University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2006

Optimizing power, delay and reliability for digital logic circuits with
CMOS and single-electron technologies.

Jialin Mi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Mi, Jialin, "Optimizing power, delay and reliability for digital logic circuits with CMOS and single-electron
technologies." (2006). Electronic Theses and Dissertations. 2954.
https://scholar.uwindsor.ca/etd/2954

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2954?utm_source=scholar.uwindsor.ca%2Fetd%2F2954&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Optimizing Power, Delay and Reliability for Digital Logic
Circuits with CMOS and Single-Electron Technologies

by

Jialin Mi

A thesis
Submitted to the Faculty of Graduate Studies and Research
through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2006

© Jialin M1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-17106-6
Our file Notre référence
ISBN: 978-0-494-17106-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this thesis, we present two low power approaches with consideration of delay and/or
reliability. The first approach is based on CMOS (Complementary Metal-Oxide
Semiconductor) technology. Given a gate level topology of digital circuits and a target
library, we propose a greedy algorithm for delay budgeting in order to optimize power
dissipation. The algorithm is implemented with JAVA SDK. The developed software tool
estimates how much power dissipation (percentage) can be saved without increasing the
circuit delay, and the potential of power savings by relaxing the circuit’s timing

constraints.

The second low power approach is proposed with SET (Single Electron Tunneling)
technology. We focus on an elementary logic structure called threshold gate, and present a
standard procedure of logic implementation, with analysis of delay, power and reliability
due to background charge effect. As an application example, an FSM (Finite State
Machine) for RFID (Radio Frequency Identification) system is designed and simulated

successfully.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Chunhong Chen for his

constant support, guidance and motivation.

I am grateful to the committee members Dr. Mohammed Khalid and Dr. Xueyuan Nie for

providing valuable feedbacks.

I would like to thank Ms. Andria Turner and Ms. Shelby Marchand for seamless

administrative assistance.

This research work was supported in part by the Natural Sciences and Engineering

Research Council of Canada (NSERC).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iii
Acknowledgements iv
List of Figures viii
List of Tables X
1. Introduction to Power Analysis and Optimization 1

1.1 Needs for Low Power Integrated Circuits 1

1.2 Dynamic and Static Power Dissipation 2

1.3 Levels of Power Analysis and Optimization 3

1.4 Organization of Thesis 6

2. Power-Oriented Delay Budgeting for CMOS Circuits 8
2.1 Introduction to Delay Budgeting 9
2.1.1 Zero-Slack Algorithm 11

2.1.2 Maximal Independent Set Algorithm 11

2.1.3 Greedy Algorithm 13

2.2 Delay Budgeting Problem Formulation 15

2.3 Power-Oriented Delay Budgeting Algorithm 16
2.4 Experiment on Benchmark Circuits 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Summary 24

3. Single-Electron Tunneling (SET) Threshold Logic 25
3.1 Introduction to Single-Electron Tunneling 25
3.1.1 Theoretical Background 26

3.1.2 Fabrication Limitation 27

3.2 SET Threshold Gate Structure 27

3.3 Feasible Parameters of SET Threshold Logic 29
3.4 Capacitance Parameter Selection 31

3.5 Parameter Optimization for Reliability 32

3.5.1 Reliability Analysis with Background Charges of Uniform Probability
Distribution 34

3.5.2 Reliability Analysis with Background Charges of Normal Probability

Distribution 37

3.5.3 Relationship between Gate Reliability and Circuit Parameters 40
3.5.4 Parameter Scaling 42

3.6 Summary 42
4. A Finite State Machine (FSM) Implementation with SET Threshold Gates 44
4.1 Radio Frequency Identification (RFID) 45
4.2 RFID Anti-Collision Protocols 46
4.2.1 Binary-Tree Scheme 47
4.2.2 Query-Tree Scheme 47

4.3 SET Implementation for Binary Tree Protocol 48
4.3.1 Binary-Tree Protocol FSM Structure 48
4.3.2 SET Positive Edge-Triggered D-Flip-Flop (DFF) 50

4.4 Simulation with SIMON (SIMulation Of Nanostructure) 51
4.5 Delay and Power Estimation 56
4.6 Summary 56

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusions and Future Work 57

Appendix A Program 1 — Power Oriented Delay Budgeting Greedy Algorithm with GUI
(Chapter 2) 59

Appendix B Program 2 — SET Threshold Gates Parameter Selection and Optimization

(Chapter 3, 4) 136
References 154
VITA AUCTORIS 159

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Fig.1.1. Low power analysis accuracy and optimization potential at various abstraction

levels 5
Fig.2.1. Two delay budget assignments to the same circuit 10
Fig.2.2. Slack distribution and slack assignment 11
Fig.2.3. Effect of node delay on the slack of its fanin and fanout 12
Fig.2.4. An eight-node subcircuit example 19

Fig.2.5. Java Implementation of power-oritented delay budgeting greedy algoritm 23

Fig.3.1. SET threshold logic structure 28
Fig.3.2. SET buffer/inverter 29
Fig.3.3. The selected values of buffer/invertor from [22] 31

Fig.3.4. Reliability of a 2- input AND gate with uniform distribution of background
charges 37
Fig.3.5. Reliability of a 2- input NOR gate withuniform distribution of background
charges 37
Fig.3.6. Reliability of a 2- input AND gate with normal distribution of background
charges 40

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig.3.7. Reliability of a 2- input NOR gate with uniform distribution of background
charges 40

Fig.3.8. Reliability-versus- Cb curves with different probability distribution of

background charges 41
Fig.4.1. State diagram for Binary-tree protocol 49
Fig.4.2. Logic-level implementation of the state machine for Binary-tree protocol 50
Fig.4.3. Positive edge-triggered D-flip-flop 51
Fig.4.4. SIMON 2.0 Graphic User Interface 52
Fig.4.5. SET implementation of the state machine for Binary-tree protocol 53
Fig.4.6. Simulation result of Fig.4.5. 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table.2.1. The available library information for example graph of Fig.2.4. 19
Table.2.2. Demonstration of the Greedy Algorithm on Fig.2.4. 20

Table.2.3. Power consumption with the proposed algorithm on a set of benchmark circuits

22
Table.2.4. Power consumption using the algorithm from [2] 22
Table.3.1. Threshold expressions 30
Table.3.2. Capacitance parameters for different gates given in Table.3.1. 32

Table.3.3. Reliabilities of 2-input AND gate with uniform distribution of background
charges 36
Table.3.4. Reliabilities of 2-input NOR gate with uniform distribution of background
charges 36
Table.3.5. Reliabilities of 2-input AND gate with normal distribution of background
charges 39
Table.3.6. Reliabilities of 2-input NOR gate with normal distribution of background

charges 39

Table.4.1. State assignment 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table.4.2. Threshold logic gates in Fig.4.3.

Table.4.3. Capacitance parameters (X 10 " F) for threshold gates in Fig.4.5.

Table.4.4. State transitions in Fig.4.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

55

55

xi

Chapter 1

Introduction to Power Analysis and
Optimization

The art of power analysis and optimization of integrated circuits is now appearing in the
mainstream design community affecting all aspects of the design process. The interests in
low-power chips and systems are driven by both business and technical needs. The
industry for low power consumer electronic products is booming with a rapidly
expanding market. At the same time, newer generations of semiconductor processing
technologies present more stringent requirements to the power dissipation of digital chips

due to increased device density, speed and complexity. [1]

1.1 Needs for Low Power Integrated Circuits

Integrated circuits were first introduced by Texas Instruments half a century ago. In the
early years, device density and operating frequency were so low that no one would
consider power dissipation to be a constraining factor in a chip. Besides the environment
and energy concern of power consumption of a chip, high power dissipation makes a chip

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so hot that it simply burns itself out without extra efforts to cool it down, such as fans and
liquid cooling pumps. And those cooling technologies have their own limitations and
require further development. Simply put, the needs for low power solutions arise from the

evolution of integrated circuits itself.

Another factor that fuels the needs for low power integrated circuits is the huge and still
increasing demand for portable consumer electronics powered by batteries. This market
ranges from laptop computers, cellular phones to personal GPS systems. For those
portable devices, if the batteries cannot support their power consumption for a certain
long enough period, the facilities brought by those devices will be much less meaningful,
if not totally meaningless. Furthermore, for portable devices, the power consumption of
integrated circuits can be more important than the running speed, if a tradeoff has to be
made. Take laptop computer CPUs for example, mobile CPUs normally specify with
lower operating frequency and lower voltage supply compared with desktop computer

CPUs. The growing portable market hungrily demands low power integrated circuits.

The demand for low power integrated circuits also comes from the emerging technologies,
such as passive mode devices. A passive mode circuit is not equipped with a battery. It
receives power, along with data and command signals, from electromagnetic waves. For
instance, an RFID (Radio Frequency Identification) system requires passive mode circuits
on its tags. As there are environmental regulations all around the world, which set
limitations to maximum strength of electromagnetic field covering all frequency bands,
the only attainable solution to supply enough power to passive mode circuit is to make it
consume less. Therefore, low power integrated circuits are critical in their

implementation.

1.2 Dynamic and Static Power Dissipation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All power dissipation can be generally classified into two types: dynamic and static,

according to how and where it happens.

Dynamic power dissipation is caused by switching activities of the circuits. As each
switching activity consumes certain amount of energy, a higher operating frequency leads
to more frequent switching activities in the circuits and increases dynamic power
dissipation, which is energy dissipation per switching activity multiplied by frequency.
The most significant source of dynamic power dissipation in circuits is the charging and
discharging of capacitance, including those of capacitor components and parasitic

capacitance of interconnection wires and transistors.

Static power dissipation is, on the contrary, not related to the switching activities. When a
CMOS digital circuit holds its logic states, it still consumes certain amount of power due
to the current leakage. Static power dissipation is not strongly related to the circuit

operating frequency.

1.3 Levels of Power Analysis and Optimization

An IC design process is abstracted into hierarchical levels in a standard top-down design
flow. In order to achieve low power dissipation for final product, power estimate, analysis

and optimization is applied to all levels with different methodologies.

Device Level: For a digital circuit design, each fabrication technology standard is
presented by a digital cell library. To build a new library is by no means a trivial project,
and normally beyond the concern of a circuit designer. With the development of
electronics industry, new generations of digital library will emerge. For a specific circuit
design project, a predetermined digital library leaves nearly no space for an individual
designer to do any power analysis and optimization at this level. New technologies,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

however, do improve power dissipation performance considerably. For instance, applied

onto the same gate level netlist, CMOS 0.18 #zm @ 1.8V may consume less than 1/5 of

that of 0.35 #m @ 3.3V. Furthermore, new devices other than MOS transistors, such as

single electron transistors (SETs), resonant tunneling diodes (RTDs), and quantum dots
and quantum cellular automata (QCA) have been proposed to bring ultra-low power
integrated circuits in the future. In this thesis, we discuss SET device and logic in Chapter

3 and Chapter 4.

Circuit Level: A circuit is built up with primitive elements such as resistors, capacitors,
and inductors. More complex device models such as diodes and transistors are
constructed from the basic components. SPICE (Simulation Program with IC
Emphasis)-like application software packages are heavily used to simulate the circuit and
estimate the power consumption. On this level, devices parameters are adjustable and can
be used to reduce power dissipation. For digital circuit design, given a cell library, power
reduction may be achieved by transistor and gate sizing, equivalent pin ordering, network
restructuring, building special latches and flip-flop, etc. In Chapter.2, we propose a power
oriented delay budgeting greedy algorithm to do gate sizing given a gate level netlist and
a standard cell library. At the circuit level, percentage power reduction in the teens is

considered good.

Logic Level: There are always more than one gate level implementations available to
fulfill the same logic functions, however, probably with different switching activities.
More switching activities introduce more dynamic power dissipation, which is normally
dominant in a digital circuit. In logic level, reduction of switching activities is the most
prevalent theme of power optimization techniques. Some switching activities are the
result of undefined behavior of a logic system. Such switching activities not relating to
the proper operation of the circuit should be reduced or eliminated if possible. Techniques

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as gate reorganization, signal gating, logic encoding and state machine encoding

have significant effects on the power dissipation of a digital circuit.

Architecture and System Level: This level includes RTL (register transfer level) and
macro hardware block level. In today’s digital design flow, design functionalities are
described by circuit designers with a hardware description language such as Verilog or
VHDL. Any decision made in this level will heavily affect the lower logic, circuit, device
levels, and thus largely effect the circuit power consumption. Power management of
performance and throughput of a system based on its computation needs, choice of
clocking strategy, component organization, parallel architecture with voltage reduction,

etc., are issues to be considered at this level.

As shown in Fig.1.1., generally speaking, on a higher level, power analysis is less
accurate than on a lower level, since less detailed information about the design is decided
on a higher level. However, because of the same reason, on a higher level, we have more

optimization potential to improve the low power performance.

Abstraction level Analysis accuracy Optimization potential

Algorithm Worst Most
Software and system
Hardware behavior
Register transfer
Logic

Circuit

Device Best Least

Fig.1.1. Low power analysis accuracy and optimization potential

at various abstraction levels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Organization of Thesis

In this thesis, we present two low power approaches with consideration of delay and/or

reliability, one for CMOS technology, and the other for SET technology.

Chapter 2 is dedicated to CMOS technology. For a digital circuit, given its gate level
topology and a cell library, we propose a greedy algorithm for delay budgeting in order to
optimize power dissipation. The algorithm is implemented with JAVA SDK with GUI.
With a specified circuit gate level topology and a chosen digital layout library as input,
the software tool can estimate how much power dissipation (percentage) can be saved
within a given critical path circuit delay. Also, the software tool can further estimate the
potential of power savings by relaxing the critical path delay in the circuits. Based on this
information, the tool can draw a circuit level power-delay tradeoff curve, which can be
valuable for a designer before plunging into the details of every effort to optimize the

circuit power dissipation.

In Chapter 3, we study a relatively new SET (Single Electron Tunneling) technology,
which is a prospective candidate to partly replace CMOS technology in the future. We
focus on an elementary logic structure called threshold gate, and present a standard
procedure of logic implementation, with analysis of delay, power and reliability due to

background charge effect.

In Chapter 4, as an example of digital circuit implementation based on SET threshold gate,
we build and simulate an FSM (Finite State Machine) for RFID (Radio Frequency

Identification) system. Assuming a clock frequency of 100 MHz, our proposed FSM

consumes about 10 pW power, compared to ~100 # W with a typical 0.18 xm CMOS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implementation.

Chapter 5 gives the conclusions and comments on possible research work in the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Power-Oriented Delay Budgeting for
CMOS Circuits

In the design flow of today's digital systems, circuit area, delay, and power consumption
are three major concerns. Generally speaking, in order to reduce the area or power of a
circuit, an increased delay is the price one has to pay, or vice versa. Recent research
shows that this delay penalty can be avoided or reduced to a minimum because the circuit

delay is independent of the non-critical paths where there are some delay budgets

available [2-6].

However, previous research either looks at a pure delay budgeting problem for layout
synthesis without keeping power optimization in mind, or explores a pure power-delay
tradeoff without investigating the potential ability of optimizing the power consumption
through delay budgets. In this thesis, we present a power-oriented delay budgeting
algorithm which is intended to provide the best power-delay tradeoff for any given
combinational circuits. As a sequential circuit can always be divided into several

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combinational sub-circuits, this power-oriented delay budgeting algorithm can generally

apply to any digital circuits.

Experiments on a variety of benchmark circuits show that the potential power savings

from the current synthesis flow are significant with an average improvement rate of 35%.

2.1 Introduction to Delay Budgeting

Under a given timing constraint, delay budget is the extra delay a component can tolerate

such that no timing constraint is violated for the whole circuit.

The delay budgeting problem was formulated as a slack distribution/assignment problem
for which many algorithms have been proposed. [7] presented a zero-slack algorithm
(ZSA) to assign delay budgets to signal nets for performance-driven layout. In [5], a delay
upper-bound budgeting method was proposed for the net-based timing-driven placement.
In [4], Kuo et al. formulated the delay-budgeting problem as a Lagrange-Multiplier
-based slack assignment problem for the timing-closure-driven design. Chen et al. [2, 8]
proposed the notion of potential slack and described a maximal-independent-set-based

slack assignment algorithm.

To solve a delay budgeting problem, a common practice is to describe a digital circuit as a
DAG (Directed-Acyclic Graph) G = (¥ E). A node ve V denotes a module, which could
represent a logic gate or a functional block composed by a set of gates. And an edge ec E
from node vi to vj if vj is an immediate fanout of vi. There is a delay d(v) associated with
each node v, which stands for the delay of node v itself plus the interconnection delay. A

vector of delays D(V) = [d(vl) d(v2) ... d(vn)] is called delay distribution of the circuit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A well-known procedure to compute arrival time, a(v), and required time, r(v), for each

node v is given recursively by

a(v) = max (a(u) +d(v))

@.1)

r(v)= min (r(w)-d(w))

where FI(v) is a set of fanins of node v, and FO(v) a set of fanouts. Slack of node v is
defined as s(v) = r(v) — a(v). A vector of slacks S(¥V) = [s(v]) s(v2) ... s(vn)] is called slack

distribution of the circuit.

For a single node v, its slack s(v) can be considered as a delay budget, which can be partly
or fully released to increase the delay of node v from its original delay d(v) to a new delay
within the range of [d(v), d(v) + s(v)], without breaking the circuit timing constraint.
However, due to the dependency between the nodes, not all nodes can release their slacks
as delay budgets at the same time. Fig.2.1 shows two delay budget assignments to the

same circuit, while with different total budgets.

T =0ns T=13ns |Node |Delay | Budget | Budget

{nsec) A B

1) -

2 4 - 1

3 2 5 4

4 2 <] -

5 5 . .

8 2 5 -

7 3 2 7

8 1 - -
m - 17 12

Fig.2.1. Two delay budget assignments to the same circuit

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A traditional delay budget algorithm is a scheme to generate a slack assignment which

brings an acceptably large, if not maximum, total budget.

2.1.1 Zero-Slack Algorithm

Given a graph, ZSA starts with nodes of minimum positive slack and locally performs

slack assignment such that their slacks become zero. At each iteration, ZSA identifies a

path on which all nodes have minimum slack s_. , then assigns each node an additional

min

delay s /N_.,where N . isthe number of nodes on the path. In Fig.2.2, for example,

path {vI, v3, v4} is first identified, and each node on the path is assigned an additional
delay 5/3. Slacks of all nodes in the figure expect v2 become zero, while slack of v2 is
updated as 5/3. After assigning additional delay of 5/3 again to v2, the algorithm
terminates with effective slack of 20/3, while the maximum effective slack for this circuit
is 10. This example shows that while ZSA is simple and easy to implement, it is far from

optimal slack assignment.

2715 a(v)/r(v¥s(v)

(%) w5 4915
(o))
()

Fig.2.2. Slack Distribution and slack assignment

2.1.2 Maximal Independent Set Algorithm

Opposite to minimum slack selected in ZSA, MISA first selects nodes with maximum

slack s, , to construct a slack-equalization graph Gm = (Vmm, Em), where Vm = {v|jve V

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and s(v) =s,} and Em = {(u,v)l(u,v)eE, and u, v are slack-sensitive}. A transitive

slack-equalization graph Gt = (Vm, Em) of Gm is a directed graph such that there is an
edge (u, v)eE if and only if there is a directed path from u to v in Gm. In this way, a
maximal independent set (MIS) of Gt corresponds to a set of nodes Vmisc Vm such that

the number of nodes which are slack-sensitive to any node ve Vmis is minimized.

Fig.2.3. Effect of node delay on the slack of its fanin and fanout

Fig.2.3. demonstrates how an additional delay Ad(v) applied to node v may affect the

slack of fanin/ fanout nodes. The slack of v, and v, will be reduced only if

out

{r(v) —r(v,)—d(¥) < Ad(v) (2.2)

a(vout) - a(v) - d(vout) < Ad(V)
Thus, if we choose Ad(v)=s, —s,_,, where s__, is the second largest slack in G, no

nodes with slack less than s,_, are slack sensitive to node v, thus the slack penalty is

minimized.

Maximum-Independent-Set-Algorithm (MISA){
Input: Graph G=(V, E)

and the given timing constraints
Output: Slack assignment A D(V)

Begin

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compute slack for each node ve V;

Initialize AD(V)=[Ad(v,),Ad(v,),...,Ad(v,)]=0;
Find s, and s, ,inGandlet d=5,-5, 5

While (6 >0){
Construct transitive slack-equalization graph Gt;
Find maximum independent set MIS of Gt,

Assign additional delay & to each node in MIS:
Ad(u) < Ad(u) + 6,Yu € MIS,

Update node slacks and & in G;

End

MISA maximizes effective slack— the slack can be used to do delay budgeting. The time
complexity of MISA isO(K -»n’), where n is the number of nodes and K the number of

different slacks in a given graph.

2.1.3 Greedy Algorithm

Considering the fact that all immediate fanins (or fanouts) of a node v are always
independent of each other in terms of slack sensitivity unless there are reconvergent
directed edges (i.e., edges going from one fanin or fanout to another), a fast way of
estimating potential slack (PS) is to assign an additional delay (which is equal to a
specific slack) to either node or all of its fanins (or fanouts) recursively, depending on
their slacks. By comparing these slacks, the nodes with the largest sum of slacks can be

selected to be the best candidates for node for delay assignment. This largest sum of

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slacks is called local PS with node v. The extra procedure we need to go through is to
check if there is any reconvergent edge involved. When there exists a reconvergent edge
between two nodes, we can ignore the node with less slack. When the local PSs are
available, we select the maximum one for delay assignment and then recursively delete all

the related fanins and fanouts from the graph. The time complexity of this algorithm is

O(nlogn).

Greedy Algorithm {
Input: Graph G=(V, E)
Output: Potential slack estimate PS
Begin
PS « O
While (G # ¢) {
For each node v,
// find local PS and candidate set
in « slack_sum_fanin (v,);
out <« slack_sum_fanout (v,);
self « slack (v,);
local_PS(v,) <« max { in, out, self };
candidate(v,) < a set of nodes with local PS;
end For
Find v, such that local PS(v,) =max {local PS(v,)};
PS «PS+local PS(v,);

Delete all (transitive) fanins/fanouts of

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nodes in candidate(v,,) from G;

}
End

2.2 Delay Budgeting Problem Formulation

In a typical CMOS standard cell library (e.g., TSMC 0.13 m), the cells with same logic
function may have several layouts with specific information about power, area and delay.
[3] targeted the capability of optimizing the power-delay tradeoff with different cell
libraries, but did not consider the delay budgets which may provide further power

optimization and thus promise a better tradeoff.

The delay-budgeting is to assign an additional delay (called budget) for each node so that
a specific objective can be optimized while keeping non-negative slacks for all nodes. In
general, a maximum sum of budgets over all nodes is the default objective, on which we
have detailed ZSA, MISA and Greedy Algorithm. MISA produces an optimal solution

while takes heaviest time complexity.

However, if the power reduction acts as such an objective, the problem turns out to be
power-oriented delay-budgeting. For the power savings to be maximized, some gates
need to be assigned more budgets than others, depending on both circuit topology and
individual power-delay characteristics of the cells. Compounding the problem is the
discreteness of the cell library which may make the budgets meaningless if they are not

large enough.

In the following, we briefly discuss the power-delay curves of the nodes by presenting

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

four different models (the impact of graph topology on the delay-budgeting process will

be investigated in the next section):

® Model (a): All nodes have uniform and linear power-delay characteristics. This is
an ideal case where the potential power reduction is proportional to total delay budget,
and the power-oriented delay-budgeting problem is equivalent to the traditional

delay-budgeting.

® Model (b): All nodes' power-delay curves are linear (or piece-wise linear) but not
uniform (i.e., they may have different slopes). This requires the delay to be weighted
in the budgeting process. The nodes with steeper power-delay curves should be

assigned a higher weight with the expectation of more power savings to be obtained.

® Model (c): The power-delay curves for all nodes are uniform but nonlinear. In this
case, different nodes may have different weights depending on their current delay,
and the nodes may also need to update their weights during the budgeting process to

reflect the nonlinearity.

® Model (d): All nodes have different power-delay characteristics which are generally
nonlinear. This represents a more practical case for real design, where not only do the
nodes have to be weighted, but their weights are also expected to be updated during
the delay assignment process. Finding an optimal or near-optimal solution to this case

is a non-trivial task and requires computationally efficient algorithms.

2.3 Power-Oriented Delay Budgeting Algorithm

In a standard library, the number of different cells for a logic gate is quite limited, and not
all obtainable delay budgets can be used for power minimization. To deal with the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nonlinearity of power-delay curves and the discreteness of target library as discussed
above, we define a local potential power savings with delay budget (LPPDB) for each
node as a weighted delay budget. The weight is set to zero if the budget is less than the
delay of next available gate. Otherwise, it is set to the slope of the node's power-delay
tradeoff curve which can be obtained using the following power and delay models:

{d (v) < fanout _area(v)/area(v) 23)

p(v) o switching(v) x (fanout _area(v) + area(v))

where area(v) and fanout area(v) are the size of the gate corresponding to node v and the
sum of sizes of all its immediate fanouts, respectively, and switching(v) is the switching
activity for node v, available from gate-level description. All possible pairs of (p, d) from

(2.3) form the power-delay curve of node v.

We define the potential power savings with delay budget (PPDB) for node v to be the
maximum among the LPPDB of node v, the sum of v's immediate fanins' LPPDBs and the
sum of v's immediate fanouts' LPPDBs. PPDB can be used as a new criterion for the
power-oriented delay budgeting. The detailed pseudo-code of the proposed greedy

algorithm is given as follows:

Power-Oriented Delay Budget Greedy Algorithm {
Input: Graph G = (V, E) and a given library
Output: Power Savings (PS)

Begin {
PS « 0
Do {

for each node v

Find PPDB and a candidate set:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in <« sum of LPPDBs for all immediate fanins of v
out « sum of LPPDBs for all immediate fanouts of v
self « LPPDB forv
PPDB(v) « max{in, out, self},
candidate(v) « a set of nodes with PPDB;
end for
Find vm such that PPDB(vm) = max{PPDB(v) | v € V};
PS « PS+ PPDB(vm);
Update slacks of all (transitive) fanins/ fanouts of nodes in candidate(vm) from G;
3
While (max{PPDB(v) v € V}>0)
}
}

In what follows, we demonstrate how the greedy algorithm works on an example graph
shown in Fig.2.4, using the library information given in Table.2.1. In Fig.2.4, a(v), r(v),
s(v), and d(v) represent the arrival time, required time, slack, and delay of node v,
respectively. Assuming a minimum delay of each node is used to start with, the algorithm
first identifies node v2 that has a maximum PPDB = 8, and its candidate set which is
candidate(v2) = {v3, v4, v5} (i.e., the immediate fanouts of v2). Then, the algorithm
brings PS from 0 to 8, and updates slacks of (transitive) fanins/ fanouts of candidate(v2)
(i.e., v1, v2, v6, v7 and v8). During the second and third iterations of the algorithm, the PS
is updated to (8 + 4) = 12 and (12 + 2) = 14, respectively. After that, max{PPDB} turns
out to be 0, which breaks the algorithm out of the While loop. The details of each iterative
step are shown in Table.2.2. In this example, the original power dissipation is: (4 + 3 + 4
+ 6+ 4+ 6+ 10+ 6) = 43 units. After the power-oriented delay budgeting, the PS of 14

units represents 14/43 =~ 33% power savings.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4/9/5/1

a(v)ir(v)fstv)id(v)

59041 —(i}-

3/3/2/2
4/6/2/1

7791213
1737211 ;

5/8/3/2

6/9/3/1

Figure.2.4. An eight-node subcircuit example

Table.2.1. The available library information for example graph of Fig.2.4

available layouts in a
node library (delay

| units|power units)
v 1]4 2]2 4|1
v2 2|3 3|2 6|1
v | 1la | 202 | a1
v4 116 2|3 6|1
13 2|4 4|2 8|1

v | 116 | 23 3[2
vz | 3]10 | 6|5 103
v8 | 1|6 3|2 6|1

Note that in the greedy algorithm, a large slack does not represent high delay budget, nor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

does a high delay budget necessarily provide big potential power savings. In the above
example, if we choose {v3, v4, v8} instead of {v3, v4, v5} to assign the delay budgets in
the first iteration, the final PS turns out to be 16 units. In general, to guarantee a
maximum PPDB, an optimal algorithm is needed which can recursively check PPDBs of
all transitive fanins and fanouts for each node, leading to a prohibitively expensive

computation cost. The above algorithm is greedy but much faster, making it practical for

large circuits.

Table.2.2. Demonstration of the Greedy Algorithm on Fig.2.4

fiterstion 1 vi vl L5 vd vS | wb | w7 | w8
arrival tiwe 1 3 4 4 =) 5 7 <]
requirsed time | 3 5 g8 6 8 9 g 9
slack 2 2 5 2 3 4 2 3
delay 1 2 1 1 1 1 3 1
local_FFDB 2 8 3 4 4 4 3 4
candidate(s) | vf | I vl w5 | w7 | vh, v7 | v0 | o5 | w¥ | &0
iteration 2 | vf w2 3 vd vS5 | w5 | w7 | #B
arrival time 1 3 T 5 T 8 8 8
reguirsed time | 2 4 g9 B g 9 9 9
slack 1 1 2 1 1 3 1 1
dalay 1 2 4 2 4 1 3 1
local PFIB 2 2 1 4 1 4 0 0
candidate(s) | vf vy e2 | w6, w7 | v2 | w6 | ¢7 | 8
diteration 3 | wf v? 3 vd vS | vb | v? | o8
arrival time 1 3 T 5 T 8 8 8
required time | 2 4 g 6 8 9 9 g9
slack 1 1 2 1 1 1 1 1
delay 1 2 4 z 4 3 3 1
loeal FPPIB 2 2 1 1 1] a 0
candidate(s) | vf (21 w2 v v2 | w6 | ¢7 | o8
iterstion & | of v 3 v S | w6 | e7 | vO
srrival tise 2 4 8 6 8 9 9 9
required time | 2 4 g 6 g 9 9 9
slack ¥} 0 1 0 1] ¥ 0 0
delay 2 2 4 2 4 3 3 1
local FPBB | 0 a 0 0 olofa]o
candidate(s) | vf w2 vF vd S| rb | v7 | #8

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Experiments on Benchmark Circuits

We implemented the proposed greedy algorithm in Java programming language and
tested it on benchmark circuits on top of SIS package [9]. The synthesis results with
minimum delay from SIS were used as an input to our delay-budgeting problem. We also

compared the results with those from [2].

For each benchmark circuit, we first estimated its original circuit delay (T0) and power
consumption (P0). Then, we ran our algorithm using TO as the timing constraints to show
how much power savings can be achieved by assigning the delay budgets to the nodes on
non-critical paths. The results represent the potential power savings of each benchmark
circuit without any delay penalty. In order to get the optimized power-delay tradeoff, we
relaxed the timing constraints from TO to 4T0 with a step of 0.1T0 , and measured the
power consumption P after the algorithm was performed. The results reflect the possible

power savings with certain percentage of delay penalty.

Table.2.3 summarizes the power consumption with our algorithm for different timing
constraints. It can be seen that (a) an average of 35% power reduction (with a maximum
of 65%) is achieved without any delay penalty, and (b) the amount of power savings for a
given delay penalty varies significantly from circuit to circuit, depending upon their
topologic structures. Table2.4. shows the power consumption using the algorithm from [2]
for the same benchmarks. We see that the proposed algorithm provides an improvement
of about 5~10%, which is significant considering the fact that the percentage is taken with

respect to initial power consumption (i.e., P0).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table.2.3. Power Consumption with the proposed algorithm on a set of benchmark circuits

i i size power comsumption (%Pe)
circoit
(gates)| 74 | 1.57¢ | 27e | 2.57¢ | 37e | 3.57¢ | 47e
el7 5 100.0% | 64.4% 46. 6% 4B. 6% 32.2% 32.2% 25.0%
51 i 86.2% | 51:2% | 41.1% | 37.9% | 28.2% | 28.2% | 25.0%
wx 28 97.1% | 49.8% | 44.2% | 39.7% | 35.7% | 27.9% | 25.0%
decod 30 100.0% | T1.1% B54.6% 58.6% 40.0% 30.2% 28.5%
end50a 32 T9.6% 47.5% 38. 6% 33.5% 30. 9% 26. 9% 25. 0%
w4l 33 79.9% | 63.8% | 48.7% | 41.0% | 32.4% | 28.7% | 26.7%
ee 42 48.7% 38.9% 32.4% 28.6% 32.3% 28.9% 26. 0%
rount 6 43.1% 29.5% 27.2% 25.9% 25.6% 25.6% 25.0%
59 103 51.9% 37.0% 31.3% | 25.5% 25.3% 25.3% 25.0%
apex7? 151 47.7% 33.8% | 29.7T% 27.8% 25.4% 25.2% 25.2%
xf 218 40.2% 32. 7% 31.1% 26. 8% 25. 9% 25.3% 25.0%
alul 277 62.9% 47. 5% 37.0% 31.8% 30.3% 26. 7% 25.9%
apext 487, 34.8% 29.1% 26.2% 25.5% 25. 3% 25.3% 25.2%
i8 748 34.1% | .29.3% | 21.2% | 25.8% | 25.1% | 25.0% | 25.0%
average B64.7T% 44.7% 37.6% 33.9% 29.6% 27.2% 25.5%
Table.2.4. Power consumption using the algorithm from [2]
X . sire pomer consumption (%)
circuit
(gates)| 7, | 1.57e | 2Fe | 2.5F¢ | 37¢ | 3.5Fe | 47e

el7 5 100, 0% | '84.4% 46.6% 46. 6% 32.2% 78. 4% 25.0%
5 T 8T. 1% 51.2% 41.1% 37.9% 28.2% 44 0% 25.0%
muy 28 a7. 1% 49.8% 44.2% Ba. 1% 40.9% 27.9% 25.0%
decod 30 100.0% | 72.8% | B4.6% | 57.8% | 43.1% | 30.2% | 28.5%
ewd S 32 T9.6% 49. 0% 63.2% 64. 2% 04. 9% 27.6% 25.0%
rind 33 BO.S% | TT.4% | 55.1% | 51.4% | 43.4% | 33.0% | 26.7%
ee 42 48.8% 41.3% 32.7% 29.9% 32.3% 28.9% 25.8%
count 96 45. 4% 32.2% 27.8% 29.6% 28.6% 36. 4% 25.3%
b9 103 54.3% 44 1% 32.6% 27.4% 25.3% 32.0% 25. 0%
apex? 151 50.2% | 44.6% | 32:6% | 28.4% | 28.6% | 28.5% | 25.0%
xI 218 47.9% | 39.4% | 31.9% | 33.1% | 26.5% | 25.8% | 25.0%
alud 27T B5. 5% 57.6% 51.5% 44.7% 39.5% 31.0% 26.0%
apext 487 37.5% 31.9% 26.7% 25.8% 25. 7% 25.6% 25.5%
i8 T48 36. 1% 34.9% 30.5% 32.2% 28.T% 26.2% 25.0%
average 66.4% | 49.3% | 41.5% | 41.2% | 34.1% | 34.0% | 25.6%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Power-Oriented De

ay Hhudgeting

1/ Py (Fy is the original power consumption)

- aaneaut

Power -Delay Curve

0i22_comb_[713]
nor3_comb_[538]

_comb_2411]
fter_comb_[4475]
comb[4460]
comb[4464]

comb[2441)
inv_comb_{4498]

fer_comb_[4499)]

er_comb_[4497]
nand2_comb_{2405)

sbutfer_comb_{4493)
‘butfer_comb_{4494]
souffer_comb_[4504]

comb[4435]

inand2_comb_{2408)

buffer_comb_[4489] :
toutter_comb_[4490] :

Fig.2.5. Java Implementation of power-oritented delay budgeting greedy algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

2.5 Summary

We have proposed a greedy algorithm to solve the power-oriented delay budgeting
problem. We have shown that the topologic information of the circuits as well as cell
library can be used for aggressive power optimization in order to obtain good and
effective power-delay tradeoff. Experimental comparison has also been made between a

pure delay-budgeting algorithm and the proposed algorithm in terms of power savings.

Part of this work was published in our recent paper titled “Power-Oriented Delay
Budgeting for Combinational Circuits” which is to appear in the Proceedings of 2006

ISCAS (International Symposium on Circuits and Systems).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Single Electron Tunneling (SET)
Threshold Logic

As MOS transistors are expected to finally reach their physical fabrication limits for
further power and/or area reduction, various new devices and architectures at nano-scale
have recently been proposed, such as single electron transistors (SETs), resonant

tunneling diodes (RTDs), and quantum dots and quantum cellular automata (QCA).

From this chapter, we will focus on SET devices and logic which have been shown to be a

promising candidate for future ultra-low power integrated circuits.

3.1 Introduction to Single-Electron Tunneling

Single-electron devices are such devices functional based on the controllable transfer of
single electrons between small conductors called ‘islands’. The main advantages of
single-electron devices are their fast and ultra-low power operation. While the prospect of
CMOS components being completely replaced by SET counterparts remains to be seen,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the SET logic circuits receive increasing attention in the research community.

3.1.1 Theoretical Background

For single-electron devices, a tunnel event is defined as the transport of a single electron
through the tunnel junction. The concept of single-electron control can be explained by
the Coulomb Blockade theory. After a tunnel event, the net charge Q of the island is —e
(1.6x107™" Coulomb), and the resulting electric field repulses the following electrons

which might be added.

A tunneling event is a random event with a probability formulated by an ‘orthodox’

theory:
D(AW) =(1/e)I(AW | e)[1 —exp{~-AW / k,T}]™ 3.1
where I(V) is the dc I-V curve of the tunnel barrier in the absence of single-electron

charging effects. AW =e(V, +V,)/2, where V, and V, are voltage drops across the

barrier before and after the tunneling event, respectively.

At a very low temperature, the voltage across a tunnel junction, ¥j, is the only factor to
determine the possibility of a tunnel event. The critical voltage Ve of a tunnel junction is

given by [22]:

q.

V. = W AT) (3.2)

where Cj is the capacitance of the tunnel junction, Ce the equivalent capacitance viewed

from the tunnel junction’s perspective, and g, the charge of an electron (1.602x10°C). A

tunnel event will occur through a junction only if the absolute value of Vj is larger than Ve,

i.e., |[Vj| > Vec. Single-electron devices utilize the SET tunnel junction’s ability to control

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the transport of individual electrons, and provide an alternative to implement digital logic.
An electron tunneling through a junction in the quantum scale is a stochastic process. If

we define Perror as the probability that the desired transport does not occur, the switching

delay t,can be expressed as:

td — —ln(])ermr)qeRt (33)
| Vj I _Vc

where Rt is the tunnel resistance.

3.1.2 Fabrication Limitation

In order to implement SET devices, it requires a reproducible fabrication of very small
conducting particles, and their accurate positioning with respect to external electrodes.
Current nanofabrication technologies have made possible small SET devices. However,
the time for fabricating large SET circuits is still expected to be 40 years away. Most
current research on SET circuit level designs, including ours, cannot be verified by
current nanofabrication technologies. Some simulators have been developed to support
circuit level design. To do simulation, we use SIMON (SIMulation Of Nanostructures)

[27].

3.2 SET Threshold Gate Structure

A generic SET threshold logic structure has been reported [22, 29, 30], and is depicted in
Fig.3.1. In this threshold logic structure, the critical voltage Vc acts as the ‘threshold’. If
the voltage across the tunnel junction is higher than the critical voltage, one electron
tunnels through the junction. This can be specified as a ‘high’ output. Otherwise, the

output is meant to be logic ‘low’. Input voltages Vp and Vn, weighted by their input

capacitors C? and C" respectively, are added across the junction (the superscripts p

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and » stand for positively and negatively weighted inputs, respectively). Vb is the bias

voltage weighted by its input capacitance Cb.

In order to provide enough driving ability and stability, a buffer/inverter, as shown in
Fig.3.2, should follow the threshold logic structure. Hereafter, we define a threshold gate
as a threshold logic structure plus a buffer/inverter following it. Since a buffer/inverter
inverts the output of the original threshold logic, one needs to reverse the positively- and

negatively-weighted inputs in the logic function accordingly.

% o—iF
Cy
V{) & H & x
3 ¢
P
é‘ V2 O—H_
i~
= ce >
32 Vj CiTe
cP
T
y Vv
Vi o—oi| O—-o"
< Ct
>
2 v o—H_—
2. ? —
g o T e
v O_“__l 1
Cn

Fig.3.1. SET threshold logic structure

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig.3.2. SET buffer/inverter

3.3 Feasible Parameters of SET Threshold Logic

It has been shown [22, 29] that when weighted properly, a SET threshold gate can
implement different combinational logic (such as AND, NOR) gates. More specifically,
one can choose all parameters in the logic structure carefully to obtain a meaningful logic
function. A group of parameters that promise a specific logic function are called feasible
parameters for the threshold logic. By using a number of threshold gates with feasible
parameters, more complex logic components (such as flip-flops) could also be

implemented.

The logic function for a variety of gates can be represented by a threshold expression. The
threshold expressions for some commonly-used 2-input logic gates are shown in Table.3.1,

where a and b are inputs.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table.3.1. Threshold expressions

Gate Threshold expression

AND(a,b) |sgn{a+b-—1.5}

OR(a, b) sgn{a+b—0.5}

NAND(a, b) | sgn{—a—-b+ 1.5}

NOR(a,b) |sgn{—a—b+0.5}

The capacitance parameters of a threshold gate can be determined by the relationship
between the tunnel critical voltage, Ve , and the voltage across the tunnel, Vj. The critical

voltage can be written as

q
v, = _ ‘ - (3.4)
2{C +(ZC +C0+Cbuﬁer)(cb+zc)

7 3C"+C, +Cyyp, +C, +>.C”

where Cj is the tunnel capacitance, and C,, is the equivalent capacitance of

buffer/inverter viewed from the output of a generic threshold structure. If we define Vee

as the power supply voltage shared by all Vp , Vn and Vb, the voltage across the junction

can be expressed as

C,+Y.C*(l) dC

V.=V - -V
{Cb+ZC” ZC”+CO+C,,W,} buter

Jj T~ Ve

(3.5)

whereV, . is the voltage drop back on the output of the generic threshold structure,
caused by the power supply of the buffer/inverter, and Z Ccf()(or ZC”(I)) represents
the sum of C?’s (or C"’s) that are connected to a high input voltage (i.e., logic value of

“1”). Since both Ve and ¥j are a function of all capacitance parameters (i.e., C?, C",

Cb and Co), the feasible parameters for a given threshold expression are not unique.

As an example, if we choose Vee = 16mV and use the parameter values of the buffer

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given in [22] (as shown in Fig.3.3), we can get C,,, = 0.9 aF, and V, ., =1.17 mV. By

choosing C”and C" to be 0.5 aF, and fixing the total loading capacitance of the

threshold logic,ZC "+C, +C,,z, , to be 10 aF, we leave Cb to be the only parameter to

be determined, with its value depending upon the specific threshold logic expression.

Fig.3.3. The selected capacitance values of buffer/inverter from [22]

3.4 Capacitance Parameter Selection

The general procedure of selecting capacitance parameters in the threshold logic consists

of three steps as follows:

Step 1: Determine the structure of threshold gate with positively weighted inputs

connected to C"’s and negatively-weighted inputs connected to C? ’s. Take a 2-input AND

gate as an example with the threshold expression y=sgn{a+b—1.5}, where y is the

output, and a and b are the inputs which are connected to Cand C;, respectively, with

the same value of 0.5 aF for each. Given the total loading capacitance

ZC" +C, +C,,z, = 10 aF, we select Co to be 8.1 aF.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 2: Find two input patterns with the combined value closest to the threshold (one of
them gives a value higher than the threshold, the other lower than the threshold). For the
case of 2-input AND gate with four different input patterns {a, b} = {0, 0}, {0, 1}, {1, 0},

or {1, 1}, the combined value (¢ + b) (refer to the threshold expression

y=sgn{a+b-15}) is 0, 1, 1, or 2, respectively, and the threshold value is 1.5.

Therefore, we select two input logic patterns {1, 1} and {1, 0} (or {0, 1}).

Step 3: Solve two inequalities, Vj > Ve and Vj < Ve, for the above two input patterns to
get the upper and lower bounds of acceptable value of Cb. A tunnel event happens if and
only if Vj > Vc. In the 2-input AND gate example, we require Vj > Ve for the input pattern
{1, 0}, and Vj < Vc for the input pattern {1, 1}. This gives the value range of Cb : 12.8 aF
~14.6 aF. The results have been verified with SIMON [27].

The above procedure applies to various threshold logic gates. Table.3.2 shows the

capacitance parameters for different gates given in Table.3.1.

Table.3.2. Capacitance parameters for different gates given in Table.3.1

Gate C?(@aF) | C" (aF) | Co(aF) Cb (aF)

AND(a,b) 05105 (8.1 (12.8,14.6)
OR(a,b) 05105 8.1 (11.3,12.7)
NAND(a,b) | 0.5 | 0.5 9.1 (10.3,11.4)
NOR(a,b) {0.5]0.5 9.1 (11.5,12.5)

3.5 Parameter Optimization for Reliability

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is observed that during the fabrication process, certain amount of charges could appear
on nodes of a SET logic gate. These charges are referred to as background charges.
Research shows that background charge is random and less likely to be eliminated with
current technologies. Background charges generate a biased voltage which contributes to

the total voltage across a SET logic gate and may affect the logic behavior.

Let g,and ¢, be the background charge on nodes x and y, respectively, in Fig.3.1

which is to be followed by a SET buffer of Fig.3.2. The bias voltage (denoted by V,

ackground)

across the junction dueto g,and ¢, is:

. _ 4 L
background Cb + Z Cc? Z C"+ Co + Cbufﬁ;r

(3.6)

This extra voltage will add to the original voltage drop Vj across the junction, yielding a

new junction voltage, Vj:

V, =V, +V,

ackground

C+2CTM ¥y
“C+2.CT Y C+C,+Cp,

} - I/buﬁ"er

+ q, _ 9,
C,+Y.C" Y. C"+C,+Cyp,

3.7

If a given set of feasible parameters for a SET threshold gate with Vj are still feasible for
the gate with Vj’, the logic behavior of the gate remains correct even with the background
charges. Otherwise, the circuit will malfunction. In this paper, the reliability of a SET
threshold gate is defined to be the probability that the gate still performs the desired logic,

with possible background charges.

From Table.3.2 with assumption of no background charges, Ch can be any value between

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its upper bound and lower bound for the gate to function correctly. The question is: Given
a probability distribution of background charge, what is the optimal value of Cb so that

the reliability of the underlying gates can be maximized?

From equation (3.5), we can obtain the probability distribution p(V,,.eua) for the extra

voltage V, Depending on the structure and parameters of a threshold gate, a

ackground *

maximum value of V, (denoted by maxV, ;. ...) and a minimum value of

Viackgroma (denoted by min¥, ..) can be found from equation (3.6) in order to keep

the desirable logic. The problem is to determine the value of Cb, which maximizes the

ax Vbackgmund

reliability p (I/hackground) = p (I/background)dVbackground .

Vbackgmund

In the reliability analysis that follows, we take 2-input AND gate and NOR for example to

show how the reliability of a SET threshold logic gate varies with the parameter C, .

Throughout our discussions, two assumptions are also made:
1) Background charges on different nodes are independent;

2) Background charges take either uniform or normal probability distribution.

3.5.1 Reliability Analysis with Background Charges of Uniform Probability

Distribution

In the threshold logic gates (see Fig.3.1), we assume both nodes x and y have background

charges (i.e., g,and g,) of a uniform probability distribution:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

p@)=12u (3.8)
0, otherwise
Letz =V, 4eroma - The equation (3.5) can be rewritten as:
. F. £ (3.9)
m n
where
m=C, + ZC ?

n=ZC” +C, +Cyp,

The distribution for z is:

Mgy, _HmED
p(m+n) u(m+n) mn
mn mn u(m+n)
= 1- z), 0<zg—— 3.10
P(2) = u(m+n) (u(m+n) mn (3.10)
|0, otherwise

By choosing the different values for Cb in a particular gate, we can get the different

reliabilities: P(z) = I p(z)dz . Table.3.3 and Table.3.4 summarize the reliabilities for

2-input AND and NOR gates, respectively, with uniform distribution of background
charges. It can be seen from these two tables that with the smaller value of p, the
reliability is more sensitive to the value of Ch, meaning that the optimized value of Cb
can significantly improve the reliability. We plot the reliability-versus-u curves for
2-input AND and NOR gates in Fig.3.4 and Fig.3.5, respectively. It can be seen that as the
value of p increases, the reliability decreases quickly and the value of Cbh becomes less

critical.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table.3.3. Reliabilities of 2-input AND gate with

uniform distribution of background charges

ulq, Optimized Worst Case
Cb Reliability | Cb Reliability
@F) | () @F) | (%)
0.5 146 |58 12.8 |55
0.4 144 |72 128 |6.8
03 142 |95 12.8 |89
0.2 140 140 12.8 | 13.0
0.1 13.8 1268 128 |24.2
005 137 |494 12.8 | 40.6
0.03 137 |73.1 12.8 |50.4
002 |13.7 [922 12.8 |51.0

Table.3.4. Reliabilities of 2-input NOR gate with

uniform distribution of background charges

u/q, | Optimized Worst Case
Cb Reliability | Cb Reliability
@F) | () @F) | (%)
0.5 11.5 |44 125 |42
0.4 115 |54 125 |52
0.3 1.6 |72 125 6.8
0.2 11.7 | 10.6 125 | 10.1
0.1 11.9 |20.6 125 | 19.0
005 |12.0 |38.8 12.5 |[33.6
003 |[12.0 |594 11.5 [458
0.02 [120 |79.2 11.5 | 482

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

—»— AND - optimized
Dr 1 ——— AND - worst case
— m-
g
z 0r
%
s 8
2
5 s0f
g
2 wf
2
£
~ 3r
W
7]
2%
10}
0 L L)

. . A s N .
0 005 01 0t5 02 025 03 03 04 045 05
Hlg,

Fig.3.4. Reliability of a 2- input AND gate with

uniform distribution of background charges

o
: -3 NOR - optimized
70k “ NOR - worst case
g 4
Pl
= 4
e
»
:
40 1
LA
£ AN
g 30 ‘\\\
£ <
Exf %
7} AN
10 .
T e,
—
L L L) N L))
1] 005 01 015 02 025 03 035 04 045 05

uiq,

Fig.3.5. Reliability of a 2- input NOR gate with

uniform distribution of background charges

3.5.2 Reliability Analysis with Background Charges of Normal Probability
Distribution

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the random background charges g, and g, take a normal distribution with a

standard deviation o:

qZ

207 @G.11)

@)=
PO= fro

it can be proved that the distribution of z is also normal, but with a standard deviation

Vm? +nc L : o : o
of ——————. By using similar analysis for the reliability with uniform distribution,
mn

we can calculate the reliabilities of any logic gates with normal distribution of random
background charges. Again, we take the 2-input AND and NOR gates as an example, and
the results are shown in Table.3.5 and Table.3.6, where the parameters of Cb and o are the
key factors in determining the reliability. The reliability-versus-c curves are shown in
Fig.3.6 and Fig.3.7. It can be observed from these tables and figures that with a small

value of o, the Cb needs to be chosen carefully in order to maximize the reliability.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table.3.5. Reliabilities of 2-input AND gate with

normal distribution of background charges

clq, Optimized Worst Case
Cb Reliability | Cb Reliability
@F) | (%) @F) | (%)
0.5 146 |33 12.8 |[3.2
0.4 146 |4.1 128 |39
0.3 146 |55 128 |52
0.2 146 |82 128 |7.8
0.1 142 162 128 |[15.4
0.05 |138 |315 12.8 |28.6
0.03 |13.7 |50.1 12.8 |40.9
0.02 |13.7 |68.9 12.8 | 483
0.01 13.7 1957 12.8 | 515

Table.3.6. Reliabilities of 2-input NOR gate with

normal distribution of background charges

o/q, |Optimized Worst Case
Cb Reliability | Cb Reliability
@F) | (%) @F) | (%)
0.5 11.5 |25 125 |24
0.4 11.5 |3.1 125 |3.0
0.3 11.5 142 125 [4.0
0.2 11.5 |63 125 |5.9
0.1 11.5 [124 125 | 11.7
005 |11.8 [24.2 125 225
0.03 |[11.9 [39.1 125 |34.1
0.02 1120 |557 125 143.6
0.01 (120 |875 11.5 [48.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—— AND - optimized
P — AND - worst case
80}
g
» 70}
=
3
s OF
@
g sop
B
o
[
£
~ 3}
w
»
204
18

0 005 01 015 02 02 03 035 04 045 05
olg,

Fig.3.6. Reliability of a 2- input AND gate with

normal distribution of background charges

w -X
! ~—%-— NOR - optimized

80t ‘ ~~———NOR - worst case
g 701
Panl
£ e}
=
= ;
2 ol
) r 1
) \\
29
G L
@ \
b 3
=
@ 2 \\

\%
10 %«‘.\M\
L T
0 005 0t 015 02 02 03 035 04 045 05

olg,

Fig.3.7. Reliability of a 2- input NOR gate with

uniform distribution of background charges

3.5.3 Relationship between Gate Reliability and Circuit Parameters

The above analysis shows that if the probability distribution curves are flat (i.e., with a

large value of p and o for uniform and normal distribution, respectively), the gate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

reliability turns out to be low. Under such cases, the parameter optimization does little to

improve the reliability. Instead, as the value of p or ¢ gets smaller, the gate reliability

strongly depends on Cb. To demonstrate this sensitivity, we plot the reliability-versus-Ch

curves in Fig.3.8. As a rule of thumb, the value of Cb should be somewhere in the middle

between its upper bound and lower bound in order to maximize the reliability, given

either uniform or normal distribution of background charges.

——AND ¢=0.02¢

=118 /’\ —*—AND «=0.05¢
. [AND w0.1e

.

70 /

SET threshold gate reliability (%)
B

' s s 1)
2?2.5 13 135 14 145 15
Cb(aF)

(a) AND gate with uniform distribution

——AND O=001e
) /_\ e oo
- ——+—AND O=0.1e

g
Fd
=
]
]
= 8O
%
)
3 sor
=
2
£ 40
m
“ P} j— s
pald
R
1 . N . . :
25 13 135 14 145 15

Cb(aF)

(c) AND gate with normal distribution

~. ——NOR =0.02¢
v ~—we NOR u=0.058
—+— NOR u=0.1e

8
N

N

8

[

WW

8

SET threshold gate reliability (%)

=]

[Ny

1) L L L L L)
P1.4 16 18 12 122 124 126 128
Chb(aF)

(b) NOR gate with uniform distribution

8

""\\ ——NOR O=0.01e
ok / —+—NOR O=0.05¢

/ —+—NOR O=0.1e
70

2]

L / \\

5

SET threshold gate reliability (%)
8

8

20

1 o '
‘PLA 18 118 12 122 124 126 128
Cb(aF)

(d) NOR gate with normal distribution

Fig.3.8. Reliability-versus- Cb curves

with different probability distribution of background charges

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

3.5.4 Parameter Scaling

Theoretically, all parameters in threshold logic gates can be scaled while keeping the
same logic behavior. From equation (3.2), if we increase (or decrease) all the capacitance
values by X times, and reduce (or raise) the power supply voltage by X times, the
threshold gate will have an output voitage level which is reduced (or increased) by X
times after scaling, with the logic behavior unchanged. However, too large or too small
values may not be possible in practice with current technologies. Too large value (say,
larger than 100 aF) of capacitances requires the circuit to operate at extremely low
temperature (say, 1~10 K) in order to avoid thermally induced random tunneling events.
On the other hand, too small value (say, less than 0.1 aF) of capacitances requires the
device size to be extremely small (say, 1~5 nm). This poses a great challenge to, and may

not be likely with, current nano-fabrication technology. In this paper, we set a minimum

value of capacitances (such as C”and C") to be 0.5 aF, and the largest capacitance in

the gates is Cb which is within the range of 10~15 aF.

Delay and energy consumption are another issue which may have to be considered during
the parameter selection or optimization. With X-time scaling, the delay of a threshold gate

will increase by X times, as can be seen from equation (3.2). Also, the energy consumed

by a single tunnel event iSAE = q,(|V, | -V,), which will be reduced by X times after

scaling. However, the reliability of the threshold gate remains the same, given a certain

probability distribution of the random background charges.

3.6 Summary

In this chapter, we propose a strategy to select parameters and analyze the reliability for

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

single-electron threshold logic with emphasis on two typical logic gates (AND and NOR).
The effect of possible background charges has been taken into account for the reliability
improvement. While a uniform or normal distribution of random background charges is
assumed throughout the paper, the proposed method can apply to any other distributions.
Further work is also needed to deal with the correlated distribution of background charges,

which could occur in the real world.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A Finite State Machine (FSM)
Implementation with SET Threshold
Gates

Finite state machine (FSM) is well understood as a typical module for most sequential
circuit designs [16]. It can be described by a state transition graph, where each vertex
represents a state and each directed edge represents the transition from one state to
another. Implementation of an FSM involves (a) the logic design which includes the state
assignment followed by combinational logic synthesis, and (b) the circuit realization with
specific technology. Due to the increasing complexity and power dissipation of digital
systems, a lot of research works have focused on FSM synthesis towards low power
requirement [17-19]. As MOS transistors are expected to finally meet their physical
fabrication limits in further power and/or area reduction, various new revolutionary
device architectures have been recently proposed at nano-scale [21], with an increasing
interest in Single Electron Tunneling (SET) devices as promising candidates for future

ultra-low power integrated circuits [20-22].

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Single-electron devices utilize one-electron-precision charge transfer based on the
Coulomb blockade effect, and provide an alternative to implement digital logic.
Single-electron transistor and single-electron memory are such an example [20, 22, 23].
The main advantages of single-electron devices are their fast and ultra-low power
operation, simply because they use only a few electrons to accomplish logic or arithmetic
operations. While the prospect of CMOS components being completely replaced by SET

remains to be seen, more and more SET circuits are emerging.

In this chapter, we present an FSM implementation using SET technology, and apply our
approach to radio-frequency identification (RFID) protocols where the power dissipation
is a critical concern. We simulate the proposed circuit and provide its power estimation to

show its particular advantages over its CMOS counterpart.

4.1 Radio Frequency Identification (RFID)

Radio Frequency Identification systems consist of electromagnetic readers and radio
frequency (RF) tags. The reader communicates with tags within its read range and tries to

obtain unique IDs of each tag.

Predictions have been on business journals and magazines for long time that RFID
systems will sooner or later replace the current heavily-used barcode systems. By
thoroughly changing the mode of logistics, manufacture and retailing, RFID will have a

positive impact on the worldwide economy and change our every day life.

However, before that time comes, it is also predicted that the cost of one tag must be
reduced to less than 1 cent in order to initialize a considerable market volume. Also, the
size of a tag is required to be very small to fit anywhere. To do this, the circuit function on
a tag should be made as simple as possible.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Passive mode naturally comes into designers’ mind. A passive mode circuit is a circuit
without battery power supply itself. A passive mode tag receives power from the reader
and work as a passive response. Non-battery seems to provide an overall solution to both
size and cost. In addition, problems like battery-life will not exist if there is no battery on

tags and make an RFID system almost maintenance free.

In order to get all those profits a passive tag may bring, however, power consumption is
an unpreventable obstacle in the way. The electromagnetic power a tag receives from a

reader is given by:

2
§= A PGG,

=y 4.1

where A is the wavelength of the emitted electro-magnetic wave, P the power injected

into the reader’s antenna, R the distance between the reader and the tag, G, the gain of

the reader’s antenna, and G, the gain of the tag’s antenna.

For a frequency of 900MHz, the working distance of 1 meter makes tags fall into the far

field region of the reader’s antenna. The energy received by the tag is less than 100 z W.

Furthermore, if we need an RFID system suitable for real application, warehouse

management for example, a working distance of more than 10 meters should be expected.

In that way, the energy received by the tag will be less than 0.1 z W.

4.2 RFID Anti-Collision Protocols

For the power received by the tags from the electro-magnetic waves, consumption can be

considered into two parts. One part supplies for sending signals from the tag’s antenna

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

back to the reader. Another is for logic calculating for what data it should send back based

on the signals received from the reader.

For a typical RFID system, a reader should have the ability to identify all tags within its
working zone. A collision problem may arise when there are more than one tags sending
series of data in response to the same reader’s inquiry. Without an anti-collision
mechanism, the reader will receive a mixture of scattered data and cannot work properly
to identify individual IDs of tags. The digital logic circuit implemented on a tag is
basically an anti-collision scheme. For anti-collision protocols, there are two major

schemes right now—Binary-Tree Scheme and Query-Tree Scheme.

4.2.1 Binary —Tree Scheme

In a binary-tree protocol, there is a pointer with each tag. Each time a tag is reset, the
pointer points to the first bit of the tag’s ID and, with the ongoing of inquiring, it moves
toward the last bit. During the inquiring, the reader sends one ID bit at a time. The tags
with the pointed bit the same as the inquiring bit send back their next bits to the reader,
while the rest convert to a state of ‘quiet’ and will not answer the remaining inquiries in
this round until one tag has been completely identified then ‘killed” and all the remaining
tags have been reset. If the reader detects a non-collision answer, the answer bit will be
used as the next inquiring bit. Otherwise, the reader sends ‘0’ as the next inquiring bit.

The procedure will continue until all tags within the working zone of a reader are

identified (then ‘killed’).

4.2.2 Query —Tree Scheme

Query-tree scheme is a memoryless protocol in which the tags do not have to remember

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their inquiring history, unlike binary-tree scheme in which a pointer position has to be
remembered by each tag. Instead of sending one bit for each inquiring, the reader sends a
prefix with a length range from 1 to the length of ID minus 1. The tags will send back the
remaining bits of their IDs if their IDs have the same prefix. From the tags’ response, the
reader can tell the bit at which the collision is occurring. After that, the reader overrides

the non-collision bits and extends the prefix directly to the collision bit.

Generally speaking, when tags’ ID length is short and there are a large number of tags
within the working zone, binary-tree scheme is more efficient; when tags’ ID length is
long and the number of tags within the working zone is quite limited, query-tree scheme

will take the advantage.

4.3 SET Implementation for Binary Tree Protocol

Hereafter, we demonstrate our procedure of implementing a RFID Binary-tree protocol

FSM. The procedure is actually applicable to any digital logic circuits.

4.3.1 Binary-Tree Protocol FSM Structure

Table.4.1 describes the state assignment for a binary-tree scheme FSM, and Fig.4.1 shows
the state diagram of the protocol (for more details about the protocols, refer to [25, 26]).
In this figure, signals NULL and CLK come from the reader. The CLK is the synchronized
clock shared with all tags. The NULL reboots all tags with the reader’s working range into
a new ID recognition procedure. When a tag receives the NULL signal, its next state will
be set to “S1° no matter what the current state is. The signal LSB indicates whether the
tag’s ID bit under checking is the last bit. The signal DIFF shows whether or not the data
bit received from the reader matches the current ID bit on the tag. Q1 and QO are the
two-bit output signals of the state machine, representing 4 states shown in Table.4.1. A

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logic-level implementation of the state machine is shown in Fig.4.2.

Table.4.1. State assignment

State Q1| Q0
SO | quiet 0 (0

S1 | receiving |0 |1

S2 | sending 1 1

S3 | disabled 1 0

Fig.4.1. State diagram for Binary-tree protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LSE m» |
NULLE» 3
N

S
DIFFm»- A
3
o/
D G- ()1 D Q Qo
c d
CLK =m» l_ I

Fig.4.2. Logic-level implementation of the state machine for Binary-tree protocol

In Fig.4.2, there are 7 logic gates and 2 positive edge-triggered D-Flip-Flops (DFFs). As
for those 7 logic gates, even though we may not find a counterpart gate type from a
CMOS digital library, we can implement each of them with one SET threshold gate,

directly following our procedure described in Chapter. 3.

With the same procedure, we can also implement a positive edge-triggered DFF, a typical

sequential logic function, by using 4 SET threshold gates.

4.3.2 SET Positive Edge-Triggered D-Flip-Flop (DFF)

An edge-triggered D-flip-flop is shown in Fig.4.3, where a circle denotes a threshold
logic gate, and the numbers appearing at the inputs of the gate represent the values of

positive (+) or negative (—) weights. The detailed description of all gates is given in

Table.4.1.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To—e QM

D&T—Dov——o—— Q
QN
Fig.4.3. Positive edge-triggered D-flip-flop
Table.4.2. Threshold logic gates in Fig.4.3
Gate | Threshold logic
tigl sgn{D — CLK}
tlg2 sgn {—- CLK-2T1-QM + 1.5}
tlg3 sgn { CLK + QM - 1.5}
tigd sgn{ CLK -2T2-Q + 0.5}
4.4 Simulation with SIMON (SIMulation

Nanostructure)

of

SIMON is a most commonly used single-electron tunnel devices and circuits simulator

based on a Monte Carlo method. SIMON is a PC windows platform program, with a

graphic user interface shown in Fig.4.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

* T SIMON 2.0

Fig.4.4. SIMON 2.0 Graphic User Interface

The implementation of RFID binary-tree protocol FSM using SET devices is shown in
Fig.4.5, where logic ‘1’ = 16mV, logic ‘0’ = 0V and, for all tunnel junctions, Rt = 105 Q,
Ct = 10-19 F. As mentioned in Chapter.3, SET-only architectures require the buffers
because of low driving capability with SET gates. A structure of the buffer with SET
junctions is shown in Fig.3.3, where typical values of parameters are also given. This
structure is needed in almost every threshold gate in our circuit, as can be seen in Fig.4.5
where all gates are labeled from ‘A’ through ‘O’. The capacitance parameters (x10-19 F)

for these individual gates are summarized in Table.4.3.
The SET circuit of Fig.4.5 was simulated using SIMON (SIMulation Of Nanostructure)

[27]. The simulation time step was set to be 0.1 ms. Fig.4.6 shows a 4-bit ID

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identification procedure. The simulation starts with state S1 (i.e, Q1 = ‘0’, Q0 = ‘1°). The
state transitions are shown partially in Table.4.4. We see that in clock cycles #2 through
#8, the state changes between S1 and S2, and ends up with S3. This process represents the
successful identification of a 4-bit ID tag. A ‘high’ DIFF at clock cycle #13 puts the

machine into state SO which holds until a next ‘high’ NULL signal arrives.

Fig.4.5. SET implementation of the state machine for Binary-tree protocol

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L
L

o

Fig.4.6. Simulation result of Fig.4.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Table.4.3. Capacitance parameters (x10 ~'° F) for threshold gates in Fig.4.5

Gate | Ch Co | C? c"
A 117 {80 |5 |5 5
B 110 {80 |5 S |5 [5§
C 117 |80 |5 S 15
D 119 |80 |5 [5 IS -
E 120 {86 |5 5
F 132 [80 |- S 15
G 117 (90 }10 |5 |5

H 126 {86 {10 |5 5

I 120 |86 |5 5

J 132 (80 |- 5 [5
K 119 {90 {10 |5 [5 |-
L 126 {8 110 |5 5
M 117 180 {5 |5 5
N 117 |80 |5 5 [5
(0] 117 180 {5 1|5 5

Table.4.4. State transitions in Fig.4.6.

Clock Cycle | State | Q1 | QO | State transition Condition
#1 S2 1 |1 |{DIFF="'0
#2 S1 0 |1 INULL='I'
#3 S2 1 1 | DIFF="0
#4 S1 0 |1 [LSB='0
#5 S2 1 |1 [DIFF='Q
#6 S1 0 |1 |LSB="0
#7 S2 1 |1 [DIFF="(
#8 S3 1 |0 [LSB="1"
#9 S3 1 |0 [NULL='0
#10 S1 0 |1 [NULL='I
#11 S2 1 1 | DIFF='0
#12 S1 0_11 [LSB='
#13 SO 0 |0 |DIFF="1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

4.5 Delay and Power Estimation

The critical path of the circuit in Fig.4.5 starts from the CLK to D-flip-flop, and ends at
the output of the two-level combinational logic. By using the estimation method from
[22], the delay can be calculated as around 0.3 | In (Perror) | ns which turns out to be 5.53

ns when Perror = 10-8 is assumed.

In order to estimate the power dissipation of Fig.4.5, we have to select a sequence of state
transitions that occur during the tag identification process, because the switching energy
varies for different states. If we have only one 4-bit ID tag in the reader’s working range,
the state machine will have the following sequence of state transitions:
S1-82—-S1—-82—-81-82—S3. With the power analysis method of [22], the total
switching energy can be calculated to be about 702 meV. Assuming a clock frequency of
100 MHz, one can expect the total power consumption to be about 10 pW, compared to a
typical 0.18 pm CMOS implementation which may consume power in the order of

magnitude of ~100 pW at the same frequency.

4.6 Summary

In this chapter, we presented an FSM implementation using single electron encoded logic
in SET technology with the goal of obtaining ultra-low power solution. We have taken the
RFID binary-tree protocol as an example to show the details about implementation
procedure together with its power and delay analysis. The simulation results have shown

significant power savings, compared with the traditional CMOS circuits.

Part of this work was reported in our recent paper titled “Finite State Machine
Implementation with Single-Electron Tunneling Technology” which has been accepted by

2006 ISVLSI (International Symposium on VLSI).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

In this thesis, we presented two low power approaches. One for CMOS technology, and

the other for single electron tunneling devices.

For CMOS technology, we proposed a greedy algorithm to solve the power-oriented delay
budgeting problem for combinational circuits. The topological information of the circuits
as well as the cell library are used for aggressive power optimization in order to obtain
good power-delay tradeoff. A Java Implementation with Graphic User Interface was
developed. Experimental comparison has also been made between a pure delay-budgeting
algorithm and the proposed algorithm in terms of power savings. As a sequential circuit
can be transformed into several combinational sub-circuits, our greedy algorithm with the
software tool can be further developed to do power-oriented delay budgeting for any
digital circuits, both combinational and sequential. Also, further study is needed to apply
the delay-budgeting method to high-level design, and develop one single unified metric

(instead of separately-treated metrics of area, delay and power) for future design.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For SET circuit, we proposed a strategy to select parameters and analyze the reliability for
single-electron threshold logic. Two typical logic gates (AND and NOR) were detailed
with power and delay analysis as examples. The effect of possible background charges
has been taken into account for the reliability improvement. While a uniform or normal
distribution of random background charges is assumed throughout the paper, the proposed
method can apply to any other distributions. Further work is also needed to deal with the

correlated distribution of background charges.

As an application example, we presented an FSM implementation with the goal of
obtaining ultra-low power solution. We have taken the RFID binary-tree protocol as an
example to show the details about implementation procedure together with its power and
delay analysis. The simulation results have shown significant power savings, compared

with the traditional CMOS circuits.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Program 1 — Power Oriented Delay
Budgeting Greedy Algorithm with GUI
(Chapter 2)

/***
*Functions Profile:

With a specified circuit gate level topology and a chosen digital layout library as input, this
tool can estimate how much power dissipation (percentage) can be saved within a given critical
path circuit delay. Also, the program can further estimate how much power saving potential by
relaxing the critical path delay a specified circuit has. Based on this information, the tool

can draw a circuit level power-delay curve.

*Usage:

java com.Greedy.GreedyApp;

*Package structure:

Package com.Greedy

|--- Class GreedyApp // BApplication launcher

|--- Class GreedyFrame // Greedy Algorithm with Graphic User Interface (GUI)
|--- Class Out2Gates // SIS benchmark circuits (.out) file input

|--- Class Gates2Graph // DAG (directed-acyclic graph) holder

|--- Class Node // DAG Node holder

***/

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//Greedyhpp.java
package com.Greedy:;
import java.awt.*;

import javax.swing.UIManager;

public class GreedyApp{
boolean packFrame = false;
public GreedyApp() {

GreedyFrame frame = new GreedyFrame();

//Pack frames that have useful preferred size info, e.g. from their layout
//Validate frames that have preset sizes
if (packFrame)
frame.pack():
else

frame.validate();

// Center the frame
Dimension screenSize = Toolkit.getDefaultToolkit ().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height)
frameSize.height = screenSize.height;
if (frameSize.width > screenSize.width)
frameSize.width = screenSize.width;
frame.setLocation({screenSize.width - frameSize.width) / 2, (screenSize.height -
frameSize.height) / 2);

frame.setVisible{true);

static public void main(String[] args) {

try {
UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName());

}
catch(Exception e) {
e.printStackTrace();

}

new Greedy2pp():

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//GreedyFrame. iava

package com.Greedy:;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.ImageIcon;

import javax.swing.event.*;

import java.awt.image.*;

import javax.imageio.*;

import java.io.*;

import java.awt.geom.*;

public class GreedyFrame extends JFrame {

private double zoom = 1;

private double dimension_coefficient = 50;

private double radius = 0.2;

private int from T

private int to T

= 1;

4;

private int sample number = 10;

JPanel contentPane;

BorderLayout borderLayoutl = new BorderLayout();

JMenuBar jMenuBar

JMenu jMenuFile =

1

= new JMenuBar();

new JMenu();

JMenultem jMenuFileOpen = new JMenultem();

JMenultem jMenuFileExit = new JMenultem();

JMenu jMenuHelp = new JMenu();

JMenultem jMenuHelpAbout = new JMenultem();

JMenu jMenuCurve

new JMenu() ;

JMenultem jMenuCurveDraw = new JMenultem();

JMenultem jMenuCurveExport = new JMenultem();

JMenultem jMenuCurveSettings = new JMenultem();

JToolBar jToolBar
JPanel jPanell =
JButton jButtonl
JButton jButton2
ImageIcon imagel;
ImageIcon image2;

ImageIcon image3;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

n

= new JToolBar();
ew JPanel();
new JButton();

new JButton();

61

JFileChooser jFileChooserl

new

BorderLayout borderLayout2 = new

JPanel jPanel2 = new JPanel();

JPanel jPanel3 = new JPanel{();

JPanel jPaneld4d = new JPanel();

BorderLayout borderLayout4 = new

Jlabel statusBar = new

JLabel () ;

JPanel jPanel5 = new JPanel();

BerderLayout borderLayout3 = new

GridLayout gridLayoutl

JButton jButton5 = new JButton():

JFileChooser () ;

BorderLayout () ;

BorderLayout () ;

BorderLayout () ;

= new GridLayout ()

JPanel jPanel6é = new JPanel (}:

BorderLayout borderLayout5 = new BorderLayout ():

JPanel jPanel7 = new JPanel();

BorderLayout borderLayout6é = new BorderLayout () ;

JList jListl = new JLis

t();

BorderLayout borderLayout7 = new BorderLayout():

JButton jButtond = new
JPanel drawpanel;

JTextArea jTextAreal;

JButton() ;

private Gates2Graph graph;

private Out2Gates out;
JButton jButton3 = new

JButton jButtoné

new

/**
* Construct the frame
*/

public GreedyFrame () {

JButton() ;

JButton() ;

enableEvents (AWTEvent .WINDOW_EVENT MASK) ;

runGreedyAlgorithm() ;
try {
ibInit () ;
}
catch (Exception e) {

e.printStackTrace():

public void runGreedyAlgorithm() {

graph = new Gates2Graph():

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

graph.run once_releaseable power(0):

//graph.write power plot file(0.1, 31);

private void jbInit() throws Exception ({
imagel = new ImagelIcon(GreedyFrame.class.getResource("openFile.gif"));
image2 = new ImagelIcon(GreedyFrame.class.getResource ("closeFile.gif"));
image3 = new Imagelcon (GreedyFrame.class.getResource("help.gif"));
contentPane = (JPanel) this.getContentPane();
contentPane.setLayout (borderLayoutl);
this.setTitle("Power-Oriented Delay Budgeting -- " + graph.get title());
this.setJMenuBar (jMenuBarl) ;

this.setSize(new Dimension(800,600));

//jToolBarl.setAlignmentY ((float) 0.5);
jButtonl.setIcon(imagel);
jButtonl.addActionListener (new java.awt.event.ActionListener () {
public void actionPerformed(ActionEvent e) {
jButtonl actionPerformed(e):
}
by :

jButtonl.setToolTipText ("Open File");

jButton2.setIcon(image3);
jButton2.addActionListener (new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jButton2_actionPerformed(e);
}
}y:

jButton2.setToolTipText ("About") ;

jPanell.setLayout (borderLayout?2):;
jPanel4.setLayout (gridLayoutl) ;
jPanel2.setLayout (borderLayoutd) ;

jPanel5.setLayout (borderLayout3) ;

jButton5.setText ("zoom in");
jButton5.addActionlistener (new java.awt.event.ActionListener() {
public void actionPerformed{(ActionEvent e) {

jButton5 actionPerformed(e);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

by
jPanel3.setLayout (borderLayout5) ;
jPanel6.setLayout (borderLayout7) ;
jPanel7.setlLayout (borderLayouté) ;
jButton4.setText ("zoom out™);
jButtond.addActionListener (new java.awt.event.ActionListener() ({
public void actionPerformed(ActionEvent e) {
jButton4_actionPerformed(e);
}
1)
//menu file
jMenuFile.setText ("File");
jMenuFileExit.setText ("Exit");
jMenuFileExit.addActionlListener (new java.awt.event.ActionListener()
public void actionPerformed{ActionEvent e) {
jMenuFileExit_actionPerformed(e);
}
1)
statusBar.setToolTipText ("");
statusBar.setText (" ");
jMenuFileOpen.setText ("Open”);
jButton3.setToolTipText ("About") ;
jButton3.addActionListener (new java.awt.event.ActionListener () {
public void actionPerformed (ActionEvent e) {
jButton3_actionPerformed(e);
}
1
jButton3.setIcon(image2);
jButtoné.setToolTipText ("");
jButtoné.setText ("screen fit");
jButtoné.addActionlListener (new java.awt.event.ActionListener () {
public void actionPerformed(ActionEvent e) {
jButton6é_actionPerformed (e) ;
}
1)
jMenuFile.add (jMenuFileOpen) ;
jMenuFileOpen.addActionListener (new java.awt.event.ActionListener ()
public void actionPerformed(ActionEvent e) {

jMenuFileOpen actionPerformed(e);

}):

{

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

jMenuFile.add(jMenuFileExit);
//menu pd curve
jMenuCurve.setText ("PD Curve");
jMenuCurve.add (jMenuCurveDraw) ;
jMenuCurveDraw.setText ("Draw") ;
jMenuCurveDraw.addActionlistener (new java.awt.event.ActionListener () ({
public void actionPerformed(ActionEvent e) {
jMenuCurveDraw_actionPerformed (e);
}
I
jMenuCurve.add (jMenuCurveExport) ;
jMenuCurveExport.setText ("Export") ;
jMenuCurveExport.addActionListener (new java.awt.event.ActionListener() {
public void actionPerformed{ActionEvent e) {
jMenuCurveExport_actionPerformed (e);
}
b

jMenuCurve. add (jMenuCurveExport) ;

jMenuCurveSettings.setText ("Settings");
jMenuCurveSettings.addActionListener (new java.awt.event.ActionlListener ()
public void actionPerformed(ActionEvent e) {
jMenuCurveSettings actionPerformed(e);
}
by
jMenuCurve.add (jMenuCurveSettings) ;
//help
jMenuHelp.setText ("Help");
jMenuHelpAbout.setText ("About") ;
jMenuHelpAbout.addActionListener (new java.awt.event.ActionListener () {
public void actionPerformed(ActionEvent e) {
jMenuHelpAbout_actionPerformed(e);
}
}yi
jMenuHelp.add (jMenuHelpabout} ;
jMenuBarl.add (jMenuFile) ;
jMenuBarl. add (jMenuCurve) ;
jMenuBarl.add (jMenuHelp) ;
contentPane.add (jToolBarl, BorderLayout.NORTH):;

jToolBarl.add(jButtonl);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

65

jToolBarl.add (jButton3, null);
jToolBarl.add(jButton2);

contentPane.add (jPanell, BorderLayout.CENTER);
jPanell.add(jPanel2, BorderLayout.CENTER);
jPanell.add(jPanel3, BorderLayout.EAST):;
jPanel3.add (jPanel6, BorderLayout.NORTH) ;
jPanelé.add (jButton6, BorderLayout.NORTH) ;
jPanel6.add (jButton5, BorderLayout.SOUTH);
jPanel6.add(jButtond4, BorderLayout.CENTER);
jPanel3.add{(jPanel7, BorderLayout.CENTER);
jPanel7.add (new JScrollPane(jListl), BorderLayout.CENTER);
contentPane.add (statusBar, BorderLayout.SOUTH);
jPanel2.add (jPanel4, BorderLayout.SOUTH);

jPanel2.add(jPanel5, BorderLayout.CENTER);

//jPanel7 -- list
listNodes ()

jListl.addListSelectionListener (new NodeListSelectionListener());

//jPaneld -- info

//String teststring = new String("this is the text string with enough length, so that it
can test the wrapablility"):;

jTextAreal= new JTextArea(graph.show_graph info());

//textpanel = new JTextArea(teststring);

jTextAreal.setBackground(Color.black);

jTextAreal.setForeground (Color.orange);

jTextAreal.setLineWrap (true);

jTextAreal.setRows (4) ;

jPaneld.add{new JScrollPane (jTextAreal));

//jPanel5 -- draw

drawpanel = new JPanel (new BorderLayout()):
drawpanel.addMouselistener (new NodeMouselListener()):
drawpanel.add (new GreedyDraw(), null);

jPanel5.add (new JScrollPane (drawpanel));
//jScrollPanel.getViewport () .setViewPosition (new Point (50, 50)) ;
setVisible (true);

/**

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Overridden so we can exit when window is closed
*
* @param e WindowEvent
*/
protected void processWindowEvent (WindowEvent e) {
super.processWindowEvent (e) ;
if (e.getID() == WindowEvent.WINDOW_CLOSING) {

System.exit (0);

/**

* File | Exit action performed

*

* @param e ActionEvent

*/

public void jMenuFileOpen actionPerformed(ActionEvent e) {

fileOpen();

public void jMenuFileExit_actionPerformed(ActionEvent e) {
System.exit (0);

}

public void jMenuCurveDraw_actionPerformed(ActionEvent e) {
drawCurve () ;

}

public void jMenuCurveExport_actionPerformed(ActionEvent e) {
exportCurve();

}

public void jMenuCurveSettings actionPerformed (ActionEvent e) {

initCurve():

/**

* Help | About action performed

*
* @param e ActionEvent
*/

public void jMenuHelpAbout actionPerformed(ActionEvent e) {

String message = "Power Oriented Delay Budgeting Greedy Algorithm\nversion 1.0.0";

String message title = "Help";

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

JOptionPane.showMessageDialog(this, message, message title,

JOptionPane.DEFAULT OPTION);

void jButton2_ actionPerformed(ActionEvent e) {

String message = "Power Oriented Delay Budgeting Greedy Algorithm\nversion 1.0.0";

String message_title = "Help";
JOptionPane.showMessageDialog(this, message, message title,

JOptionPane.DEFAULT_OPTION) ;

//inner class NodeMouseListener
protected class NodeMouselistener extends MouseAdapter {
public void mouseClicked (MouseEvent evt) {

if ((evt.getModifiers() & InputEvent.BUTTONl_MASK) != 0) {
processLeft (evt.getX(), evt.getY());

}

if ((evt.getModifiers() & InputEvent.BUTTON2 MASK) != 0) {
//processMiddle (evt.getPoint ());

}

if ((evt.getModifiers() & InputEvent.BUTTON3 MASK) != 0) {

//processRight (evt.getPoint ()) ;

public void processLeft(int x, int y){

int[] select = graph.findSelectedNodes(x, y, zoom, dimension coefficient,

radius) ;
graph.setSelectedNodes (select) ;
jListl.setSelectedIndices (select);
jTextAreal.setText (graph.setTextArea (select));

redraw (zoom) ;

}
// inner class GreedyDraw
protected class GreedyDraw extends JPanel
{
protected void paintComponent (Graphics g)
{
super .paintComponent (g) ;

Graphics2D g2 = (Graphics2D)g;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

g2.setRenderingHint (RenderingHints.KEY_ ANTIALIASING,
RenderingHints.VALUE ANTIALIAS ON);
setBackground (Color.white) ;
graph.draw_graph(false, //boolean selected_part_only,
g2, //Graphics2D g2,
zoom,
radius,
dimension_coefficient,
Color.black, //Color node color,
Color.lightGray //Color line_color
)i
graph.draw_graph(true, //boolean selected_part_only,
g2, //Graphics2D g2,
zoom,
radius,
dimension_coefficient,
Color.blue, //Color node_color,
Color.red //Color line_color

)i

/**

* informs parent what size this component needs for it's display
*/

public Dimension getPreferredSize ()

{

return graph.draw_size(zoom, dimension coefficient):

protected class NodelListSelectionListener implements ListSelectionListener ({
// This method is called each time the user changes the set of selected items
public void valueChanged (ListSelectionEvent evt) {
// When the user release the mouse button and completes the selection,
// getValueIlsAdjusting() becomes false
int index = evt.getFirstIndex():
if (!evt.getValueIsAdjusting()) {
// Get all selected items

int[] selected = jListl.getSelectedIndices():

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph.setSelectedNodes (selected) ;
jTextAreal.setText (graph.setTextArea (selected));

redraw (zoom) ;

void jButton5 actionPerformed(ActionEvent e) {

redraw (zoom * 2);

void jButtond_actionPerformed(ActionEvent e) {

redraw(zoom * 0.5);

void redraw(double zoom) {
this.zoom = zoom;
//jPanel5 ~-- draw
drawpanel.removeAll () ;
drawpanel.add (new GreedyDraw(), null);
jPanel5.removeAll ()
jPanel5.add (new JScrollPane (drawpanel));

setVisible (true) ;

void jButtonl_actionPerformed (ActionEvent e) {

fileOpen();

void fileOpen{() {
String circuit;
// Use the OPEN version of the dialog, test return for Approve/Cancel
try{
if (JFileChooser.APPROVE OPTION == jFileChooserl.showOpenDialog(this))
openFile(jFileChooserl.getSelectedFile () .getPath()):
}
circuit = jFileChooserl.getSelectedFile().getName();
graph.set_title(circuit);
this.setTitle("Power-Oriented Delay Budgeting™ + " -- " + circuit):

this.repaint();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

70

}catch (Exception e) {

}

/**
* Open named file; read text from file into jTextAreal; report to
* statusBar.
*
* @param fileName String
*/
void openFile(String fileName) {
try
{
out = new Out2Gates():
out.read_out_write_switching(fileName);
out.read out_write gate(fileName);
runGreedyAlgorithm() ;
listNodes ()
jTextAreal.setText (graph.show_graph info()):
redraw(l);
}
catch (Exception e)
{

statusBar.setText ("Error opening " + fileName);

}
void listNodes () {

jListl.setListData(graph.getNodelist()):

protected class GreedyCurveDraw extends JPanel
{
protected void paintComponent (Graphics g)
{
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint (RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

int w = getWidth{);

int h = getHeight{():

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

this.setBackground(Color.white);

//get %, y dimension labels

Image image x = Toolkit.getDefaultToolkit().getImage ("x.gif");
int width x = image_x.getWidth(null);

int height x = image_x.getHeight (null);

Image image y = Toolkit.getDefaultToolkit().getImage("y.gif");
int height_y = image_y.getHeight (null);

g2.drawImage (image x, (w - width_x)/2, h - height x, this);

g2.drawImage(image_y, 0, (h - height_y)/2, this):

float width = w;
float height = h;
float draw_width = width/10*8;

float draw_height = height/10*8;

g2.drawString ("100%",width/10, height/10);

g2.drawString ("80%",width/10, height/10 + draw_height/5);
g2.drawString ("60%",width/10, height/10 + draw_height/5%*2);
g2.drawString ("40%",width/10, height/10 + draw_height/5*3);

g2.drawString ("20%",width/10, height/10 + draw_height/5%*4);

Image h3 = Toolkit.getDefaultToolkit().getImage("h3.gif");

for (int index = from T; index < to_T + 1; index++){
g2.drawString(Integer.tostring(index),width/lO-+draw_width/(to_T-—from_T)*(index
- from T), height/10 + draw_height + 12);
g2.drawImage (h3, (int) (width/10 + draw_width/(to_T - from T)*(index - from T)),
(int) (height/10 + draw_height - 3), this);
}

double step_length = ((double)to T - (double)from T) /sample number;
graph.write_power_plot_file(step length, sample number + 1);
graph.drawCurve (g2, w, h);

// g2.setPaint(Color.red);

// g2.draw(new Line2D.Double(0, 0, w, h));
// g2.drawOval(0, 0, w, h);

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void drawCurve ()} {
JPanel panel = new JPanel (new BorderLayout());

panel.add (new GreedyCurveDraw(), null});

JDialog f = new JDialog():
f.setTitle ("Power-Delay Curve");
//f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane () .add (new JScrollPane(panel));
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
f.setSize (400, 400);
Dimension framesize = f.getSize():
if (framesize.height > screenSize.height/2){

framesize.height = screenSize.height/2;

framesize.width = framesize.height;

if (framesize.width > screenSize.width/2){
framesize.width = screenSize.width/2;
framesize.height = framesize.width;
}
f.setSize(framesize);
f.setLocation((screenSize.width - framesize.width) / 2,
(screenSize.height - framesize.height) / 2);

f.setVisible(true);

void exportCurve() {
try(
int w= 400;

int h = 400;

BufferedImage bufferedImage = new BufferedImage(w, h, BufferedImage.TYPE INT RGB);

// Create a graphics contents on the buffered image

Graphics2D g2 = bufferedImage.createGraphics();

g2.setRenderingHint (RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS ON);

g2.setColor (Color.white);

g2.fillRect (0, O, w, h):

g2.setColor (Color.black);

//Image image_x = Toolkit.getDefaultToolkit().getImage ("x.gif");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Image image X = new javax.swing.ImagelIcon("x.gif").getImage();
int width x = image_x.getWidth(null);

int height_x = image_x.getHeight (null);

//Image image_y = Toolkit.getDefaultToolkit().getImage("y.gif");
Image image_y = new javax.swing.ImageIcon("y.gif").getImage();
int height_y = image_y.getHeight (null);

g2.drawImage (image x, (w - width x)/2, h - height x, null);

g2.drawImage (image_y, 0, (h - height_y)/2, null);

float width = w;
float height = h;
float draw_width = width/10*8;

float draw_height = height/10*8;

g2.drawString ("100%",width/10, height/10);

g2.drawString ("80%",width/10, height/10 + draw_height/5);
g2.drawString ("60%",width/10, height/10 + draw_height/5*2);
g2.drawString ("40%",width/10, height/10 + draw height/5*3);

g2.drawstring("20%",width/10, height/10 + draw_height/5*4);

//Image h3 = Toolkit.getDefaultToolkit ().getImage("h3.gif");

Image h3 = new javax.swing.ImageIcon("h3.gif").getImage();

for (int index = from T; index < to T + 1; index++){
g2.drawString(Integer.toString(index),width/10 + draw_width/(to_T - from_T)*(index -
from T), height/10 + draw_height + 12);
g2.drawImage (h3, (int) (width/10 + draw_width/(to_T - from T)*(index - from T)),
(int) (height/10 + draw_height - 3), null):
}

double step_length = ((double)to_T ~ (double)from T) /sample_number;
graph.write power plot_file(step_length, sample number + 1);
graph.drawCurve (g2, w, h):

FileDialog fd = new FileDialog(this, "Save as JPEG", FileDialog.SAVE);
fd.setFile("pd curve.jpg");

fd.show () ;

String name = fd.getFile();

ImageIO.write(bufferedImage, "jpg", new File(fd.getDirectory() + name));

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}catch (Exception e) {

}

void initCurve() {
int to_temp = to T;
String input_holder;// A local variable to hold the name.
input_holder = JOptionPane.showInputDialog(null, "Timing Constraints (T/T0)");
tryf
if (input_holder != null)
to_temp = Integer.parselnt(input_holder);
if (to_temp > 1)
to T = to_temp;
} catch (Exception e) {

}

void jButton3_actionPerformed (ActionEvent e) {

fileSave ()

void fileSave() {
// Use the OPEN version of the dialog, test return for Approve/Cancel
try{
FileDialog fd = new FileDialog(this, "Save as JPEG", FileDialog.SAVE);
fd.setFile("circuit.ipg"):
fd.show() ;

String name = fd.getFile();

int width = (int)graph.draw_size(zoom, dimension coefficient).getWidth();
int height = (int)graph.draw_size(zoom, dimension_coefficient).getHeight();
BufferedImage bufferedImage = new BufferedImage (width,

BufferedImage.TYPE INT RGB);
// Create a graphics contents on the buffered image
Graphics2D g2 = bufferedImage.createGraphics():;
g2.setColor (Color.white);
g2.fillRect (0, 0, width, height);
graph.draw_graph(false, //boolean selected part_only,
g2, //Graphics2D g2,
zoom,

radius,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

height,

75

dimension coefficient

’

Color.black, //Color node_color,

Color.lightGray //Color line_color

)

graph.draw_graph(true, //bocolean selected part_only,

g2, //Graphics2D g2,
zoom,
radius,

dimension_coefficient

’

Color.blue, //Color node_color,

Color.red //Color line color

)i

ImageIO.write (bufferedImage, "jpg", new File(fd.getDirectory() + name));

}catch (Exception e) {

}

void jButtoné_actionPerformed(ActionEvent e)

{

double width screen = jPanel5.getBounds().getWidth();

double height screen = jPanel5.getBounds().getHeight ()’

zoom = 1;

double width_draw = graph.draw size(zoom, dimension coefficient).getWidth():

double height_draw = graph.draw_size(zoom, dimension coefficient).getHeight():;

while ((width draw > width_screen) || (height_draw > height_screen)) {

zoom = zoom / 2;

width_draw = graph.draw_size(zoom, dimension coefficient).getWidth();

height draw = graph.draw_size(zoom, dimension coefficient).getHeight();

}

redraw {zoom) ;

//GatesiGraph

package com.Greedy;

import java.io.*;

import java.util.*;

import java.lang.reflect.Array;
import java.awt.Dimension;
import java.awt.Graphics2D;

import java.awt.Color;

Reproduced with permission of the copyright owner. Further reproduction

prohibited without permission.

76

import java.awt.geom.*;
public class Gates2Graph({
private List graph_node_list;

private String title;

private double initial power = 0;

private double TO 0;
private double PS = 0;
private double power PS = 0;

private List candidate_node_list;

private int output pos = 5;
private List description list;
private List primary input list;
private List primary output_list;
private List gate_switching list;

private Dimension graph_size;
private double[] plot_array;

public static void main(String[] args) {
Gates2Graph g = new Gates2Graph():
g.run_once_releaseable power(3.00);
//g.run_once_releaseable delay(2.99);
//g.write_power_plot file(0.1, 31);

//g.write_delay plot_file (0.5, 7);

public void write_power_plot_file(double percentage_step, int point number) {
try {
BufferedWriter out = new BufferedWriter (new FileWriter ("Plots™)):
plot_array = new double[point number];
for(int index = 0; index < point_number; index++){
clear();

initial graph(percentage step * index);

releaseable power_greedy algorithm();
plot_arrayl[index] = (1 - get power PS() / initial power):

out.write(index + " " + (1 - get_power_PS() / initial power) + "\n"):

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out.close():

}catch (IOException e) {

public void write_delay plot_ file(double percentage_step, int point_number) {
try {

BufferedWriter out = new BufferedWriter (new FileWriter ("Plots")):

for(int index = 0; index < point number; index++){
clear();

initial graph(percentage step * index);

releaseable greedy algorithm();

out.write((1 - get_power_PS() / initial power) + " ")
}
//****
clear();

initial_graph(3):

releaseable power_greedy algorithm():;

out.write("\n" + (1 - get_power PS() / initial power) + "\n");
//****

out.close():;

}catch (IOException e) {

public void clear () {
initial power = 0;
PS = 0;

power_PS = 0;

public void run_once_delay(double extra slack percentage) {
initial graph(extra_slack percentage):
show_info();
greedy_algorithm();
System.out.println ("\n******xkkkkhkkkkkkkk*") ;
System.out.println("PS = " + get PS());

System.out.println ("\n********************") H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

show_info();

System.out.println ("\NX**X** Xk kXXX AXK XX K XXM »

System.out.println("PS = " + get PS(});

for (int index = 0; index < candidate node list.size(); index++) {
Node node = (Node)candidate node list.get{index);
System.out.println(node.get_nodename(});

}

System‘Out_println ("\n********************“) H

public void run_once_power (double extra slack percentage) {
initial graph{extra_slack percentage); //extra slack
show_power_procedure();

show_power_result () ;

public void run_once_releaseable_delay(double extra_slack_percentage) {

initial graph(extra slack percentage):

show_info();

releaseable_greedy algorithm();

SYstem'out.println ("\n********************") ;

System.out.println("PS = " + get_power PS()):

System'out.println ("\n********************") ;

show_info();

System.out.println("\n********************");

System.out.println("PS = " + get_power PS()):

for (int index = 0; index < candidate_node_list.size(); index++){
Node node = (Node)candidate node list.get (index);
System.out.println(node.get_nodename());

}

System_out.println(“\n********************") H

public void run_once_releaseable power (double extra slack percentage) {
initial graph(extra_slack percentage);
show_info();
releaseable_power_greedy algorithm();
System.out_println("\n********************") ;
System.out.println("PS = " + get power PS()):;
System'out.println("\n********************") H

show_info();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System_out.println("\n********************");

System.out.println("PS = " + get_power PS()):

for (int index = 0; index < candidate node list.size{(); index++){
Node node = (Node)candidate node list.get (index):;
System.out.println(node.get_nodename()):

}

System.Out'println("\n********************") H

public void show_power_ procedure () {
show_info():
power_greedy_algorithm();
sYstem.out_println("\n********************");
System.out.println("PS = " + get _power PS()):;
System.out.println("\n********************");

show_info();

public void show_power result () {

SYStem.Out.println(“\n********************");

System.out.println("PS = " + get_power PS());
for (int index = 0; index < candidate_node list.size(); index++) {
Node node = (Node)candidate node_list.get (index);

System.out.println(node.get nodename());
}

System_out.println("\n********************");

public double get PS() {

return PS;

public double get_power PS() {

return power_PS;

public double[] get_plot_array () {

return plot_array;

public void new_graph node list () {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

graph_node list = new ArrayList();

public void testl(){
for (int index = 0; index < description_list.size(); index++) {
System.out.print (description list.get(index) + " ");
}

System.out.println();

for (int index = 0; index < primary_ input_list.size(); index++) {
System.out.print (primary_input list.get(index) + " ");
}

System.out.println();

for (int index = 0; index < primary output_list.size(); index++) {
System.out.print (primary output_list.get (index) + " ");
}

System.out.println();

for (int index = 0; index < gate switching list.size(); index++) {
System.out.print (gate_switching list.get(index) + " ");
}

System.out.println();

public void read_Gates_file() {
Node node = new Node():
try {

BufferedReader in = new BufferedReader(new FileReader ("Gates")):

int status = 0;//0: dull 1: work;
String str;

String [] gate_info;

while ((str = in.readLine()) != null) {
if(status == 0){
if(str.startsWith("name")) {
description_list = new ArrayList():;
gate_info = str.split(" ");
for (int index = 0; index < Array.getLength(gate info); index++) {

description list.add(gate_info[index]):;

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (gate_info[index].equals ("output"))
output_pos = index;
}
status = 1;
}
else(

continue;

}
else if(status == 1){
if (str.startsWith("primary inputs:")){
primary_input_list = new ArrayList():
gate_info = str.substring(18).split(" ");
for (int index = 0; index < Array.getLength(gate info); index++) {
primary_input_list.add(gate_info[index]):

}
str = in.readLine();
primary output_list = new ArrayList():
gate_info = str.substring(18).split(" ");
for (int index = 0; index < Array.getLength(gate_info); index++) {

primary_output list.add(gate info{index]);

break:;

}
elsef

gate_info = str.split(" ");
node.set_gate_info(gate info);
node.set_nodename (get_gate_name (gate_info));
node.set_category(get gate category(gate_info));
node.set_area(get_gate_area(gate_info));
node.set weight (get_gate weight (gate info));
node.set_delay coefficient(get_gate delay coefficient(gate info));
node.set_power_coefficient (get_gate power coefficient(gate_info));
graph_node_list.add(node):

node = new Node():;

//System.out.println(gate name + " " + gate_category + " " + gate_area);

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

in.close{);

} catch (IOException e) {

public void read_Switchings file(){
gate_switching list = new ArrayList();
int jumped line = 0:
String str;
try {
BufferedReader in = new BufferedReader (new FileReader ("Switchings™)):
while ((str = in.readLine()) != null) {
if (jumped line++ < primary_ input list.size())
continue;
gate_switching list.add(str);
}
in.close();

} catch (IOException e) {

public String get_gate_name(String [] gate info) {

return gate_info[0];

public String get_gate category(String [] gate info){

return gate_info([0].substring(0, gate_info[0].lastIndexOf (" "));

public double get_gate_area(String {[] gate info) {
double get gate area = 0;
for(int index = 0; index < description list.size(); index++) {
if (description list.get {index).equals("area")) {
get_gate area = Double.parseDouble(gate_info[index]);

break;

}

return get gate area;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

public double get_gate_weight (String [] gate info) {
double get gate weight = 1;

for(int index = 0; index < description list.size(); index++){

if (description list.get (index).equals("weight")) {
get_gate_weight = Double.parseDouble(gate_info[index]):
break;

}

return get gate weight;

public double get_gate_delay coefficient(String [] gate_info) {
double get gate delay_coefficient = 1;
for(int index = 0; index < description_list.size(); index++) {
if (description list.get (index).equals("delay coefficient")) {

get_gate_delay coefficient = Double.parseDouble(gate_info[index]);

break;

}

return get_gate_delay coefficient;

public double get_gate power coefficient(String [] gate info){

double get_gate power_coefficient = 1;
for(int index = 0; index < description list.size(); index++) {
if (description_list.get (index).equals ("power_coefficient™)) {
get_gate power coefficient =

Double.parseDouble (gate_info[index]);
break;
}

return get_gate_power coefficient;

public boolean is_primary_input (String input) {
boolean is_primary_ input = false;
for(int index = 0; index < primary_input list.size(); index ++) {
if (input.equals(primary input_list.get (index)))

is_primary_input = true;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

84

return is_primary input;

public boolean is_primary output (String output) {
boolean is_primary output = false;
for(int index = 0; index < primary output_list.size(); index ++){
if (output.equals(primary output_list.get (index)))
is_primary output = true;
}

return is_primary_output;

public void link graph_node_list () {
String [] gate_info_to;
String [] gate_info from;
Node node_from = new Node();
Node node_to = new Node();
for(int index_out = 0; index_out < graph node_list.size(); index_out++) {
node_to = (Node)graph node_list.get (index_out):
gate_info_to = node_to.get_gate_info();
for (int index in = 0; index in < graph _node_list.size(); index_in++) {
node_from = (Node)graph node list.get(index in);
gate_info from = node from.get_gate_info();
for (int index = output_pos + 1; index < Array.getLength(gate_info_to);
index++) {
if (gate_info_to[index]}.equals(gate_info from[output posl)){
if (node_from.get_fanout_node_list() == null)
node_from.new_ fanout node_ list();
node_from.get_fanout node_list().add(node_to):
if (node_to.get_fanin node list() == null)
node_to.new_fanin node_list():

node_to.get_fanin node list().add(node_from);

}

public void calculate nodes_position{() {
Node node = new Node();

int column max = 0;

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (int index = 0; index < graph_node_list.size(); index++) {

node = (Node)graph node_list.get (index);
node.calculate column{();
if (column max < node.get_column())

column max = node.get_column();

for (int column = 1; column <= column_max; column++) {
int row = 1;

for (int index = 0; index < graph node list.size(); index++) {

node = (Node)graph node list.get (index);
if (node.get_column() == column) {

node.set _row(row++);

public void calculate_nodes_delay() {
Node node = new Node():

for (int index = 0; index < graph_node_list.size(); index++) {
node = (Node)graph node_list.get (index);

node.calculate delay():;

public void calculate nodes_arrival_time () {
Node node = new Node();
for (int index = 0; index < graph node list.size(); index++) {
node = (Node)graph node list.get (index):;

node.calculate_arrival_time():;

public void calculate_nodes_required time(double extra slack percentage) {
Node node = new Node();
double max arrival time = 0;
for (int index = 0; index < graph_node_list.size(); index++) {
node = (Node)graph_node list.get (index);
if (max_arrival time < node.get_arrival_time())

max_arrival time = node.get_arrival time():

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

for (int index =

0; index < graph node list.size(); index++){
node =

(Node) graph _node_list.get (index);
node.calculate required time(max_arrival_time * (1 + extra slack percentage)):
}

set_TO(max_arrival_time);

public void calculate_nodes_slack() {

Node node = new Node();

for (int index = 0; index < graph node_list.size(); index++) {
node =

(Node)graph node list.get (index);
node.calculate_slack();

public void calculate nodes_power () {
Node node

new Node();

for (int index =

0; index < graph_node_list.size(); index++) {
node =

(Node) graph_node_list.get (index):
node.calculate _power();

public void calculate_initial power () {

Node node = new Node():;

for

(int index = 0; index < graph node_list.size(); index++) {

node = (Node)graph_node list.get (index);

initial_ power += node.calculate_power ();

public void calculate_nodes power_slack() {
Node node =

new Node();

for (int index =

0; index < graph node list.size(); index++) {
node =

(Node)graph node_list.get (index);

node.calculate power_slack();

public void calculate nodes_releaseable_slack() {

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Node node = new Node();
for (int index = 0; index < graph node list.size(); index++) {
node = (Node)graph node_ list.get (index);

node.calculate releaseable slack():

public void calculate nodes releaseable power_slack() {
Node node = new Node ()
for (int index = 0; index < graph_node_list.size(); index++){
node = (Node)graph node_list.get (index);

node.calculate releaseable power_slack();

public void initial_graph(double extra_ slack) {
new_graph_node_list();
read_Gates_file();
read Switchings_file();
link_graph_node list():;
calculate nodes position();
calculate graph size();
calculate nodes_delay();
calculate nodes_arrival time();
calculate nodes_required time(extra_slack);
calculate_nodes_slack(};
add_switching_info();
calculate_initial power():
calculate nodes power ();
calculate_nodes_power_ slack();
calculate_nodes_releaseable_slack();

calculate nodes releaseable power slack();

public void add_switching_info() {
Node node = new Node();
int switching_index = 0;
String str;
for(int index = 0; index < graph node list.size(); index++) {
node = (Node)graph node list.get (index);

if((node.get_fanin node_list() == null) && (node.get fanout_node_list() ==

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

null)) {
}
else{
str = (String)gate_switching list.get (switching_ index);
node.set switching(Double.parseDouble(str));

switching index++;

public Node node_max_local_PS() {
double local PS = 0;
Node node_max_local_ PS = new Node();
Node node = new Node ()’
for (int index = 0; index < graph node list.size(); index++) {
node = (Node)graph node list.get (index):
if (node.get_in graph()) {
if (node.local_PS() >= local_ PS) {
local PS = node.local PS();

node_max_local_PS = node;

}

return node_max local_PS;

public Node node max local_ power PS() {
double local power PS = 0;
Node node_max_ local_ power_ PS = new Node():
Node node = new Node();
for(int index = 0; index < graph node_list.size(); index++){
node = (Node)graph node_list.get (index);
if (node.get_in_graph()) {
if (node.local_power PS() >= local_power_ PS) {
local power PS = node.local power PS():

node_max local_power_ PS = node;

}

return node_max_local power PS;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

public Node node max releaseable_local PS(){
double releaseable_local_PS = 0;
Node node_max_releaseable_local PS = new Node():
Node node = new Node():
for(int index = 0; index < graph _node_list.size(); index++) {
node = (Node)graph node list.get (index):
if (node.get_in graph()) {
if (node.releaseable local PS() >= releaseable local_ PS) {
releaseable_local PS = node.releaseable_local PS({():

node_max_releaseable_local_PS = node;

}

return node_max_releaseable_local_ PS:;

public Node node_max releaseable local power PS() {
double releaseable local_power PS = 0;
Node node_max_releaseable local power PS = new Node():;
Node node = new Node():
for(int index = 0; index < graph node list.size(); index++) {
node = (Node)graph node_list.get (index);
if (node.get_in_graph()){
if (node.releaseable local power_ PS() >= releaseable_local power PS) {
releaseable local power PS = node.releaseable_local power PS();

node_max_releaseable_local power_PS = node;

}

return node_max_releaseable_ local power_PS;

public boolean graph empty () {
boolean is_empty = true;
Node node = new Node();
for{int index = 0; index < graph node_list.size(); index++) {
node = (Node)graph node_list.get (index);
if (node.get_in _graph() == true)

is_empty = false;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return is_empty;

public void greedy_algorithm() {
Node node = new Node();
candidate_node_list = new ArraylList();
while (!graph_empty()) {
node = node_max local PS():
PS += node.local PS();
switch(node.get_max_local PS()) {
case 1: candidate node list.add(node);
break;
case 2: candidate node_list.addAll(node.get fanin node_list());
break;
case 3: candidate_node list.addAll(node.get fanout node list()):
default: break;
}
node.arrange_slack();

node.delete_candidate_sub_graph() :

public void power_greedy algorithm() {

Node node = new Node():

candidate_node_list = new ArrayList():

while (tgraph_empty()) {
node = node max_local power PS();
power PS += node.local power_PS():
candidate node_list.add(node):
node.arrange_power_slack();

node.delete_candidate_sub_graph();

public void releaseable_greedy algorithm() {
Node node = new Node();
candidate node_list = new ArraylList():
while (true) {
node = node max_ releaseable_local PS():
if (node.releaseable_local PS() == 0)

break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PS += node.releaseable_local PS();

switch(node.get_max releaseable local PS()) {
case 1l: power PS += node.get_releaseable_power_slack();
break;
case 2: power_PS
node.releaseable delay oriented power_slack_sum fanin();
break;
case 3: power_PS
node.releaseable_delay oriented_power_slack_sum_fanout();
break;

default: break;

candidate node list.add(node) ;
node.arrange_releaseable_slack();

node.update_candidate_sub_graph():;

public void releaseable power_ greedy algorithm() {

Node node = new Node();

candidate node list = new Arraylist();

while(true) {
node = node_max releaseable local power PS():;
if (node.releaseable_local_power_PS() == 0)

break;

power_PS += node.releaseable_local power_ PS();
candidate node list.add(node):
node.arrange_releaseable power_ slack();

node.update_power_ candidate_sub_graph();

public void show_info(){
Node node = new Node ()
for(int index = 0; index < graph node list.size(); index++) {
node = (Node)graph node list.get (index);
List fanin node_list = node.get_ fanin node list();

List fanout_node_list = node.get_fanout_node_list();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

node.show_myself();

//System.out.println(node.get_nodename () ;
System.out.println("switching: " + node.get switching()):
System.out.println("area: " + node.get_area()):

System.out.println("delay: " + node.get _delay()):

System.out.println("power: " + node.get_power());
System.out.println("arrival time: " + node.get_arrival time()):
System.out.println("required time: "™ + node.get required time());
System.out.println("slack: " + node.get_slack());
System.out.println("power_slack: " + node.get_power_slack());
System.out.println("lib_level: " + node.get_lib level());
System.out.println("releaseable slack: " + node.get_releaseable slack()):

System.out.println("releaseable power_slack: "
node.get_releaseable power slack());
System.out.println("in_graph: " + node.get_in graph());

System.out.println("delta delay: " + node.get delta delay()):;

System.out.println("delta power: " + node.get_delta_power());
System.out.println("column: " + node.get column()):
System.out.println("row: " + node.get row());

System.out.println();

public Dimension calculate graph size() {
int x = 0;
int y = 0;

Node node = new Node():;

for(int index = 0; index < graph_node list.size(); index++) {
node = (Node)graph _node_list.get (index);
if (x < node.get column())
X = node.get_column();
if (y < node.get_row())

y = node.get_row();

graph size = new Dimension(x, y):;

return graph_size;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public Dimension draw_size(double zoom, double dimension_coefficient) {
//around +2 space;
Dimension draw_size = new Dimension();
draw_size.setSize((graph size.getWidth() + 3) * zoom * dimension_coefficient,
(graph_size.getHeight () + 1) * zoom * dimension_coefficient);

return draw_size;

public void draw_graph(boolean selected_part_only, Graphics2D g2, double zoom, double
radius, double dimension_coefficient, Color node_color, Color line_color){
List draw_node_list = new ArraylList():;

Node node = new Node();

if (selected_part only){
for (int index = 0; index < graph node_list.size(); index++) {
node = (Node)graph node_ list.get (index);
if (node.get_selected())

draw_node_list.add(node);

}
else(

draw_node_list = graph_node_list;

for (int index = 0; index < draw_node list.size(); index++) {
node = (Node)draw node list.get (index);
node.draw_fanin_lines (g2, zoom, radius, dimension_coefficient, line color);
node.draw(g2, zoom, radius, dimension coefficient, node_color):
if(selected part_only)
node.draw_fanout_lines (g2, zoom, radius, dimension ceoefficient,
line_color);

}

public String[] getNodelist(){
Node node;
String[] nodeArray = new String{graph _node list.size()];
for (int index = 0; index < graph_node_list.size(); index++){
node = (Node)graph_node_list.get (index);

nodeArray[index] = node.get_nodename () ;

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

return nodeArray;

public void setSelectedNodes (int[] selected) {
Node node;
for(int index = 0; index < graph_node_list.size(); index++){
node = (Node)graph node list.get (index):;
node.set_selected(false);
for (int index_inner = 0; index_inner < Array.getLength(selected); index_inner++) {
if (index == selected{index inner]) {
node.set_selected(true);

break;

public int[] findSelectedNodes (int x, int y, double zoom, double dimension coefficient,
double radius) {
Node node;
intf] select = new int[1l]:;
select[0] = -1;
for (int index = 0; index < graph_node_list.size(); index++) {
node = (Node)graph node list.get (index):;
if (node.clickInside(x, y, zoom, dimension_coefficient, radius)) {
select[0] = index;

break;

}

return select;

public void drawCurve (Graphics2D g2, int w, int h){
double width = w;
double height = h;
double border_ width = width/10;
double border_ height = height/10;
double draw_height step = height/10*8/5;
//draw dimension

g2.setPaint (Color.black);

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g2.draw (new Line2D.Double (border width, border height, border width,
border _height*9));

g2.draw (new Line2D.Double (border_width, border_height*9, border width*9,
border_height*9));

g2.drav (new Line2D.Double (border_width, border_height, border width*9,
border height)):

g2.draw(new Line2D.Double (border_width*9, border height, border width*9,
border height*9));

g2.setPaint (Color.lightGray);

g2.draw(new Line2D.Double (border_width, border height + draw_height_ step,
border_width*9, border_height + draw_height_step)):

g2.draw (new Line2D.Double (border_ width, border_height + draw_height step*2,
border width*9, border_height + draw_height_step*2));

g2.draw(new Line2D.Double (border_width, border height + draw_height step*3,
border width*9, border_height + draw_height_step*3)):;

g2.draw (new Line2D.Double (border_width, border height + draw_height_step*4,

border_width*9, border_height + draw_height_step*4));

//draw curve
g2.setPaint (Color.blue);
double x1 = border_width;
double yl = height- (plot_array[0]* border height*8 + border height);
double x step = border width*8/(Array.getLength(plot_array)-1):
for (int index=0; index < Array.getLength(plot_array)-1; index ++) {
double x2= x_step*(index+l) + border_width;
double y2 = height - (plot_arraylindex+1l] * border height*8 + border height):
g2.draw(new Line2D.Double{x1l, yl, x2, y2)):
xl = x2;

yl = y2;

public String setTextArea(int[] select){
String textarea text = new String("");
Node node;
for(int index = 0; index < graph node list.size(); index++) {
node = (Node)graph _node_list.get (index);
if (node.get_selected() == true)

textarea text += node.show _myself tostring():;

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (textarea_text.length() < 2)
textarea_text += show_graph_info();

return textarea_text;

public String show graph info () {

String graph info = new String("");
if (get_title() !'= null)
graph _info += "Circuit Name: " + get title() + "\n";
graph_info += "Number of Gates: " + graph node list.size() + "\n";
graph _info += "T0: " + (float)get TO() + " time units \n";
//graph_info += "TO: " + String.valueCf (get _TO()) .substring (0,4 +
String.valueOf (get_TO()).indexOf (new String("."))) + " time units";

//graph_info += " ";
graph_info += "Power dissipation: " + (float) (get_initial power()-get_power PS()) + "

power units";

//graph_info += "Power dissipation: " +
String.valueOf (get_initial power ()-get power PS()).substring(0,4 +
String.valueOf (get_initial power ()-get power PS()).indexOf (new String("."))) + " power
units";

return graph_info:;

public void set_title(String title) {

this.title = title;

try {
BufferedWriter out = new BufferedWriter (new FileWriter("System"));
out.write("Circuit Name: " + title + "\n"):;
out.close():
}catch (IOException e) {
}

public String get_title(){
if (this.title == null) {
try {
String str;
BufferedReader in = new BufferedReader (new FileReader ("System"));
while((str = in.readLine()) != null) {
if(str.startsWith("Circuit Name: ")) {

this.title = str.substring(14);

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in.close();

}catch (IOException e) {

}

}

return this.title;

public void set_TO({(double TO){

this.T0 = TO;

public double get TO(){

return this.TO;

public double get initial power () {

return initial power;

//out2gates.java
package com.Greedy;
import java.io.*;
import java.util.*;

import java.lang.reflect.Array;

class Out2Gates({
public static void main(String[] args){
String out_file = "bl.out";
Out2Gates o = new Out2Gates():;
o.read_out_write_switching(out_file);
o.read out write gate(out file);
//o.testl();

//o.test2();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

public void read_out_write_gate(String out_file) {
try {

BufferedReader in = new BufferedReader (new FileReader (out_file)):
BufferedWriter out = new BufferedWriter (new FileWriter ("Gates"));

int status = 0;//0: dull 1: work;
String str;
String [] gate_info;
String gate_category:;
String gate_name;
double gate weight = 1;
//double gate switching = 1;

double gate_area;

double gate_delay coefficient = 1;
double gate_power_ coefficient = 1;
while ((str = in.readLine()) != null) {

if(status == 0){

if(str.equals ("# of failing outputs: 0")){

out.write("name" + " " + "area" + " "
+ "weight" + " " /*+ “switching" + " " */+ "delay coefficient”
+ " power_coefficient™ + " " + "output inputs”
+ "\n");

status = 1;
}
else{

continue;

}
else if(status == 1){
if(str.startsWith("sis> "1 {
str = str.substring(9);
}
if (str.startsWith("sis> primary inputs:"))(
out.write(str.substring(5) + "\n");
str = in.readLine():
out.write(str):
break:;
}
else{
gate_info = str.trim().split(" ");
gate_category = lib match(gate info):;

gate name = gate category + "_" + gate info[0]:;

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gate_area = gate_area(gate_category);
//System.out.println(gate_name + " " + gate_area + " " + gate_weight +
" " + trim gate_info(gate_info, gate_category)):;
out.write(gate name + " " + gate_area + " " /*+ gate_switching + "
"*/ + gate_weight + " " + gate_delay coefficient + " " + gate power_coefficient + " " +
trim gate_info(gate_info, gate_category) + "\n");

}

}
in.close();
out.close();

} catch (IOException e) {

public void read out_write switching(String out_file){
try {
int status = 0; //0: dull; 1: work;
String str;
String [] str_info;

BufferedReader in = new BufferedReader (new FileReader (out file});

BufferedWriter out = new BufferedWriter (new FileWriter ("Switchings")):;
while ((str = in.readLine()) !'= null) {
if(status == 0){

if(str.startsWith("sis> Node")) {
status = 1;
str = str.substring(str.indexOf ("Switch Prob. = ") + 15,
str.indexOf ("Switch Prob. = ") + 19);

out.write(str + "\n"):

}
else if (status == 1){

if (!str.startsWith("Node"))

break;
str = str.substring(str.indexOf ("Switch Prob. = "y + 15,
str.indexOf ("Switch Prob. = ") + 19);

out.write(str + "\n"):;

}
in.close(};

out.close();

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

} catch (IOException e}

{

public double gate_area(String gate_category) {

double area = 0;

if (gate_category.equals ("inv_comb"))

area = 16;

else if (gate_category.
area = 16;

else if (gate_category.
area = 24;

else if (gate_category.
area = 32;

else if (gate_category.
area = 40;

else if (gate_category.
area = 24;

else if (gate_category.
area = 32;

else if (gate category.
area = 40;

else if (gate_category.
area = 32;

else if (gate category.
area = 40;

else if (gate_category.
area = 48;

else if (gate_category.
area = 32;

else if (gate_category.
area = 40;

else if (gate_category.
area = 48;

else if (gate_category.
area = 40;

else if (gate_category.
area = 32;

else if (gate_category.
area = 40;

else if (gate_category.

equals ("buffer_comb"))

equals ("nor2_comb"))

equals ("nor3_comb"))

equals ("nor4_comb™))

equals ("nand2_comb"})

equals ("nand3_comb"))

equals("nand4_comb"))

equals ("and2_comb"))

equals ("and3_comb"))

equals ("and4_comb"))

equals ("or2_comb"})

equals ("or3_comb"))

equals ("or4_comb"})

equals ("ao0i22 comb"))

equals("aoil2_ comb"))

equals ("oai22 comb"))

equals("oail2_comb"))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

area = 32;

else if (gate_category.equals("ao22_comb"))
area = 56;

else if (gate_category.equals("ao222 comb"))
area = 72;

else if (gate category.equals("ao222 2 comb"))
area = 72;

else if (gate_category.equals("ao222_3 comb"))
area = 72;

else if (gate_category.equals("a02222_comb"))
area = 96;

else if (gate_category.equals("ao33_comb"))
area = 64;

else if (gate category.equals("ao33_2 comb"))
area = 64;

else if (gate_category.equals("ao33_3 comb"))
area = 64;

else if (gate_category.equals("xor_comb"))
area = 40;

else if (gate_category.equals("xorbar_ comb"))
area = 48;

else if (gate_category.equals("invand_comb"))
area = 32;

else if (gate_category.equals("invor_comb"))
area = 32;

else if (gate_category.equals ("mux2 comb"))
area = 48;

else if (gate_category.equals("constl_comb"))
area = 8;

else if (gate_category.equals("const0O comb™))
area = 8;

return area;

public String trim node(String node, int head, int tail){
String trim node = node;
switch(head) {
case 1: trim node = trim node.substring(1);
break;
case 2: trim node = trim node.substring(2);

break;

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 3: trim node = trim node.substring(3);
break;
default: break;
}
switch(tail) {
case 1: trim node = trim node.substring(0,trim node.length()-1);
break;
case 2: trim node = trim node.substring(0,trim node.length()-2);
break;
case 3: trim node = trim node.substring(0,trim node.length()-3);
break;
default: break;
}

return trim node;

public String trim gate_info(String [] gate_info, String gate_category) {
String trim gate_info = gate_info{0];
if (gate_category.equals("inv_comb"))
trim _gate_info = trim gate_info.concat (" " + trim node(gate_info([2], 0, 1));
else if (gate_category.equals ("buffer comb"))
trim_gate_info = trim gate info.concat(" " + gate_info[2]);
else if (gate_category.equals("nor2_comb"))
trim gate_info = trim gate info.concat(" " + trim node(gate_info([2]}, 0, 1) + "
" + trim node(gate_info(3], 0, 1));
else if (gate_category.equals("nor3 comb"))
trim gate _info = trim gate info.concat (" " + trim node(gate_ info{2], 0, 1) +
" + trim node(gate_info(3]}, 0, 1) + " " + trim node(gate_info[4], 0, 1))
else if (gate_category.equals("nor4 comb"))
trim gate info = trim gate info.concat(" " + trim node(gate_info[2], 0, 1) + "
" + trim node(gate_info[3], 0, 1) + " " + trim node(gate_info[4], 0, 1) + " " +
trim node(gate_info(5], 0, 1))
else if (gate_category.equals("nand2_comb"))
trim gate info = trim gate_info.concat (" " + trim node(gate_info{2], 0, 1) + "
" + trim node(gate_info[4], 0, 1));
else if (gate_category.equals("nand3_comb"))
trim gate_info = trim gate info.concat(" " + trim node(gate_info({2], 0, 1) +
" + trim_node(gate_info[4], 0, 1) + " " + trim node(gate info[6], 0, 1))
else if (gate_category.equals("nand4_ comb"))
trim gate_info = trim gate_info.concat(" " + trim node(gate_info[2]}, 0, 1) +

" + trim node(gate_info{4], 0, 1) + " " + trim node(gate_info[6}, 0, 1) + "™ " +

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trim node(gate_info{8], 0, 1});
else if (gate_category.equals("and2_comb"))
trim gate_info = trim gate_info.concat (" " + gate_info[2] + " " + gate_info[3]);
else if (gate_category.equals("and3_comb"))
trim gate_info = trim gate_info.concat(" " + gate_info[2] + " " + gate_info[3]
+ " " + gate_info[4]);
else if (gate_category.equals("and4_comb"))
trim gate_info = trim gate_info.concat (" " + gate_info[2] + " " + gate_info[3]
+ " " + gate_info[4] + " " + gate_info[5]):
else if (gate category.equals("or2_ comb"))
trim gate info = trim gate_info.concat(" " + gate_info[2] + " " + gate_info(4]);
else if (gate category.equals("or3_comb"))
trim gate info = trim gate info.concat(" " + gate_info[2] + " " + gate_info[4]
+ " " + gate_info([6]);
else if (gate_category.equals("or4_comb"))
trim gate info = trim gate_ info.concat (" " + gate_info[2] + " " + gate_info[4]
+ "™ " + gate_info([6] + " " + gate_info(8]);
else if (gate_category.equals("aoi22_comb"))
trim gate_info = trim_gate_info.concat (" " + trim node(gate_info[2], 1, 1) + "
" + trim node(gate_info(4], 0, 2) + " " + trim node(gate_info[5], 1, 1) + " " +
trim node (gate_info([7], 0, 2));
else if (gate_category.equals("aoil2_comb"))
trim gate_info = trim gate_info.concat(" " + trim node(gate_info[2], 0, 1) + "
" + trim_node(gate_info[3], 1, 1) + " " + trim node(gate_info[51, 0, 2));
else if (gate_category.equals("cai22 comb")})
trim gate info = trim gate_info.concat (" " + trim_node(gate_info[2], 0, 1) + "
" + trim_node(gate_info(3], 0, 1) + " " + <trim node(gate info([5], 0, 1) + " " +
trim node(gate_info[6], 0, 1))
else if (gate_category.equals("oail2_comb"))
trim gate_info = trim gate_info.concat(" " + trim node(gate_info{2], 0, 1) + "
" + trim node(gate_info[3], 0, 1) + " " + trim node(gate_info({5], 0, 1));
else if (gate_category.equals("ao22_comb"))
trim gate_info = trim gate info.concat(" " + gate_info[2] + " " + gate_info[3]
+ " " + gate_info([5] + " " + gate_info[6]);
else if (gate_category.equals("aoc222 comb"))
trim gate_info = trim gate_info.concat (" " + gate_info[2] + " " + gate_info(3]
+ " " + gate_info[5] + " " + gate_info[6] + " " + gate_info[8] + " " + gate_infol[9]1):
else if (gate_category.equals("ac222 2 comb"))
trim gate_info = trim gate_info.concat(" " + gate_info[2] + " " +
trim_node(gate_info[3], 1, 0) + " " + trim node(gate_info[5], 0, 1) + " " + gate_info[7] + "

" + gate_info([8]);

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else if (gate_category.equals("ao0222_3_comb"))
trim gate info = trim gate_info.concat(" " + gate_info(2] + " " +
trim node(gate_info(3], 1, 0) + " " + gate_info[5] + " " + trim node(gate_info[7], 0, 1));

else if (gate_category.equals("a02222_comb"))

trim gate info = trim gate info.concat (" " + gate info[2] + " " + gate_info[3]
+ " " + gate_info(5)] + " " + gate_info[(6] + " " + gate_info[8] + " " + gate_info[9] + " " +
gate_info(1ll] + " " + gate_info[1l2]);

else if (gate_category.equals("ao33 comb"))
trim gate_info = trim gate info.concat (" " + gate_info[2] + " " + gate_info[3]
+ " " + gate_info[4] + " " + gate_info[6] + " " + gate info[7] + " " + gate_info[8]);
else if (gate_category.equals("ao33_2_comb"))
trim gate info = trim gate_info.concat(" " + gate_info[2] + " " +
trim node(gate_info([3], 1, 0) + " " + gate info[4] + " " + gate_info[6] + " " +
trim node(gate_info([7], 0, 1))
else if (gate_category.equals("ao33_3_comb"))
trim gate_info = trim gate info.concat (" " + gate_info[2] + " " + gate_info[3]
+ " " + trim node(gate_ info[4], 1, 0) + " " + trim node(gate_info[6], 0, 1));
//else if (gate category.equals("xor_comb"))
//
//else if (gate_category.equals ("xorbar_comb"))
//
else if (gate_category.equals("invand comb"))
trim gate_info = trim gate info.concat(" " + trim node(gate_ info[2], 0 ,1) + "
" + gate_info[3]):
else if (gate_category.equals("invor_comb"))
trim gate_info = trim gate info.concat(" " + trim node(gate info([2}, 0 ,1) + "
" + gate_info([4]);

return trim gate_info;

public String lib match(String {] gate_info) {
String gate category = "--unknown--";
int gate_info_length = Array.getlength(gate info);
switch(gate_info_length) {
case 3: if (gate info[2].lastIndexOf("'") == gate_info{2].length() - 1)
gate _category = "inv_comb";
else

gate_category = "buffer_comb";

break;
case 4: if ((gate_info[2].lastIndexOf("'") == gate_info[2].length() - 1)
&& (gate_info[3).lastIndexOf("'") == gate_info[3].length() - 1))

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gate_category = "nor2_comb";

else if ((gate info[2].lastIndexOf("'") == gate_info[2].length() - 1)
&& (gate info[3].lastIndexOf("'") != gate_info[3].length(} - 1))
gate_category = "invand comb";

else if ((gate info[2].lastIndexOf("'") != gate_info[2].length() - 1)
&& (gate info[3].lastIndexOf("'") != gate_info([3].length() - 1))
gate_category = "and2_comb";

break;

case 5: if ((gate_info[2].lastIndexOf("'") == gate info[2].length() - 1)
&& {(gate info{3].lastIndexOf("'") == gate_info[3].length() - 1}
&& (gate_info[4].lastIndexOf("'") == gate_info[4].length() - 1))
gate_category = "nor3_comb";

else if ((gate_info[2].lastIndexOf("'") == gate_info[2].length() - 1)

&& {gate_info{3].equals("+"))
&& (gate_info[4].lastIndexOf("'") == gate_info[4].length() - 1))
gate_category = "nand2_comb";

else if ((gate_info[2].lastIndexOf("'") != gate info[2].length() - 1)

&& (gate info[3].equals("+"))

&& (gate info[4].lastIndexOf("'") != gate info[4].length() - 1))
gate_category = "or2 comb";
else if ((gate_info[2].lastIndexOf("'") == gate_info[2].length() - 1)

&& (gate_info[3].equals("+"))

&& (gate_info[4].lastIndexOf("'") != gate info[4].length() - 1))
gate_category = "invor_comb";

else
gate_category = "and3_comb";

break:

case 6: if ((gate_info[2]}.lastIndexOf("'") == gate_info[2].length() - 1)

&& (gate_info{3].lastIndexOf(”'") == gate_info[3].length() - 1)
&& (gate_info[4].lastIndexOf("'") == gate info{4].length() - 1)
&& (gate_info[5].lastIndexOf("'") == gate_info[5].length() - 1))
gate_category = "nor4 comb";

else if ((gate_info[2].lastIndexOf("'") == gate_info[2].length() - 1)
&& (gate_info[3].lastIndexOf("'") == gate_info([3].length() - 1)

&& (gate_info[4].equals("+"))

&& (gate_info[5].lastIndexOf(")") == gate info[5].length() - 1))
gate_category = "aoil2 comb":

else if ((gate_info[2].lastIndexOf("'") == gate info([2].length() - 1)
&& (gate_info[3].lastIndexOf("'") == gate_info[3].length() - 1)

&& (gate_info[4].equals("+"))

&& (gate_info[5]}.lastIndexOf("'") == gate info[5].length() - 1))

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gate_category = "oail2 comb";

else
gate_category = "and4_ comb”;
break;
case 7: if ((gate_info[2].lastIndexOf("'") == gate_info[2].length() - 1)

&& (gate_info[3].equals ("+"))
&& (gate_info[4).lastIndexOf ("'") == gate info[4].length() - 1)

&& (gate_info[5].equals("+"))

&& (gate_info{6].lastIndexOf("'") == gate info(6].length() - 1))
gate category = "nand3_ comb":

else if ((gate_info[2].lastIndexOf("'") == gate_info([2].length() - 1}
&& (gate_info[3].lastIndexOf("'") == gate_info[3].length() - 1)

&& (gate_infol[4].equals("+"))
&& (gate_info[5].lastIndexOf("'") == gate_info[5].length() - 1)
&& (gate_info[6].lastIndexOf("'") == gate info[6].length() - 1))
gate_category = "oai22 comb";

else if ((gate info[2].lastIndexOf("'") != gate info[2].length() - 1)
&& (gate_info[3].equals("+"))
&& (gate_infol4].lastIndexOf("'") != gate info(4]).length() - 1)

&& (gate_info[5].equals("+"))

&& (gate_info[6].lastIndexOf(”'") != gate_info([6].length() - 1})
gate_category = "or3_comb";

else if ((gate_info[2].lastIndexOf("'") != gate_info[2].length() - 1)
&& {(gate_info[3].lastIndexOf("'") != gate info(3].length() - 1)

&& (gate_info[4].equals("+"))

&& (gate_info[5}.lastIndexOf("'") != gate_info{5].length() - 1)
&& (gate_info[6].lastIndexOf("'") != gate info[6].length() - 1))
gate_category = "ao022_comb";

else if (gate_info[5].equals("+"))
gate category = "ao33_3_comb";
break:;
case 8: if ((gate_info[2].lastIndexOf("'") == gate_info[2].length() - 1)
&& (gate_info[3].equals("+"))
&& (gate_info[4].lastIndexOf(")") == gate_info[4].length() - 1)
&& (gate_info[5].lastIndexOf("'") == gate info[5].length() - 1)
&& (gate_info[6].equals("+"))
&& (gate_info[7].lastIndexOf(")") == gate info{7].length() - 1))
gate_category = "ao0i22 comb";
else if (gate_info[5].equals ("+"))
gate_category = "ao033_2_comb";

else if (gate_info[4].equals("+"))

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gate_category = "ao222_3_comb";

break;

case 9: if ((gate info[2].lastIndexOf("'") == gate_info[2].length() - 1)

&& (gate_info([3].
&& (gate_info[4]
&& (gate_info(5]
&& (gate_info[6]
&& (gate_info[7]

&& (gate_info[8]

equals ("+")}

.lastIndexOf("'") ==
.equals("+"))
.lastIndexOf ("'") ==
.equals ("+"}))

.lastIndexOf("'") ==

gate category = "nand4_comb";

else if ((gate info[2].lastIndexOf("'")

&& (gate_info[3].
&& (gate_info[4].
&& (gate_infof5].
&& (gate_info([é].
&& (gate_info[7].

&& (gate_info(8].

lastIndexOf("'")

equals ("+"))

gate_info[4].length()

gate_info[6].length{()

gate info[8].length()

- 1)

-1

- 1))

!= gate_info[2].length{() - 1)

lastIndexOf("'") != gate_info[4].length() - 1)

equals ("+"))

lastIndexOf("'") != gate_info[6].length() - 1)

equals ("+"))

gate_category = "ord4_comb";

else if (gate_info[5].equals("+"))

gate_category = "ao33_comb";

else if (gate_info[4]

.equals ("+"))

gate_category = "ao0222_2 comb";

break;

case 10: gate_category = "ao222 comb";

break;

case 13: gate_category = "a02222 comb";

break;

default: gate_category = "--unknown--";

break;
}

return gate_category;

public void testl(){

String test = "abc";

System.out.println(test.lastIndexOf("'"));

System.out.println(test.length());

public void test2(String [] gate_info) {

int gate_info_length = Array.getLength(gate_info);

!= gate info[8].length()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 1))

108

System.out.println(gate info length):

for(int i = 0; i < gate info length; i++){

}

System.out.print (gate_info[i] + " ");

System.out.println();

//¥ode. java
package com

import java

import java.
import java.
import java.
import java.

import java.

class Node{
private
private
private
private
private
private
private
private
private

private

private

private

.Greedy;

sutil.*;
awt.Dimension;
awt .Graphics2D;
awt.Color;
awt.BasicStroke;

awt.geomn. *;

List fanin_node_list;

List fanout node list;

String nodename;

String category;

String [] gate_ info;

double weight = 1;

double area = 0;

double delay coefficient = 1;
double power_coefficient = 1;

double switching

it

0;

boolean in graph = true;

1

double delay;

private double arrival time;

private double required_time;

private double slack;

private double delta delay = 0;

private

int max_local_PS = 1; //1: self; 2: fanin;

3:

fanout;

private double power;
private double power_slack;

private double delta power = 0;

Reproduced with permission of the copyright owner. Further reproduction

prohibited without permission.

109

private int max local power PS = 1; //1: self; 2: fanin; 3: fanout;

private double releaseable_slack;

private double releaseable power_slack;
private int max_releaseable_local PS = 1;
private int max_releaseable_local power PS = 1;
private int releaseable lib level = 0;

private int lib level = 1; //1: full size; 2: half size; 3: quarter_size;
//draw

private int column = 0;

private int row = 0;

private boolean selected = false;

public void set column(int column) {

this.column = column;

public int get_column() {

return column;

public void set row(int row){

this.row = row;

public int get_row(){

return row;

public void set_selected(boolean selected) {

this.selected = selected;

public boolean get selected() {

return selected;

public void set gate info(String {] gate info) {

this.gate_info = gate_info;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public String [] get gate_info(){

return gate_info;

public void set category(String category) {

this.category = category;

public String get category () {

return category;

public void set_weight (double weight) {

this.weight = weight;

public double get weight () {

return weight;

public void set_area(double area) {

this.area = area;

public double get area() {

return area;

public void set_switching(double switching) {

this.switching = switching;

public double get switching() {

return switching;

public void set_delay coefficient (double delay coefficient) {

this.delay coefficient = delay coefficient;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

381

public double get_delay coefficient () {

return delay coefficient;

public void set_power coefficient (double power coefficient) {

this.power_coefficient = power_coefficient;

public double get power_cocefficient () {

return power_coefficient;

public void set_delay{double delay) {

this.delay = delay:

public double get delay(){

return delay;

public void set_power (double power) {

this.power = power;

public double get_power () {

return power;

public void set_delta_delay(double delta delay) {

this.delta delay = delta_delay;

public double get delta delay(){

return delta_delay;

public void set_arrival time(double arrival_time) {

this.arrival time = arrival time;

public double get arrival time () {

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return arrival time;

public void set required time(double required time) {

this.required time = required_time;

public double get required time () {

return required time;

public void set_slack(double slack) {

this.slack = slack;

public double get_ slack() {

return slack;

public void set_power_slack(double power_slack) {

this.power_slack = power_slack;

public double get power_slack() {

return power_slack;

public void set delta power (double delta power) {

this.delta_power = delta power;

public double get_delta power () {

return delta_power;

public List get fanin node list(){
return fanin node_list;

}

public void new_fanin node list () {

fanin node_list = new ArrayList();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

public List get_fanout_node_list () {
return fanout node_list;

}

public void new fanout node_list () {

fanout node_list = new ArrayList();

public void set_nodename (String nodename) {

this.nodename = nodename;

public String get_nodename () {

return this.nodename;

public void set_in_graph(boolean in_graph) {

this.in _graph = in_graph;

public boolean get_in graph() {

return in_graph;

public int get _max local PS{(){

return max_local_PS;

public int get_max_local power_ PS() {

return max_local power_ PS;

public int get max releaseable local PS() {

return max_releaseable local PS;

public int get _max releaseable_local_ power PS() {

return max_releaseable_local_power_ PS;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void set_lib level(int lib_level) {

this.lib_level = lib level;

public int get lib level () {

return lib_level;

public void set_releaseable lib level (int releaseable lib level){

this.releaseable lib level = releaseable lib level;

public int get releaseable lib level() {

return releaseable_lib level;

public void set_releaseable_slack(double releaseable_slack) {

this.releaseable_slack = releaseable_slack;

public double get_releaseable slack(){

return releaseable_slack;

public void set_releaseable power_ slack(double releaseable power_slack){

this.releaseable power slack = releaseable_power_slack;

public double get_releaseable power slack() {

return releaseable power_slack;

public boclean check reconvergence (Node check node, List node_list) {

Node node = new Node();

if (check node.get fanout node list() != null){
for (int index = 0; index < check node.get_ fanout node_list().size(); index++){
node = (Node)check node.get fanout_node_list().get (index);

if (node_list.contains (node)) {
if(check node.get slack() >= node.get_slack())

return true;

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else

return false;

}

if (check_node.get_fanin node list{() != null){
for (int index = 0; index < check_node.get_fanin_node list().size(); index++) {
node = (Node)check node.get_ fanin node_list().get (index);

if (node_list.contains (node)) {
if (check_node.get_slack{) > node.get_slack())
return true;
else

return false;

}

return true;

public boolean check_power_reconvergence (Node check node, List node list){

Node node = new Node();

if (check node.get_fanout_node_list() != null){
for (int index = 0; index < check node.get_ fanout_node list().size(); index++) {
node = (Node)check node.get_fanout_node_list().get (index);

if (node_list.contains (node)) {
if (check node.get_power slack() >= node.get power_ slack())
return true;
else

return false;

}

if (check node.get_fanin node_list() != null){
for (int index = 0; index < check node.get_fanin node_list().size(); index++){
node = (Node)check node.get_fanin node_list().get (index);

if (node_list.contains (node)) {
if (check_node.get_power_slack() > node.get_power_slack())
return true;
else

return false;

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

return true;

public boolean check_releaseable_reconvergence (Node check_node, List node_list) {

Node node = new Node();
if (check node.get fanout node list() != null){
for (int index = 0; index < check node.get_fanout node_list().size(); index++){
node = (Node)check node.get_ fanout_node_list () .get (index);
if (node list.contains(node)) {

if (check _node.get releaseable_slack() >=

node.get_releaseable_slack())

return true;
else

return false;

}
if (check node.get fanin node_list() != null){
for (int index = 0; index < check_node.get_fanin node_ list().size(); index++) {
node = (Node)check_node.get_fanin node list().get (index};
if (node_list.contains (node)) {

if (check_node.get_releaseable_slack() > node.get_releaseable slack{())
return true;

else

return false;

}

return true;

public boolean check releaseable_power_reconvergence (Node check node, List node list) {

Node node = new Node();
if (check_node.get_fanout _node_list() != null){
for (int index = 0; index < check node.get_fanout_node list().size(); index++) {

node = (Node)check node.get fanout node_list () .get (index);

if (node_list.contains (node)) {

if (check_node.get_releaseable_power_slack() >=

node.get_releaseable_power_ slack())

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return true;
else

return false;

}

if (check node.get_ fanin node_list() != null){
for (int index = 0; index < check node.get_fanin node_list().size(); index++) {
node = (Node)check node.get_fanin node_list().get(index};

if (node_list.contains (node)) {
if(check node.get releaseable power_ slack()
node.get releaseable power_slack())
return true;
else

return false;

}

return true;

public double slack_sum_fanin () {
Node node;
double slack_sum fanin = 0;
if (fanin node_list !'= null) {
for (int index = 0; index < fanin node_list.size(); index++){
node = (Node)fanin node list.get(index);
if (node.get_in_graph()) {
if (check reconvergence(node, fanin node_list))

slack sum fanin += node.get_slack();

}

return slack_sum fanin;

public double slack_sum_fanout () {
Node node;
double slack sum fanout = 0;
if (fanout_node_list != null) {

for(int index = 0; index < fanout_node_list.size(); index++){

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node = (Node)fanout _node_list.get (index);
if(node.get_in graph())
if (check _reconvergence(node, fanout_node_list))

slack sum fanout += node.get_slack();

}

return slack_sum fanout;

public double local PS () {
double lccal PS = this.get_slack();
if (slack_sum fanin() > local PS)({
local PS = slack sum fanin();
max local PS = 2;
}
if (slack sum_fanout() > local_PS) {
local PS = slack_sum fanout();
max_local PS = 3;
}
return local PS;

}

public void arrange_slack() {
Node node = new Node():
switch(max_local_PS) {

case 1: this.set_delta_delay(this.get_slack());

break:
case 2: for(int index = 0; index < fanin node list.size(); index++){
node = (Node)fanin node_list.get (index);

if (node.get_in_graph())
if (check reconvergence(node, fanin node_list))
node.set delta delay(node.get_slack());
}
break;
case 3: for(int index = 0; index < fanout node list.size(); index++) {

node = (Node)fanout_node_ list.get (index):;
if (node.get_in_graph{())
if (check_reconvergence(node, fanout node_ list))

node.set delta_delay(node.get_slack());

break;

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

default: break;

public double releaseable slack sum fanin() {

Node node;

double releaseable_slack sum_fanin = 0;

if (fanin node_list != null) {
for(int index = 0; index < fanin_node_list.size(); index++) {
node = (Node)fanin node_list.get (index);

if (node.get_in graph()){
if (check releaseable_reconvergence (ncde, fanin_node_list))

releaseable_slack sum fanin += node.get_releaseable_slack();

}

return releaseable_slack_sum fanin;

public double releaseable_slack_sum fanout () {

Node node;

double releaseable_slack_sum_ fanout = 0;

if (fanout_node_list != null)({
for (int index = 0; index < fanout node list.size(); index++) {
node = (Node)fanout node_list.get (index):;

if(node.get_in_graph())
if (check releaseable_reconvergence (node, fanout node_list))

releaseable_slack_sum fanout += node.get_releaseable slack();

}

return releaseable_slack sum_ fanout;

public double releaseable local PS(){
double releaseable_local PS = this.get_ releaseable_slack();
max_releaseable_local PS = 1;
if (releaseable_slack_sum fanin() > releaseable_local_ PS) {
releaseable local PS = releaseable slack sum fanin(};
max_releaseable local PS = 2;

}

if (releaseable_slack_sum fanout() > releaseable_local_PS){

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

releaseable local PS = releaseable_slack_sum fanout();
max_releaseable local PS = 3;

}

return releaseable_local_PS;

}

public void arrange releaseable_slack() {
Node node = new Node():
switch(max releaseable local_PS) {
case 1: this.set_delta_power(this.get_releaseable power_slack()):;
this.set_delta_delay(this.get_releaseable_slack(});
this.set_lib_ level(this.get_releaseable_lib_level());
break;
case 2: for(int index = 0; index < fanin node_list.size(); index++) {
node = (Node)fanin node_ list.get (index);
if(node.get_in_graph())
if (check releaseable_reconvergence(node, fanin node_ list)){
node.set_lib_level (node.get_releaseable_lib_ level());

node.set_delta_delay(node.get_releaseable slack()):

node.set_delta_power (node.get_releaseable power_slack());
}
}

break:
case 3: for(int index = 0; index < fanout node list.size():; index++) {
node = (Node)fanout node list.get (index);

if(node.get_in _graph())
if (check releaseable reconvergence(node, fanout_node_ list)){
node.set_lib level (node.get_releaseable_lib_level());

node.set_delta delay(node.get_releaseable_slack());

node.set _delta power (node.get releaseable power slack()}:
}
}
break;

default: break;

public double power_ slack sum fanin() {

Node node;

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double power_slack_sum_fanin = 0;
if (fanin node_list !'= null) {
for(int index = 0; index < fanin node list.size(); index++){
node = (Node)fanin node_list.get (index);
if(node.get_in graph())
if (check_power_reconvergence (node, fanin node_list))

power_slack sum fanin += node.get_power_slack();

}

return power_slack_sum fanin;

public double power_slack sum fanout () {
Node node;
double power slack sum_fanout = 0;
if (fanout node list != null)({
for (int index = 0; index < fanout_node_list.size(); index++){
node = (Node) fanout node_ list.get (index):
if (node.get_in graph())
if (check_power reconvergence (node, fanout_node_list))

power_slack_sum_ fanout += node.get_power_slack();

}

return power_ slack_sum_fanout;

public double local_power_ PS() {
double local power PS = this.get power slack():;
if (power_slack sum fanin() > local power_ PS) {
local_power PS = power_slack_sum fanin();
max_local_power PS = 2;
}
if (power slack_sum fanout() > local_power_ PS) {
local_power_ PS = power_slack_sum_fanout();
max_local_power PS = 3;
}
return local power_ PS;

}

public void arrange power slack() {

Node node = new Node(}):

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

switch(max_local_power_ PS) {
case 1: this.set_delta power (this.get_power_slack()):

this.set_delta delay(this.get_slack()):

break;
case 2: for(int index = 0; index < fanin_node_list.size(); index++){
node = (Node)fanin_node_list.get(index);

if (node.get_in graph()) {
if (check power reconvergence (node, fanin node list)){
node.set_delta power (node.get_power_slack());

node.set_delta_delay(node.get_slack());

}
break:
case 3: for(int index = 0; index < fanout_node_list.size(); index++) {
node = (Node)fanout_node_list.get(index);
if (node.get_in graph()){
if (check power reconvergence(node, fanout_node_ list)) {
node.set_delta_power (node.get_power_slack()):

node.set_delta delay(node.get_slack())};

}
break:;

default: break:

public double releaseable power_slack sum fanin() {
Node node;
double releaseable power_slack sum fanin = 0;
if (fanin_node_list != null) {
for{int index = 0; index < fanin node list.size(): index++) {
node = (Node)fanin node list.get (index);
if(node.get_in graph())
if (check releaseable power_ reconvergence(node, fanin_node_list))
releaseable_power_slack_sum fanin +=
node.get releaseable power_slack():
}
}

return releaseable power_slack_sum fanin;

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public double releaseable power_ slack_sum fanout () {
Node node;
double releaseable power slack sum fanout = 0;
if (fanout_node_list != null){
for (int index = 0; index < fanout node list.size():; index++){
node = (Node)fanout_node_list.get (index);
if (node.get_in_graph())
if (check releaseable_power_reconvergence (node, fanout_node_list))
releaseable power_ slack sum fanout +=
node.get_releaseable_power_slack();
}
}

return releaseable_power_slack sum fanout;

public double releaseable delay oriented power_slack sum fanin() {
Node node;
double releaseable power_slack_sum fanin = 0;
if (fanin_node_list != null)({
for (int index = 0; index < fanin_node_list.size(); index++) {
node = (Node)fanin node_ list.get (index);
if (node.get_in_graph())
if (check releaseable_reconvergence(node, fanin node_ list))
releaseable power_slack sum fanin +=
node.get_releaseable power slack();
}
}

return releaseable power_slack_sum fanin;

public double releaseable delay oriented power slack sum fanout () {
Node node;
double releaseable power_slack sum fanout = 0;
if (fanout_node list != null)({
for(int index = 0; index < fanout_node_list.size(); index++) {
node = (Node)fanout_node_list.get (index);
if (node.get_in graph())
if (check_releaseable reconvergence (node, fanout node list))

releaseable power slack_sum fanout +=

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node.get_releaseable_power_slack();
}
}

return releaseable power_slack_sum fanout;

public double releaseable_local_ power_PS() {
double releaseable_local power PS = this.get_releaseable power_slack():
max_releaseable local power PS = 1;
if (releaseable_power_slack sum fanin() > releaseable_local power PS){
releaseable_local power PS = releaseable power_slack_sum fanin();
max releaseable local power PS = 2;
}
if (releaseable power slack sum fanout() > releaseable_local power_ PS) {
releaseable local power PS = releaseable power_slack sum_fanout();
max_releaseable_local_ power_ PS = 3;
}

return releaseable_local_power_PS;

public void arrange releaseable_power slack() {
Node node = new Node();
switch(max_releaseable_ local_ power PS) {
case 1: this.set_delta power (this.get_releaseable power_slack()):
this.set_delta_delay(this.get_releaseable_slack()):
this.set_lib level(this.get_releaseable lib level()):;
break;
case 2: for(int index = 0; index < fanin node list.size(); index++) {
node = (Node)fanin node list.get (index);
if(node.get_in_graph()) {

if (check releaseable power reconvergence (node,
fanin node_list)){

node.set_delta_power (node.get releaseable power slack());

node.set_delta delay(node.get releaseable slack());

node.set_lib level (node.get releaseable lib level());

}

break;

case 3: for(int index = 0; index < fanout_node_list.size(); index++) {

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node = (Node)fanout node_list.get{index);
if(node.get_in_graph()) {

if (check_power_ reconvergence(node, fanout node_list)) {

node.set_delta_power (node.get releaseable power slack()):;

node.set_delta_delay(node.get_releaseable slack());

node.set_lib_level (node.get_releaseable_ lib level()):

}
break;

default: break;

public void delete_transitive fanins () {
Node node;
if (fanin_node_list != null){
for (int index = 0; index < fanin node list.size(); index++) {
node = (Node)fanin node_list.get (index);
node.set_in_graph(false):;

node.delete_transitive_ fanins();

public void delete transitive_fanouts () {
Node node;
if (fanout_node list != null) {
for(int index = 0; index < fanout node list.size(); index++) {
node = (Node)fanout node_list.get (index);
node.set_in graph(false);

node.delete transitive_fanouts();

public void delete_sub graph() {
delete_transitive_fanins();
delete_ transitive_fanouts();

set_in graph(false);

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void delete candidate sub graph () {
Node node = new Node();
switch(max local PS) {
case 1: this.delete sub graph();
break;
case 2: for(int index = 0; index < fanin_node_list.size(); index++){
node = (Node)fanin node list.get (index);
node.delete_sub_graph();
}

break:;
case 3: for(int index = 0; index < fanout_node list.size():; index++) {
node = (Node)fanout node list.get{index);

node.delete_sub_graph();
}
break;

default: break;

public void update_self () {
arrival_time = arrival time + delta_delay:
area = (delay / (delay + delta_delay)) * area;
delay = delay + delta_delay;
if (delta_delay > 0)
lib level = releaseable lib level;
calculate_slack();
calculate_power();
calculate_ power_slack();
calculate releaseable slack();

calculate_releaseable power slack();

public void update_transitive fanins () {
Node node;
if (fanin node list != null){
for{int index = 0; index < fanin node_list.size(); index++) {
node = (Node)fanin node list.get (index):;

if(node.get_required time() > required time - delay) {

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node.set_required_time(required_time - delay):
node.calculate_slack();
node.calculate_power();
node.calculate_power_slack();
node.calculate_releaseable_slack();
node.calculate releaseable power slack();

}

node.update_transitive fanins();

public void update_transitive_ fanouts () {

Node node;

if (fanout_node_list !'= null) {
for (int index = 0; index < fanout_node list.size(); index++){
node = (Node) fanout_node_list.get (index):;

if(node.get_arrival time() < arrival_time + node.get_delay()) {
node.set_arrival time(arrival_time + node.get_delay()):
node.calculate_slack():
node.calculate_power();
node.calculate power slack();
node.calculate_releaseable slack();
node.calculate_releaseable power slack():;

}

node.update_transitive fanouts():

public void update_sub_graph() {
update_self();
update_transitive_fanins();

update_transitive fanouts({();

public void update_candidate sub_graph () {
Node node = new Node():
switch(max releaseable_ local PS){
case 1: this.update_sub_graph();

break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

case 2: for(int index = 0; index < fanin node list.size(); index++) {

node = (Node)fanin node_ list.get(index);
node.update_sub_graph();

}

break;

case 3: for(int index = 0; index < fanout node list.size(); index++) {

node = (Node) fanout_node_list.get (index);
node.update_sub_graph();

}

break;

default: break;

public void update_power candidate_sub_graph() {
Node node = new Node():
switch(max releaseable local power PS) {
case 1: this.update_sub graph():
break;

case 2: for(int index = 0; index < fanin node list.size(); index++) {

node = (Node)fanin node_list.get (index);
node.update_sub_graph();

}

break;

case 3: for(int index = 0; index < fanout node list.size(); index++) {

node = (Node) fanout_node_list.get (index);
node.update_sub graph();

}

break:;

default: break;

public double calculate_delay () {
int fanout = 0;
delay = 0;
if (fanout_node_list != null)
fanout = fanout_node_list.size();
delay = delay coefficient * fanout / area:;

return delay;

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public double calculate_power () {
power = 0;
if (fanout_node_list != null)
power = power coefficient * area * switching;

return power;

public double calculate_releaseable slack() {
releaseable_slack = 0:
releaseable_lib level = lib level;
switch(lib_level) {
case 1: if (delay * 3 <= slack){
releaseable lib level = 3;
releaseable_slack = delay * 3;
}
else if (delay <= slack){
releaseable_lib_level = 2;
releaseable slack = delay;
}
break;
case 2: if (delay <= slack){
releaseable lib level = 3;
releaseable slack = delay;
}
break;
case 3: break;
default: break;
}

return releaseable_slack;

public double calculate releaseable power slack() {
if (delay == 0)
releaseable power_slack = 0;
else
releaseable _power slack = power * delay * (1/delay - 1/(delay +
releaseable_slack));

return releaseable power_slack;

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public int calculate_column() {
Node node = new Node();

column = 1;

if (fanin node list == null)
return column;
for (int index = 0; index < fanin node list.size(); index++){
node = (Node)fanin node_ list.get (index):
if (column <= node.calculate_cclumn())
column = node.get column() + 1;
}
return column;

}

public double calculate_arrival time () {
Node node = new Node():

double fanin_arrival time = 0;

arrival time = get delay():

if (fanin_node_list == null)
return arrival_time;

for (int index = 0; index < fanin_node_list.size():; index++) {
node = (Node)fanin node_list.get (index);
if (fanin arrival_time < node.calculate_arrival time())

fanin arrival_time = node.get_arrival time():;
}
arrival time += fanin_arrival time;

return arrival_ time;

public double calculate required_time (double max_arrival time) {

Node node = new Node():

required_time = max arrival time;
if (fanout_node_list == null) {

if (fanin node_list == null){

required_time = 0;

return required time;

)

for (int index = 0; index < fanout_node_list.size(); index++){

node = (Node)fanout node list.get (index);

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (required_time > node.calculate required time(max arrival time) -

node.get_delay(}){

required time = node.get required time() - node.get_delay():

return required time;

public double calculate_slack() {
slack = 0;
if (fanout_node_list != null)
slack = required_time - arrival_time;

return slack;

public double calculate power slack()
double coefficient = 0;
if (fanout_node_ list != null)
coefficient = power_coefficient * delay coefficient * switching *
fanout_node_list.size();
if (delay != 0){
power_slack = coefficient * (1 / delay - 1 / (delay + slack));
}
else{
power_slack = 0;
}

return power_slack;

public void show_myself() {
System.out.println(nodename) ;
if (fanin node list != null){
System.out.println("fanin nodes:"™);
for(int index = 0; index < fanin node list.size(); index++) {
Node node = (Node)fanin node_list.get (index);

System.out.println(node.get_nodename()):;

}
if (fanout node_list != null)({
System.out.println("fanout nodes:");

for (int index = 0; index < fanout_node_list.size(); index++){

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node node = (Node)fanout_node_list.get (index):

System.out.println(node.get nodename());

}

System.out.println(">>-~-—--~ ")

public String show_myself tostring() {
String output string = new String(""):;
output_string += "Node Name: " + nodename + "\n";
if (fanin node_list != null){
output_string += "Fanin Node(s): ";
for (int index = 0; index < fanin_node_list.size(); index++) {
Node node = (Node)fanin_node_list.get (index);
output string += node.get nodename() + ", ";
}
output_string += "\n";
}
if (fanout_node_list != null){
output_string += "Fanout Node(s): ";
for(int index = 0; index < fanout_node_list.size(); index++) {
Node node = (Node)fanout_node_list.get(index);
output_string += node.get_nodename() + ", ";
}
output_string += "\n";

}

output_string += "Delay: " + (float)get delay() + " time units™ + " vy
output_string += "Power: " + (float)get_power() + " power units" + " ",
output_string += "Area: " + (float)get_area() + " area units";

return output_string;

public void draw(Graphics2D g2, double zoom, double radius, double dimension_coefficient,

Color node_color) {
g2.setPaint (node_color);
// A solid stroke
BasicStroke stroke = new BasicStroke(2);

g2.setStroke (stroke) ;

g2.drawOval (new Double((column + 1 - radius) * zoom * dimension_coefficient).intValue(),

new Double((row - radius) * zoom * dimension coefficient).intvValue(),

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new Double(2 * radius * zoom * dimension_coefficient).intValue(),

new Double(2 * radius * zoom * dimension coefficient).intValue()):;
stroke = new BasicStroke(l);

g2.setStroke (stroke);

public void draw_fanin lines(Graphics2D g2, double =zoom, double radius, double
dimension_coefficient, Color line_ color) {
g2.setPaint (line_color):
if (fanin node_list != null) {
for (int index = 0; index < fanin node list.size(); index++){
Node node = (Node)fanin node list.get (index);
g2.draw(new Line2D.Double((node.get_column() + 1 + radius) * zoom @ *
dimension_coefficient,

public

g2.setPaint (line color);

void draw_fanout_lines(Graphics2D g2,
dimension coefficient, Color line color) {

node.get_row() * zoom * dimension_coefficient,

row * zoom * dimension coefficient));

double =zoom, double radius,

if (fanout_node_ list != null) {

for (int index

Node node =

g2.draw (new

dimension coefficient,

public boolean clickInside (int x,

radius) {

boolean inside = false;

if

0; index < fanout_node list.size(); index++)

(Node) fanout_node_list.get (index);

Line2D.Double((column + 1 + radius) * zoom * dimension coefficient,

row * zoom * dimension coefficient,
(node.get_column() + 1 - radius) * zoom *

node.get_row() * zoom * dimension coefficient)):

int y, double zoom, double dimension_coefficient, double

(({x >= new Double({column + 1 - radius)

* zoom * dimension coefficient).intValue())

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(column + 1 - radius) * zoom * dimension coefficient,

double

&& (y >= new Double((row - radius) * zoom * dimension_coefficient).intValue())
&& (x <= new Double((column + 1 + radius) * zoom * dimension coefficient).intValue(})
&& (y <= new Double((row + radius) * zoom * dimension_cocefficient).intValue())) {

inside = true;

return inside;

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Program 2 — SET Threshold Gates
Parameter Selection and Optimization
(Chapter 3, 4)

/***
*Functions Profile:

This is a command line program. With a threshold expression as input, this tool determines the
structure of a SET threshold gate, and then gives all capacitance parameters. Also, this tool
has the ability to analyze the reliability of a SET threshold gate, with a uniform or normal

distribution background charge on nodes of the threshold logic structure.

*Usage:
java Threshold <threshold expression>;

/*example: 2-input AND */ java Threshold sgn{a+b-1.5};

*Package Structure:

Package com.ThresholdGate

|-—- Class Threshold // Command line application launcher
| |--- Class Expressionreader // Threshold Expression reader
|--- Class Inputport // Inputport holder

‘k/

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//Thresnolid.java
package com.ThresholdGate;
import java.util.*;

import java.io.*;

public class Threshold extends Expressionreader(
private boolean always_open = false;
private boolean always_close = false;
private double open Cb;
private double close Cb;
private double optimal Cb;
private double optimal prob;

private double sum Cp;

public void set_always_open(boolean always_open) {

this.always_open = always_open;

public boolean get_always_open() {

return always_open;

public void set_always_close(boolean always _close) {

this.always_close = always_close;

public boolean get_always_close() {

return always_close;

public double get_open Cb () {
return open_Cb;

}

public void set_open_Cb(double open_ Cb) {
this.open_Cb = open_Cb;
}

public double get_close_Cb{() {
return close_Cb;

}

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void set_close Cb(double close Cb) {
this.close_Cb = close_Cb;

}

public double get_optimal Cb () {
return optimal Cb;

}

public void set_optimal Cb(double optimal Cb) {
this.optimal Cb = optimal Cb;
}

public double get optimal prob() {
return optimal_ prob;

}

public void set_optimal prob(double optimal prob) {

this.optimal prob = optimal prob;

public double get sum Cp{() {
return sum Cp;

}

public void set_sum Cp(double sum Cp) {
this.sum Cp = sum Cp;

}

public static void main(String[] args){
Threshold threshold = new Threshold();
threshold.new_inputport list():
threshold.translator{args([0}]):
threshold.locate open signal():
threshold.clear_signal():
threshold.locate close_signal();
threshold.clear_signal();
threshold.get_threshold():;
//--threshold.test_open close_signal();
//-~threshold.test_inputport_list();

//--threshold.voltage_range_even distribution(13):

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//--threshold.pass_probability(13):
//--threshold.allowable delta voltage(l3, 1);
//--threshold.allowable _delta_voltage (13, 0);

threshold.calculate_optimal_Cb(50);

public void clear signal() {
List inputport_list = get_inputport_list():
for (int index = 0; index < inputport list.size(); index++)({
Inputport inputport = (Inputport)inputport list.get (index);

inputport.set_signal(0);

public void locate_open_signal () {
List inputport list = get inputport list();
double signal_ sum = get_threshold value();
int addup_signal = 0;
int all high signal = 0;
while ((signal sum >= 0) || (signal sum <= -1))}{
signal_sum = get_threshold_value():;
for (int index = 0; index < inputport list.size(); index++){
Inputport inputport = (Inputport)inputport list.get (index):
if (index == 0){
inputport.reverse_signal();
if (inputport.get_signal() == 0)
addup _signal = 1;
all high _signal = inputport.get_signal();
}
else {
inputport.set_signal (inputport.get signal() + addup signal);
if (inputport.get_signal() == 2){
inputport.set_signal(0);
addup_signal = 1;
}
else{

addup signal = 0;

}
all high_signal += inputport.get_signal():
}

if (inputport.get _pole() == 'p')

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal sum = signal sum - inputport.get_open_signal ()
inputport.get weight();
else if (inputport.get pole() == 'n')
signal sum = signal sum + inputport.get_open_signal ()
inputport.get weight();
}
//System.out.println("open signal sum: " + signal sum);
if ((signal_sum > -1) && (signal_sum < 0))

break;

for (int index = 0; index < inputport_list.size(); index++) {
Inputport inputport = (Inputport)inputport_list.get (index);

inputport.set open signal (inputport.get signal());
}

if (all_high signal == 0){
if (signal sum <= -1)
set_always_open(true);
else if (signal_sum >= 1)
set_always_close(true);

break;

public void locate_close signal () {
List inputport_list = get_inputport list();
double signal_sum = get threshold value():;
int addup signal = 0;
int all_high _signal = 0;
while ((signal _sum >= 1) || (signal sum <= 0)){
signal_sum = get_threshold value():;
for (int index = 0; index < inputport_ list.size(); index++){

Inputport inputport = (Inputport)inputport_list.get (index):

if (index == 0){
inputport.reverse_signal();
if (inputport.get_signal() == 0)
addup_signal = 1;

all high signal = inputport.get_signal():
}

else {

inputport.set_signal (inputport.get_signal() + addup_signal);

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (inputport.get_signal() == 2){
inputport.set_signal(0);
addup_signal = 1;

}

else(

addup_signal = 0;

[

}
all high signal += inputport.get signal();
}
if (inputport.get_pole() == 'p')
signal_sum = signal sum - inputport.get close signal() *
inputport.get_weight();
else if (inputport.get_pole() == 'n')
signal_sum = signal_sum + inputport.get_close signal() *
inputport.get_weight():
}
//System.out.println("close signal sum: " + signal_sum);

if ((signal_sum > 0) && (signal sum < 1))

break:;
for (int index = 0; index < inputport list.size(); index++) {
Inputport inputport = (Inputport)inputport list.get (index):

inputport.set_close_signal (inputport.get_signal());
}
if (all_high signal == 0) {
if (signal_sum <= -1)
set_always_open(true);
else if (signal_sum >= 1)
set_always_close(true);

break;

public void test_open close_signal() {
if (get_always close()){
System.out.println("Tunnel always close! Threshold meaningless...");
test inputport list();
return;
}
else if (get_always_open{()) {

System.out.println("Tunnel always open! Threshold meaningless...");

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test_inputport_list();
return;
}
List inputport_list = get_inputport list():
if (inputport_list.isEmpty()) {
Expression_illegal_help();
return;
}
System.out.println("threshold value:" + get_threshold value()):

for (int index = 0; index < inputport_list.size(); index++) {

Inputport inputport = (Inputport)inputport_list.get (index);
System.out.println((index + 1) + ":");

System.out.println("pole: " + inputport.get pole());
System.out.println("portname: " + inputport.get_portname()):;
System.out.println("weight: " + inputport.get_weight()):
System.out.println("open signal: " + inputport.get_open signal()):
System.out.println("close signal: " + inputport.get close signal()):
System.out.println("signal: " + inputport.get signal()):;

public double calculate_Col() {
double Co = 9;
List inputport_list = get_inputport_list();:

for (int index = 0; index < inputport list.size():; index++){

Inputport inputport = (Inputport)inputport_list.get (index);
if (inputport.get _pole() == 'n')
Co -= 0.5 * inputport.get weight();

}

return Co;

public double calculate open Cb () {
List inputport_list = get_inputport list():
for (int index = 0; index < inputport list.size(); index++) ({
Inputport inputport = (Inputport)inputport_ list.get (index):;
inputport.set_signal (inputport.get_open signal());
}
set_open Cb(calculate Cb()};

return get_open Cb();

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public double calculate_close Cb () {
List inputport_list = get_inputport list():
for (int index = 0; index < inputport list.size(); index++){
Inputport inputport = (Inputport)inputport list.get (index);
inputport.set_signal (inputport.get_close_signal());
}
set _close Cb(calculate_Cb()):

return get_close Cb():

public double calculate Cb () {
double Cb = 0.1;
double Cb_temp low = 0.1;
double Cb_temp high = 10000;
double sum Cp = 0;

double sum Cp_1

0;

double sum Cn 1 = 0;

double Vj = 0; //voltage across junction

double Vvc = 0; //critical voltage

double C3j = 0.1; //junction capacitor

double Cl1 = 10; //total loading capacitor, original 10
double Vbuffer = 1.17; //original 1.17

List inputport_list = get_inputport list():

for (int index = 0; index < inputport_list.size(); index++){
Inputport inputport = (Inputport)inputport_list.get (index);
if (inputport.get pole() == 'p'){

sum Cp += 0.5 * inputport.get weight();
if (inputport.get_signal() == 1)
sum Cp_1 += 0.5 * inputport.get weight():
}
if ((inputport.get pole() == 'n') && (inputport.get signal{() == 1))
sum Cn_1 += 0.5 * inputport.get_weight();
}
//System.out.println("sum Cp: " + sum Cp);
set_sum Cp(sum Cp);
//8ystem.out.printin("sum Cp_1: " + sum Cp_1);
//System.out.println("sum Cn_1: " + sum Cn_1);
for (Cb = Cb_temp low; Cb < Cb_temp_high; Cb += 0.05) {

Vj = 16 * (Cb/(Cb + sum Cp) + sum Cp_1/(sum Cp + Cb) - sum Cn_ 1/Cl) - Vbuffer;

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vc = 80/(Cj + C1*(Cb + sum Cp)/(Cb + sum Cp + Cl1));
if (((Vj - Ve)/Vc < 0.001) && ((Vj - Vve)/Vc > -0.001)) {

//System.out.println("vVj: " + Vi);
//System.out.println("vc: " + Vc):
break:;

}

return Cb;

public void get threshold() {

if (get_always_close()){
System.out.println("Tunnel always close! Threshold meaningless...");
test_inputport_ list():;
return;

}

else if (get_always open{()) {
System.out.println("Tunnel always open! Threshold meaningless...");
test_inputport list():
return;

}

List inputport list = get_inputport list():

if (inputport_list.isEmpty()) {
Expression illegal help():
return;

}

System.out.println("threshold value:" + get_ threshold _value());

System.out.println("Co: " + calculate Co()):;
System.out.println("Open Cb: " + calculate open Cb());
System.out.println("Close Cb: " + calculate_close Cb());

for (int index = 0; index < inputport_list.size(); index++){
Inputport inputport = (Inputport)inputport_list.get (index):

System.out.printin((index + 1) + ":");

System.out.printin("pole: " + inputport.get pole()):
System.out.println("portname: " + inputport.get portname());
System.out.println("weight: " + inputport.get weight());
System.out.println("open signal: " + inputport.get_open signal()):
System.out.println("close signal: " + inputport.get_close_signal()):
System.out.println("signal: " + inputport.get signal());

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public double voltage range even_distribution(double Cb) {
double Cl = 10; //total loading

//-- (-0.5e, 0.5e) even distribution

//double voltage_range = 80 * (Cb + get_sum Cp() + Cl) / ((Cb + get_sum Cp()) * Cl);

//-—- (-0.4e, 0.4e) even distribution

//double voltage range = 160 * 0.4 * (Cb + get_sum Cp() + Cl) / ((Cb + get_sum Cp())

* Cl);

//-- (-0.3e, 0.3e) even distribution

//double voltage range = 160 * 0.3 * (Cb + get_sum Cp() + Cl) / ((Cb + get_sum Cp())
* Cl):

//-- (-0.2e, 0.2e) even distribution

//double voltage_range = 160 * 0.2 * (Cb + get_sum Cp() + Cl) / ((Cb + get _sum Cp())
* Cl):

//=-- (-0.le, 0.le) even distribution

//double voltage_range = 160 * 0.1 * (Cb + get_sum Cp{) + Cl) / ((Cb + get_sum Cp())
* Cl);

//-- (-0.05e, 0.05e) even distribution

//double voltage_range = 160 * 0.05 * (Cb + get_sum Cp() + C1l) / ((Cb + get_sum Cp())
* Cl):

//=-- (-0.03e, 0.03e) even distribution

//double voltage range = 160 * 0.03 * (Cb + get_sum Cp() + Cl) / ((Cb + get sum Cp{())
* Cl);

//-- (-0.02e, 0.02e) even distribution

double voltage range = 160 * 0.02 * (Cb + get_sum Cp(} + Cl) / ((Cb + get_sum Cp())
* Cl):

//-- (-0.0le, 0.0le) even distribution

//double voltage_range = 160 * 0.01 * (Cb + get_sum Cp() + Cl) / ((Cb + get sum Cp())
* Cl):

//System.out.println("voltage range: " + voltage range);

return voltage_range;

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public double allowable _delta voltage(double Cb, int open_close) {
double sum Cp = 0;
double sum Cp 1 = 0;
double sum Cn_1 = 0;

double Vj = 0; //voltage across junction

double Vc = 0; //critical voltage
double Cj = 0.1; //junction capacitor
double Cl = 10; //total locading capacitor
double Vbuffer = 1.17;
List inputport list = get_ inputport list():
for (int index = 0; index < inputport_list.size(); index++) {
Inputport inputport = (Inputport)inputport_list.get (index);
if (open _close == 1) //open
inputport.set_signal (inputport.get_open_signal());
else if (open_close == 0) //close
inputport.set_signal (inputport.get close signal()):
else
return 0;
if ((inputport.get_pole() == 'n') && (inputport.get_signal() == 1))
sum Cn_1 += 0.5 * inputport.get weight():
else if ((inputport.get pole() == 'p') && (inputport.get signal() == 1))
sum Cp_1 += 0.5 * inputport.get_weight();
}

sum Cp = get_sum Cp();

Vj =16 * (Cb/(Cb + sum Cp) + sum Cp_1/(sum Cp + Cb) - sum Cn 1/Cl) - Vbuffer;
Ve = 80/(Cj + C1*(Cb + sum Cp)/(Cb + sum Cp + Cl));
//System.out.println("delta_voltage: " + (Vc - Vj)):

return (Ve - Vj);

public double pass_probability(double Cb) {
double voltage range = voltage_range_even distribution(Cb);
double close_delta voltage = allowable delta_voltage(Cb, 0);
double open_delta voltage = allowable delta voltage(Cb, 1);
double close part = 0;
double open part = 0;
if (voltage range - close_delta_voltage > 0)
close_part =0.5 * Math.pow ((voltage range - close_delta_voltage)/voltage range,

2);

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (voltage_range + open_delta voltage > 0)

open_part =0.5 * Math.pow((voltage_range + open_delta_voltage)/voltage range, 2);

//double pass_probability = 1 - 0.5 * Math.pow ((voltage_range

close_delta_voltage)/voltage_range, 2)

// - 0.5 * Math.pow((voltage range

open_delta voltage)/voltage range, 2);
double pass_probability = 1 - close part - open_part;
//System.out.println("pass probability: " + pass_probability):

return pass_probability;

public double pass_normal probability(double Cb, double sigma) {
double C1 = 10;

double sum Cp = get_sum Cp():

+

double voltage_sigma = sigma / Math.pow(10, -18) * Math.sqrt(Math.pow(Cb + sum Cp,

2) + Math.pow(Cl, 2)) / (Cb + sum Cp) / Cl;
double close_delta_voltage = allowable delta voltage(Cb, 0) / 1000;
double open_delta voltage = allowable_delta_voltage(Cb, 1) / 1000;
//System.out.println("close voltage: " + close_delta_voltage);
//System.out.println("open voltage: " + open_delta_voltage);
double steps = 200;
double step_size = (close_delta_voltage - open delta voltage) / steps;

double pass_normal probability = 0;

for (double voltage = open_delta_voltage; voltage <= close_delta voltage; voltage +=

step_size) {

pass_normal probability += (1 / (Math.sqrt(2 * Math.PI) * voltage_sigma)

Math.exp (- Math.pow(voltage / voltage sigma, 2) /2)) * step size;
}

return pass_normal probability;

public double calculate_optimal Cb(int steps) {
double current_Cb = get_open Cb();
double optimal Cb = get_open Cb();
double lowest Cb = get_open Cb();
double step_size = (get_close Cb{) - get_open Cb()) / steps:
double current_probability = 0;
double optimal probability = 0;

double lowest probability = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*

147

try{

BufferedWriter out = new BufferedWriter (new FileWriter ("recorder"));

for (current Cb = get_open Cb(); current Cb <= get_close_Cb(); current Cb +=
step_size) {
//current_probability = pass_probability(current Cb);
current_probability = pass _normal probability(current Cb, 0.1 * 1.6 *

Math.pow (10, -19));

System.out.println("current Cb: " + current Cb);
System.out.println("current prob: " + current_probability);
out.write(current Cb + " " + current probability + "\n");

if (current probability > optimal probability) {
optimal Cb = current_Cb;
optimal probability = current_probability;

}

if (current_probability < lowest_probability) {
lowest _Cb = current_Cb;

lowest probability = current_probability;

}
out.close();

} catch (IOException e) {

set_optimal Cb(optimal Cb);
set_optimal prob(optimal probability);
System.out.println("optimal Cb: " + optimal Cb + " prob: " + optimal probability);

System.out.println("lowest Cb: " + lowest Cb + " prob: " + lowest probability):

return optimal Cb:;

// Expreassionreader.java
package com.ThresholdGate;
import java.util.*;

import java.lang.reflect.Array;

class Expressionreader{

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

private List inputport list;

private double threshold value;

public List get_ inputport_list() {
return inputport_list:

}

public void set_inputport_list(List inputport_list) {
this.inputport_list = inputport list;
}

public void new_inputport_list () {
inputport list = new ArrayList();

}

public double get_threshold value () {
return threshold value;

}

public void set_threshold value(double threshold value) {
this.threshold value = threshold _value;

}

public static void main(String[] args) {
Expressionreader reader = new Expressionreader():;
reader.new_inputport list();
reader.translator (args[0]):

reader.test_inputport list():

public void translator(String threshold_expression) {
String expression = threshold expression.trim();
if ((!expression.substring(0,4).toLowerCase().equals(new String("sgn{")))
|| (!expression.substring(expression.length()-1).equals(new String("}")))){
Expression_illegal help();
return;
}
expression = expression.substring(4);
expression = expression.substring(0, expression.length()-1);
if (!expression.startsWith("-"))

expression = new String("+").concat (expression);

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//System.out.println(expression);
String [] minus_split = expression.split("-");
int minus_split_length = Array.getLength(minus_split):;
for (int i = 0; i < minus_split_length; i++){
if (minus_split{i].equals(new String("")))
continue;
else
minus_split[i] = minus split[i].trim();
//System.out.println(minus_split[i]);
String [] plus_minus_split = minus_split[i].split ("\\+");
int plus_minus_split_length = Array.getlLength(plus_minus_split);
//System.out.println(plus_minus_split_length);
for (int j = 0; j < plus_minus_split_length; j++) {
if (plus_minus_split[j].equals(new String("")))
continue;
else
plus_minus_split[j] = plus_minus_split{jl.trim();
//System.out.println(plus_minus_split[j]):
if (plus_minus_split([j].lastIndexOf(".") != -1){

if (] ==)

set_threshold _value(0 - Double.parseDouble (plus_minus_split[j])):

else
set_threshold value(Double.parseDouble (plus_minus_split[j]));
}
else{

Inputport input port = new Inputport():

input_port.set pole('p');
else
input_port.set pole('n’');
String [] multiple split = plus minus_split[j].split ("*");
if (Array.getLength(multiple split) == 1) {
input_port.set_ portname(multiple split[0].trim());
}

else if (Array.getlLength(multiple split) == 2){

input_port.set_weight (Double.parseDouble (multiple split([0].trim()));
input_port.set portname (multiple split[1l].trim()):
}
else {

Expression_illegal help();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

return;

}

inputport_list.add (input_port):

public void Expression illegal help () {

System.out.println("illegal threshold expression!™);

System.out.println("----- EXPRESSION EXAMPLE----- ")
System.out.println(” sgn{a+2*b-2.5}");
System.out.println("-----------—————--————————— ")

public void test_inputport list () {

if (inputport list.isEmpty()) {
Expression_illegal help();
return;

}

System.out.println("threshold value:" + threshold value);

for (int index = 0; index < inputport_list.size{(); index++){
Inputport inputport = (Inputport)inputport_ list.get (index):
System.out.println((index + 1) + ":");
System.out.println("pole: " + inputport.get pole());
System.out.println("portname: " + inputport.get portname());

System.out.println("weight: " + inputport.get weight()):

//Inputport.java

package com.ThresholdGate;

class Inputport({
private char pole = 'n'; // 'n' or 'p'
private double weight = 1; //
private String portname;
private int signal = 0; // 0 or 1

private int open_signal = 0; // 0 or 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

private int close_signal = 0; // 0 or 1

public void set_portname (String portname) {

this.portname = portname;

public String get portname () {

return portname;

public void set_pole(char pole) {

this.pole = pole;

public char get pole(){

return pole;

public void set_weight (double weight) {

this.weight = weight;

public double get weight () {

return weight;

public void set signal (int signal) {

this.signal = signal;

public int get_signal() {

return signal;

public int reverse signal() {
if (signal == 1){
signal =0;
}
else {

signal = 1;

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return signal;

public void set_open signal (int open_signal) {

this.open_signal = open_signal;

public int get_open_signal () {

return open_signal;

public int reverse_open_signal () {
if (open_signal == 1) {
open_signal =0;
}
else {
open_signal = 1;
}

return open signal;

public void set_close_signal (int close_signal) {

this.close_signal = close_signal;

public int get_close_signal () {

return close_signal;

public int reverse_close_signal() {
if (close_signal == 1){
close_signal =0;
}
else {
close signal = 1;
}

return close_signal;

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Gary K. Yeap, “Practical low power digital VLSI design”, Kluwer Academic
Publishers, 1998

[2] C. Chen, X. Yang, and M. Sarrafzadeh, “Predicting Potential Performance for
Digital Circuits”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 3, March 2002, pp. 253-262.

[31 M. Vuyjkovic and C. Sechen, “Optimized Power-Delay Curve Generation for
Standard Cell ICs,” in Proc. of International Conference on Computer-Aided
Design, November 2002, pp. 387-394.

[4] C. CKuo and A. C. Wu, “Delay Budgeting for a Timing-Closure-Driven Design
Method”, in Proc. of International Conference on Computer-Aided Design,
November 2000, pp.202-207.

[5S] M. Sarrafzadeh, D. Knol, and G. Tellez, “A Delay Budgeting Algorithm Ensuring
Maximum Flexibility in Placement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 16, no. 11, Nov 1997, pp.
1332-1341.

[6] Elaheh Bozorgzadeh, et al, “Optimal Integer Delay Budgeting on Directed Acyclic
Graphs,” in Proc. of the 40th Design Automation Conference, June 2003, pp.
920-925.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[71 R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa, “Generation of Performance
Constraints for Layout,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 8, no. 8, August 1989, pp. 860-874.

[8] C. Chen, X. Yang, and M. Sarrafzadeh, “Potential Slack: An Effective Metric of
Combinational Circuit Performance,” in Proc. of International Conference on
Computer-Aided Design, November 2000, pp. 198-201.

[9] E. M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis,” Technical
Report UCB/Erl M92/41, Univ. of California, Berkeley, May 1992.

[10] T. Gao, P. M. Vaidya, and C. L. Liu, “A new performance driven placement
algorithm,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1991, pp. 44-—47.

[11] H. Youssef and E. Shragowitz, “Timing constraints for correct performance,” in Proc.
Int. Conf. Computer-Aided Design, Nov. 1990, pp. 24-27.

[12] H. R. Lin and T. Hwang, “Power reduction by gate sizing with path-oriented slack
calculation,” in Proc. Asia—South Pacific Design Automation Conf., June 1995, pp.
7-12.

[13] W. Swartz and C. Sechen, “Timing driven placement for large standard cell circuits,”
in Proc. Design Automation Conf., June 1995, pp. 211-215.

[14] J. Cong, L. He, K. Khoo, C. Koh, and Z. Pan, “Interconnection design for deep
submicron IC’s,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1997, pp.
478-485.

[15] R. H. Moehring, Graphs and Orders: The Role of Graphs in the Theory of Ordered
Sets and its Applications, 1. Rival, Ed. New York: D. Reidel, 1984, pp. 41-101.

[16] G. D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

[17] A. Iranli, P. Rezvani, and M. Pedram, “Low Power Synthesis of Finite State
Machines with Mixed D and T Flip-Flops,” in Proceedings of 2003 Asia and South
Pacific Design Automation Conference (ASPDAC), January 2003, pp. 803-808.

[18] S. Chattopadhyay and P. N. Reddy, “Finite State Machine State Assignment

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Targeting Low Power Consumption,” IEE Proceedings — Computers and Digital
Techniques, vol. 151, no. 1, January 2004, pp. 61-70.

[19] L. Benini, G. D. Micheli, and F. Vermeulen, “Finite State Machine Partitioning for
Low Power,” in Proceedings of the 1998 IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 2, June 1998, pp. 5-8.

[20] K. K. Likharev, “Single-Electron Devices and Their Applications,” Proceedings of
IEEE, vol. 87, no. 4, April 1999, pp. 606-632.

[21] A. M. Ionescu, M. Declercq, S. Mahapatra, K. Banerjee, J. Gautier, “Few Electron
Devices: Towards Hybrid CMOS-SET Integrated Circuits,” in Proceedings of
ACM/IEEE Design Automation Conference (DAC), June 2002, pp. 88-93.

[22] C. Lageweg, S. Cotofana, and S. Vassiliadis, “Single Electron Encoded Latches and
Flip-Flops,” in Proceedings of the 4th IEEE Conference on Nanotechnology,
August 2004, pp. 327-330.

[23] K. Yano, et al, “Single-Electron Memory for Giga-to-Tera Bit Storage,” Proceedings
of the IEEE, vol. 87, no. 4, April 1999, pp. 633-651.

[24] C. Wasshuber, Computational Single-Electronics, Springer-Verlag Wien New York,
2001.

[25] K. Finkenzeller, RFID Handbook, Jhon Wiley & Sons, 2003.

[26] F. Zhou, C. Chen, et al, “Evaluating and Optimizing Power Consumption of
Anti-Collision Protocols for Applications in RFID system,” in Proceedings of
ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED), August 2004, pp. 357-362.

[27] C. Wasshuber, H. Kosina, and S. Selberherr, “SIMON - A Simulator for
Single-Electron Tunnel Devices and Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 9,
September 1997, pp. 937-944.

[28] R. H. Klunder and J. Hoekstra, “Programmable Logic Using a SET Electron Box,” in

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proceedings of the 8th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), vol. 1, September 2001, pp. 185-188.

[29] C. Lageweg, S. Cotofana, and S. Vassiliadis, “Binary Addition Based on Single
Electron Tunneling Devices,” in Proceedings of the 4th IEEE Conference on
Nanotechnology, August 2004, pp. 327-330.

[30] C. Lageweg, S. Cotofana, and S. Vasiliadis, “A Linear Threshold Gate
Implementation in Single Electron Technology,” in Proceedings of IEEE Computer
Society Workshop on VLSI, April 2001, pp. 93-98.

[31] R. H. Chen, A. N. Korotkov, and K. K. Likharev, “Single-Electron Transistor Logic,”
Appl. Phys. Lett., vol. 68, 1996, pp. 1954-1956.

[32] A. M. Ionescu, M. Declercq, S. Mahapatra, K. Banerjee, J. Gautier, “Few Electron
Devices: Towards Hybrid CMOS-SET Integrated Circuits,” in Proceedings of
ACM/IEEE Design Automation Conference (DAC), June 2002, pp. 88-93.

[33] S. M. Goodnick and J. Bird, “Quantum-Effect and Single-Electron Devices,” IEEE
Transactions on Nanotechnology, vol. 2, no. 4, December 2003, pp. 368-385.

[34] C. Wasshuber, H. Kosina, and S. Selberherr, “SIMON - A Simulator for
Single-Electron Tunnel Devices and Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 9,
September 1997, pp. 937-944.

[35] Y. Taur,D.A. Buchanan,W. Chen, D. Frank, K. Ismail, S. Lo, G Sai-Halasz, R.
Viswanathan, H.Wann, S.Wind, and H.Wong, “CMOS scaling into the nanometer
regime,” Proc. IEEE, vol. 85, Apr.1997, pp. 486-504.

[36] C. Lageweg, S. Cot,fan'a, and S. Vassiliadis, “A linear threshold gate
implementation in single electron technology,” in IEEE Computer Society VLSI
Workshop, Apr. 2001, pp. 93-98.

[37] T. Oya, T. Asai, T. Asai, T. Fukui, and Y. Amemiya, “A majority-logic device using

and irreversible single-electron box,” IEEE Trans. Nanotechnol., vol. 2, Mar. 2003,

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pp. 15-22.

[38] S. Banerjee, S. Huang, and S. Oda, “Operation of nanocrystalline-silicon- based
few-electron memory devices in the light of electron storage, ejection and lifetime
characteristics,” IEEE Trans. Nanotechnol., vol. 2, June 2003, pp. 88-92.

[39] K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi, T. Kure,
and K. Seki, “Single-electron memory for giga-to-tera bit storage,” Proc. IEEE, vol.
87, Apr. 1999, pp. 633-651.

[40] 1. Karafyllidis, “Design and simulation of a single-electron random-access memory
array,” IEEE Trans. Circuits Syst. I, vol. 49, Sept. 2002, pp. 1370-1375.

[41] http://java.sun.com

[42] J. Mi and C. Chen, “Power-oriented delay budgeting for combinational circuits”, to
appear in Proceedings of 2006 ISCAS.

[43] J. Mi and C.Chen, “Finite state machine implementation with single-electron

tunneling technology”, to appear in Proceedings of 2006 ISVLSI.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com

VITA AUCTORIS

Jialin Mi was born in 1977 in Shanghai, China. He received his Bachelor’s Degree in
Communication from the Electronics Engineering Department of Shanghai JiaoTong
University in 2000. He is currently a candidate for a Master of Applied Science Degree in
the Department of Electrical and Computer Engineering at University of Windsor and

expects to graduate in winter 2006.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Optimizing power, delay and reliability for digital logic circuits with CMOS and single-electron technologies.
	Recommended Citation

	tmp.1618336817.pdf.B9LbL

