
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

Implementation of a Web Service Synthesis system based on Implementation of a Web Service Synthesis system based on

query rewriting (Web Service Specification, Signature, Query query rewriting (Web Service Specification, Signature, Query

rewriting, Query planning, Service plan) rewriting, Query planning, Service plan)

Chang Zhou
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zhou, Chang, "Implementation of a Web Service Synthesis system based on query rewriting (Web Service
Specification, Signature, Query rewriting, Query planning, Service plan)" (2007). Electronic Theses and
Dissertations. 4661.
https://scholar.uwindsor.ca/etd/4661

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4661?utm_source=scholar.uwindsor.ca%2Fetd%2F4661&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Implementation of a Web Service Synthesis System

Based on Query Rewriting

By Chang Zhou

A Thesis
Submitted to the Faculty of Graduate Studies

Through Computer Science
In Partial Fulfillment of the Requirements for

The Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2007

© 2007 Chang Zhou

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-34922-9
Our file Notre reference
ISBN: 978-0-494-34922-9

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Abstract

This thesis describes the implementation of a Web Service Synthesis system, which synthesizes

the implementation of a web service from its specification. A web service specification consists

of a syntactic part, which follows WSDL style, and a semantic part, which is a Datalog clause.

The synthesizer has access to a repository of web services; each contains both syntactic and

semantic descriptions. Web services in this thesis are restricted to be the ones corresponding to

database queries. In the semantic specifications of web services, the Datalog clauses or SQL
queries contain tables from global schemas only. An implementation is correct with respect to its

specification if the answer set of the implementation is the same as the specification. To generate

the implementation, we apply query planning to generate a service execution plan and its

execution codes. We implemented the prototype system that can automatically generate the Java

code that implements a web service.

Keywords: Web Service Specification, Signature, Query, Query Rewriting, Query Planning,
Service Plan

I

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Acknowledgements

First I would like to thank my advisor, Dr. Jianguo Lu, for his constant encouragements,

guidance and helps on my work. Dr. Lu’s expertise and professional attitudes helped me

to push myself to a higher level for excellence. I truly appreciate his great patience on me

during this work.

I would like to extend my appreciation to my colleague, Minghao Li, for his excellent

work on Query Rewriting research and the development of Query Rewriting software

module. Also, I would like to thank Ms. Chunjiao Ji for her precious advices and

discussions on my thesis.

Most of all, I would like to express my special gratitude to my family. Specially I thank

my wife, Ms. Zhewei Chen, for her unconditional support and love on me. I also thank

my mother, Ms. Ruihua Xia, for her great love and being around to help and support in

my family.

II

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Table of Contents

Abstract...I
Acknowledgements...II
List of Figures...V
1. Introduction..1
2. Web Service Specification..7

2.1 What is Web Service Specification?...7
2.2 Global Schema... 10
2.3 Signatures in the specification... 12
2.4 Semantics of web service...13
2.4.1 Datalog...13
2.4.2 Parameterized Query in Datalog.. 15
2.4.3 The Query in Web Service Specification.. 16
2.5 Summary of Web Service Specification...17

3. Web Service Synthesis.. 19
3.1 Web Service Synthesis and the System Architecture.....................................19
3.1.1 Web Service Synthesis..19
3.1.2 System Architecture... 23
3.2 Query Rewriting M odule.. 27
3.2.1 Query Rewriting Using Views...27
3.2.2 Query Rewriting System Implementation... 30
3.3 Service Planning Module.. 33
3.3.1 Query Planning... 34
3.3.2 Service Planning Algorithm... 35
3.3.3 The Service Plan..37
3.4 Service Composition Module - Concrete Implementation............................ 38
3.4.1 Overview... 39
3.4.2 Implementations for Service Composition..42
3.4.2.1 Overall Service Plan Execution.. 42
3.4.2.2 Component Service Invocation.. 45
3.4.2.3 Result Extraction and Join operation... 50
3.4.3 Summary of the concrete implementation..51

4. Experiments... 53
4.1 Experimental Web Service Repository.. 53
4.2 Constructing Web Service Synthesis Environment.......................................54
4.3 Test Web Service Synthesizer...55
4.4 Publish the web service... 57
4.5 Experimental Results..58

5. Conclusion and Future work.. 59
5.1 Conclusion.. 59
5.2 Contribution...60
5.3 Future W ork.. 61

Appendix 1: A Experimental Global Schema... 63
Appendix 2. Two views: “v_amazon” and “v_shipping” ...65
Appendix 3: WSDL of “Amazon” web service.. 66

III

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Appendix 4: WSDL of “Shipping” web service..68
References..70
Vita Auctoris..76

IV

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of Figures

Figure 1: The framework of the service composition system...2
Figure 2: Mediator Based Approach.. 3
Figure 3: Zeng’s Approach...4
Figure 4: Example and Illustration..5
Figure 5: Web Service and Web Service Specification.. 8
Figure 6: Web Service Specification of Amazon service... 9
Figure 7: Global Schema..11
Figure 8: Shipping Service and its query in Datalog...15
Figure 9: Missing access capabilities on parameters...15
Figure 10: Query with Binding Patterns.. 16
Figure 11: Web Service Specification...18
Figure 12: Synthesize a new service from specification “BookShippingFee”...................21
Figure 13: Web Service Synthesis Process Flow...23
Figure 14: Web Service Synthesis Overall Picture... 25
Figure 15: Two View Definitions.. 29
Figure 16: A User Query... 29
Figure 17: Equivalent Rewriting of Q .. 30
Figure 18: Query Rewriting System... i..............................31
Figure 19: Service Planning Algorithm... 36
Figure 20: Web Service Composition Module...38
Figure 21: Generated Java Core Class... 40
Figure 22: Class Template for Synthesis Service...40
Figure 23: Codes to Generate the Class Template of Synthesis Service........................... 41
Figure 24: The generated class for Q(ISBN, ZIP2, FEE)...41
Figure 25: Codes to generate the return type class.. 42
Figure 26: Code Generation Mapping with Service P lan...44
Figure 27: Abstracted Amazon Service Operation............................... 46
Figure 28: Classes Generated from Amazon’s WSDL... 47
Figure 29: Classes Generated from Shipping’s W SDL.. 47
Figure 30: Codes Segment of Amazon service..49
Figure 31: Codes Template...49
Figure 32: Generation of Implementation Codes...50
Figure 33: Result Extraction while Executing Services.. 51
Figure 34: Web Service Synthesis system... 56
Figure 35: Generated Java Codes..57
Figure 36: Service plan tree ..62

V

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1. Introduction

Web Service is an application that is accessible to other applications over the Web. It

defines a programmable interface between applications [3], and is published on the Web.

Web Service consists of a series of technologies and concepts. W3C is establishing

industry standards for Web Service technologies, such as web service description

language WSDL [4], web service registration standard UDDI [5], and messaging

standard SOAP [6]. Web service technologies are expected to become the standard for

Web applications in the future.

One goal of using web services is to consume and integrate them over the Internet,

instead of consuming them separately as standalone services. Having many web services

running on the Internet, we need an easy and feasible method to automatically integrate

existing web services and perform more complex user’s requests. In many situations web

service consumers don’t know what web services are available on the Web, and how they

should be integrated. User only knows a function to be performed or a specific query to

be answered by some web services on the Web. There should be a system to

automatically search for relevant services available, invoke these services, and integrate

the services according to user’s requirements.

To solve this problem, a lot of researches have been done in the area of automated web

service composition. A general framework of the service composition system was

proposed in [43], which is illustrated in Figure 1. The service requester submits a service

specification to describe the information or services he needs; and the service provider

proposes the web services for use. The translator translates between external

specification and internal specification. The process generator tries to find out if existing

services can fulfill the requester’s service specification. If yes, the process generator

generates one or more service plan to compose available services in the repository. When

multiple processes are generated, the evaluator evaluates all service plans and finds the

best one for execution. The execution engine executes the generated service plan and

returns the results to the service provider.

1

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Internal Specification

 mte&sH-----Service
Requester

External

Specification

Re

A process

Service
Provider

Service

Specification

Translator

EvaluatorExecution
Engine

Process
Generator

Figure 1: The framework of the service composition system

The service composition is actually performed inside the process generator. A lot of

research has been done on how the process generator generates the process, and most of

them fall into two major categories: workflow composition and AI planning [43, 39].

Workflow-based composition techniques include static and dynamic workflow generation.

The static approach, such as BPEL4WS [26] or EFlow [48], requires the requester

provides the tasks list and their data dependency before the composition starts [43] [45].

The dynamic approach requires automatic discovery and composition of atomic services

and their business data. There is no fully automated tool to perform workflow

composition.

Using AI planning to solve web service composition problem is another major direction.

OWL-S [15] is such an approach. Its ServiceProfile has precondition and effect

properties to produce the state change of a service. Other web service composition

methods based on AI planning include Situation Calculus[50], PDDL[51], Rule-Based

planning [49] [43]. However these research efforts are mostly theoretical achievements,

and are lack of industry and product support.

Having all these approaches above, we propose another approach to web service

composition. The process generator can create the process of component services as a

composite service. However there are still lots of work ahead when we come into the

service execution part. As a matter of fact, one of the biggest issues in dynamic web

2

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

service composition is in the execution of composite service. There are so many detailed

descriptions inside the composite service, such as the description of control and data flow,

and exception handling. How to dynamically generate the execution codes of the

composite service is one important and difficult part in the dynamic web service

composition.

To web service consumers, it would be a great benefit if there is an automated way of

service process generation and execution. We observed a large portion of web services

are migrated from database-based web applications. A novel approach has been proposed

to automate dynamic Web Service Synthesis [11]. Researchers abstract the core database

schema and queries behind these web services, and propose a query-based approach for

automated Web Service Synthesis. The general idea is to use database query to reveal the

semantic relation of web services, and so that the implementation part of a composite

service can be generated from its specification by synthesizing relevant services. Java

programs will be generated as the implementation of synthesis service.

There are two relevant approaches that generate the detailed implementation codes from a

service specification. In [47], researchers proposed a mediator-based web service

composition approach that utilizes the Inverse Rules algorithm to generate a Datalog

program.

MediatorQuery

Inverse Rules
Algorithm Repository of

Web Service
DescriptionsDatalog Program

Datalog To
Theseus

Theseus
Integration Plan

Theseus

Figure 2: Mediator Based Approach

3

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

In [36], researchers advocate a rule-directed approach to dynamically generate and

execute composite services. The process schemas are dynamically created via runtime

business rules inference; it is a form of service implementation.

. Specification

Runtime Business
Rules Inference

Adaptive
Service

Quality-driven
Service

Figure 3: Zeng’s Approach

First let’s start from an example to understand what Web Service Synthesis does.

Suppose that there are two web services “Amazon” and “Shipping’ in service repository.

“Amazon” service provides a book’s Weight, Title, Price, WID (warehouse ID of

Amazon) and ZIP1 (the warehouse’ zip code) by its ISBN; and “Shipping” service

provides the goods’ standard shipping cost by its Weight and shipping Zip Codes. Each

of those services has a semantic description. For example, Amazon service has the

following query to describe its semantics, which inquires information from three tables.

v_amazon(ISBN, TITLE, WEIGHT, PRICE, WID, ZIP1)
Amazon(ISBN, PRICE, WID),
BookInfo(ISBN, AUTHOR, TITLE, WEIGHT),
Warehouse(WID, Addr, ZIP1)

4

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Customer Specification Amazon Service

Service Specification

Syntactic Specification
W SDL lnput(lS8N, ZIP2), Output(FEE)

Semantic Specification
Q(ISBN, ZIP2, FEE) :-

Bookinfo(iS8N, AUTHOR, TITLE, WEIGHT),
Distance(ZIP1,ZIP2, DIST),
Shipping(WEIGHT, DIST, FEE)

iscover Shipping and Amazo
services can synthesize the

user's specification?

Yes▼
Service implementation to be generated.

Execute Amazon service with input (ISBN);
S tore intermediate result (WEIGHT, ZIP1) from Amazon;
Execute Shipping Service with input (ZIP1, ZIP2,
WEIGHT);
Store intermediate result (Fee) from Shipping;
G et final results (FEE)

Service Specif] cad on

Syntactic Specification
WSDL: Input(ISBN), Output(TITLE, WEIGHT, PRICE,
WID, ZIP1)

Semantic Specification
vjamazon(ISBN, TITLE, WEIGHT, PRICE, WID, ZIP1)
<• AmazonflSBN, PRICE. WID),

BooklnfoflSBN, AUTHOR, TITLE, WEIGHT),
Warehouse(WID, Addr, ZIP1)

Service Implementation

Programs, Database, Application Server

Shipping Service

Service Specification

Syntactic Soeotfloation
WSDL: Input {ZIP1, Z1P2, WEIGHT), Output(FEE)

Semantic Specification
v_shipping(ZIP1, ZIP2, WEIGHT, FEE) <-

Distance(ZlP1, ZIP2, OIST),
Shipping(WEIGHT, OIST, FEE).

Service Implementation

Programs, Database, Application Server

Figure 4: Example and Illustration

Suppose that there is a customer who wants to create a new service that can answer the

shipping cost of a book on the internet by giving the book’s ISBN and “ship to” zip code

as input. The starting shipping zip code is unknown before a specific book vendor is

discovered. The query can be:

Q(ISBNb, ZIP2b, FEEf)

BookInfo(ISBN, AUTHOR, TITLE, WEIGHT),

Distance(ZIPl, ZIP2, DIST),

Shipping(WEIGHT, DIST, FEE).

Where ISBN and ZIP2 are the input condition of the query.

Note that the problem specification does not indicate which bookstore we are using.

First Web Service Synthesizer tries to search a web service that can answer this query

directly. If there is no existing single web service that can answer this query directly,

5

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Web Service Synthesizer needs to find out if there are several existing web services that

can work together to answer this query. In this example, Web Service Synthesizer’s task

is to find out “Amazon” service and “Shipping’ service and use these two services to

fulfill the customer specification. In doing so, the synthesizer will generate Java programs

to invoke “Amazon” and “Shipping” services and gets results for user.

This thesis describes the design and implementation of such a Web Service Synthesis

system, the Synthesizer, which synthesizes the implementation of a web service using

existing web services from a user web service specification. This thesis designs the

overall architecture of the Synthesizer, and implements two major components: service

planning module and service composition module.

In this work, we assume that web services are annotated with specifications that describe

semantics as well as the syntax of a web service [11]. The web service’s implementation

part is separated from its specification and is to be generated dynamically using existing

web services. The Synthesizer can access a repository of available web services which

are defined by web service specifications; and to a given specification, the Synthesizer

will utilize the web services in the repository to generate its implementation, if there is an

answer. The whole service discovery and synthesis process is automated and dynamic.

This thesis is organized as follows: Chapter 2 introduces the web service specification.

Chapter 3 is the main part of the thesis, including Web Service Synthesis and its system

implementation details. Chapter 4 introduces the experimental settings in this thesis.

Chapter 5 draws conclusions and projects the future of semantic-enabled dynamic Web

Service Synthesis.

6

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

2. Web Service Specification

Currently, most web service description languages, such as the industry standard WSDL

[4], define only the syntax of web services. They don’t give explicit semantic definitions

of web services. On the other hand, other web service semantic specification languages,

such as OWL-S[15], which is based on web ontology languages and software agent

description language [19], are mostly complex and of research value, and far from

industry application. In our research, we proposed to use Datalog [18] notation to

describe the semantics of a web service.

2.1 What is Web Service Specification?

Web service specification [11] defines both the semantics and syntax of a web service.

The following is the definition of Web Service Specification.

Definition 1 (Web service specification) A web service specification is S(Sig, Q), where
Sig is the signature of a web service and Q is the corresponding query of the web
service.

A web service specification has a signature to describe web service’s syntax and a query

to describe web service’s semantics. Web service syntax is described by WSDL, which

includes the message types, operations and their input/output messages. The query in the

service specification is based on a pre-defined Global Schema, which contains all the

relations in an application domain. From the database schema, we abstract a database

query for each operation to represent the service’s semantics. Having the signature and

the query, we defined a complete web service specification.

This semantic description is easy for web service consumers to understand and process,

because most users are already familiar with database-based applications. Also for web

service providers and composers, existing techniques in database application area can be

migrated into web service area, and solve new problems in web service area efficiently.

7

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Since we mentioned query and schema here, some people may perceive some similarity

to database-based applications. In fact, a large portion of web services are based on

legacy database applications. There are web service construction tools, such as DB2SQL

[37], to wrap queries as web services. A web service can be implemented in various ways.

For example, it can have a background database to store all business data, Java programs

to process business logic, and a web server to process HTTP requests and SOAP

messages.

Figure 5 illustrates Web Service Specification.

DB ? P l
Abstracted From DB

i
/ ! _ WSDL: WSDL:
Si---- Service URI Signatures

Implemented By

12.

Described As

±
WSDL

Sig Query

Figure 5: Web Service and Web Service Specification

Let’s take a look at an example specification:

Mapping
between SQL
and WSDL

Web Service Web Service
si-------- u cbinoeu ay------- ;— Specification

8

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

B" Amazon
| El- http://137.207.234.209:8080/axi$/services/amazon?wsdl

f i - getBooklnfo
$ Input

i ! B-inO
| h inO
| I- simpleType

j ■ string
'l - urn:amazon

B - Output
B- getBooklnfoReturn

| getBooklnfoReturn
|-- complexType

B AmazonBook
ISBN
TITLE
WEIGHT
PRICE

! ; WID
ZIP1

L urn:amazon
B Q(ISBN, TITLE, WEIGHT, PRICE, WID, ZIP1)

hAmazon(ISBN, PRICE, WID)
I BooklnfoflSBN, AUTHOR, TITLE, WEIGHT)
!•••• WarehousefWID, Addr, ZIP1)

Figure 6: Web Service Specification of Amazon service

I use a tree structure to display the hierarchy of specification in the above figure. We see

a specification includes the signature and the query of a web service. The signature is

defined in XML Schema, just the same as in WSDL. The XML Schema in the signature

is only partial WSDL of the service. The complete WSDL file can be downloaded from

http://137.207.234.209:8080/axis/services/amazon?wsdl.

This web service specification defines amazon web service’s getBooklnfo operation. The

input is ISBN, the output is a complex type “AmazonBook” that includes information of

(ISBN, TITLE, WEIGHT, PRICE, WID, ZIP1). The query Q(ISBN, TITLE, WEIGHT,

PRICE, WID, ZIP1) obviously inquires the following information (ISBN, TITLE,

WEIGHT, PRICE, WID, ZIP!) from three relations: Amazon(ISBN, PRICE, WID),

Booklnfo(ISBN, AUTHOR, TITLE, WEIGHT), Warehouse(WID, Addr, ZIP1). For the

meaning of each variable in Q, we have to refer to the relevant relations. For example,

“WID” refers to the universal ID of a warehouse. The relation Amazon(ISBN, PRICE,

9

s
f
G
N
A
T
U
R
E

I—

QUERY

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axi$/services/amazon?wsdl
http://137.207.234.209:8080/axis/services/amazon?wsdl

WID) includes a book’s information, including its ISBN, selling price and the warehouse

ID that stores this book. The detailed information of the warehouse is defined in

Warehouse(WID, Addr, ZIP1), which includes the ID of the warehouse, its detail address

and zip code.

This web service inquires by an ISBN for a book’s information, such as its title, weight,

price, and the storage information like warehouse id and zip code.

We need to understand that the web service descriptions and implementations are

separated. In this example the author has implemented the service “Amazon” using Java

programs. The specification is only a description of the service implementation, so that

service consumers and composers can easily understand and invoke this service.

2.2 Global Schema

We assume that there is a relational database schema for all web services. Ideally the

global schema contains all necessary relations, so that all business logics and operations

can be built on top of the global schema. The global schema consists of relations, which

is the same as the tables in database. All base parameter types in web service operations

are also defined in the global schema. The global schema is defined in the format of

XML Schema similar to WSDL.

The global schema in this thesis defines the following relations in figure 7. There are

more details for this global schema defined in XML Schema in Appendix 1.

10

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Amazon Distance Booklnfo

Field Name Data Type

Zipl Text

Zip2 Text

Dist Float

Field Name Data Type

ISBN Text

Price Float

WID Inteeer

Warehouse BookReview

Field Name Data Type

ISBN Text

Title Text

Author Text

Weieht Integer

Field Name Data Type

WID Integer

Addr Text

Ziol Text

Shippping

Field Name Data Type

Weight Integer

Dist Float

Fee Float

Field Name Data Type

ISBN Text

Comment Text

Rate Integer

Chapters

Field Name Data Type

ISBN Text

Price Float

WID Inteeer

Figure 7: Global Schema

This global schema defines 7 relations, which equal to the database schema behind all

web services’ implementation. To simplify the real application and make the example

easy to understand, the above 7 relations are abstracted and contain only the core

information.

For example, any book has certain fixed information, such as its ISBN, title, author and

weight, and Booklnfo relation defines such information. For a online shopping website,

such as “Amazon”, it has a relation “Amazon” to record the book’s current selling price

and the corresponding storage information WID - warehouse ID. The warehouse

information is recorded in a separate relation Warehouse(WID, Addr, Zipl) to include the

detailed information like address and zip code. Such a global schema defines the

necessary relations needed for the book shopping and shipping scenario.

In this thesis, the author manually builds the global schema according to the application

scenario. We do not discuss how to build the global schema in this thesis, because the

11

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

main goal is to perform Web Service Synthesis. In real world, not every web service is

built on database. We may not abstract such a schema in some cases. The focus of Web

Service Synthesis approach is on database-based web services. In real-life applications,

we can always define the fundamental relations in a specific application domain and

compose such a global schema.

2.3 Signatures in the specification

The signature declares the syntactic part of a web service. The signature includes the

input and output types of a web service. More specifically, the input or output in a

signature includes the type of message (simple or complex), the name space, and all

elements and their type o f the message. If there is a complex type, the cascade of the data

type will be divided and all elements will be listed in the specification.

For example, Figure 6 on Page 10 shows an operation getBooklnfo, which accepts input

message inO that has a simple XML Schema type, and returns output message that has

complex type AmazonBook in XML Schema. The complex type has four elements:

AmazonBook {
xsd:string ISBN
xsd.double PRICE
xsd:string TITLE
xsd:int WEIGHT
xsd.int WID
xsd:string ZIP1

}

Compared to WSDL, the signature is defined in the same way as WSDL using XML

Schema. The signature includes types and message definition in WSDL, but doesn’t have

implementation-related information in WSDL, such as binding/ports, etc. The signature is

not concerned about the implementation part. The signature focuses on the information of

a web service regarding web service synthesis.

12

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

2.4 Semantics of web service

Based on the global schema, WSS uses a query to describe a web service’s semantics.

The query is defined in Datalog clause in WSS.

2.4.1 Datalog

Datalog is a logic-based data model [10,18]. Datalog adopts first-order logic as a way to

represent relations and operations on relations. Datalog is similar to Prolog, but does not

allow function symbols in arguments. The underlying mathematical model of data for

Datalog is essentially that of the relational model. Datalog is built from atomic formulas.

An atomic formula is a predicate symbol with a list of arguments. For example,

p(Ah ..., A„),

where p is the predicate symbol, and A I, . . . , An are arguments which can be variables or

constants, “p” is an atomic relation, and Datalog is built from the atomic relations.

For example, the atomic relation parent(X, Y) denotes that Y is one parent of X, then the

relation sibling can be defined as below:

sibling(X, Y) :- parent(X, Z) & parent(Y, Z) & X^Y

X and Y has the same parent Z, and X is not equal to Y, therefore X and Y has a sibling

relationship.

Datalog notation is a common practice to express conjunctive queries. Conjunctive

queries are able to express select-project-join queries. A conjunctive query has the form:

q (X):-r1(X1),r2(X2) , . . . , r n(X„)

where q, and r i , ..., rn are predicate names. The atom q(X) is called the head of the query,

and refers to the answer relation. The atoms ri(Xi), r2(X2), ..., r„(X„) are the subgoals in

13

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the body of the query. The predicate names rj, ..., r„ refer to database relations. The

tuples X, Xi, ..., Xn are vectors of parameters, and vector Xi contains variables or

constants elements in relation rj. (1 < i < n)

Queries may also contain subgoals whose predicates are arithmetic comparisons, such as

<, <, > and In this case, we require that if a variable X appears in a subgoal of a

comparison predicate, then X must also appear in an ordinary subgoal. We refer to the

subgoals of comparison predicates of a query Q by C(Q). A conjunctive query with

arithmetic comparisons has the following notation:

q(X) r,(Xi), r2(X2) , ..., r„(X„), Ci(Yi), C2(Y2) , ..., Cn(Ym)

r, refer to the relations in database, and Q (i=l, ..., m) are arithmetic comparison

predicates that constraints the query on these relations.

We can take a look at an example query that queries the shipping cost by weight and zip

codes. The query needs to gather information from two relations: Distance and Shipping.

The join condition is “Distance.DIST = Shipping.DIST”.

SQL Select Distance.ZIP 1, Distance.ZIP2, Shipping.WEIGHT, Shipping.FEE

From Distance, Shipping

Where Distance.DIST - Shipping.DIST

Datalog v_shipping(ZIP 1, ZIP2, WEIGHT, FEE) :-

Distance(ZIPl, ZIP2, DIST),

Shipping(WEIGHT, DIST, FEE).

Table 2-1. Datalog Example

The above query corresponds to the “Shipping” web service.

14

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

‘Shipping” Service

Input: Zipl, Zip2, Weight
Output: Fee v_shipping(Zipl, Zip2, Weight, Fee) :-

+ Distance(Zipl, Zip2, Dist),

Implementation Layer:
Port, Binding

Shipping(Weight, Dist, Fee)

Figure 8: Shipping Service and its query in Datalog

2.4.2 Parameterized Query in Datalog

Each web service has certain input and output parameters. However, the query in Datalog

cannot represent these constraints o f web services. To use the query in web service

synthesis, we must represent its access capabilities.

For example, Figure 9 is the semantics of the “Shipping’ service, which requires three

input parameters: Zipl, Zip2 and Weight. Without these inputs, the service cannot

execute. However, from the corresponding query v_shipping(ZIPl, ZIP2, WEIGHT,

FEE), we cannot find annotations of such constraints. It looks like four parameters (ZIP1,

ZIP2, WEIGHT, FEE) are for both input and output. However three input parameters

(ZIP1, ZIP2, WEIGHT) must be provided before the query can execute.

Therefore we need a mechanism to represent these access constraints. Researchers had

discussed this problem in database applications area [30, 31]. To a query, if a parameter

From this notation we cannot tell if
a parameter is a required input
parameter or not.

v_shipping(ZIP 1, ZIP2, WEIGHT, FEE) :-
Distance(ZIPl, ZIP2, DIST),

Shipping(WEIGHT, DIST, FEE)

Figure 9: Missing access capabilities on parameters

15

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

must be satisfied for a query to execute, this parameter is called a “bound” parameter;

otherwise it is called “free”, and the query can execute without input of this parameter.

This happens a lot to diverse information sources with limited query capabilities. Web

service is one of these information sources. In a query, we use the “b” to denote bound

parameter, and “f ’ to denote a free parameter [30],

To the query in Figure 9, v_shipping(ZIPl, ZIP2, WEIGHT, FEE), the binding pattern is

“b b b f \ Parameters (ZIP1, ZIP2, WEIGHT) in the query must be bound when

execution.

In our research, we use a superscript “b” or “f ’ for each parameter in a query to indicate

the binding patterns. With this improvement, Datalog notation can fully represent a query

and its access constraints.

The same query in Figure 9 can be rewritten as below:

v_shipping(ZIP 1b, ZIP2b, WEIGHT15, FEE*)

Distance(ZIPl, ZIP2, DIST), Shipping(WEIGHT, DIST, FEE)

Figure 10: Query with Binding Patterns

2.4.3 The Query in Web Service Specification

The query in web service specification is the database query of the web service that

performs data inquiries in background. It is denoted by Datalog and corresponding

binding patterns. For the definition of the query, a global schema should always be

referred to. The query doesn’t make sense without predefined relations and data in the

global schema.

For example, “Amazon” service has the following query to describe what it does.

16

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

v_amazon(ISBNb, TITLEf, WEIGHTf, PRICEf, WIDf, Z IP lf)
Amazon(ISBN, PRICE, WID),
Warehouse(WID, Addr, ZIP1),
BookInfo(ISBN, AUTHOR, TITLE, WEIGHT).

The query is to obtain the title and weight of a book from Booklnfo, its price from

Amazon, and its warehouse id and zip code of the warehouse from Amazon and

Warehouse tables. Here Amazon, Warehouse and Booklnfo are tables in global schema.

ISBN is the join condition for Amazon and Booklnfo, WID is the join condition for

Warehouse and Amazon.

The advantage of using query here is its simplicity. Full fledged web service semantic

specification languages such as OWL-S [15] need the top level ontology of service to

define semantics. Our “global schema + query” combination is easy for application. In

addition, because this method has the same nature as database queries, many

database-supporting tools can be used to process web service semantics. For example,

Query Rewriting technique is used in this thesis to process semantic relation of web

services.

2.5 Summary of Web Service Specification

In the real world, one web service may have multiple operations. Each operation has its

own functionality, and has its own input and output parameters described by WSDL.

Therefore, every operation should have a corresponding query to describe its semantics.

We can expand our web service specification definition to contain multiple operations.

We can expand the previous definition 1 as below:

17

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Web Service S has n operations: op[l], o p [2] , o p [n]
To any operation op[i] (l<i<n), there are definitions of Signature[i] and Query[i]
We use:

A vector Signature to store Signature [1] , Signature[n] (l<i<n)
And

A vector Query to store Query [1],..., Query[n] (l<i<n).

We have extended web service specification definition:
S(Signature, Query)

Figure 11: Web Service Specification

In the extended definition a signature is a vector of signatures, which defines the inputs

and outputs of all web service operations. In addition, query “£>” is a vector of queries,

which defines the underlying database views of all web service operations. Signature

vector and Q vector have one-on-one relationship.

A web service specification defines what the service is. The implementation part is

separated, and it could be done through any available approach. A service specification

helps both service provider and service consumer to understand each other. The service

provider implements web service, and publishes this service by giving a specification.

The service consumer and integrator only needs to know the service specification so that

they can understand this service completely and even synthesize it into new service. In

this thesis, the specification helps us to define a user request, and leave the

implementation details unanswered. Our goal is to use existing services to synthesize the

implementation part as user requested.

18

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3. Web Service Synthesis

In this chapter, I will introduce Web Service Synthesis and my design and

implementation of such a Web Service Synthesis system.

3.1 Web Service Synthesis and the System Architecture

3.1.1 Web Service Synthesis

Web Service Synthesis (hereafter WSS) is the process to generate a web service

implementation from its web service specification, which is carried out by Web Service

Synthesizer in a dynamic way [11].

More specifically, the input of the synthesizer is a web service specification S to be

implemented, and a set of implemented web service denoted by specifications {SI, S 2 ,...,

Sn}. The output of the synthesizer is an implementation of S using one or more

implemented services from the service repository {S I,..., Sn}.

Let’s see an example. Suppose there are two web services “Amazon” and “Shipping’, and

their specifications are abstracted as below:

Amazon: {
[Input=(ISBN); Output=(Title, Weight, Price, Wid, Zipl)],
[v_amazon(ISBNb, Titlef, Weightf, Price1, Widf, Z iplf):-

Amazon(ISBN, Price),
Warehouse(WID, Addr, Zipl),
BookInfo(ISBN, Author, Title, Weight)] }

Shipping: {
[Input=(Weight, Zipl, Zip2); Output=(Fee)],
[v_shipping(Weightb, Ziplb, Zip2 , Feef) :-

Distance(Zipl, Zip2, Dist),
Shipping(Weight, Dist, Fee)] }

19

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Suppose a user submit such a specification:

BookShippingFee: {
[Input=(ISBN, Zip2); Output=(ISBN, Zip2, Fee)],
[Q(ISBNb, Zip2b, Feef)

BookInfo(ISBN, Author, Title, Weight),
Distance(Zipl, Zip2, Dist),
Shipping(Weight, Dist, Fee)] }

The user needs to query the shipping cost of a book regardless the book vendor. Shipping

from different book vendor will have different shipping cost. There is no existing single

web service that can answer user’s query. The Synthesizer can discover that two services

“Amazon” and “Shipping’ together can answer the query. User only wants to know the

shipping cost when knowing ISBN, starting and ending shipping zip codes. Other

information, such as Title and Price of a book, are not requested by the user, and will be

ignored by the Synthesizer. Finally as the implementation of the user specification, the

Synthesizer will generate Java programs that synthesize two services Amazon and

Shipping to find a book’s shipping cost.

Figure 12 demonstrates this example and its synthesis process. We will use this example

to explain the details of the Synthesizer.

20

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Customer Specification

Web Service Synthesis

Synthesized Implementation

SynthesisService_Q Java

Verify signatures of am azon and shipping,
and generates a service plan.
S p e d Amazon, Shipping

Service Planning

Query Rewriting

Q(ISBNb, ZIP2b, FEE') >
v_amazon(ISBNb, TITLE', WEIGHT', PRICE', WID', ZIP1'),
v_shipping(ZIP1b, ZIP2b, WEIGHT6, FEE')

Syntactic Specification
WSDL: lnput(ISBN, ZIP2), Output(FEE)

User Specification “BookShippingFee’

Semantic Specification
Q(!SBNb, ZIP2b, FEE*)

Booklnfo(ISBN, AUTHOR, TITLE, WEIGHT),
Distance(ZIP1, ZIP2, DIST),
Shipping(WEIGHT, DtST, FEE)

Service Composition

G enerate Java Codes;
C lass SynthesisService_Q{
getSynthesizedResult_Q(ISBN, Zipl, Zip2)

Invoke service Shipping wi#i WEIGHT,
Zip1,Zip2;

C om pose Results(ISBN,Zip1, Zip2, Fee);

Invoke service Amazon with ISBN;
Get Results(WEIGHT, ZIP1);
while (Results(WEIGHT, ZIP1).hasMoreO)

Existing Services

Shipping Service

Amazon Service

Service Implementation

Programs, Database, Application Server

Service Implementation

Programs, Database, Application Server

Semantic Specification
v_shipping(ZIP1b, ZIP2b, WEIGHT6, FEE1) <-

Distance(ZIP1, ZIP2, DIST),
Shipping (WEIGHT, DIST, FEE).

Service Specification

Syntactic Specification
WSDL: lnput(ZIP1, ZIP2, WEIGHT), Output(FEE)

Service Specification

Syntactic Specification
WSDL: Input(ISBN), Output(TITLE, WEIGHT, PRICE,
WID.ZIP1)

Semantic Specification
v_amazon(ISBNb, TITLE', WEIGHT', PRICE*, WID1,
ZIP1')<- Amazon(ISBN, PRICE, WID),

Warehouse(WID, Addr, ZIP1),
 BooklnfoQSBN, AUTHOR, TITLE, WEIGHT)__

Figure 12: Synthesize a new service from specification “BookShippingFee”

We use Web Service Specification (thereafter specification) in the definition of WSS. The

specification defines a web service’s syntax and semantics, and leaves the service’s

implementation part unanswered. There is a repository of web services that are already

21

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

implemented, and these services are also defined by their corresponding specifications

and are available for synthesis in WSS.

When user needs any information from the repository, he can write a service specification

to define his requests. The corresponding implementations of this specification are

expected to be generated by WSS. The implementation is correct with respect to the

specification if its answer set is equivalent to that of the specification for any database

instances. The answer set of a query is the set of answers produced in the database. The

answer set of the implementation is the set of answers generated by the query Q’ in the

abstract implementation as defined in below:

Definition 2
(Abstract implementation) Given a web service specification S(Sig, Q), and a
web service repository consists of n web services: SrfSigi, Qi), S2(Sig2 , Q2) , ...,
Sn(Sign, Qn). An abstract implementation of S(Sig, Q) using Si, S2, ... S„ is S(Sig,
Q) where Q ’ Qt ... Qh where (Qt ... Qj) c (Qh ...,Q„).

When Q ’(Qi, . . . , Qj) (1 <= i, j <= n) is a complete rewriting of Q using (Q i, . . . , Qn)

(denoted by Q ’:- Q j ... Q j), and signature “Sig” also matches the combination of (S ig ,. . .,

Sigj), we can conclude that web services (S;, ..., Sj) can be synthesized together to

implement S(Sig, Q).

In the abstract implementation above, we use the concept “Query Rewriting” in advance.

In brief, “Query Rewriting” finds out a set of queries which is equivalent to a specific

query Q. We will talk about query rewriting in details in 3.2. Every web service has a

query to define its semantics. To any two web services, their semantic relations are

actually equivalent to the relation of the queries in their specifications. WSS uses query

rewriting techniques to reveal semantic relation of web services. This is the first step in

Web Service Synthesis.

From the query rewriting result, the corresponding web services which are semantically

relevant can be discovered. Since every service has a signature to define syntax, the

signatures in the specification list are used for syntactic verification for these services -

22

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

see if they can collaborate with each other syntactically. This is step two - Service

Planning - in WSS. After this step, we have found out the a web service S can be

synthesized by existing services (S ;,..., Sj) in a certain order.

In step three, the Synthesizer synthesizes the implementation codes that invoke each

component service in (Si, . . . , Sj) and answer the user query. The implementation codes

are Java programs that can be executed independently by user. Figure 13 displays the

process flow of WSS.

S(Sig, Q) -> Q is extracted

 I I _ _
Query Rewriting

1
Q> (Q,...... Q,)

I find out

(Si, .T., Sj)

S can be implemented by (Sj, . . Sj), S=(S | Sj)

Service Composition

Service Planning: verify if (S.Sig) matches with signatures (Sj.Sig,..., Sj.Sig)

Java Programs { Invoke (Sj, ..., Sj), return result of Q.}

Figure 13: Web Service Synthesis Process Flow

3.1.2 System Architecture

The biggest contribution of this thesis is to implement the theoretical research of WSS

into a prototype software system - the Synthesis system. I design the system architecture

and implement the whole system, and I also developed two necessary core components:

service planning module and service composition module. Because query rewriting

23

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

algorithms had been widely proposed and researched, I didn’t develop my own query

rewriting module; I used the query rewriting package QRW developed by my colleague

Minghao Li. Development tools include Java, Axis [35], DOM [38], Javassist [32]. Java

codes are finally generated by the Synthesizer. Figure 14 demonstrates the architecture of

the Synthesizer.

The Synthesizer takes three inputs: a Global Database Schema, a set of Web Service

Specifications, and a user specification for a web service. The Synthesizer will finally

generate the user specification’s implementation that contains the actual programs to

process client requests.

The Synthesizer has three core modules: (1) Query Rewriting module; (2) Service

Planning module; (3) Service Composition module.

The query rewriting module finds the equivalent rewriting of user’s query. It extracts the

queries list (Qi, Q2 , ..., Qn) from specification set (Si, S2 , ..., Sn) of previously defined

services. Based on the global schema and the queries list, for any user query Q, it will

generate the equivalent rewriting of Q if there is a correct answer; or it will return null if

the user query Q doesn’t have an equivalent rewriting.

The service planning module takes three inputs: the rewriting result, the global schema

and the specification list. From the rewriting result, we can find out relevant services for

synthesis. This module verifies if these relevant services can collaborate with each other.

Equivalent rewriting only guarantees the semantic correctness, and the service planning

module verifies the syntactic correctness. Once succeeds, this module returns a service

plan to record the execution order of each component service.

The service composition module takes two inputs: a valid service plan and the

specification list. It generates the actual codes that invoke the services in the plan and

return the results as user requested.

24

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Global
Schema

Web
Service

Specification
List

WS,: Speci(Sig,, Q])
WS2: Spec2(Sig2, Q2)

—. . .

WS„.,: Specn.,(Sign.i, Q„.,)

/■s
WS„: Specn(Sign, Qn)

Descri bed By

Web Service
Repository

User Input

Specification =
Query + Signature(InputList +

________ OutputList)________

Iz
f Web Service Synthesis 'v

(Query)

Query Rewriting:
, Find equivalent rewriting using QI, •••, Qn
r

1......................._

Service Planning:
Verify rewriting result using signature-i, signature-k,

and inputList/outputList; Generate execution plan

(W S W S - i , WS-k)

Service Composition:
Generate implementation o f WS using WS-i, WS-k

WS

Execute WS-i;
Execute WS-k;

Compose Results;

Iz
Output

Java program that invokes web
services and compose results to

implements the user specification.

Figure 14; Web Service Synthesis Overall Picture

25

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

These three modules are sequential: the output of query rewriting module is the input of

service planning; and the output of service planning is the input of service composition.

The final outputs are the cascading Java programs.

There are two types of users of the Synthesizer. One is the service consumer who wants

to search useful services and integrate them into their applications. The generated Java

codes are very practical and can be easily integrated into applications. The other is the

service synthesizer who wants to provide new synthesized web services implemented by

existing web services. Most parts of the new web service’s WSDL can be generated from

Java programs. The deployment part is the only part that is not processed by WSS, and

has to be done manually by user.

The web services in the repository are just like building blocks, the user query can be

synthesized by these building blocks. If user query happens to be equivalent to the query

of another single service, WSS will locate the service and return Java codes that invoke

this service.

Every time WSS generates a new implementation for a different specification, WSS will

add this specification into the specification set, so that this new service can be used for

future users. If future user submits any query that had been previously submitted, WSS

simply reuses the generated Java codes without synthesis.

WSS generates programs that synthesize component services and dynamically fetch

results. When user constantly needs to query the same type of information with different

inputs values, user can integrate these programs into their web-based application system

and obtain results dynamically.

26

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.2 Query Rewriting Module

Query rewriting module is responsible for finding out semantically-relevant web services

from the repository. From the user specification, the query part is extracted first for the

purpose of query rewriting. The query rewriting module needs three inputs parameters:

the user query, a global database schema, and the query list that is extracted from the

specification list in the repository. In this chapter I will first introduce query rewriting

using views in theory level, then I will introduce the query rewriting module in WSS.

3.2.1 Query Rewriting Using Views

The problem of query rewriting is to find the equivalent rewriting of a query Q using

previously defined views over the database, rather than accessing the database directly

[10]. In web service synthesis research, we can consider a web service as a query over a

global database schema, and web service can be regarded as a view over a global

database. Therefore query rewriting techniques can be used in web service synthesis to

answer user queries using existing web services. Query rewriting is the first step in WSS,

which discovers semantically-relevant services.

In this research, we first introduce the concepts: “query containment” and “query

equivalence”. These two definitions provide the semantic basis for comparison between

queries and their rewritings.

Definition 3 Query containment and equivalence: A query QI is said to be contained in a
query Q2, denoted by Q l c Q 2 , if for all database instances D, the set of tuples
computed for QI is a subset of those computed for Q2, i.e., Ql(D) e Q2(D) . The

two queries are said to be equivalent if 21 £ 2 2 and 22 £ 0 \y e denote query
equivalence as Ql = Q2.

The definition above indicates that we must compute the tuples of a query Q based on a

database instance. In theory, the query containment and equivalence relations must be

computed on all database instances. However, in our real world applications, it’s

27

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

impossible to test on all database instances. We can only compute the query containment

and equivalence relation based on the database instances we have. And it is still valuable

to know the containment and equivalence relation hold on the available database

instances.

Having defined query containment and equivalence, we can define equivalent rewritings

of a query. In our research, we only query data on a specific database schema.

Definition4 Equivalent rewritings: On a database/), let Q be a query and V = {VI, Vm}
be a set of view definitions. The query Q ’ is a rewriting of Q using F if Q ’ refers only to
the views in V, and Q ’ is equivalent to Q (denoted Q(V) = Q ’(V)).

Vi, ..., Vm are views defined on a database instance D. To a query Q, an equivalent

rewriting QRi is computed on a set of view definitions V. Equivalent rewriting QRi will

inquire the same tuples as Q. If there is a different set of view definitions V’ on the same

database D, the same query Q may have different equivalent rewriting QR2 . When we

talk about equivalent rewritings, we must include a specific database instance and a set of

view definitions.

There are many algorithms to compute the equivalent rewritings, and this thesis uses an

expanded bucket algorithm which was introduced in [17, 23]. The original bucket

algorithm computes the complete rewriting of a query Q, and the expanded algorithm

verifies the query equivalence in addition. There are four steps in this algorithm:

(1) The algorithm constructs a bucket for each subgoal of the query Q. A view Vi is

added to the bucket if one of the subgoals of Vj matches the owner subgoal (from the

query Q).

(2) The algorithm computes the Cartesian products between views in all the buckets.

Each combination of views is a candidate rewriting, which is a conjunctive query

joining these views together.

(3) The algorithm checks the containment relation on each candidate rewriting RW

against the query Q, to make sure RW c Q, and removes the ones that are not

contained.

28

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

(4) For each contained rewriting, the algorithm conducts containment checking with Q. If

the conjunctive rewriting contains Q, it is a complete and equivalent rewriting.

Let’s study an example. There are two views: one provides book information, and the

other provides shipping information.

v_amazon(ISBNb, TITLEf, WEIGHT4, PRICE4', WID4', ZIPl4')
Amazon(ISBN, PRICE, WID),
Warehouse(WID, Addr, ZIP1),
BookInfo(ISBN, AUTHOR, TITLE, WEIGHT)

v_shipping(ZIP 1b, ZIP2b, WEIGHTb, FEE4)
Distance(ZIPl, ZIP2, DIST),
Shipping(WEIGHT, DIST, FEE)

Figure 15: Two View Definitions

There is a user query Q(ISBN, ZIP2, FEE) that inquires a book’s shipping information.

Q(ISBNb, ZIP2b, FEE4)

BookInfo(ISBN, AUTHOR, TITLE, WEIGHT),
Distance(ZIPl, ZIP2, DIST),
Shipping(WEIGHT, DIST, FEE)

Figure 16: A User Query

There are three subgoals in this query, therefore we can construct three buckets as

following:

BookInfo(ISBN,AUTHOR,

TITLE, WEIGHT)

Distance(ZIPl, ZIP2, DIST) Shipping(WEIGHT, DIST, FEE)

v_amazon(ISBN, TITLE,

WEIGHT, PRICE, WID, ZIP1)

v_shipping(ZIPl, ZIP2,

WEIGHT, FEE)

v_shipping(ZIP I , ZIP2, WEIGHT,

FEE)

Because BookInfo(ISBN, AUTHOR, TITLE, WEIGHT) is a subgoal of v_amazon(ISBN,

TITLE, WEIGHT, PRICE, WID, ZIP), we put v_amazon in “Booklnfo” bucket; because

v_shipping(ZIPl, ZIP2, WEIGHT, FEE) has two subgoals Distance(ZIPl, ZIP2, DIST)

29

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

and ShippingfWEIGHT, DIST, FEE), we put v_shipping in the bucket of “Distance" and

“Shipping'.

By computing the Cartesian products of the views in all buckets, a candidate rewriting Q '

is found, and denoted in conjunctive query as below:

Q’(ISBNb, ZIP2b, FEEf)
v_amazon(ISBNb, TITLEf, WEIGHTf, PRICEf, WIDf, ZIPlf),
v_shipping(ZIP 1b, ZIP2b, WEIGHTb, FEEf)

Figure 17: Equivalent Rewriting of Q

By containment checking between Q and Q \ we can decide if it is an equivalent

rewriting of Q using views v_amazon and v_shipping. From this result, there is extra

tables in Q’, so we know Q’ is a contained rewriting. The user query Q contains more

information than the JOIN of these two views “v_amazon” and “y_shipping'. However

this result is still usable for web service synthesis.

In this thesis, views “v_amazon" and “v_shipping” each corresponds to a web service. In

other words, these two web services can compute and answer query Q.

Query Rewriting has many applications, such query optimization, data warehousing,

content distribution networks, etc. In this thesis, we apply query rewriting in web service

synthesis to reveal the semantic relation of web services.

3.2.2 Query Rewriting System Implementation

The query-rewriting module loads a query, a database schema and a query list, and

computes equivalent rewritings of the query using queries in the query list, or it returns

null if there is no equivalent rewriting of the query. User inputs the query in a

specification; the query list is extracted from the specification list of existing services,

and the global schema is predefined.

30

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

»uery Global
Schema

Schema

Query Rewriting
Q < -Q 1 ,Q 2 Spec List4-— Query List-

Equiv
Rewriting

Figure 18: Query Rewriting System

The rewriting results are in Datalog format. An equivalent rewriting has a head predicate,

and one or multiple body predicates. For example, to the user query defined in figure 16,

the Synthesizer computes the following rewriting result:

Rewriting #1: Q(ZIPlb, ZIP2b, ISBNb, FEE*)
v__amazon (ISBN6, t it l e ', w e ig h t ', p r ic e ', w id ', ZIPl'),
v_shipping(WEIGHTb, ZIPlb, ZIP2b, FEEf).

Each query in body part has a corresponding web service in the repository. Therefore,

two semantic-relevant web services “Amazon” and “Shipping’ are found out by WSS,

and their core queries are equivalent to the user’s query.

Multiple rewriting results are possible, and any one is equivalent to the user’s query, and

can answer the user query completely. We can generate multiple solutions of the same

user specification from multiple rewriting results.

In WSS, QRS software package is a third party package. The query-rewriting module is

developed by Minghao Li in his master thesis. Minghao implements and optimizes the

core query rewriting algorithms Bucket [17]. The implementation details of the

query-rewriting module are not the focus of this thesis. Any external query-rewriting

modules can be plugged into WSS. The Synthesizer only assumes the following

interface:

31

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

RewritingList = QueryRewriting(Query, GlobalSchema, ViewList)

I integrate the QRS software package into WSS system, and design an interface to

present the query, the global schema, the query list and rewriting results.

32

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.3 Service Planning Module

We can find out semantically-relevant web services from the rewriting results that could

possibly answer user’s query. However equivalent rewriting doesn’t guarantee these web

services can work with each other to compute the final answer. Due to the syntactic

constraint, WSS must verify the signature of each web service. Even if signatures are

verified successfully, these web services still have to be invoked in a certain order, not in

random order. This brings the service planning problem.

For example, in Rewriting #1, query v_shipping in the body cannot be executed first.

There are three bound parameters in v_shipping: Weight, Zipl and Zip2. These

parameters must have input values when v_shipping is executed. Original inputs from

head predicate include ISBN and Zip2, and Zipl and Weight are not direct inputs from

user, therefore this query v_shipping cannot be executed first.

Service planning validates the rewriting results and finds out the correct execution order,

and finally generates a service plan from the rewriting result. There are bound parameters

in the body predicates of the rewriting result, and binding patterns are extracted for

planning. These binding patterns reveal the dependencies of body predicates in rewriting

result, and these dependencies are irrelevant to the semantics of a web service. The

service planning problem essentially is the same as query planning problem. The

execution order of queries is the same as service execution order.

Firstly we introduce query planning in 3.3.1. Then we introduce the algorithm and

implementation of Service Planning Module in 3.3.2. The service planning module has

two steps: (1) Extract binding patterns from service signature; (2) Use “Query Planning”

to generate service plan.

33

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.3.1 Query Planning

We have introduced “Parameterized Query in Datalog” in 2.4.2. We can use binding

patterns to denote the access capabilities of parameters in a query. Using b and f to

describe binding patterns, the queries in the body of Rewriting #1 are denoted as:

1. v_amazon(ISBNb, TITLEf, WEIGHTf, PRICEf, WIDf, ZIPlf)

2. v_shipping(WEIGHTb, ZIPlb, ZIP2b, FEEf)

In the first query v_amazon, ISBN is bound; in the second query v_shipping, WEIGHT,

ZIP1 and ZIP2 are bound. The user’s request Q(ISBNb, ZIP2b, FEEf) has 2 input

parameters: ZIP2 and ISBN. Therefore, v_amazon must be executed first, and then

v_shipping will be executed, because v_amazon will return (WEIGHT, ZIP1) as outputs,

which are the inputs of query v_shipping.

In theory, the body of rewriting result includes conjunctive queries (CQ), and the

subgoals must be executed in a certain order. We call the valid execution order as “the

feasible order of subgoals”, which is defined as below:

Definitions (feasible order of subgoals) Some subgoals gi(Xi), ... ,g k(Xk) in a conjunctive

query, CQ, form a feasible order if for each subgoal gi(X;) in the order, given the

variables that are bound by the previous subgoals, subgoal gi(Xj) is answerable; that is ,

there is a binding pattern py of the relation g;, such that for each argument X in subgoal

gi(Xi) that is adorned as b in py, whether X is a constant, or X appears in a previous

subgoal. A CQ is feasible if it has a feasible order of all its subgoals.

The binding patterns are extracted from the signature part of the specification. They

denote the constraints of the service signature to the web service query. The feasible

order of subgoals is the same as a valid execution order of component web services in the

synthesis service. We only give definitions here, and how to find the feasible order of

subgoals will be discussed in the next chapter.

34

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.3.2 Service Planning Algorithm

Let us start from the example. In our example “Rewriting #1”, there are two body

predicates. It is straightforward to find its feasible execution order. “Amazon” can be

executed first because bound parameter “ISBN” is in the input list of head predicate.

“Shipping’ must be executed after “Amazon” because it waits for bound parameter

WEIGHT from output of “Amazon” service. The generated execution plan is as below:

Head Body[l] Body[2]

Q v_amazon v_shipping
Order=0 Order=l Order=2
Input(ISBN, ZIP2) Input(ISBN) 9 Input(WEIGHT, ZIP1, ZIP2)
Output(ISBN, Output(ISBN,PRICE,TITLE, Output(ISBN, ZIP1, ZIP2, FEE)
ZIP1, ZIP2, FEE) WEIGHT,WID, ZIP1)

Plan #1: Q:- v_amazon(order=l), v_shipping(order=2)

This example only has two predicates in the body of the query; therefore the planning

process is very simply. But this example exposes two principles for service planning:

• Subgoals whose inputs are subset of Head’s inputs must be executed first. In this
example, Amazon’s input “ISBN” is subset of Head’s inputs, therefore Amazon is
planed first.

• Subgoals whose inputs can be extracted from previous subgoals can be executed
after those executed subgoals.

There are more details in [30, 31] regarding this problem. In this thesis, we apply the

similar techniques to solve the web service planning problem. WSS will sort body

predicates in order and generate a service execution plan using the following algorithm:

35

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Service Planning Algorithm:
Input = bound variables in head predicate
Plan = null
BoundPred = all bound predicates
If exists free predicate then {

Add free predicate to Plan;
Input = Input + (input and output variables in this free predicate);

}
Changed = true;
While ((BoundPred != null) && (changed = true)) {

Changed = false;
For (i = l , . . number o f BoundPred) {

If ((BoundPred[i].InputList) in (Input)) {
Plan = Plan + BoundPred[i];
Input = Input + (input and output o f BoundPred[i]);
Remove BoundPred[i] from BoundPred;
Changed = true;

}
}

}
If (BindingPred = null) then

return Plan;
else

return (PlanNotExist);

Figure 19: Service Planning Algorithm

The algorithm starts from free predicates. The inputs of free predicates are not confined

by any constraints, and they are executed first. After free predicates are planned, the

bound predicates will be planned. A bound predicate can be planned only if its inputs can

be extracted from previously planned predicates. The algorithm has two stop conditions:

(1) All predicates are planned successfully; or (2) There are at least one bound predicate

that cannot be planned any more.

Condition (1) stops when a valid service plan is generated, and condition (2) stops when

the rewriting result cannot be planned.

In summary, the service planning algorithm above performs two tasks: (1) check the

feasibility of the rewriting result; (2) generates a service plan to record the component

service execution order and the location of input parameter (or bound parameter) from

previously executed predicate’s output list when the rewriting result is feasible.

36

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.3.3 The Service Plan

The feasible service plan is similar to the conjunctive queries in the rewriting body, but in

sorted order. Below is the service plan in general:

Head(QName, Order, InputList, OutoutList)

Body[i](QNamefi], Order = i, InputList[i], OutputList[i]) (1 <= i <= n, n

is the number o f nodes in the execution plan)

The service plan contains each query’s name, its execution order, and its input and output

parameter list. The head predicate has “Order=0”. When the execution plan is generated,

the Synthesizer knows which component services to be composed together and they

should be executed in the same order that each predicate is added into the execution plan.

Current implementation of service planning module generates a linear service plan. All

nodes are planned in sequential order, and the component services will be invoked in the

same order. But a more complex planning is possible, which generates a graph as a

service plan. Due to current Synthesizer only compiles linear service plan into

corresponding service invocation programs, a graph service plan cannot be processed in

WSS anyway. I didn’t implement this complex case of service planning. I will leave this

as further enhancements of Synthesizer after the prototype Synthesizer is finished.

WSS generates the service plan as an abstract implementation for user. This

implementation is not concrete in the sense that the scaffolding codes to integrate the

outputs from different services are not generated. We still need to invoke the services in

the service plan in a concrete implementation to dynamically return the results to user.

37

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.4 Service Composition Module - Concrete Implementation

Service composition module generates Java programs as the concrete implementation,

which performs the following tasks: (1) invoke the services in the generated service plan;

(2) get the final results as user requested.

The input of the service composition module is a feasible execution plan, and the

corresponding outputs are Java programs. This module must load the specification list

and the global schema to be able to execute. Figure 20 is the process flow of the service

composition module.

A Feasible
E xecution Plan

W eb Service
Specification L ist W eb Service

C om position M odule
G lobal Schem a

Java Program

Figure 20: Web Service Composition Module

In our example, given Plan #1 (in 3.3.2) as the input, WSS will generate a Java program

that first invokes “Amazon” service with ISBN as input, and gets a list of (ISBN, TITLE,

WEIGHT, PRICE, WID, ZIP1) as output. It then executes “Shipping’ service with input

(ZIP1, ZIP2, WEIGHT) obtained from Amazon service, and get output (ZIP1, ZIP2,

WEIGHT, FEE). Next the program will select (ISBN, ZIP2, FEE) as the output of the

composite service.

From the above example, we see the major tasks for web service composition. (1) We

need to execute all the services in the service plan on the overall level; (2) We need to

invoke each individual service in the micro level; (3) We need to extract the results from

each executed service and join the final results requested by user.

38

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

These three tasks cover different aspects of service composition. Task 1 takes care of the

overall execution, which is called “Service Composition” in this thesis; task 2 takes care

of the service invocation of individual service; and task 3 takes care of the results,

especially when multiple results are returned in some component services, and the final

results are the JOIN of all returned results from component services. Task 2 and task 3

are necessary parts of task 1.

In 3.4.1,1 will overview the core Java class to be generated for service composition. Then

in 3.4.2 I will talk about the service composition in details.

3.4.1 Overview

There is a core Java program to be generated for service composition, and there are

several accessorial programs necessary for service composition. The generated core Java

program is connected with the user directly. This program takes direct inputs from user

and return final results to the user. Intuitively this Java program must conform to the user

specification. In other words, the Java program must completely answer user’s query, and

follow the same syntactic constraints defined in the specification. Figure 21 displays the

high level abstraction of this core Java program.

This class is named by “SynthesisService” plus the query name. In the above example,

the class name is “SynthesisService_Q”. This class has a “get” method which implements

the operation of the web service. This method is named by “getSynthesizedResult” plus

the query name. In the above example, the method name is “getSynthesizedResult_Q”.

In figure 21 we can see how the user specification maps to a method of the core class. It

is natural to have such a mapping that the input list in user specification maps to the input

arguments of the method getSynthesizedResult Q(), and the output list maps to the

output data type of this method, and the query is answered by the implementation codes

of this method.

39

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Specification

Generated Class SynthesisService_Q’

Program
Interface

Input(ZIP2, ISBN)Output(ISBN, ZIP2, FEE)

Q(ISBN, ZIP2, FEE)

ISBN: String
ZIP2: String
FEE: double

ReturnType getSynthesizedResult_Q (String ISBN, String Zip2)

Get Inputs = (ISBN, Zip2);
Invoke Service “Amazon” with input ISBN, get result (WEIGHT, Z ipl);
Invoke Service “Shipping” with input Zipl, Zip2 and WEIGHT, and get
outputFee;
QJRetumType result = new Q_RetumType();
result.ISBN = ISBN;
resu!t.ZIP2 = ZIP2;
result.FEE = Fee;
Return result;

Figure 21: Generated Java Core Class

During the code generation process, we first generate a template class without any

implementation contents. Then the detailed composition codes and accessorial codes are

generated and inserted into corresponding location. These implementation details will be

discussed in 3.4.2.

Figure 22 illustrates such a Java class template and one method that are generated in this

step. We can always generate such a class if we have a user specification.

public class SynthesisService_Q {
Vector getResult_SynthesisService_Q(String zipl, Stimg zip2, String isbn) {

//Insert Method Implementation Here }
}

Figure 22: Class Template for Synthesis Service

40

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The following codes generate this frame class:

public void GenerateServiceClassByServiceHead(Head head) {

String classname = ”SynthesisService_" + head.QueryName;
try {

File file = new File(classname+".java");
FileWriter writer = new FileWriter(file);

String class_definition = "public class " + classname + "{\n\n";
String method_definition = "public Vector getResult_" + classname +
Enumeration input_list = head.Input.elements();
while(input_list.hasMoreElements()) {

Parameter param = (Parameter)input_list.nextElement();
method_definition = method_definition + param.getParamType() + " ” +

param.getParamName().toLowerCase();
if (input_list.hasMoreElements())

method_definition = method_definition +
else

method_definition = method_definition + "){";
}
writer .write (class_def inition + method_def inition + "SnWWlnsert Method

Implementation Here \n}\n\n}");
writer.close();

}
catch (IOException ioe) {

System.out.println(ioe);
}

}

Figure 23: Codes to Generate the Class Template of Synthesis Service

When output in user specification is complex type, WSS creates a new data type class for

this synthesis service. In the example in Figure 21, user requires multiple elements (ISBN,

ZIP2, FEE) in outputs, therefore a new data type “Q_RetumType” (figure 24) is

generated, which has members “ISBN”, “ZIP2” and “FEE”.

Q_ReturnType

ISBN: String
ZIP2: String
FEE: double

D:\workdir\workspace\thesis>javap Q_ReturnType
Compiled from “Q_RetumType.java''
public class Q_ReturnType extends java.lang.Object implements
java.io.Serializable{

public java.lang.String getlSBN();
public void setlSBN(java.lang.String);
public java.lang.String getZIP2();
public void setZIP2(java.lang.String);
public double getFEE();
public void setFEE(double);
public Q_ReturnType();

Figure 24: The generated class for Q(ISBN, ZIP2, FEE)

41

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The codes to generate “Q_RetumType” are as below:

public void GenerateOutputDataType(Head head) {
String classname = head.QueryName + "_ReturnType”;
try {
File file = new File(classname+".java");
FileWriter writer = new FileWriter(file);
writer.write("import java.io.Serializable;\n\n”);
writer.write("public class ” + classname + " implements Serializable {\n\n">;
writer .write ("public " + classname + " () {};\n\n"),-

Enumeration output_list = head.Output.elements!);
while (output_list.hasMoreElements()) {

Parameter param = (Parameter)output_list.nextElement();
String member = "private " + param.getParamType() + • ” + param.getParamName() +

";\n";
String getMethod = "public " + param.getParamType () + ’ get" + param.getParamName ()

+ "(({return " + param.getParamName() +";};\n";
String setMethod = "public void set" + param.getParamName() + "(" +

param.getParamType() + “ var) {" + param.getParamName() + " = var;};\n";
writer.write(member + getMethod + setMethod + "\n");

)
writer.write(1}');
writer.close ();
}
catch (IOException ioe) { System.out.println(ioe); }

Figure 25: Codes to generate the return type class

Another important issue here is the number of tuples returned by this method. In general,

it is possible for this method to return multiple tuples. Therefore, the return type of this

method is a Vector instead of Q_RetumType (in figure 22). This vector stores all

Q_RetumType objects returned by this method.

Having generated the core class template SynthesisService_Q.java and the return data

type class CLReturnType.java, we are going to generate the codes inside the core method

getSynthesizedResult_Q() which performs service composition. Functionally speaking,

we need to generate codes to execute the service plan, and compose final results.

3.4.2 Implementations for Service Composition

3.4.2.1 Overall Service Plan Execution

In current version of WSS, the service plan execution is sequential because the service

plan is linear. All nodes are planned in order and their executions are also in the same

42

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

order. The overall service plan execution only needs to guarantee that the input condition

of a component service is satisfied when it is invoked.

For a component service to be executed, its input parameter must be provided. The initial

inputs come directly from user, and they are the value of input list in the head node. Since

the execution plan is feasible, the input parameters for each component service are either

from user’s inputs, or from previous service nodes executed before this node. The body

nodes are executed in sequential order. It is impossible to have a node service that is not

executable due to the lack of inputs condition; it is guaranteed by “service planning”.

Component services will be invoked one by one in nested loops in the same order as the

order in service plan. The key problem here is how to locate the correct value of a

parameter that was returned from previously invoked service. Every pair of parameter

name and its value are stored in an output list. When a component service is ready for

invocation, WSS always checks its parameters in the input list in the specification, and

locates these parameters from the output list which stores all output parameters and their

values from the previously-invoked services. The service plan has recorded the input

parameter’s location in previously-executed predicate’s output list during service

planning. WSS uses this information to retrieve the correct value of input parameter.

The execution of each component service is nested one by one in the same order as the

service plan. When there are multiple results returned, there is a while loop to perform

the “JOIN” operation. The final results are saved as Q_RetumType data type in a vector.

Now we discuss the generation of the implementation codes. Each component service

corresponds to a segment of codes. Figure 26 shows the mapping between the service

plan and the codes segments that are generated.

Core codes have been generated in this step, and we still need to generate the accessorial

codes, such as codes for service invocation and results extraction. We will cover these

topics in 3.4.2.2 and 3.4.2.3.

43

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

_______________ H ead__________

Q
Order=0
Input(ZIP2, ISBN)
Output(ISBN, ZIP1, ZIP2, FEE)

B o d y [l]

Am azon
O rder= l
Input(ISBN)
Output(ISBN,PRICE, TITLE,
W EIGHT)

____________ Bodyr21___________

Shipping
Order=2
Input(W EIGHT,ZIP 1 ,ZIP2)
Output(W EIGHT, ZIP1, ZIP2, FEE)

•4----- ►{ Vector getSynthesizedResult_Q (String zip2, String isbn) {

Vector final_results = new Vector();
AmazonService amazon_service = new AmazonServiceLocator();
Amzon amazonjnterface = amazon_service.getamazon();
Enumeration amazon_results_set = AmazonJnterface.getBooklnfo(isbn);
While (amazon_results_set.hasMoreElements()) {

AmazonBook amazon_result = (AmazonBook)
amazon_results_set.nextElement();

ShippingService shipping_service = new ShippingServiceLocator();
Shipping shipping_interface = shipping_service.getshipping();
Enumeration shipping_results_set =
shipping_interface.getShippingFee(amazon_result.getZip1 (), zip2,
amazon_result.getWeight());
While (shipping_results_set.hasMoreElements()) {

int shipping_result = (int) shipping_results_set.nextElement();
Q_ReturnType result = new Q_ReturnType(zip2, isbn,

shipping_result);
finaLresults.add(result);

}
}

}

Figure 26: Code Generation Mapping with Service Plan

44

3.4.2.2 Component Service Invocation

For each node in the service plan, we call it as a component service. Each component

service is a fully deployed web service that is accessible from the Internet. The

component service is described by a specification in WSS, and also published by a

WSDL file for service consumer on the Internet.

There are different approaches to invoke a web service. For example, we can

communicate directly with the web service through SOAP message. In this approach,

WSDL is not required, but the client-side codes are very complex. In mainstream SOAP

frameworks, such as Java and .NET, WSDL is required, and the client-side codes are

generated automatically from WSDL by supported tools.

WSS adopts the Java implementation of SOAP [6] - Apache Axis [35] - to invoke web

service. The invocation of the component service has two steps: (1) WSS generates

several Java classes from the component service’s WSDL; (2) WSS executes these Java

programs with input values to instantiate the component web service and get returned

values from the service.

For example, the first node in service plan corresponds to “Amazon” service. It has an

operation “getBooklnfo”. WSS can easily locate this web service and its corresponding

WSDL by its service specification. The complete WSDL of “Amazon” service in this

thesis can be found in Appendix 2 or at

http://137.207.234.209:8080/axis/services/amazon?wsdl. We will start our introduction

from this WSDL file. Figure 27 gives the abstracted tree structure of the WSDL:

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/services/amazon?wsdl

E Amazon
0 http://137.207.234.209:8080/axis/services/amazon?wsdl

B getBooklnfo
0 Input

IE!- inO
|™ inO
I simpleType
j™ string
= •• urn: amazon

B Output
B- getBooklnfoReturn

!•••• getBooklnfoReturn
!-■ complex Type

El AmazonBook
h ISBN

TITLE
!• WEIGHT
| - PRICE

! | WID
| = Z1P1
L urn: amazon

B Q(ISBN, TITLE,WEIGHT, PRICE,WID, ZIP1)
Amazon(ISBN, PRICE, WID)
Booklnfo(ISBN, AUTHOR, TITLE, WEIGHT)
Warehouse(WID, Addr, ZIP1)

Figure 27: Abstracted Amazon Service Operation

Firstly, to simplify the execution of each component service, WSS uses WSDL2Java in

Axis [35] to generate several Java classes. The invocation form is as below:

% java org.apache.axis.wsdl.WSDL2Java the-WSDL-file

To “Amazon” web service, the WSDL file can be converted into Java programs by the

following command:

% java org.apache.axis.wsdl.WSDL2Java
http://137.207.234.209:8080/axis/services/amazon?wsdl

46

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/services/amazon?wsdl
http://137.207.234.209:8080/axis/services/amazon?wsdl

By WSDL2Java, WSS generates the following Java classes from the WSDL:

AmazonBook. Java

AmazonJava
AmazonService.Java
AmazonServiceLocator.java
AmazonSoapBindingStub.java

Figure 28: Classes Generated from Amazon’s WSDL

AmazonBook.java is a data type class that has the same name as the complex type

“AmazonBook” in the WSDL. Four classes are generated, and they are a Java interface

for portType, a service interface and a service locator for service, and a stub class for

soap binding. They are named by the web service name “Amazon” plus a fixed name.

AmazonJava corresponds to the portType “Amazon” in WSDL, and it defines the

interface of the operation “getBooklnfo” of web service “Amazon”. For more details on

WSDL2Java and these generated Java classes, please see Axis user manual in [35].

To different web service, WSS will generate different classes from its WSDL. For

example, to the second node “Shipping”, WSDL2Java generates the following Java

classes:

Shipping.Java
ShippingService.Java
ShippingServiceLocator.java
ShippingSoapBindingStub.java

% java org.apache.axis.wsdl.WSDL2Java
http://137.207.234.209:8080/axis/services/shipping?wsdl

Figure 29: Classes Generated from Shipping’s WSDL

47

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/services/shipping?wsdl

Since the operation “getShippingFee” of “Shipping’ service returns a simple type,

therefore WSS doesn’t create a data type class. All these classes’ names start with the

service name “Shipping”.

In step two, WSS will execute these Java programs to invoke services. Amazon.java has

a method “getBooklnfo” that corresponds to the operation “getBooklnfo” of service

“Amazon”. With correct input (“ISBN” = isbn) value, these Java programs can be

executed as below to invoke the “getBooklnfo” method of “Amazon” web service:

AmazonService as = new AmazonServiceLocator();
Amazon amaz = as.getamazon();
AmazonBook ab = amaz.getBooklnfo(isbn);

AmazonService.java is a service interface which is implemented by the locator

AmazonServiceLocator.java. The locator obtains the binding information from the stub

class AmazonSoapBindingStub.java. Amazon.java is returned by the “get” method

“getamazonO” of AmazonService, and is implemented in AmazonSoapBindingStub.java.

When user specifies a “ISBN” value as input, Amazon.getBookInfo(isbn) method

instantiates the “getBooklnfo” operation of web service “Amazon” with input “isbn”, and

returns the results as a serialized object AmazonBook.

For example, when isbn = ‘184628581X’, the following object is returned:

AmazonBook

ISBN = “184628581X”
TITLE=”Semantic Web”
PRICE=79.95
WEIGHT=6
WID=1005
ZIP1=98101

It is handy to build web service applications on a SOAP framework such as Axis, and a

lot of work has been standardized for ease of use. There is complete information about

48

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Axis SOAP framework in [35]. This thesis will not cover how Axis generates these Java

classes. This thesis uses Axis to simplify the invocation of web services.

From the bode nodes, WSS generates the cascading codes for service invocation and

result composition. For each body nodes, WSS needs to generate a small segment of

codes to such as below:

AmazonService amazonjservice = new AmazonServiceLocator();
Amzon amazon_interface = amazon_service.getamazon();
Enumeration amazon_results_set = amazon_interface.getBookInfo(isbn);
While (amazon_results_set.hasMoreElements()) {

AmazonBook amazon_result = amazon_results_set.nextElement();
//Insert Nested Service Implementation Here

}

Figure 30: Codes Segment of Amazon service

This segment of codes have fixed format and naming rules. WSS has a template to save it,

which is “code_template” file. Please see the following template codes:

<?>Service <#>_service = new <?>ServiceLocator();
<?> <#>_interface = <#>_service.get<#>();
Enumeration <#>_results_set = <#>_interface.<method>(<inputs>);
while (<#>_results_set.hasMoreElements()) {

<retumType> <#>_result = <#>_results_set.nextElement();
//Insert Nested Service Implementation Here

}

Figure 31: Codes Template

<?> can be replaced with “Amazon” in data type names and <#> can be replaced with

lower case “amazon” in variable names. Method “getBooklnfo” and its return type

“AmazonBook” come from the method name and the returned data type name of the

service node’s specification file. The input of the method <input> can be replaced by isbn

which is located in the input list from user specification.

WSS will replace these variables with correct values from the service node. <?> is the

service name (same as query name); <#> is the service name in lower case; <method> is

49

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

the method name of this service node; <inputs> is the bound parameter of the

specification, and its location is recorded in the service plan; <retumType> is the

returned data type of this method. The return type can be simple type or complex type.

All these information can be dynamically extracted from the specification of this service

node.

The generator codes are as below:

public void GenerateServiceCodesByServiceNode(String classname, ServicePlanNode
node) {

String serviceName = node.getQueryName().ToString();
String serviceNameLCase = serviceName.toLowerCase();
String method = node.getWSDL().getOperationName();
String inputlist = node.locatelnputs().toParameterList();
String returntype =

node.getWSDL().getOperation() ,getReturnMessageType() .getNamet);
DupTemplate(serviceName+"_template”, "code_template");
KeywordsReplace(serviceName+”_template", ”<?>", serviceName);
KeywordsReplace(serviceName+"_template”, "<#>", serviceNameLCase);
KeywordsReplace(serviceName+^template”, ”<method>", method);
KeywordsReplace(serviceName+11 _template", "<inputs>11, inputlist) ;
KeywordsReplace(serviceName+"_template”, ” <returnType>11, returntype);
FileHandler file = OpenFile(classname+".java");
file.InsertMethodImplementation(serviceName+"_template”);

Figure 32: Generation of Implementation Codes

3A.2.3 Result Extraction and Join operation

The overall service composition is simple when component service returns single result.

When component service returns multiple results, “JOIN” operation must be computed.

There are “while loop” on each result, and the component services that are nested inside

will be invoked multiple times. In the most inner component service, WSS uses the

output data type to store the results of each invocation in a collection.

50

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Initial Inputs, expected Outputs = Spec.OutputList
Invoke SI with Inputs -> Result(l);
{ Invoke S2 with each row in {Inputs, Result(l)} -> Result(2);
{Invoke S3 with each row in {Inputs, Result(l), Result(2)} -> Result(3);

{Invoke Sn with each row in {Inputs, Result(l), Result(2), Result(3), ...,Result(n-l)} ->
Result(n);
Outputs are extracted from {Inputs, Result(l), Result(2),..., Result(n)};
} //End of Invoke Sn

} //End of Invoke S3
} //End of Invoke S2
} //End of Invoke S1

Figure 33: Result Extraction while Executing Services

The web service in the inner loop will be invoked on each returned results of the current

service. These nested loops carry out the “JOIN” operation on outputs of all component

services.

In the inner most loop, where the last component service node is reached, the whole

service plan is executed completely, and we have all the results from all component

services. The output list in the user specification defines all required output parameters,

and these results are extracted and returned as one successful result.

3.4.3 Summary of the concrete implementation

In this thesis we use Java as the implementation language. The concrete implementation

includes the service invocation codes generated by WSDL2Java, the generated serialized

object, and the core class with nested loops to invoke component services. The core class

can be executed by user with different input values, and different results are returned

from invoking all component services.

Currently WSS doesn’t provide an implementation in the form of web service. Actually

the web service implementation codes are already generated. And it is not difficult for

WSS to generate WSDL by Java2WSDL.

51

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

If user needs to publish the Java program as a web service, user needs:

(1) A web server to process http requests, such as Tomcat [34];

(2) A SOAP engine to wrap Java objects, such as Axis [35];

(3) A valid domain

And these are not hard tasks.

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

4. Experiments

Due to the lack of agreements with large web service providers like “Amazon” or

“Fedex”, the global schema can only be constructed locally in my experiments. In this

thesis, I set up an experimental web services to test Web Service Synthesis.

4.1 Experimental Web Service Repository

I use Apache Axis [35] to build web services in this thesis. Axis must be installed on an

application server. I use Jakarta Tomcat 5.5.9 [33] as application server. Axis can

serialize/deserialize Java classes which follow the standard JavaBean pattern of get/set

accessors. All you need to do is to tell Axis which Java classes map to which XML

Schema types. Configuring a bean mapping looks like this:

<beanMapping qname="myNS:AmazonBook" xmlns:myNS="urn:Amazon"
languageSpecificType="j ava:AmazonBook"/>

This mapping tells class “AmazonBook” in Java is mapping to the qname

“AmazonBook” in web service “Amazon”. Once we finish the WSDD file, we can

deploy and publish the web service using a special utility from Axis:

org.apache.axis.client.AdminClient. The web service becomes public to any Internet user

program. We can even register this web service in UDDI, so that web service consumer

can find it easily.

I set up 10 test web services in the web service repository, which can be found at:

http://137.207.234.209:8080/axis/servlet/AxisServlet. The following table introduces the

functions of these services.

53

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/servlet/AxisServlet

Service Functions

Shipping Computes shipping fee by weight and zip codes

PurchaseOrders Track purchase orders and details

Customers Lookup customer’s detail information by customer ID

Discount Provides a book’s discount information

Authors Lookup an author’s detail information by author name

Exchange Provides currency exchange information

Vendors Provides book vendor information by vendor ID

Chapters Provides book price from a faked vendor “Chapters”

Amazon Provides book price from a faked vendor “Amazon”

I build these web services using Java and Axis. There are 3 steps:

1. Write Java programs to implement the functions of these web services. The backbone

database schema is defined as well.

2. Install these Java programs on Axis

3. Use WSDD to publish these programs as web services

These web services become public after they are published through Axis. Anyone can use

these web services freely if he knows the WSDL. Once we have a public domain name,

and register these services in UDDI, these services can be searched and consumed by

arbitrary client programs on the Internet. In current implementation, our experiments are

all local.

4.2 Constructing Web Service Synthesis Environment

The web service synthesis environment includes the Global Schema and Web Service

Specification List.

54

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The global schema is an assumption in this thesis. The global schema is constructed

manually by the author in the experiments of this thesis. An experimental global schema

is defined in Appendix 1.

The web service specification list is constructed when I implemented the Java programs

of each web service. When I design the functionality of a web service, the query of this

service is extracted as semantics, and the input/output parameter lists are extracted as

signature. The web service specification list is based on the global schema. It is manually

constructed by the author in this thesis.

The construction of global schema and the specification list is served as the registration

process in WSS. Whenever a new web service is registered in WSS, it refers to the global

schema and defines its specifications, therefore this new web service is understandable to

both service consumers and service integrators.

4.3 Test Web Service Synthesizer

I use several different queries to test web service synthesizer.

I use the query Q(ZIP2, ISBN, FEE) as an example to explain WSS implementations.

WSS first uses query rewriting module to find out the equivalent rewriting of Q using

views in the view list (Appendix 2).

Q(ZIP2, ISBN, FEE)
AmazonSvc(ISBN, TITLE, PRICE, WEIGHT, WID, ZIP1),
ShippingSvc(ZIP1, ZIP2, WEIGHT, FEE)

55

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1 W eb S erv ice S y n th e s iz e jeiSI-Xl

; SHIPPING-!WEIGHT/ FEE, OK
•B00KINF0=[W EIGHT, TITLE/
• BOOKREVIEW-tlSBN, COMME

• - CHAPTERS«[ISBN, PRICE] L

DISTANCE-IZIPE, ZIPS, DIST’

• a m a z o n = [is b n , p r ic e]
AUTHORS-[AGE, AUTHOR, G|

«L
M2
ii VfewiM

0 AmazQnSvc(I5BN, PRICE, RAT
| !• Amazoh(ISBN,:PRICE)

8ookInfo(WEIGHT, TITLE,
j ' BookReview(ISBNj COMMt

0 C h a p te rsS v c (l5 B N , PRICE, TH
Chapters(ISBN, PRICE) i
8ookInfo(WEIGHT, TITLE,(

0 5hipp!ng5vc(WEIGHT, Z IPS/Zf
|'Shipping(W EIGHT, FEE,:Dt
; -O istance(ZIPE, ZIPS, DlSlf

iL

query in p u t :

i : [- h ttp ://I3 7 .2 0 7 ,2 3 4 .2 0 9 :8 0 * ;
R SELECT Amazon .ISBN, Amaz

i | 8 Q(I5BN, PRICE, RATE, 1;
Amazon(ISBN, PRIC

1: j ■■■■ i- BookInfo(WEIGHT,1i

I !-BookReview (ISBN , C:
i B Mapping
! B - In p u t :

InO - Amazon.I5BN
i B - O utput

;••• AmazonBook. AUTHC;
) i-A m azonB ook. ISBN ah

! : I - AmazonBook.PRICE:!
Amazon6ook.RATE>:

1 I-'AmazonBook.TITLE»:
AmazonBook. WEIGH:

a d a p t e r s

r ; -h ttp ://1 3 7 .2 0 7 .2 3 4 .2 0 9 :8 0 1 ;
j ErSELECT C hapters,ISBN , Chs;
' ‘ 8)- Q(ISBN, PRICE, TITLE,.
i E Mapping
I .E - I n p u t .

| j InO ■ Chapters.ISBK:
I : - B -O u tp u t ■■ ■■■ ! !

- ChaptersBook. AUTh:

I ChaptersBook.I5BN :

ChaptersBook.PRICI
i - C haptersBook. TITLE;

I C haptersBook. WEIG

B d ip p in g
w h ttp :/ /1 3 7 .207.234.209:80* i

0 SELECTShipping.WEIGHT, G;
•j & Q(WEtGHT, ZIPS, ZIPE/!

Shippmg(W£IGHT, F
: -Dfstance(ZIPE, ZIPS

EH-Mapping ii
B Inpu t ii
; : inO - Shipping.WEIC

ini ■ Distance.ZIPS;;
I • m 2 -D istan ce .Z IP E

:: B O u tpu t ii

: getShippingFeeR etu ;

se lec t Distance.ZipS, Distance.ZipE, Amazon.ISBN, Amezon.Prtee, Booklnfo.TITLE, SN ppm g.Fee from
Amazon, Booklnfo, Shipping, D istance w here A m azo n .B B N - Booklnfo.ISBN a n d Booklnfo. WEIGHT -
Shipping ,W EIG H TandD istance.D ist-Shippm g.D ist

Q(ZIP2,ISBN,FEE) < - Amazon(ISBN, PRICE, WID), BookInfo(WEIGHT, TITLE, ISBN, AUTHOR),
5hipplng(WEIGHT, FEE, DIST), D istance(Z lP l, 2IP2, DIST).

' J

iser p lease ty p e m th e v alue o f input p aram eters:
J

-■j

G efw rate-Java

E g l /a len t R aw risrg | c <K j - o n P 'an j G e n e r jf td J s - a | E .aci.-iG rR esulfs | Composite j
Q(ZII^,ISBN,FEEy<-Ar^zonSvi:(ISBi^PRlCE;TiTLEiwilGHT> WID, Z IP !),
Shlpping5vc(W EKHT,ZIPI,ZI»2,PEE)

T |

Figure 34: Web Service Synthesis system

The above is the interface of the Web Service Synthesis system. It loads the global

schema and specification list as environments, and computes the equivalent rewriting of

the user query Q(ISBN, ZIP2, FEE). Then we can generate an execution plan as below:

<Head>
<Query>Q(ISBN, ZIP2, FEE)</Query>
<lnput>ISBN, ZIP2</lnput>
<Output>ISBN, ZIP2, FEE</Output>
</Head>
<Nodes>
<Node>
<Query>AmazonSvc(ISBN, TITLE, PRICE, WEIGHT, WID, ZIP1)</Query>
<lnput>ISBN</lnput>
<Output>ISBN, TITLE, PRICE, WEIGHT, WID, ZIP1</Output>
</Node>
<Node>
<Query> ShippingSvc(ZIP1, ZIP2, WEIGHT, FEE)</Query>
<lnput>ZIP1, ZIP2, WEIGHT</lnput>
<Output>ZIP1, ZIP2, WEIGHT, FEE</Output>

56

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://I37.207,234.209:80*
http://137.207.234.209:801
http://137.207.234.209:80*

</Node>
</Nodes>

From the feasible service execution plan, W SS generates the follow ing Java codes:

Vector getSynthesizedResult_Q (String zip2, String isbn) {
Vector final_results = new Vector();
AmazonService amazonservice = new AmazonServiceLocator();
Amzon amazon_interface = amazon_service.getamazon();
Enumeration Amazon_Results = Amazon_interface.getBookInfo(isbn);
While (Amazon_Results.hasMoreElements()) {

AmazonBook amazonresult =
(AmazonBook) Amazon_Results.nextElement();

ShippingService shipping_service = new ShippingServiceLocator();
Shipping shipping_interface = shipping_service.getshipping();
Enumeration Shipping_Results =

shipping_interface.getShippingFee(shipping_interface.getZip 1 (),
zip2,
shipping_interface.getWeight());

While (Shipping_Results.hasMoreElements()) {
Int shipping_result = (int) Shipping_Results.nextElement();
Q_RetumType result = new Q_RetumType(zipl, zip2, isbn, shipping_result);
final_results.add(result);

}
}

Figure 35: Generated Java Codes

We can verify the correctness of this Java program by computing the results with

different input values.

4.4 Publish the web service

WSS is responsible to generate a group of Java programs, including a core Java program

and several accessorial programs. To make a real web service, we have to manually

deploy the composite service using Axis. This step cannot be automated in WSS. It is up

to the user’s choice on how to publish it.

The author uses WSDD file to deploy the new composite web service using Axis.

57

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

4.5 Experimental Results

The experiment proves WSS is a feasible approach for web service composition,

especially for database-based web service.

Query rewriting technique reveals the semantic relation of web services. I our tests, the

global schema and the service repository do not include many web services and semantic

relations, therefore the rewriting results are limited. Theoretically a user query can not be

answered if all of the existing services do not include enough data to answer the user

query. That means WSS needs as many services as possible so that a composite service

can be constructed.

With the proliferation of web services, more and more web services are published, and

WSS are expected to be more capable of answering user queries.

58

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

5. Conclusion and Future work

5.1 Conclusion

With the proliferation of web services, more and more consumers are using resources in

the form of web service. A lot of time the consumer doesn’t know what web services are

available, and how to identify if a web service is exactly the correct service he needs.

Consumer only knows what information he needs to query. We need an easy approach

for web service users to consume and integrate existing services. WSS can solve these

problems effectively.

WSS use Web Service Specification to describe a web service. Web service specification

has a signature to define its syntax and a query to define its semantics; and it supplements

the missing semantics in WSDL. There is a global schema which abstracts all the

relational relations behind all existing web services. The query in a specification is

defined on top of the global schema. User’s request can be simply described by a query Q,

and WSS uses Query Rewriting techniques to discover existing services so that the user

query Q can be answered. WSS verifies the query rewriting results using the

corresponding signatures so that a feasible service execution plan is generated. Finally

WSS will generate the Service Composition Java codes, which invoke every component

service according to the service plan and return the final results as user requested.

Not like current existing frameworks which are mostly at research level and very had to

implement, WSS is the most practical approach for web service consumers. WSS uses

Datalog notation to define semantics, which is easy to be understood by most of users

with basic Database knowledge. Query rewriting module automatically discovers services,

and executable Java codes are finally generated. User doesn’t need to read the service

plan and invoke the services one by one. WSS reduces web service consumers’ work

dramatically. The generated Java codes can also be reused by future users when the same

query is submitted by a different user.

59

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

WSS approach is based on query rewriting. The feasibility of WSS is significantly relied

on query rewriting techniques. Fortunately query rewriting techniques have been

thoroughly studied in database area, especially specialized in data integration, which is

similar to web service composition scenario. When there are enough predefined web

services, we can always find a complete rewriting if theoretically there is an answer.

Many existing techniques and tools in the area of data integration can be applied in our

approach. Also, a large number of web services are migrated from existing

database-based applications, and it is natual to apply existing techniques in database area,

such as query rewriting, to solve web service synthesis problem.

In current implementation, we have the following assumptions:

(1) There is a global schema

(2) A web service can be described by database query semantically

(3) Each web service in all examples only have 1 operation, therefore a query can

describe this web service, (only to reduce the complexity)

WSS approach has two major limitations. First the searching speed is limited by the

efficiency of query rewriting module. When the number of queries and schemas are large,

it might take very long time to compute the rewriting result. And the searching time

increases with the number of queries and the size of the schema. Secondly, the semantic

expressiveness in WSS is limited by Datalog notation.

5.2 Contribution

This thesis introduces Web Service Synthesis as a new approach to dynamically discover

and synthesize web services. In the research, I design the architecture of the Synthesizer,

and I develop a prototype Web Service Synthesis system, which can synthesize the

implementation of a service from a service specification. I follow modular design to

implement this prototype system, and core module can be replaced by external packages

if available. I also develop two core modules: the service planning module and the

service composition module.

60

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

5.3 Future Work

In the future, how to increase the capability of the global schema is a very important issue.

When new web service is added, or existing web service is modified or deleted, the

schema transformation is another important research issue.

Also, we need to enhance the expressiveness of query in the specification. The accuracy

of Web Service Synthesizer mostly depends on the accuracy of query rewriting

techniques. From view to global schema, the semantic tie is very strong. Future research

may focus on finding the query relations in a loosen condition, especially when global

schema definition might be limited.

Efficiency of Web Service Synthesizer can be improved as well. Current implementation

doesn’t have a parallel execution engine. In service planning phase, component services

are planned into sequential order, and therefore the generated Java codes are simply

having cascading while loops to invoke component services in the same sequential order.

This sequential order doesn’t fully represent the dependencies of component services.

Some component services can be executed in parallel, and the Synthesizer needs to

dynamically detect it and record it. The ideal structure for a service plan is a tree structure,

the root is the head predicate, and the leaves are component services.

In more complex case, the planning algorithm can be optimized to generate a tree service

plan. The tree starts from the head predicates, and all body nodes are leaves on the tree. If

the bound parameter o f a node A comes from output of another node B, the A is B’s leaf.

Figure 36 is an example of such a service plan tree.

61

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Root

Figure 36: Service plan tree

When such a more complex service plan is generated, how to generate the corresponding

Java codes will become another interesting topic. This process is similar to compiling

process; the problem would become how to compile a service plan into actual service

invocation codes.

In current version, WSS does not support such complex cases. But this is a very

interesting topic for future research.

Multiple implementations for one user specification are possible. This happens when

there are multiple feasible service plans. From each service plan we can generate an

implementation. How to evaluate the efficiency of different implementation codes of the

same user specification is another research direction.

62

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Appendix 1: A Experimental Global Schema

We assume there is a global schema that describes the database schema behind all web services.

As experimental environment, we abstract several relations from a typical scenario of purchasing and
shipping a book. The following tables are implemented in our Web Service Synthesis Environment.

Amazon Distance Booklnfo

Field Name Data Type

ISBN Text

Price Float

WID Inteaer

Warehouse

Field Name Data Type

Zipl Text

Zip2 Text

Dist Float

BookReview

Field Name Data Type

ISBN Text

Title Text

Author Text

Weight Integer

Field Name Data Type

WID Integer

Addr Text

Zinl Text

Field Name Data Type

ISBN Text

Comment Text

Rate Inteaer

Shippping Chapters

Field Name Data Type

Weight Integer

Dist Float

Fee Float

Field Name Data Type

ISBN Text

Price Float

WID Tnteeer

Tables “Amazon" and “Chapters” describe a book’s ISBN, its price and the corresponding stocking
warehouse ID from two different sources.

Table “Booklnfo” records the related information of a book, such as its ISBN, book title, author, weight.

Table “BookReview” records a book’s ISBN, reader’s comments and its rating.

Tables “Distance” records two zip codes zipl and zip2, and the corresponding distance between these two
zip codes.

Table “Shipping” records the distance, weight and the shipping fee calculation of a ship item.

Table “Warehouse” records the warehouse’s universal ID, its detailed address and zip code.

The seven tables above are the abstractions of an application scenario. The real application, such as the web
service ofAmazon.com, is much more complicated and contains more relations and variables. In our
research work, we abstract the core parameters and relations to simplify the illustration of the web service
synthesis process. The table definitions are in XML format. These tables are the fundamental relation
schema for higher level definitions of web service semantics. The designer of such a global schema should
be the expert in this application domain.

The following is the definitions of all seven tables in XML format.

63

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

<?xml version=11.0'?>
<Schema DatabaseName="BookServices">
<TableName Name="Amazon">

CColumnName Name="ISBN" TypeName="VARCHAR"/>
<ColumnName Name="PRICE" TypeName="FLOAT"/>
CColumnName Name="WID" TypeName="INTEGER"/>
<PrimaryKey>
</PrimaryKey>
<ForeignKey>
</ForeignKey>

c/TableName>
<TableName Name="Chapters">

CColumnName Name="ISBN" TypeName="VARCHAR"/>
CColumnName Name="PRICE" TypeName="FLOAT"/>
<ColumnName Name="WID" TypeName="INTEGER"/>
<PrimaryKey>
</PrimaryKey>
<ForeignKey>
</ForeignKey>

</TableName>
<TableName Name="BookInfo">

CColumnName Name="ISBN" TypeName="VARCHAR"/>
CColumnName Name="TITLE" TypeName="VARCHAR"/>
CColumnName Name="AUTHOR" TypeName="VARCHAR"/>
CColumnName Name="WEIGHT" TypeName="INTEGER"/>
cPrimaryKey>
c/PrimaryKey>
cForeignKey>
c/ForeignKey>

</TableName>
CTableName Name="BookReview">

CColumnName Name="ISBN" TypeName="VARCHAR"/>
CColumnName Name="COMMENT" TypeName="VARCHAR"/>
CColumnName Name="RATE" TypeName="INTEGER"/>
cPrimaryKey>
c/PrimaryKey>
CForeignKey>
c/ForeignKey>

c/TableName>
CTableName Name="Shipping">

CColumnName Name="WEIGHT" TypeName="INTEGER"/>
CColumnName Name="DIST" TypeName="FLOAT"/>
CColumnName Name="Fee" TypeName="FLOAT"/>
cPrimaryKey>
c/PrimaryKey>
cForeignKey>
c/ForeignKey>

c/TableName>
CTableName Name="Distance">

CColumnName Name="ZIPl" TypeName="VARCHAR"/>
CColumnName Name="ZIP2" TypeName="VARCHAR"/>
CColumnName Name="DIST" TypeName="FLOAT"/>
cPrimaryKey>
c/PrimaryKey>
CForeignKey>
c/ForeignKey>

c/TableName>
CTableName Name="Warehouse">

CColumnName Name="WID" TypeName="INTEGER"/>
CColumnName Name="Addr" TypeName="VARCHAR"/>
CColumnName Name="ZIPl" TypeName="VARCHAR"/>
cPrimaryKey>
c/PrimaryKey>
cForeignKey>
c/ForeignKey>

c/TableName>

c/Schema>

64

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Appendix 2. Two views: “v_amazon” and “v_shipping”

<?xml version=“1.0"?>
<views>
<view name="v_amazon“> <Query>

SELECT Amazon.ISBN, Amazon.PRICE, Booklnfo.TITLE, Booklnfo.AUTHOR, Warehouse.WID,
Warehouse.ZIP1 FROM Amazon, Booklnfo, Warehouse WHERE Amazon.ISBN=Booklnfo.lSBN and
Amazon.WID=Warehouse.WID

</Query>
<lnput>Amazon.lSBN</lnput>
<Output> Amazon.ISBN, Amazon.PRICE, Booklnfo.TITLE, Booklnfo.AUTHOR, Warehouse.WID,
Warehouse.ZIPI </Output>
</view>

<view name="v_shipping"> <Query>
SELECT Distance.ZIPI, Distance.ZIP2, Shipping.WEIGHT, Shipping.FEE FROM Distance, Shipping

WHERE Distance.DIST = Shipping.DIST
</Query>

<lnput> Distance.ZIPI, Distance.ZIP2, Shipping.WEIGHT </lnput>
<Output> Distance.ZIPI, Distance.ZIP2, Shipping.WEIGHT, Shipping.FEE </Output>
</view>

65

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Appendix 3: WSDL of “Amazon” web service

<?xml version-'1.0" encoding="utf-8"?>
<wsdl:defmitions targetNamespace="http://137.207.234.209:8080/axis/services/amazon"
xmlns:impl="http://137.207.234.209:8080/axis/services/amazon"
xmlns:intf="http://137.207.234.209:8080/axis/services/amazon"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl7soap/"
xmlns:soapenc-’http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tnsl="um:amazon"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<schema xmlns="http://www.w3 .org/2001/XMLSchema" targetNamespace="um:amazon">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="AmazonBook">
<sequence>
<elementname="ISBN" nillable-'true" type="xsd:string"/>
<element name="PRICE" type="xsd:double"/>
<element name="TITLE" nillable-'true" type="xsd:string"/>
<element name="WEIGHT" type="xsd:int"/>
<element name="WID" type="xsd:int"/>
<elementname-'ZIP" type="xsd:string"/>
</sequence>
</complexType>
</schema>
</wsdl:types>
<wsdl:message name="getBookInfoResponse">
<wsdl:part name="getBookInfoRetum" type="tnsl:AmazonBook"/>
</wsdl:message>
<wsdl:message name="getBookInfoRequest">
<wsdl:part name="inO" type="xsd:string"/>
</wsdl:message>
<wsdl:portType name="Amazon">
<wsdl:operation name="getBooklnfo" parameterOrder="inO">
<wsdl:inputname="getBookInfoRequest" message="impl:getBookInfoRequest'7>
<wsdl:output name="getBookInfoResponse" message="impl:getBooldnfoResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="amazonSoapBinding" type="impl:Amazon">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http'7>
<wsdl:operation name="gelBookInfo">
<wsdlsoap:operationsoapAction=""/>
<wsdl:input name="getBookInfoRequest">
<wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://amazon.services"/>
</wsdl:input>
<wsdl:outputname="getBookInfoResponse">
<wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
namespace="http://137.207.234.209:8080/axis/services/amazon"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="AmazonService">

66

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/services/amazon
http://137.207.234.209:8080/axis/services/amazon
http://137.207.234.209:8080/axis/services/amazon
http://xml.apache.org/xml-soap
http://schemas.xmlsoap.org/wsdl7soap/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://www.w3
http://schemas.xmlsoap.org/soap/encoding/%22/
http://schemas.xmlsoap.org/soap/http'7
http://schemas.xmlsoap.org/soap/encoding/
http://amazon.services%22/
http://schemas.xmlsoap.org/soap/encoding/
http://137.207.234.209:8080/axis/services/amazon%22/

<wsdl:portname-'amazon" binding="impl:amazonSoapBinding">
<wsdlsoap:addresslocation="http://137.207.234.209:8080/axis/services/amazon'7>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

67

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/services/amazon'7

Appendix 4: WSDL of “Shipping” web service

<?xml version-'1.0" encoding="UTF-8"?>
<wsdl:defmitions targetNamespace="http://137.207.234.209:8080/axis/services/shipping"
xmlns:impl="http://137.207.234.209:8080/axis/services/shipping"
xmlns:intf="http://137.207.234.209:8080/axis/services/shipping"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<!--WSDL created by Apache Axis version: 1.2.1
Built on Jun 14,2005 (09:15:57 EDT)~>

<wsdl:message name="getShippingFeeRequest">
<wsdl:part name="in0" type="xsd:string"/>
<wsdl:part name="inl" type="xsd:string"/>
<wsdl:part name="in2" type="xsd:string"/>

</wsdl:message>
<wsdl:messagename="getShippingFeeResponse">

<wsdl:part name="getShippingFeeRetum" type="xsd:double"/>
</wsdl:message>
<wsdl:portType name="Shipping">

<wsdl:operation name="getShippingFee" parameterOrdei="inO ini in2">
<wsdl:inputname="getShippingFeeRequest" message="impl:getShippingFeeRequest"/>
<wsdl:outputname="getShippingFeeResponse" message="impl:getShippingFeeResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="shippingSoapBinding" type="impl:Shipping">

<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operationname="getShippingFee">

<wsdlsoap: operation soapAction-'"/>
<wsdl:input name="getShippingFeeRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://DefaultNamespace"/>

</wsdl:input>
<wsdl:output name="getShippingFeeResponse">

<wsdlsoap:body use=" encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://137.207.234.209:8080/axis/services/shipping7>

</wsdl:output>
</wsdl: operation>

</wsdl:binding>
<wsdl:service name="ShippingService">

<wsdl:port name="shipping" binding="impl:shippingSoapBinding">
<wsdlsoap:address location="http://137.207.234.209:8080/axis/services/shipping"/>

</wsdl:port>
</wsdl:service>

68

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://137.207.234.209:8080/axis/services/shipping
http://137.207.234.209:8080/axis/services/shipping
http://137.207.234.209:8080/axis/services/shipping
http://xml.apache.org/xml-soap
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/soap/http%22/
http://schemas.xmlsoap.org/soap/encoding/
http://DefaultNamespace%22/
http://schemas.xmlsoap.org/soap/encoding/
http://137.207.234.209:8080/axis/services/shipping7
http://137.207.234.209:8080/axis/services/shipping%22/

69

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

References

[1] W3C, World Wide Web, http://www.w3.org/WWW

[2] Ivan Herman. Semantic Web Activity, Semantic Web of W3C

http ://www. w3 .org/2001 /sw/

[3] W3C, Web Service, http://www.w3.org/2002/ws/

[4] W3C, Web Service Definition Language, http://www.w3.org/TR/wsdl

[5] UDDI White Papers, http://www.uddi.org/whitepapers.html

[6] SOAP, http ://www.w3 .org/TR/soap/

[7] XML 1.0 (third edition), W3C Recommendation, http://www.w3.org/TR/REC-xml/,

February 2004

[8] David C. Fallside, Priscilla Walmsley. XML Schema Part 0: Primer 2nd edition,

http://www.w3 .org/TR/xmlschema-O/. October 2004

[9] Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, XML

Schema Part 1: Structures 2nd edition, http://www.w3.org/TR/xmlschema-l/. October

2004

[10] Alon Y. Halevy, Answering Queries Using Views: A Survey, The VLDB Journal,

Volume 10, Issue 4, December 2001

70

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://www.w3.org/WWW
http://www.w3.org/2002/ws/
http://www.w3.org/TR/wsdl
http://www.uddi.org/whitepapers.html
http://www.w3
http://www.w3.org/TR/REC-xml/
http://www.w3
http://www.w3.org/TR/xmlschema-l/

[11] Jianguo Lu, Yijun Yu, John Mylopoulos, A lightweight approach to semantic web

service synthesis, ICDE Workshop, International Workshop on Challenges in Web

Information Retrieval and Integration, Tokyo, 2005

[12] John E. Funderburk, Susan Malaika, Berthold Reinwald, XML programming with

SQL/XML and XQuery, IBM Systems Journal, Volume 41, No. 4, Pages 642-665,2002

[13] Katia Sycara, Jianguo Lu, Matthias Klusch, Interoperability among Heterogeneous

Software Agents on the Internet, Technical Report , CMU-RI-TR-98-22, CMU,

Pittsburgh, USA, 1998

[14] Katia Sycara, Matthias Klusch, Seth Widoff, Jianguo Lu, Dynamic Service

Matchmaking Among Agents in Open Information Environments, Journal of ACM

SIGMOD Record, Special Issue on Semantic Interoperability in Global Information

Systems, A. Ouksel, A. Sheth (Eds.), Volume 28, Issue 1, Pages 47-53,1999

[15] The OWL Services Coalition, http://www.daml .org/services/owl-s/1.0/

[16] Snehal Thakkar, Craig A. Knoblock, Jose-Luis Ambite, A View Integration

Approach to Dynamic Composition of Web Services, In Proceeding of 2003 ICAPS

Workshop on Planning for Web Services, June 2003

[17] Minghao Li, Complete and Equivalent Query Rewriting Using Views, Master Thesis,

University of Windsor, 2006

[18] Jeffrey D. Ullman, Principles of database and knowledge-base systems, Volume 1,

Computer Science Press, 1988

[19] Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju, Web Services:

concepts, architectures and applications, Springer, ISBN/ISSN: 3540440089,2004

71

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://www.daml

[20] Jianguo Lu, John Mylopoulos, XIB: extensible Information Broker, International

Journal on Artificial Intelligence Tools, Volume 11, No. 1, Pages 95-115, March 2002

[21] Akhil Sahai, Sven Graupner, Web Services in the enterprise: Concepts, Standards,

Solutions, and Management, Springer, ISBN/ISSN: 0387233741,2005

[22] Frank Leymann, Web Services Flow Language, Version 1.0, Technical Report,

International Business Machines Corporation (IBM), May 2001

[23] Rachel Pottinger, Alon Halevy, Minicon: A scalable algorithm for answering queries

using views. The VLDB Journal, Volume 10, No. 2-3, Pages 182 - 198,2001.

[24] Satish Thatte, XLANG,

http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

[25] Frank Leymann, WSFL 1.0, IBM, http://xml.coverpages.org/wsfl.html. May 2001

[26] Francisco Curbera, Tony Andrews, Hitesh Dholakia, BPEL4WS,
http://www-128.ibm.com/developerworks/librarv/specification/ws-bpel/

[27] Jianguo Lu, Shengrui Wang, Ju Wang, An Experiment on the Matching and Reuse

of XML Schemas, International Conference on Web Engineering, Sydney 2005

[28] David Burdett, Kickolas Kavantzas, Web Service Choreography Model,

http://www.w3.org/TR/2004/WD-ws-chor-model-20040324/. March 2004

[29] Web Service Choreography Description Language

http://www.w3 .org/TR/2005/CR-ws-cdl-10-20051109/

[30] Chen Li, Edward Y. Chang, Query Planning with Limited Source Capabilities.

International Conference on Data Engineering (ICDE), Pages 401-412, 2000

72

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://www.gotdotnet.com/team/xml
http://xml.coverpages.org/wsfl.html
http://www-128.ibm.com/developerworks/librarv/specification/ws-bpel/
http://www.w3.org/TR/2004/WD-ws-chor-model-20040324/
http://www.w3

[31] Chen Li, Computing Complete Answers to Queries in the Presence of Limited

Access Patterns, Technical Report, Computer Science Department, Stanford University,

1999

[32] Shigeru Chiba, Javassist (Java Programming Assistant, a sub project of JBoss)

http://www.csg.is.titech.ac.in/~chiba/iavassist/

[33] Snehal Thakkar, Jose Luis Ambite, Craig A. Knoblock, A Data Integration

Approach to Automatically Composing and Optimizing Web Services, In Proceeding of

2004 ICAPS Workshop on Planning and Scheduling for Web and Grid Services, June

2004

[34] The Apache Software Foundation, Jakarta Tomcat http://tomcat.apache.org/

[35] The Apache Software Foundation, Axis 1.4, Axis User’s Guide

http://ws.apache.org/axis/iava/user-guide.html

[36] Liangzhao Zeng, Dynamic Web Services Composition, PhD thesis, Univ. of New

South Wales, 2003

[37] Susan Malaika, Constance J. Nelin, Rong Qu, Berthold Reinwald, Daniel C.

Wolfson, DB2 and Web Services, IBM System Journal, Volume 41, NO. 4, Pages

666-685,2002

[38] W3C, Document Object Model, http://www.w3.org/DOM/.

[39] Paul A. Buhler, Jose M. Vidal, Toward the Synthesis of Web Services and Agent

Behaviors, 2002

73

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://www.csg.is.titech.ac.in/~chiba/iavassist/
http://tomcat.apache.org/
http://ws.apache.org/axis/iava/user-guide.html
http://www.w3.org/DOM/

[40] Liming Chen, Nigel R. Shadbolt, Carole Goble, Feng Tao, Simon J. Cox, Colin

Puleston, Paul R. Smart, Towards a Knowledge-based Approach to Semantic Service

Composition, Springer. Page 319-334,2003

[41] Nikola Milanovic, Miroslaw Malek. Current Solutions for Web Service Composition,

IEEE Internet Computing, Pages 51-59, November 2004

[42] Marco Pistore, Parlo Traverso, Piergiorgio Bertoli, Annapaola Marconi, Automated

Synthesis of Composite BPEL4WS Web Services, IEEE International Conference on

Web Services (ICWS’05), Pages 293-301,2005

[43] Jinghai Rao, Xiaomeng Su, A Survey of Automated Web Service Composition

Methods, First International Workshop, SWSWPC 2004, Springer, Page 43-54,2004

[44] Parlo Traverso, Marco Pistore, Automated Composition of Semantic Web Services

into Executable Processes, Third International Semantic Web Conference, ISWC 2004,

Springer, 2004

[45] Hongbing Wang, Joshua Zhexue Huang, Yuzhong Qu, Junyuan Xie, Web services:

problems and future directions. Journal of Web Semantics, Volume 1 No.3, Pages

309-320, April 2004

[46] Jian Yang, Mike P. Papazoglou, Web Components: A Substrate for Web Service

Reuse and Composition. Advanced Information Systems Engineering: 14th International

Conference, CAiSE 2002 Toronto, Canada, Springer, May 2002,

[47] Snehal Thakkar, Jose Luis Ambite, Craig A. Knoblock, A Data Integration

Approach to Automatically Composing and Optimizing Web Services , In Proceeding of

2004 ICAPS Workshop on Planning and Scheduling for Web and Grid Services , June

2004

74

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[48] Fabio Casati, Ski Ilnicki, Lijie Jin, Adaptive and dynamic service composition in

EFlow. In Proceedings o f 12th International Conference on Advanced Information

Systems Engineering(CAiSE), Stockholm, Sweden. Springer Verlag, June 2000

[49] Brahim Medjahed, Athman Bouguettaya, Ahmed K. Elmagarmid, Composing Web

services on the Semantic Web. The VLDB Journal, Volume 12, No. 4, November 2003

[50] Sheila A. Mcllraith, Tran Cao Son, Honglei Zeng, Semantic Web services. IEEE

Intelligent Systems, Volume 16, No. 2, Pages 46-53, March/April 2001

[51] Alfonso Gerevini, Derek Long, PDDL 3.0, http://zeus.ina.unibs.it/iPC-5/Pddl.htm l

75

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://zeus.ina.unibs.it/iPC-5/Pddl.html

Vita Auctoris

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Chang Zhou

Hanchuan county, Hubei province, China

1977

University of Windsor

Windsor, Ontario, Canada

2003-2007 M.Sc in Computer Science

Huazhong University of Science and Technology

Wuhan, Hubei, China

1995-1999 B.Eng in Computer Science and Technology

76

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

	Implementation of a Web Service Synthesis system based on query rewriting (Web Service Specification, Signature, Query rewriting, Query planning, Service plan)
	Recommended Citation

	tmp.1619811238.pdf.9kja1

