based on that an efficient

algorithm can find the optimal alignment in affordable time.

The alignments between the sequence and the template include the criteria of local con­

formation consistency and spatial conformation consistency. The spatial conformation con­

sistency is often modeled as pairwise contacts. That means, if two amino acids are spatially

nearby in the structure, then the two amino acids in the sequence which are aligned to them in

the structure should have strong pairwise contact potential. Biochemists consider the pairwise

interaction is important for protein folding. On the other hand, insertion and deletion can

happen anywhere in the loop or core part of the protein. But predefined core elements, gap

restriction (i.e. insertion or deletion can happen only in loop region etc.) are some imposed

assumptions to simplify the computation, but these hide the quality of threading alignments.

While it is true that secondary structure elements are more conserved than the loop re­

gions, significant structural information is carried by the residues, that are in the loop regions.

Insertions and deletions are also observed between similar proteins even inside corresponding

secondary structure elements. Threading methods that can handle full alignments without

arbitrary restriction of core elements will thus have an important advantage [71].

There are different approaches [11] [42] [22] [78] [71] [85] [88] [80] of protein threading al­

gorithm based on the local or non-local interaction and variable-length-gap or gapless thread­

ing have been proposed. Many of above methods suffered with exhaustive searching, some

of them compromise with quality. The underlying fact is that if pair-wise interaction and

variable-length gaps are allowed in the alignment between the query sequence and the tem­

plate structure, then the protein threading problem is NP-hard [35]. The quality of threading

depends on the success of the scoring function and the efficiency depends on the searching

strategy for optimal alignment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 1.3 Goal

1.3 Goal

In light of the preceding discussion, we seek a protein threading algorithm, which is capable

of trea tin g th e pairw ise contact po ten tia l and various length of gaps in th e sequence-structure

alignment. Such an algorithm should have the following desired properties:

1. Effectiveness: The pairwise contact potential should be treated rigorously in searching

for the optimal alignment between the sequence and the template. The problem formulation is

expected to overcome predefined core elements or gap restriction. Such an algorithm expects

better alignment accuracy than those similar approaches in the literature review.

2. Efficiency: Such a threading algorithm should run fast to overcome the present limita­

tion of selecting only a limited number of representative templates. Of course, it is difficult

to outperform those algorithms that do not deal with pairwise contact potential or solve a

limited version of the actual problem. The new method is expected to reduce large sequential

computational time to thread each of the protein templates (~ 1000) and terminate in a

reasonable time.

This thesis reports on the development of an efficient and effective algorithm and computer

program to do protein threading and validates its performance by several experiments.

1.4 Problem Statem ent

The Protein Threading Problem (PTP, for short) is to determine the three dimensional struc­

ture of a given but arbitrary protein sequence, called query, from a set of known structures

called templates of other proteins.

Yadgari et al. [88] discusses a genetic algorithm approach for PTP, however their method

threads a query against a single template only instead of a template database. Furthermore,

their technique is very slow and therefore can not be used for a very large query and/ or

template. They report results on short queries/templates with length of 300 amino acids at

most.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 1.5 Contribution and Results

As far as we know, the current threading algorithms only thread a single query against a

single template. To thread against many templates, the given algorithm is applied sequentially

many times, each time with a different template. Large queries cannot be threaded that way

against a template database, within satisfactory and respectable time bounds, particularly

where the templates are large. As a matter of fact, a vast number of proteins have never been

attempted due to their sizes [89].

With an appropriate parallelization, there is a possibility to thread (very) large queries

against a set of (very large) templates within reasonable time bounds. There is even a possi­

bility to thread multiple queries against multiple templates within reasonable time bounds.

We propose two parallel approaches for the PTP problem. Both are parallelizations of our

novel evolution strategy (ES) method for protein threading. The first method we call SQST-

PEST (for Single Query Single Template- parallel Evolution Strategy threading) threads a

single query against a single template. We use ES to find the best alignment between the

query and the template, and ES is parallelized. The second method, we call SQMT-PEST

(for Single Query Multiple Templates Parallel ES Threading) to allow for threading a single

query against multiple templates within reasonable time.

1.5 Contribution and R esults

The problem representation of protein threading used in Yadgari et. al. 2000 [88] dismisses

the predefined core elements and gap restriction. We have used the exact formulation as

Yadgari, 2000. The main contribution of this thesis is to propose an evolutionary strategy

approach using the representation of Yadgari to the protein threading problem (which is NP-

hard). The proposed ES threading performs better in quality of solution and in computation

time than the method described in [88]. We also propose parallel architectures to reduce large

sequential computation time for the protein-threading based structure prediction approach.

We have shown that in practice, almost all instances of the intractable protein threading

problem can be solved by our methods in affordable time. The main contribution of our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 1.6 Organization

thesis can be outlined as follows:

• The evolutionary strategy approach for protein threading: The ES approach, we have

used is in the class of (p + A)-ES. It conducts effective searching of optimal alignment

for protein threading that considers

- Elitist selection and small changes (mutation) in alignment that cause significant

difference in threading.

- A novel technique of recombination and mutation, which is well suited and efficient

for our threading problem

- A design of normalized fitness criteria, based on energy function, which is distance-

specific contact potential matrix [11] and it is a good candidate to evaluate fit of

an offspring.

• Parallelization of the method: We proposed two different architectures for parallel ap­

proach and compared their performances. Both architectures reduce large sequential

time.

- It gives flexibility to choose a large number of templates from protein databases,

that eventually increases the threading quality.

- It allows to breed significant number of offsprings in each generation, that may

contribute to converge in (near) optimal threading quickly.

1.6 Organization

The rest of this thesis is organized as follows. The chapter 2 describes the background of this

research. At first it describes the basics about protein and different levels of protein structures.

Different structure prediction methods and their success are introduced in section 2.2. Section

2.3 introduces the basic components of protein threading methods and its complexity. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 1.6 Organization

brief description of evolutionary strategy is given in section 2.4. Parallel computing and

parallel architectures are introduced in section 4.2.

A survey on protein threading algorithm and related study have been described in 3. The

detailed survey of protein threading algorithm and their problem formulation/ representation

has been discussed. The evolutionary algorithm and parallel approach in protein threading has

been investigated. The limitations of the existing methods are also outlined in this chapter.

Chapter 4 describes our proposed method for solving protein threading method in parallel

using evolutionary strategy. Section 4.1 describes our basic evolutionary algorithms, proposed

for protein threading. It discusses in details the problem representation, methods of using

mutation and recombination as genetic operators, ES algorithm and its complexity. The

parallel approaches are discussed in section 4.2. The two proposed methods of parallelizing

to facilitate the large sequential computing time have been discussed with details of their

algorithm.

The implementation and experimental results are discussed in 5. The implementation de­

tails of the energy function used, ES method and its parallel architectures are discussed in 5.1.

The implementation environment and details of the system environment for the experiments

are detailed in section 5.2. Section 5.3 describes about the source and details of the data set

used for the experiments. The details of experiments, results and discussion are described in

section 5.4.

The chapter 6 concludes the thesis. It narrates the description of the summary of work

done. The limitations and future works are also outlined in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

Protein is a large molecule composed of one or more chains of amino acids in a specific order.

Proteins are essential to the structure and function of all living cells and viruses. Many

proteins are enzymes or subunits of enzymes. A protein chain folds into specific shape in

order to function in its aqueous state. The conformation of protein can be parsed into several

different levels ranging from local to overall spatial structure. There are several inter-atomic

forces that play instrumental roles in the formation of protein shapes. In protein structure

prediction, these factors are modeled in their scoring function. This chapter provides an

overview of the architecture of protein structure, methods of protein-structure prediction and

a survey of protein threading method which is more promising in the structure prediction era.

2.1 P rotein Structure

The basic building blocks of proteins Proteins are amino acids. The spatial conformation

of a protein is dominated by the order of the amino acids contained in it, and their side

chain properties. Protein structures are described in four different levels: primary structure,

secondary structure, tertiary structure and quaternary structure.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 2.1 Protein Structure

Amino group
Carboxyl group

Alpha carbon

Figure 2.1: Structure of an amino acid (taken from [76]).

2.1.1 Amino Acids

An amino acid is a complex chemical that consists of an amino group (-NH2) which is called

N-terminal, an alpha-carbon atom in its center, a hydrogen atom (-H), a carboxyl group (-

COOH), and a side chain R group as shown in Figure 2.1. In nature, there are 20 different

amino acids that differ only in their R groups. The structural complexity of the R group

ranges from a simple hydrogen to a complex atomic ring. These vary not only in their

structure and size but also in their physicyo-chemical properties. According to the properties

of their side chains, amino acids can be classified in four groups: hydrophobic, hydrophilic,

positively charged and negatively charged. The hydrophobic amino acids tend to stay in the

interior of the proteins whereas the hydrophilic ones are more likely to remain in the exterior

of the proteins, interacting with surrounding water molecules and thus stabilizing the shape

of proteins. Two oppositely charged amino acids can form a salt bridge. These interaction

between amino acids influence the shape of the protein. Each of the amino acids are denoted

by one capital alphabetical letter or three letters.

Two amino acids are connected to form a peptide by a chemical reaction. Multiple amino

acids can be connected sequentially to form a polypeptide as shown in 2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11 2.1 Protein Structure

Residue 2

H

H C ^V xrK i 11

0
II

Bebidue 3

R
I

C

Residue 4

H
I
H

I
R H

C'
II
0

0
II -

c
I

R

Figure 2.2: Sequence of amino-acids forms a polypeptide (taken from [76]).

H3N

coo-

Figure 2.3: Primary structure of protein is simply the order of its amino acids (taken from [76])

Primary Structure

The primary structure of a protein describes the sequence level of protein and it represents

the linear order of amino acids contained in it as shown in Figure 2.3. Although the primary

sequence does not explicitly express any structure information about the protein molecule,

the spatial conformation of proteins can be determined by their primary sequence [5]. Thus

it is still fair to say that the three-dimensional structure of a protein can be determined by

its primary sequence. Proteins fold up to complex shapes due to the bonds formed by the

side chains. As the strong bonds play roles among two nearby residues in the sequence, the

bonds between distant residues also contributes to form the fold. The former one is called

local interaction and the latter ones are called non-local interaction. The interactions between

residues are known as pairwise contacts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12 2.1 Protein Structure

Secondary Structure

“Shortftand" cx-helix

JPI f m
A '-

"Shorthand" strand

m

-r

Figure 2.4: Secondary structures of a protein are alpha-helix and beta-sheets (taken from [76])

A segment of protein primary sequence can fold into a secondary structure because of the

local interactions. The backbone of core structures in protein is known as secondary structure,

a helix and (5 sheet are two common types of secondary structure and also known as core

region. The core regions are more conserved and called template or fold. They are connected

by loop. There are strong hydrogen bonds among the residues within one secondary structure,

but the bonds between the residues within a loop are weak.

A combination of a few secondary structures that appears in several different proteins is

called a motif. An example of a motif is the helix-loop-helix and such structure has clear

role in protein function while some motifs has no specific role in the function of protein. A

domain is a more complex combination of secondary structures that by definition has a very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 2.1 Protein Structure

specific function. Therefore it contains an active site, which is the a section of the protein

where some binding to an external molecule can take place.

Tertiary Structure

Figure 2.5: Tertiary structure of a protein is composed of connected secondary structures
with loops (structure of protein (12as_a) taken from PDB)

A protein may have only one domain, or may contain several. All of them taken together

form the protein’s tertiary structure. Due to non-local interactions, all secondary structures

in a protein can form a specific tertiary structure connecting each other with the loops and

packed of side chains. It represents the 3-dimensional structure of a protein. Frequently, we

use folds to denote the type of tertiary structure of a protein.

Quaternary Structure

Many large globular proteins consist of several polypeptide chains which are kept together

by various forces such as hydrogen bonds or disulfide bonds. Such multiple-chain bonds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 2.1 Protein Structure

Figure 2.6: Quaternary structure of a protein is composed of multiple-chain bonds (taken
from [76]).

represents the spatial relationship among all the protein chains and known as known as

tertiary structure as shown in 2.6.

2.1.2 Factors Determining Protein Structures

The 3D structures of protein are much more restricted whereas the sequence varies extremely

due to evolution. This happens because of the fact that the fraction of residue exchange does

not affect the stability of structures. Therefore, one single fold can correspond to many protein

sequences with very low number of identical residues. According to the work of Rost [56], if

the proteins of length not less than 100 residues have the sequence identity of more than 35%

then the two proteins may have very similar structure. In spite of a large number different

proteins in nature, there are only fewer (approximately 1000) different protein structural

folds [49], which is the basis of the success of protein threading method in protein structure

prediction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15 2.2 Structure Prediction Methods

2.2 Structure Prediction M ethods

2.2.1 Computational Methods

Several computational methods for protein-structure prediction have been developed and

proposed. These methods can be grouped in four categories such as homology modeling, ab

initio, fold recognition and consensus methods.

Homology Modeling

Homologous proteins are evolved from the same ancestor. So they have some degree of

sequence and structural similarity. An underlying principle for homology modeling is that

if a set of proteins are homologous, then their 3D structures are more conserved than their

primary sequences [51]. Homologous modeling is suitable for those target sequences which

are obviously being homologous with a known three-dimensional structure [38]. These kind of

target sequences are called homology modeling targets. Homology modeling builds the tertiary

structure of a target sequence by comparing the target sequence to all of its homologous

sequences [4], recognizing the most conserved part through multiple alignments [70], copying

coordinates for these conserved segments from one homolog with known structure and finally

refining the whole structure through the energy minimization technique [75].

Ab-Initio Folding

The targets that do not have the same fold as some templates or do not have the homologous

proteins with a known structure are referred to ab-initio folding method for structure pre­

diction. This method builds the structural model directly from the target primary sequence

alone. The scoring function used in this method are both based on traditional atomic force

field [8] and knowledge based [64] used in recent years. This method starts from simulating

the folding pathway of a protein and finally building the structural model of the sequence [15].

Currently there is no reliable and general scoring function that can always drive a search

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 2.2 Structure Prediction Methods

to a native fold, and there is no reliable and general search method that can sample the

conformation space adequately to guarantee a significant fraction of near-natives (less than 3.0

angstroems RMSD from the experimental structure). Some methods for ab initio prediction

include Molecular Dynamics (MD) simulations of proteins, Monte Carlo (MC) simulations

that do not use forces but rather compare energies, and Genetic Algorithms which try to

improve on the sampling and the convergence of MC approaches.

Protein Folding

The protein folding problem is the following: Given the amino acid sequence of a protein,

determine:

• where exactly all of its a-helices, /3-sheets, and loops are, and

• how they arrange themselves in motifs and domains

The ability to determine a protein’s native folded state is becoming critical with the massive

increase in genetic sequence discovery and hence protein primary structure.

Protein Threading

The target sequences that do not have homologous templates but do have the same fold as

some templates are referred to fold recognition or protein threading. The 3D-structure of a

target sequence is built by placing its amino acids one by one and sequentially into different

positions of the template which has the best fit template as the target sequence [4]. After the

best-fit target is selected, the structural model of the sequence is built on the sequence based

on the alignment with the chosen template [10] [63] [95].

Consensus Method

Protein structure prediction protocols that combine the outcomes of multiple structure pre­

diction programs use the consensus method. The programs employing the consensus method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17 2.3 Protein Threading

are called meta-server. The first generation meta-servers such as Peons [40] did not exploit

the information provided by the individual servers. But the recent meta-servers such as

3DSX [18] and PMODX [33] can now employ fragment assembly techniques to construct a

new consensus model from their inputs, which is an impressive and promising advance.

2.2.2 Success of M ethods in Prediction

In [57], use of evolutionary information in the form of multiple-sequence alignments results

70.8% accuracy in secondary-structure prediction of globular proteins. The four membrane

protein drops it to 70.2%. The strand residues are predicted at 65% accuracy.

At third round of Critical Assessment of Protein-Structure Prediction (CASP3), Jones et

al. 1995 did best with 77% of residues correctly predicted. But the corresponding number

for the subset of difficult targets is 73% [20]. The limitation is due to the fact that these

methods are based on sequence-specific information in the close vicinity of the residue which

considered only local interaction. The secondary structure is also dependent on the non-local

interactions [13].

A recent approach uses profiles made by position-specific scoring matrices as input and

output predicts three consecutive residues simultaneously. This output expansion and unique

balloting method’s overall secondary structure prediction performance is 77.2% - 80.2% (77.9%

- 80.6% mean per chain) [52]. With respect to blind prediction, this work is preliminary and

awaits evaluation by CASP4 [94],

2.3 Protein Threading

Protein sequences that have the same fold as some proteins with known 3D structures but do

not have homologous proteins with known structures are suitable for protein threading [14],

Protein threading makes a structure prediction through aligning the residues of the target

sequence onto the positions of each template structure from a set of templates. It determines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18 2.3 Protein Threading

whether the target can have the same fold as the template or not. For the optimal alignment,

gaps are allowed to the some extent and a pair-wise scoring function can be used. Thus it does

not consider that all sequence residues are aligned to a template position and all template

positions are aligned by a sequence residue [68]. The two major criteria for a successful protein-

threading application is the design of energy function to measure the quality of alignment and

an efficient alignment algorithm to search optimal alignment.

Protein threading matches the query sequence onto a known protein structure. The com­

patibility of a sequence to that structure can be estimated based on this matching. The query

sequence is a linear structure that is a sequence of amino acid. Protein structure possesses

the back bone of protein such as core (alpha-helix, beta-sheet), loops including three dimen­

sional coordinates of each amino-acid atoms in the space. Assigning a structure to a query

sequence needs to thread the sequence through all known templates (representative subset

of known proteins), estimate the compatibility and find the most compatible structure. It

requires some important components such as the query sequence of the protein, representative

template database derived from Protein databases [6], an alignment algorithm and an objec­

tive function to evaluate the quality of an alignment of the sequence onto a given template

structure (as shown in Fig 2.7).

2.3.1 Components of Protein Threading

The following four steps aggregates the protein threading approach for protein structure pre­

diction. The protein threading components have been shown in the Figure 2.7 (taken from

http://www.bcbio.de/zib_lecture/ Prakt2004/lect/may_threading.ppt and modified). The

success and efficiency of the protein threading depends on these steps.

Template Database

A representative set of protein structures extracted from the PDB database is used to form

the template database. Template is consist of only core segments removing the loop. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bcbio.de/zib_lecture/

19 2.3 Protein Threading

Library of core templates

Sequence
a[!..n]

Energy
function

fl(•)

Figure 2.7: Protein threading process and basic components

generally involves selecting protein structures from databases such as SCOP [48], or CATH

[50], after removing protein structures with high sequence similarities. Fold library in 1999

contains 600 to 900 entries depending on the similarity threshold applied [13].

Threading Alignment

The simplest alignment is no-gap alignment in which the query sequence is mounted over an

equally-long part of a target fold. It is not used for structure prediction, but used for testing

and adjusting the scoring functions [29]. To approach protein structure prediction, a sequence

fragment is fitted over a part of target fold allowing gaps both in sequence and fold [69].

The alignment algorithm depends on the scoring function used. Methods based on non

pair-wise scoring functions uses conventional [29] and double dynamic-programming algo­

rithms [69] to find the optimal alignment. Various approaches convert the scoring function

to non pair-wise and then apply a dynamic-programming algorithm [22] [78]. Others apply

direct algorithm such as branch-and-bound searching algorithm [37] or Monte-Carlo sampling

algorithm [9] or linear programming [91] [84] have been investigated. All these approaches

are discussed in more details in section 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 2.3 Protein Threading

Scoring Function

The scoring function measures the fitness between target sequences and templates based on

the knowledge of the known relationships between structures and the sequences. A good

scoring function should contain mutation potential, environment-fitness potential, pair-wise

potential, secondary-structure compatibilities and gap penalties [87] [95] [11]. The quality of

the score function is closely related to the prediction accuracy.

The pair-wise interaction is an important measure on the quality of protein threading

method. Thus two approaches in protein threading has been observed where the pairwise

interaction is explicitly counted in alignment algorithm and a substitution energy score like

PAM250, BLOSUM62 matrices are used to score them. In other methods, alignment is further

assessed by the pair-wise interaction score. Some softwares are used to generate the output

for certain template considering all related potentials such as PROSA, a software tool for the

analysis of 3D structures of proteins based on [65] [28], FROST (Fold Recognition Oriented

Search Tool) based on [45] ROSETTA [55] .

We used the distance dependent pair-wise energy matrices proposed by Bryant and

Lawrence 1993 [11] and is further detailed in section 5.1.1.

Ranking and Modeling

In this phase of threading method, select the threading alignment that is statistically most

probable as the threading prediction. The ranking for structural prediction is widely accept­

able using z-score [10] [66] and machine learning [84],

Fold Recognition using Z-score: The z-score is defined as the standard deviation of the

optimal-alignment score to the mean alignment-score. The mean alignment score is calculated

by randomly shuffling the target sequence. The proposed method in [10] calculates z-score

after threading a pair of sequence and alignment to cancel out the composition bias. Let

the z-score is denoted by Zraw. An accurate Zraw can cancel out the sequence composition

bias and offset the mismatch between the sequence size and the template length. But this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21 2.3 Protein Threading

randomization and to calculate accurate Zraw is time consuming. The steps are generally

taken as follows:

1. Find the optimal alignment between the target sequence and template, and determine

the optimal alignment score, Eopt

2. Shuffle the query sequence randomly

3. Calculate the alignment scores based on the existing random-alignment, without search­

ing the optimal alignment again.

4. Repeat step 2-3 N times (N is on the order of several thousands). The mean energy

score Eavg and standard deviation, 07? is obtained from the N alignment-scores.

The Zraw can be calculated using the following formula in Eq. 2.1 (adopted from [10]):

V Eopt ~ Eavg 1 ^
" raw —

&E

Skolnick and Kihara, 2001 argued that the use of pair potentials improves the fold specificity

[66]. The mean Z-score of correctly identified template structure can examine the hypothesis

as a function of the various potentials used. In this method, they thread the query sequence

onto each template in the template database and determine each optimal energy. Thus, (E)

and o being the mean and standard deviation values of the optimal energy in all templates of

the structural database. If the Z-score for the K th structure is having the energy Ek , then

it can be determine by the equation 2.2 (adopted from [66]) as follows:

Zraw = EK- ^ E) (2 .2)a

This is one measure of the effectiveness of scoring function. Because, they did not randomize

the sequence in the evaluation of Eq. 2.2. However, sequence randomization is a compu­

tationally expensive process, and it would be a significant advantage to be able to avoid it,

especially when threading is done on a genomic scale.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22 2.3 Protein Threading

The accuracy of the predicted structure can be assessed by examining the predicted side-

chain contact-maps [66]. In this method, the number of correctly predicted contacts, Nc

are recorded. Generating random alignments of the query sequence in the correct template

structure can do the measure of significance of this quantity. In general, threading with

single sequence, other than to a template database has no significance on the value of Nc.

To address this issue, [66] suggests the following metric: if the average number of correctly

predicted contacts is N° and standard deviation is cr° for the best alignments of the query-

sequence and each of the template-structure in the template database, then the Z-score for the

number of correctly predicted contacts can be determined using following Eq. 2.3 (adopted

from [66])

(2.3)
<T

This quantity measures the significance of a given number of predicted contacts.

Then construct a structure model for the target by placing the backbone atoms of the

target sequence at their aligned backbone positions of the selected structural template.

2.3.2 Computational Complexity

If pair-wise interaction is considered in the scoring function and variable gaps are allowed

in the sequence-structure alignment, then the problem is NP-hard [35] [2] [91]. The proof

is given in [35] and [36] [37] proposed the optimal solution using special-purposed branch-

and-bound method. In [2], Akutsu and Miyano conducted a comprehensive study concerning

the approximation of the protein-threading problem. They demonstrated that the thread­

ing problem is MAX SNP-hard. It means that no approximation algorithm can guarantee

an accurate solution within polynomial time. They have shown that the protein-threading

problem is much harder to approximate than preserving approximation of reduction from the

DENSE-k-SUBGRAPH problem, for which only an O(n~0 3885) approximation algorithm is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23 2.3 Protein Threading

known so far. They also proposed an 0 (|jE|) approximation algorithm for this problem where

E is the number of pairwise contacts in the template and gave a constant-factor approxima­

tion algorithm when the templates have a planar contact map graph [2]. However, not many

templates have a planar contact graph [81].

2.3.3 Energy Function

The energy function for protein threading is generally trained by using a database of known

protein structures (i.e. training database). An accurate representation of the free energy

represents the best-possible scoring function if the thermodynamic hypothesis are correct.

Such scoring functions are commonly referred to as energy functions or contact potentials.

Optimization method for energy function is based on formulation of the fact that protein

in its native structure has the lowest energy compared with other random structures. Here

native structure is meant as the original structure of the protein in the nature. Based on

this thermodynamic hypothesis, the first method was developed in [44] and assumed that

protein sequence in each non-native conformation have energy higher than the energy of the

native conformation by some margin. Thus a set of linear inequalities have been imposed for

this requirement and the standard linear programming techniques have been imposed for the

optimal contact potentials.

The empirical scoring function is a potential-of-mean-force approach where the distribu­

tion of the interactions obeys the Boltzman distribution [11]. They compute the contact

potential as the logarithm of the ratio of the frequency of contacts observed in the training

database over the frequency of contacts expected in the reference state. Based on probabilis­

tic description of the threading model, the scoring function has been developed in terms of

structural environment states [7].

Other approaches used maximizing the z-scores. The z-score is the measure of the distance

in standard deviations of a sample from the mean. In [46], they maximized the average of

individual z-scores to obtain optimal potential for a set of proteins. Thus the proteins with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24 2.4 Evolution Strategy

low z-scores dominates the averaging procedure.

Many other approaches have been investigated. As examples, the hydrophobic contact

potential of Huang et al., 1996 [25] reflects packing in the hydrophobic core using only two

residue classes, hydrophobic and polar, and is remarkable for its explanatory power given

its simplicity and near absence of adjustable parameters. Maiorov and Crippen 1994 [43]

used linear programming to enforce a constraint that the native threading scores lower than

others, but such approaches tend to be brittle. Bryant and Lawrence 1993 [11] used logistic

regression, based on multidimensional statistics. Boltzmann statistics is the foundation of

many threading methods such as [28]. White, Muchnik et al. 1994 [77] derived a formal

probability model based on Markov Random Fields.

2.4 Evolution Strategy

In this section, we briefly describe an optimization technique called evolution strategy (ES).

The ES is the main optimization tool used in our optimization problem.

Rechenberg [54] pioneered ES and Schwefel [61] introduced ES as method to solve opti­

mization problems. ES belongs to the class of evolutionary algorithm that solves the problem

as a method of natural selection. It works on an encoded representation of the solution. Each

candidate solution (individual) produced by the problem representation is called as chromo­

some. In early ES, the individuals are encoded as vectors of real number and was proposed as

an optimization method for real valued vectors. But recent ES is open for any encoding. The

pool of candidate solutions created in each generation is called the population. Each solution

is associated with fitness value. The fitness value represents the performance of the individual

solution in relation to the parameter being optimized. It also represents an individual solu­

tion’s performance in respect to other potential solutions in the search space. ES is a random

guided hill-climbing technique in which all candidate solutions are produced by applying mu­

tations on each parent individual. The best solutions generated in one generation becomes

the parent for the next generation. ES is an iterative method and the process of selection,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25 2.4 Evolution Strategy

reproduction is repeated until some termination criteria is reached. When the termination

criteria is reached, the solution to the problem is represented by the best individual so far in

all generations. The basic steps of an ES algorithm can be summarized as follows:

1. Generate an initial population of A individuals

2. Evaluate each individual according to fitness function

3. Select /i best individuals as parents for the next generation

4. Apply reproduction operator i. e. mutation on /x and create A offsprings where A > /x

5. Go to step 2 until a desired solution has been found or predetermined number of gen­

erations have been produced and evaluated.

Rechenberg’s ES was developed with selection, mutation and a population of size one, while

Schwefel 1981 introduced recombination and population with more than one individual, and

provided a nice comparison of ESs with more traditional optimization techniques. In the

standard recombinative ES, pairs of parents produces offsprings via recombination, which are

further perturbed via mutation. Two common variations of ES introduced by Schwefel [61]

are the (fi, A)-ES and (/x + A)-ES. These two approaches differ in the selection of individuals

for the next generation. In (/x + A)-ES, p best individuals are selected from the set of A

offsprings to form the parents for the next generation, while in (/x + A)-ES, /x best individuals

are selected as parents for the next generation from all (/x + A) individuals.

The most common variants of evolutionary algorithms are Evolutionary Programming

(EP) [21], Evolutionary Strategy (ES) [54], Genetic Algorithm (GA) [24], and Genetic Pro­

gramming (GP) [32], All these approaches differ in three respects such as representation

scheme, reproduction operators, and the selection methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26 2.5 Parallel Computing

2.5 Parallel Com puting

Parallel processing has made tremendous impact on many areas of computer application.

With the raw computing power of parallel computers, it is possible to address many applica­

tions that were beyond the capability of sequential computing techniques [74]. Evolutionary

algorithm is a natural paradigm to map to a multi-processor computer [16]. Parallel ap­

proaches are are more demanding where the problem space is very large and fitness function

is expensive for criteria evaluation.

2.5.1 Parallel Architecture

There are a variety of parameters that can classify and measure the performance of the parallel

computing architecture. Processor interconnection is one of the most important issues in

which processors of the interconnected computer exchange information and it affects on the

efficiency of performance. The two extreme alternatives for processor interconnection have

been compared in [39] as shared memory and distributed memory as follows:

In shared memory, one processor can communicate with another by writing the information

into a global shared memory location and having the second processor read directly from

that location. This makes inter-processor communication very easy, but introduces problems

having to do with simultaneous access of a unique memory location by multiple processors.

Thus, it tends to have fewer processors than their distributed memory counterparts.

In distributed memory architecture, each interconnected processors has their own local

memory. Processors are connected on a communication network and share information by

passing it through this network. If communication network is complex then it may reduce the

performance of communication, but it allows many processors to be interconnected. Massively

parallel machines prefer to have a distributed memory.

In [39], he compared the two architectures and concluded that advanced routing techniques

have made the cost of communication between any two processors roughly the same as in one

processor. He also mentioned that the network of workstations on a common Ethernet sub­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27 2.5 Parallel Computing

network has no notion of processor neighborhood and is likely where parallel optimization

algorithms will find the most widespread use.

2.5.2 Message Passing in Parallel Architecture

Message Passing Interface (MPI) is a paradigm used widely on distributed memory architec­

ture of parallel machines. The goal of MPI is to develop a widely used standard for writing

message-passing programs. As such the interface establishes a practically portable, efficient,

and flexible standard for message passing [67] [23]. MPI offers an application-programming

interface not necessarily for compilers or a system implementation library. It allows effi­

cient communication and at the same time allows for implementations that can be used in

heterogeneous environment.

SHARCNet used distributed memory architecture and MPI can be used to communicate

among multiple processors.

2.5.3 Parallel Implementations in Bioinformatics

Certain methods for analyzing genetic/ protein data has been found to be extremely computa­

tionally intensive, providing motivation for the use of powerful computers. Parallel algorithms

have been well implemented in many areas of bioinformatics. Yap et. el 1995 applied parallel

algorithms on biological sequence analysis, especially on multiple sequence alignment problem

using speculative computation [92] [93]. Schmidt et. el. used parallel algorithms on protein

database searching [60]. Bokhari et. el. applied parallel techniques to implement the dy­

namic programming approach in DNA sequence alignment [62]. Xiao et. el. applied parallel

algorithm on a cluster of workstation for gene clustering [79]. Zhang et. el. used a data level

parallel algorithm for structure prediction [96]. Thomas and Amato used Standard Adap­

tive Template Parallel Library to parallelize their method for protein folding problem [72],

Akutsu used parallel approach to search similar structure using structure-structure alignment

in parallel computer [?]. More recently, we found the marriage of mathematical programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28 2.5 Parallel Computing

and parallel computing for solving protein threading problem in [90]. Yanev used linear pro­

gramming LP and network flow formulation to solve protein threading problem in parallel

processors using commercial LP optimizer, CPLEX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Related Study

This chapter discusses the protein threading algorithms that are currently available and gives

a brief survey on the existing methods that are relevant to our problem.

3.1 Survey on Protein Threading Algorithm

There are several protein threading algorithm based on different assumptions. The two basic

considerations that determine the complexity of this algorithm are whether or not (1) variable-

length gaps are admitted into the alignment, and (2) interactions between neighboring amino

acids from the sequence are considered into the score function. If variable-length gaps are

not permitted [44] then alignments are restricted to substructures of equal length as from the

database and will be partially out of hydrophobic registration.

Johnson et. al, 1992 [69] permitted variable lengths but pair-wise interactions are ignored

and only the local environment is considered. In [58], they evaluated interactions with respect

to the structure’s original native sequence in stead of the sequence actually being threaded.

In these cases, the global optimum threading can be found using dynamic programming

alignment method. Dynamic programming employs an affine gap penalty and it biases the

search to prefer loop lengths in the model structure’s original sequence. This make more

difficult to recognize for distant structural homolog if their loop length differ substantially.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 3.1 Survey on Protein Threading Algorithm

In addition ignoring amino acid interactions means giving up a potentially rich source of

structural information [59].

Among the approaches, Lathrop and Smith, 1994 gave the first mathematical formulation

of the problem considering both pair-wise interaction and variable-length gaps which applies

’’special purpose” branch and bound algorithm for searching optimal alignment [36] [37]. The

method guarantees to find the optimal solution but it has turned out as exhaustive-searching

and time-consuming procedure for larger sequences. But the success of [36] persuaded other

researchers to consider the success of prediction and and it is still an active area of research.

For this reason current search algorithms adopt any of two choices: (1) Approximation Algo­

rithm: It may find the optimal solution in many cases and very good solution in respect to

others, but sometimes fail to find the optimal (2) Exact Algorithm: It may terminate rapidly

in many cases, but sometimes must require an exponential amount of time.

3.1.1 Exact Algorithm

Branch-and-bound algorithm:

Lathrop and smith [36] [37] have proposed a branch-and-bound method to solve the threading

problem. [36]is the first approach to formulate the protein threading problem and optimized

special purpose branch-and-bound method. They considered pairwise interaction removing

the loops between cores. But in [37], they considered gap explicitly between the cores, but not

in the core segment. In this approach pairwise contacts is temporarily ignored in subspaces,

uses dynamic programming algorithm for searching subspaces and then estimate the bound

of the objective function in the entire space. This process is repeated and some subspaces are

discarded based on the estimated bound. It has been reported that this method guarantees

the optimal threading but approximately 5% to 10% threading instances of their own test

sets can not be handled within a reasonable time [37].

Protein threading is based on the fact that certain proteins with similar structure have

different loops and similar cores. So the idea is to predict protein structure from the query

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31 3.1 Survey on Protein Threading Algorithm

COV1«$)OR
loop region

O residue position

miMMid
t f f

Figure 3.1: Protein Threading Problem (adopted from [ATM97] Page 4)

sequence in a way so that the query sequence fits to a known structure considering its spatial

position and determine how best it can fit. The protein threading has been shown in the

Figure 3.1 (adopted from 3.1 Page 3)

The structural model is determined by replacing amino acids with place holder in a known

structure. Place holders are kept associated with certain properties of amino acids. The struc­

tural model keeps record of spatial constraints of the structures such as distance to the other

amino acids how much inside or outside the whole structure is. Then this structural model

of known structure is aligned with the query sequence to determine the best fit structure.

So threading procedure relies on two major components among others is:

(1) An alignment algorithm to position a sequence to a structure.

(2) Score function to evaluate the conformation as which one fits best.

The basic inputs for protein threading problem are:

1. A query protein sequence, A with n amino acids such as a i02...ara-

2. A core structural model C, with m core segments Cj

• The length of Cj, each core segment.

• Core segment Cj and Cj+i are connected by loop region, j and for each j maximum

length (ljmax) and minimum length (/*mm) bound.

• The local structural environments (a — helix, (3 — sheet or loop) for each amino

acid position in the model.

with permission of the copyright owner. Further reproduction prohibited without permission.

32 3.1 Survey on Protein Threading Algorithm

3. An efficient score function to evaluate a given threading.

The output for the threading is:

A set T = t i , t 2 , tm of integer such that the value of ti indicates that what amino acid

from sequence, A occupies the first position from each core segment, c*.

Thus threading is an alignment between the sequence and the core structural model al­

lowing the above conditions. The score function and gap between cores play the vital role and

if pair-wise alignment is allowed on variable length gaps the problem becomes NP-hard [35].

Basically [36] [37] gave the formal presentation of the protein-threading problem and they

proposed branch-and-bound algorithm, first exact solution for finding the global optimal

threading using pair-wise interaction of amino-acids and allowing variable length gaps. Ac­

cording to that formulation the basic concept of constraints, loop length bounds and scoring

functions are as follows:

Spacing, order and interval constraints (adopted from [36] Page 368):

1 + E + l f n) < U < n + 1 - Z j U c j + if")
ti + ci + limin< t i+1< t i + ci + limax

hi <= U <= ei

With t as some threading, the scoring function is (adopted from [LS94] Page 368):

f(t) = Ei 9i(i, U) + Ei Ej>i 92(*, j, ti, t j)

where given inputs gi, g2 are contributions from individual core elements and pair-wise

core elements respectively.

value U determines the position of amino acids from sequence A in core segment i.

In the protein threading problem, an amino acid sequence and a set of 3D protein struc­

tures are given to find an optimal alignment between spatial positions of a 3D structure and

amino acids of a sequence minimizing the score of a suitable energy function. [36] [37] de­

fines the problem in a formal way and this formal definition is modified in a simpler form [2]

without loss of generality as follows as Figure 3.1 (adapted from [2] Page 4).

The formulation described below is (adopted from [2], Page 4) as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33 3.1 Survey on Protein Threading Algorithm

Input: sequence s — S\S2 sn over a fixed alphabets representing amino acids

core lengths: c1; C2, cm

score function: g(i, j,ti , tj) such that (g(i,j,U,tj) > 0)

Output: m-tuple t = {t\,t2 , t m) which maximizes a total score such that

score (t) = Y.i<j9{i,3,ti,h)

under the condition that 1 < ti,f* + c* < = ti+i, tm + cm < n + 1

By inverting the sign of values of score functions and by adding a constant factor, the

problem is converted to maximization problem for applying approximation algorithms. In

[LS94], two kinds of score functions gi(i, U) and g2(i, j, U, t j) are used and they are generalized

as g(i,i + l ,ti,U+i) = gi(i,U) + <72(2,* + l,tj,£j+i) Here they ignore the computing time of

g(i, j,ti , tj) since it can be computed in polynomial time for most scoring function. Also the

effect of loop regions is taken into account by adding a length of loop region to the length

of a core region and by modifying g(i, j,U,t j) suitably. Thus the loss of generality has been

taken care of.

Divide-and conquer method:

Mmptett;

weqmgmzi

Figure 3.2: A schematic of sequence-structure alignment. The line at the bottom shows the
target sequence. Each box represents a core secondary structure (cr-helix or /3-strand) of the
template. The dotted lines between boxes represent the loop regions. An arc between two
core secondary structures indicates that there exists at least one pairwise interaction between
the two cores. The two lines between a core and the target sequence represent a gapless
alignment between the core and the sequence, (adopted from [85] Page 344)

In the PROSPECT [86] [85] [80] structure prediction program, Xu et. al. developed

a divide-and-conquer algorithm based on the observation that if the cutoff distance of the

pairwise contacts is fixed to 7 A, then three-quarters of the template contact graphs are

topologically simple.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34 3.1 Survey on Protein Threading Algorithm

Figure 3.3: Partition of a template structure that forms a tree structure as indicated by the
arrow. The first row shows the template with five core elements. The second row shows a
partition of the template into two substructures, one with three cores and the other with two
cores. A broken arc ended with a circle is called an open link. Third and fourth shows further
partitions, (adopted from [85] Page 345)

In this method, they assumed that the contact potentials can be calculated only between

residues of core secondary structures (a-helix or /3-strands). They also assume that alignment

gaps are confined to loop regions. Based on that assumptions, the threading problem can be

schematically represented in Figure 3.2. The goal is to find an alignment between the template

and the target sequence so that total energy score is minimized.

In PROSPECT [86], an optimal alignment between the target and each template is deter­

mined in two steps:

1. Finding an optimal alignment between the target and core elements of the template,

while penalizing length differences between the corresponding loop regions, using a

divide-and-conquer algorithm [85]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35 3.1 Survey on Protein Threading Algorithm

2. Alignment loop regions axe done separately after core elements are aligned, using a

sequence-sequence alignment algorithm like Smith-Waterman.

The quality of an alignment between a target and a template’s core elements is measured

by a linear combination of 1. singleton fitness that specifies secondary structure and solvent

accessibility 2. Pairwise contact term the specifies how preferable of two residues in close

contact 3. Term which penalizes the length differences of corresponding loops.

 ̂ « # ** am*** « « 4 » k * * * ** * as*** «,

*4 O-
O

»

Figure 3.4: A schematic example of divide and conquer algorithm, (adopted from [85] Page
345)

The threading employs a divide-and-conquer strategy to solve the optimal threading prob­

lem. For this purpose, the algorithm pre-process the template by repeatedly dividing it into

substructures until each substructure contains only one core secondary structure. Dividing the

template cuts an interaction between two cores into two open links, represented as shown in

Figure 3.3. The algorithm solves the entire optimal alignment problem by recursively solving

a series of sub-alignment problems between sub-structures and sub-sequences, under various

constraints, and combining these sub-alignments in a consistent way. Figure 3.4 illustrates

the idea, using an example from the last partition step in Figure 3.3.

The idea is to split a template into two subsegments such that each segment is connected

to as few external cores as possible, to recursively align each subsegment to the sequence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36 3.1 Survey on Protein Threading Algorithm

respectively, and finally to merge the alignments of two segments to form an alignment for

the whole segment. For topologically complex contact graphs (> 400 residues) of about one

quarter it runs very slow.

To deal with situations where corresponding cores of two aligned structures may have

different lengths, PROSPECT allows deletion/additions of up to two residues at each end of

a core in the template. The number of deleted/added residues from/to a core is determined

by the optimization algorithm and it increases the computational time significantly.

3.1.2 Approximation Algorithm

Recursive Dynamic programming:

This algorithm repeatedly uses a dynamic programming algorithm to match the target se­

quence to the template [71]. At each iteration, the local alignment between the target se­

quences and the templates is searched by dynamic programming algorithm. A segment of the

target sequence is fixed onto a segment of the template if a significant similarity is achieved.

The iteration is repeated until no significant similarity is found. The unmatched segments of

the target sequence are interpreted as gaps.

RDP optimizes the following scoring function for evaluating a threading alignment f of

the target sequence A with a known protein structure B:

£>(/,, B) = 7 * ^ (/ , A, A, B)+£*4>H(f, A, B)+(*<l>P(f, A, B) - G A P (f , A, B)

In this scoring function 4>s scores the alignment f with respect to the alignment f with

respect to well-known sequence based mutation matrices, contact capacity potential 6C is

the compatibility of the query sequence with the structural fingerprint of the template. SH

is a scoring preference of an amino acid to a specific structural position with respect to

hydrophobicity and solvent exposure. 4>P denotes the pair interaction term of the potential.

GAP penalizes insertions and deletions. 7 , 5, e, £ are weighing parameters, which have been

calibrated empirically.

RDP algorithm is described in pseudo code in [71]. The steps are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37 3.1 Survey on Protein Threading Algorithm

• Detect local region of high similarity among the target and template sequence

• Local alignment

• Exploit sequence as well as structural signals

• Any pair of locally aligned segments divides the unmatched region of both protein into

two parts.

• They can be processed independently with the same approach.

• After dividing, the changed structural features of the template are recorded.

The algorithm proceeds recursively, until in the local alignment step, no more significant

similar segment pairs are found e. g. only one core structure.

Interaction-Frozen Approximation:

The interaction-frozen method was first used to solve protein threading by [22]. In this ap­

proach, one end of each contact is fixed to the residue in any current alignment position

including initial alignment. Then an iterative step is used to search for the next alignment

based on frozen pairwise potential [22]. [78] used the same approach, but improves the iter­

ative step with dynamic programming algorithm until the algorithm converges. No optimal

alignment is guaranteed.

Monte-Carlo Sampling and Simulated Annealing:

[11] used the simulated annealing method to solve the protein threading problem. Optimal

alignment between the target sequence and the template has been searched using Simulated

Annealing algorithm. [42] [47] initializes one initial sequence-structure alignment and then

used the Monte carlo sampling technique to generate the next alignment from the current

alignment. Both approaches usually take enough computational time to converge to the

optimal alignment and it is unaffordable to thread for long sequence. The method allows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38 3.1 Survey on Protein Threading Algorithm

A . I t
J '

I I S S ? i 10
«=T=P= If -113 14

3 + 5 S ? 10 1« 12 1| 14

m

m

t 2 I 4 S 8 7 8 t 10 M
/

Figure 3.5: Representation of protein-protein alignment. A, example of alignment, B, its
matrix representation (adopted from [47] Page 523)

gaps and insertion both in the query sequence and in the template structure. The alignment

representation is defined as follows:

An alignment between two proteins of length I and J is represented by a matrix A^ where

i = 1, / and j = 1,.., J:
AVJ = 1 if i is aligned with j

= 0 otherwise
Another way of representing an alignment is by a pointer p.

Pi = j if is aligned to j

= 0 if i is not aligned to any residue
The representation did not allow double matches (i, e, £T=1 A? ^ !)• The reverse of any

fragment in the alignment is also forbidden, i.e. if Ay = 1, then for any i! > 1 and f < j

—>• A#] = 0. Under this constraints, matrix Ay should have the form shown in Figure 3.5,

i.e. an alignment composed of runs of aligned residues separated by gaps in either or in both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39 3.1 Survey on Protein Threading Algorithm

proteins. These runs are referred to below as fragments of alignment. Each fragment is a set

of matches (Ay = 1 for (i , j) = (i1 + l , f + 1) , {i' + L , j ' + L)) framed into gaps

A , _ = Aj+i+iy+j-,+1 = 0. These fragments are used in the move set as building blocks.

A.

n.

c.

/

D, 7
Figure 3.6: Move set of Monte-carlo method, A, Shift, B, Shrink/ expand C, Split/ merge,
D, Jump (adopted from [47] Page 523)

Each move in the move set is designed to change the alignment preserving most in the

matches and hence, leading to small change in energy. It also allows easy introduction of

constraints on the minimum length of a fragment or maximum length of a gap. This flexibility

is achieved by making moves on fragments, rather creating and destroying single matches.

The fragment length is constrained to be greater or equal to Lmm = 6 residues. The moves

are shown in Figure 3.6.

To sample possible sequence-structure alignments and search for the alignment with min­

imal energy, they used the Monte Carlo (MC) method. The power of MC procedure is that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40 3.1 Survey on Protein Threading Algorithm

it allows us to find a global minimum on a variety of rough landscapes. In the search for

a minimum, it samples possible alignments and allows to study statistical properties of the

energy landscape.

Linear Programming:

Mixed Integer Programming for RAPTOR

RAPTOR [83] used a linear programming based approach for protein-structure prediction via

threading. The protein threading problem is formulated as a large scale integer programming

based on the contact map graph (shown in Figure 3.7) of the protein 3D structure template.

RAPTOR is based on the definition and alignment model of threading shown in [84] [81] [82].

They followed the basic assumptions which are widely adopted by threading community [11]

[36] [42],

In their work [84], the threading score function is well defined and consists of singleton

score such as the environment fitness score Es, mutation score Em. secondary structure com­

patibility score Ess and the gap penalty score Ea, pairwise interaction score Ep. So the scoring

function, E can be derived as follows (the equation is adopted from [84], Page 4):

E = WmEm + WSES + WpEp + WgEg + WSSEBS

where Wrn. Ws, Wp, Wg, Wss are weight factors determined by training.

Global alignment and local alignment methods are employed to align the sequence to the

template. In order to reduce the too many variables in the the formulation, they simplify the

template contact graph by merging all the vertices representing the residues in one core into

a single vertex. This is based on the assumption that no gaps are allowed in the core. So they

model each core as a vertex and adding one edge between two cores if there is at least one

residue-residue contact between them. It is explained in the Figure 3.7 (adopted from [81]

Page 5).

Then they construct a bipartite graph to describe all potential alignments between any

core and any sequence position. They denotes D[i] as all the valid query sequence positions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41 3.1 Survey on Protein Threading Algorithm

Origin)! Cnnliet£5*ph

C.'iFv-,'
Nn g jp aBcmvil Tillhm £>n-t*s

t Graph

Figure 3.7: ” A template contact graph and an example of an alignment between one template
and one sequence. A small circle represents one residue. The solid arc in the original contact
graph indicates that its two end residues have an interaction. A dashed arc shows that
if two sequence residues having an interaction to each other, then the interaction score of
these two sequence residues are aligned to two template residues having an interaction to
each other, then the interaction score of these two sequence residues must be counted in the
scoring function. The interaction score between two sequence residues which are aligned to
two interacted template residues” [83] (adopted from [83] Page 5).

that Ci can be aligned to. R[i, j, 1] denote all the valid alignment positions of Cj given that

Ci is aligned to s;. Figure 3.8 (adopted from [83] page 7) illustrates the example of D[i] and

R[i,j,l]-

They presented three versions of linear mixed-integer program formulations with three

objective functions to formulate the sequence-template alignment problem and proved the

third constraint set, CS3 [84] is the strongest when the integrality constraints on x and y

variables are relaxed to allow real values between 0 and 1.

This method focuses on the formulation of the threading problem both in designing scoring

function and efficient algorithm for alignment. The experimental result proves their quality

and efficiency in formulation of RAPTOR [84].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42 3.1 Survey on Protein Threading Algorithm

‘s i n t p i i H a i) C o n t a c t G r a p h

oo o a o o ooo

ooooooobo OOOQ̂ OOOOh&o-o o 6 o o o cno o,

D l II ----------- D f lh ---------------- B 3 V w t - ^ v O B I - H - ' - ™ -

Figure 3.8: ’’Example of D[i] and R[i, j, 1]. R[l, 2, k] is the set of potential alignment positions
of core 2 given core 1 is aligned to sequence position k. Core 1 has five residues which have
to be aligned to the sequence based on assumptions in the ’’Alignment Model” subsection.
Thus, the first two candidate alignment positions of core 2 are invalid if core 1 is aligned to
position k in order to avoid overlap”. (adopted from [83] page 7)

In implementation of the RAPTOR, IBM OSL [26] package is used to optimize this MIP

formulation. The above package was used to relax the integer program by allowing all x and

y to be real between 0 and 1 and solve the resulting linear program. If the solution of the

linear program is integral, then the optimal solution is found. Otherwise one non-integral

variable is selected according to some criterion, and generate two sub problems by setting it

to 0 and 1 respectively. These two subproblems are solved recursively.

For weight training, the weight factors are through optimizing the overall alignment accu­

racy and an SVM (Support Vector Machine) method is used to carry out the fold recognition.

The Z-score is approximated by fixing the alignment positions, shuffling the query sequence

randomly and calculating the alignment scores based on the existing alignment. Then the

SVM-Light software is employed to adjust the approximate score.

Network-Flows and MIP

[91] has used the formulation of [36] and derived the objective function for linear programming

formulation. But in the formulation of objective function, the presence of pair-wise interaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43 3.1 Survey on Protein Threading Algorithm

Figure 3.9: This graph corresponds to the network flow formulation of the problem, (adopted
from [YA02] page 9)

between the segments contributes the non-linear term. In order to linearize the problem, they

introduced new linear variables Zijki € (0,1) in the objective function in stead of non linear

term, XyXki and add some more constraints as described in [91]. Their formulation aims to

be solved with commercial LP solver, CPLEX [27]. But their initial formulation fails because

of weakness of LP-bounds formulation.

[91] introduces the network flows for the above formulation to solve in shortest path from

an artificial source node to destination which is optimal alignment. The arc weights, ce are

related to the scores from the above original formulation and each weight is a sum of three

numbers: segment to position cost, gap cost between segments and local interaction (if any).

The graph represented in Figure 3.9 (adopted from [91] page 9) gives more geometric

insight for the problem of optimal aligning of some sequence with a core of 5 segments,

each one with three possible placements. The path given in a thick lines has a length 5

but taking into account the pair-wise interactions (in this case (1,1,3,2), (3,2,5,2) - the path

passes through the vertices (1,1), (3,2) and (5,2)). The costs for passing through these vertices

(cn 32 + C3252) is added to 5 and obtain the actual length 14 (= 2+7+5) of the threading path.

In the figure 5.1, lb is the bound obtained by relaxation and is calculated as [34], opt is the

optimal value determined by computing the exact cost of the path. Thus if weights to all

arcs and a table of the scores for the designated non-local pair-wise interactions are given, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44 3.2 EA in Protein Threading

optimization problem will convert to find a path from S to T with minimal updated length.

The CPLEX was run on the MIP model generated from this network flows constraints

on a large subset of instances. The results of LP relaxation attains optimal. But the fact

is that all these properties are scoring dependent and they could be lost once the scoring

scheme changed [91]. They used the CPLEX branching strategy to improve the LP-bounds

by imposing branching on the SOS (Special order set) constraints in stead of on a single

variable [27], but at the expense of adding extra constraints. The split and conquer algorithm

is applied to split the problem into sub-problems and passing the best objective function value

as a cutoff for the subsequent sub-problems. Thus by having the chance to start with the

sub-problem which contains optimal path, all other sub-problems will be aborted by the LP

solver at the moment when dual objective reaches the cut off value.

In [91], the experimental result is compared with the result of [37] and shows that in order

to generate optimal threading for longer protein-sequence, the time limit varies between 30

min to 2 hour as compared as the same instances for [37]. But in [91] formulation they

sacrificed the quality of the comparison with lower accuracy for the chance to test the long

protein-sequence instances which were never attempted before.

3.2 EA in Protein Threading

The evolutionary algorithm has been applied on protein folding problem [73] [53]. We also

found an evolutionary algorithm based approach for protein threading problem, known as

genetic threading, proposed by Yadgari 2000 in [88]. The method concentrates on the de­

velopment of suitable algorithm for (near) optimal sequence-structure alignment in protein

threading approach based on genetic algorithm. This is the only research that we found in

literature review in our knowledge so far which is related to protein threading and based on

evolutionary algorithm. We took it as the key approach for our basis of research and we will

outline their approach in brief description.

The algorithm puts the residues of query sequence onto the place holder of a known

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45 3.2 EA in Protein Threading

protein-template and looks for a reliable alignment with the minimal free energy. This is

a process of threading approach in protein structure prediction. Yadgari, 2000 used one of

the available energy function, described in [11] for their threading algorithm. The method

includes a representation of the problem, the suitable genetic operators and their approach

for insertion/ deletion of residues in sequence-structure alignment.

Problem Representation: The method proposed a fixed length string to represent the

individual solutions and to use a string of integers o, 1, 2, ..., K to represent the solutions

where K is the length of structure. Each T in the string represents a residue from the

sequence is aligned onto that position of the structure while each ’0’ represents no alignment

of query-residue. Numbers bigger than 1 represent the number of query-residues that does

not have suitable match on the next structural position. Each such solution validates the

length of the representative string equals the length of the structure while sum of all integers

in the string is equal to the length of the sequence. The representation is further described

in details in 4.1.1.

Genetic Operators: The proposed method used genetic operators such as mutation and

crossovers. The mutation was done by introducing a gap or by deleting the mismatched

residues from the sequence. It was performed by increasing or decreasing randomly the

integer in the solution string and offsetting the same amount in other positions. The proposed

crossover represents a combination of two alignments. It performs by choosing a random

position and building two new offsprings by concatenating the prefix of one with the suffix of

other and vice versa. Since the arbitrary crossover of two alignments are not guaranteed to

represent a valid alignment, each string is further validated.

The method did not use the predefined core elements or gap restriction for any represen­

tative solution. It used the trie data-structure to efficiently remove the duplicate solutions

so that early convergence can be avoided. They reported good results for their threading

method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46 3.3 Parallel Approaches in Protein Threading

3.3 Parallel Approaches in Protein Threading

Akutsu and Sim, 1999 has developed a protein threading system based on multiple structure

alignment [3]. They used a parallel architecture for comparing two similar structure. In

similar structure search, an input structure is compared with all structures (several thousands

of structures) in PDB. For that purpose, they used a simple master-slave model. The master

process watches the status of all slave processes. If the master process finds an idle slave

process, then it sends a protein structure, which is not yet compared, to the slave process.

The slave process computes a structure alignment (using stralign [1]) between that structure

and the input structure, and then it returns the result to the master process. Although this

model is very simple, it works quite well because each comparison can be made independently.

They reported that they could achieve near linear speedup ratio per slave process (up to 50

processes) by means of storing all 3D data in main memory.

Yanev et. al. 2003 [89] modified their linear-programming based approach used in [91]

for parallelizing the computational algorithm in multiple processor using the capability of LP

solver CPLEX. In this formulation, they used the properties of the MIP model that permits

a decomposition of the main problem into a large number of subproblems (tasks). They

showed a branch and cut technology can be efficiently applied for solving these tasks in a

parallel manner and it leads to a significant reduction in the total running time. If the split

and conquer method can split the problem into subproblems of equal size, then the intervals

should be of equal length.

They applied the CPLEX call-back function technique [27] to make the task atomic and

this method overcomes the slowing down of the global optimization process by learning from

hardest one. The operations of the slave processor are as follows: (1) sending to the master the

locally computed solution i.e. only the objective function value (2) receiving the record from

the master, and (3) using it to update the cutoff value. This periodical updating of the logical

record with the best global value allows the parallel processes to evolve simultaneously much

faster. Furthermore, a cancelation of non-promising tasks in due course leads to significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47 3.4 Limitation of the Existing Methods

reduction in the total time.

Yanev et. al. has further improved their algorithm to super linear speed up and reported

in [90]. In [90], they proposed a naive parallelization based on centralized dynamic load

balancing since the amount of job is not known prior to execution. The splitting strategy

suggests to split the problem in r subproblems, which are considered as tasks that need to be

spread over p processors. The solution of the original problem is the minimum of all solutions

computed in the manner. In the centralized dynamic load balancing, the tasks are handed

out from a centralized location (pool) in a dynamic way. The pool is managed by master

processor. The master processor sends the task to each slave processor from the pool. Once

the slave processor is done, it sends back the result to master. The master processor keeps

track of slaves and sends the tasks on demand to idle slaves.

3.4 Lim itation of the Existing M ethods

The several methods have been proposed for protein threading. But due to the complexity of

the problem, most of the researches solve only limited version of actual problem.

While it is true that secondary structure elements are more conserved than the loop re­

gions, significant structural information is carried by the residues, that are in the loop regions.

Insertions and deletions are also observed between similar proteins even inside corresponding

secondary structure elements. Threading methods that can handle full alignments without

arbitrary restriction of core elements will thus have an important advantage [71].

Many of above methods suffered with exhaustive searching, some of them compromise

with quality. Due to the computational bound, branch-and-bound and divide-and-conquer

algorithms are limited to thread only small sequence and templates (< 400 residues). Similarly

linear programming based approach considers resultant core energy in stead of actual residue-

residue contact for simplicity of the problem.

[88] discusses a genetic algorithm approach for PTP, however their method threads a

query against a single template only instead of a template database. Furthermore, their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48 3.4 Limitation of the Existing Methods

technique is very slow and therefore can not be used for very large query and/ or template.

They report results on short queries/ templates with length of 300 amino acids at most.

Since threading a query to each template is still a computational challenge, the current

threading algorithms only thread a single query against a single template. In practice, we

need to thread a query sequence onto multiple number of template-structures. To thread

against many templates, the given algorithm is applied sequentially many times, each time

with a different template. Large quarries cannot be threaded that way against a template

database, within satisfactory and respectable time bounds, particularly where the templates

are large. In matter of fact, vast number of proteins have never been attempted due to their

sizes [89].

The parallel method we have observed in [3] concentrates in structure-structure alignment

in order to see the similarity between two protein templates. They used this parallel approach

to facilitate a profile-based search in threading. The method in [89] [90] observed substantial

speed up in their linear-programming based approach for large proteins using a optimization

software, but the method is limited to thread a single query onto a single structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Proposed M ethod

In this chapter we described our proposed method for solving protein threading problem.

Our method concentrate only on the algorithmic part of protein threading problem. We have

demonstrated a new method based on evolutionary strategy applied on a suitable problem

representation of Yadgari et. el. 2000 [88]. The problem representation, fitness function,

mutation and recombination operators used, and ES algorithm has been discussed in details.

In this thesis we also applied parallel computation on our evolutionary strategy based method.

4.1 Proposed ES Approach

4.1.1 Problem Representation

Our problem representation is same as in Yadgari [88]. Given a query Q and a template

T, we seek to find the best alignment between Q and T. Given a template database D =

Ti, T2, , Tn , we seek to find the best alignment from the set of best alignments between Q

and all T (1 < i < N). The template that yields the best alignment is therefore, the solution,

we are looking for. Thus finding the best alignment between Q and all templates in D gives

the threading solution, and the search space is the space of all possible alignments. In order

to apply ES to the protein threading problem, we therefore, need to represent an alignment

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50 4.1 Proposed ES Approach

appropriately for ES to evolve it and find the best solution.

An alignment between Q and given T is represented as a fixed length string of integers

S = Si, f>2, S3, ••••, S |T | where 0 < S* < \Q\, 1 < i < |T|, and S* = |Q|.

Fig 4.1 shows the correspondence between a query-template alignment and an integer

string representation of the alignment. S* = 0 represents a structure deletion; Si — 1 rep­

resents a match between a given amino-acid in the query and a template position (a match

means that the amino acid is assigned to that position in the template’s structure); S) > 1

represents gaps in the sequence when aligned to template.

Sequence - S W F I G N A L G A T S

Structural

S W F I - - G N A L T S

Structure
Deletion

S equence
Deletion

Figure 4.1: Representation of the problem formulation and schematic view of the threading
process

The schematic view of the threading process is shown in Fig 4.1. The template’s structure

is presented by the bold trace through the circles that represent the structural positions (12

in the example). The query sequence on the top is threaded through this structure and the

associate coding 111100111311 is shown in the bottom. In this threading, the first 4 amino

acids S, W, F, I of the query are matched to the first 4 structural positions of the template

(that is S, W, F, I assume the position 1, 2, 3 and 4). Next in the threading, the amino-acid G,

N, A assume the positions 7, 8 , 9 respectively, which are then set to values 1 in the encoding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51 4.1 Proposed ES Approach

Position 5 and 6 of the template are not matched to the query (this is represented by the dash

line) and thus specify the structural details in the alignment (thus, corresponding positions in

the encoding are set to 0). The following amino-acid in the query, L takes position 10 of the

template, but its corresponding position in the encoding is set to 3 (not 1) to signify that after

this structural position, the next 2 amino-acids of the query are not matched to any structural

position (this is an example of sequence deletion where the deleted letters are G and A). Thus

a position Si = v in the encoding specifies that the next v — 1 letters of the query are not

matched to any structural position while the current amino-acid takes position %. Last query

letter, T and S are matched to last positions and corresponding positions in encoding takes 1

each. Below, we show the alignment between Q and T, and the corresponding encoding E.

T: 1 2 3 4 5 6 7 8 9 10 11 12
Q: S W F I G N A L G A T S
E: 1 1 1 1 0 0 1 1 1 3 1 1

In this paper, we use (p + A) — E S as our optimization method. Initially, we generate a

random population of p parents, that is each parent is initially a random integer vector, S =

Si, S2 -...S\t\, where 0 < Si < \Q\, 1 < % < |Tj and such that the constraint = 1*51

satisfied.

4.1.2 Fitness Function

Besides an appropriate problem representation, the design of our appropriate objective func­

tion is also very fundamental to the process of ES. The objective function is needed to assess

how good or bad a candidate solution is. Candidates are selected according to their objective

values and the best p candidates among the current candidates are always selected as the

new parents for the next generation. In a protein molecule, the bonds between the atoms

of its amino acids determine the three dimensional conformation of the molecule in space.

Thus the three dimensional structure (or the fold) of the problem is decided by the linear

sequence of its amino acids. A protein always assumes a stable fold, and such fold has always

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52 4.1 Proposed ES Approach

the lowest possible energy state. Therefore, an energy function can be used to determine, if a

query protein, such that when some of its amino acids match some positions of the template

protein, it folds at the lowest possible energy state. The energy state of the template’s fold

is known as well as its atomic coordinates in three dimension. The query’s actual fold is

unknown but we want to predict it. When the query is aligned to the template (as discussed

earlier) and folded accordingly, we can then compute the energy of the fold. If the actual

unknown fold of the query is the same as template’s fold, then it will have the lowest energy

state (which is the energy of the template’s fold), assuming that the fold is attained from the

best alignment between the query and the template.

Many energy functions are defined in literature. In this paper, we use the energy function

discussed in [88] which is itself based on a more complex energy function studied in [11].

Given an alignment, its total energy (that the energy of its associated fold) is

E'total E single T Epair T Egap ?

where ESingie and Epmr are computed from the energy matrices of [11], and Egap is the

alignment gap penalty function which is set to 3 energy units. Etotai is a function of the amino-

acid type, the distance between amino-acids, the hydrophobicity of the amino-acids and the

alignment gaps. Esingie describes how well the individual amino acids of the query match their

assigned structural positions of the template. Epair reflects the pairwise interactions between

the amino-acids. We refer the reader to paper [11] for discussion of how Etotai is computed

from the energy matrices.

The best solution vectors are those whose corresponding alignments or associated folds

have the lowest energy. Since our ES maximizes an objective function, we transformed energy

function appropriately for ES to maximize. The transformed energy function is the objective

function that ES will use in order to select the best solution. We will use the term fitness

function as the energy value is normalized such that it is between 0 and 1.

Given a query Q, a template T and a solution vector S — Si, S2 -—S\t\, our fitness function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53 4.1 Proposed ES Approach

is defined as

E(S) - EnF(S) = 1 -
Emax Emin

where E (S) is the actual energy of the fold associated with the alignment corresponding to

S, Emm (respectively Emax) is the lowest (respectively highest) bound on the energy value and

can be obtained by assigning to each column of the alignment, the minimum (respectively

maximum) possible energy value from the energy matrices. Thus we always have Emin <

E(S) < Ernox. The closer E(S) is to Emin then the lower is the energy of the fold, and thus

the larger is the fitness of S.

4.1.3 M utation

Mutation helps evolutionary process to explore new areas of the search space by generating

totally new solution vectors. It also helps to maintain the diversity of a population, which in

turn helps to avoid getting stuck in local optimum solution. Mutation operation randomly

alter certain positions of a given solution vector. With our representation, mutation should

be designed in such a way that it always produces valid solutions, that is the constraints

~ IQ I and 0 < Si < \Q\ must be satisfied on resulting solutions. Our mutation

operation gives valid vectors and is as follows:

We randomly generate an integer ne[0, -p] and randomly select two positions pi,p2e[l, |T|],

Pi 7̂ P2 , to alter. We then increase Sp1 and decrease Sp2 by a same small random amount

me[0, given a parent vector S to produce a mutant vector. The offset m must be selected

such that 0 < SPi ± m < \Q\, to ensure the validity of the mutant. This process of altering a

pair of positions is repeated n times. For example, if parent S = 1110401031, n = 1, p-\ = 4,

P2 = 9 and m = 2 then after mutation , the mutant will be 1112401011. It should be noted

that mutation operation is applied A times on the current set of parents to yield A mutants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54 4.1 Proposed ES Approach

4.1.4 Recombination

We also applied a recombination operator on randomly selected pairs of parents. Recombi­

nation aims to combine genetic materials from two parents and pass them on to the next

generation, depending on the fitness of the parents. First, we generate a random integer

ne[0, p] as the number of recombination operations to apply on the current population of /i

parents. We then repeat the process of recombination n times, as follows:

Randomly select two parents Si and S2, randomly generate a binary string M (we call

’mask’) and construct the offsprings Ci and C2 in the following manner: at position p, C\p <—

Sip and C2p S2p if Mp = 1, else Clp S2p and C2p <- Sip if Mp = 0. The following

example shows the recombination process.

51 = 1 1 0 2 0 1 0 3

52 = 2 0 1 0 3 1 0 1

M - 1 0 0 1 0 1 1 0

Ci = 1 0 1 2 3 1 0 1

C2 = 2 1 0 0 0 1 0 3
We may need to correct a child C), if it is not valid, so as to satisfy the constraints discussed

earlier. In the example, Ci and C2 are invalid and thus will be corrected to make them valid.

4.1.5 ES Approach for Protein Threading

Figure 4.2 illustrates our ES approach for protein threading, called EST algorithm. The basic

iteration of EST is shown in Figure 4.3. Starting from a random initial population U of p

candidate solution, we create subsequent generations by recombining members of U and then

create a set of M of A mutatants from the set of R of recombinants, and finally, the next p

parents are selected from the best in R and M. We also keep track of the best solution so far

and preserve it across generations. The inner while-loop locally optimizes the current best

solution in (R \ J M) in order to escape a local optimum trap, and the best solution so far is

updated only if it is weaker than the current best in R and M. Our method is elitist since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55 4.2 Parallel ES for Protein Threading

• Given Q and T, create random population U — {U\, U z , U ^ }

• Evaluate (U)

• Bestso- far <— best solution in U

• Repeat

- R = {i?i, R 2...., R/j,} *— Recombine (U)
- M = {M1,M2,....,Mx} <- Mutate (U)
- Evaluate (R(JM)
- Current <— best solution in R |J M
- i * - 0
- While F(current) < F (Best so-far) and i < 10 Do

* C <— Mutate (Current)
* B <— Mutate (Best s o - fa r)
* Current <— best among C, B and Current
* i <— i + 1

- If F(Current) > F(Bestso-far) Then
* Bestso- far <— Current

- U = {U\, U2, U f j , } <— best solutions in R (j M [j{Current, Bestso- far}

• Until stopping criteria attained

• Return Bestso- far

Figure 4.2: EST Algorithm.

the best solution in a current generation and the best solution so far are passed on the next

generation.

4.2 Parallel ES for Protein Threading

We propose two parallel evolution strategies for protein threading. The Single Query Single

Template Parallel ES Threading (SQST-PEST) method threads one query against one tem­

plate. The Single Query Multiple Templates Parallel ES Threading (SQMT-PEST) method

threads one query against a set of templates. Both parallel approaches are implemented on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56 4.2 Parallel ES for Protein Threading

Parents for
generation, g

Recombination:
Combination of
genetic codes

-CorrectionRecombiiants

Mutation:
Change in code

Descendants

-Evaluation, (RUM)

-Local Optimization

-Selection

delete

Parents for
generation, g + i

l2211

Figure 4.3: Iteration of EST

grids architecture. The parallelization are based on master-slave architectures, that is, one

processor, the master, is selected to distribute tasks among other processors, the slaves, which

process their given tasks independently of each other. The master collects results from slaves

and returns the best threading solution. The following sections discuss SQST-PEST and

SQMT-PEST algorithms.

4.2.1 SQST-PEST Approach

Figure 4.4 shows the SQST-PEST algorithm for threading one query Q against one template

T. Figure 4.5 visualizes the flow chart of SQST-PEST approach.

Given a query Q and a template T, the master processor creates an initial population

U = { U i , ..., U/t} randomly. The master recombines and mutates U to produce a population of

R recombinants and M mutants, and then distribute the set R 1J M among p slave processors.

Each slave, Sj(l < j < p) receives the global best-solution so far, along with its subset Pj

from the master. S j evaluates each solution in Pj , locally optimizes the current best solution

in Pj , and returns its best solution so far to the master. The master collects each slave’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57 4.2 Parallel ES for Protein Threading

1. Master: Given Q and T

• Create random population U = {Ui, ..., Utl}
• Bestso- far <— Best solution in U
• Repeat

- R = { R i , R tI) <— Recombination (U)
- M = {Mi, <— Mutate (U)
- Split R { J M into p sets Pi, ...Pp
- Send Best so - fa r and set Pj to slave Sj, 1 < j < p
- Receive Bestso- far j, F{Pf) from Sj
- Best so - fa r <— Best of all Bestso- far j , 1 < j < p
- U = { U i , L f } <— Best in (Jj=i pj U \J~?i{Best-SO-farj}

• Until stopping criteria reached
• Return Bes tso .far

2. Slave Sj\ Given Pj = {[Jx, - JJ„ } and Bestso- far
P

• Evaluate (Pj)
• Current j <— Best in Pj
• i <— 0
• While F(Currentj) < F(Bestso-farj) and i < 10 Do

- Cj <— Mutate(Currentj)
- Bj <— Mutate(Bestso-farj)
- Currentj Best among Cj, Bj, Current j
- i = i+l

• If F(Currentj) > F(Bestso-farj) Then
- Bestso- farj <— Currentj

• Send Bestso-farj , F(Pj) to Master

Figure 4.4: SQST-PEST Algorithm

best solution and the energy and fitness values of elements in Pj, called F(Pj). The master

appropriately updates the global best-solution so far, and then selects the best p solutions

from R \ J M and each slave’s result to create a new set of parents U = {Ui,.... t/M}. The

master repeats the process of recombination, mutation and so on until our stopping criteria

is attained. The stopping criteria is either a convergence (that is the global best solution is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58 4.2 Parallel ES for Protein Threading

Initial Alignments, U
X

Recombination, R

; Mutation, M
Master

Split (RuM) and send each part
to each slave with best so far

f Evaluation &
Loca
mizatioil

C Sla

Get best alignment & Fitness
values from each slave

No

Selection, U

Convergence

STOP

Figure 4.5: Flow chart of SQST-PEST

not improving much for some time) or a maximum number of generation. In SQST-PEST,

the evaluation of the fj, + A solutions in the current population is done in parallel. The

slaves evaluate solutions and perform local optimizations independently of each other

and in parallel. This approach allows to evolve very large population quickly, as the fitness

evaluations and the local optimization are very computationally costly, and thus should be

parallelized.

SQST-PEST can only thread one query against one template. We can thread against t

templates by calling SQST-PEST t times within a loop, once for each template. This method

is called serial SQST-PEST and can be used for threading single query onto multiple template.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59 4.2 Parallel ES for Protein Threading

1. Master: Given Q and Ti,T2, ...,Tt

• Split {Tu ..., 7]} into p sets of T \ T 2, ...,TP
• Send Q and set Tj to slave Sj , 1 < j < p
• O b ta in best solution Bj from each Sj

• Return Bestso- far <— best in {B i ,B 2, ..., Bp}

2. Slave S f Given Q and Tj = {T(,7|'..T//p}

• Apply EST on inputs Q and T?, 1 < i < t /p
• Return the best solution so far to the master

Figure 4.6: SQMT-PEST Algorithm

4.2.2 SQMT-PEST Approach

Q - Query sequence
T j ... Tt-Template

... Sp-Processors

T1... Tp- Set of templates
Bj ... Bp- Best Alignment score

Figure 4.7: Visualization of SQMT-PEST

In order to efficiently thread a query Q against multiple templates 7}, T2, ...31, we can call

SQST-PEST t times; each time with different template 7}, 1 < * < t. We propose another

method, the Single Query Multiple Template Parallel ES Threading (SQMT-PEST) for doing

fast multiple threading. Figure 4.6 shows the SQMT-PEST algorithm and the parallelization

is visualized in Figure 4.7. In the algorithm, there are p slave processors and each slave Sj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60 4.2 Parallel ES for Protein Threading

receives a distinct subset, Tj of templates from {T\, T2, along with the query (each

contain t /p templates). A slave Sj will then proceed to apply EST algorithm t /p times, each

time with a distinct template from Tj . The master returns the best solution out of the best

results obtained from the slaves.

The splitting of the set of templates into different slave processors distributes the load

among the slave processors. Since t > p, each of the first (t mod p) slave processors take

(f + 1) numbers of templates. The rest of the processors take ~ templates each to make at

best-possible even distribution of load. If (t mod p)=0, the load is equally distributed among

the processors in respect of number of template. The splitting strategy is shown in Figure

4.8:

• k = t mod p

• T* = 4p
• for i = l..p

- If k > 0
* Ti = I + 1
* k = k — 1

— Send T® templates to slave processor, i

• End for

Figure 4.8: Splitting strategy in SQMT-PEST Algorithm

In this approach, each slave runs the EST algorithm f times independently of other slaves

and in parallel. This allows the possibility of threading a query against large template sets

in reasonable time. Also, as a matter of future research, SQMT-PEST will run much faster

if the slave use SQST-PEST in place of EST algorithm. Notice also that the slaves do not

communicate with each other (and need not to) since they each solve distinct threading

problems; the problems are distinct because the templates are distinct proteins with possibly

distinct structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61 4.3 Complexity Analysis

4.3 C om plexity Analysis

The calculation of the fitness value is usually the most costly (in time and space) operation in

evolutionary computation, as it involves decoding a solution’s representation and processing

the solution in its original form in order to obtain its fitness. Given a query Q, a template T

and a candidate solution vector S, the asymptotic complexity of the energy E(S) is 0 (|T |2);

since the computation of the Epair term is the most expensive and that the entry for each

pair of positions (or amino acids) in T is searched for in the two dimensional energy matrix

of [11]. Both our mutation and recombination algorithms run in 0 (|T |) time each. In all our

experiments, we use p < A (where A = bp, b > 1) and A = a|T| (a > 0). This helps to define

good upper bounds on our algorithm.

The main operations in our algorithms are identified as follows:

Recombination: The recombination needs to create a binary string random number (0,

1) as ’mask’. Depending on the bits in binary string, it chooses the bit from either selected

parents to create recombined individual. This operation is linear and it is applied on the

length of the template structure, ITI, thus, the computation for each individual represents

0(|T |). The recombination is applied only on the parents, which is consisted of p individuals.

Thus the complexity of recombination is pO(\T\)

Mutation: The mutation involves choosing a random offset value and two random position

in which the offset value is added to one position while the offset value will be subtracted from

other position. Each offspring is generated with a random number of adding and subtracting

offsets. The operation is linear and applied to the bits of the individual, thus the computation

for each individual represents 0(|T |). In each generation, number of total mutants are A and

thus the complexity of mutation operation is AO(|T|).

Fitness evaluation: The fitness evaluation involves pairwise energy computation. It in­

volves to determine the energy from a certain position to all other positions in the place

holder of the template structure using two dimensional energy matrix and distance as de­

scribed in 5.1.1, and get the resultant energy for that certain position. Similarly, we need to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62 4.3 Complexity Analysis

determine the resultant energy for all other positions and total energy score is the sum of all

those resultant energies for each position. Since the total position in a solution is \T\, the

operation 0(\T\2) and since the evaluation is done for (p + A) individuals in a generation,

total complexity for fitness evaluation is (p + A)0(|T|2)

Choosing best so far: Choosing best so far involves comparing the fitness value of (p + A)

individuals and choose the best. Then it replaces the best so far (if better). Thus the

complexity for choosing the best so far operation is 0(p + A) + 0(\T\)

Local optimization: Local optimization needs to do mutation of current and best so far,

evaluate them and choose the best if improves. Since the operation involves fitness evaluation,

so the complexity of this operation is 0 (|T |2).

Choosing parents (p best): Choosing parents involve comparing fitness among (p + A)

individuals and choose the p individuals to replace the old parents. Thus the complexity of

this operation is pO(p + A) + pO(\T\).

4.3.1 Complexity of EST

In a given generation, the evaluation of solutions and the local optimization contribute the

most to the complexity of EST. Summing the complexities of all main operations, we obtain

an asymptotic complexity of (p + A)0(|T|2) + pO(p + A) = ^ ^ O d T l3) since A = bp = a\T\,

(a > 0 , b > 1).

4.3.2 Complexity of SQST-PEST

In a given operation, we must distinguish between computation time and communication

time. Given p slaves, the master sends ^ + 1 solutions and receives the best current solution

together with the evaluated fitness of + 1 solutions. Since the master communicates with

a slave through a queue under MPI and that it takes O(T) time to send/ receive a solution,

therefore, the communication complexity is l̂ O (\ T \) =

The master’s computation includes recombination, mutation, and selecting best solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63 4.3 Complexity Analysis

and next parents. This gives an asymptotic complexity of (p + A)0(|T|) + pO(X) + pO(p) =

^ 0 (| 7 f) + § 0 (|7 » .

A slave’s computation only includes evaluation and local optimization. Therefore, it runs

in ^ 0 (|T |2) time, that is ^ O (^) .

In one generation of SQST-PEST, the local time is the sum of communication time and

computation time. SQST-PEST runs in ^ 0 (| T | 2) + pO(X + p) = ^ 0 (^) + fO(|T|p)

time. The second term comes from the last statement in the repeat loop of the master. In that

statement, we apply ’’multiple elitist strategy”, that is the best solution from all slaves are

added to the current population and the best p current solutions will be used as next parents.

Multiple-elitism adds a time overhead as p increases, however, such overhead can be avoided

not applying multiple elitism. We can randomly replace a current solution by best-SO-far and

select p best solutions out of p. + A current solutions instead of p + A + p solutions. Somehow,

SQST-PEST can improve EST in search by taking advantage of parallelism with the cost of

having an extra time overhead, that is linear with p. If we disallow multiple elitism, then

SQST-PEST will be p times faster strategy than EST, given p slaves.

4.3.3 Complexity of SQMT-PEST

Unlike in SQST-PEST, the slaves do all the work in SQMT-PEST. Each slave calls EST

sequentially on Q and | templates (t > p) and returns its best solution to the master.

Therefore, a slave’s computation time is ^(p + A)0(|T|2) + | pO(p + A) = s^ O (^ - t) .

The master’s computation time is 0(f) + O(p) + 0(|T |); its only task is to send/ receive

data to / from slaves and find the best solution out of p results from slaves. The communication

time is O(-yf). The time complexity of SQMT-PEST is therefore rÂ 0 (' ~ t) + 0(p). Again,

SQMT-PEST is p times faster than EST. Here the master does not repeat, so the overhead of

0(p) time due to its last statement occurs only once. Although SQMT-PEST is cubic on \T\,

it is also linear on t (the number of templates). The serial SQST-PEST (that is SQST-PEST

is called sequentially on t templates) has the same complexity as SQMT-PEST.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Experim ental Results and Discussion

In this chapter we will summarize the structure prediction performance of our ES threading

method. In literature, several criteria is used to evaluate the performance of structure pre­

diction. Since our research has focused only on alignment algorithm of protein threading, we

decided to the following experiments with existing tightest scoring function available. 1. Self

threading 2. Comparison with existing methods. Our all computational analysis are based

on the score function of Bryant & Lawrence 1993 [11], because it has the highest convergence

rate found (99.8%) [37]. The experiments in this chapter illustrate the promise and remaining

challenges of protein threading algorithm. In our proposed method of threading, our objective

is to determine the optimal alignment, not to test the scoring function.

1. Self threading:

Self threading is a method that determines how good the protein sequence finds it own

structure using the protein threading algorithm. In self threading method, the sequence of

the template structure is sent as an input of the query sequence for the protein threading to

align onto its own structure. It illustrates the effects due to structural environment similarity

and propagated pairwise interactions. Self-threading a sequence through its own structural

model is an exercise in which alignment errors are explicit and certain behaviors expose very

clearly. On the other hand, accurate self-threading across a library of diverse structure types

is a challenging task for any current score functions. The determined alignment error to each

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

secondary structures and comparing optimal energy with its native energy can help to assess

the threading model.

2. Comparison with existing methods

The problem representation of our ES protein threading is based on the representation

of Yadgari et. al. 2000 [88]. Several interesting problems arise when threading is applied

to homologous extension modeling in cases where very little primary sequence similarity

remains. These include hydrophobic mismatch, the presence of active site residues in unusual

structural environments, and secondary structure length mismatch. The globins are a well

studied case among other threading studies, in which a common structure has been conserved

while the amino acid sequence has diverged to the point of unrecognizably between some

family members [11] [69]. In such situations, we need to check how good protein threading

can predict the structural similarity. Yadgai, 2000 published his data for protein threading of

sequence and structure taken from homologous protein family. We compared our test results

with those data presented by Yadgari 2000. Some data has been changed in Protein Data

Bank and our test results are observed on present PDB database.

The strengths of our parallel methods are investigated using different experiments. We

found parallel protein threading method in literature review, which is based on linear pro­

gramming approach [89]. They used a parallel optimization tool, CPLEX software for protein

threading. Although [89] used different energy function and approach as us, we have nev­

ertheless compared our approach with [89] ’s on their data set. Yanev 2003 reported that

the data set, they have used are large enough and never been attempted to test before for

the lack of proper algorithm and computational power. We reported our parallel method to

attempt for threading on such larger sequences and structures. We will present all details in

the following sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66 5.1 Implementation

5.1 Im plem entation

The protein threading algorithm was implemented in C++ programming language. The

parallel implementation was done using Message Passing Interfaces (MPI). The program is

interactive for different test conditions and allows for extensive experiments without changing

codes. The data set, energy matrices and experiment files are organized in different folders.

5.1.1 Implementation of Fitness Function

Figure 5.1: Interaction diagram for Pairwise interaction between amino-acids

We have used the distance-specific pair-wise interaction potential values and hydrophobic

energies from [11] for scoring the fitness of the alignment of the sequence onto the structure

as described in 4.1.2. The method is outlined as: Given an alignment, its total energy (that

the energy of its associated fold) is

Etotal Esingle T Epair + Egap,

where Esingie and Epair are computed from the energy matrices of [11], and Egap is the

alignment gap penalty function which is set to 3 energy units. Etotai is a function of the

R

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67 5.1 Implementation

amino-acid type, the distance between amino-acids, the hydrophobicity of the amino-acids

and the alignment gaps.

In a threading alignment, the residues of query sequence occupy the place-holders of the

template structure. To determine the energy score for such an alignment, we need to follow

the interaction diagram based on the distance between two place-holder position as shown in

Figure 5.1. In the figure, Ci and C) are two segments on a protein sequence and amino acids

are shown on it. The nearby amino acids have the interaction or repulsion between them

depending on the types of amino acids and the distance in between them. The interaction

diagram in Figure 5.1 has shown that the amino acid, D on the C« has the interaction with R

and N. Similarly, R has interaction with D, N and G. On the other hand, G has interaction

with R, N and V while V has interaction with only G. The total energy score is the sum

of resultant interaction-score of each amino acids onto the template structure, such as D, R,

N, G, V. This pairwise interaction depends on the distance between two amino acid. If the

distance between two amino acid is more than 10 A, [11] assumes no interaction between

them and the interaction is taken in the intervals of 0-5, >5-6, >6-7, >7-8, >8-9, >9-10A.

The pair-wise potential is shown in Figure 5.2 and 5.3, and the hydrophobic potential which

represents the singleton energy of the amino-acid as it occupies a certain position of the

template structure is shown in Figure 5.4. All these energy tables are adopted from [11]. The

total energy is the sum of pairwise and hydrophobic energy. The two different energy scores

can be shown as follows:

Pair-wise Energy, Epair = Ei=o E^o,|*-j|>5Pair_wise Matrix Score (A*, Ajt dist(i, j)),

Singleton Energy, Esingie = X^Jo,|j-j|>5 Hydrophobic Matrix Score (A*, dist(i,j))

where dist(i,j) = Euclidean distance between et-carbon of position holder i to j in the

template. A* and Aj represents two amino acids occupied at position holder i and j.

The implementation details of energy function is as follows. The interaction potentials

are read from the matrices and stored in a three dimensional array in which the first index

represents the distance group and other two represents the indices of other interacting amino

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68 5.1 Implementation

A -A S%K0 26-4
0 . 0 ? - * , u * 0 .1 1 * -0 .K 5 4 -0,«>4'4

! 4 * . 5 * 6 0-, < „ .C * » C .1 K - P . 31?
5 . « . n * o . a w 6 , a i » * .5 2 #
-1 > £tt> 0 .2 * * 0 * 6 1 * - 0 . **0. 540
ft ‘148 0 .5 * 5 '- f t . o n l .v ^ .5

* » v l ~ * W * jf 6 .8 2 8 ^ . 2 58

0 8 C “C -> A 0**sp • s ^
0 * 5 -* .< » * * 8 . 2 ^ - « , 3 6 ? - S . l * «
3 - * * . ? » * -15. 8 3 8 - 4 , 3 3 » - 0 - ^ 4

1 .4 * 2 0 , M » - 6 . » » 4 - ^ . 2 4)
T"8 5 .4 5 < » . 5 * -© .* K 3 - 0 .2 ^ 1 - o a < 3

« > ,i *c 0 .5 0 1 & .$ * * e , o * s -<>.8401
6 - 1 * 1 .* * * H t - t t t - 0 , 2 2 . ' ^ 8 .1 2 1

s : ^ **-* a - » w -S
0 - 5 t e * 8 5 .J & 1 •»0s 8 5 t

© «»*$ - O r) 4% 8 .J 2 1 - k , H ?
4~-? 0 . 0 8 ? • 0 . 4 ? * HSr «s*^ ' O . u *

a . m - 0 . 1 3 2
-e.CHMI 18►

4 - J O * 0 , 4 * ? R x*HW *'0.5111 i s . o l ^ * .8 1 #

*r«e r t - « « - «
y $ - 8 . W 0 . 5 4 1 S.C*<2 S . I . ’ I 6 ,1 8 2
5 * 4 - S . * 6 * ~ 1 4 ? \ - 8 . 1 4 6 e . 0 ? - s 0 .7 6 0

’‘ f c . J * * ~ t ,0 * 5 - 0 . 4 1 * S .* 2 4 **,USs
1 ~ * - 0 * 28 4 « « * * * S ^ * 1* 0 .1 2 *

~ ~ 9 .I i3 s -3 3 .4 m - 0 , * 3 4 -S .1 S # v - « . ! * « 8 , m
> - 1 8 M i . a i t - S . * ? * -* 0 ,8 8 ? 8 .0 7 3 * 0 . th 4 t

?-<$: « i 1-21 t - *
8 x i i 7 '4 s ,$ 8 | • O . H * <* * 2 6

* «& ** * 7 ,V * 3 - 0 , ^ 3 2 * „ 8 4 * 5 .1 2 *
£ x 4 3 7 - « , * * * 4 . S 6 3 J 3 .4 » 8

'" -J l G .? * * q . a n 0 . J 4 * * .* * * !
« - § * * * * * 6 . 2 2 5 f i s6 4 ^ 0 .0 5 * o , u <

0 .2 * 1 * , W 0 .0 1 2 0.-S.71

OSU K-A &-I* R -0 8 - 4
<W i -S I, 5 1 0 fi**43 6 .1 3 4 ^ ,2 3 2 * « .? 5 4 ; . 3 i 0
■5-4 H K * * 5 0 .4 2 4 » .* * * ♦ < -6 1 4
4 - ? HSU0** 6 ,5 6 2 - 6 .8 S 2 - 0 . 8 1 5
? '** *t?, »>«*<* « 6 h« 4 « ‘ 6 .6 3 * 0 .8 2 1
* - * *■6. * *4 -SJ.fSJ fc 8 .1 3 6 - 8 . 8 8 2 “ 0 ,2 6 5 8 .0 0 3

5 - 1 a *S.&*3 8 .2 1 1 * 8 .1 t ’V 0 .6 6 4 * 0 , 0 N

M»A $*♦* w -*r # -fc i s - e H~>4
gs*50> <^,6S1 -O x § 3 1 O .O D

5 - 4 * .* !> ! - 8 , 5 * 0 6 .4 4 4 - 0 . 3 § “f - y . O l f
&*»? » , « 2 5 - # . 1 * 6 ^>,523 -U x tT i 0 .5 6 3
M -O .^ & S c ? « ? 43.152 « . 2 2 t 0 * 1 1 4 e . ^ . 6 i
» - * i fc.&JN 8 .0 0 * - 0 . J 2 4 0 . 3 t ^

~ 6 * 0 # ? » ,1 5 * 0 . 0 6 8 o < m

f * i y - * r - c
8 .3 2 2 -*«$?&* 6 .2 6 1 « , ? 4 1

M « „ M * O . I I I J * 5 .4 6 1 O x$S2
s m - s a v ? f i ^ M 0 ,5 5 2 - « x4 1 4 i* x 2 ?J

0 , 6 1 4 & .3 > 6 8 x 2 2 0 -^ .❖ 3 1 6 . 0 H
0 . 1 5 4 8 . 1) 0 « .2 U * - 0 . 0 * 4 -0 .1 * 8

5 -1 ft « < 5 1 a . * * * * , 0 1) ,0 2 2 - o . m C .O i l

r ~ r r ~ A w ~ m F-JU | > <
iV-5 - 5 . 1 * 1 S . * 44 - y .2 T « 23-175 ^ o a i *
S* £ - 4 . 3 ^ t : , 2 ?* 4 . 2 4) -0,O!W) 0 . 346 8 , ' ? ; ?
8 - t 0 . 8 8 0 -8 > J 0 5 0 .8 4 4 -O .IO O
f - S ~ * . R U '0 . 0 4 6 4 .1 H 3 ♦ 9 ,0 4 2 - o . w , ' . ^ 9 i t | . ;
S-~6 - 8 . 0 4 ? - O .S J ? 0 . U 0

t - 2 0 - 6 . 1 2 ? P .P 0 O * * S « - 3 , « 4 ?

0—A §'?» »"«-A ',-c* 2“^
!> ‘ 4A -0 ,1 3 4 I 's4 ? . i f t
f%<34# - C .4 I 6 « 0 > a i 0 ^ 7 4 8 ,0 8 ^ ^ t *3
*5,1 - J ',0 31 > .3 42 . J K >

-8 .'61 -4».J<4 0 .0 2 4 * . l l f S . 081 |« ;
8,<#5a -s?s^6® - 6 ,i2 2 l i . K t 3 . ^ 4 •*>' 5 ?? , »■»♦ -

“'M 2 i 4.1,10 4*<0!* 8 ,0 * 1 r» 0*4 -C .6*1 >< .0 44

0 - 0 ar-o 6.-A « - * 1‘^y
0 .4 * 1 -3 .4 .SS 0 -1 * 2 3;^ ^ ,2 4 . ’ ^ 2 14 0 ,4 7 1

~0»4{v$ - § ,0 0 1 o a * * ~ 0 « l? 4 ‘ 8 , W 8 «*0t -S. §% ,
>0.461; > , n) 6 .1 3 S - 0 .6 8 7 ^ - 7 4 $ 0 ,2 * 4
o»«5* f».03? -0 .4 3 1 - . f 4 D ♦ r |3 * -0 , J > 1 -9 , H i
o . « n ̂ 5 . ^ 6 . f 6 2 -?xSf8J - ^ . 2 16. O .i 4» *» W
0 .1 2 3 0 ,1 * 4 0 n t - 0 ,1 1 ^ -8*137 -S5.4S? 0.^% 3

o - c o - e 4, cl *■ A F-**
- O . S ^ - s v , i« l - U . ^ 8 * . U i - 0 I4.J

8 ,^ 2 0 - 0 ,1 4 8 *£, 8 s V
O,.0-2« ~ s\)7 ? 8 , :» 4 - 3 ,7 3 0 f-. ? ? 5 3 . / * 1 ,v *

-> vC *i »§■. 63& 4 ,144 - 9 ,2 4 * - 0 .9 ? ^ -SI, 16-6
- 8 .0 4 : -*0,053 -ft 4?^ * , 1 4.‘ - o . ; .?4 «<», r ; #

'0 > o » a -“«4x5.7 0 ,1 6 0 8 .1 «» a , «44‘!

1 -* f-4f r~ o t-V -t ~4f $~fe
-St.O)# 1 *£* -5. 4? 5 <4.8 ■• ft 7»8

- 0 . 3#i * 0 ,1 1 1 3 .P 6 4
» , 0 ,8 > t’ 3 .1 7 0 8 .2 *& « .* 1 5'5 a . #* <8

*0 .0 1 5 * 6 .6 4 * v- 196 5 .4 4 ? < -.2 * 8 8 .0 39 0 ,2) *
- 0 .8 * 4 0 .0 4 i 3 .3 3 3 - O .0 IJ 0 .8 2 ',

n , n n 0 .1 1 1 0 .4 7 1 ' •y. 14*i - 0 .2 4 3 8x«F7« S< 222

I* HP a* ^ A' R $. *
1 - 1 H -0 ,0 4 3 K !61 0.4S3? ~S3.&84 '• .0 2 7 - '2 .2 5 ?
's * i i ~ tr .4)2 8*414 xxt *« - 1 .2 2 '
s , t o i ? ,C « 8 , *Q4< o , $ u «* C l# ? , i

- i. 4 « i6 6 8 .3 .72 0 .4 S S - v . 2 | i
8 .2 2 7 « „ 6 2 j - O ^ l i s . a s # 0 .2 ? 4 0 . J 3 I „ im
•8.124 - 0 ,0 5 * 8 .0 2 2 0 .0 4 6 - 0 .8 3 0

4 - t
- 0 .1 * 2 *0.?|3* - 0 , ^ ■ f J S l 0 ,5 * ^
- 0 .2 7 3 - 8 .3 8 7 0 0 .4 ^ 6 -0 .8 7 5 S . 14:2 R .2 ?^

0>*22 - 0 .7 5 4 - 0 .3 ^ 7 8 ,3 8 6 0 , e>0f e.J'T 'S S.34B
“O . m - 0 .1 * 2 - 4 . l t ! 0 ,3 * 0 <7,34? *9 330
*,0151 J - . 9 P * . : * * 'O -.e e i * ,0 0 ? - o . n t ;

—§',05#' ~ o , n * 6,^!J7 -^*,036 O.S.24 -0 X01’ - s t . 2 # :

61^3 IH I fe -r i i - i OrH
8 ,1 * 3 0 .6 4 4 0 < 2 « - 0 , t<2 * ~ 3 .^ S 3 0.7-41
8>.243 6 .1 2 1 & .* ;« '•'t , ^ 8 - P .$? 1 -1 .4 8 6 »* 2*6

0 ,3 7 4 4 ,6 * 2 -n<332 - 0 ,7 3 3 - o ,» * v
0 . 4 I J t . f A a * 0 .2 4 ? ~ e .3 t4 - 0 ,2 71 C i,l3 » O .s T i
* .2 S 5 6 .4 2 4 ■ ^ .0 2 4 -0 * 3 $? -6 * S 5 t 0 * 1 2 3 § .2 3 2
0 .2 3 0 *0-, 434 -0 ,3 7 0 - 8 .2 4 1 - 0 .2 2 0 0 .2 0 ^ c .^ # 1

r-R ?*■« J* 4? r -n fv«
6x2?0 «,4S7 -0x141 - 0 .S 4 8 -8.466 e .IS t -6.36i
,#8 -0«4tX -<5,h3 - 9 / , « '*.>84 >
0.402 Q. 357 -0x5«8 -0.43*

6. 31$ ~«,3M ^ .> 6 ! ^SJ.IW t . l V -0.184
ttxW -6,94*2 ^ ,5 « 4 0,151
0 , 4s24 ^23* -0, SJ«C -3.201 166 - « x $31

i? ~ E M r t i6- I, I* '*
^8,M8 «$<$*« 0.C33 17.382 -0x068

ft, 4305 -y,t32 -a . 212 -0 x 8 3 5 -o.4*r 3 ,0 O f
8 ,* 4 * ♦ 3 * 3 4 8 “ 6 . ^ 1 -4.08* 0 . 1 6 4
l u l l * ‘ 3. H* «,61* - 0 . i f 5 5 133 ~3 6 6 1 - 0 . 0 5 5
-? 07« - a -* 0 3 «.#<44 3, 1*5 x<%S35^
-« a i* 0.63 < o. m 0 . 8 J 6

Figure 5.2: Distance dependant Pair-wise Potential score (adopted from [11])

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69 5.1 Implementation

&~r 8 - 0 0 -2 S-ft 3 HU sr-c *H* 35T— SH3 S -2
- 0 . 164 0x833 6x123 " 6 .2 5 3 ‘ 0 .3 1 4 “ft.SSS » f ,H S 0 .2 9 8 -0 ,K >? *0x166 6 .0 * 6 o .a s «

5 -4 * 0 .2 6 6 - 6 .0 2 8 0 .1 3 2 6 .2 3 7 0 .2 2 1 ”0 .2 5 6 ”6 ,3 7 # -8 * 1 * 6 “0 ,1 7 5 * 6 .2 4 ^ -0 ,0 7 f t - 1 .3 5 9 O x«tl
4 *? 8 ,4 $ * 6 , U * - 8 ,1 2 4 6 .J 2 4 •fi.S M » 8 .2 # # - 0 .2 * # ”0 x12* 6 ,6 ? ? “0 ,2 5 1 . ' J . s u 0 . 4 7 *
7*8 - 0 .2 9 2 0 .2 9 3 6 .0 4 4 0 .0 * 4 - 6 .1 1 5 0 .0 * 5 '■8.81# ”6 -2 2 0 6 .1 1 ? “0 -6 4 4 -”0 .1 * 4 ”8x215 8 .1 3 S
8 -* - 0 .1 8 ? - 0 .8 # * 0 .2 5 1 H 3.04# o . o i i - 0 .4 3 3 * 6 ,8 4 3 - 6 , « 5 - 0 . 2 H 8.0O S 0 ,0 8 * - 6 .0 7 1 0 .6 2 2

8*10 0 .0 2 3 6x2«S 4 , m -OxOM 6 .2 6 5 8 .8 2 2 ”6 .6 3 0 - i , .3 5 # 0x8*3 ”0 _»#4 6 . 6 U - f t ,0 0 4

**n s - r SH* &«•<& T-R T-9 ¥ - 0 r - c ¥*■0 T -I
a * * 0 .3 9 6 - 8 .2 4 6 0 ,2 5 9 6 .3 5 7 a , ft*** ”6 .2 5 0 8 ,6 0 2 8 ,2 9 ft “0 ,0 1 # ”0 ,4 5 3 0 .8 2 1 - 8 .0 0 0
.*-« 0 ,3 6 8 * 6 .6 6 # 0 .8 0 * « ,* « * - 6 .8 4 ? 0.O ?4 ”6 ,1 0 ? * 6 .1 4 ? ~ 0 , m ~ 6 , U 4 8 ,2 6 4 - f t ,093 6 ,8 9 4

0 ,4*1 6 .1 0 ? 0 .0 * 5 8 .8 5 6 “8 ,» 2 2 - 0 .2 5 S - 0 ,6 0 3 -6 .1 S 2 - 0 ,6 3 4 “0 x010 ”8 .8 4 3 O .O il
7 -8 6 .1 * 1 * 6 .5 0 2 * 0 ,8 3 ? 6*8*# - 6 ,1 1 ? *0x456 6 .0 8 5 0 4 1 ? -0 * 6 0 2 * 6 ,1 1 # ”8 .6 1 4 6 .6 6 # 8 ,0 8 *
ft' 9 f t .903 g .« 4 « *4 x 8 9 4 8 . M2 0 ,2 * 2 ”8 .0 2 ? “0 ,8 2 3 8.8ftS - 0 .0 * 8 -8 .6 * 1 ”0 .? < 4 - 0 .0 1 2 e , 0 ^

ft-10 0„Q3« » .o » i *>.882 0 .2 2 * 6 *820 - 6 .0 0 2 8x5#4 - 8 ,0 * 3 8 .0 8 8 ” O .0M

■ *-«! Y~S< T”K ?H* SHT THT f ”T 14” If
« - $ 0 ,6 * 1 0 ,1 4 ? 8 ,0 7 s - O . l ’ o O.Oftt 6x88ft 6 .1 0 S -& .4?0 - 6 .3 1 8 0 , U 1 - 0 ,a # 4 0 .5 3 *
SHfc 4 .0 3 2 6 ,2 8 # -8 .1 0 O o . m 6 . 4 U - 3 .2 S I 6 ,0 3 # ”0 .3 5 * H1<04# <0x0S6 * ,* 3 4
4*7 - 0 .0 4 4 ”6x2*# * 6 .0 7 3 0 .8 2 6 0 .1 5 4 ^ ,4 » 3 6 ,2 8 0 :̂ ! i » t - :: - o . u # ”0 .2 # # 0 ,? * ? ”0 .1 2 0
?-& * 0 .2 5 3 - 6 .0 5 3 9*ao? 6 ,8 0 3 - o . m 0 .0 # 4 - 0 .0 * 3 6 .0 2 8 - 0 ,0 9 4 0 .1 2 5 * 6 < H i
8*% " 8 ,2 2 ? * 5 .0 7 4 -6 -8 S 3 « .8 * S *6x8?# 0 ,3 7 6 - 0 .6 3 1 8 x 0 7 # -0 ,0 1 8 0 .2 0 6 ”8 .5 4 3 0,051 ^ ,141

tr*i« - o . m 0 ,0 3 4 4 ,0 2 6 0*9»ft - 0 ,2 8 # 8 .S 3 8 0 .0 * 6 “8 ,0 3 ft -0 x 0 6 5 6 .8 9 4 “0.221

W*D «HR 1*HI S ^ l H-2. n-vt # -8
6-5 1 21? 9 ,0 * 8 6 ,4 5 # ”0 .08# 8 .0 3 * ”0 .5 0 5 “S . t i S - 8 ,8 ? ? - 0 .1 8 3 - 0 ,2 » 3 - 4 . 3 U «.24<8
5-5 6 ,3 * 4 “0 .1 * 1 0 .7 3 2 - 0 .0 * 6 *0.2331 ”0 .1 # ? -8 .1 2 © - 8 .0 6 * 6 .4 4 1 «0x331 8 ,1 8 3 - » x l# l •H .04?
4*7 H>*U* ”6 ,4 5 0 0 .2 6 4 8 ,1 5 1 8 .2 4 ? 8 .2 8 3 -5.4MI2 “8 .0 3 # * 8 .0 3 * -0 .5 4 8 -O .ftl? 6 ,3 3 *
i ~ s * **** - 8 .4 4 8 * 0 ,3 4 # H 5.234 0 ,2 1 1 0 ,2 4 1 - 6 ,1 6 5 - 6 .1 1 # 6 ,2 3 # -8 < 2 9 3 -0 .J U 3 6 . I t* 6 > r? i
8 - 8 ”0 ,1 4 6 * 8 .2 0 3 8 .1 1 2 - 6 ,8 3 2 0 . 144 6 ,8 3 # -0.63T* - f tv U # 0 ,6 0 9 ~ 8 , 338 0 -1 9 4 0 . 0 2 s

#~16 0 .2 0 8 0 .1 1 3 *0 ,3 # ? 6 ,2 7 0 0 . 044 0 .0 * 1 H 8.23? “8 .0 0 # ”0 , l ? 9 0 .0 9 3 - 0 .0 4 i 0 .0 2 6 ”8 ,2 0 #

¥-R Y-S* ? “» ¥*C ¥-13 Y-e T -« *~3
S*~5 0 .0 4 0 6 ,7 0 ? *8*830 6 , » « *8*«4J 8 ,* # 4 6 ,8 * # * 0 ,0 3 # ”8 ,0 0 4 c . u t “6 ,a « »
3 - i 0 .362 - 8 .0 3 6 6 .0 3 9 0.286 -0 .2 4 f t - 0 ,0 # 2 ft,4 # 5 - 6 . 49a “0,20*7 “8 .1 2 *
4-'; 6 ,$ * * 0 .7 4 3 -8,3.02 -0 * 2 4 1 -0 .1 8 2 -a ,# # # 8 ,3 ft2 - 8 .1 1 1 8*2#? 0 .0 4 ? 0 .1 1 3 8,802 6 .8 9 5
7-9 *> ,u» 4 .7 1 * 0 ,0 7 5 6 .0 4 1 6 ,1 7 * - 0 .2 5 7 8 .2 3 3 - 8 ,0 * 9 f t,260 0 .0 1 8 0 .6 2 4 < 6 .6*3 “6 ,8 ft?
ft-0 -0 x 0 3 2 8 .382 ”0 .0 3 0 0 ,354 8 ,0 # 5 ~ a a # s - 0 .5 1 9 6 .0 4 2 0 .1 4 * f t , l i f t 0x33? “0 .0 8 ? - 0 ,1 3 4

t * l 6 *0 .1 0 ? 0 .4 7 3 *8.842 O .t m 6 .1 0 4 *0,11? -6 .1 3 S 0 .1 3 2 * 8 ,6 7 2 - 0 .0 1 5 0 .0 2 3 6x03# “0 .8 0 $

3MU if nr *h * ¥ -0 V“T 7~*4 M VHl V-H VHS ■©*•0
6 - 0 *0x2*4 - o . a i * * 8 ,5 3 5 0 .0 7 1 6,443: 3 ,4 5 2 -O vt« 5 0 ,1 7 1 -8 .3 S # r O .f t it 6 .2 5 * 6 ,4 * 2 ♦ 6 ,8 2 *
?“* - & .U « ”4 .3 8 4 -0 * 0 4 0 0 ,6 4 1 0* M 1 o , i r ? 0 ,6 3 * 8x122 f t.0 * $ 0x4ftft 6 . 3 U 8 x 3 5 * “* .$ a s
♦ *? 0 .6 2 1 - 4 » U * -0 * 0 8 0 • « n # 8 ,2 3 3 - 0 .0 * 6 -0 ,3 8 2 0 .2 * 9 H .M J 6 .M 3 8 ,M 3 8 ,3 * * “0 ,1 4 3
7 - i 6 .2 # ? ft,*** 6,612 8 .2 1 1 t a t ”0 .2 5 2 - 6 .0 3 7 - 0 ,6 0 # 0 .1 7 9 6 .2 2 2 o . o i i

6 .6 3 # *8,068 - 0 .0 4 * 4 <86* -8.84? 6 .1 « 4 6 .6 * 1 0 -0 3 2 *6x6^8 0 .3 0 } 8 .2 3 4 0 x 3 6 5 0 .8 3 9
f - i a 0 „ 6 5 « - 0*113 -O.Oift -6 -0 7 * * 8 ,0 1 3 0x18ft ft*63» 8 ,2 2 9 *9.011 6 ,0 4 ? 0 ,1 9 0 * , m “ 8 x214

V -9 VH» 6 -6 V-¥ • 1f*f. v h 1 v-ft M V“V
e-s “0 .2 * 1 O .l ig 8 ,1 * 1 0 .6 6 4 -8.293 -Ox 434 0x233 “0 .2 * 5 - 8 ,28 ft 0 .3 5 # 8 ,3 1 * 9 .IS 1 “0 .8 3 4
5-8 9 .2 4 8 o a i # 3 4 » 0*4»> -0 » « 3 3 HK5*2 ft.U? - 0 .3 5 S H .m 6 ,2 # * 0 ,0 3 4 -6x22ft
i-"* 6 .2 3 0 s . s t t 8 .0 9 4 0*20? - 0 .4 8 3 -8 .5 f t# y.ft&s - 0 .3 * 4 -0 -2 1 9 0 .1 3 * 9 .4 0 3 ”6 .8 3 4 “8 .8 ,4 4
1-ft 0 .624 8.205 0,0*0 6 ,2 4 4 “0,234 “0 .2 2 ? 8.82? -8x0*# -6 .1 1 * 6 .1 * 4 8x2*0 0 ,8 # # -8 < 8 # t
«*« * 8 .0 2 4 8.034 8 .144 6.#** *0,38# -6,0*3 - 6 ,1 4 2 - S . 60$ 0 .2 2 4 H5.S7T H 4 J 1 ft. 622

9-10 *0.608 3,133 0.015 - 6 .6 0 * H fr.ftit *6,82* 0 .8 1 3 8 .0 3 * - 8 ,0 7 8 0.8ft? 0 .605 “8 .8 1 $ “8,Cft3

V”¥ V«V P"* P~* pHft r - t |<”SS ^-1,
o*s 6 .61S *8.641 “0 .2 3 1 - 0 .1 3 3 0 .2 IO 0 .0 7 ? 8 .0 9 1 6.512 0.899
5-8 0 .2 4 2 *6 .405 *8.14# -0.02# o.oia ”0,S3t ”4 x 1 * 4 8 x i ? i 11,852 6,0*5 fta it 0.213

- fc .8 * # * 0 .3 3 7 “8 .1 2 # *0.002 ?.o«# e ,2 3 i - 6 ,3 1 # -3.030 8 . It# 0 .1 * 0 8 .8 4 ? -& a * * 9x632
? -* - 6 ,1 * 2 0 .0 1 6 8*050 o a « # 8 . U 4 - f t ,134 » .0 $ 4 ft. 202 Ox«N?» “8 ,0 * 9 “ 8 .3 7 # “ 0x23?

* 6 . i.3? -‘8 ,3 4 1 0.06* 6 .1 0 0 8 .0 7 3 e .2 8 # 6,81# - 0 .0 2 # ftU #« 0 , i0 § - 8 .8 1 2 H I, 19? - 0 v 2 ? l
ft-1 8 - 6 .0 7 4 6.6*2 8.834 8.66S 6 .0 * * 8 .0 2 4 8 .8 2 1 8x00S 8 .0 4 9 0x102 0 ,0 1 2 -6 ,0ft# - 8 .2 4 2

|HH g>~r *■**]P*-? rH f r - ¥ l^ y r-#>
8 -S - 8 .0 2 3 0.343 » .* 2 2 0 .0 3 7 -8.356 ”0 ,1 8 * 0 .2 * 2 - 0 .8 4 3 o - a i o 0 , 8 8 6

- 8 .6 6 2 **0.854 8.804 *0.00? 0 .8 4 # *0,686 - 8 ,6 3 6 -0 .0 0 4 -« ,8?1 8 .8 8 0
ft-** *8 .083 0 .0 * # 0 .8 * 3 8.801 6 .8 ft* - 0 .2 9 * 0 .8 4 1 0 ,0 2 ? - 6 ,2 3 2 0 ,6 0 6
? -# 0 .6 8 6 -0 .857 4 ,6 7 3 “6 ,0 1 6 0.124 6 .6 * ? -8.611 -0 x 3 3 3 6 .0 8 8

0 .9 2 2 H 5.622 - o . n * 8 .0 2 8 8,044 «.8*4 *0.074 -0.O33 * 0 .0 7 6 0 ,6 0 8
W O 0 ,8 * 8 *0 .114 - 0 .3 8 5 6 .0 7 1 0,221 6.851 -6.028 -0.834 a , *60

' P s i m w p o te n t ia l o b ^ m s M h I***. 8«b«I « « ty p e * W J o w iX attim ri 1 - i« tte r o t * m . w ith t ta* pssptafe srwisfta*^! kt,
D k fe ism u > k m U mt% &-•& < ? - 8 ; «**[< $ - If# A

Figure 5.3: Distance dependant Pair-wise Potential score (adopted from [11])

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70 5.1 Implementation

TABUS lit* Hy&vphnVh ftttonthP
S-*s 5—4 *-> #-10

A 0 .v » » -P .IH T -f t .O U - S .n T i
9. o . j i e O.SUi 9 .1 1 1 i» .’M S
:*s 0 .2 Z1 ft. 3 *<0 6 .1 BZ * ,7 1 * * » i i2
P US.444 tt.JT S 0 . 1 0 f t .S JS
C -8 ,3 ,1 1 - f t , t i l * 9 -2 0 #
C 4 .2 * 1 a . l t d 0 .IT # i*2 0 ,1 2 *
’i. 0 ,4 * 5 f r .s m O J « O . i J P
ts. -is.*#* 8 . MM #„«■«« 9 -0 7 ? s ,« P i SKMR
U - « ,M S M i al | | i § c
I - S U M - K , l « -9.IJ3 -0,2*4
i - d a n ~*f,2TT -9,143 ' 0 , i f *
K o„**» e . s 2 i 9 ,2 * 3 W U
n - c i a r r - f t , J34 - 9 , M S •V .J tJ - -5 .2 3 3
r - 0 .2 5 1 - 4 ,1 3 6 •0 „•*!»* • « , I U -2.2*3 -*.2X2
p -flJK f t .s i# O.S22 6-MS
a «Ui04 oacu 8 .1 1 7 «„«»
t 0,6*0 #.011 0 .1 5 4 «,«« 9 ,#32
N * a , iw -0.2*7 ■o.m 4.SM
X -0.2J4 -0.24# -9.ITB -saw
V -S.2M *9,175 - a , 2 «
p ft.o&e -0

‘Pwrsrisw pwlaaiial wwnpewwibi Rw4u*s !ys*» fallbw
■Uttfanl J*j*itar curfew. wrti lit* ptptedti gnra$
1»WBr ■wm'p." Pufefnce tehrssfc « f «• -4: ->6-8; «8K? • f |« *

And A.

Figure 5.4: Singleton Energy score (adopted from [11])

acids. Similarly, the hydrophobic matrices are stored in two dimensional array where the

first index represents the distance group and other one is the index of each amino acids.

The alignment is represented as a string of integers. Thus the scoring of alignment was

done by decoding the string of integers in the sequence of amino-acids and gaps. For each

template structure, the atomic coordinates of amino acids are stored in a flat file database.

The coordinates of alpha-carbon for each amino-acid is stored in a distance matrix. We used

a parser to retrieve the coordinates from the PDB file. The distance between amino acids is

the Euclidean distance between the corresponding alpha-carbon atom of amino acids. From

each amino acid in the sequence we determine the distance of all other amino acids and group

them in the distance intervals. Now based on the distance interval and amino-acid types,

we can get the potential value. All other amino acids those are in contact of certain amino-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71 5.1 Implementation

acid in the alignment are counted to determine the potential energy in the same manner.

The resultant of all those contact energies represents the contribution on energy score for a

certain amino acid to hold that position. Similarly, summing up all resultant energies for each

non-local position gives the energy score of that sequence-structure alignment. We did not

consider the energy between neighboring (i.e. local in the sequence) residues. The rational is

that neighboring residues will always be in contact (i.e. the physical distance between them

is small) and thus they will have the same contribution to the total energy independent on

the fold they are in. The nonlocal pairwise interactions omits the contacts between residues

whose sequence indices differ by less than 5 as the consideration is taken in [11] [88]. The

energy score determined for the alignment is used to calculate the fitness of that alignment

as described in 4.1.2.

5.1.2 Implementation of ES

The implementation of evolution strategy starts with implementing the problem represen­

tation and it includes to create a set of initial parents. Mutation as discussed in 4.1.3 and

recombination as discussed in 4.1.4 are implemented to generate the population for the next

generation. The fitness of each individual in the population is determined as described in

5.1.1 and 4.1.2 The parents for the next generation are chosen as the principle of (p + A) -

ES as described in 2.4.

5.1.3 Implementation of Parallel Architecture

The two architectures for singleton threading and multiple threading is implemented as de­

scribed in chapter 4. The program is coded in C-H- and Message Passing Interfaces (MPI)

functions are used to send the jobs in different processors and receive back the results in

master-slave architecture as described in 4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72 5.2 Experimental Environment

5.2 Experim ental Environment

The environment of the implementation is used as the SHARCnet (Shared Hierarchical Aca­

demic Research C om puting Network, h ttp ://w w w .sh a rcn e t.c a /). T he SHARCNet is an High

Performance Computing (HPC) platform that spans 11 leading academic institutions in South

Central Ontario and exists to support leading-edge research. The set up of our programming

environment is based on the one of SHARCNet systems, called Tiger located at University of

Windsor. The system specification is as follows:

Compaq Alpha ES40 8 x 833 MHz,

4 GB memory,

Gigabit Ethernet With Fiber Patch network.

The system is ideal for serial/ parallel MPI code development and large computation. But

since the SHARCNet did not marge yet in the grid architecture, we are limited to use only 8

processors of Tiger. All our experiments are done in above environment and results are based

on that.

5.3 Experim ental D ata Set

The experimental data set is taken as the real biological data from PDB (Protein Data

Bank, http://www.rcsb.org/pdb/), maintained by the Research Collaboratory for Structural

Bioinformatics (RCSB), and managed by Rutgers, The State University of New Jersey and the

San Diego Supercomputer Center (SDSC), University of California, San Diego (UCSD). This

database can be accessed at http://www.rcsb.org/pdb/. The PDB is the biggest database

for protein sequence and structural data. Each protein can be accessed in the PDB using the

pdb id of that protein. The sequence of amino acids, secondary structures of protein such as

cc-helix, /3-sheet and loops, and atomic coordinates can be accessed in the .pdb formatted file.

BioPerl parser or any other self defined parser can be used to extract the coordinate data.

The sequence can be downloaded directly in fasta format.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sharcnet.ca/
http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/

73 5.4 Results and Discussion

The potential matrices and hydrophobic potential matrices are given in Bryant and

Lawrence, 1993 [11].

5.4 R esults and D iscussion

The most important criterion for a threading algorithm is that it should be good enough

to discriminate a query’s structure from the other structures from the set of templates. To

evaluate the performance of our algorithm, we first applied self-threading with EST and

SQST-PEST to see if it returns the correct answer for a given query Q and its own template

T (that T is Q with its structure information). In self-threading, the energy of T is called

native energy, Enatvue, and can be obtained from the energy matrices of [11] given Q. We

compared the native energy of proteins with the optimal energy found by self threading. EST

determines a (near-)optimal energy, Ethr for given Q and its template T.

Yanev 2003 [89] used a parallel approach for protein threading. Although [89] used different

energy function as us, we have nevertheless compared our approach with [89] ’s on their data

set. Yanev 2003 reported that the data set, they have used, are large enough and have never

been attempted before due to slow computation.

Next, we tested the performances of SQST-PEST and SQMT-PEST. We did experiments

both on running times and quality of threading, for each parallel algorithm. Furthermore, we

compared serial SQST-PEST and SQMT-PEST on quality of threading and times. In serial

SQST-PEST, given Q, a set of t templates, we call SQST-PEST t times to thread Q against

each template.

5.4.1 System Parameters

The evolution strategy, that we used, falls in the category of (p + A)-ES. The parameters p

is the number of parents for each generation and A is the total number of mutants in each

generation, p and A are set according to the length of a given template, that is |T|. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74 5.4 Results and Discussion

200
Time (EST)

&erigy(SOST) —h— Time (SQ ST)
150

01 1O0

■50

gi-100
01
c -150

ID
-200

-250

-3O0

Figure 5.5: EST vs. SQST-PEST as A increases as a fraction of |T| on threading lgal(583)-
lad3_a(452)

350

Energy (SQMT)

Energy (sSQST)

Time (SQMT)

Time (sSQST)250

150

1-5 |T|-50

-150

ID

-250

Figure 5.6: SQMT vs. serial SQST-PEST as A increases as fraction of |T| on query lbbh_a -
templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291)

used n as | and performed the experiment for varying number of mutants as fraction of |T|

(i.e., A as .., 2|T|) for 1000 generation. We did the same experiment for all our EST,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75 5.4 Results and Discussion

SQST-PEST, SQMT-PEST and serial SQST-PEST. EST and SQST-PEST were applied on

one of the largest threading lgal(583)-lad3_a(452). SQMT-PEST and serial SQST-PEST

were experimented on query lbbh_a - templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128),

leca(136), lapa(261), lcca(291). The threaded energy and computation time is plotted in

respect of number of A (i.e., as a fraction of |T|). The experimental result is shown in Figure

5.5 and Figure 5.6. For the parallel methods, we used all 8 processors. All EST, SQST-PEST,

SQMT-PEST and serial SQST-PEST show that the computational time increases linearly for

increasing number of A. The threaded quality for each experiment yields with better result

(decreases) as the number of A increases. The result also shows clearly that the better value of

threaded energy is obtained at A > \T\ and the threaded energy does not change significantly

as the A exceeds |T|. At the larger A (A > |T|), the computational time increases without

improving on the threaded energy. Based on this observation, we consider A=|T| and based on

that we used (f l + |T|)-ES for all of our EST, SQST-PEST, SQMT-PEST and serial-SQST.

The number of generations in each experiment is 1000. In all our experiments, we run our

algorithm 5 times and give the average result of 5 runs as well as the standard deviation. All

times are reported in minute, Ethr in the table are the energy value.

5.4.2 Experiments with EST

We used EST algorithm to compare its experimental results with existing method. We also

performed self-threading to determine the strength of the algorithm. The experiment used

parents, \T\ mutants for 1000 generation. The experimental results are shown as follows:

Threading Comparison W ith Existing Methods

Table 5.2 and 5.1 compare the results between our EST and the GA method of [88], on

the same protein tested in [88]. For a given query and template, we show energy score and

the threading time of GA and EST. It should be noted that [88] used 1000 generations and

a population size of 300 solutions for their GA. EST outperformed GA on all inputs: it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76 5.4 Results and Discussion

gave the lowest energy and fastest time. The comparison is shown as Ee% ^ ^ iar% x 100 and

Tyadgan-Test x ^qq rpĵ -g motivates that the elitist selection of ES algorithm and our algorithm
J- y a d g a r i

for mutation and recombination are well-adopted for threading problem.

The results of our EST without and with recombination are also reported in the Table 5.1

and 5.2 respectively. The experimental result shows that EST with recombination gives the

better quality of threading although it increases in computation time than that of without

recombination. The recombination operator combines the genetic materials of two different

individuals and transfers the genetic information to the offsprings. The matter of fact that

the recombination operator in our algorithm is applied on the parents and only the better

individuals in a generation (elitist selection) are chosen as parents for the next generation.

Thus it combines the genetic information of two better individuals and it is expected that

better parents may recombine to better offsprings. The well adopted recombination performs

better in evolutionary computation and the result showed that our recombination fits well for

Table 5.1: EST vs. GA Threading [88] without recombination
Query

(Length)
Template
(Length)

Yadgari 2000 EST without recomb
Ethr Time Dfhr Comp. Time Comp

lbbh(131) 2ccy(128) -175 29 -173.1±4.3 -0 .6% 18.3±3.1 36.9%
lash(147) lcca(291) -111 33 -121.2±4.1 9.2% 32.2±3.3 2.4%
2pfl(156) lkdu(85) -94 13 -91.2±4.9 -3.0% 9.2 ±2.5 29.2%
2rhe(114) ltlk(103) -122 20 -109.5±4.4 -10.2% 11.1±2.5 44.5%
lccr(112) 451c(82) -37 14 -39.5±4.6 6 .8% 8.1±1.9 42.1%
lrtc(268) lapa(261) -491 120 -479.5±5.1 -2.3% 77.5±4.1 35.4%

Table 5.2: EST vs. GA Threading [88] with recombination
Query Template Yadgari 2000 EST without recomb

(Length) (Length) Ethr Time Ethr Comp. Time Comp
lbbh(131) 2ccy(128) -175 29 -191.5±3.8 9.1% 22.5±2.9 22.41%
lash(147) lcca(291) -111 33 -165.2±4.1 48.8% 36.1±3.3 -9.4%
2pfl(156) lkdu(85) -94 13 -121.4±3.9 29.1% 11.3 ±2.7 1.3%
2rhe(114) ltlk(103) -122 20 -141.5±4.1 15.98% 14.3±2.5 28.5%
lccr(112) 451c(82) -37 14 -56.1±4.1 51.6% 10.3±2.1 26.4%
lrtc(268) lapa(261) -491 120 -513.2±5.1 -4.48% 83.5±4.2 30.4%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77 5.4 Results and Discussion

this threading problem. We have determined the effect of recombination operator in all our

experiments with EST, SQST-PEST and SQMT-PEST.

Self Threading

To evaluate the performance of our algorithm, we applied self-threading with EST to see if it

returns the correct answer for a given query Q and its own template T (that T is O with its

structure information). In self-threading, the energy of T is called native energy, Enative, and

can be obtained from the energy matrices of [11] for given Q. We compared the native energy

of proteins with the optimal energy found by self threading. EST determines a (near-)optimal

energy, Ethr for given Q and its template T.

Table 5.3 shows the results of self-threading with EST. A given row shows the native energy

{Enative) of a query and the actual lowest energy (E thr) obtained by threading the query against

itself, and the accuracy of EST. For a given sequence, the self threading accuracy is calculated

as (1 — IEthE~auv?m I) x *s 100% accurate when (E thr) = {E nauve)- The table shows

the self-threading result with EST. The protein lcca yields less than 100% accuracy, although

EST actually gave an energy lower than EnaUve. EnaUve should be < Ethr bat our result

shows that Ethr < Enative for lcca protein. This is an exceptional behavior of protein that

shows that some proteins may not always in global minimum energy in respect of the energy

matrices. The experimental result shows that the proteins larger than 400 amino-acids could

not find the own template in self threading. Thus, we recommend that our present algorithm

for EST should be limited to use in threading for the protein that has length of less than

400. The effect of recombination is found in lcem(363) where without recombination, the

query could not find the template, but it found the template with recombination. All in all,

the result show that EST is very accurate and can be trusted for threading proteins against

non-self templates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78 5.4 Results and Discussion

Tab e 5.3: Self threading with EST
Sequence
(Length)

Enative EST with recomb EST wout recomb
Ethr Result Time Ethr Result Time

lkdu(85) -14.9 -14.9 100% 10.1 -14.9 100% 8.7
ltlk(122) -139.5 -139.5 100% 13.6 -139.5 100% 11.8

2ccyA(128) -79.2 -79.2 100% 21.1 -79.2 100% 18.1
lapa(261) -122.2 -122.2 100% 78.3 -122.2 100% 73.2
lcca(292) -119.9 -124.5 96.2% 86.3 -124.5 96.2% 79.5
lcem(363) -199.2 -199.2 100% 110.2 -193.5 97.1% 100.1
lgpl(432) -211.3 -211.3 100% 129.5 -203.8 96.4% 116.6
3grs(478) -176.1 -173.4 98.5% 139.1 -167.1 94.8% 123.5

5.4.3 Experiments with SQST-PEST

The SQST-PEST aims to thread on the larger protein sequences and templates with better

time and threading quality. The strength of SQST-PEST has been tested using self threading

with the larger proteins found in PDB. We also did the experiments with SQST-PEST for

large threading examples reported in [89]. The performance of SQST-PEST on different

number of processors are also reported.

Self-threading with SQST-PEST

The SQST-PEST has been applied on the larger protein where our EST failed to find the own

template in self-threading examples. We have used 8 processors for all these experiments and

the result is shown in Table 5.4. The experimental result shows that SQST-PEST successfully

finds the native structure in self threading where some proteins (larger than 400 sequence-

length) failed in EST. As it can be noticed that our algorithm for SQST-PEST described in

5.7 uses the local optimization for the current best result in each slave processors. Then the

current best from each slave processor is sent to the master processor where all the current

bests are compared and finally updates the global best. Thus the parallelization of expensive

fitness function and local optimization in each slave processor empowered SQST-PEST to

successfully find the own template for the larger protein as large as of 700 sequence-length in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79 5.4 Results and Discussion

an affordable time. Our other experiments indicate that using of more slave processors for

larger protein may exceed this limit of size of protein and will yield with better threading

quality as well as computation time.

Table 5.4: Self threading with SQST-PEST
Sequence Enative EST with recomb EST wout recomb
(Length) Ethr Result Time Ethr Result Time

lcem(363) -199.2 -199.2 100% 31.4 -199.2 100% 27.8
lgpl(432) -211.3 -211.3 100% 38.5 -211.3 100% 33.6
3grs(478) -176.1 -176.1 100% 41.1 -176.1 100% 37.5
lgal(583) -231.1 -231.1 100% 52.6 -231.1 100% 47.1

lw63_A(618) -273.2 -273.2 100% 58.1 -273.2 100% 51.6
101g_A(722) -366.8 -366.8 100% 68.3 -359.6 98.1% 61.1

lmvw_A(840) -311.9 -298.7 95.7% 81.2 -291.6 93.49% 69.7

Results of SQST-PEST for Large Proteins

Table 5.5: SQST-PEST vs. Yanev [89] without recombination
Query Template # o f

proc.
Yanev
Time

SQST wout recomb
(Length) (Length) Ethr Time Comparison

2bmh(455) lcem(363) 4 11.6 -298.1±5.1 18.3±2.1 -57.8%
3min(522) lgpl(432) 4 13.3 -392.2T4.7 22.2±3.1 -66.9%
2cyp(294) 3grs(478) 5 34.2 -251.3T4.2 21.1 ±2.5 38.3%
lgal(583) lad3_a(452) 5 43.2 -212.5±4.5 23.2±3.1 46.3%

Table 5.6: SQST-PEST vs. Yanev [89] with recombination
Query

(Length)
Template
(Length)

o f
proc.

Yanev
Time

SQST with recomb
Ethr Time Comparison

2bmh(455) lcem(363) 4 11.6 -323.5±3.3 23.2±1.8 -100%
3min(522) lgpl(432) 4 13.3 -419.1±3.8 29.5±2.1 -121.8%
2cyp(294) 3grs(478) 5 34.2 -271.3±3.5 26.3±3.1 23.1%
lgal(583) lad3_a(452) 5 43.2 -228.2±3.4 31.4±2.9 27.3%

We compare SQST-PEST with the approach discussed in [89]. Yanev [89] implemented a

parallel linear programming approach for protein threading on some large proteins. However,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80 5.4 Results and Discussion

Yanev used different energy function and different approach than SQST-PEST; so we can only

compare threading times to see how affordable is our computation time. Table 5.5 and 5.6

shows the performance of SQST-PEST with and without recombination on the proteins used

in [891. The comparison is made as T/an^-T^ x ^qq SQST-PEST gave results comparable
L J J -y a n e v

to Yanev’s; sometimes they are better though some others are worse. Notice also that we

achieved better times than Yanev on its two hardest pairs of query-template’s (see last two

rows).

Performance of SQST-PEST

7D - W ith re comb.

Without recomb.60 -

5 [i -

3D -

20 -

Nun be r of Slave P rocessors

Figure 5.7: Performance of SQST-PEST on lgal(583)-lad3_a(452) as p increases.

Next we reported the performance of SQST-PEST on the hardest pair of query and tem­

plate used in [89] (see the last row of table 5.6), as the number of slave processors increases

from 1 to 7. The pair is (lgal, lad3_a) and was the hardest threading task in [89]. Figure 5.7

shows the performance in time of threading the query lgal against the template lad3_a with

and without recombination as the number of slave increases. This is consistent with the time

complexity of SQST-PEST. Table 5.7 shows the performance in energy for the same input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81 5.4 Results and Discussion

Table 5.7: Performance of SQST-PEST on lgal(583)-lad3_a(452) as p increases.
of proc. SQST with recomb SQST without recomb

Ethr Time Ethr Time
2 -216.8T3.8 70.5±1.9 -196.1T4.4 64.4T2.1
3 -220.1T4.1 48.5±2.1 -202.4T3.4 42.1±1.8
4 -224.2±3.9 36.4±2.9 -206.1T4.6 30.6T2.6
5 -228.2±3.4 31.4±2.7 -211.6T3.4 25.3T2.3
6 -232.6T4.1 28.5T1.9 -215.5±4.1 23.8±1.8
7 -233.3T3.3 25.4T1.8 -219.9T3.8 20.6T 2.1
8 -234.8±3.4 23.6T1.6 -221.5T4.3 18.1T1.9

pair as we add more slaves. As one can see adding more slaves yields better energy. This

is due to the improved search strategy of SQST-PEST given more slaves. We also reported

the results of SQST-PEST with and without recombination in Figure 5.7 and in Table 5.7.

The effect of recombination improved the quality in SQST-PEST but did not have effect on

time and energy in increasing the number of slaves. This also complies with our SQST-PEST

algorithm since the algorithm does the recombination operation in the master processor.

300

SQMT wthnecomb.
SQMT wtfout recomb.250

200

150

100

Nunber of slave processors

Figure 5.8: Performance of SQMT-PEST (with and without recombination) on query lbbh_a
- templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) asp
increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82 5.4 Results and Discussion

5.4.4 Experiments with SQMT-PEST

The SQMT-PEST aims to thread single query with Multiple templates. We tested SQMT-

PEST on query lbbh_a with 7 different templates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128),

leca(136), lapa(261), lcca(291) with different number of slave processors. The performance

in time of SQMT-PEST with and without recombination is, shown in Figure 5.8 in terms of

computing time with varying number of slave processors. The execution time of SQMT-PEST

depends on the size of the largest template. Recall that each slave calls EST many times and

sequentially on number of input templates. Thus some slaves will work harder (run longer)

than other slaves, and the slave that receives the largest template or set of larger proteins will

run the longest. SQMT-PEST can be well benefited if each slave processes the same number

of templates, that if t mod p = 0 and well distributed with the length of proteins.

Table 5.8: Performance of SQMT-PEST on query lbbh_a - templates 451c(82), lkdu(85),
ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) as p increases.________________

of proc. SQMT with recomb SQMT without recomb.
Best-fit Template: Ethr Time Best-fit Template: Ethr Time

2 2ccy_a: -191.5±3.5 273.2±2.8 2ccy_a: -176.1±4.1 233.1T2.2
3 2ccy_a: -192.1T3.7 197.8T3.1 2ccy_a: -176.8T3.9 163.7T2.4
4 2ccy_a: -192.4±4.1 144.7±2.6 2ccy_a: -177.1±3.9 118.4±2.6
5 2ccy_a: -191.5±4.5 112.7±2.9 2ccy_a: -177.5±4.5 100.5T1.9
6 2ccy_a: -192.8±4.1 100.2± 2.1 2ccy.a: -177.2±4.1 94.3±2.1
7 2ccy_a: -193.2T4.1 96.5±2.9 2ccy_a: -178.2±4.2 90.2T2.7
8 2ccy_a: -193.5±3.6 91.7±3.5 2ccy.a: -178.5±3.6 87.3±2.9

Table 5.8 shows the energy results of SQMT-PEST on the same data set, and for each

value of p. It returned the same best-fit template without significant improving of energy

values. It also complies with the algorithm since, in SQMT-PEST, each slave performs the

same EST for the templates sent by the master but slaves are working independently. The

experimental result shows that the effect of recombination in SQMT-PEST gives better quality

in threading but does not affect on varying number of processors. But the computation time

with recombination takes longer compare to without recombination if less number of slaves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83 5.4 Results and Discussion

are used. This is because the recombination is done in slave processors in SQMT-PEST.

5.4.5 Comparisons between SQMT-PEST and Serial SQST-PEST

_________ Table 5.9: Serial SQST-PEST vs. SQMT-PEST with 7 slaves_________
Query

(Length)
Template
(Length)

SQMT-PEST Serial SQST-PEST
Ethr Time Ethr Comp. Time Comp.

lbbh_a 2ccy_a(128) -193.5±4.1 91.7 -215.3±3.6 11.3% 63.9 30.3%
(131) lapa(261) -183.2±3.2 ±3.5 -194.2±3.1 5.8% ±3.1

lcca(291) -164.4±3.8 -172.1±3.6 4.7%
lkdu(85) -134.1±3.4 -145.3±3.8 8.4%
ltlk(l03) -131.2±3.3 -136.5±3.3 4.1%
451c(82) -129.1±3.2 -137.2±4.1 6.3%
leca(136) -116.6±3.1 122.1±4.1 4.7%

SQST-PEST can only thread one query against one template. We can thread against t

templates by calling SQST-PEST t times within a loop, once for each template. We com­

pared the performances of serial SQST-PEST and SQMT-PEST on the same data set as in

the previous section. We returned the threading result on query lbbh_a with 7 different tem­

plates 451c(82), lkdu(85), ltlk(103), 2ccy_a(128), leca(136), lapa(261), lcca(291) for both

methods. Table 5.9 shows the results of both algorithms with 7 slave processors for threading

protein lbbh_a against 7 different templates. The threading quality in serial SQST-PEST is

better in all 7 threading compare to SQMT-PEST. Again serial SQST-PEST is faster than

SQMT-PEST. The comparison of threaded energy and time is shown as x 100

and Tsq™~^“aqst x 100 respectively. In serial SQST-PEST, since we are using SQST-PEST

to thread onto each of the template structures, each threading is done on 7 different slave

processors. This facilitates serial SQST-PEST to use the power of better local optimization

in each of 7 slave processors (as SQST-PEST algorithm) and that’s the reason it outperforms

SQMT-PEST which allows to perform EST in each slave processor only.

In the set of template structures all templates are of different length and this causes

unbalance in SQMT-PEST since we do not split the structure information in different slave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84 5.4 Results and Discussion

processors (i. e., we send one structure to a slave). In SQMT-PEST, the slave with the largest

protein will work longer than other slave processors. On the other hand, in serial SQST-PEST,

it performs the expensive fitness evaluation simultaneously in different slave processors. The

splitting of offsprings for each generation is better balanced than SQMT-PEST. It contributes

on running SQMT-PEST slower than serial SQST-PEST.

300

250 - SQMT-PEST
Serial SQST-PEST

c

150 -

i - 1 DO ■

0 1 2 3 4 5 6 7 8

Number of slave processors

Figure 5.9: Serial SQST-PEST vs. SQMT-PEST as p increases

Table 5.10: Serial SQST-PEST vs. SQMT-PEST as p increases
of processors Best-fit Template: Ethr

SQMT-PEST Serial SQST-PEST Comparison
2 2ccy_a: -191.5±3.5 2ccy_a: -191.6±3.8 .05%
3 2ccy_a: -192.1±3.7 2ccy_a: -198.1 ±4.1 3.12%
4 2ccy_a: -192.4±4.1 2ccy_a: -204.3±3.3 6 .2%
5 2ccy_a: -191.5±4.5 2ccy_a: -210.1±3.1 9.7%
6 2ccy_a: -192.8±4.1 2ccy_a: -212.6±4.1 10.3%
7 2ccy_a: -193.2±4.1 2ccy_a: -214.1±3.6 10.8%
8 2ccy_a: -193.5±3.6 2ccy_a: -215.3±3.6 11.2%

Figure 5.9 shows the performance in time of both algorithms as the number of slave

increases from 1 to 7. Although serial SQST-PEST is faster than SQMT-PEST for all values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85 5.4 Results and Discussion

of p, both algorithms suffer the load imbalance problem. In serial SQST-PEST, the unbalance

happen when p does not divide (p + A) and thus some slaves work larger than other slaves;

therefore, for two consecutive values of p, the reduction in running time is small, we can take

a better advantage of SQST-PEST if (p + A) mod p = 0 and t mod p = 0. In SQMT-PEST,

the different sizes of the template structures is also a concern. The slave with the largest

protein or with a set larger proteins will cause unbalance in SQMT-PEST and work longer

than other slave processors. That’s one of the reason that serial SQST-PEST performs faster

for all values of slave processors, p.

Table 5.10 show the predicted structure for each value of p on the same data set for both

algorithm; they both returned the same structure prediction with serial SQST-PEST giving

better energy values. It also clearly noticeable that as p increases, the threading quality is

increasing with serial SQST-PEST while SQMT-PEST did not have significant change in

energy value. This is the same reason as SQST-PEST performs better quality than EST.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion and Future Directions

6.1 Sum mary of Work Done

The evolutionary strategy, applied on protein threading involves several aspects: problem rep­

resentation, designing efficient genetic operators such as mutation and recombination, using

the fitness criteria based on the energy function that evaluates the individuals for surviving

in the next generation. We proposed an evolutionary strategy of (/j, + A)-ES and implemented

the ES threading method. Our system parameters in protein threading and ES with our

proposed recombination performed better in the quality of result and in computational time

than similar approaches involved in literature review. The proposed ES with recombination

performed better in threaded energy though its execution is slower than without recombina­

tion. The experiments with self-threading show the strength of our algorithm both for EST

and SQST-PEST.

Since protein threading involves large sequential computation and repeating the same

operation with a large number of different data sets without further communication, it is

well suited for parallel computation. We proposed and implemented two different methods

of parallelization and both of them contributed in reduction of large sequential time for

protein threading. Our method, SQMT-PEST is adopted for involving protein threading in

structure prediction, where it needs to thread the query sequence with multiple structures in

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87 6.2 Limitation and Future Work

the template database. On the other hand, SQST-PEST facilitates to attempt in threading

large sequences, which were rarely been attempted before due to lack of a suitable algorithm

and lack of computational power.

The experiments illustrate that both SQST-PEST and SQMT-PEST reduce large com­

putation time. To facilitate the SQST-PEST method in structure prediction, we used SQST-

PEST to run in serial with multiple structures. The method performed better than the

SQMT-PEST method that splits different templates in different processors.

Though what we have shown are some crude experiments, they are sufficient to indicate

that our method of protein threading can be well suited for structure prediction.

6.2 Lim itation and Future Work

The results that we have presented, indicate that evolutionary strategy is a promising ap­

proach to the protein threading problem. Although the threading shown here may not be

guaranteed to find optimal and consistently good results since the problem is very compli­

cated and search space is huge. But the algorithm consistently finds the better score than

structural alignment and the genetic algorithm based method proposed in [88]. It also consis­

tently finds the structure in self threading for certain lengths of templates. Since we have used

evolutionary strategy instead of genetic algorithm, the strategy for overcoming local optima

is a concern. Our strategy of using local method explained in 4.1.5 performed better when

attacking local optima.

Choosing mutation offset to be part of the length of sequence (Q/4) gives the diversity

of descendants and hunts for possible solutions. We plan to continue investigating on the

mutation offset, other mutation operations and use of some other suitable recombination

operation for generating descendants more efficiently.

The parallelization technique we have developed, is suitable for attacking large sequential

computations of database search in the protein threading problem. We are aware of the fact

that threading a large sequence with large structure is still a computational challenge both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88 6.2 Limitation and Future Work

for correctness and time. There are some large data sets of protein sequence which are never

been attempted. The evolutionary strategy, by nature is well suited to parallel computation

of criteria evaluation and our SQST-PEST performed better in that respect. The multiple

local optimization in SQST-PEST showed significant improvement in searching for the best

alignment. Thus, we can test our SQST-PEST program in greater number of processors for

larger queries and template structures.

Our future plan is to combine SQMT-PEST and SQST-PEST with an efficient parallel

program so that while the program simultaneously does the threading with multiple struc­

tures, the threading of query with a structure will also be done simultaneously in parallel

processors (i. e. each slave of SQMT-PEST will run a SQST-PEST instead of EST). This

may contribute to a larger reduction of time to overall protein-threading-based structure

prediction.

Load balancing in the slave processors is a concern for the performance of parallel com­

puting. The fact of serial SQST-PEST and SQMT-PEST is that they are having with similar

complexity but serial SQST-PEST runs faster. One of the reason behind that is because

of load balancing. This also opens up the issue of future research. A template database of

equal-size of structures can be used to see the performance of SQMT-PEST and serial SQST-

PEST. Load balancing in parallel methods can be improved by sending work on demand to

idle processors.

The ES threading and its parallel techniques can be extended further for future research

in protein folding and some other protein structure prediction methods. Heuristics may be

used to generate initial parents for efficient searching in protein threading. By extending

this threading concept with partially determined X-ray/ NMR data may improve structure

prediction. Solution obtained from ES threading could be a good starting point of ab-initio

method. We can improve the parallelization methods using some hybrid approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] T. Akutsu. Protein structure alignment using dynamic programming and iterative im­

provement. IEICE Trans, on Information and Systems, E79-D:1629 1636, 1996.

[2] T. Akutsu and S. Miyano. On the approximation of protein threading. Theoretical

Computer Science, 210(2):261-275, 1997.

[3] T. Akutsu and K. L. Sim. Protein threading based on multiple protein structure align­

ment. Genome Informatics, 10:23-29, December 1999.

[4] S. F. Altschu, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lip-

man. Gapped blast and psi-blast: a new generation of protein database search programs.

Nucleic Acid Res 1997; 25:3389?f02, 25:3389-402, 1997.

[5] C. B. Anfinsen. Principles that govern the folding of protein chain. Science, 181:223-238,

1973.

[6] H. M. BerMan, J. Westbrook, Z. Feng, G. gilliland, T. N. Bhatt, H. Weissig, I.. N.

Shindyalov, and P. E. Bourne. The protiein databank. Nucleic Acids Research, 28(1):235-

242, 2000.

[7] J. R. Biekowska, R. G. Rogers Jr., and T. F. Smith. A method for optimal design of a

threading scoring function. In Proceedings of the third annual international conference

on Computational molecular biology, pages 25-32, 1999.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90 BIBLIOGRAPHY

[8] C. L. Brooks, M. Kaxplus, and B. M. Pettitt. Proteins: Atheoretical perspective of

dynamics, structure and thermodynamics. John Willey and Sons, New York, 1990.

[9] Dr. S. H. Bryant. Evaluation of threading specificity and accuracy. Proteins: Structure,

Function, and Genetics, 26(2):172-186, October 1996.

[10] S. H. Bryant and S. F. Altschul. Statistics of sequence-structure threading. Current

Opinion in Structural Biology, 5:236-244, 1995.

[11] S. H. Bryant and C. E. Lawrence. An empirical energy function for threading protein

sequence through folding motif. Proteins: Structure, Function and Genetics, 16:92-112,

1993.

[12] S. K. Burley, S. C. Almo, J. B. Bonanno, M. Capel, M. R. Chance, T. Gaasterland,

D. Lin, A. Sali, F. W. Studier, and S. Swaminathan. Structural genomics: Beyond the

human genome project. Natural Genetics, 23:151-157, 1999.

[13] T. L. Chiu. Optimizing potentials for protein structure prediction, inverse protein folding

and protein folding. PhD thesis, UNIVERSITY OF MICHIGAN, 1999.

[14] C. Chothia and A. M. Lesk. The relation between the divergence of sequence and struc­

ture in proteins. EMBO Journal, 5:823-836, 1986.

[15] C. Clementi, H. Nymeyer, and J. N. Onuchic. Topological and energetic factors: what

determines the structural details of the transition state ensemble and ’on-route’ inter­

mediates for protein folding? an investigation of small globular ptoteins. Jopurnal of

Molecular Biology, 298:937-953, 2000.

[16] J. Digalakis and K. Margaritis. Parallel evolutionary algorithms on mpi. cite-

seer.ist.psu.edu/585825.html, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91 BIBLIOGRAPHY

[17] R. L. J. Dunbrack, D. L. Gerloff, M. Bower, X. Chen, O. Lichtrage, and F. E. Cohen.

Meeting review: The second meeting on the critical assessment of techniques for protein

structure prediction (casp2). Fold Des, 2(27-42), 1997.

[18] D. Fischer. 3d-shotgun: A novel, co-operative, fold recognition meta predictor. Proteins:

Structure, Function and Genetics, 51:434-441, 2003.

[19] D. Fischer, A. Elofsson, L. Rychlewski, F. Pazos, A. Valencia, B. Rost, A. R. Ortiz, and

R. L. Dunbrack Jr. Cafasp2: The second critical assessment of fully automated structure

prediction methods. PROTEINS: Structure, Function, and Genetics Suppl, 5:171-183,

2001 .

[20] D. Fischer, L. Rychlewski, R. L. Dunbrack Jr., A. R. Ortiz, and A. Elofsson. Cafasp3: The

third critical assessment of fully automated structure prediction methods. PROTEINS:

Structure, Function, and Genetics, 53:503-516, 2003.

[21] L. J. Fogel, A. J. Owens, and M. Walsh. Artificial inteligence through simulated evolution.

New York: John Wiley, 1996.

[22] A. Godzik, A. Kolinski, and J. Solnick. A topology fingerprint approach to inverse protein

folding problem. JMB, 19:227-238, 1992.

[23] W. Gropp, H.S. Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.

MPI - The Complete Reference, Volume 2, The MPI Extensions. Te MIT Press, 1998.

[24] J. H. Holland. Outline for a logical theory of adaptive systems. J Assoc. Comput. Mach,

3:297-314, 1962.

[25] E. S. Huang and S. Subbiah. Using a hydrophobic contact potential to evaluate native and

near-native folds generated by molecular dynamics simulations. J Mol Biol, 257(3):716-

25, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92 BIBLIOGRAPHY

[26] IBM. IBM Optimization Solutios and Library Guid and Reference. IBM corporation, 3

edition, 2001.

[27] ILOG. CPLEX 7.1 Reference Manual. ILOG, Worldwide Information Centre, Montain

View, CA, March 2001.

[28] Sippl M. J. Knowledge based potentials for proteins. Current Opinion in Structural

Biology, 5(2):229-235, 1995.

[29] D. Eisenberg J. U. Bowie, R. Luthy. A method to identify protein structures that fold

into a known three dimensional structure. Science, New Series, 253(5016):164—170, Jul

1991.

[30] D. T. Jones, M. Tress, K. Bryson, and C. Hadley. Successful recognition of protein

folds using threading methods biased by sequence similarity and predicted secondary

structure. Proteins: Structure, Function, and Genetics, 37(S3):112—120, 1999.

[31] L. N. Kinch, J. O. Wrabl, S. S. Krishna, I. Majumdar, R. I. Sadreyev, Y. Qi, J. Pei,

H. Cheng, and N. V. Grishin. Casp5 assessment of fold recognition target predictions.

Proteins: Structure, Function, and Genetics Fifth Meeting on the Critical Assessment of

Techniques for Protein Structure Prediction, 53(S6):385—409, October 2003.

[32] J. R. Koza. Genetic programming: On the programming of computers by means of

natural selection. M IT Press, Cambrigse, MA, 1992.

[33] M. A. Kurowski and J. M. Bujinicki. Genesilico protein structure server meta-server.

Nucleic Acids Research, 31(13):3305—3307, 2003.

[34] R. Lathrop, J. Bienkowska, B. Bryant, L. Butorovic, C. Gaitatzes, R. Nambudripad,

J. White, and T. Smith. Analysis and Algorithms for Protein Sequence-Structure Align­

ment, volume chapter 12, chapter 1998, pages 227-283. Computational Methods in

Molecular Biology Elsevier Press, Amsterdam, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93 BIBLIOGRAPHY

[35] R. H. Lathrop. The protein threading problem with sequence amino acid interaction

preferences is np-complete. Protein Eng., 7(9):1059-68, Sep 1995.

[36] R. H. Lathrop and T. F. Smith. A branch-and-bound algorithm for optimal protein

threading with pairwise (contact potential) amino acid interactions. Biotechnology Com­

puting, Proceedings of the Twenty-Seventh Hawaii International Conference, 5:365-374,

January 1994.

[37] R. H. Lathrop and T. F. Smith. Global optimum protein threading with gapped align­

ment and empirical pair score functions. J Mol Biol, 255(4):641-65, Feb 1996.

[38] A. M. Lesk and D. R. Bosell. Homology modelling: inferences grom tables of aligned

sequences. Current opinion in Structureal Biology, 2:242-247, 1992.

[39] J. T. Linderoth. Topics in Parallel Integer Programming. PhD thesis, Georgia Institute

of Technology, August 1998.

[40] L. Lundstrom, L. Rychlewski, J. Bujnicki, and A. Elofsson. A neural-network based

consensus predictor that improves fold recognition. Protein Science, 10(11) :2354—2362,

2001 .

[41] A. Z. Machalek. From genes to proteins: Nigms catalogs the shape of life. NIH Record,

53(4), February 2001.

[42] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database of protein cores. Proteins:

Structure, Function and Genetics, 23:356, 1995.

[43] V. N. Maiorov and G. M. Crippen. Learning about protein folding via potential functions.

Proteins, 20(2): 167-73, 1994.

[44] V. Mairov and G. Crippen. Contact potential that recognizes the correct folding of

globular ptotein. J. Mol. Biol, 227:876-888, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94 BIBLIOGRAPHY

[45] A. Marin, J. Pothier, K. Zimmermann, and J. F. Gibrat. Frost: A filter based recognition

method. PROTEINS, 49(4):493-509, 2002.

[46] L. A. Mirny and E. I. Shakhnovich. Residue-residue potentials with a favorable contact

pair term and an unfavorable high packing density term, for simulation and threading.

J Mol Biol, 256(3):623-44, 1996.

[47] L. A. Mirny and E. I. Shakhnovich. Protein structure prediction by threading, why it

works and why it does not. J Mol Biol, 283(2):507-26, Oct 1998.

[48] A. G. Murzin, S. E. Brenner, T. Hubbard, and Chothia C. Scop: a structural classifi­

cation of proteins database for the investigation of sequences and structures. Journal of

Molecular Biology, 247:536-540, 1995.

[49] C. Orengo. Classification of protein folds. Current Opinion in Structural Biology, 4:429-

440, 1994.

[50] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton.

Cath - a heuristic classification of protein domain structures. Structure, 5:1093-1108,

1997.

[51] J. P. Overington. Comparison of three dimensional structures of homologous proteins.

Current opinion in Structureal Biology, 2:394-401, 1992.

[52] T. N. Petersen, C. Lundegaard, M. Nielsen, H. Bohr, J. Bohr, S. Brunak, G. P. Gippert,

and O. Lund. Prediction of protein secondary structure at 80% accuracy. Proteins,

41:17-20, 2000.

[53] A. A. Rabow and H. A. Scheraga. Improved genetic algorithm for the protein folding

problem by use of a cartesian combination operator. Protein Science, 5:1800-1815, 1996.

[54] I. Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien

der biologischen evolution. Stuttgart: Frommann-Holzboog Verlag, 1973.

with permission of the copyright owner. Further reproduction prohibited without permission.

95 BIBLIOGRAPHY

[55] C. A. Rohl, C. Strauss, K. Misura, and D. Baker. Protein structure prediction using

rosetta. Methods in Enzymology, 383:66-93, 2004.

[56] B. Rost. Twilight zone of protein sequence alignment. Protein Engineering, 12:85-94,

1999.

[57] B. Rost and C. Sander. Prediction of protein secondary structure at better than 70%

accuracy. J. Mol. Biol., 232:584-99, 1993.

[58] B. Rost, R. Schneider, and C. Sander. Protein fold recognition by prediction-based

threading. JMB, 270:471-480, 1997.

[59] L. Rychlewski, D. Fischer, and A. Elofsson. Livebench 6: Large-scale automated eval­

uation of protein structure prediction servers. PROTEINS: Structure, Function, and

Genetics, 53:542-547, 2003.

[60] B. Schmidt, H. Schorder, and M. Schimmler. Massively parallel solutions for molecular

sequence analysis. First IEEE HiCOMB Workshop, April 15 2002.

[61] H. P. Schwefel. Numerical optimization of computer models. Wiley, 1981.

[62] Bokhari S.H. and Sauer J.R. Sequence alignment on the cray mta-2. Second IEEE

HiCOMB workshop, Nice, France, April 22 2003 2003.

[63] Y. Shan, G. Wang, and H. X. Zhou. Fold recognition and accurate query-template

alignment by a combination of psi-blast and threading. Proteins: Structure, Function,

and Genetics, 42(l):22-37, November 2001.

[64] K. Simons, R. Bonneau, I. Ruczinski, and D. Baker. Ab initio protein structure prediction

of casp 3 targets using rosetta. Proteins, S3.T71-176, 1999.

[65] M. J. Sippl. Recognition of errors in three-dimensional structures of proteins. Proteins,

17:355-362, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96 BIBLIOGRAPHY

[66] J. Skolnick and D. Kihara. Defrosting the frozen approximation: Prospector - a new

approach to threading. Proteins: Structure, Function, and Genetics, 42(3):319—331,

February 2001.

[67] M. Snir, S. Otto, H.S. Lederman, D. Walker, and J. Dongarra. MPI - The Complete

Reference, Volume 1, The MPI Core, Second Edition. The MIT Press, 1998.

[68] I. Sommer, A. Zien, N. V. Ohsen, R. Zimmer, and T. Lengauer. Confidence measures

for fold recognition. Bioinformatics, 18(6):802—12, Jun 2002.

[69] Jones D. T., Taylor W. R., and J.M. Thornton. A new approach to protein fold recog­

nition. Nature, 358:86-92, 1992.

[70] W. R. Taylor. Multiple sequence threading: an analysis of alignment quality and stability.

J Mol Biol, 269(5):902-43, June 1997.

[71] R. Thiele, R. Zimmer, and T. Lengauer. Protein threading by recursive dynamic pro­

gramming. J Mol Biol, 290(3):757-79, Jul 1999.

[72] S. Thomas and N. M. Amato. Parallel protein folding with stapl. Third IEEE HiCOMB

Workshop, April 26 2004.

[73] R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Journal of

Molecule Biology, 231:75-81, 1993.

[74] Kumar V., Grama A., Gupta A., and Karypas G. Introduction to parallel computing,

design and analysis of algorithm. The Benjamin/ Cummings Publishing Company Inc.,

1994.

[75] G. Vriend. Whatif: a molecular modeling and drug design program. Journal of Molecular

Graphics, 8:52-56, 1990.

[76] J. E. Warnpler. Tutorial on peptide and protein structure.

http://bmbiris.bmb.uga.edu/wampler/tutorial/protl.html, 1996.

with permission of the copyright owner. Further reproduction prohibited without permission.

http://bmbiris.bmb.uga.edu/wampler/tutorial/protl.html

97 BIBLIOGRAPHY

[77] J. V. White and I. Muchnik. Modeling protein cores with markov random fields. Math

Bioscience, 124(2):149-79, 1994.

[78] M. Wilmans and D. Eisenberg. Inverse protein folding by the residue pair preference

profile method. Protein Engineering, 8:626-639, 1995.

[79] X. Xiao, E. Dow, R. Ebrhart, Z. B. Miled, and R. J. Oppelt. Gene clustering using self

organizing maps and particle swam optimization. April 22 2003.

[80] D. Xu, 0 . H. Crawford, P. F. LoCascio, and Y. Xu. Application of prospect in casp4:

Characterizing protein structures with new folds. Proteins: Structure, Function, and

Genetics, 45(S5):140-148, 2001.

[81] J. Xu. Protein structure prediction by Linear Programming. PhD thesis, University of

Waterloo, August 2003.

[82] J. Xu. Speedup lp approach to protein threading via graph reduction. In G. Benson and

R. Page, editors, Algorithms and Bioinformatics: 3rd International Workshop (WABI),

volume 2812 of Lecture Notes in Bioinformatics, pages 374-388, Budapest, Hungary,

September 2003. Springer.

[83] J. Xu, M. Li, D. Kim, and Y. Xu. Raptor: Optimal protein threading by linear program­

ming. Journal of Bioinformatics and Computational Biology, 1(1):95—117, 2003.

[84] J. Xu, M. Li, G. Lin, D. Kim, and Y. Xu. Protein threading by linear programming.

Pacific Symposium in Biocomputing (PSB) World Scientific, pages 264-275, January

2003.

[85] Y. Xu and D. Xu. Protein threading using prospect: design and evaluation. Proteins,

40(3):343-54, Aug 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98 BIBLIOGRAPHY

[86] Y. Xu, D. Xu, O. H. Crawford, F. Larimer, E. Uberbacher, M. A. Unseren, and

G. Zhang. Protein threading by prospect: a prediction experiment in casp3. Protein

Eng., 12(11):899—907, Nov 1999.

[87] Y. Xu, D. Xu, and E. C. Uberbacher. A new method for modeling and solving the protein

fold recognition problem. In Proceedings of the second annual international conference

on Computational molecular biology, pages 285-292, 1998.

[88] J. Yadgari, A. Amir, and R. Unger. Genetic threading. Constraints, 2-3(6):271-292,

2000 .

[89] N. Yanev and R. Andonov. Solving the protein threading problem in parallel. Parallel and

Distributed Processing Symposium 2003 Proceedings International, page 8, April 2003.

[90] N. Yanev and R. Andonov. Parallel divide and conquer approach for the protein threading

problem. Concurrency and Computation: Practice and Experience, 16(9) :961—974, 2004.

[91] N. Yanev and R. Andonovy. The protein threading problem is in p? Rapport de recherche

de VINRIA-Rennes, Equipe : SYMBIOSE No. f511, 3:15, October 2002.

[92] T.K. Yap, P.J. Munson, O. Erieder, and R.L. Martino. Parallel multiple sequence align­

ment using speculative computation. Proceedings of the 1995 International Conference

on Parallel Processing, August 1995.

[93] T.K. Yap, P.J. Munson, O. Frieder, and R.L. Martino. Parallel multiple sequence align­

ment using speculative computation. Proceedings of the 1995 International Conference

on Parallel Processing, 9(3), March 1998.

[94] A. Zemla, C. Venclovas, J. Moult, and K. Fidelis. Processing and evaluation of predictions

in casp4. PROTEINS: Structure, Function, and Genetics, 5:13-21, 2001.

[95] C. Zhang and S. Kim. Environment-dependent residue contact energies for proteins.

PNAS, 97(6):2550-2555, 2000.

with permission of the copyright owner. Further reproduction prohibited without permission.

99 BIBLIOGRAPHY

[96] X. Zhang, D. Waltz, and J. P. Mesirov. Protein structure prediction by a data-level par­

allel algorithm. In Supercomputing ’89: Proceedings of the 1989 ACM/IEEE conference

on Supercomputing, pages 215-223, New York, NY, USA, 1989. ACM Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V ita Auctoris

The author, Md. Rafiqul Islam was born in Sirajganj, Bangladesh. He did B. Sc. in Civil En­

gineering degree from Bangladesh University of Engineering and Technology (BUET), Dhaka,

Bangladesh. He had been working in Bangladesh and in Zambia as a consultant before he

immigrated in Canada in 2000.

He completed his B. Sc. in computer science (with distinction) from University of Windsor

in 2002. He is currently a candidate for the M. Sc. in computer science, supervised by Dr.

Alioune Ngom, at the University of Windsor, Ontario and hopes to graduate in Summer 2005.

His research interest includes to apply machine learning and high performance computing in

the field of bioinformatics.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Parallel evolution strategy for protein threading.
	Recommended Citation

	tmp.1618338007.pdf.8vfol

